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Zusammenfassung

Autonome Robotersteuerung ist eines der Hauptforschungsgebiete der Robotik. Eine Vielzahl
an Ansätzen zur Kontrolle und Bewegung, sowohl einzelner als auch mehrerer Roboter, allein
oder in Formation, existieren. Sie decken unterschiedliche Anwendungsgebiete ab und führen
zu verschiedensten Ergebnissen.

Ein Ansatz zur vollständig autonomen Steuerung unbemannter Luftfahrzeuge (UAVs) wird in
dieser Dissertation präsentiert. Die UAVs verfügen über die Fähigkeit zur dreidimensionalen
Pfadplanung. Dadurch erreichen sie spezifische Positionen so dass Gebiete, einschließlich
teilweise oder vollständig eingestürzter Gebäude, Tunnel, Brücken, etc. vollständig erkundbar
werden.

Durch Verwendung multipler UAVs kann die benötigte Zeit zur Gebietserkundung reduziert
werden, sofern Koordination und Aufgabenallokation verwendet wird. Der vorgestellte An-
satz funktioniert mit einem einzelnen UAV und sorgt für eine schnellere Abarbeitung aller
Aufgaben bei Verwendung mehrerer UAVs. Diese arbeiten verteilt und vollständig dezentral.
Redundante Aufklärung wird durch Informationsaustausch reduziert. Das System basiert auf
der Potentialfeldtheorie, kombiniert mit harmonischen Funktionen, wobei Pfade durch ein
Gradientenverfahren erzeugt werden.

Zusätzlich werden Formationsflüge zur Kooperation eingeführt. Diese basieren ebenfalls
auf Potentialfeldern, in Kombination mit der Bifurkationstheorie. Die Art der Formationen
kann durch einfache Parameteranpassungen verändert werden. Dieses Verfahren wird mit
harmonischen Potentialfeldern zur vollständigen Gebietserkundung in Formation kombiniert.

Viele Methodiken zur Steuerung von UAVs berücksichtigen hindernisfreie Räume sowie zwei
Dimensionen mit einer festen Höhe. Zusätzlich existieren einige Ansätze mit denen teilweise
einzelne Hindernisse in Formation umflogen werden können. Der in dieser Dissertation
vorgestellte Ansatz geht weit über derartiges Verhalten hinaus. Es wird ein einzigartiges
System, das den UAVs das gleichzeitige Erzeugen mehrerer Formationen zur Erkundung
komplexer und sich dynamisch ändernder dreidimensionaler Umgebungen erlaubt, vorgestellt.
Der Ansatz ist vollständig dezentral und kann mathematisch verifiziert werden. Dadurch ist
ein vorhersagbares Verhalten sichergestellt, das eine große Bandbreite an Einsatzmöglichkeiten
eröffnet.
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Abstract

Autonomous robot movement is one of the main research topics in robotics. Various approaches
for control and movement of single and multiple robots, alone or in formation, from one
positions to another exist. They cover diverse applications and lead to different results.

A system for completely autonomous unmanned aerial vehicle (UAV) control is presented in
this thesis. It provides the UAVs with capabilities for three-dimensional path planning in
order to fly to specific positions and to entirely explore environments including partially or
completely collapsed buildings, tunnels, bridges, etc.

Using multiple UAVs decreases the time needed to explore an environment completely when
the problems of coordination and task allocation are solved. The presented approach works
well with a single UAV. Increasing the number of UAVs leads to a faster execution of
all relevant tasks. The UAVs work in a distributed and completely decentralized manner
without any central coordination instance. Redundant exploration is reduced by inter-UAV
communication. The system is based on artificial potential field theory combined with
harmonic functions. The simplicity of the gradient method is used to compute feasible paths
based on a potential field. This leads to efficient trajectories with specific target positions,
which are the essential behavior for exploratory navigation of complex environments.

Formations have been introduced to reach a high degree of cooperation. They are created
through the use of artificial potential fields, based on bifurcation theory. The shape of
a formation can easily be changed through the adaptation of single parameter values. A
combination with the harmonic potential field is conducted to enable the UAVs to explore
environments in formation.

Many UAV approaches consider an obstacle free space and merely consider two dimensions
with a fixed height. Some techniques enable certain formations. They might also be able
to avoid single obstacles while preserving a formation. The presented approach leaves such
approaches behind and provides a unique system, wherein UAVs are able to create several
flexible formations simultaneously in order to entirely explore complex and dynamically
changing three-dimensional environments. The approach is completely decentralized and a
mathematical verification ensures safe UAV behavior in order to address a wide range of
applications.
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Chapter 1
Introduction

At bottom, robotics is about us. It is the discipline of emulating our lives, of
wondering how we work.

ROD GRUPEN, Discover Magazine, June 2008

Many robotic approaches are ascribed to natural animal behaviors, e. g., from ants [11], [12],
bees [13], fish, birds [14], and humans [15]. Using the knowledge of nature offers a wide range
of potential benefits. Nature gained experience in creation over the course of millions of years,
while countless species arose and became extinct. Species with particular abilities survived
longer and evolved over time. This selection process led to highly efficient species.

Investigating evolution showed that only the fittest species survive. In this context the term
fittest contains several capabilities. One of them is the proficiency to adapt to environmental
changes. Another is the ability to establish groups of different individuals working together.
Groups of animals can conduct tasks, single individuals are incapable of, enhancing their
probability to survive. One example for successful incorporation are fire ants (Solenopsis
invicta). They link their bodies to build waterproof rafts [16]. This technique allows a colony
to survive floods, while single ants would drown.

Sahin et al. [17] observed three functional properties, essential for the survival of animal
societies:

1. Robustness: The society is able to guarantee an operational status despite disturbances
and the failure or malfunction of single members.

2. Flexibility: Each member is able to coordinate its behavior in a way that enables the
society to process several tasks simultaneously.

3. Scalability: The society can operate under a wide range of members and also supports
a large number of individuals, without influencing the performance considerably.
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Chapter 1. Introduction

Robotic systems, composed of several robots, as well as animal colonies supporting these
functional properties can fulfill tasks of higher complexity than their single individuals would
be able to. The functional properties should always be taken into account for the design of
complex and distributed robot systems with autonomously acting members.

The development of distributed robot control systems is not an entirely new topic. It reached
increasing attention by researchers in the 1980s and thenceforth a countless number of
different types of robots and robot groups have been developed. These systems consist of
diverse kinds of robots and work in a wide range of applications. Not all developed systems
are autonomous and distributed. Several are directly controlled by humans and many have
a central coordination instance. There is often no need to support the three mentioned
properties as, e. g., by industrial robots, working in a static environment to fulfill only one
single basic task highly efficiently. Otherwise robots work cooperatively in dynamically
changing environments, e. g., to find victims after disasters. Such robots can benefit by
supporting the properties.

Nowadays, robots conquer more and more different environments. Diverse requirements,
partly based on the kind of environment in which the robots are employed must be taken
into account. Robots working in outer space need other skills than robots working in deep
sea missions [18]. Based on the single requirements, different types of robots, like unmanned
underwater vehicles (UUVs) [19], animal-like robots [20], or even robots able to play soccer
[21] have been designed. They often work on their own to fulfill complex tasks. But it is also
possible that the robots work together in swarms [22], where in the majority of cases each
individual only has simple rules and a limited knowledge about its environment. Due to the
differing capabilities of the robots it is not possible to design a single system, able to work
efficiently with all kinds of robots.

A wide research area is swarm intelligence. In this area robot cooperation is achieved through
simple rules only. In comparison to swarm intelligence approaches, the behavior of the
presented unmanned aerial vehicle (UAV) system relies not only on simple rules. The robots
compute complex behavior including plans. They are equipped with sensors to detect their
surroundings and with suitable actors, able to react to environmental changes. Also they
have enough computational power to compute complex behavior online, while every UAV
has a model of the currently known world on which the behavior is based.

These days, several commercial UAVs achieve increasing interest in research and in real world
applications. Figure 1.1 shows three of the currently available UAV platforms, developed by
the companies Parrot [23], Draganflyer [24] and Microdrone [25]. The presented UAVs are
used amongst others in education and research.

Related to the existing platforms, the UAVs considered for the presented system are helicopter-
like. One advantage of such UAVs is their ability to take off and land at much more positions
than fixed wing UAVs as they have no need for a runway.

A basic requirement for the design of a distributed robot system is autonomous robot
movement. Helicopter-like UAVs are able to turn on the spot and therefore non-holonomic
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1.1. Motivation Chapter 1. Introduction

Parrot AR - Drone 2 [26] Draganflyer X8 [27] Microdrone MD4 1000 [28]

Figure 1.1.: A small selection of currently available commercial UAVs from the companies Parrot,
Draganflyer and Microdrone.

constraints can be neglected during the design of a first movement approach. Nevertheless,
such constraints should be taken into account afterwards to compute smooth trajectories.

The use of cooperative robots, UAVs, as well as unmanned ground units supporting humans
can lead to a significant easement in terms of processing several different tasks. In turn, these
tasks can address a wide range of applications and might be performed by homogeneous,
as well as heterogeneous robot groups. The following section gives a brief introduction to a
selection of tasks realizable by groups or respectively by swarms of robots.

1.1. Motivation

Today’s robots are used in a wide range of applications. One example are industrial robots
that mostly execute simple tasks in a highly efficient manner. Another focus of robotics is on
several different robots executing complex tasks. During recent years robots copying human
and animal behavior received increasing interest, which in turn often work in a self-adaptive
manner, where they adapt their behavior in order to properly react to changing environmental
influences.

Beside the mentioned systems UAVs also received increasing interest during the last years.
Currently they are primarily used in police and military applications, as well as in education
and research. A future application might be the support of several kinds of different rescue
operations.

A big disadvantage of current real world UAV control systems is their lack of autonomy.
Often, at least one human operator is needed to control single UAVs. Figure 1.2 shows a
modern control station for a Reaper MQ 9 UAV [29]. A pilot and a sensor operator are
needed for the control of each single Reaper. The distance between the operator and the UAV,
which can be thousands of kilometers, leads to delays. Combined with the limited sensor
information the persons controlling the UAVs receive, this leads to a heightened probability
of crashes.

3



Chapter 1. Introduction 1.1. Motivation

Figure 1.2.: Ground control station [29] for a Reaper MQ 9 UAV [30] and the corresponding UAV.

One way to overcome these disadvantages could be a system, able to autonomously control
several UAVs at once. Controlling UAVs should then be performed decentralized to avoid
single points of failure and bottlenecks. It should also be possible to adapt the UAV behavior
autonomously, in order to properly react to changing environmental influences. For the use
in real world applications, a verification of the resulting system must be possible.

The inefficient control of current UAV systems and the problems arising therefrom lead to this
thesis’ objectives. Thus, one of the main objectives is the design of a completely autonomous
multi-UAV system. The UAVs should have capabilities to process different tasks like, e. g.,
environmental exploration. Sophisticated task execution should efficiently support ground
units with information about the operational area.

A system, able to autonomously explore entire areas fast and efficiently has many applications.
Popular examples are the provision of an overview after disasters or the support of search and
rescue operations to find missing people, like children or older, perhaps bedridden persons.
Those people are often last seen at a particular place at a certain time. Based on this
information it is possible to determine an area in which these people are most likely to be
found. Monitoring of crowds is also a potential application in order to provide the police
with information, usable to relax tense situations before they get out of control, leading to
panic and sometimes death.

Another interesting application is the exploration and measurement of unknown or only
roughly known terrains. Such tasks have been conducted several times during recent years.
A measurement of the Mariana Trench was performed in 2011 [31] and a measurement of
the gravity field of the moon in unprecedented detail was executed in 2012 [32]. Upcoming
tasks might be, e. g., exploration and measurement of Mars. It would be very beneficial
if these tasks could be conducted using multiple space probes able to process the tasks
self-coordinated and completely autonomously in the future. A system with these capabilities
has to be verified at least in the sense that it always leads to a specified behavior. This is
necessary, as on the one hand unspecified behavior during search missions can harm people.
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1.2. Objectives and Contribution Chapter 1. Introduction

On the other hand the time required by operators to react to unspecified behavior might be
too long due to communication delays.

A cooperative robot platform can also be used as a mobile platform to measure gas concen-
tration, wind, temperature and humidity [33]. It is possible to improve the air quality based
on the data these robots measure at different locations inside a building. Another aspect is
the analysis of gas clouds to achieve information about the composition and concentration
of possible poisonous particles of a cloud. The achieved information can be used to warn
residents if necessary and to supply appropriate pharmaceuticals.

In such scenarios a cooperative coordination of multiple robots can improve the results
compared to the use of robots lacking coordination capabilities. Based on this idea an
approach is presented where each single UAV is able to process most of the required tasks by
itself, but is also capable to connect with the other robots to increase the efficiency of the
overall system. The UAVs are able to reach consensus about several objectives such as the
determination of specific UAVs for single tasks execution, when it is not beneficial to process
tasks simultaneously using all UAVs. Additionally, the UAVs are able to autonomously
determine their own part during task execution, while multiple UAVs are cooperatively
executing tasks. One focus is efficient exploration of different environments and to increase
efficiency by increasing the number of participating UAVs. To achieve the requirements,
the UAVs must perform cooperative behavior such as formation flights if it leads to faster
exploration of some of the environment’s subareas. The complete objectives fulfilled by the
presented system are described in the following section.

1.2. Objectives and Contribution

The overall objective of this thesis is the design of a multi-UAV system able to support ground
units in a wide range of applications. Beside the aforementioned three functional properties
robustness, efficiency and scalability, the system has to provide the following capabilities:

• An intelligent behavior for self-adaptation to environmental changes.

• Completely autonomous and distributed behavior.

• Efficient and complete terrain exploration and monitoring.

• Simultaneous multi-task creation, allocation, and execution.

• Dynamic establishing and dissolving formations.

• Verifiable behavior.

A dedicated UAV control software, providing several benefits has to be implemented to face
these objectives. All algorithms and methods used to control the UAVs should be testable in
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Chapter 1. Introduction 1.2. Objectives and Contribution

a safe way. A simulation of the resulting UAV behavior is needed to avoid damage and an
evaluation of the designed algorithms in several different environments is required, to ensure
that the system works not only in a specific environment.

As mentioned before, a “good” system has to adapt itself to environmental changes. This has
to be reached as the UAVs should be able to fly in unknown environments. Therefore, they
must have capabilities for obstacle detection and proper reaction to newly detected obstacles.
Hence, the possibility to represent environmental changes during UAV movement is required
in order to test the self-adaptation capabilities of the UAVs.

Another objective is that different types of UAVs should be supported. Thus, the developed
algorithms have to work in different environments and for different kinds of UAVs. Finally,
the current status of the system, as well as parts of previous UAV behavior must be visible
to human operators in order to identify wrong and inefficient behavior.

The UAVs have to work in a self-organizing manner due to the autonomy of the resulting
system. They must also execute their behavior completely decentralized to reach the three
functional properties robustness, flexibility and scalability. The single UAVs need to be able
to entirely explore different terrains. Consensus reaching with other UAVs not only about
the sections of the terrain each UAV has to explore but also about the distribution of given
tasks is also necessary. All tasks have to be organized and processed by the UAVs themselves,
without a central coordination instance.

In order to design a system, which is able to solve these objectives several requirements have
to be fulfilled. First of all an internal environment representation is necessary. Safe movement
inside various terrains and complete accessibility within each environment is required to
guarantee complete exploration. The UAVs must be able to move to specified positions in
the terrain in order to start with the most important tasks. Due to the use of multiple UAVs,
a coordination is necessary to reduce redundant exploration and task processing resulting in
an efficiency increase.

It has to be ensured that the UAVs work in a safe manner, meaning that they never collide
with other UAVs or obstacles within the environment under any circumstances. A collision
normally leads to a cascade. This can harm people standing or in case of casualties more
likely lying beneath the UAV without a chance to move away from falling parts. To avoid
such behavior and to guarantee that the expected behavior is executed, all algorithms used
by the resulting system must lead to a mathematically verifiable UAV behavior.

The UAVs are able to take several different formation shapes in order to achieve a coordinated
movement. These formations can be established any time and ought to be highly dynamic,
considering the number of participants. A formation is dissolved when a further benefit is
unlikely. The UAVs rely their decentralized behavior on the inputs of a global positioning
system. Beside others, it is used to check whether the complete terrain is explored and to let
the UAVs exchange relevant information regarding the environment.

6



1.3. Outline Chapter 1. Introduction

The presented system is unique in its capabilities and combines Laplace’s equation [34]
and bifurcation theory [35] to reach coordinated UAV flights in a three-dimensional space,
consisting of several complex obstacles in order to reach a common goal. Compared to many
other robotic approaches it is possible to show the stability of the emergent behavior. The
presented system is described in detail in the following chapters, while the next section simply
gives an outline.

1.3. Outline

An introduction to autonomous systems from the beginnings up to state-of-the-art approaches
is presented in the following chapter. Thereafter, the basic methods, used for the design of
the presented system are introduced. An overview of the system and methods used to create
and internally represent different environments is given in the further course of the thesis.
The algorithms used for path planning and formation flights work with this representation.
Exploratory navigation using formations leads to a higher degree of cooperation. An evaluation
of the system is presented after the description of the designed system to show that the
approach not only works in theory. It is investigated whether the approach is computable
and works with discrete arithmetic. Finally, a conclusion and an outlook on future work is
given.

Chapter 2 (Evolution of Autonomous Systems) introduces to the evolution of autonomous
systems from the beginnings up to state-of-the-art robotic approaches. The first autonomous
and decentralized acting systems were animals, such as bees, ants, fish and birds, created
by nature. Observations inspired researchers to come up with different approaches for
autonomous systems based on animal behavior. The chapter distinguishes single robot
control and cooperative robot control. Popular techniques designed by various researchers are
presented for both, single robot control and cooperative robot control. A few famous robot
control areas are introduced as well. The system presented in this thesis is finally contrasted
to state-of-the-art approaches.

Chapter 3 (Cooperative Path Planning Foundations) describes the basic approaches, used
to design the presented system. Foundations for path planning, cell decomposition and
potential field theory for single UAV flights and flights in formation are covered. Problem
statements for the single objectives the system has to obtain are also given. Afterwards, the
mathematical basics, used to verify the resulting system are presented.

Chapter 4 (Architectural System Design) mainly treats the basics necessary to efficiently
compute feasible paths. First, an overview of the entire architecture is presented. The main
focus lies on the world representation, based on an octree. This tree-based structure has to be
highly dynamic and efficient as described in the chapter. Thereafter, the UAV configuration
is introduced and camera based environmental exploration is described in detail.

7



Chapter 1. Introduction 1.3. Outline

Chapter 5 (Decentralized UAV Flights) addresses the artificial potential field approach for
UAV flights of the presented system. A mathematical problem statement is provided at the
beginning of the chapter, followed by state-of-the-art solutions. Afterwards, a potential field,
represented by a harmonic function is described in detail. The chapter also shows some
methods to reduce the computational effort, followed by a description of path computation
and the technique used for exploratory navigation. The underlying mathematics of the
presented approach are also verified.

Chapter 6 (Behavioral Formation Flights) discusses the methodology used for formation
flights. A behavioral approach based on artificial potential fields is designed. The chapter
first gives a problem statement and presents some state-of-the-art solutions. A combination
of the potential field, presented in Chapter 5 with the formation approach is also described. A
visualization of the resulting potential fields is given afterwards to provide a better impression
of the designed path planning system. A selection of possible formations shapes is then
presented. Formation handling in terms of requirements, formation flights, and formation
rotation in three dimensions is also addressed. The underlying mathematics is verified at the
end of the chapter.

Chapter 7 (Cooperative Behavior) describes the inter-UAV behavior. It is based on task
creation and task allocation. The UAVs are able to change their tasks anytime and thus
establish, dissolve, and change formations. Task allocation is based on a decentralized market
place approach and the UAVs use a role system based on division of labor. Single tasks and
their properties are also introduced, as well as situations in which the UAVs create tasks by
themselves. The entire system works completely decentralized leading to a more complex
handling.

Chapter 8 (Evaluation) shows the results of several test runs, conducted to evaluate the
system. Diverse conditions are introduced resulting in known and unknown environments, as
well as in UAVs able to fly in formation and UAVs unable to. A terrain, based on real world
data, extended by complex three-dimensional structures served as the work environment
for the UAVs. Performance issues, concerning the computational time of the entire system
presented in this thesis are considered. In the further course of the chapter, outcomes for
exploratory navigation are compared using single UAVs and formation flights. Thereafter,
test runs regarding the UAV behavior and the task allocation behavior are presented. A
conclusion regarding the results is also given.

Chapter 9 (Summary and Outlook) summarizes the presented approach and highlights
the system’s main advantages. The contributions of this thesis are also presented. Finally,
suggestions for future improvements and additionally required approaches for the use in real
world scenarios are provided.
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Chapter 2
Evolution of Autonomous Systems

Several decades ago, researchers started to think about techniques for autonomous robot
movements from one position to another. Systems for cooperative movement of various differ-
ent robots have been designed. Lots of the resulting path planning approaches are biologically
inspired as the evolution of animals provides good insights into possible design paradigms.
Such methodologies reached increasing interest with the introduction of cooperative robot
control based on behavior observed from animal swarms. The aim of this chapter is to provide
an introduction to path planning for single and multiple agents, as well as to coordination
methodologies of groups of autonomous agents.

The first decentralized acting swarms of autonomous agents were designed by nature millions
of years ago. Nowadays, the objectives of the UAV system explained in Section 1.2 are
solved by nature on a daily basis. Over the course of millions of years, evolution has brought
forth, among many failures leading to species extinction and coining the term survival of the
fittest, species with highly optimized task processing capabilities. This was recognized in the
early 1990s by several researchers, e. g., [36], [37], [38]. Thenceforth, behavior methodologies
observed from animal colonies were increasingly introduced to design single-robot systems
and multi-robot systems. A research area called swarm intelligence arose. The developed
robot swarms consist of single robots with basic rules for behavior computation. Due to their
cooperation, they are able to solve tasks, single members are not capable of solving. This led,
beside others, to great improvements in the design of autonomous multi-agent systems.

The considered UAVs do not necessarily form a robot swarm if the classical definition of robot
swarms, in which a swarm consists of a large number of relatively simple physically embodied
agents, is taken into account. The presented system works with a single UAV, as well as
with a large number of UAVs. The maximum useful number of UAVs is mainly based on the
capabilities of the UAVs and the size and properties of the environment. Too many UAVs
will start to disturb each other as, e. g., shown in Chapter 8. The UAVs are able to solve
complex tasks by themselves due to their computational power. However, swarm approaches
are used in the resulting system to increase efficiency. Some behaviors, observed from ants,
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bees, fish and birds, which are interesting for the resulting UAV system are presented in the
following section.

2.1. Autonomous Systems in Nature

Many animals work in a cooperative manner to process daily tasks, like foraging. These
cooperations can consist of a couple of animals, as well as of millions of individuals. Examples
are ant colonies, bee swarms, schools of fish and flocks of birds. Foraging is the main task
animal swarms have to solve. In order to fulfill this task they have to explore the surroundings
of their nest to find food sources.

The individuals of big societies specialize themselves to provide the colony with the ability
for simultaneous task execution. Task allocation and the coordination of a large number of
individuals is necessary for such animals to fulfill complex tasks in order to survive. They
work together to build complex structures, like bee hives or termite nests or to transport
big prey in groups as ants do. The single members have thereby only a limited knowledge
and perception of their environment and of the overall task they process. Many of them
communicate in an indirect manner.

Nevertheless, their behavior seems to be robust even with uncertainty in dynamically changing
environments. The results achieved by cooperation are normally well beyond the capabilities
a single individual can reach. It seems that the key mechanism is self-organization of the
individuals [39]. This elated researchers to study animal behaviors in order to get new
ideas for the development of robust and adaptive algorithms, able to handle robot societies.
Simultaneously biologists regard robotics as a useful test bed to check and validate their
theories [40].

Big improvements have been made in robotic research by adopting and adapting behaviors
of ants, bees, birds and fish. Another feature adopted from animal swarms is the division of
labor, used to specialize individual robots. Furthermore, animal behaviors have been utilized
to design evolutionary algorithms that solve different optimization problems. They have
also been used to design algorithms for traffic routing, networking, games, industry, robotics,
economics and the general design of artificial, self-organized, distributed problem solving
devices. Karaboga and Akay [13] presented a detailed overview of approaches, based on
observations of bee behavior. An interesting point of ant behavior is their use of pheromones,
as presented in the following section.

2.1.1. Ants

One of the most famous biologically inspired approaches in robotics is ant colony optimization,
introduced in the early 1990s by Dorigo et al. [11], [12]. The approach is inspired by the
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foraging behavior of ants. The worker ants of a colony explore the area surrounding their
nest in a random fashion. If an ant finds a food source, it evaluates the quality and quantity
of that source and carries some food back to the nest. Thereby, the ant deposits a chemical
pheromone trail on the ground during movement. The quality and quantity of the food
source leads to a certain pheromone concentration. This pheromone trail leads other ants
of the colony to the food source. If the source contains food too big to be transported by a
single ant, they show their capability to solve coordination tasks. A group of ants collectively
moves the food to the nest.

It has been shown [36] that this kind of indirect ant communication allows the ants to set up
a shortest path between their nest and the food source. Another interesting observation is
that after some time major paths are established, which enables the ants to lead homecoming
ants directly to the nest. Based on such a behavior it should be possible to design a system
able to work without the need of a global positioning system.

Based on ant foraging behavior, several algorithms and methods for different problems have
been designed [41]. The foraging behavior shows similarities to the presented UAV behavior
(cf. Chapter 5) designed amongst others to entirely explore various environments. One
difference is that the ants stop exploration when they find a food source in order to bring
food to their nest, while the UAVs continue to explore the terrain after they targeted some of
their objectives. Further behavior, utilizable by UAVs for exploratory navigation has been
observed from bees and is presented in the following section.

2.1.2. Bees

The communication behavior of bees is an interesting aspect. When a bee finds a food source
it moves back to its hive and start dancing. Dependent on the distance to the food source,
three different dances are performed: round dance, waggle dance or tremble dance. A round
dance does not contain directional information and is conducted if the food source is less
than 100 m away. The bee performs a waggle dance if the source is further away. The length
of the dance is related to the distance to the source, whereby longer distances cause shorter
dances. Additionally, the dance provides directional information related to the sun. If a bee
perceives a long delay while unloading the food, it performs a tremble dance.

Bees also dance in order to perform non-conflictive, unified, decision making within the
swarm. If the swarm needs a new nest, multiple scouts explore the surroundings in order to
find suitable places. These scouts meet and exchange information regarding the quality of
places they found by dancing. Based on the information provided by the dances, they choose
the location for their new hive. Such a simple communication structure can also be used in
robotics for information exchange without much overhead.

Another interesting observation is that bees use a map like organization of spatial memory for
homing, foraging and other flights based on viewpoints and landmarks. Such an organization
can also be used to entirely explore areas, without the need of a global positioning system.
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Adopting this method would make, e. g., an exploration task more robust (cf. Section 2.2.3).
Problem solvers based on bee swarm intelligence have been introduced from the beginnings
of the 2000s [13].

Bees also cooperate to build new hives and to defend these. Further interesting cooperations
are formation flights. They have been observed from birds and fish, as described in the next
section.

2.1.3. Flocks of Birds and Schools of Fish

Behaviors observed from flocks of birds and schools of fish are shown in Figure 2.1. They can
be used to provide a group of agents with abilities for movements in desired formations and to
preserve them while moving. The animals use simple movement rules, based on the distances
to their neighbors [14]. Formation flights have several applications, like the exploration of
hazardous areas and the transportation of large objects.

a) b)

Figure 2.1.: Image a) shows a flock of birds [42] and b) shows a school of fish [43].

One famous example, based on the movement behavior of schools of fish and flocks of birds
for robotic systems is the work conducted by Kennedy and Eberhart [44] in 1995. They have
defined the particle swarm optimization (PSO) approach.

Flocks of birds and schools of fish inspired researchers to design methods for the movement of
several robots without high computational effort. Such methods are, e. g., used by researchers
in the area of dynamic robot control in distributed systems. A single fish or a single bird in a
swarm moves independent to the goal the entire swarm wants to reach. It just positions itself
at specified distances to its neighbors. The distances depend on the current environmental
situation. If a school of fish is surrounded by predators, the distance decreases. This simple
positioning also has the advantage of fault tolerance. If several agents fail, e. g., they were
eaten by a shark, the entire school of fish is still able to move forward without leaving fish
behind.
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One application for flocks of birds is to cover large distances. Therefore, the birds form a
flock with a designated leader, enabling them to save energy by minimizing drag for most of
the participants. The leader, who still has to overcome the complete drag, changes from time
to time. Due to these changes, each bird saves energy and is able to cover the distance.

In robotics, a formation behavior independent of a leader and not treating the formation
as a single object is called behavioral formation approach. This is one of the three main
approaches used to move a group of robots, as described in Section 3.4. The UAVs implement
such a behavioral approach to fly in formation (cf. Chapter 6).

The methods presented so far treat animal swarms as a cluster of homogeneous agents. In
order to increase efficiency, several animal swarms use the so called division of labor approach
to create specialized individuals to simultaneously solve different tasks, as described in the
next section.

2.1.4. Division of Labor

The use of biologically inspired self-organization and division of labor has reached increasing
interest through the work of Benabeau et al. [45]. Division of labor describes the ability
of colonies to execute several tasks simultaneously with the help of specialized agents. The
agent’s flexibility of both, responding to external and internal changes is a noticeable aspect
of this approach.

Each large animal colony uses division of labor. It is primarily applied to create several types
of workers and results in the ability to process various tasks simultaneously. The kind of
division of labor can, e. g., change with the size of the colony, as well as with environmental
changes.

Beside the division of labor considering only worker animals another division takes place
in nature. Ants and termites have big soldiers and small workers. A further example is a
honey bee swarm [13]. Such a swarm mainly consists of three kinds of bees, with one kind
subdivided into two varying kinds:

1. Queen bees are responsible for reproduction.

2. Drones are male bees with only one task, to fertilize a new queen.

3. Workers fulfill diverse tasks, based on their age and the needs of the colony.

a) Hive workers are young bees, responsible for solving all tasks inside the hive.

b) Foragers are older workers, responsible for food supply.

A bee swarm formed on the basis of these different kinds of single members allocates all tasks
dynamically and adapts itself in response to environmental changes. Young worker bees,
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as well as young worker ants mainly live inside the colony or hive and are responsible for
all tasks, like feeding the offspring, until they reach a certain age. Then they change their
behavior and start to move outside of the hive to execute foraging tasks. However, this task
allocation is not fixed. If more hive workers or more foragers are needed a recruitment from
the other camp of workers takes place.

It can also be beneficial to distinguish diverse types of robots. In case of robot groups a role
assignment may occur and certain robots solve specified tasks, other do not. This is similar to
the division of labor example, in which only workers are considered. Additionally, evermore
systems consisting of heterogeneous robot societies are designed, wherein robots have varying
capabilities making them more or less suitable to solve various tasks like, e. g., in ant colonies
where big ants defend the nest and smaller ants are responsible for foraging. Based on this
animal behavior a cooperative UAV behavior has been designed (cf. Chapter 7).

Several approaches for autonomous robot control are based on animal swarm behavior, briefly
introduced in this section. Beside adopted swarm behaviors many other approaches for robot
control exist. The following section gives a brief overview of methods used to control single
and multiple robots.

2.2. Autonomous Robotic Systems

Some of the most famous approaches designed during the last decades and used for robot
navigation are briefly presented in this section. These approaches can be combined with
coordination patterns to move multiple robots in an efficient way. Additionally, two research
fields, responsible for the design of several approaches are also presented. These fields
are called wilderness search and rescue (WISAR) respectively simultaneous localization
and mapping (SLAM). As the field of autonomous robot control is really broad—from the
movement of single parts of robots from one position to another to the movement of complex
robots to the movement of robot swarms to execute complex tasks cooperatively—this section
is far from being complete.

The control of multiple robots is often based on control strategies for single robots, extended
by multi-robot control methodologies. Thus, the next section starts by introducing single
robot control.

2.2.1. Single Robot Control

One of the earliest approaches for the design of autonomous robots and still in use [1], [46]
is reinforcement learning, introduced by Sutton et al. in 1981 [47]. Later on Sutton and
Barto gave an overview of the field in [48]. This research area addresses a wide range of
robotics applications, considering amongst others robots that learn to move and to reconfigure
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themselves if necessary, e. g., because they have lost a leg [49]. Reinforcement learning is also
used to design robots able to ride a bike [50] or to provide computers with the capability to
play backgammon [51], [52] on the level of human world masters. Additionally, it enables
computers to solve complicated tasks of high dimensionality like elevator dispatching [53],
[54] and gives them the ability to challenge human experts in games like jeopardy [55] or
chess [56], [57].

In 1987 Reynolds [58] was one of the first, inspired by flocks of birds to come up with a
simulation for autonomous robot behavior. He used a heuristic to reach rule-based movement
of single simulated bird-like “bird-oid” objects called boids in order to produced qualitative
results with only three simple steering behaviors—separation, alignment and cohesion. His
work was extended by Heppner and Grenander in 1990 [37]. In 2003 and in 2004 it was
applied to control autonomous UAVs in formation by Crowther [59], [60]. These researchers
were able to demonstrate the possibility to design systems, in which swarm behavior is
reached through the use of simple rules.

In 1986 a paradigm shift in the design of robotic systems took place due to the introduction of
the subsumption architecture by Brooks [61]. He created a system, in which robot movement
is based only on sensor inputs and communication. His completely reactive approach is able
to work without the need of an internal world model. Such a world model was necessary while
traditional artificial intelligence methodologies were used. The subsumption architecture is
related to finite state automaton, modeling robots as finite state machines, using Markov
dynamics to describe the swarm behavior. A layered set of behaviors is used in subsumption,
where top level behaviors subsume low level behaviors. These approaches led to qualitative
behaviors, like flocks or dispersion.

At the same time Brooks introduced the subsumption architecture another approach for
autonomous robot control was designed by Khatlib [62]. He presented the artificial potential
field (APF) method and used it to design an obstacle avoidance system for manipulators
and mobile robots. The basic idea is that the robots can be guided by forces pulling them to
the target position and simultaneously repelling them from obstacles. APF combines several
behaviors leading to a superimposed behavior represented by a resulting potential field. This
theory is extensively studied for autonomous path planning, e. g., in [63], [64], [65] and [66]
for single robots and, e. g., in [67], [68], [69], and [70] for multi-robot systems.

Many approaches for autonomous robot control lack the possibility to be mathematically
verifiable. One advantage of the APF approach is that it is able to generate low order
dynamic systems. Additionally, it can often be used to mathematically prove the stability of
the emergent behaviors, instead of applying traditional algorithm validation.

In 1989 another popular approach was presented by Arkins [71], called Motor Schema. It
is similar to the APF and produces appropriate repulsive and steering commands for a
robot. It works completely reactively based on simple rules or schemes like move to target
or avoid obstacle. These schemes are independent from each other and can be processed
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concurrently. Nowadays, this method is, e. g., used by the robot head Mexi (Machine with
extended emotional intelligence) to move its head [72].

One widely used approach for the control of UAV groups has been adopted from industry.
Receding horizon control (RHC) or model predictive control is a possibility to move a group
of robots in a given formation. It works with linear and nonlinear control dynamics and is
mainly an optimization approach calculating responses on given inputs. Duan and Liu [73],
e. g., use this method in combination with PSO to investigate the formation flight problem
in complicated environments. Furthermore, Zhou et. al. [74] realized an obstacle avoidance
system using this approach.

Beside reactive movement of robots as it is designed, e. g., using Motor Schema planning
approaches have also been designed. If the environment in which the robot moves consists of
streets, the road map method [75], [76] can be used to plan paths the robot has to follow.
This approach is also used by car navigation systems. The basic idea is to design a road map
reflecting the connectivity of streets. After the creation of such a road map, path planning
can be performed by connecting the start and the target position of the robot with the road
map. A path can then be found by simply following the path in the road map.

Several additional approaches designed in other research areas like mixed integer linear
programming [77] combined with RHC [78], quantum particle swarm optimization [79],
genetic algorithms [80], and many more have also been adopted for the use of robot control.
Graph based approaches using, e. g., Dijkstra’s algorithm [81] or the A∗ algorithm [82] to
find optimal paths are also widely used in path planning applications.

The system presented in this thesis needs a verification of the resulting behavior in order to
be adaptable for real world applications. The UAVs have to guarantee several behaviors, like
obstacle avoidance and target reaching. Thus, the artificial potential field approach has been
selected as basis of the resulting system.

The presented methodologies were mainly developed to control and to move single robots. To
design a multi-robot system, they have to be extended by some sort of cooperative behavior.
The following section gives a brief overview of some famous coordination strategies used to
control multiple robots at once.

2.2.2. Cooperative Behavior

An organizational structure should lead to cooperative multi-robot behavior. Countless
approaches able to coordinate several UAVs have been designed during the last decades.
Several summaries, e. g., from Horling and Lesser [83] exist.

A multi-robot system should be organized in some way, e. g., by a collection of roles, rela-
tionships and authority structures. One of the earliest designs is hierarchical organization
presented by Fox [84] in 1979. This approach arranges the robots in a tree like structure.
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A robot’s knowledge of the global view depends on its position in the tree. The deeper the
position of a robot in the tree, the lesser knowledge the robot has. The single robots are
connected by the tree structure and interact only with robots they are connected to.

Another kind of organization are holarchies. A holarchy consists of partially autonomous
holons, from the Greek words holos (whole) and on (part). The term was introduced by
Koestler [85] in 1967 for a unified descriptive theory of physical systems. It is based on the
nested, self similar organization that such systems possess. For robotics this approach was
used, e. g., by Fischer [86] to create an organization through explicit modeling or implicit
division of labor in real world systems as holons. In a holarchy robots are separated in groups,
whereby each group is responsible for processing specific tasks, similar to ants where the
group of young ants works inside the hive and the group of older ants performs foraging.

An approach popular in game theory is coalitions. Given a set A of agents or robots each
subset of A is a candidate for a coalition. In general, a coalition is goal oriented and has a
short life. The robots create coalitions dynamically to process a task and dissolve it afterwards.
Each robot in a coalition tries to maximize its own benefit. It can be extended to longer
living agreements [87] and is based on trust. Responding to dynamic task environments
multiple coalitions [88] can be established simultaneously.

A similar sort of organization, called teams was introduced in 1981 by Fox [89]. A team
consists of a number of cooperative agents. These agents have an agreement to work together
to reach a common goal. Teams can also be established dynamically, but compared to
coalitions, maximizing the utility of the entire team rather than the one of the individual
members is performed.

Long lived cooperations are called congregations. They consist of a flat organization structure.
A congregation is formed amongst robots with similar or complementary characteristics. This
motivates them to congregate for solving multiple tasks [90] without the use of groups or
global rewards.

Compared to the static approaches presented so far, a society is a dynamic organization
with a changing number of participants. It is a long living social construct and acts as an
environment through which the participants meet and interact. One example for a society is
a permanently operating environment called “agent world” [91]. Robots in a society can be
heterogeneous and do not necessarily process the same task. The society provides a common
domain.

Based on a governmental system federations with different varieties have been designed. A
central government exists in this organization. It makes decisions regarding various aspects
and thus reduces the autonomy of single robots. The robots are also subdivided into roles
like delegates, facilitators, mediators, and brokers [92]. Based on those roles different tasks
are performed by the robots.

Market places are producer consumer based organizational structures. A single market place
consists of buying robots, selling robots, and third parties called auctioneers. Tasks can be
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acquired at a market place structure. Buying robots place bids for tasks they want to process
and an auctioneer determines the winning robot based on the bids. This modeling facilitates
real world market economies [93]. Due to this similarity, several research results from human
economics have influenced this approach [94], [95].

One decentralized approach is the matrix organization. This paradigm allows several managers
or peers to manage the single robots. It is similar to the management of human beings. The
humans or robots receive hints and tasks from their managers, co-workers, colleagues, etc.
An interrelationship can have its own objectives, importance, and characteristics [96]. The
term matrix was achieved by a grid-based view of the participants. One design method can
be a matrix where the managers are the rows and the robots are the columns, whereby these
sets may overlap. A check is then used to decide whether an authority relationship exists.

Additionally, approaches combining several organizations exist. So called compound orga-
nizations can be used to combine several differing organizational methodologies. They can
overlap, allowing the combination of various organization paradigms. Thus, robots in a group
can be organized in a potentially other way within a larger context. The robots can take
different roles in response to diverse organizational demands [83].

The methods presented in this section are mainly centralized approaches and most of them are
based on division of labor (cf. Section 2.1.4). Robots assigned to differing roles process diverse
tasks monitored by a coordination instance. The UAVs should be able to compute intelligent
and efficient behavior without a central control instance. The market place approach is used
as basis. It has been decentralized to create a system where the UAVs offer bids. Not only
a single instance decides about the allocation of a UAV to a task but all other UAVs, as
described later in Chapter 7.

Robots, organized using one of the mentioned structures can work in various applications.
Countless applications and research areas for autonomous multi-robot control exist. Beside
others, two control areas called WISAR and SLAM have become famous during the last
decades and are beside a popular robot contest called RoboCup introduced in the following
section.

2.2.3. Robot Control Areas

One famous area of robot control is simultaneous localization and mapping (SLAM) [97]
wherein robots explore unknown areas and simultaneously build maps, using their sensors.
Most state-of-the-art applications work in two-dimensional environments and some of them
have additional capabilities in order to find casualties. A few applications create three-
dimensional maps using laser range finders, e. g., mounted in a way that the laser range finder
is able to tilt [98]. Due to the arrival of Microsoft’s Kinect camera [99], researchers got a new
and cheap possibility to execute these tasks in three dimensions, based on vision algorithms.
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Other popular robot control areas are wilderness search and rescue (WISAR) [100], [101]
and urban search and rescue (USAR) [102], [103]. USAR often takes place after natural and
man-made disasters in order to find several victims in a given area. WISAR is conducted
most times to locate one single victim inside a large search region. The use of multiple robots
can lead to an increase in efficiency for archiving the goals of WISAR and USAR if they work
cooperatively. Additionally, the robots must be able to detect victims during exploratory
navigation.

To test, promote and compare several approaches for intelligent and efficient movement and
robot behavior the RoboCup [104] organization was founded in 1997. Every year several
contests take place in which robots have to play soccer in different leagues, find victims in
disaster areas [103], or support people accomplishing their domestic applications [105]. These
contests include robot simulations, as well as real world robots. This is one of several contests
used to test and present state-of-the-art approaches for cooperative robot design.

The UAVs of the presented system should be able to solve WISAR and USAR tasks. An
introduction of SLAM methods can improve the robustness of the presented approach in real
world applications. Self-localization can be combined with a global positioning system to
improve the estimated positions of the UAVs. The better this estimation is the better are
the results achieved by the planning approach. The methods of the designed system can also
be used to improve robots for challenges like the RoboCup.

Beside the famous areas of use and the methodologies for control and movement of single and
multiple robots designed from the 1980s up to now, several researches still work in this field.
The following section gives a brief overview of state-of-the-art robots and control strategies.
Diverse requirements must be met to actually design a cooperative robotic application. Real
robots should exist and path planning and cooperative behavior must be possible. A formation
approach is required to actually be able to move in formation. Normally, researchers take only
parts of the mentioned requirements into account. Thus, the following section is subdivided
to handle the single research areas explicitly.

2.3. State-of-the-Art

Robot movement depends not only on path planning. Today’s robots have various drives
like wheels, chains, legs, arms, heads, etc. They are also designed to move in different
environments, like in deep sea, in deep space, in subterranean environments, in overground
environments, etc. If such autonomous systems move at high speed, environmental influences,
like drag, must be taken into account. Thus, the systems are often designed as self-optimizing
system like, e. g., [2] and [106].

Single researchers often focus on only one of the topics relevant for the UAV system presented
in this thesis. Most of them consider complex path planning or formation control with simple
formation movements. The design of an efficient behavior is another research area addressed
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by the UAV system. Hence, this section is subdivided into several subsections considering
the current research of the topics separately. It is not only restricted to topics relevant for
the resulting system to provide a bigger picture of today’s applications. The section starts
with an overview of current robotic systems and shows an overview of state-of-the-art path
planning and formation handling approaches thereafter. It concludes with state-of-the-art
robot coordination approaches.

2.3.1. Robots

One important part of robot movement, beside path planning, is path following. If the target
platform is restricted, e. g., due to holonomic constraints, or to non-holonomic constraints
[107], a path planner has to consider these restrictions in order to compute feasible paths.
The restrictions can occur in several different forms dependent on the robots.

Using robots in heterogeneous environments leads to an increase of needed properties. Some
robots can move relatively slow but must conduct their movement precisely. Other robots,
like the robot Cheetah, shown in Figure 2.2 a), use new approaches for leg design [20] to
move at a maximum speed of 28.96 km/h. To avoid damage, it must, e. g., be guaranteed
that no abrupt direction changes take place when the robot moves at high speed. Cheetah is
a prototype and primarily intended to be a model for the design of new robots with abilities
to move in open field and to transport equipment.

a) b) c)

Figure 2.2.: Figure a) shows the currently fastest robot Cheetah [108], b) shows a chain based
rescue robot, designed by the company Robotnik [109] and c) shows the humanoid robot HRP-4C
[110], developed by Yamaha.

The robot presented in Figure 2.2 b) is a chain-based robot designed by the company Robotnik
[109], with the intention to create a rescue robot. The focus of this robot is to overcome
rough terrains, such as stairs to reach a high mobility. It is also used to support SLAM
applications. Wheel based robots can also work in rough terrain to deploy goods.

Figure 2.2 c) shows a humanoid robot built by Yamaha [15]. It can sing and is a step towards
service robots. Such robots are relevant for the support of humans in service questions as they
will be more easily accepted by humans than non-humanoid robots. Beside the presented

20



2.3. State-of-the-Art Chapter 2. Evolution of Autonomous Systems

a) b)

Figure 2.3.: Two example robots without mechanical parts. A worm like robot from the Waseda
University Tokyo is shown in a) [111] and the ChemBot presented at the DARPA is shown in b)
[112].

ground robots several additional kinds exist, e. g., wheeled robots. Autonomous cars are also
a famous example. Several big companies, as well as research facilities work on cars able to
autonomously navigate through daily traffic.

New types of robots without mechanical parts have been designed. These robots can, e. g.,
morph themselves from one design to another and are able to move. Figure 2.3 a) shows
a worm-like robot able to move through electrical impulses. The robot in Figure 2.3 b) is
able to change its form. Among other things, this might lead to new approaches for obstacle
avoidance as future robots might not need to move around an obstacle but also have the
capabilities to transform themselves in order to overcome obstacles.

The company Festo goes beyond the simple observation of animals. They want to develop
new movement approaches for their future products. Birds, penguins, and jellyfish are some
examples that have been rebuild, as shown in Figure 2.4, to prompt biologically inspired
ideas. They focuses on all kinds of observed animal motion and wants to rebuild it in detail.
The expert knowledge they achieve by designing and building these robots is used to improve
their products. Thus, the observed behavior contributes directly to the ease of human work.

Beside the multicopter UAVs presented in Figure 1.1 a wide range of additional UAVs exists.
Small UAVs used to spy on people, as well as large ones for exploration and monitoring have
been built during recent years. The Neo S-300 UAV, shown in Figure 2.5 a) is build by the
company Swiss UAV. It is a helicopter-like UAV and can be used, e. g., to provide goods due
to its maximal payload of 35 kg and a possible mission radius of 50 km. Such UAVs are
considered in the presented system for the support of ground units in diverse applications.

Another kind of UAVs are fixed wing UAVs as the RQ-170 Sentinel, presented in Figure 2.5
b). It is a fixed wing UAV equipped with stealth technology and can be used, e. g., to explore
areas without being discovered. A fixed wing UAV has other constraints than a helicopter-like
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a) b) c)

Figure 2.4.: Biologically inspired bird [113], penguin [114], and jellyfish [115], build by the company
Festo.

UAV leading to different trajectories it can follow. It also needs a runway to start and land
and cannot hover. An advantage of such UAVs is that they have better flight characteristics
leading to larger mission radii and higher maximum speeds.

The robots illustrated in Figures 2.2 to 2.5 work in diverse environments and have differing
movement capabilities. Only a small range of available robots and possible applications is
presented in this section. A path planner for these robots must consider the capabilities of
the robots to ensure that they are able to follow the computed paths.

Nowadays, it is possible to buy commercial robots, which are able to plan paths by themselves,
e. g., home cleaning robots. Most of the planning approaches used for these robots are relatively
simple and conduct a spiral-form movement with basic obstacle avoidance behavior based on
try and error. Nevertheless, robots using laser technology to scan the surroundings and then
computing efficient paths to cover the complete area exist. Similar technologies are used to
design autonomous lawnmowers, able to mow entire meadows on their own. They also store
the position of their charging station and move back to the station if they run out of power.
Afterwards, they complete the mow.

As mentioned before, the robots illustrated so far have diverse capabilities, work in different
environments, and have differing drives. This leads to various requirements for path planning,

a) b)

Figure 2.5.: Figure a) shows the NEO S-300 [116] from Swiss UAV and b) shows the fixed wing
stealth UAV RQ-170 Sentinel [117] designed for the U. S. military.
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formation movement, and cooperative behavior. The topic of flight control is neglected by
the resulting system presented in this thesis, while the following sections present general
state-of-the-art approaches for the mentioned objectives. Additionally, today’s approaches
similar to the ones used by the UAVs are presented in Sections 5.2, 6.2 and 7.2. The following
section briefly addresses general path planning approaches with the main focus on UAV path
planning.

2.3.2. UAV Path Planning

Countless techniques for path planning exist. They are mainly based on the roadmap, cell
decomposition and potential field approaches, as described in Section 3.1. Diverse additional
methodologies are used to design state-of-the-art UAV path planning systems. Examples
are Voronoi diagrams combined with multi-objective fuzzy optimization [118] or combined
with ant colony optimization [119], linear programming [120], multi objective optimization
by receding horizon control [121], neural networks [122], [123], simulated annealing [124],
dynamic programming [125], or genetic algorithms [126]. In order to not digress from the
main topic, only one UAV path planning system is selected and described in more detail.

A real world approach for autonomous navigation is presented by Ross et al. [127]. They
designed a system able to navigate a Parrot AR drone [26] (cf. Figure 1.1) maintaining a
constant velocity of 1.5 m/s through natural forest environments. The UAV flies completely
reactive and detects obstacles in the camera images. Supervised learning was used to provide
the UAV with the ability to mimic expert pilot’s choices of actions. The aim was to teach
a linear controller of the left-right velocity how to avoid obstacles represented by trees of
differing size. The altitude and velocity of the UAV was fixed during one test. This resulted
in a controller able to map RGB images to flight commands. Combining their experiments,
the UAV flew 3.4 km and was able to avoid more than 680 trees. The narrow field of view
given by the UAV camera caused most of the crashes. This can be reduced, e. g., by creating
a world model and using a planning approach combined with a much wider field of view.
Finally, Ross et al. were able to teach flight behavior for complex environments to a real
UAV.

As presented, a wide range of approaches for path planning of single UAVs exists. Researchers
try to port some of them in order to control formations as described in the following section.

2.3.3. UAV Formation Flights

Also several approaches to autonomously fly in formation exits. They are mainly subdivided
into leader-follower, virtual leader and behavioral approaches, as described later in detail in
Section 3.4.1. Example techniques for today’s UAV formation flights are receding horizon
control [128], [129] and neural networks [130]. They are mainly based on a positioning system
and inter-UAV communication while they try to preserve the distances between the UAVs in
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order to fly in formation. Such a neighboring distance approach is similar to the behavior of
schools of fish (cf. Section 2.1.3) with the difference that most times one UAV is chosen to
lead the entire formation.

The presented techniques are also used for single UAV path planning approaches. Adapting
them to control formations increases their complexity. Yang et al. [131] try to overcome this
issue by decentralizing formation flights based on a subdivision of the formation into single
UAVs.

A real world approach for formation flights has been presented by Kushleyev et al. [132]. A
team of 20 micro quadrotors is used and an external localization system provides positioning
data. The team of quadrotors is subdivided into groups and each group can be controlled
separately. The UAVs of a group are treated as a single individual and only one path, all
robots of a group follow is computed. Known three-dimensional environments have been used
to perform the formation flights based on an extension of mixed integer linear programming,
called mixed integer quadratic programming, to compute a trajectory for each group or each
quadrotor in a subregion of the environment. This technique maps trajectory planning to an
optimization problem. The results show that the quadrotors are able to change the shape of
the overall formation by changing the position of groups in the formation in order to avoid
obstacles.

The methods presented so far consider either single UAV trajectories or flights in a single
formation. To reach an efficient behavior with the possibility to simultaneously process several
tasks and to create different formations, a cooperative behavior is needed. State-of-the-art
approaches leading to such behaviors are presented in the following section.

2.3.4. Cooperative UAV Behavior

A few of today’s UAV cooperation techniques are presented and shortly described in this
section. Further approaches based on market places and auctions are presented in Section 7.2.

One state-of-the-art approach for cooperative UAV swarms has been presented by Madey et
al. [133]. They use dynamic data-driven application systems (DDDAS) in combination with
engineering guidelines to control an entire UAV swarm. The three objectives near real-time
dynamic command and control, improved automation mission planning, and dynamic real-
time re-tasking are addressed in their work. DDDAS uses the sensor data reached from the
UAVs for the prediction of future needs in order to compute reasonable control commands.

Renzaglia et al. [134] use cognitive-based adaptive optimization for surveillance with multiple
UAVs. They take unknown three-dimensional environments into account. Their objective
is to provide a scalable and efficient technique to navigate the UAVs into a formation that
locally optimizes surveillance coverage. They model coverage as multi-objective optimization
problem of functions with an unknown explicit form. While continuously optimizing the UAV
positions, they are able to increase the size of the covered area.
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Other cooperative state-of-the-art approaches are based, e. g., on ant colony optimization [135],
consensus-based task allocation [136] and market place approaches [137]. A disadvantage of
most cooperative approaches is that they depend on communication. Sujit and Sousa [138]
try to overcome this issue. They consider market place cooperation strategies with partial
communication failures.

A cooperative UAV approach for constructions has been presented by Lindsey et al. [139].
They use real quadrotors to construct 2.5-dimensional tower-like structures. These structures
consist of strata of identical cubes. A Vicon camera system [140] is used to track the UAVs
and to estimate the positions and orientations of the bins and the base of the constructed
object. Finite state automata coordinating the concurrent UAVs’ actions. The main tasks of
the UAVs are to pick up parts, transport them to the structure, and to assemble them.

The robots and approaches presented in this section briefly reflect current design and research.
Nearly all of today’s approaches that work with multiple UAVs in real world environments
use a camera-based tracking system to provide the UAVs with global positioning data.
Overcoming the limitations of such a need will be a topic of further research during the
next years. Swarm approaches, like the pheromone based foraging behavior of ants (cf.
Section 2.1.1) could result in possible solutions. The map-like organization of spatial memory
of bees (cf. Section 2.1.2) in combination with SLAM (cf. Section 2.2.3) techniques to
determine the current positions might also be a possibility to overcome the need of tracking
systems.

This thesis does not cover all kinds of possible robots and focuses on UAVs. Beside the
specialization of most researchers on one of the presented topics, additional differences
between the presented approaches and this thesis exist. They are described in the next
section.

2.4. Contrasting the Thesis

Most approaches use formation flights to simply move a single formation from an initial
position to a target position. Compared to this the UAVs presented in this thesis can
create different formations simultaneously to entirely explore complex three-dimensional
environments. This includes flights into buildings to explore single rooms and flights through
tunnels, etc. The formations are also highly scalable in the number of participating UAVs.

Many other approaches work with a fixed height and therefore have lower obstacle avoidance
capabilities. They also do not consider highly dynamic environments. The UAVs designed in
this thesis are able to react quickly to environmental changes (cf. Chapter 8). Each UAV also
has the capability to fly to predefined target areas and to entirely explore an environment on
its own.
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Additionally, the UAVs work cooperatively and completely decentralized. They are able to
allocate tasks by themselves and to create new tasks if this leads to further benefits or avoids
damage. Exploratory navigation with reduced redundancy is also supported leading to a
highly complex UAV behavior. The designed approach supports the essential properties
scalability, robustness, and flexibility introduced in Chapter 1.

Another contrast to various other approaches is that all algorithms used in this thesis are
mathematically verifiable in terms that they lead to the expected UAV behavior. The path
planning algorithm guarantees obstacle avoidance and the formation algorithm ensures that
the UAVs fly to the desired target positions while preserving a formation. Superpositioning
of these approaches still guarantees that the UAVs will never touch an obstacle while flying
to the expected positions.

2.5. Summary

The design of simple agents working together to solve complex tasks started millions of years
ago by nature. Based on the experience nature gained in species design, several researchers
have developed new methods for robot movements and task procession. Nowadays, approaches
to redesign nature exist. Festo, e. g., redesigned animals in order to learn more about natural
approaches and to adopt beneficial approaches for their products.

Robotic development reached increasing interest in the 1980s and several different approaches
have been designed. A few of the most famous approaches are presented in this chapter.
Additionally, some of the most famous paradigms to create robot organizations with abilities to
efficiently solve relevant tasks are introduced. Most of these approaches have been developed
to work with a central coordination instance. Such an instance leads to a bottleneck and a
single point of failure. To avoid these disadvantages and to become independent of control
personal in order to, e. g., accomplish tasks in deep space or deep sea, the market place
approach has been selected and extended for the system presented in this thesis. The resulting
market place works in a completely decentralized way.

Nowadays, countless robots and methods to move any kind of robots exists. Researchers
started to dare new ways in robot design to overcome the limitations of mechanical robotic
systems. They showed that robots consisting mainly of compressed air are able to carry more
than one hundred kilograms. Two robots without mechanical parts are also presented in this
chapter.

This chapter can only give a brief and incomplete overview of robotic behavior and robotic
movement as this area is really large with thousands of researchers working in the field for
decades. Therefore, countless methods for autonomous robot behavior exist. Only a few of
them are used for the design of the resulting system. The foundations of the used approaches
are described in detail in the following chapter.
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One of the main objectives (cf. Section 1.2) is to design a system capable of exploring almost
any kind of three-dimensional terrains. The ability to establish dynamically changeable
formations is a further objective. A wide range of methods from different research areas can
be used for designing such a system. Another requirement is that the resulting behavior has
to be mathematically verifiable. This reduces the number of applicable methods.

The approach presented in this thesis combines different research areas whose foundations
are introduced in the following sections. The chapter is structured as follows: First, the three
main methods for path planning are introduced, followed by a general problem formulation
for path planning. Based on this problem formulation the configuration space is introduced
and the two main space types, occupied space and free space are defined.

The system uses cell decomposition in combination with artificial potential field theory
described in the following sections. Special potential fields based on harmonic function theory
and bifurcation theory are introduced in detail. Additionally, some requirements that must
be met to fly in formation are presented.

Hereafter, the foundations for intelligent UAV behavior are specified followed by the basics for
task creation and task allocation for multiple robots. Finally, a verification of the approach
must be possible as mentioned before. Lyapunov’s second method is used to verify the
resulting behavior and thus introduced in the further course of this chapter. It concludes
with a summary.

A world model is used by the UAVs to compute feasible paths. The data structure for the
representation of the world model is one of the most important design choices. It affects the
path planning methods in several ways. Not only the resulting paths but also the computation
times needed for the single calculations result at least partially from the data structure.
Several alternatives for each of the selected methods of the presented system exist. Some
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of the most famous approaches are introduced and some of them are described briefly. The
next section shows the three main methods used for the design of path planning systems.

3.1. Path Planning

Path planning is a wide area of research. A countless number of path planning approaches for
the movement of single robots, as well as for the movement of multiple robots and movements
in formation are described in literature. Beside completely reactive approaches, the following
three methods or a combination of them are most commonly used:

1. Road map method.

2. Cell decomposition.

3. Potential field theory.

The basic idea of the road map method is to create a map reflecting the connectivity of the
obstacle free parts the environment is composed of. If such a road map exists, path planning
is relatively simple. Only the initial and the target location of a robot must be connected
to the road map. A feasible path is given by the path in the road map if both locations
can be connected to it. Otherwise, no feasible path exists. The method can be combined
with other methods as, e. g., shown by Ozaki et al. [141]. They use cell decomposition in
combination with a road map graph to move a camera in three dimensions in order to follow
given subjects. The road map graph is achieved by hierarchical cell decomposition leading
to a description of the collision free camera movement space. The shortest path is finally
computed by the A∗-algorithm [82].

The road map method can also be easily applied to navigation systems in order to find paths
along roads from the start position to a destination. Therefore, a graph can be constructed
by modeling the positions of all crossroads and road forks as nodes and the connecting roads
as edges. Differing paths can then be computed by different weighting of the single edges,
e. g., to find the fastest route or the shortest route.

The system presented in this thesis is based on a combination of cell decomposition and
artificial potential field theory. This combination is described in more detail during the
following sections. A subdivision of the complete terrain into several subareas is conducted by
an octree to achieve cell decomposition. Afterwards, a so called potential value φ is computed
for each of the resulting leaves. Based on these values, a feasible path can be computed.
This chapter also provides a detailed description of the basic methods the resulting system
depends on and mentions additionally relevant approaches.

The UAVs do not only explore the terrain. They also have to fly to predefined areas with
high priority. To reach an increase in efficiency, the ability to establish formations exists.
Exploratory navigation is treated as a series of several consecutive flights to unexplored areas
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until each area has been explored by UAVs’ equipment. Coordination of the UAVs is required
in order to decrease the time a group of UAVs need for an entire environmental exploration.

3.1.1. Problem Statement

Various approaches have been designed based on the three methods for path planning
mentioned before. In the context of the presented system, path planning is based on the
following environment:

Let U be a UAV. It moves in an Euclidean space W, represented as RN : N ∈ N (for the
UAVs is N = 3). Additionally, for j = 1, . . . , r, r ∈ N,Oj ⊂ W are fixed three-dimensional
objects Oj ∈ R3, distributed inW . Every single Oj is an obstacle. Assume that the geometry
and the position pU of U is known. The Oj can be known a priori, but they don’t have to
be. Further on, it is assumed that U is not restricted in its movement through kinematic
constraints. This leads to the following definition:
Definition 3.1. Path planning: Given an initial position pI and direction plus a target
position pG and direction of U in W. Calculate a path ρ consisting of a consecutive sequence
of positions and directions of U under avoidance of contact with any Oj. The path has to
start at pI and must end at pG. Return an error if such a path does not exist.

Beside a position and direction, the UAVs have additional properties, such as a role and
tasks to be solved. Not only the position but the configuration of a UAV is needed for an
efficient and cooperative multi-UAV system in order to take all properties into account. A
configuration includes the relevant properties of a UAV. All path planning problems have in
common that a path from the initial configuration qI to the target configuration qG has to be
computed. This leads to the concept of the configuration space [142].

3.1.2. Configuration Space

The configuration space C considers the properties of a UAV U within the space W. U is
represented by a single configuration qi ∈ C, which is a tuple (q1, . . . , qn). The n independent
variables can, e. g., be the position pU , the role RU , and tasks TU of U . A UAV is considered
to be a point p ∈ W without a volume. The point p is equal to the position of U in W.
So, UAV U has a configuration qU ∈ C consisting of all relevant properties of U , e. g., the
current position pU and its direction. The actual volumes of the UAVs are considered by the
environment representation as described later in Section 4.2.2.
Definition 3.2. Configuration space: Let n be the number of configurations qi a UAV U
can take. The configuration space is then defined as:

C =
n⋃
i=1

qi. (3.1)
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Following the definition of Barraquand et al. [142] it is possible to generate a geometrical
application able to map each configuration q to a corresponding point p of the terrain. This
map

X : C → W ,

q 7→ p = X(q)
(3.2)

is called the forward kinematic map.

To actually determine a position of a UAV pU , a Cartesian coordinate system FW is embedded
in C. Now a configuration of U is the specification of the position and direction of U having
regard to FW , plus its additional properties. C is discretized like the real space using cell
decomposition. Two main space types are considered that lead to a specific discretization:
Occupied space and free space. They are explained in the following section.

3.1.3. Occupied Space

The workspace of U contains a finite number of obstacles Oj with j = 1, . . . , r. Obstacles can,
e. g., be skyscrapers, mountains or other UAVs. Each obstacle Oj ⊂ W ∈ RN is represented
in CO ⊂ C of those configurations in which a UAV takes a position within an obstacle Oj.

Definition 3.3. Occupied space: Let n be the number of configurations q ∈ C. The
occupied space is defined as:

CO =
⋃
qi∈C
∃1 ≤ j ≤ r : {X(qi) ∈ Oj}. (3.3)

Thus, the occupied space is defined as the union of all configurations that include a position
inside an obstacle. These configurations are forbidden because they result in damage not
only to the UAVs. Body injuries can occur if people are close by. The approach used to
design the UAV system presented in this thesis can be mathematically proven in terms that
no UAV will ever take one of these configurations and thus guarantees the avoidance of CO.

A creation of the occupied space is possible if the environment is known a priori. The
UAVs should also be able to fly in partially unknown, as well as in completely unknown
environments and explore them over time. In such a case the occupied space is set to ∅ a
priori and obstacles have to be mapped into the space as soon as they are detected. This
leads to a change of the distribution of occupied and free space over time. The UAVs must
take such changes into account in order to find feasible and safe paths from qI to qG. Based
on the definition of the occupied space, the free space can be defined as explained in the next
section.
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3.1.4. Free Space

The UAVs are not able to take every configuration in C due to the existence of obstacles.
Using the definition of CO it is possible to calculate the allowed configurations of the UAVs,
as shown in Equation 3.4. This subset of configurations in which the UAVs do not take a
position within an obstacle is called free space CF .

Definition 3.4. Free space: Again, let n be the number of configurations q ∈ C. The free
space is defined as:

CF = C \ CO. (3.4)

Each configuration q ∈ CF is called a free configuration. Following this modeling a collision-
free path from an initial configuration qI to a target configuration qG is defined as a consecutive
map ρ : [0, 1]→ CF with ρ(0) = qI and ρ(1) = qG. Furthermore, the computation of discrete
paths is based on cell decomposition and explained in the following section.

3.2. Cell Decomposition

The main idea of cell decomposition is to subdivide W and respective C into disjoint areas
called cells or leaves. An important part is the connectivity graph G [143]. It is a non-directed
graph and represents the adjacency relation between the cells. The nodes of the graph are
the cells of the free space. Two nodes are connected if and only if (iff) the corresponding
cells are adjacent. A path can then be constructed by connecting the initial configuration to
the target configuration through the center points of the intersections of every two successive
cells.

Each subarea of the environment is finally represented by a leaf that contains all relevant
information like position and dimensions of the area, positions of obstacles, etc. Cell
decomposition approaches can be classified as exact or approximative methods [107]. Exact
approaches normally need a much higher computational complexity to be performed than
approximative ones, which can be conducted, e. g., by bounding volumes [144], grids [145],
bsp trees [146], k-d trees [147], quadtrees [148], or octrees.

Grids are due to their simplicity one of the most commonly applied approaches. A decom-
position of W into equally sized subareas is reached using a grid. One disadvantage of this
approach is that neighboring areas with equal properties are not considered. A combination
of, e. g., several neighboring areas li ⊂ X(CO) would decrease the computational effort of the
approach. Neighbors of a current area are all areas adjacent along a face, an edge or a vertex
if a grid and a three-dimensional environment are considered. A combination of neighboring
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areas with equal properties to larger areas, so that only the bigger area has to be taken into
account for path computation, can lead to an increase in efficiency.

The presented UAV approach decomposes C with the aid of an octree. This is a common
data structure for the subdivision and representation of three-dimensional areas. The nodes
of an octree are divided into eight equally sized child nodes. Each child of a node with the
dimensions x, y, z has the dimensions x/2, y/2, z/2. Such a subdivision leads to relatively
small nodes, even at a low tree depth.

Figure 3.1 shows the concept of an octree. The root node encloses the entire environment
and is located at level 0. It is subdivided into eight child nodes, located at level 1. The first
and the sixth node at level 1 are also subdivided. The figure shows the resulting terrain
subdivision at the single levels on the left hand side and the corresponding octree on the right
hand side. For the system presented in this thesis, the subdivision is based on the position
and angles of the UAV, the properties of the camera equipment the UAV uses to explore the
terrain, as well as the positions of obstacles. It is described in detail in Section 4.3.1.

Figure 3.1.: Subdivision of a cube into octanes and the corresponding octree. The octree has a
maximum level of 2.

In general, decomposition is conducted as follows. First, the octree divides the complete
space into eight equally sized subspaces. These subspaces are recursively divided into eight
further subspaces. Subdivision stops when the enclosed space of a leaf li is of homogeneous
type or a predefined maximum breakdown is reached. Leaves generated due to the predefined
maximum breakdown are called leaves at maximum level. Homogeneous means that the
space consists of only one subspace of C, e. g., CO. If the maximum breakdown is reached and
the space is not homogeneous, another approximation takes place. Each leaf partly consisting
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of occupied space is completely marked as occupied space. If the space consists of different
subspaces of CF , it is assigned to the type of space the leaf constitutes mainly of. The
complete terrain is finally represented by the union of the resulting n leaves li, i = 1, . . . , n of
the octree:

W =
n⋃
i=1

li. (3.5)

Each leaf li has several neighboring leaves lj, j = 0, . . . ,m. The octree must change over time
to represent, e. g., newly explored areas or newly detected obstacles. The UAVs must take
such changes into account to compute safe and feasible paths. This also leads to a change of
the neighborhood conditions during UAV flights.

Definition 3.5. Neighborhood: Two leaves li and lj are neighbors {li, lj} ∈ N in direction
D,D = 1, . . . , 26, iff li corresponds to the smallest block adjacent to lj in direction D.

The 26 neighboring directions D mentioned in Definition 3.5 are given by the definition of
neighborhood. Two leaves can be adjacent along a face (6 directions), along an edge (12
directions), or along a vertex (8 directions). This kind of neighborhood is called Moore
neighborhood [149]. As the leaves have different dimensions, the number of neighbors per
direction can vary between 0 neighbors (the leaf is located at the terrain border) and 4o−1

neighbors with o ∈ N \ {0} be the maximum level of the octree.

Determining neighboring nodes of an octree node is of higher complexity than for a grid. It
normally takes logarithmic time to find neighbors in an octree while this operation can be
conducted in constant time for a grid. This disadvantage is important to mention as the
UAVs need to determine neighboring nodes with high frequency. The operation is required
for potential field calculations and for path computation. An algorithm able to find a single
neighbor node in time O(log8 n), with n representing the number of leaves of a complete
octree has been designed. The idea of the algorithm is described in detail in Section 4.2.4
and the algorithm is presented in Appendix A.1. Tests have shown that the disadvantage is
more than balanced by the achieved reduction of the number of leaves needed for potential
field calculations (cf. Chapter 8).

The major advantage of an octree over a grid is that areas not relevant for the current
path computation can be combined to bigger leaves. An efficient implementation of node
combination and subdivision leads to a system able to represent really large areas without a
high increase in computation time and memory consumption. Based on cell decomposition, a
discrete collision free path leading a UAV from qI to qG can be defined as follows:

Definition 3.6. Discrete Path: A discrete path ρd starting at the initial leaf li and ending
at the target leaf ln with length n is:

ρd = {l1, . . . , ln : ∀li ∈ CF ,∀{li, lj} ∈ N , i = 1, . . . , n− 1, j = 2, . . . , n}. (3.6)
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A path as defined in Definition 3.6 can be computed and followed by a UAV. Based on the
achieved decomposition, it is possible to compute values for each leaf leading to feasible
paths. One approach for the computation of such values is artificial potential field theory,
introduced in the next section.

3.3. Potential Field Theory

Artificial potential fields for motion planning have been introduced by Khatib [62] in 1986.
This technique steers a manipulator in a field of artificial forces. The main idea is to affect
the UAV through linear superpositioning of fictive forces or their potentials φ to obtain paths.
The UAVs’ target positions are modeled as attractive poles and obstacles are modeled as
repulsive poles. To adequately move the UAVs, a field of forces affecting the complete terrain
has to be computed. Cell decomposition for the subdivision of the entire terrain is often
combined with artificial potential field theory. The single φ can then be calculated for each
leaf or cell created through the cell decomposition approach. This leads to differing potential
values for each area, which are used to model forces. Two basic types of forces based on two
types of potential fields are commonly used for path planning:

1. Attractive forces: They represent targets and pull the UAVs towards them.

2. Repulsive forces: They represent obstacles and push the UAVs away from them.

To obtain the proper modeling of an artificial potential field, the attractive forces have to
fulfill two basic requirements:

1. The complete configuration space must be affected and

2. the forces must always lead to the target configuration qG.

Figure 3.2 a) shows an example of an attractive potential field. The target configuration of a
possible UAV is at the center of the potential field. All surrounding configurations have a
higher potential value. Following the descent gradient −∇ leads the UAVs from any initial
configuration to the designated target configuration.

Suppose that the first condition for attractive forces is unaccomplished. In this case, areas
without acting forces exist. A UAV would never move if its initial configuration is in such an
area. Another problem occurs when a UAV flies into such an area because no force affects
the UAV and it would then usually stop flying and reaching the target configuration becomes
impossible.

The second condition is crucial to ensure that the target configuration can be reached. If
forces not leading to the target configuration exist, the UAV can get affected by these forces
and it can become impossible for it to reach the target. Several possibilities to guarantee
forces as demanded exist. One solution is to adjust the potential values like a cone. The
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determining values can, e. g., depend on the Euclidean distance to the target. The attractive
potential field shown in Figure 3.2 a) results from the following equation:

φattractive = 1− e−(x2+y2). (3.7)

The variables x, y ∈ [−2; 2] denote the distances to the center point (0, 0) of the two-
dimensional attractive potential field.

Repulsive forces are also of common use. Their duty is to ensure obstacle avoidance. They
must also fulfill two requirements:

1. Only a specified surrounding area of the obstacle must be affected and

2. they must always lead away from the obstacle.

Figure 3.2 b) shows an example of a repulsive potential field. The obstacle is modeled to
be at the center of the potential field. All surrounding potential values are less than the
potential value of the obstacle and they decrease with distance to the obstacle. Following the
descent gradient will lead the UAV away from an obstacle modeled this way.

The first condition for repulsive forces ensures that obstacles do not affect the complete
configuration space. Affecting the complete configuration space can change the trajectories
of the UAVs such that they take unnecessary detours. The second condition ensures that
UAVs are never pulled towards an obstacle. Repulsive potential fields can be based, e. g., on
the Euler’s number e like the repulsive potential field shown in Figure 3.2 b). It is obtained
through the following equation:

φrepulsive = e−
√
x2+y2

. (3.8)

The variables x, y ∈ [−2; 2] denote the distances to the center point (0, 0) of the two-
dimensional repulsive potential.

The potential fields shown in Figure 3.2 can be superpositioned through a simple addition as,
e. g., described in [150]. A path can follow the descent gradient within the resulting potential
field. Using the descent gradient, a UAV compares the potential value given at its current
configuration with the potential values of all neighboring configurations. The configuration
with the lowest potential value is then selected as next configuration. This action is repeated
until no configuration with a lower potential value than the current configuration can be
selected. A superpositioned potential field keeps the UAV away from obstacles modeled by
repulsive potential fields and simultaneously pulls it towards the target configuration based
on the attractive potential field.

The UAVs considered for the presented approach are helicopter-like. Hence, it is not necessary
to take non-holonomic constraints [107] into account as the UAVs are able to hover and turn
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a) b)

Figure 3.2.: An attractive potential field is illustrated in a). It pulls the UAVs towards the center of
the potential field. A repulsive potential field is presented in b). It repels the UAVs from an obstacle.

at given positions pU . If other kinds of robots, like fixed wing UAVs or cars are considered,
a feasible path might be obtained, e. g., by reducing the neighboring leaves the drone can
reach dependent on the non-holonomic constraints. Another possibility is the use of informed
search algorithms, like an adapted A∗-algorithm [151]. The special kind of potential fields
computed by the system presented in this thesis and described in the following section
provides properties for the motion planning of non-holonomic systems [152].

Artificial potential fields computed as presented before come along with several problems,
especially in case of complex and highly dynamic environments. The basic movement in such
a field of forces is often conducted using a gradient method. Obstacles being around the
UAVs trajectory may cause the occurrence of so called local minima or local equilibria. These
equilibria are one of the most important problems.

The term minimum is of common use in potential field theory. In bifurcation theory (cf.
Section 3.4.2) the term equilibrium is of common use. The aim of an attractive potential is to
move the UAV to the desired stable equilibrium position that corresponds to the minimum
potential value. The approach used to compute paths the UAVs can follow, always assigns the
minimum potential value to zero. To provide a constant nomenclature, the term equilibrium
is always used hereinafter.

If a potential field as introduced above is considered, a local equilibrium occurs when a single
potential value is less than all surrounding potential values. Let li be a node. So called
flat regions occur when no neighboring node of li has a lower potential value than li. In
both cases the driving force vanishes and the UAV gets trapped. This violates the second
requirement for attractive forces and should be avoided.

Several methods to avoid and to get out of such local equilibria and flat regions exist as, e. g.,
changing the potential field [153] if the UAV gets trapped or using algorithms to leave the
equilibria, like simulated annealing [154]. Another method is to avoid the creation of local
equilibria and flat regions. The use of harmonic functions [34] provides a possibility for the
creation of local equilibrium-free potential fields. A potential field has no local equilibrium
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and no flat region, iff for each unbound leaf li with potential value φli a leaf ln, {li, ln} ∈ N
with potential value φln < φli exists, i. e.:

∀φli∃φln : {li, ln} ∈ N , φln < φli . (3.9)

3.3.1. Harmonic Functions

Harmonic functions for artificial potential field calculations have been introduced first by
Sato [155] in 1987. He formally used them as tools for motion planning. An English version
of the Japanese article can be found in [156]. Connolly and Burns [34] were one of the first
who applied the approach for robot movement in 1990. One advantage of these functions is
that one can prove the absence of local equilibria if they are used to represent a potential field.
Harmonic functions lead to the possibility of calculating globally consistent and collision-free
paths. They satisfy Laplace’s equation in n dimensions. A Laplace’s equation is an elliptic
second-order partial differential equation and is named after Pierre Simon Laplace. The
resulting mathematical problem is to find a twice-differentiable real value function of variables
such that:

∇2φh =
n∑
i=1

∂2φh

∂x2
i

= 0, (3.10)

where ∇2 ≡ ∇ · ∇φh is the Laplacian operator. The notation of Equation 3.10 is for
Cartesian coordinates whereby h denotes that it is a harmonic function. The solutions of
such differential equations are called harmonic functions. It is necessary that φh is a twice
continuously differentiable function and that the sum of its second partial derivatives is zero.
Additionally, φh must be strictly increasing or decreasing dependent on the length of the
path to the target. In the obstacle free case this is given by the distance to the target. The
value of φh is given on a closed domain Ω in the configuration space C (cf. Section 3.1.2) and
satisfies the mean-value property (cf. Definition B.1) [157], [158], the min-max principle (cf.
Definition B.2), [158] and the uniqueness principle (cf. Definition B.3), [34], [158], [159]. The
min-max principle ensures that the potential function has its maximum and minimum values
at its boundary points. The resulting system has its boundary points at those leaves of the
octree that contain obstacle and target areas. The min-max principle also guarantees that no
local equilibrium has a potential value less than the potential value of a global equilibrium.
Furthermore, no saddle point has a greater potential value than an obstacle leaf. Figure 3.3
shows an example of a harmonic function, given by ex · sin(y) and defined on R2 on the
domain [−2; 2].

One disadvantage of harmonic function based potential field calculations occurs if a super-
positioning of several potential fields shall be performed. Any linear combination of two
harmonic functions is also harmonic and a solution of Laplace’s equation [158]. But Connolly
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Figure 3.3.: An example of a two-dimensional harmonic function computed using the function
ex · sin(y), which is harmonic for the two-dimensional case.

states [34] that there is no guarantee that obstacles are avoided in complex or dynamic
environments when several harmonic functions are superpositioned. The potential values in
the neighborhood of an obstacle depend not only on this obstacle’s potential, but also on
every other obstacle’s or possible target’s potentials. If the configuration or the strength
changes, the path of a UAV can get infinitely close to the obstacle. The only unswayable
structure is a point. From this it follows that only points can be safely modeled as obstacles
if superpositioning takes place.

To overcome this disadvantage superpositioning of several potential fields based on harmonic
functions is not conducted in the presented approach. Instead a modeling as optimization
problem takes place. First, the single leaves of the octree are set to be bound or unbound
leaves. Leaves, which are target leaves or occupied leaves are called bound leaves and get
assigned to special values based on the selected boundary condition. All other leaves are
called unbound leaves. Thereafter, an approximation of a harmonic function for the potential
values, which are not bound points, is computed. This approximation is finally successively
relaxed. The relaxation also takes the repulsive potential values into account and brings
the resulting function closer and closer to a harmonic function. Relaxation stops when path
planning is feasible. The approach is described in detail in Chapter 5.

Various boundary conditions leading to different modes of behavior exist. Two of the most
famous are the Dirichlet Boundary Condition and the Neumann Boundary Condition (cf.
Definition B.7). Related to [160] the UAVs are considered to be points. Using the Neumann
Boundary Condition the start points is assigned to a high value while the target point is
assigned to a low value. The obstacle potential values are treated as homogeneous Neumann
boundaries. The Neumann Boundary Condition constraints the normal component of ∇ to
be zero at the boundaries. Using the Dirichlet Boundary Condition the obstacle potentials
are assigned to fixed, high values while the target potentials are assigned to fixed, low values.
Karnik et al. [160] compared both conditions. They showed that paths based on harmonic
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potential fields achieved by the use of the Neumann Boundary Condition tend to graze the
boundary. The Dirichlet Boundary Condition has been chosen for the UAV system presented
in this thesis as contact with obstacles must under all circumstances be avoided.

Connolly [161] has shown that harmonic functions lead to paths without spurious local
equilibria. Combining harmonic functions with the Dirichlet Boundary Condition leads to a
value-restricted configuration space, important for calculations with discrete arithmetic. The
presented approach binds target areas to the potential value φhG = 0 and occupied areas to
the potential value φhO = 1 to respect the Dirichlet Boundary Condition.

According to [34], every harmonic function defined on a compact region Ω = ∂Ω ∪ Ω̇ satisfies
three properties:

1. Analyticity: Each harmonic function is analytic (cf. Definition B.4).

2. Polar: Be qG a target configuration with the constraint φhG = 0. Set all obstacle
configurations qO to some constant φhO = c. All harmonic functions satisfy the min-max
principle [158], so φh is polar [162]. From this it follows that qG will be the point at
which φh attains its equilibrium value within Ω and the negative gradient always leads
to qG.

3. Admissibility: If c is set to 1, φh will be admissible in the sense of the designed approach.
This is a simple normalization.

Additionally, harmonic functions have several valuable properties [34], [161]:

• Soundness (cf. Definition B.6) up to discretization errors.

• Fast surface normal computation.

• The ability to exhibit different modes of behavior (grazing vs. avoidance).

• Robust control in the presence of unanticipated obstacles and errors.

• Lack of spurious local equilibria.

• The possibility of linear superpositioning.

• Robustness with respect to geometrical uncertainty.

• Continuity and smoothness of configuration space trajectories.

In this thesis a path planner is called sound when it is guaranteed that a path from each
initial configuration to each target configuration will be computed if such a path exists (cf.
Definition B.6). It is possible that a coarse discretization avoids a path computation, as
shown in Figure 3.4, where the gray area represents an obstacle. Each leaf containing a part
of the obstacle is treated to be in CO in order to ensure collision avoidance as the UAVs always
fly from the center point of a node to the center point of a neighboring node. Using a coarse
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Figure 3.4.: Using a coarse discretization as shown in a) can make path planning impossible.
Refinement of the discretization as shown in b) leads to a feasible path ρd.

discretization as shown in Figure 3.4 a) makes path planning from qI to qG impossible. If the
discretization is refined, as shown in Figure 3.4 b) path planning from the initial configuration
to the target configuration becomes feasible. Discretization errors cannot be compensated by
harmonic functions.

To overcome the discretization problem, shown in Figure 3.4, the environmental subdivision
is based on the dimensions of the UAV. A leaf at maximum level can encompass only one
UAV at a time without collisions in at least one direction. A UAV also fits into one leaf at
maximum level.

The used boundary conditions determine the mode of behavior mentioned before. The
Dirichlet Boundary Condition raises obstacle regions to a constant high potential, while
target regions are set to a low potential value. The resulting potential values of the free
space are constrained by ∇2φ = 0. Thus, ∇ is aligned with the surface normals of the
obstacle regions and will tend to repel the UAVs from the obstacles. The Neumann Boundary
Condition [160] does not keep obstacles at a constant potential value but the derivative of φ
is constrained such that n · ∇φ = 0 with n be the surface normal function for the obstacles.
This causes ∇φ to be tangential to obstacle surfaces and the UAV paths will gaze any obstacle
they encounter [161].

Originally, potential fields based on harmonic functions have been used only with a fixed
map and one single known target. But one can show that they also work well in dynamic
environments with multiple UAVs and targets [3].

A UAV control system, based on the methods introduced so far is able to compute several
paths consecutively to move the UAVs in different environments. It also has the ability to
guarantee obstacle avoidance and sound path planning if the approximation is close enough
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to the resulting harmonic function. These are the basic requirements, needed to perform
complete explorations. If information exchange regarding newly explored nodes is possible,
the efficiency of exploratory navigation can be increased when the number of UAVs increases
[4] due to implicit coordination. A further increase in efficiency can be reached through the
establishment of a higher coordination level. One example for high level coordination are
formation flights. The ability to establish formations can be reached by another kind of
potential fields, introduced in the following section.

3.4. Formation Flights

The design of a system that allows UAVs to compute discrete paths ρd, starting at initial
configurations qI to every reachable target configuration qG is possible, based on the previously
described methods. An additional cooperation of multiple UAVs is needed to increase efficiency.
Such a cooperation requires methods for information exchange.

Combining inter-UAV communication with the previously described methods leads to the basic
requirements, needed to entirely explore CF , using multiple UAVs. Performing information
exchange reduces the time needed to explore a complete terrain if the number of participating
UAVs increases [3], [5], [6]. An indirect coordination is conducted if the UAVs obtain
information about parts of the terrain explored by other UAVs.

A higher degree of coordination can also lead to a more efficient task handling, e. g., for tasks
like exploratory navigation of a given terrain in the aftermath of a disaster or in search and
rescue missions, as shown in Chapter 8. Task handling is considered to be more efficient,
when the time needed to solve tasks decreases. Explicit cooperation given, e. g., through
formations leads to a higher degree of coordination. A formation of multiple UAVs has to
be established, e. g., to solve a transportation task containing items too large to be handled
by a single UAV. In order to give the UAVs of the presented system the ability to solve
such tasks, a methodology for formation creation is described in this section. Simultaneous
formation flights can lead to a further increase of efficiency. Some requirements must be met
to actually fly in formation and it must be chosen, which kind of formation approach should
be supported by the resulting system as described in the following section.

3.4.1. Requirements

As mentioned before, formation flights need direct UAV coordination. Several requirements
must be fulfilled to fly in formation. The UAVs must be able to actually establish a formation
in decentralized manner. They can conduct an agreement, e. g., by reaching consensus about
where and under which constraints a formation shall be created. For this purpose information
exchange is necessary. Inter-UAV communication based, e. g., on UDP/IP to exchange all
necessary information is used by the presented system’s UAVs.
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The system to be designed is a dynamic, nonlinear system. To ensure that the UAVs are
able to explore the terrain using formations, it must be guaranteed that the target of the
formation always provides a stable equilibrium (cf. Section 3.6.1). The formation may break
apart during movement without this guarantee. Using bifurcation theory as described in
the following section, enables the application of Lyapunov’s second method (also called
Lyapunov’s direct method, cf. Section 3.6.2) for the analysis of system stability without the
need to explicitly solve all relevant equations [163] to obtain such a guarantee.

When a formation is created, the UAVs have to move from qI to the desired qG while they
have to simultaneously preserve the formation shape. Three basic approaches to solve this
task exist:

1. The leader-follower approach, where one UAV takes the part of a leader and the other
UAVs follow this designated leader.

2. The virtual leader approach, where the entire formation is treated as a single virtual
UAV and follows a moving point.

3. The behavioral approach, where each UAV has several desired behaviors, including
formation preserving, target seeking, collision/obstacle avoidance, etc.

Each of these methodologies has its advantages and disadvantages. The most frequently used
approach is the leader-follower approach. The advantage of this approach is the possibility to
convert the problem of maintaining a formation to a standard tracking problem if information
about the leader is available. One big disadvantage is missing robustness with respect to a
leader’s possible failure.

Formation handling based on the virtual leader approach is easier to achieve than it would be
with other approaches as the complete group is treated as a single object. One disadvantage
is that the formation is only able to perform synchronized maneuvers leading to a more
challenging obstacle avoidance.

The most dynamic approach for UAV formation flights is the behavioral one. The UAVs need
the capabilities to reach consensus about where and how a formation can be established in
order to work completely decentralized. Areas that the formation has to explore next must
be identified by the UAVs themselves. Each UAV Ui computes its own path ρUi

in respect to
the formation and the terrain properties, like obstacles. Furthermore, each path of a UAV ρUi

depends on all other UAVs’ positions, independent of their formation affiliation if a formation
is established.

During exploratory navigation it is not always beneficial to use all UAVs forming only one
single formation. Due to this, the formation approach should be a possible extension of
the previously described three-dimensional potential field approach, used by each single
Ui to explore environments. For path planning of UAVs participating in a formation the
three-dimensional potential field can be extended to a four-dimensional potential field.
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This extension is possible through bifurcation theory. Potential values computed using
bifurcation theory can simply be added to the previously calculated potential field. One
advantage of a potential field based on bifurcation theory is that the resulting formation
shape can be changed by simply adjusting single parameters of the underlying equation,
resulting in the potential values. It is also possible to show that global equilibria, stable in
the sense of Lyapunov are created every single time. Path planning formation flights are still
possible using the descent gradient. Thus, bifurcation theory, presented in the next section
has been used to create UAV formations.

3.4.2. Bifurcation Theory

Bifurcation theory is part of catastrophe theory which again is part of chaos theory. In
catastrophe theory a change of a function parameter leads from stable solutions to a point
where no stable solution exist. The change occurs at the so called bifurcation point of a
function. The system changes at this point from order to chaos. One famous example for
such a function is the cusp catastrophe [164]. It is defined as V = x4 + γx2 + δx with γ and
δ being the parameters of the parameter space. The equilibrium surface of a two-dimensional
cusp catastrophe is shown in Figure 3.5. It is based on the canonical form of the potential
function for the cusp catastrophe, defined as

− V (x; a, b) = ax+ 1
2bx

2 − 1
4x

4. (3.11)

The equilibrium points of Equation 3.11, given as a function of the control parameters a and
b are solutions of Equation 3.12.
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Figure 3.5.: Schematic illustration of the Cusp equilibrium surface
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0 = a+ bx− x3 (3.12)

Equation 3.12 leads to a single solution if δ = 27a− 4b3—known as Cardan’s discriminant—is
greater than zero. If δ < 0 three solutions, illustrated in Figure 3.5 exist [165]. The floor
of the figure is given by the two-dimensional (a, b) coordinate system. The presented cusp
equilibrium surface can be considered as some sort of response surface, whereby the height
predicts the values of x, given the values for the control variables a, b ∈ [−2; 2].

A cusp catastrophe is common if one considers a fold bifurcation extended by a second
parameter δ. If a parameter change takes place, a curve of points (γ, δ) is created, in which
stability is lost. Compared to one equilibrium, now two equilibria exist to which the system
can jump. For periodically changing δ a jump back and forth is generated. This works only
for γ < 0. The closer γ becomes to zero the smaller the hysteresis curves become, until they
vanish for γ = 0.

If δ is set to be constant and γ changes a Pitchfork bifurcation [164] is observed in the
symmetrical case δ = 0. If γ decreases one stable equilibrium changes into two stable and one
unstable equilibria at the point where the system passes (γ, δ) = (0, 0). This is an example
for a violation of symmetry. The abrupt change vanishes far away from the cusp point and
only a second possible solution appears. The described changes, regarding the number of
equilibria can be used to design a potential field for formations, in which the shape of the
formation changes if the number of equilibria changes.

Harmonic functions used for path planning have to be strictly increasing or strictly decreasing
with the length of the path to the equilibrium. Compared to that, bifurcation functions lead
to a change of number of equilibria if the bifurcation parameter changes. This allows the
creation of multiple global equilibria. Dynamic bifurcation theory concerns changes occurring
in the structure of limited sets of solutions of differential equations when parameters are
varied in a vector field [166].

Related to [35] bifurcation theory attempts to explain several phenomena, discovered and
described in science over centuries. All with a common cause: A specific physical parameter
crosses a threshold and this event forces the system into a new state, differing substantially
from the preceding. Bifurcation is a parameter of non uniqueness in nonlinear systems. Pop-
ular local bifurcations are Hopf bifurcation, Saddle-node bifurcation, Transcritical bifurcation
and Pitchfork bifurcation [164].

Given a dynamic system, a bifurcation takes place when a minor, smooth change made to
a system’s bifurcation parameters causes a sudden qualitative or topological change in its
behavior. A popular example is an upright standing stick fixed at the bottom and equipped
with a weight µ at its head. The angular deviation is denoted by υ.

As long as the weight is small enough, υ = 0 is a stable and balanced condition, i. e., for small
deviations the stick adjusts itself back to its upright position υ = 0. The balanced condition
becomes unstable at a given weight µ if it is continuously increased. Simultaneously, two new
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balanced conditions evolve as the stick bends down to the left or to the right. The change
from one stable to two stable and one unstable balanced conditions is called bifurcation. In
this example it is a Pitchfork bifurcation.

In general, the local stability properties of equilibria or other invariant sets change at a
bifurcation. Figure 3.6 shows an example using the two-dimensional bifurcation function
µ|x+ b · y|+ α|x3 + b · y3| for x, y ∈ [−1; 1], b = 0. The number of stable equilibria changes
due to the change of the bifurcation parameter µ from one to two if µ ≥ 0 changes to µ < 0,
as presented in Figure 3.6.

µ ≥ 0 µ < 0

Figure 3.6.: Change of the number of stable equilibria, resulting from a change of the bifurcation
parameter µ.

The bifurcation function finally used by the resulting UAV system for the creation of
dynamically changing formation shapes (cf. Chapter 6) is based on the Pitchfork bifurcation.
This bifurcation is a definite type of a bifurcation of a nonlinear system with normal form

ẋ = dx

dt
= µx+ αx3, (3.13)

whereby µ is the bifurcation parameter and α can be used to change the bifurcation from a
subcritical bifurcation (α > 0) to a supercritical Pitchfork bifurcation (α < 0), as shown in
Figure 3.7 with α = ±1. A bifurcation is called subcritical when the bifurcating periodic or
quasi-periodic solution is unstable. If the periodic or quasi periodic solution is stable, the
bifurcation is called supercritical.

Figure 3.7 illustrates the equilibria points computed using Equation 3.13 with given µ ∈ [−1; 1]
at the x positions. The green lines represent the stable equilibrium positions and the red
lines represent the unstable equilibrium positions. These equilibria can be computed as
follows: Considering the subcritical case presented in Figure 3.7 a) for µ < 0, x = 0 is a
stable equilibrium and x = ±√−µ are unstable equilibria. If µ ≥ 0 is set the equilibrium at
x = 0 is unstable. For a supercritical Pitchfork bifurcation shown in Figure 3.7 b) with µ ≤ 0
one stable equilibrium exists at x = 0. If µ > 0 is set, one unstable equilibrium at x = 0 and
two stable equilibria at x = ±√µ exist.
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Figure 3.7.: Change of the bifurcation from a subcritical a) to a supercritical b) Pitchfork bifurcation
by changing α. Stable equilibria are represented by green lines and unstable equilibria are represented
by red lines. For the subcritical case the stable equilibrium is at x = 0 and x = ±

√
−µ are unstable

equilibria if µ < 0. x = 0 is an unstable equilibrium if µ ≥ 0. For the supercritical case x = 0 is a
stable equilibrium if µ ≤ 0. x = 0 is unstable and x = ±√µ is stable if µ > 0.
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It is possible to design an equilibrium at the same position as the global equilibrium received
by a harmonic function (cf. Section 3.3.1). This allows the creation of a superpositioned
equilibrium leading the UAVs towards it with the advantages of the harmonic potential
field by simultaneously providing a formation potential field forcing the UAVs to create a
formation with the equilibrium position as the center point.

It is also possible to create equilibria that are able to overwrite the one from the harmonic
function. This allows the change of a formation with a single equilibrium point to a formation
with several equilibrium points. The equilibrium of the harmonic potential field will then be
between the equilibria of the bifurcating potential field and thus still leads the UAVs towards
the equilibrium points.

Bifurcation theory allows an establishment and change of equilibria by simple parameter
adaptation. Thus, it is possible to change the positions of the UAVs in such a way that
they create formations as presented in Figure 3.6. The case that µ ≥ 0 would lead to a line
formation and the case that µ < 0 would lead to a double line formation.

Bennet and McInnes [167] have shown that the establishment of a formation using bifurcation
theory can be verified by proving system stability in the sense of Lyapunov. They have also
shown that a multi UAV system still works if the UAVs only have information about their
neighboring UAVs. This is important as it is unrealistic for many real world applications’
UAVs to always communicate with all others.

The foundations presented in this chapter so far can be used to create a multi-UAV system,
able to compute paths, to explore terrains, and to establish dynamically changeable formations.
The designed system, based on the potential field approach is scalable, flexible and robust.
These properties are considered to be important for an autonomous multi-UAV system, as
described in Chapter 1. The use of bifurcation theory creates a flexible formation system that
allows to change between different formation shapes anytime by simple parameter variations
to command an entire formation.

Exploring terrains using only a single formation does not seem to be very beneficial. Increasing
efficiency is possible if the UAVs can create several formations simultaneously and if they are
able to process different tasks. It should also be possible to explore small subareas like, e. g.,
rooms in buildings using only one UAV, while other UAVs simultaneously fly in formation
to monitor large areas. To provide the resulting system with these abilities, a cooperative
behavior including task allocation is needed. The basics for the resulting system behavior
are presented in the following section.

3.5. Cooperative Behavior

To reach an increase in efficiency of the overall performance, a support of different kinds of UAV
coordination approaches can be utilized. Redundant exploration of areas, as well as redundant
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tasks processing should be avoided. Additionally, the UAVs have to work cooperatively and
consensus considering different decisions must be reached. An establishment of formations
should also be performed if it leads to an increase in efficiency.

To achieve such a coordinated behavior, several requirements must be met. The UAVs have
to exchange information and they need abilities for task creation and task allocation. This
section introduces the basic methodologies the UAVs use to achieve the desired coordination.
It is subdivided into two subsections, one explaining the basics and requirements for task
creation and the other explaining the foundations and requirements for task allocation.

3.5.1. Task Creation

One part of the behavior the UAVs rely on is task creation. They should create tasks by
themselves if these tasks lead to an increase in efficiency or if they avoid damage. If it seems,
e. g., beneficial to explore some areas of the environment in formation, at least one UAV
should notice this and start the creation of a task for exploration in formation. Task creation
is based on environmental information. The more information exists, the more efficient task
creation is possible.

Another point is cooperative obstacle avoidance. If, e. g., a formation flies into a valley and
the UAVs can fly inside this valley only one after another, a task to dissolve the formation
should be created. Additionally, if a formation has to surround, e. g., a mountain, it can be
beneficial if the formation is divided into two, with one flying, e. g., counterclockwise and the
other clockwise around the mountain.

The most important point is that tasks have to be created by the UAVs themselves if the
current UAV configuration will lead to future damage. Such configurations are given when
the connection to the other UAVs fails or if the fuel level of a UAV reaches a critical quantity.
In such cases, new tasks must be created and the corresponding UAVs have to process these
tasks with high priority before all other tasks.

After the creation of tasks in order to increase efficiency and to avoid damage, an allocation
and execution of these tasks must take place. Therefore, the following section introduces to
the field of multi-robot task allocation.

3.5.2. Multi-Robot Task Allocation

A wide range of methodologies for multi-robot task allocation exist. Many task alloca-
tion approaches are based on the division of labor of natural swarms (cf. Section 2.1.4).
Division of labor can be achieved, e. g., by introducing a role system. Other approaches
consider homogeneous robots and centralized, as well as decentralized task distribution (cf.
Section 2.2.2).
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To achieve an efficient task allocation, it is necessary to define the term efficiency. It can be
defined based on one, as well as on several objectives the task allocator has to optimize. The
better the resulting optimization is, the more efficient the system becomes. Some widely used
objectives to optimize task allocation exist. Mosteo and Montano [168] summarize several of
them as follows:

• Minimize the costs of the worst agent.

• Maximize the utility of the worst agent.

• Minimize the sum of individual costs.

• Maximize the sum of indirect utilities.

• Minimize the average costs per task.

• Maximize the overall performance.

It has been shown [169] that the distributed task allocation problem is NP-complete if the
goal is to minimize the time needed to process all tasks. The problem can be mapped for a
single UAV to the Traveling Salesman Problem (TSP). If several UAVs are involved, it can
be mapped to multiple TSP.

Researchers work on different approaches for multi robot task allocation. An example for a
division of labor based task allocation approach, where a simple reinforcement of response
thresholds is transformed into a decentralized adaptive algorithm for task allocation, is
presented by Benabeau et al. [38]. Furthermore, Gerkey and Mataric, e. g., analyzed several
approaches [170] maximizing the overall performance.

The method used by the UAVs for distributed task allocation is based on the market place
approach (cf. Section 2.2.2). To establish a basic market place, three types of robots or
agents are normally needed. One kind are selling agents. These sellers can be robots or third
party applications, which require specific tasks to be performed. The remaining robots are
then considered as buying agents. Based on the optimization objectives the buying robots
calculate offers and place them. Additionally, a third entity exists. The auctioneer takes
these offers and is responsible for comparing them and for determining a winning agent. This
winning agent will finally execute the task.

A market place as it has been introduced first is a centralized approach with one central
auctioneer. The approach has been extended by the introduction of division of labor (cf.
Section 7.3.2) to support heterogeneous robot groups, placing bids, based on their capabilities.
To overcome the disadvantages of centralized approaches, such as bottlenecks and single point
of failures, the market place approach has also been decentralized. This decentralization
has been obtained through the distribution of the decision process over all UAVs in order to
replace the auctioneer (cf. Section 7.4.2).
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Compared to many other task allocation approaches, e. g., [171], [172], [173], the resulting
system has not only one of the aforementioned values to optimize. Additionally, each task
has diverse properties the UAVs have to take into account (cf. Section 7.3.1). The execution
of some tasks is more important than the execution of other tasks in order to avoid damage.
Additionally, some tasks require several UAVs to be performed. Due to their equipment,
certain UAVs fit differently to certain types of tasks. These additional requirements (cf.
Section 7.3.3) must be met by the system described in this thesis. The UAVs have, e. g.,
only limited fuel and it has to be guaranteed that they never run out of it. To take these
additional requirements into account, some tasks must be more beneficial for the UAVs than
others.

An increase of the gain can be obtained by weighting the single tasks using priorities. Based
on the priority, a task becomes more or less beneficial to a UAV. Such a way of weighting
is also used by operating systems to distribute and sort the single tasks in queues for the
available CPUs as, e. g., shown by Baumberger et al. [174].

The foundations presented so far allow the design of a decentralized multi-UAV system with
abilities for environmental exploration, task allocation, flights in formation, etc. In adopting
these approaches to real world applications a first step is to ensure that the designed system
is verifiable. Several methods to verify software and for mathematical algorithms exist. The
following section presents the basics one can use to verify the resulting system.

3.6. Verification

A multi-agent system for real world environments must guarantee that the behavior of the
single agents and the behavior of the overall system works as expected. This is necessary as
unpredictable behavior can lead to crashes and several other dangerous conditions endangering
the safety of human beings. To avoid unexpected behavior, a system has at least to be
verified in the sense that the system always behaves in the way specified.

Typically, mathematical verification is used for system validation. Using potential field theory,
a verification can be obtained by showing that the system always relaxes into stable equilibria.
The positions of these stable equilibria result from the desired target configurations and are
equal to the positions of them. Dynamic system theory can be used to ensure the stability of
the resulting system by showing that conditions stable in the sense of Lyapunov and explained
in the following section are always reached. A system always relaxes into an equilibrium if the
it is globally asymptotically stable. Lyapunov’s methods extended by the LaSalle theorem
can be used to prove this behavior.
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3.6.1. Lyapunov Stability

Lyapunov stability is given if a small change of forces does not lead to new conditions. A
common example is a pendulum with a rod and a weight. It has a stable and an unstable
equilibrium in the sense of Lyapunov. The stable equilibrium is reached if the weight is
hanging straight down. It always relaxes into this equilibrium after affecting forces have
vanished. The unstable equilibrium is reached if the weight is pointing straight up. The
pendulum will not necessarily relax into this position after an affecting force has vanished.
Lyapunov stability is defined, e. g., in [175] and additionally in [176] by Lyapunov. A detailed
definition is given by Shankar Sastry et al. [177] in the context of robot manipulation.

Following the definition from [177], a dynamical system which satisfies

ẋ = f(x, t), x(t0) = x0, x0 ∈ Rn (3.14)

is considered. Let x∗ ∈ Rn be a position, while t denotes the time. The position x∗ is
an equilibrium of Equation 3.14 if f(x∗, t) ≡ 0. The equilibrium is called locally stable if
all solutions with initial conditions in the neighborhood of x∗ remain near x∗ for all times.
Additionally, x∗ is called locally asymptotically stable if x∗ is locally stable and all solutions
starting near x∗ tend towards zero when t goes towards infinite.

It can be assumed that the equilibrium of interest occurs at x∗ = 0. This can be reached by
shifting the origin of the system [177]. An appropriate shifting of the origin can be performed
for each equilibrium point in order to study the stability of several equilibrium points. Then,
stability in the sense of Lyapunov is defined as follows:

Definition 3.7. Lyapunov stable: An equilibrium position x∗ = 0 of Equation 3.14 is said
to be Lyapunov stable at t = t0 if

∀ε > 0 ∃δ(t0, ε) > 0 such that ∀t ≥ t0 : ‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε. (3.15)

Equation 3.15 shows that a solution starting within a distance δ to the equilibrium always
remains within a distance ε. This must be true for all ε > 0. Trajectories starting close
to the origin are not obliged to tend to the origin asymptotically following Definition 3.7.
Additionally, the stability of the system is only defined at a time instant t0. It is necessary to
guarantee that the equilibrium position does not lose stability in order to eliminate unexpected
behavior. Therefore, the concept of uniform stability is introduced in the following.

A uniformly stable equilibrium x∗ with a given δ from Definition 3.7 is not a function of t0.
To the contrary, it must be ensured that Equation 3.15 holds true for all t0. Furthermore,
asymptotic stability is introduced in the following to define uniform asymptotic stability.
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Definition 3.8. Asymptotic stable: Given an equilibrium x∗ = 0 from the system of
Equation 3.14. It is called asymptotically stable at t = t0 if

1. x∗ = 0 is stable and

2. x∗ = 0 is locally attractive. This means that

∃δ(t0) > 0: ‖x(t0)‖ < δ ⇒ lim
t→∞

x(t) = 0. (3.16)

Based on Definition 3.8, uniform asymptotic stability is defined as follows:

Definition 3.9. Uniform asymptotic stable: A system is called uniform asymptotic
stable if

• x∗ = 0 is uniformly stable and

• x∗ = 0 is uniformly locally attractive, i. e., that ∃δ independent of t0 for which Equa-
tion 3.16 holds. Additionally, convergence in Equation 3.16 must be uniform.

Definitions 3.7, 3.8, and 3.9 are only local definitions, i. e., they describe the system behavior
close to an equilibrium. An equilibrium x∗ is called globally stable if it is stable for all initial
conditions x0 ∈ Rn [177].

Lyapunov introduced two methods to demonstrate stability. These are the direct and the
indirect method. Additionally, the direct method has been extended by LaSalle to show
asymptotic stability under extended conditions. All methods are described in the following
sections starting with Lyapunov’s direct method.

3.6.2. Lyapunov’s Direct Method

The direct method (also known as second method) allows the determination of stability of
a system without explicitly integrating the Differential equation 3.14 [177]. The method
generalizes the idea of it beings possible to study the rate of energy change to ascertain
stability if a “measure of energy” exists in a system. A “measure of energy” is thereby defined
as follows. Given a ball Bε of size ε > 0 around the origin, Bε = {x ∈ Rn : ‖x‖ < ε}.

Definition 3.10. Locally positive definite: A continuous function V : Rn ×R+ → R is
called a locally positive definite function if for ε > 0 and for a continuous, strictly increasing
function α : R+ → R,

∀x ∈ Bε, ∀t ≥ 0: V (0, t) = 0 and V (x, t) ≥ α(‖x‖). (3.17)
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Functions defined by Definition 3.10 are locally like energy functions. Analogous to this
definition, positive definite functions are globally like energy functions.

Definition 3.11. Positive definite: A positive definite function V : Rn×R+ → R is given
if it satisfies the conditions of Definition 3.10 and

lim
p→∞

α(p) =∞. (3.18)

Additionally, so called decrescent functions exist in order to bound the energy.

Definition 3.12. Decrescent: A continuous function V : Rn×R+ → R is called decrescent
function if for ε > 0 and for a continuous, strictly increasing function β : R+ → R,

∀x ∈ Bε, ∀t ≥ 0: V (x, t) ≤ β(‖x‖). (3.19)

Using the previous definition it is possible to determine stability for a system by studying an
appropriate energy function [177]. Stability of the equilibrium point can be concluded by the
basic theorem of Lyapunov if V (x, t) is a locally positive definite function and V̇ (x, t) ≤ 0.

Theorem 3.1. Let V (x, t) be a non-negative function with derivative V̇ |ẋ=f(x,t) = ∂V
∂t

+ ∂V
∂x
f

along the trajectories of the system.

• The origin of a system is locally stable in the sense of Lyapunov if V (x, t) is locally
positive definite and V̇ (x, t) ≤ 0 is locally in x and for all t.

• The origin of a system is locally uniformly stable in the sense of Lyapunov if V (x, t) is
locally positive definite and decrescent. Additionally, V̇ (x, t) ≤ 0 is locally in x and for
all t.

• The origin of a system is locally uniformly asymptotically stable if V (x, t) is locally
positive definite and decrescent. Additionally, −V̇ (x, t) is locally positive definite.

• The origin of a system is globally uniformly asymptotically stable if V (x, t) is positive
definite and decrescent. Additionally, −V̇ (x, t) is positive definite.

What Lyapunov has realized is that it is possible to prove stability without the requirement
to know the real physical energy if a Lyapunov function can be found to satisfy the above
constraints. The global asymptotic stability of the origin is a consequence if V̇ (x, t) is negative
definite. This is often not the case but LaSalle has introduced a criterion for asymptotic
stability if V̇ (x, t) is only negative semidefinite as described in the further course of the
chapter.
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3.6.3. LaSalle Theorem

Lyapunov’s direct method has been extended by LaSalle [178]. The resulting theorem allows
the conclusion of asymptotic stability even if −V̇ (x, t) is not locally positive definite. It
can only be applied to autonomous or periodic systems. Let the solution trajectories of an
autonomous system be

ẋ = f(x). (3.20)

Further on let ν(t, x0, t0) be the solution of Equation 3.20 at time t. The trajectories start
from x0 at time t0. Then, a ω limit set is defined as follows:
Definition 3.13. Limit set: A set S ⊂ Rn is the ω limit set of a trajectory ν(·, x0, t0) if a
strictly increasing sequence of times tn for every y ∈ S exists such that

lim
tn→∞

ν(tn, x0, t0) = y. (3.21)

Additionally, an invariant set is defined as follows:
Definition 3.14. Positive invariant: A set M ⊂ Rn is called a positive invariant set if

∀y ∈M, ∀t0 ≥ 0,∀t ≥ t0 : ν(t, y, t0) ∈M. (3.22)

The ω limit set of every trajectory is closed and invariant [177]. Based on the previous
definitions, LaSalle’s theorem can now be stated.
Theorem 3.2. Let a function V : Rn → R be a positive definite function. For this function
V̇ (x) ≤ 0 must hold on the compact set Ωc = {x ∈ Rn : V (x) ≤ c}. Further on define

S = {x ∈ Ωc|V̇ (x) = 0}. (3.23)

The trajectory tends to the largest invariant set inside S for t→∞, i. e., its ω limit set is
included inside the largest invariant set in S. This means that if no invariant set other than
x = 0 is contained in S, then 0 is asymptotically stable.

A global version of Theorem 3.2 may also be stated. Based on the sufficient conditions given
by Theorem 3.1 it is possible to verify the system by showing that always a globally uniformly
asymptotic equilibrium exists. The system always relaxes into this equilibrium if the origin
of the system is uniformly globally asymptotically stable and then the behavior is always
as expected. A disadvantage of the direct method is that no computable technique for the
generation of Lyapunov functions exists. Another possibility to show that a system is stable
is given by the indirect method of Lyapunov described in the next section.
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3.6.4. Lyapunov’s Indirect Method

Lyapunov’s indirect method (also known as first method) uses the linearization of a system
in order to determine stability of the origin [177]. Given the system

ẋ = f(x, t) (3.24)

whereby ∀t ≥ 0: f(0, t) = 0. Additionally, let

J(t) = ∂f(x, t)
∂x

∣∣∣∣∣
x=0

(3.25)

be the Jacobian matrix of f(x, t) with respect to x and evaluated at the origin. From this it
follows that for each fixed t, the remainder

f1(x, t) = f(x, t)− J(t)x (3.26)

approaches zero as x approaches zero. From this it is not given that the remainder approaches
zero uniformly. Therefore, condition

lim
‖x‖→0

sup
t≥0

‖f1(x, t)‖
‖x‖

= 0 (3.27)

is required. The system

ż = J(t)z (3.28)

is referred to as the uniform linearization of Equation 3.14 about the origin if Equation 3.27
holds. The stability of the linearization determines the local stability of the original nonlinear
equation if a linearization exists [177]. From this the theorem of stability by linearization
can be stated as follows:

Theorem 3.3. Assume that Equation 3.27 holds true for the system from Equation 3.24.
Additionally, let J(·) from Equation 3.25 be bounded. Then, zero is a locally uniformly
asymptotically stable equilibrium of Equation 3.24 if it is a uniformly asymptotically stable
equilibrium of Equation 3.28 [177].

Uniform asymptotic stability of the linearized system is required by Theorem 3.3 for the proof
of uniform asymptotic stability of the nonlinear system. Let the system given in Equation 3.24
be time-invariant. Then Lyapunov’s indirect method says that if the eigenvalues of
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J = ∂f(x)
∂x

∣∣∣∣∣
x=0

(3.29)

are in the left half of the complex plane, the origin is asymptotically stable. The prescribed
theorem shows that local uniform asymptotic stability of the original nonlinear system is
implied by global uniform asymptotic stability of the linearization.

3.7. Summary

The foundations needed to design a verifiable three-dimensional path planning system
supporting formation flights are described in this chapter. Additionally, basics considering
the design of a cooperative behavior for task allocation with the aim of increasing efficiency
is presented.

Formations are established in order to increase efficiency in terms of decreasing the time
needed for task execution. The entire system is based on artificial potential field theory. A
world model is used by the UAVs based on a dynamic octree as underlying data structure. It
affects the used path planning and formation flight methods. The affection concerns not only
the design and implementation of the algorithms but also the resulting computation times
needed to compute feasible paths. It is therefore the most significant design decision.

Artificial potential fields are computed using harmonic function theory for path planning and
bifurcation theory for formation flights. The descent gradient of the resulting potential field
is finally used for path computation.

Coordination approaches are necessary to achieve an operative multi-UAV system and thus
introduced in this chapter. Inter-UAV communication is used for information exchange. It
allows the UAVs to inform other UAVs about newly created tasks and to exchange all relevant
information regarding their current configuration qU ∈ C. Tasks have to be allocated by the
UAVs without any central coordination instance. The basic techniques used to achieve a task
creation and allocation methodology are also presented in this chapter.

The methods described in this chapter allow the behavior of the resulting system to be
verified using dynamic system theory. Verification is a first step for the use in real world
scenarios where validated software is needed.

The following chapter introduces the overall system. It describes the interactions of the
foundations introduced in this chapter to design a system able to plan efficient paths in a
computable fashion. One focus lies on the data structure used for environmental representation.
Additionally, inter-UAV communication and the final UAV configuration is described in detail.
The exploration approach based on the camera equipment of the UAVs is also presented.
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The methods introduced in the previous chapter can be extended and combined to design a
multi-UAV system with capabilities for distributed task allocation, path planning and forma-
tion flights. The UAVs presented in this thesis are able to behave completely autonomously
and decentralized. A system with these abilities has several advantages and can address a
wide range of applications without a central coordination instance no bottleneck and no single
point of failure exists. It is also able to work in a safe and efficient way even in situations
wherein user interaction is impossible.

The overall architecture and the details of the system are described within the following
chapters. This chapter provides an overview of the entire approach and its architecture, as
well as a description of the underlying data structure used to represent three-dimensional
terrains. All algorithms explained in the following chapters, make use of this data structure. It
directly influences the performance and abilities of the overall system. The UAV configuration
is described in the further course of this chapter. The algorithmic used to compute newly
explored terrain is also presented. To reach a coordinated and decentralized UAV behavior,
information exchange between the UAVs is necessary. The technique used by the UAVs to
communicate with each other is also introduced in this chapter. It finally concludes with a
summary.

The following chapter deals with the algorithmic for path planning and exploratory navigation
(cf. Chapter 5). Formation flights are presented in Chapter 6. All algorithms consider complex
and dynamic three-dimensional terrains. Chapter 7 describes the resulting task creation and
task allocation system to achieve a cooperative UAV behavior.

The methods of the resulting system can be mathematically verified. Such a verification
proofs that the methods always lead to the desired behavior. It is shown, that the selected
target configurations qG are always stable in the sense of Lyapunov. From this, it follows
that the system will relax into the desired qG , which ensures that the UAVs are able to reach
their targets.
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An implementation has been carried out to show that the system works with discrete processor
arithmetic and not only considers a continuous mathematical space. Several tests have been
conducted (cf. Chapter 8) using the implementation. In order to reduce the computational
effort of the approach, various approximations have been made. They are also introduced in
the following chapters while the next section gives an overview of the entire system.

4.1. System Overview

GNU g++-4.7 [179] has been chosen as the programming language. The implementation is
unitized to reach exchangeability if, e. g., a different kind of UAV has to be tested. Figure 4.1
illustrates an overview of the entire system, consisting of three main parts:

UAV Control Station

Visualization User Interface

Planner

Configuration space

World model mapper

World model changer

Node determiner

Path planner

Formation planner

Task creator

Task allocator

In
he
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ts TCP/IP

TCP/IP

TCP/IP

UDP/IP

UDP/IP

UDP/IP

Figure 4.1.: Overall architecture of the system. It consists of three parts. The programs Control
Station and UAV and the library Planner.
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1. A Control Station, responsible for the visualization of the current system state. It also
allows user interaction to create new obstacles or tasks and to pause the system if
necessary.

2. A program UAV representing a single UAV. It implements inter-UAV communication
and simulates UAV movement.

3. A library Planner, responsible for the internal representation of C. Additionally, all
algorithms needed for path planning, formation handling, task allocation, etc. are
included in this library.

The UAV capabilities and also the UAV behavior result from the algorithms implemented in
the library Planner. Thus the main focus of the chapter lies on this library. Nevertheless, the
following section briefly describes the Control Station. It is responsible for terrain creation
and to provide the UAVs with environmental information.

4.1.1. World Creation and Modeling

As mentioned before, the UAVs have to work completely decentralized. In order to reach this
objective the Control Station cannot influence the decision making processes of the UAVs.
The main duties of the Control Station are the provision of environmental information to the
UAVs and the representation of the current system state in order to support ground units
with up-to-date information regarding the environment. Additionally, prevention of personal
injury and collision avoidance of real UAVs make it necessary to conduct first tests of the
UAV algorithms in a safe way. A simulation environment provides such a safe test bed.

The representation of different terrains and the visualization of the current system state are
also supported by the Control Station. Partial information about previous system states are
provided, too. These information include the visualization of all previous trajectories of each
UAV. Beside the system state of the terrain the single UAVs are visualized at their positions
and it is possible to display their current configurations.

To obtain information about specific areas of the environment, the implemented scene camera
can be moved in 3 dimensions and rotated along 2 axes. The current simulation can be
paused anytime to identify problems. It is also possible to create airfields that the UAVs use
in an emergency to land.

Different environments including obstacles and targets can be visualized. Environments can
be created and dynamically changed anytime during simulations and environmental changes
will always be sent to the UAVs. A dynamically changing number of UAVs is also supported.
It is possible to save the current information regarding the terrain. This allows to store the
start parameter of test cases. Hence, the results obtained in Chapter 8 are easily reproducible.

The Control Station renders scenes using the rendering engine WildMagic5 [180]. Amongst
other things it allows three-dimensional polygon rendering. Environments can be created
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using a combination of heightmaps [181], models generated with 3ds max [182] and self-
made meshes. Heightmaps are usually monochrome pictures. Figure 4.2 shows an example
heightmap usable to create an underlying terrain. The brighter the single pixels of the
heightmap are, the higher the resulting area of the terrain is. The values v ∈ {0, 1, . . . , 255}
of the single pixel combined with by a bilinear filtering [183] and multiplied by a scaling
factor to create smooth terrains.

Figure 4.2.: An example heightmap usable to create an underlying terrain.

It is possible to create real terrains based, e. g., on maps offered by the NASA [184] or
OpenStreetMap [185], which can be converted to heightmaps. 3ds max models are mainly
used for the representation of complex structures and the UAVs. Self-made meshes can
easily be created online during simulation, e. g., to test the response times the UAVs need to
compute an appropriate reaction to newly detected obstacles. New tasks can be introduced
to be able to consider, e. g., third party information about areas containing casualties with
high probability. The UAVs decide on their own about the distribution and execution of
given tasks.

A fictive terrain created and visualized by the Control Station is shown in Figure 4.3. The
current state of the terrain is visualized in the center of the Program. The bottom shows the
current configuration of a selected UAV including its role, current position, and angles, as
well as its maximum speed, favorite altitude, and maximum altitude. The left hand side of
the Control Station is used to control the current simulation. Targets and obstacles can be
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Figure 4.3.: Visualization of a fictive terrain using the Control Station.

defined and deleted and the simulation can be started, paused, and stopped. Additionally,
all targets, obstacles and airfields set by human operators can be selected to show their
properties. A list of all UAVs is also provided on the left hand side of the program. Further
functionality, like the creation of terrains including models of buildings, etc. and enabling
the visualization of current and previous UAV paths is provided by the menu.

Each object the environment consists of is internally represented as triangle mesh. A UAV
receives all relevant triangle meshes every time new objects are detected, have changed, or
when it connects itself to the Control Station. Based on this internal representation, it is
possible to load and visualize a wide range of three-dimensional real world environments
using triangulation algorithms as, e. g., the algorithm presented by Seidel [186].

The system’s UAVs presented in this thesis establish inter-UAV communication by UDP/IP
broadcasting, e. g., to reduce redundant exploration of areas. They also create a dedicated
TCP/IP connection to the Control Station. When a UAV explores new areas of the envi-
ronment, it sends information about the newly explored parts to all other UAVs and to the
Control Station. The UAVs map all information they receive about newly explored areas
into their own configuration spaces. The Control Station uses these information to update
the visualization of the relevant areas. The UAVs compute their behavior based on the
information they receive from other UAVs, regarding the current state and from the Control
Station, regarding the environment.

61



Chapter 4. Architectural System Design 4.1. System Overview

UAVs are represented as own program inheriting the library Planner. This leads to an
exchangeability of different kinds of UAVs. The program UAV is mainly responsible for
providing communication sockets and to compute new UAV positions in order to simulate
UAV flights. Therefore, it is neglected and only briefly described in the following section.

4.1.2. UAV Architecture

The program UAV is used for the representation of UAVs. It has been developed as a separate
program and each instance of the program simulates one single UAV. Some of the main
duties is inter-UAV communication and the establishment of a dedicated TCP/IP connection
to the Control Station. These connections are used for information exchange. The program
is also responsible for the simulation of UAV flights and to monitor the internal state. The
internal state includes, e. g., the current fuel level. Monitoring the fuel level is necessary to
avoid crashes. A threshold is introduced, which is described in detail in Section 7.4.1. It is
based on the size of the environment, the velocity, and the tank capacity of the UAV. If the
fuel level gets below this threshold, a new task is created sending the UAV to a gas station.

The most important part of the designed multi-UAV system are the algorithms and their
interaction illustrated in Figure 4.4. They are responsible for behavioral computation and
are completely implemented in the library Planner. Figure 4.4 shows an overview of the
single parts of the behavior system including information exchange and simulated UAV
flights implemented in the program UAV. The algorithms work cooperatively to achieve the
objectives introduced in Section 1.2.

Another responsibility of the library is the internal representation of different environments.
For this purpose a world model based on an octree is created. The configuration space C
(cf. Section 3.1.2) is also part of the world model. Based on the configuration space, an
exploration of the current environment can be conducted. The creation of formations and
task procession is related to C, too. The library also includes basic algorithms, like neighbor
determination in octrees (cf. Appendix A.1), relevant for path planning and for potential
field computations.

The octree is dynamically changeable in order to reflect changing up-to-date information of
the environment, like newly explored areas and newly detected occupied areas. Furthermore,
a task allocation and task creation system has been implemented to provide the UAVs with
all necessary abilities to simultaneously execute different tasks.

The UAVs have to execute different algorithms continuously to reach the desired behavior.
First, a task is selected as shown in Figure 4.4. Each task contains a target area. The octree
represents this target area internally by assigning the leaves, which enclose the target area, to
CG. The UAV needs to fly to the target area in order to fulfill the selected task. A potential
field represented by a harmonic function is computed for that reason (cf. Chapter 5). If the
UAV flies in formation, an additional potential field based on bifurcation theory is calculated
and superpositioned with the harmonic potential field as described in detail in Chapter 6.

62



4.1. System Overview Chapter 4. Architectural System Design

Select Task
Set next

target area
Compute
harmonic

field

Compute
bifurcation

field

Send
information

update

Compute
path

Handle
new

information

Update
world
model

Create new
task

Send
information

update

Follow
trajectory

In formation

Target reached

Task more
beneficial

New task
needed

Yes

No

Yes
No

No

Yes

Yes

No

Figure 4.4.: Graphical representation of the UAV behavior including the interaction of the methods.
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Based on the resulting potential field, a path is then computed using the descent gradient as
described in Section 5.4.

The UAV continuously updates its internal state during the path following procedure. It first
handles new information received from the Control Station and other UAVs. This information
handling contains position updates from all other UAVs, storage of newly arrived tasks and
newly detected obstacles, as well as deletion of fulfilled or vanished tasks and no longer
existent obstacles.

Updating the world model is the next step. This update contains the computation of
newly explored areas through both, the UAV itself and other UAVs, as well as the internal
representation of newly detected obstacles and the deletion of vanished obstacles. Additionally,
a combination of leaves from the octree takes place. The algorithm for leave combination is
described in Section 4.2.1.

The UAV then checks whether it is beneficial or necessary to create a new task. The details
of task creation are provided in Section 7.4.1. Such tasks might be, e. g., the creation of a
formation for exploratory navigation if the UAV is inside a large area consisting only of free
space. In that case, a new task will be created and selected. The task processed before is
returned to the UAV’s task list. Thereafter, the other UAVs and the Control Station are
informed about the new task and the task reallocation conducted by the UAV. Informing
the other UAVs about returned tasks ensures that these tasks can be processed soon by
another UAV. Informing the Control Station ensures that human operators obtain up-to-date
information.

If the UAV did not create a new task, it checks whether any task in its task list has become
more beneficial than the current one. Other tasks in the task list can become more beneficial
than the current one for several reasons. The UAV could get close to the target area of some
task it can now process without noticeable delay. Another possibility is that a new task with
higher priority than the current one has been received from another UAV or a third party
application such as an operator. All possible reasons leading to task creation or task change
are explained in Section 7.4. If some tasks in the task list become more beneficial than the
current one, the UAV returns the current task into its task list and takes on the new task.
Every time an unfinished task is returned, the other UAVs are informed to ensure efficient
task processing. The UAV also informs the Control Station to provide up-to-date information
to the human operators.

If no task has become more beneficial than the current one, the UAV computes its new
position based on the current configuration and its velocity. It then sends an information
update containing its new position and angles to the other UAVs and the Control Station.
It also sends the new fuel level to the Control Station if it has been changed. Thereafter,
the UAV checks whether its configuration is equal to the target configuration and as long
as it is unequal, the path following procedure continues. If the configurations are equal and
the current task is solved, the UAV sends information about the fulfillment of the task to all
other UAVs and the Control Station, erases the task from its task list, and selects a new one.
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The UAVs compute their behavior based on the environments created as described in this
section. Hence, they need to internally store and represent all necessary properties of
the terrains in an internal world model. Internal environment representation is performed
using an octree as mentioned before. The decision of the data structure is one of the most
important one as it affects all further design decisions. Information the UAVs receive from
the Control Station and from other UAVs are mapped to this data structure. The octree and
its functionality is described in detail in the following section.

4.2. UAV World Model

A data structure is needed to create world models of environments received from the Control
Station. For this purpose a dynamic octree has been introduced. It subdivides the environment
into several disjoint areas, whereby each leaf of the octree depicts one subarea of the terrain
and the union of the leaves represents the entire terrain W (cf. Section 3.2). The leaves store
additional properties, so that the union of the leaves finally represents the combination of all
subspaces of C presented below.

A world model based on a tree structure has several advantages. Areas that are irrelevant for
the computation of suitable behavior can be combined. An efficient combination allows the
representation of large terrains with relatively low memory consumption. It also decreases
the time needed for potential field calculations (cf. Chapter 5). All methods and algorithms
designed for the resulting system take the octree as basic data structure into account. Hence,
it influences all abilities of the resulting system. It also directly affects the computational
effort needed for single calculations and therefore the overall performance of the entire system.

Each UAV works on its own configuration space C (cf. Section 3.1.2) in order to reach
a proper representation of the environment and its own internal state. C consists of five
disjoint subspaces, namely explored space (CE), unknown space (CUK), unexplored space
(CUX ), occupied space (CO) and target space (CG), whereby

∀i, j, i 6= j : Ci ∩ Cj = ∅,
CE ∪ CUK ∪ CUX ∪ CG = CF ,

CF ∪ CO = C.
(4.1)

A distinction between unknown space and unexplored space takes place. The UAVs are
able to fly in a priori known environments, as well as in partially or completely unknown
environments. Aging of data is also modeled. Explored space can become unexplored again
if no further exploration of the space has been conducted within a predefined time span.
Space is assigned to CUX if it has never been explored before or if the last exploration lies
back more than a given time. Information about areas marked as unexplored space ensure
that the space is in CF . This information can, e. g., be based on third party applications. If
information points out that unexplored space is also in CO it is directly assigned to CO.
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Unknown space describes areas without any information regarding their state. In order to be
able to gather further information regarding these areas CUK is also considered to be part of
CF . This ensures that the UAVs try to explore these areas. Finally, each leaf of the octree is
assigned to one of the five subspaces.

One issue not addressed in this thesis derives from the described kind of mapping. The
UAV presented in Figure 2.5 a), e. g., has a mission radius of 50 km. Taking such UAVs
into account can lead to large environments with high resolution. This would result in a
high number of leaves resulting in excessive memory consumption. It is unnecessary to
use all leaves of the octree for the computation of the potential fields, as described later
in Section 5.3.4. Additionally, the UAVs plan paths in a way that the positions the single
UAVs will visit next are known. Thus, only the part of the octree, needed to compute
feasible potential fields should be stored in main memory and the parts necessary for the
next potential field computation can be reloaded before they are needed. A simple solution
for the storage of parts of the octree, e. g., on the hard drive can be the use of a database.
More efficient solutions can be adapted from game theory as, e. g., the solution described in
[187]. Today’s game designer face the same issue as it is often impossible to store the entire
game environment in the main memory.

The octree stores the positions of all known UAVs, currently relevant targets and obstacles.
The mapping of the positions to the octree is based on the three-dimensional Cartesian
coordinate system FW (cf. Section 3.1.2). The main task of the UAVs is to find discrete
paths ρd (cf. Section 3.2) from their initial configurations qI to the next target configurations
qG . These paths have to lead to an exploration of the complete environment by simultaneous
avoidance of all obstacles in a fast and efficient way. Mapping all relevant positions to the
octree allows the UAV to reach this objective by using only information provided by the
octree.

The UAVs execute different tasks beside exploratory navigation with certain priories (cf.
Section 7.4.2). They work in a completely decentralized manner and have to coordinate their
actions themselves, in order to reduce redundant exploration and to avoid redundant task
execution. Additionally, a simultaneous execution of several different tasks is needed to reach
an increase in efficiency of the overall system. All flight actions conducted in order to reach
these objectives are based on discrete paths ρd. A single ρd consists of a finite sequence of
points. These points in turn are related to the leaves of the octree and the space type the
single leaves are assigned to. Thus, all operations regarding the octree need to be performed
as fast as possible in order to design a high-performance system.

The UAVs fly inside a terrain and always explore areas through their cameras. This leads to
environmental changes as areas of the environment unexplored or unknown before become
explored and new obstacles might be detected. It is necessary that the UAVs represent all
changes internally to achieve an adequate behavior. Thus, the octree changes dynamically,
as described in the following section.
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4.2.1. Representation of Environmental Changes

The surroundings of the UAVs are highly dynamic. This leads to the need of a highly flexible
world model. Dynamic changes of the environment are internally mapped as follows. The
UAV starts with the creation of a root node representing the entire terrain. It consists of the
boundaries of the environment in three dimensions and is assigned to CUX or CUK depending
on initial parameters.

The octree has a maximum level in order to reach an adequate subdivision. This level
leads to a maximum number of subdivisions and is based on the dimensions of the terrain
and the dimensions of the UAV (cf. Section 3.3.1). A leaf node at maximum level is big
enough to contain a complete UAV. This is necessary as a UAV entering the node must avoid
neighboring nodes, containing obstacles, under all circumstances. Every time a leaf is created,
it is assigned to one of the subspaces.

The root node gets subdivided into eight equally sized child nodes as soon as the UAV enters
the environment. Some of the resulting nodes are also recursively subdivided into eight
equally sized child nodes until the resulting child nodes are of homogeneous type or until
the maximum level has been reached. Here, homogeneous type means that a resulting leaf
encompasses only one single space type. An assignment of the leaf to the corresponding space
type is then performed.

Leaves of maximum level can also be heterogeneous. A leaf is heterogeneous if it encompasses
multiple subspaces. This leads to an approximation. Leaves that encompass CO are always
assigned to CO. Leaves surrounding only subspaces in CF are assigned to the type of subspace
they mainly consist of.

Finally, C is subdivided into CF and CO and the resulting CF is additionally subdivided into
CUK, CUX , CE and CG. The single space types are represented by different leaf types. The
subdivision changes dynamically during runtime when the UAVs gather new information
about the terrain. The possibility to reassign leaves to other space types is necessary in order
to model all possible changes. Environmental exploration is achieved through cameras. An
algorithm based on the ray tracing approach has been designed for the determination of
newly explored leaves. It takes all required properties into account and is described in detail
in Section 4.3.1. The algorithm subdivides all leaves the UAV can currently explore through
its cameras to create leaves at maximum level. This subdivision takes place to ensure that
large leaves are not completely assigned to CE if they are only partially explored. Afterwards,
a check for the identification of newly explored leaves at maximum level is conducted. The
resulting algorithm is described in pseudo code in Appendix A.3.

The mentioned update method for the assignment of newly explored leaves results in an
increasing number of nodes. This rises the time needed for path calculations and formation
flights dramatically [188]. To reduce the increase of the calculation times, an algorithm
responsible for the combination of leaves has been designed. The algorithm considers that
eight child nodes of a node are created one after the other for subdivision. The single child
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nodes are consecutively marked with values from 0 to 7. The algorithm is presented in pseudo
code in Appendix A.4 and works as follows.

It moves recursively through the complete octree. Each time a leaf marked as 7th child is
reached, the algorithm checks whether a combination is possible. It is more efficient to check
only one child of each node as all children are combined at once. Checking the last leaf is
done due to programming reasons. It is a simple way to avoid that the algorithm checks leaf
nodes already combined and therefore nonexistent any more. Another way would be, e. g., to
always check if the leaf node to be checked still exists.

The algorithm checks whether the seven siblings of the leaf are assigned to the same space
type. A combination is performed if this is true and if aging is currently not considered. The
points in time the last explorations of single leaves dates back, are also taken into account
for leaves, assigned to CE if the scenario supports aging. The difference between these points
in time has to be below a threshold for a combination. The threshold depends on the given
time after a newly explored leaf is considered to be unexplored again.

Using a recursion ensures that the leaf nodes at maximum level are checked first and also
combined first if possible. This leads to the advantage that a complete combination takes
only one run through the tree.

Due to the fact that explored areas of the terrain can become unexplored again, the UAVs
must have the ability to explore the environment over and over again to gather up-to-date
information about the underlying terrain. Repeated exploration after some given time is
also advantageous if, e. g., moving objects have to be found or if a changing area has to be
monitored permanently without enough UAVs to cover the complete area at once.

Based on the properties of the octree explained so far, it is possible to represent environmental
changes through octree changes. Additionally, the abilities to map and represent occupied
areas of the environment must exist. The UAVs receive environmental objects as triangle
meshes and map them into the octree as described in the following section.

4.2.2. Environment Mapping

As mentioned before, two different configuration space settings are selectable at the beginning
of a simulation. The environment can on the one hand be treated as known a priori if, e. g.,
the main task is WISAR (cf. Section 2.2.3) and up-to-date information about the environment
exists. The unexplored space is then assigned to CUX . It is on the other hand possible to
consider the environment as completely unknown at the beginning, in order to take big
disaster applications, such as earthquakes or tsunamis, seriously changing the environment,
into account. In this case the terrain is assigned to CUK.

If the simulation considers the environment as unexplored at the beginning, the UAVs receive
initial terrain information from the Control Station in the form of triangle meshes. Those
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are mapped into the octree as follows. Each triangle is recursively subdivided into two
equally sized triangles. Subdivision stops if the resulting triangles are smaller than leaves of
maximum level in each dimension. Afterwards, each leaf that encloses the positions of at
least one triangle vertex is checked. These leaves are recursively subdivided until leaves at
maximum level have been created. The resulting leaves are then checked. Each leaf enclosing
at least one of the vertices is assigned to CO. This ensures that each leaf intersected by a
triangle is considered to be occupied independent of the original size of the triangle. The
mapping is also executed when new obstacles have been detected.

As mentioned before, each UAV is represented as point pU in C. This representation neglects
the dimensions of the single UAVs. It is necessary to consider the volumes of the UAVs
in order to guarantee collision free paths. An obstacle growing [189] is conducted through
an expansion of the occupied space by the dimensions of the UAV in three dimensions for
that purpose. The approach implemented for obstacle growing starts with the creation of
neighboring leaves at maximum level for all occupied leaves. The resulting neighboring leaves
are then assigned to CO. As mentioned, the maximum level is based on the dimensions of the
UAV leading to resulting leaves, big enough to enclose the UAV completely. The UAVs do
not take grown obstacles’ areas into account for path planning. So, they can only be at the
edge of a leaf, assigned to occupied space by obstacle growing and never be at the edge of a
leaf containing an obstacle. Thus, a UAV overlaps with half of its size in a single dimension,
which is equal or less to half of the size of the leaf. So, assigning these leaves to the occupied
space ensures collision avoidance.

Figure 4.5 illustrates the method of obstacle growing in a two-dimensional environment. An
obstacle is located inside the black leaf. Due to obstacle growing, the surrounding leaves are
also considered to be occupied and marked gray. The path leads from qI to qG and takes only
the center points of the nodes as route points and touches one of the leaves set as occupied.
This leaf does not contain the obstacle and if the dimension of the leaf is bigger than half of
the dimension of the UAV, a safe distance between the UAV and the obstacle is guaranteed
as the point representing the UAV is located at the center of the UAV. The same holds true
for the three-dimensional case.

The use of triangle meshes for terrain representation is not only practicable for simulations.
If real UAVs receive their environmental information by third party applications or through
sensors, like laser and cameras, it is always possible to compute triangle meshes from the
input data, e. g., using the algorithm presented in [186]. This makes the approach universally
applicable.

The described mapping can lead to areas unreachable for UAVs but assigned to CF . Such
areas are, e. g., rooms in a building the UAVs cannot enter. If a UAV selects an unreachable
area as the one to be explored next, a feasible path computation is impossible. It is assured
that a UAV will never select such unreachable areas as next target area in order to overcome
this problem. An adaptation of classical flood fill algorithms [190] has been introduced for
that reason. The algorithm starts at the leaf lU that encloses the UAV. All neighboring
leaves li with {li, lU} ∈ N , li /∈ CO are marked as reachable. The neighboring leaves lj with
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qI

qG

Figure 4.5.: A two-dimensional sample path from qI to qG leading as close as possible to an obstacle.
The obstacle lies in the black leaf while the gray leaves are also considered to be occupied through the
use of obstacle growing.

{li, lj} ∈ N , lj /∈ CO of those leaves are also marked as reachable and so on. This is iteratively
executed until only previously marked leaves can be reached. Afterwards, each leaf lk ∈ CF
that is not marked as checked is assigned to CO. The algorithm is presented and described in
detail in Appendix A.2.

Finally, an example of a resulting octree, subdividing a fictive three-dimensional terrain is
shown in Figure 4.6. The subdivision of the terrain using an octree even with a low maximum
level leads to relatively small subareas. Thus, a high tree depth is usually not necessary.

The algorithms presented so far endow the octree with the abilities needed for environmental
object representation. It is also dynamically changeable in order to represent the current
system state. Finally, the octree needs abilities to relate the UAVs to the environment. Each
node of the octree has several properties for the creation of such a relationship as described
in the following section.

4.2.3. Node Properties

To reach a reasonable exploration of different environments, it must be guaranteed that the
path planner is at least complete (cf. Definition B.5). Additionally, information gathered
by the UAVs must correspond to meaningful positions. It is not very beneficial if a UAV
finds, e. g., casualties during a rescue mission when the position of the UAV related to
the environment and therefore the positions of the casualties are unknown. To specify the
positions of UAVs and the leaves of the octree, a Cartesian coordinate system FW is embedded

70



4.2. UAV World Model Chapter 4. Architectural System Design

Figure 4.6.: Possible subdivision of a fictive terrain through an octree with a maximum level of 3.

into the configuration space C. Each UAV has a position and direction associated to the
coordinate system. Additionally, each node of the octree has six properties presented in
Table 4.1. They are necessary for the computation of feasible paths and for the provision of
a consistent representation of C.

Property Description
boundaries Two three-dimensional points specifying the position and dimen-

sions of the node.
center Center position of the node.
space type The space type the node is assigned to, e. g., CE or CO.
level The level of the node related to the octree. The root node is at

level 0.
potential value Current potential value of the node.
exploration time The point in time of the last exploration.

Table 4.1.: The six main properties describing the single nodes of the octree.

The position and dimensions of each node are specified by the boundaries and are based on
FW . The boundaries denote the minimum positions (xmin, ymin, zmin) and the maximum
positions (xmax, ymax, zmax) of each node. Based on these points the dimensions of each node
can easily be determined. The boundaries are mainly used to compute the positions of new
child nodes in a highly efficient way. Efficient subdivision is necessary in order to respect
highly dynamic environments.
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The center positions of each node are stored as well. This is redundant as it is possible to
compute the center positions from the boundaries at all times. Nevertheless, they are needed
frequently, e. g., for node determination (cf. Section 4.2.4), for potential field computation
(cf. Chapter 5 and Chapter 6) and path computation in order to ensure collision avoidance
(cf. Section 5.4). Computing the center positions each time they are needed, would increase
the system’s computational effort noticeably. Storing the positions leads to a higher memory
consumption but the achieved reduction of the computational effort has been considered to
be worth the higher consumption.

The property space type described in Table 4.1 represents the currently assigned subspace of
the configuration space. As mentioned before, this assignment can change anytime during
simulation and it has crucial influence on the potential field approaches described in detail in
Chapters 5 and 6.

The level denotes the depth of the leaf inside the octree. The root node of the octree is level
zero. The children of a node at level a are at level a + 1. This property is mainly used to
lower the computational effort needed by the neighbor finding algorithm (cf. Appendix A.1)
and the algorithm responsible for dynamic octree changes (cf. Appendix A.3).

The union of the potential values of the single leaves represents the current potential field.
Path computation (cf. Section 5.4) and formation flights (cf. Chapter 6) are based on these
potential values.

The resulting system has the ability to gather up-to-date information on each area over and
over again. To efficiently determine areas with out-of-date information, each node stores the
moment of its last exploration using the property exploration time. If the difference between
the current time and the exploration time is above a given threshold, a reassignment of the
space type to CUX is executed.

The methods introduced so far lead to an octree providing the basics needed to reach the
objectives introduced in Section 1.2. Additionally, it is necessary to determine specific nodes
of the octree efficiently in order to execute the algorithms of the resulting system frequently.
The determination technique is described in the following section.

4.2.4. Node Determination

Determining specific nodes of the octree is a basic operation. It is extensively performed
by the UAVs, up to several thousand times per second. Thus, it has direct influence on the
performance of the entire system. Therefore, node determination should be executed as fast
as possible.

The operation is e. g., necessary for the computation of a harmonic potential field. This
computation often takes several thousand nodes into account (cf. Sections 8.3 and 8.4). For
each node, all neighboring nodes in six directions have to be found in order to be able to
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compute the potential field. So, the algorithm designed for node determination has direct
influence on the computation times presented in Chapter 8. The potential field calculations
must be performed as fast as possible, to give the UAVs the ability to react to changing
environments, e. g., to avoid moving obstacles.

Several additional operations need node determination. They are also based on different
inputs. Only one algorithm has been designed to compute nodes. The single operations that
need node determination are presented in Table 4.2.

Determine Corresponding operation
neighboring nodes of a given node Obstacle growing

Potential field computation
Path computation

existing leaves enclosing a specific position Potential field computation
Path computation

leaves at maximum level enclosing a specific position Environment mapping
Collision avoidance
Octree updates

Table 4.2.: The different types of operations that need node determination.

It is easy to design an algorithm that finds specific nodes at level n inside an octree with
a worst case performance of O(log8 n), with n describing the maximum possible number of
leaves. Improving the worst case performance normally leads to higher memory consumption
and complexity as, e. g., the algorithm designed by Aizawa et al. [191]. They have designed
a O(1) algorithm able to find neighboring nodes in quadtrees. Therefore, they store several
additional values for each node to actually reach this worst case performance. A high overhead
of memory consumption for each single node is unacceptable considering the resulting system
wherein several million nodes might exist. So, a tradeoff between memory consumption and
computational complexity has to be found.

The resulting algorithm (cf. Appendix A.1) for node determination still has a worst case
performance of O(log8 n). The idea is to reduce the number of steps needed to move from
one node to another. Additionally, only instructions a CPU performs highly efficiently are
used.

The first step is to design the octree in a way that moving from one node to another can be
performed very fast. This has been reached through the use of pointer arithmetic to link
each node to its parent and its eight child nodes if they exist. Hence, moving from one node
to another is only a memory leap.

The algorithm always starts at the root node and moves down from one level of the octree to
the next. It thereby takes a position p ∈ FW enclosed by the resulting node into account.
This position is given, e. g., by the position of the UAV or a computed position enclosed by a
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node to be determined. The algorithm computes iteratively the corresponding child node of
the current node that encloses p.

Computation of the correct child node is based on the way these child nodes are stored. Each
node internally stores pointers to its children and assigns them to a value ci. The correct
value ci for children i = 0, ..., 7, which encloses p has to be computed. Subdivision of a node
and the storage of the children is always executed in the same fashion. So, each single subarea
of the node is always enclosed by the child, with value i. Figure 4.7 illustrates the areas
covered by the child nodes of a single node and their values i.

0 1
2 3

4 5
6 7

x
y

z

Figure 4.7.: The values of ci to which the eight child nodes of a given node are assigned to.

The resulting child value ci depends on the center position li,(x,y,z) of node li. The single
positions at the dimensions x, y, and z of the center point of node li are considered separately
for node determination. They are represented by li,x, li,y, and li,z. The same is true for the
point p enclosed by the child node and the positions are denoted as px, py, and pz. Finally,
the resulting child number is computed using Equation 4.2:

ci = χx + χy + χz, (4.2)

whereby

χx =

1, if li,x < px,

0, else
(4.3)

χy =

2, if li,y < py,

0, else
(4.4)
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χz =

4, if li,z < pz,

0, else
(4.5)

Executing Equation 4.2 and the corresponding Cases 4.3, 4.4 and 4.5 iteratively allows to
move down the tree by starting at the root node in order to determine nodes enclosing p at a
given level.

A specific position enclosed by the neighbor node has to be computed to find neighboring
nodes of a given node. The dimensions of the single nodes at each level are fixed and given
by the size of the environment. Offsets are computed a priori for each dimension and each
level in order to find neighboring nodes of a given node. Let dn,x be the dimension of a node
at level n in x direction and be dmax,x the size of a leaf at maximum level in x direction. The
offset ox used to compute a point enclosed by a neighboring node at level n in positive x
direction is then calculated by:

ox = dn,x
2 + dmax,x

2 . (4.6)

The offsets for the other neighboring directions are computed analogously. They are multiplied
by −1 in order to find neighbors in −x,−y and −z direction. 26 offsets are stored for each
level of the octree in order to represent the 26 neighboring directions. Each offset is a vector
consisting of an x, y, and z value. The offset is added to the center point of the node leading
to the point p, that is taken into account by Equation 4.2, until the resulting neighboring
node at level n has been found.

For potential field computations (cf. Chapter 5) not only neighboring nodes at the same level
but all neighboring leaves independent of the level must be determined. The octree changes
dynamically leading to neighboring nodes at different level. Due to the changes of the tree, it
is not advantageous to store the neighboring nodes of each node persistently.

The neighbor finding algorithm first uses Equation 4.2 to compute the neighboring node at
the same or a lower level as the current node. Afterwards, it is checked whether the resulting
node is a leaf. The algorithm terminates if this condition is true. If it is false and if the
neighboring node to be determined is a neighbor node along a vertex, only one resulting
leaf exists. For neighboring nodes along an edge, always two neighboring child nodes of the
nodes determined so far are recursively checked. To find neighboring nodes along a face, four
neighboring child nodes are checked recursively. The nodes to be checked depend on the
search direction. The algorithm is described in detail in Appendix A.1.

The octree presented in this section subdivides the configuration space C introduced in
Section 3.1.2 into disjoint areas. The UAVs rely on this subdivision beside others for path
computation. The octree provides only the basic functionality needed to create an operational,
cooperative multi-UAV system. A feasible and efficient behavior has to take more into account
than the current position of the UAV related to the octree. It has to respect the abilities
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of the UAV and thus use the current configuration qU ∈ C for decision making in order to
compute the resulting UAV behavior. A UAV configuration is the combination of several
properties described in the following section.

4.3. UAV Configuration

The decisions each UAV makes are mainly based on the UAV’s unique configuration (cf.
Section 3.1.2). As mentioned before, the union of all possible configurations leads to the
configuration space C.

A configuration qU represents a single UAV. The current configurations of the UAVs are
stored by all UAVs and by the Control Station. qU is a 12-tuple (q1, . . . , q12), whereby each
element qi represents one property of the UAV. The single properties are briefly described in
Table 4.3.

Element Description
q1 A unique identifier used to distinguish the single UAVs
q2 The maximum speed of the UAV
q3 The current position in space (pU) of the UAV
q4 The current yaw (βU), pitch (γU) and roll (δU) angles of the UAV
q5 The favorite altitude of the UAV
q6 The maximum altitude the UAV can reach
q7 A unique identifier of the current formation of the UAV
q8 The role of the UAV used for task allocation
q9 The currently executed task of the UAV
q10 The current fuel level of the UAV
q11 The communication status
q12 The equipment of the UAV

Table 4.3.: Brief description of the single entries of a UAV configuration qU .

The first entry q1 of qU denotes a unique identifier. It is used to easily distinguish and track
the single UAVs by the Control Station and other UAVs. This identifier makes it easy to
monitor a single UAV over long time spans or to compare previous behaviors of a specific
UAV with the current one.

The maximum speed q2 is the maximum flight speed of a UAV. Taking heterogeneous UAVs
into account this speed can differ from UAV to UAV.

The position q3 of a UAV pU denotes the current position of the UAV in the three-dimensional
space. This position is the mentioned point representing the UAV (cf. Section 3.1.2) inside
the configuration space and is located at the center of the UAV. It changes during flights
and must be unique at each single point in time. Two UAVs can take the same position at
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the same moment only after a collision. The position could also be used to distinguish the
UAVs. A distinction based on the single positions would increase computational complexity
compared to a constant identifier due to the dynamically changing values.

The current positions of the UAVs can also be used to establish collision avoidance. In that
case, each UAV would need to compare its position to the positions of the other UAVs. If
the distance between two UAVs gets below a threshold, a collision warning is set up by the
UAVs. Then they use the advantage of the potential field approach (cf. Section 5.3.1) to
compute collision free paths as described in Section 5.4.

Beside their position the current yaw βU , pitch γU and roll δU angle of the UAV q4 are part of
the configuration, too. The yaw angle denotes the current flight direction of the UAV related
to FW . The combination of these three angles and the current position plays a major role in
the computations of the currently explored area, as described in the next section.

Each UAV is tempted to fly at a favorite altitude q5 for exploratory navigation. This altitude
is fixed for each UAV during a simulation. Camera equipments are used for the exploration
of the environment. The quality of the ground pictures taken by the cameras is related to
the current altitude of the UAV. Each UAV tries to fly at its favorite altitude in order to fit
given quality requirements. Hence, the favorite altitude specifies the altitude of a UAV above
the closest underlying obstacle or the terrain ground.

The maximum altitude q6 is the maximum height the UAV can reach related to FW . It is
one of the values used to partition the terrain into CF and CO. All parts of the terrain lying
above the maximum altitude are assigned to CO.

Different UAVs of the system presented in this thesis are able to create several formations
simultaneously (cf. Section 7.4). Each formation is assigned to a unique identifier q7, so that
the different formations can easily be distinguished. q7 is set to the unique identifier of the
formation as long as the UAV is part of it. If the UAV takes no part in any formation, q7 is
set to 0.

The role system q8 [6] is the implementation of the division of labor approach (cf. Section 2.1.4).
Each UAV is always assigned to a role. This role is also fixed during a simulation and mainly
based on the equipment of the UAV. Properties like maximum flight speed can also influence
the role selection. It is mainly used by the decentralized task allocation system described in
Chapter 7.

The UAVs have the capabilities to execute different tasks beside exploratory navigation.
Different UAVs can conduct various tasks simultaneously. This is reached by a task list
containing all known tasks and their current status. The UAV always processes one task q9
in order to support ground units. Each task has exactly one target. A target can be a single
point within the environment or an area the UAVs have, e. g., to explore or to monitor with
high priority. Each target is assigned to exactly one task.
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Another element of a UAV configuration is the fuel level q10. Obviously, it is important that a
UAV flies to a gas station and lands before it runs out of fuel. Each UAV creates a new task
with its first initial position as target position if the fuel level reaches a threshold in order
to land before it runs out of fuel. The threshold is based on the maximum flight speed of a
UAV and the terrain size. It assures that the UAV has enough fuel left to fly over a distance
equal to the diagonal d of the complete environment as described in detail in Section 7.4.1.

The communication status q11 of a UAV is important, too. If a UAV loses connection to the
other UAVs, it is unable to fly in a safe manner. It then computes a path to the next airfield.
This path keeps the UAV at an altitude unequal to the favorite and maximum altitudes of
the other UAVs in order to avoid other UAVs flying at these altitudes.

The UAVs are heterogeneous in terms of equipment. Entry q12 represents the current
equipment of the UAV. It can be equipped, e. g., with a gripper in order to perform side
clearing operations. The diverse equipments of the UAVs are described later in Section 7.3.2.
The UAVs are always equipped with at least one camera to explore the surroundings. The
properties of the camera and its influence on exploratory navigation are explained in the next
section.

4.3.1. UAV Camera Equipment

As mentioned before, the UAVs explore the terrain using a camera equipment. They always
have one bird’s-eye view camera to explore the underlying terrain. The UAVs also need to
determine whether the airspace in their flight direction is in CF or in CO, to be able to avoid
collisions when they fly in unknown areas. In that case they are equipped with front cameras
used to check a region in front of the UAVs. The size of the region they are able to explore
depends on the used camera. This restricts the UAV flight directions such that they do not
perform rear or sidewards flights. The areas a UAV can explore at a certain moment and the
positions the cameras are mounted, have been schematically illustrated in Figure 4.8. The
presented environment is an example terrain provided by the rendering engine WildMagic5
[180].

The position of the UAV pU and its yaw βU , pitch γU and roll angle δU are considered for
the computation of the newly explored areas in order to create a proper modeling of camera
based exploratory navigation. Taking the flare angle θd, the camera angle λ of the bird’s-eye
view camera, and additionally the flare angle θf of the front camera into account, leads to a
more realistic computation. The single angles used to compute the newly explored areas of
the terrain are illustrated in Figure 4.8.

An update algorithm, based on the mentioned values and described in Appendix A.3 using
pseudo code has been designed to determine newly explored leaves. The algorithm computes
four boundary points on the terrain ground enclosing a two-dimensional area the camera can
monitor based on the single angles and the UAV position. It is then assumed that all leaves
at the terrain ground are at maximum level and the center positions of the leaves enclosed
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Figure 4.8.: Schematic illustration of the areas a UAV explores through its camera equipment and
the angles used to determine these areas.

by the boundary points are computed. Afterwards, rays are sent from the camera position to
the computed center positions of the leaves.

All nodes intersected by a ray are subdivided until leaves at maximum level have been created
in order to avoid the assignment of large nodes to CE . All nodes at maximum level have the
same dimensions. This makes it possible to discretize the rays into positions, leading to all
newly explored nodes. Classical ray tracing approaches [192] would take each leaf of the
octree and check whether it intersects with the ray. This check is repeated for each ray. In
contrast to such an approach, a fast determination of the newly explored leaves is achieved.
A ray ends if it intersects a node assigned to CO or if it has left the environment. Exploration
using the front camera is conducted analogously with a fixed distance the camera can explore
instead of the terrain boundary. A more detailed description of the algorithm is presented in
Appendix A.3.

An exploration at a given position concerning the octree nodes is presented in Figure 4.9.
The illustration shows a simple example where βU , γU , and δU are zero. Additionally, no
occupied nodes are considered. The UAV hovers at the center of the red node. The boundary
points b1, . . . , b4 are computed from this position. Based on these boundary points rays are
sent to the terrain ground. The rays leading to positions enclosed by the boundary points
are presented as violet lines and the rays to the boundary points as blue lines. Based on the
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b1
b2b3

b4

Figure 4.9.: Schematic illustration of the exploration approach. The UAV is considered to hover
at the red node. Rays sent to the boundary points bi are blue. Rays sent to additional positions
at ground level are violet. These rays will be discretized and the resulting points lead to the newly
explored leaves.

state as shown in the figure a discretization of the rays takes place and each node intersected
by a ray will be subdivided to leaves at maximum level. The resulting leaves are then checked
for whether an intersection with a ray takes place. In that case the leaves are assigned to CE .

The introduced methods lead to a system wherein several UAVs are able to plan paths,
explore environments, and allocate different tasks. An information exchange between the
UAVs is necessary to avoid redundancies and to coordinate multiple UAVs in order to increase
efficiency. Several possible methods for information exchange exist. Nature performs this,
e. g., by dancing bees (cf. Section 2.1.2), through physical contact, or pheromones used,
e. g., by ants (cf. Section 2.1.1). It is also possible to exchange information through sounds,
gestures, and lights. A common method for information exchange in computer science are
networks. Wireless networks are used by the UAVs to solve this task. The details of inter-UAV
communication are presented in the following section, whereby the problems of real world
dynamic ad-hoc networks are neglected and some possible solutions for the design of such
communication systems are briefly pointed up.

4.4. Communication

Communication is always essential for the design of a cooperative system. Even animals in
swarms need to exchange information between individuals (cf. Section 2.1) if they want to
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solve tasks single animals are not capable of. The UAVs must also have abilities to perform
some sort of information exchange to reach a cooperative behavior. Compared to animal
swarms, it is not possible to exchange information by contact as this would shorten UAVs’ life
span drastically. One common way to exchange information in computer science is provided
by wireless networks. A dynamically moving UAV system wherein new UAVs occur and
known UAVs vanish, can be considered as a dynamic ad-hoc network. Guaranteeing efficient
information distribution in such a system is challenging.

Routing problems and efficient packet distribution along wireless sensor networks with
dynamically changing nodes are not addressed by the resulting system. A simplification
assuming that each UAV can exchange information with all other UAVs takes place. Some
restrictions are mentioned later on (cf., e. g., Section 6.4.1). Nevertheless, a few approaches
to overcome problems resulting from such a system are briefly presented.

Several researchers have designed efficient methods for packet distribution along dynamic
ad-hoc networks. Hence, several possible solutions can be used for a system able to work in
real world environments. Examples of possible methods have been presented by Warneke and
Dannewith [193]. They have designed a load balancing algorithm for peer to peer networks.
Frey and Stojmenovic [194] work on routing methodologies in multi-hop ad-hoc networks
usable for information routing from one UAV over other UAVs to a target UAV. Scheideler et
al. [195] work on methods to overcome interferences in wireless ad-hoc networks. Several
additional approaches usable for information exchange between dynamically changing UAVs
exist.

The UAVs need to exchange information for several reasons. The first one is that the UAVs
have to receive terrain information. Real UAVs could achieve this information, e. g., by
sensors like cameras and build a map based on the single camera pictures, as presented, e. g.,
in [7]. In simulation, another kind of information distribution must take place. The UAVs of
the system presented in this thesis communicate with the Control Station via TCP/IP to
receive initial information about the environment and also information about environmental
changes, e. g., about new tasks. Information regarding the current configuration of the UAVs
must also to be distributed in order to allow the Control Station to visualize an overview of
the current system state.

Another reason why the UAVs should establish some sort of information exchange is that
the entire system benefits from inter-UAV communication, like information they receive
about areas newly explored by other UAVs. Additionally, it is beneficial to know the current
configurations of the other UAVs to perform a more sufficient path computation. It is also
necessary that the UAVs exchange their current positions if they have to fly in formation and
if they want to guarantee collision avoidance. The UAVs would have no chance to allocate
tasks efficiently in a decentralized manner without inter-UAV communication. They can
achieve an information exchange, e. g., through the use of UDP/IP to broadcast information
considering their own configuration.
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4.5. Summary

This chapter first provides an overview of the entire system and then introduces its three
main parts: the programs Control Station and UAV, as well as the library Planner. The
relationships of the designed algorithms and their overall interaction implemented in the
library Planner are presented in detail after a brief description of the Control Station’s duties.

One of the chapter’s focuses lies on environment representation. Each UAV has an internal
world model for said purpose. Several different methods to represent environments exist. A
representation using an octree as dynamic data structure to create a high-performance system
and to dynamically react to environmental changes has been chosen. The representation
directly influences the computational complexity of the entire system. An algorithm enabling
the UAVs to dynamically change the octree at anytime in order to react to environmental
changes is presented. Another algorithm allows the UAVs to map a wide range of environments
into their internal world model. The determination of newly explored nodes is also described.
Each of the octree’s nodes has several properties presented in the further course of this
chapter. Finally, an algorithm for node determination is introduced.

Afterwards, the UAV configuration is described in detail. One part of the configuration is
the camera equipment that the UAVs use for exploratory navigation. UAV behavior is based
on these configurations, as described in Chapter 7.

Some sort of information exchange is necessary to reach a cooperative UAV behavior. This
topic is neglected for the resulting system and it is assumed that each UAV can communicate
with each other. Such an assumption for communication is not realistic in real world
environments. Several approaches, usable for packet routing and information distribution in
the resulting multi-UAV system have been designed by researchers during the last decades.
A few of them are briefly presented at the end of this chapter.

The UAVs can plan paths, fly in formation, and are able to perform decentralized task
allocation using the presented architecture, as described in the following chapters. The
next chapter explains the potential field approach for UAV flights, leading to the abilities
needed to conduct entire explorations of complex and dynamically changing three-dimensional
environments.
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Several approaches for autonomous robot movement considering single robots, as well as
robot groups, exist (cf. Section 2.2). It is mandatory for a UAV application to ensure collision
avoidance due to safety reasons. The resulting behavior of the UAVs must be verifiable if the
UAVs support ground units and process different tasks on their own. The use of potential field
theory can lead to a verifiable system. Using harmonic function theory to create an artificial
potential field ensures collision avoidance. Additionally, the big disadvantage of the potential
field theory—the occurrence of local equilibria—is avoided. The UAVs combine different
techniques with path planning capabilities in order to reach a high degree of cooperation.

This chapter presents a three-dimensional artificial potential field approach wherein an
approximation of a single harmonic function represents the entire potential field. The main
idea is to map the problem of potential field computation to the Dirichlet Problem (cf.
Definition B.8). The mapping is achieved by the use of the Dirichlet Boundary Condition (cf.
Definition B.7). The resulting Dirichlet Problem can then be solved by a harmonic function
[196].

The descent gradient −∇ of the resulting potential field is used to actually move a UAV
from its initial configuration qI to the required target configuration qG. One objective of
the resulting system is that it must be able to entirely explore complex three-dimensional
environments. This is achieved by the UAV ability to successively choose unexplored leaves
li /∈ CE ∪ CO of the octree, until all leaves of the free space are assigned to CE .

The chapter first gives a problem formulation for environmental exploration. Afterwards,
state-of-the-art approaches for exploratory navigation based on artificial potential fields are
presented. Harmonic function theory is then briefly redescribed. The entire potential field is
based on a single three-dimensional harmonic function (cf. Section 3.3.1). The computation
of the potential field is a three step procedure introduced after the state-of-the-art section.
First, the Dirichlet Boundary Condition is introduced. The second step computes a first
approximation. This approximation is iteratively relaxed in a third step to converge the
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potential field gradually to the resulting harmonic function while the computation of a
perfect harmonic function is unnecessary to find feasible paths. To reduce the computational
effort, termination conditions to stop the iteration are introduced in the further course of
this chapter. A fast computation of the potential field is reached by an efficient algorithm
described thereafter. The gradient method used to compute paths is then presented, followed
by the verification of the harmonic potential field approach. Finally, a summary of the
chapter is presented.

5.1. Problem Statement

The formulation of the problem to entirely explore environments is as follows. Each UAV U
is equipped with cameras for exploratory navigation. The cameras explore at each given time
t a subarea A of the environment. Given k ∈ N UAVs Uj. These UAVs have to successively
compute discrete paths ρd (cf. Definition 3.6) such that each leaf of the octree li /∈ CO
has been at least once part of A. Thereby, each UAV follows only one path at a time and
computes several consecutive paths.
Definition 5.1. Explored: A terrain is considered to be completely explored, iff

∀li ∈ C \ CO : li ∈ CE (5.1)

Equation 5.1 means that the union of all explored leaves represents the complete free
space. The path planning approach has to be sound (cf. Definition B.6) in order to reach
this requirement. An additional property of the designed system is aging of information.
Environmental areas explored a given time span ago can become unexplored again, i. e., leaves
li ∈ CE can be assigned to CUX .

To find solutions for the mentioned problem, various approaches exist. Section 2.3.2 presents
a selection of state-of-the-art methodologies for this. Additionally, several approaches for
path planning based on artificial potential field theory exist. A small selection of today’s
approaches is presented in the following section.

5.2. State-of-the-Art

Despite the age of the potential field approach—it has been introduced by Khatib [62] in
1986—several state-of-the-art systems exist. This section presents a selection of such systems
used for the movement of autonomous robots and drones. Current systems are mostly an
extension of the original approach presented by Khatib.

Although all of the presented approaches are based on the main idea provided by the artificial
potential field approach (cf. Section 3.3), no standard approach for the creation of such fields
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exists. Thus, four selected and very different ideas regarding the way of how to compute
potential fields to solve the problem of path computation are presented in this section.

One approach are potential fields based on fuzzy logic as presented by Jaradat et al. [197].
They consider highly dynamic two-dimensional environments with not only static and dynamic
obstacles, but also static and dynamic targets. The moving targets are modeled as attractive
forces and are based on the relative position and velocity of the robot with respect to the
target. The repulsive potential values are based on the relative positions of the robots to
the obstacles. The forces are represented by expert “if, then” rules due to the use of fuzzy
logic. 20 rules are used for the creation of attractive forces and a neuro-fuzzy network with
learning capabilities and 121 rules is used for the creation of repulsive forces. Several tests
were run based on MATLAB simulation scenarios and the moving targets have always been
reached by simultaneously solving the local equilibrium problem (cf. Section 3.3).

An approach for the use of UAVs has been presented by Rivera et al. [198]. Their approach
takes three-dimensional environments into account and is based on a two-step algorithm.
The first step is the creation of a potential field for each obstacle under the use of sigmoid
functions. A trajectory is computed in the second step using a technique of moving points
that connect the UAV to the target. Each of these points follows the potential field and
moves towards areas of free space. The points are computed as follows. First, the initial
and the target configuration are connected by a straight line. Thereafter, initial points are
placed along this line. Finally, the gradient based on the obstacles associated to these points
is computed and moved towards the points. This is similar to a rubber band whereby the
position of the band at single points is given by the obstacles and results in obstacle free
paths. The presented algorithm overcomes local equilibria and unstable oscillations. It also
works with arbitrary obstacle shapes.

It is also possible to combine swarm approaches with the potential field theory. A so called
pheromone potential field has been designed by Piljae and Kurabayashi [199]. They use
RFID tags to distribute pheromones over the environment through the interaction with
mobile robots. The characteristics diffusion and evaporation of pheromones are used to
compute partial differential equations. The digital pheromones are diffused by interaction
with the robots. Each robot reads the currently readable pheromone values and calculates
the following densities. The robot then moves around and finally creates a potential field by
repeating this action.

Potential fields based on harmonic functions are also used nowadays by other researchers.
Masoud [200], e. g., uses this approach to compute a path and to simultaneously create a
reference velocity for a UAV. A methodology for the creation of harmonic potential fields is
described in this chapter in detail. The velocity Masoud computed by the use of the harmonic
potential field is compared to the velocity given by a so called virtual velocity attractor
leading to another artificial force. The aim of his work is the creation of a flexible and easy
to use, generic navigation controller that is able to support diverse kinds of UAVs and is also
mathematically verifiable. In contrast to the approach presented in this thesis, a simultaneous
planning and controlling of single UAVs has been achieved by Masoud. Controlling UAVs
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addresses the problem of computing flight speeds and flight angles of the UAVs based on
the previously computed paths using some sort of a guidance law. This topic is neglected in
this thesis and only path planning, formation flights, and task handling is addressed by the
resulting system.

The UAVs of the presented system also create artificial potential fields in order to move from
their initial configurations to their target configurations. They use potential fields represented
by harmonic functions for that purpose, as described in the following section.

5.3. Harmonic Potential Field Computation

As mentioned before, an approximation of a harmonic function is used to represent a potential
field [34]. In contrast to traditional potential field approaches, this kind of potential field
computation has several advantages, like avoidance of local equilibria and smooth paths. A
harmonic potential value φh, where h denotes that the potential value is part of a harmonic
function, is assigned to each of the octree’s leaves (cf. Section 4.2) in order to create such
a potential field. The descent gradient −∇ based on the different φh values of the single
leaves is used to find a path from the initial configuration qI to the target configuration qG.
Previous tests showed that it is possible to entirely explore different environments [5]. Each
UAV calculates an approximation of a harmonic function describing the complete potential
field, considering all obstacles and including other UAVs to achieve a decentralized behavior.

Harmonic functions are functions that satisfy Laplace’s equation in n dimensions (cf. Sec-
tion 3.3.1). Considering the three-dimensional case in Cartesian coordinates the problem is
to find twice-differentiable real-value functions φ of real variables x, y, and z such that:

∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0. (5.2)

It is possible to compute harmonic functions in several different ways. The UAVs presented in
this thesis treat the potential field computation as an optimization problem. They first assign
relevant leaves to fixed values to create the Dirichlet Boundary Condition (cf. Definition B.7)
as described in the next section. The resulting Dirichlet Problem (cf. Definition B.8) is
solved afterwards.

5.3.1. Dirichlet Boundary Condition

The UAVs compute the resulting potential field in a three step procedure. First, the potential
field is modeled as a Dirichlet problem. This problem can be solved, using a harmonic
function [196]. Two different kinds of potential values are introduced for the creation of the
Dirichlet problem (cf. Definition B.8): bound and unbound values. The leaves li ∈ CO ∪ CG
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obtain bound potential values. The bound potential values φhG = 0 and φhO = 1 for these
leaves are fixed constants, whereby h denotes that these are potential values of a harmonic
function.

Leaves containing other UAVs are temporarily assigned to CO. Assigning only these leaves
to CO will not guarantee collision avoidance as it is possible that several UAVs fly at the
same time to the same leaf. Such cases can be intercepted due to the introduced inter-UAV
communication (cf. Section 4.4). The UAVs plan their paths and therefore all leaves a UAV
takes on its way to its target configuration are known to the UAV. To avoid the described
situation, the UAVs do not only exchange their current position but also the next route point
they head for. The leaves enclosing these route points are also assigned to CO in order to
guarantee collision avoidance.

As aforementioned, the leaves enclosing the target configurations obtain a potential value of
0. Harmonic functions satisfy the min-max principle (cf. Definition B.2). Thus, this value is
the lowest potential value of the entire potential field. To fly towards such a value the UAVs
have to use −∇.

Additionally, due to the min-max principle the bound values of the occupied leaves are the
leaves with the highest potential values. Using the descent gradient will never lead to leaves
with a higher potential value than the value of the current leaf. Thus, obstacle avoidance is
guaranteed if the resulting approximation is close enough to a harmonic function.

A Dirichlet Problem is created through the assignment of the bound potential values. It can
afterwards be solved by the creation of a harmonic function. An initial approximation of
such a function is calculated as described in the following section.

5.3.2. First Approximation

The first step for solving the Dirichlet Problem is the computation of a first approximation of
the resulting harmonic function. Such an approximation can, e. g., be the simple initialization
of the potential values to fixed values. Prestes et al. [201], e. g., initialized all cells of the
free space with the value 0. This is possible as the relaxation method introduced in the next
section iteratively relaxes the potential field towards a harmonic function independent of the
initial values. Nevertheless, a first approximation close to the resulting harmonic function
should reduce the computational effort needed for relaxation. Thus, the equation used to
compute a first approximation satisfies Laplace’s equation. It is developed in a step wise
manner in this section.

A strictly increasing function has been selected to compute the first approximation of a
harmonic potential field φhx,y,z, where x, y, z denotes the three-dimensional case. A simple
function strictly increasing is the Euclidean distance τx,y,z to the target configuration presented
in Equation 5.3. Therefore, each UAV selects one leaf, which is part of its target configuration
as next destination and computes the distances of the unbound leaves to the selected leaf.
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φhx,y,z = τx,y,z (5.3)

The second property, required for Laplace’s equation is that the function must be twice-
differentiable and that the sum of the second partial derivatives vanishes overall. This can
be achieved by taking 1 divided by τx,y,z from Equation 5.3, resulting in the well known
Newtonian potential [202], shown in Equation 5.4. It is harmonic in the three-dimensional
case.

φhx,y,z = 1
τx,y,z

(5.4)

Due to the Dirichlet Boundary Condition, a value restricted domain is given. Thus, the
resulting potential values should be normalized in a way that 0 < φhx,y,z < 1 in order to always
ensure obstacle avoidance and soundness. If this is not the case the min-max principle is
not fulfilled by the first approximation. The relaxation explained in the following section
must then be executed until it is close enough to a harmonic function that it satisfies the
min-max principle. This causes additional checks and therefore a higher computational effort.
Equation 5.4 ensures that the resulting potential values for the unbound leaves are greater
than zero and less than one, but the equation leads to decreasing potential values with
increasing distances to the target. Increasing potential values with an increasing distance
to the target are intended for the system presented in this thesis and are finally given by
Equation 5.5. Therefore, potential values are defined as:

φhx,y,z = 1− 1
τx,y,z

. (5.5)

The gradient ∇ obtained by the resulting potential field keeps the UAVs away from the
target leaf. Therefore, −∇ represents a vector field pulling the UAV towards the target
configuration. Equations 5.6 to 5.8 show the first partial derivatives of Equation 5.5 with
respect to x, y and z. Equations 5.9 to 5.11 show the corresponding second partial derivatives
with respect to x, y and z. As it can easily be seen, the sum of the second partial derivatives
vanishes everywhere and Laplace’s equation is fulfilled.

∂φhx,y,z
∂x

= x

(x2 + y2 + z2) 3
2

(5.6)

∂φhx,y,z
∂y

= y

(x2 + y2 + z2) 3
2

(5.7)
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∂φhx,y,z
∂z

= z

(x2 + y2 + z2) 3
2

(5.8)

∂2φhx,y,z
∂x

= −2x2 + y2 + z2

(x2 + y2 + z2) 5
2

(5.9)

∂2φhx,y,z
∂y

= x2 − 2y2 + z2

(x2 + y2 + z2) 5
2

(5.10)

∂2φhx,y,z
∂z

= x2 + y2 − 2z2

(x2 + y2 + z2) 5
2

(5.11)

Equation 5.5 is finally used to compute the first approximation of the harmonic potential
field. Based on this potential field the UAVs are able to plan paths and entirely explore
different three-dimensional environments.

Important information about the current environment, e. g., the height of single areas to
determine CO can be obtained in several ways. In real world scenarios third party applications
like maps are a good way to achieve at least approximative information. Additionally, the
UAVs must have on-board sensors to ensure safe flights. These sensors can be used to explore
unknown areas and to update the information available so far. During simulation, the Control
Station is used for environment creation, environment storage, and for providing the UAVs
with up-to-date information about environmental changes (cf. Section 4.1.1).

As the name suggests Equation 5.5 only computes a first coarse approximation of a harmonic
function and does not take occupied areas into account. The first approximation is iteratively
relaxed as described in the next section to reach an approximation that regards occupied
space and is feasible for path planning.

5.3.3. Relaxation

The potential values computed by the first approximation so far are only based on the target
position. The occupied areas have no influence to the unbound potentials. The common
way in potential field theory used to consider the target, as well as the obstacles is the
computation and superpositioning of two different potential fields based on attractive and
repulsive potential values (cf. Section 3.3).

Superpositioning of harmonic functions representing repulsive and attractive potential fields
leads to several problems. One is that paths that are computed and based on superpositioned
harmonic potential fields can lead infinitely close to obstacles (cf. Section 3.3.1). A UAV
that flies too close to an obstacle crashes. Such a behavior must be prevented under all
circumstances. Thus, another type of potential field computation is needed.
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The Dirichlet Boundary Condition ensures fixed potential values for the bound leaves. The
first approximation leads to n equations resulting in n unbound potential values. The
problem of relaxing the potential values for each leaf can also be performed by a system of
equations. This system of equations can be solved, such that the occupied areas are also
taken into account for the resulting potential field. Two popular algorithms leading to a
solution are beside others the Gauss-Seidel method [203], [204] and the method of successive
over-relaxation [204].

Prestes et al. [205], [201] have compared both methods empirically by computing several
harmonic potential fields for path planning. Their results show that the Gauss-Seidel method
leads to better results. Due to their results, the Gauss-Seidel method has been chosen to
relax the given potential field for the UAV system presented in this thesis.

It is impossible to compute perfect harmonic functions due to given processor arithmetics.
Only an approximation of a discrete sampling can be calculated. Numerical solutions for
discrete samplings can be obtained relatively easy by finite differentiation methods as follows:
For each point of a harmonic function φhx,y,z the value is equal to the arithmetic mean of its
surrounding points [206]. Let φhx,y,z be a function satisfying Laplace’s equation and let the
single leaves of the octree be a representation of a discrete sampling of the three-dimensional
potential field. The potential values of the left neighbor φhl and right neighbor φhr represent the
potential values of the neighbors in x - direction. The potential values of the front neighbor
φhf and back neighbor φhb represent the potential values of the neighbors in y - direction. The
potential values of the lower neighbor φhd and the upper neighbor φhu represent the potential
values of the neighbors in z - direction. By extending the work of Connolly et al. [34] these
six values are used to derive second order central finite differences approximations for the
second derivatives of φhx,y,z using Taylor series expansion. The method for the derivation has
been adopted from Smith [207], is described in Definition B.11, and results in the following
three second order partial derivatives:

∂2φhx,y,z
∂x

=
φhl − 2φhx,y,z + φhr

s2
x

+O(s4
x), (5.12)

∂2φhx,y,z
∂y

=
φhf − 2φhx,y,z + φhb

s2
y

+O(s4
y), (5.13)

∂2φhx,y,z
∂z

=
φhd − 2φhx,y,z + φhu

s2
z

+O(s4
z). (5.14)

The terms sx, sy and sz are step sizes to approximate the derivatives in directions x, y and z.
Related to [34], the forth order error terms are negligible and can be discarded. The single
derivatives presented in Equations 5.12 to 5.14 can be combined and Laplace’s equation can
then be written in discrete form as follows, iff x = y = z:

∇2φhx,y,z = φhr + φhl + φhf + φhb + φhu + φhd − 6φhx,y,z = 0. (5.15)
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Combining Equation 5.2 and Equation 5.15 and solving it for φhx,y,z results in

φhx,y,z = 1
6(φhr + φhl + φhf + φhb + φhu + φhd). (5.16)

The introduction of the Dirichlet Boundary Condition fixes those φhx,y,z, which fall on ∂Ω (cf.
Section 3.3.1). Thus, Equation 5.16 can be used to successively relax the first approximation
of the potential values if the step sizes are equal in all directions. The equation is therefore
executed several times for each leaf of the octree. The system is really large but techniques
like the Gauss-Seidel method or successive over-relaxation can be used to solve it.

Due to the use of a dynamic octree, the neighboring leaves have different dimensions. This
results in different distances to the neighboring nodes and thus in different step sizes. So, in
contrast to the approach presented by Connolly et al. [34] the UAVs have to take the step
sizes from the currently considered leaf to its neighboring leaves into account, too. Therefore,
the work presented by Ames [208] for a quadtree and considered for different step sizes in
two-dimensional environments by Zelek [209] has been adopted. The single step sizes are
considered by Zelek as follows:

φhx,y =
τfτb(τlφhr + τrφ

h
l ) + τlτr(τbφhf + τfφ

h
b )

τfτb(τl + τr) + τlτr(τf + τb)
, (5.17)

where τl and τr represent neighbor distances in x - direction and τf and τb represent neighbor
distances in y - direction.

Equation 5.17 has been extended to work in a three-dimensional environment and to take the
considered neighboring leaves into account. The neighboring directions taken into account
result in the von Neumann neighborhood [210] and are used to relax the potential values
in order to reduce the computational effort by taking only six of the possible twenty-six
neighboring directions (cf. Section 3.2) into account. The extension of Equation 5.17 leads
to the resulting relaxation function shown in Equation 5.18.

φhx,y,z =
τuτdτfτb(τlφhl + τrφ

h
r ) + τuτdτlτr(τfφhf + τbφ

h
b ) + τfτbτlτr(τuφhu + τdφ

h
d)

τuτdτfτb(τl + τr) + τuτdτlτr(τf + τb) + τfτbτlτr(τu + τd)
(5.18)

This equation is computed iteratively several times for each unbound leaf, while a single
iteration executes this equation once for each unbound leaf. Each iteration relaxes the
potential field closer to a harmonic function. The actual values used by Equation 5.18 differ
related to the used finite difference method. Using the octree and the Gauss-Seidel method
the values taken into account for φhl , φhf and φhd are the potential values newly computed in
the current iteration, while the values for φhr , φhb and φhu are the old potential values computed
in the previous iteration.
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The number of neighboring leaves of an octree leaf is not fixed. Several different neighbor
leaves with different dimensions can exist. An approximation is introduced to reduce the
complexity of the approach. Only the average distance τi from the current leaf li at position
px,y,z to the according neighbor leaves and the average potential value φhi of the neighbor
leaves in each direction are taken into account. The six directions of the von Neumann
neighborhood are given by l and r representing neighbors in x - direction, f and b representing
neighbors in y - direction and u and d representing neighbors in z - direction. The average
potential value of the leaves in direction D is given by φhi .

Considering a grid based data structure would lead to a more simple relaxation equation.
Due to the different dimensions of the leaves the use of a tree based structure leads to an
equation requiring much more computational effort. This is more than compensated by the
abilities of the octree (cf. Section 4.2). The time needed to compute a potential field in the
presented way is directly related to the number of unbound leaves. The number of iterations
ni needed to stabilize the potential field within a predefined precision ε < 10−s, s ∈ R>0 is
approximately ni ≈ 1

4s · nl [188], whereby nl denotes the number of leaves of the octree. The
octree combines leaves unnecessary for current path computations and thus reduces nl needed
for potential field computations significantly as shown in Chapter 8.

Equation 5.18 is used to successively enhance the potential values of the unbound leaves. It is
not necessary and due to architectural restrictions most times even not possible to compute
a perfect harmonic function as a CPU does not have the abilities to compute infinitely
long numbers. So, only an approximation valid for path computation is calculated. This
is achieved by restricting the maximum number of iterations of the relaxation equation by
three termination conditions that are introduced in the following section.

5.3.4. Performance Optimization

The highest computational effort of the potential field computation is undertaken in Equa-
tion 5.18. It is essential to decrease this equation’s number of executions in order to compute
paths online. Only discrete points of the harmonic function are approximated by the re-
laxation equation due to a processor with a given arithmetic accuracy and the fact that a
perfect and continuous function is not necessary for path planning. An approximation of a
harmonic function “good enough” to successfully compute feasible paths from qI to qG has to
be calculated.

Three conditions have been introduced to reduce the necessary computation time. The
execution of the relaxation stops, if one of the conditions is fulfilled and −∇ is used to
compute a path. The conditions are:

1. No reachable local equilibria are left in the potential field.

2. The mean potential value change is less than a certain threshold.
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3. The iteration depth is greater or equal to the number of unbound leaves multiplied by
a certain threshold.

To count the number of reachable local equilibria, every node is first checked whether its
potential value is less than the potential value of the leaf enclosing the UAV. If this is true,
each neighboring node of the leaf is checked whether it has a potential value less than the
current leaf. The leaf is not a local minimum in this case. The single neighbor leaves are
required by the relaxation equation and have been computed before. The comparison of
two values does not take long. So, counting the number of local equilibria can be performed
relatively fast.

Condition one is fulfilled if no leaf with a potential value less than the leaf containing the
UAV is a local equilibrium (cf. Definition B.9). The descent gradient will never lead the UAV
to a leaf obtaining a higher potential value than the initial leaf. From this it follows that
a leaf representing a local equilibrium will never be reached if it obtains a higher potential
value than the leaf currently enclosing the UAV.

It is assumed that the changes of the single potential values are too small to expect the
removal of the remaining local equilibria, if condition two is fulfilled. Finally, condition
three guarantees the termination of the algorithm. It turned out during evaluation that
these conditions are a good tradeoff between the time needed for computations and efficient
environmental exploration (cf. Chapter 8). Changing the conditions would lead to increasing
or decreasing durations necessary to compute a potential field. Using these conditions it
is no longer mathematically guaranteed that UAVs will never get stuck in local equilibria.
Thus, the A∗-algorithm [82] has been introduced as fallback option for path computations to
a randomly chosen unexplored leaf if a UAV gets stuck in a local equilibrium.

The computation times depend directly on the number of nodes taken into account for
the calculation of the potential field (cf. Section 5.3.3). The octree provides the ability to
decrease the number of nodes needed to compute potential fields leading to feasible paths.
Therefore, nodes further away than distance τx,y,z to the current position of the UAV are
used for calculations instead of their leaves. This reduces the number of nodes dependent
on the setting of τx,y,z. It simultaneously forces more potential field computations to reach
target configurations further away than τx,y,z. The number of necessary iterations increases
significantly with an increasing number of nodes used to compute the potential field. Thus,
more computations with less nodes should be performed faster than a single computation
with a high amount of nodes.

Another part of decreasing the computational times is provided by the implementation of the
approach. An algorithm for efficient potential field computation has been designed. It benefits
from the requirement that the octree has to be static during potential field computations. A
description of the algorithm is presented in the following section.
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5.3.5. Algorithm

The termination conditions introduced in the previous section lead to a tradeoff between the
time needed to compute a potential field and accuracy of the harmonic function. The number
of leaves considered by the algorithm has been reduced through the use of an octree instead
of a grid. This also lowers the number of necessary iterations. Additionally, an appropriate
implementation of the algorithm minimizes the computation time.

The algorithm used by the UAVs is presented in detail in Appendix A.5. It mainly benefits
from the fact that the octree has to be static during potential field computations. Keeping
the octree dynamic during potential field calculations can make it impossible to compute a
potential field “good enough” for path planning. Always new points of the harmonic function
represented by new leaves could occur and vanish making it impossible to approximate the
potential field to a given accuracy.

The algorithm performs pre-computations while establishing the Dirichlet Boundary Condition.
A pointer to each unbound leaf relevant for the current potential field computation is stored
in a list together with pointers to all neighboring nodes. Coincidentally, the average distances
to the neighboring nodes are added and the resulting values of τuτdτfτb, τuτdτlτr and τfτbτlτr
are computed for each leaf and stored, too. These values are part of Equation 5.18. They
are also constant for each node during the complete potential field computation. Storing
these values leads to a rigorous reduction of the computational effort needed to compute an
relaxation iteration.

A leaf must be selected to become part of the next target configuration if the current task
of the UAV is exploratory navigation. During pre-computations and establishment of the
Dirichlet Boundary Condition all leaves are checked whether they fulfill the requirement for
being the next target leaf (cf. Section 5.4.1). The leaf closest to the UAV and fulfilling the
requirements becomes the next target leaf. Tests considering different environments have
shown good results using this selection [5].

The resulting list created by the pre-computations is then looped once and for each leaf in the
list Equation 5.5 is computed. Afterwards, looping the list is iteratively conducted until at
least one of the termination conditions introduced in Section 5.3.4 is fulfilled. The resulting
potential values of the single leaves finally represent the potential field.

Nevertheless, it is possible to reduce the computation time even further. Multi-core processors
can compute the potential field in a parallelized manner. Equation 5.18 is executed frequently
and consists of many floating point operations. This predestines the equation to be computed
by a graphics card optimized for fast floating point computations.

The resulting computation times for C in a concrete environment are presented in Chapter 8.
Feasible path planning based on the computed potential field is possible as described in the
next section.
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5.4. Path Planning

The UAVs use the descent gradient of the resulting potential field in order to compute feasible
paths. Each leaf of the octree that contains another UAV and each leaf other UAVs want to
reach next is treated as CO to ensure collision avoidance. Inter-UAV communication is used
to exchange information about those leaves.

The combination of the harmonic potential field and the octree allows the computation of a
discrete path ρd. This path is computed using the descent gradient of the potential field and
consists of a finite set of positions given by the center positions of the selected leaves, whereby
only leaves li, lj : {li, lj} ∈ N lead to two consecutive positions in ρd. Areas, unreachable for
the UAVs are treated as CO (cf. Section 4.2).

Figure 5.1 shows a two-dimensional potential field, which is an approximation of a harmonic
function. A grid-based two-dimensional representation is used due to visualization reasons.
Comparing the figure with a real harmonic function as, e. g., illustrated previously in Figure 3.3
shows that the presented function is only a rough approximation. It is smooth in the area
of unbound leaves, but the unbound values differ much from the bound values. This is an
evidence that the function is only a rough approximation.

The potential field has been achieved by computing the unbound values using the function
log(τx,y,z)/ log(d) as first approximation and conducting five iterations of the relaxation
equation for each unbound leaf. The value d denotes the diagonal of the terrain. The descent
gradient of the potential field leads a UAV from qI to qG without taking a configuration
q ∈ qO. Thus, the potential field is considered to be “good enough” for path planning. The
resulting path ρd is illustrated by the black line in Figure 5.1.
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Figure 5.1.: A two-dimensional potential field. It is an approximation of a harmonic function
“good enough” for path planning.
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A fallback option is introduced in case of approximation and discretization errors leading a
UAV into a local equilibrium. Section 5.5 shows that the approach is sound (cf. Definition B.6)
if the approximation and discretization is not taken into account. So, selecting adequate
approximations and a fine discretization leads to a sound path planning solution.

Collision avoidance is based on the occupied space, as described in Section 5.3.1. The leaves
of the octree enclosing the UAVs, as well as the leaves enclosing the next route point of the
UAVs are assigned to CO. The current routes of the UAVs are deleted if the distance between
two ore more UAVs gets below a given threshold and new routes with only one path point
are computed until the distance between the UAVs gets above the threshold again. The
threshold can be the sum of the dimensions of the UAVs multiplied by two. The presented
collision avoidance is used for UAVs not flying in formation. If the UAVs fly in formation,
an adaptation of this approach is used as presented in Section 6.4.2. The behavior for path
planning is extended in order to achieve entire exploration of environments as described in
the next section.

5.4.1. Exploratory Navigation

The environment is considered to be completely explored if condition CE = CF is fulfilled.
The UAVs select new leaves li as part of their next target configuration as long as leaves
li ∈ CF \ CE exist in order to reach a complete exploration.

Each UAV sends the position of the leaf it will explore next to the other UAVs. So each UAV
knows which areas are explored next by fellow UAVs. The UAVs use this knowledge and do
not choose leaves, selected by other UAVs as target leaves, to be explored next. This decreases
redundant exploration especially if only a small part of the environment is unexplored.

As mentioned in Section 4.3, the camera pictures taken by the UAVs should fit given quality
requirements. To achieve this, the UAVs do not explore the environment once by flying
at their maximum altitude, which would be the fastest way. They first explore at their
favorite altitude q4 ∈ qU (cf. Section 4.3), thereafter they explore at their favorite altitude
times two and so on, until they reach their maximum altitude. Each leaf encompasses
a three-dimensional area from (xmin, ymin, zmin) to (xmax, ymax, zmax). A leaf encloses the
favorite altitude of a UAV iff zmin < q4 ≤ zmax. The UAVs first treat all leaves assigned
to CUX and to CUK and additionally enclosing q4 as target space for exploratory navigation.
One of the bound target leaves is selected to be part of qG for the computation of the first
approximation for the remaining unbound leaves.

Exploration of the areas above the favorite altitude is necessary as the UAVs cannot assume
that they have all environmental information and, e. g., bridges on which there are casualties
during a rescue mission might exist above the favorite altitude. If all nodes are explored this
way, nodes below the favorite altitudes of the UAVs are left. Such nodes can be inside of
buildings, in tunnels, etc. and are explored last. This order is only a selection for the system
presented in this thesis. It can be changed if, e. g., buildings should be explored first.
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To actually explore the environment, a UAV selects the unknown or unexplored leaf li at the
given altitude that is closest to its position and currently not selected by another UAV as next
to be explored. Thereafter, it computes a potential field and uses the descent gradient of the
field to create a path to the selected leaf. After path computation to the selected unexplored
leaf li it checks whether the neighboring leaf of li in its flight direction is also unexplored or
unknown. If this is true, it adds the leaf to its path and then checks the following leaf until
an explored or occupied leaf is reached. This decreases the number of computations needed
to entirely explore an environment.

As described in Section 5.3.4, not only the leaves of the octree but the nodes further away
from the UAV than distance τx,y,z are used for potential field computations in order to reduce
the number of nodes used for the computation. Such nodes contain different space types.
They are treated as explored if they contain explored space. The nodes are considered as
unexplored space if they contain only unknown and unexplored areas. After potential field
computation, the leaves of these nodes are assigned to a potential value of one if they are
occupied, to a potential value of zero if they are unexplored or unknown and to the value
of the parent node in all other cases. The descent gradient used for path planning takes
only leaves into account. Assigning the occupied leaves to a potential value of 1 still ensures
obstacle avoidance. Explored leaves are assigned to the same potential value leading to flat
regions. A path ends in such a region and a recalculation of the potential field takes place.
The UAV is then inside the flat region such that the single leaves of this region are taken
into account for the next potential field computation and the flat region vanishes.

Flying at the favorite altitude is only possible if the UAVs have terrain information. In case
that they must explore an unknown environment, they compute the favorite altitude for the
leaves to be explored next based on their current knowledge. Therefore, they assume that
the height of the ground below the unknown leaves is equal to the height of the ground below
the UAV. This might not be true but it is most times a good assumption as the UAVs select
the unknown leaf closest to their position.

The UAVs can be equipped with front cameras, as mentioned in Section 4.3.1. Using these
cameras, they are able to detect obstacles intersected by their trajectory. A UAV detecting
such an obstacle maps it into its world model and deletes the current path if the path
intersects with the obstacle. This then forces a new path computation taking the newly
detected obstacle into account. Additionally, the UAVs have to check which parts of the
environment are reachable. Thereby, each time their path is intersected by newly explored
obstacles, they check for the reachable environment as described in Section 4.2.2 using the
algorithm presented in Appendix A.2.

A simplified example for exploratory navigation is presented in the following. It is assumed that
the underlying environment is flat. In this case, the UAVs fly always at a consistent altitude,
as long as leaves are unexplored at the corresponding height. This allows a representation
in two dimensions to facilitate the example. Considering only two dimensions results in a
quadtree, as each node is decomposed into four child nodes if the height is neglected.
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A single UAV is considered to conduct exploratory navigation in an a priori known environment.
Its position is marked in Figures 5.2 and 5.3 by a red cross. Additionally, an occupied areas
has been introduced. It is represented as black part of the environment. The resulting
decomposed environment before exploration takes place is illustrated in Figure 5.2 a).

The UAV first starts with obstacle growing. Thereafter, it checks for areas unreachable due
to given occupied nodes. This results in a large occupied area shown in the upper right of
Figure 5.2 b). As soon as all occupied areas are internally represented by the UAVs’ data
structure exploratory navigation starts. It is assumed that the UAV is able to explore the
node it is enclosed by, as well as all neighboring leaves for which the distance between the
UAV and the neighboring node is less than half of a maximum level leaf’s corresponding
dimensions. Based on this exploration capabilities, the UAV is able to explore four leaves
while hovering at the start position. Explored areas are illustrated gray while unexplored
areas are white in the figures. The explored leaves are not combined as the UAV is enclosed
by one of them and leaves enclosing a UAV are never combined due to several reasons.

a) b)

Figure 5.2.: The start state is presented in a) while the first status before path planning for
exploratory navigation starts is shown in b).

Based on the UAV configuration a path has to be computed using the descent gradient −∇
of the harmonic potential field. Two unexplored leaves are at a equal distance to the UAV.
These are the unexplored leaves on the right hand side and below the current UAV position in
Figure 5.2 b). The UAV choses one of the tow alternatives as next to be explored dependent
on the implementation and uses it for the computation of the first approximation. The
descent gradients would be equal for both possible leaves if a perfect harmonic function could
be computed. This is most times not the case as only a rough approximation is calculated by
the UAVs and therefore, they favor the selected leaf. It is assumed that in this case −∇ leads
the UAV to the leaf below its position. A path consisting of two route points is created to
reach the leaf. Dependent on the direction the UAV flies it checks whether the neighboring
leaf of the leaf at the end of the path is unexplored, too. This is true in this example and the
leaf is also added to the path resulting in a new path length of three illustrated as red line in
Figure 5.3 a).
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a) b)

Figure 5.3.: The environment after the first exploration target has been reached is illustrated in a)
and the current state after the second exploration has been reached is depicted in b).

The occupied area in the left part of the environment has no influence to the first route
computation. It is surrounded by unexplored space which is assigned to the bound value of 0
and thus never changes. Therefore, only the unexplored areas, which are neighbors of the
four explored leaves influence the unbound values.

The UAV flies from its start position the the center of the leaf which is at the end of the
path. During flights it explores the area resulting in a new decomposition of the environment.
It finally reaches the end point of the path marked as red cross in Figure 5.3 a). Due to cell
decomposition the further leaf selected by the UAV became a node and has been subdivided
into four child nodes.

Based on the configuration of the UAV in Figure 5.3 a) it is most likely that the UAV will
move towards one of the two leaves below it. This is as these two leaves are mainly influenced
by the unexplored space while the other two leaves are much stronger influenced by the leaves
explored before during the relaxation. Thus, it is assumed that the UAV flies in the next
step to the leaf which is in the lower right of its position. A path of length two is computed
to finally reach the leaf by flying in right direction. Again, it checks if right from the node
is another unexplored leaf, which is the case and adds this leaf also to its path. After path
following the UAV is at the position marked by a red cross in Figure 5.3 b). The newly
explored leaves, as well as the resulting decomposition of the environment is also shown in
the figure.

This exploration behavior is repeated as long as leaves at the favorite altitude exist. Thereafter,
the UAV changes its flight altitude as aforementioned and starts exploring the environment
at the new height using the methodology described in this section. Selecting leaves for the
first approximations favor these ones to be explored next as the resulting harmonic function
used for path planning is still only an approximation. It does not necessary guarantee that
the selected leaf is the next one to be explored. The assignment of unbound and bound leaves
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must be changed in order to fly to a specific leaf as it has to be performed if a given area of
the environment must be reached. In such cases only the leaves to which the UAV has to fly
is considered as target and assigned to the corresponding bound potential value of 0.

To adopt the system to real UAVs used in different applications, a verification of the presented
approach is necessary. The following section shows that it is possible to validate a real world
system using the presented approach.

5.5. Verification

This section shows that the mathematical potential field approach based on harmonic
functions is sound (cf. Definition B.6) by showing that the system can lead to asymptotically
stable control signals (cf. Section 3.6). An asymptotic stable system always relaxes into its
equilibrium. So, if the system is asymptotically stable, the UAVs will always move to their
desired target configurations, which are represented as globally stable equilibria.

An additional verification for real world UAVs is required as, e. g., the mass of the UAV
must be taken into account. Showing that a harmonic potential field can be used to create
Lyapunov stable systems has been done several times before, e. g., by Masoud and Masoud
[211] from whom the following verification has been adopted. They also prove several
properties of harmonic functions like the min-max principle (cf. Definition B.2) and the
uniqueness principle (cf. Definition B.3). The stability proof for harmonic potential fields is
briefly presented in this section for the sake of completeness.

5.5.1. Lyapunov Function Candidate

In order to show that a system is asymptotically stable, it must first be shown that the
resulting potential field is a Lyapunov function candidate. Let Ω be the closed domain on
which φ is given (cf. Section 3.3.1). The workspace of the UAVs is then ΩF = Ω− φhO.

Lemma 5.1. The harmonic potential field V (φhx,y,z) generated by the Dirichlet Boundary
Condition is a Lyapunov function candidate (cf. Section 3.6.2).

Proof. As by definition V (φhG) = 0 it is only necessary to show that

∀φhx,y,z ∈ ΩF \ φhG : V (φhx,y,z) > 0 (5.19)

in order to show that V (φhx,y,z) is a Lyapunov function candidate. This follows directly from
the min-max principle ([158], cf. Definition B.2). Thus, V (φhx,y,z) is a Lyapunov function
candidate.
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5.5.2. Convergence

The second step is to show that each trajectory generated by the potential field converges
globally. Assume that for the dynamic system φ̇hx,y,z = f(φhx,y,z) there exists a scalar function
V (φhx,y,z) satisfying the LaSalle principle from Section 3.6.3.

Theorem 5.1. The trajectory generated by the descent gradient will globally and asymptoti-
cally converge to φhG, i. e.,

∀φhx,y,z ∈ {φ|φ(0) ∈ ΩF} : lim
t→∞

φhx,y,z(t) = φhG (5.20)

Proof. From Lemma 5.1 it is obvious that V (φhx,y,z) is a Lyapunov function candidate. Let ∇
be the gradient operator.A harmonic potential field is constructed by forcing the divergence
∇◦ of the gradient ∇V (φhx,y,z) of the potential field V (φhx,y,z), which is according to [211]
analogous to the electric current in a resistive grid, to zero inside ΩF

∇◦∇V (φhx,y,z) = ∇2V (φhx,y,z) ≡ 0. (5.21)

That condition guarantees the continuity of the current. This in turn guarantees the continuity
of motion inside ΩF . One result of this is the prevention of deadlocks while motion is steered
towards the global equilibrium of V (φhx,y,z). Additionally, Masoud and Masoud [211] state
that the resulting dynamic system can only generate solution trajectories that are bound to
ΩF . The zeros of the gradient ∇V (φhx,y,z) are finally the zeros that determine convergence.

Let Ω′F be the directionally constraint subset of ΩF . Further on let ∂Ω′ be the boundary of
Ω′F and let ∂Ω′b be the subset on ∂Ω′ that forms locally unstable equilibria. Masoud and
Masoud [211] state that the value of ∇V (φhx,y,z) is zero for the following three cases:

1. The gradient of the system has stable equilibrium points at φhG by design.

2. The gradient field of every scalar potential contains at least one zero-measure set π of
unstable equilibria [212].

3. It is possible that an unstable equilibrium zone may form a subset ∂Ω′b of the interface
between the nonlinear anisotropic region and the rest of the workspace (∂Ω′).

Let S be the set of all points where V̇ (φhx,y,z) = 0. From this it follows that

S = φhG ∪ π ∪ ∂Ω′b. (5.22)

The largest invariant set M contained in S consists of the only stable equilibrium subset of
S(M = φhG) [211]. Therefore, the motion of the gradient system will converge to φhG, which
follows from the LaSalle theorem ([178], cf. Section 3.6.3).
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This shows that it is possible to create control signals for real UAVs based on trajectories
obtained by harmonic functions that are asymptotically stable and thus always resulting
in the expected behavior as, e. g., shown in [152] for a system with second order dynamics.
Nevertheless, it does not proof the entire system presented in this thesis. To actually proof
the system a guidance law considering the mass of the UAVs, as well as the computation of the
velocity is needed as, e. g., presented in [213]. Additionally, a validation of the implementation
including the influence of the termination conditions has to be performed to entirely proof a
system.

Additionally, a proof regarding optimality of the trajectories generated by the gradient is
given in [211] by constructing the Dirichlet integral. This integral is globally minimized if
the potential field satisfies Laplace’s equation, which is called the Dirichlet principle. The
paths of the UAVs are derived from the gradient of the potential field which minimizes the
corresponding energy function. Thus, the achieved paths are optimal.

5.6. Summary

This chapter describes the computation of a three-dimensional potential field represented by
an approximation of a single harmonic function. Computing the potential field is performed
by a three step procedure: First the Dirichlet Boundary Condition is created. Afterwards,
a first approximation of the harmonic function is computed. Finally, this is iteratively
approximated towards the resulting function, until given termination conditions are fulfilled.

The resulting potential fields guarantee obstacle avoidance. The planning approach is also
sound (cf. Definition B.6) if the approximation is close enough to a harmonic function. Several
approximations are introduced in order to decrease the computational effort. To reduce the
needed effort even more and to solve arithmetical restrictions, a skillful implementation has
been developed. Previous tests showed that the UAVs are able to compute paths and to react
on environmental changes in a fast and efficient way [3], [5], [4], when using this approach.

The UAVs reach an implicit coordination if they combine the path planning approach with
inter-UAV communication leading to less redundant explorations of the single subareas of
the environments. Nevertheless, the UAVs spread out in different directions, like foraging
ants if several UAVs start exploratory navigation using this approach.

Additional abilities have to be introduced to reach a higher degree of coordination during
exploratory navigation. This would lead to a more efficient behavior in terms of the duration
an exploration of the complete environment lasts. Formation flights can lead to such an
increase in efficiency. The following chapter introduces a method for formation flights. These
formations can be established and dissolved anytime. It is also possible to change the shape
of a formation anytime.
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The UAVs can fly to specific positions in order to solve several tasks using the previously
introduced methods. Entire exploration of different environments is also possible through
consecutive selection of unexplored leaves to be explored next until all leaves are marked
as explored. Increasing the number of UAVs decreases the duration needed for exploratory
navigation (cf. Chapter 8) due to a reduction of redundant exploration by inter-UAV
communication. A higher degree of cooperation beside the one obtained through information
exchange should lead to an increase in efficiency not only for the exploration task. Additionally,
UAVs working cooperatively can fulfill tasks single UAVs are not capable to. Therefore, a
cooperative behavior based on formation flights is presented in this chapter.

It would be unfavorable if all UAVs form a single formation to explore an environment whilst
preserving the formation. Simultaneous establishment of several different formations and
their modification should be possible all times.

It has to be considered that flying in formation leads to a more complex obstacle avoidance.
The single formations should adapt themselves autonomously to overcome obstacles. Addition-
ally, new tasks, more important than the one currently processed, can appear anytime. From
this it follows that the formation has to be dynamic in terms of the number of participating
UAVs. Another requirement is that the resulting approach has to work in combination with
the harmonic potential field introduced in Chapter 5. Last but not least, the approach has
to be mathematically verifiable to show that the expected behavior will always be reached.

An obvious solution is the extension of the harmonic potential field in order to fulfill the
aforementioned requirements. An additional potential field leading to formations is created
and the resulting two potential fields are superpositioned. The additional potential field is
based on bifurcation theory (cf. Section 3.4.2) and allows an online change of formation
shapes during formation flights. Such changes can be brought about by changing single
parameters of the equation resulting in different potential fields. The superposition of the
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two potential fields is conducted in a way that preserves the advantages of both approaches,
e. g., obstacle avoidance, soundness (cf. Definition B.6), etc.

The chapter first describes the problem of formation establishment and thereafter presents
state-of-the-art approaches using bifurcation theory for formation flights. The following
section explains the method used to compute the bifurcating potential field, as well as the
superpositioned potential field. The single potential fields and possible formation shapes are
illustrated thereafter to provide a better impression of the approach. The problem of finding
consensus to determine a position used for formation establishment is addressed in the further
course of the chapter. Formation handling including movement and rotation is another topic
presented in this chapter. Finally, a verification of the bifurcating potential field and the
superpositioned potential field takes places. The chapter concludes with a summary.

6.1. Problem Statement

Given n ∈ N UAVs Ui, 1 ≤ i ≤ n, at different positions pUi
. Each UAV has n− 1 distances

τUi,j
= |pUi

− pUj
|, i 6= j to the other UAVs. The definition of a formation is now based on the

definition of a rigid body given by Arnold [214].
Definition 6.1. Formation: The n > 3 UAVs are called a UAV formation P, iff

∀1 ≤ i ≤ n∃j 6= k ∈ {1, . . . , n} \ {i} : τUi,j
= τUj,k

(6.1)

For n = 3 a formation is given iff

∃Ui 6= Uj 6= Uk : τUi,j
= τUi,k

(6.2)

Definition 6.1 takes the distances between the single UAVs into account. For n = 3 it ensures
that always one UAV exists, which has equal distances to the other two UAVs. To provide
a better impression of the possible formations, two examples are illustrated for n > 3n
Figure 6.1.

Various formations can be created using this definition like a V-formation illustrated by the
UAVs U1 to U5 presented in Figure 6.1. The definition considers three UAVs Uj,Ui,Uk. In
case of the V-formation U1 can be assumed as Uj with equal distances to U2 and U3. Taking
U2 as Uj leads to equal distances to U1 and U4 while U3 has equal distances to U1 and U5.
Thus, the V-formation is valid using Definition 6.1.

The same holds true for the quadratic formation illustrated at the right hand side of Figure 6.1.
U6, e. g., has equal distances to U7 and U8. This is analogously for the other UAVs and
therefore, this formation is also valid using Definition 6.1.
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U1

U2 U3

U4 U5

U6 U7

U8 U9

Figure 6.1.: Two formations shapes using Definition 6.1.

The formation approach described in the further course of this chapter leads always to
arrangements of the UAVs that is a formation by Definition 6.1, as long as the number of
UAVs fits the requirement for n ≥ 3 as mentioned after the introduction of the potential
field. The problem is now to preserve P during UAV flights as long as the formation is not
dissolved and no environmental influences like obstacles cause a change of single positions
pUi

.

Several very different approaches for the creation of formations exist. A selection of general
state-of-the-art approaches is presented in Section 2.3.3. The use of artificial potential fields
for the creation of formations is also performed nowadays. The objective of this chapter is to
create potential fields based on a single equation that provides adequate equilibria for the
creation of formations. Similar to potential field computation for path planning no standard
method for the computation of potential fields utilizable to create and move formations exists.
The next section presents a selection of current research in this field.

6.2. State-of-the-Art

First approaches of artificial potential fields for coordinated path planning of multiple robots
have been introduced decades ago. Warren [215], e. g., presented such an approach in 1990.
Thenceforth, a wide range of extensions and combinations of potential fields with other
methodologies have been designed to solve the problem of coordinated robot movement.

105



Chapter 6. Behavioral Formation Flights 6.2. State-of-the-Art

Bentes and Saotome [216] use potential field theory in combination with the A∗-algorithm to
control dynamic swarm formations in two-dimensional and three-dimensional environments.
The A∗-algorithm is used for the computation of global and obstacle free paths. The potential
field locally controls the swarm formation while following the planned trajectory. Bivariate
functions (cf. Definition B.10) are used to compute a potential field for formations in the
two-dimensional case and multivariate functions are used in the three-dimensional case. They
are able to create ring like formations and move them by simultaneously avoiding obstacles.

Blazovics et al. [217] have designed a completely distributed algorithm to surround moving
targets in formation. Therefore, they use two different kinds of trajectories. A superpositioned
potential field based on three different potential fields is created for this purpose. They use
the two common kinds of potential fields (cf. Section 3.3). The first attracts the entities of
their swarm towards the target while the second simultaneously repels individuals from the
target. Surrounding trajectories at a specific distance are reached through using these two
potential fields. Additionally, a radial potential field is computed to move the swarm entities
on a circular trajectory. They achieve a superpositioned field, which lets the swarm entities
surround the target by defining an appropriate weight function for the superpositioning of
the three single potential fields.

The work of Garcia et al. [218] tries to integrate UAVs into teams of both, manned and
unmanned aerial vehicles. They use weighted potential fields to create the shape of an
unmanned formation with values based on the state of the unmanned and manned assets
including the desired formation, obstacles, task assignments, and perceived intentions. A
sigmoid function weights the single potential fields. Navigation and stability is reached
through the use of fuzzy logic controllers and a fuzzy reasoning engine predicts the intend of
surrounding aircrafts. Formations are achieved by the selection of individual target positions
of each UAV with respect to the formation based on the position of a manned aircraft and
the required formation shape.

An approach for formation flights with potential fields based on bifurcation theory is presented
by Bennet et al. [219]. They create potential fields by superpositioning attractive and repulsive
potential fields for a sixth degree of freedom, fixed-wing UAV model. This potential field is
transformed into a guidance law and a control law. The guidance law leads to a forward speed,
as well as heading and pitch angles. The control law is responsible for the computation of
longitudinal and lateral motion control. The approach leads to three-dimensional formation
shapes. Line and double line formations with changing separation distances between the
UAVs during flights have been achieved through their steering potential field.

The approach most similar to the one used by the UAV system presented in this thesis is the
one designed by Bennet et al. [219]. In contrast to the UAV approach presented in this theses
they focus on the computation of guidance laws for fixed-wing UAVs. These guidance laws
result in reactive behavior and do not involve path planning. They also neglect the problem
of local equilibria by assuming that through the dynamics of the system an equilibrium
created at time t vanishes at time t+ k.
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The following section describes the potential field approach used by the UAVs of the resulting
system. This potential field is combined with the harmonic potential field introduced in
Section 5 to plan paths the UAVs can follow in formation.

6.3. Bifurcating Potential Field

The presented approach for the creation of formations results from a superpositioning of the
former described harmonic potential field and a bifurcating potential field based on a pitchfork
bifurcation [164]. Bifurcation theory allows to change the number of global equilibria leading
to a change of the formation shape. It is also possible to influence the resulting potential field
such that different types of increasing potential values φ are achieved. This allows the UAVs
to position themselves in specific distances to each other in order to follow Definition 6.1.

The main idea is to create a potential field that forces the UAVs to arrange themselves in a
specific formation. A line formation shape can, e. g., be created by an increase of the potential
values, which is in one dimension lesser than in other dimensions.

Using a bifurcating potential field has several advantages. A change of the formation shape
is, e. g., achieved by a single value change of the underlying equation. Another advantage is
that the behavioral formation flights introduced in Section 3.4.1 are achievable. Additionally,
the formations scale well with the number of participating UAVs.

The local stability properties of equilibria or other invariant sets change at a bifurcation (cf.
Section 3.4.2). Based on the normal form of the Pitchfork bifurcation [164] an extension
has been performed to compute a highly scalable potential field for the establishment of
formations in three-dimensional environments. The normal form of the pitchfork bifurcation
is

dx

dt
= µx+ αx3. (6.3)

The extension of Equation 6.3 is described in detail in the following section leading to an
equation for the computation of the bifurcating potential field.

6.3.1. Formation Potential Field

The bifurcating potential field works similar to the harmonic potential field by pulling the
UAVs towards global equilibrium positions. In contrast to the harmonic approach it is
relatively easy to compute several global equilibria forming, e. g., a line and thus leading to a
line formation. The normal form from Equation 6.3 needs to be extended for the computation
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of a potential field suitable to establish different formations in three dimensions. In the
sequel, the resulting Equation 6.6 will be developed in a stepwise manner.

To actually take three dimensions into account y - and z - dimensions have been added
to Equation 6.3. This was conducted as shown in Equation 6.4. The resulting equation
allows the creation of global equilibria in a three-dimensional space. The exponent has been
increased to ensure that x = y = z = 0 and µ ≥ 0 results in the zero of the first partial
derivative, which denotes the equilibrium position. Due to the properties of bifurcation theory
the number of equilibria can be altered by just changing the sign of µ (cf. Section 3.4.2).

φbx,y,z = µ
(
τ̄ 2
x + τ̄ 2

y + τ̄ 2
z

)
+ α

(
τ̄ 4
x + τ̄ 4

y + τ̄ 4
z

)
(6.4)

The symbol b denotes the potential values to be values of the bifurcating potential field.
Additionally, the normalized distances 0 ≤ τ̄i < 1 are used instead of the coordinates x, y
and z in order to be able to create equilibria at every position inside the environment.
Normalizing the distances is a first step to achieve normalized potential values combinable
with the harmonic potential values φhx,y,z. Such potential values should also be in a value
range with the same size than the range of the harmonic potential values such that not one
of the potential field dominates the other while superpositioning the two potential fields.
Normalization is achieved through a division of the resulting distance in each direction by
the length of the environment in the corresponding direction.

The value α is responsible for the amplitude of the resulting potential field. The UAVs work
only with a subcritical bifurcation, i. e., α ∈ R>0 (cf. Section 3.4.2). Changing the amplitude
increases or decreases the distance between the equilibria if more than one equilibrium exist.
Changing the sign of µ results in a change of the current formation shape. Equation 6.4 leads
to a single equilibrium if µ ≥ 0. All UAVs will fly to this equilibrium and if they repel each
other a cluster formation is created. Setting µ < 0 results in eight stable and one unstable
equilibrium positions guiding the UAVs into eight cluster formations.

The resulting formation is based on the position and the number of created equilibria. To
create line or V-formations, it is necessary that the single dimensions can be weighted.
Parameters a, b, c ∈ {0, 1} have been introduced to be able to specify the influence of the
dimensions as shown in Equation 6.5.

φbx,y,z = µ
(
aτ̄ 2

x + bτ̄ 2
y + cτ̄ 2

z

)
+ α

(
aτ̄ 4

x + bτ̄ 4
y + cτ̄ 4

z

)
(6.5)

A superpositioning of these values with the values from the harmonic potential field would
lead to unbound values greater than one, which again leads to obstacle collisions. Therefore,
the potential values are shifted by v ∈ R>0. This results in a potential value of −v at
the equilibrium position. Values greater than zero are still computed. They vanish by the
superposition described in Section 6.3.2.
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Finally, Equation 6.6 creates a steering potential field providing abilities for the creation of
various formation shapes. The bifurcating potential fields are created through computing the
single φbx,y,z using this equation for each leaf marked as CF . The repelling potentials needed
for collisions avoidance are given by the harmonic potential field (cf. Section 5.3.3) and will
be considered during superposition.

φbx,y,z =
µ(aτ̄ 2

x + bτ̄ 2
y + cτ̄ 2

z ) + α(aτ̄ 4
x + bτ̄ 4

y + cτ̄ 4
z )

u
− v (6.6)

The value u = (|µ|+ α) · (a+ b+ c) ensures that 0 ≤ φbx,y,z < 1. A potential field containing
two global stable equilibria fronts can be computed if, e. g., µ < 0, α > 0, a = 1, b = c = 0.
These equilibria are created with some distance to the target configuration. In order to create,
e. g., a double line formation with a specific distance between the single lines, it is necessary
to know the positions of the equilibria. They are at the zeros of the first partial derivatives
(cf. Section 3.4.2) shown in Equations 6.7 to 6.9.

∂φbx,y,z
∂τ̄x

= 2µaτ̄x + 4αaτ̄ 3
x

u
(6.7)

∂φbx,y,z
∂τ̄y

=
2µbτ̄y + 4αbτ̄ 3

y

u
(6.8)

∂φbx,y,z
∂τ̄z

= 2µcτ̄z + 4αcτ̄ 3
z

u
(6.9)

The zeros of the partial derivatives depend only on the values of α and µ. Only one stable
equilibrium resulting from the zero of the first partial derivatives and shown in Equation 6.10
exists if µ ≥ 0. Given µ < 0, Equation 6.11 presents the zeros of the first partial derivative
which lead to stable equilibria. Equation 6.12 presents the zero leading to an unstable
equilibrium, which is equal to the stable equilibrium if µ ≥ 0. The determination of the
stable and unstable equilibria is described in Section 6.5.2. The zeros depend only on µ and
α. So, the distances between, e. g., two lines can be changed by just changing α and µ.

τi = 0, µ ≥ 0 (6.10)

τi = ±
√
−µ
2α , µ < 0 (6.11)

τi = 0, µ < 0 (6.12)

Considering Definition 6.1, a formation is always created if the number of UAVs is equal to
or higher than three and one stable equilibrium exists as long as no environmental influences
disturb the UAVs. This results from the symmetry of the potential field. All UAVs of a
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formation fly to the equilibrium position where they repel each other. Every repulsive force
acts alike at equal distance to the UAV creating it. Thus, the UAVs arrange themselves
at a given distance to each other. In case of multiple equilibria, it has to be ensured that
always a number of UAVs unequal to two flies to each single equilibrium. Then, a formation
is created at each single equilibrium resulting in a number of formations equal to the number
of stable equilibria if Definition 6.1 is taken into account. This behavior is sufficient as it is
insignificant for the approach whether one or multiple formations move consistent. Formations
like the quadratic one illustrated in Figure 6.1 can also be established by the simple creation
of four equilibria positions. These positions are all at the same distance to each other as
Equation 6.11 shows. Thus, using Definition 6.1 results in a sufficient number of possible
formations for this thesis.

The next step to reach a potential field combining the advantages of both approaches is to
superposition the bifurcating potential field computed by the use of Equation 6.6 and the
harmonic potential field introduced in Section 5.3 using Equations 5.5 and 5.18 thus that the
advantages of both potential fields are still valid.

6.3.2. Superpositioned Potential Field

A superpositioning of the harmonic and the bifurcating potential field is performed to keep
the advantages of both potential field approaches. As shown before, a harmonic potential
field is globally asymptotically stable (cf. Section 5.5). Hence, this potential field should
be used to lead the UAVs towards the desired formation area. At this area the bifurcating
potential field should take over the control of the UAVs in order to create specific formation
shapes.

The bifurcating potential field neglects the obstacle areas of the environment. These areas are
bound fixed to a potential value of one due to the use of the Dirichlet Boundary Condition
and are considered by the harmonic potential field. Therefore, the influence of the harmonic
potential field should never vanish. This leads to the resulting superposition of the unbound
leaves:

φx,y,z =

φbx,y,z + w · φhx,y,z, if φbx,y,z ≤ 0,
φhx,y,z, else.

(6.13)

The value 0 ≤ w ≤ 1 is responsible for the influence of the harmonic potential field close
to the formation position. The final potential field φx,y,z used for flights in formation is
achieved by the case differentiation shown in 6.13. The bifurcating potential field affects
the superpositioned potential field only close by the equilibrium positions depending on the
selected value v from Equation 6.6. This guarantees that the UAVs always fly towards the
equilibrium positions due to the influence of the harmonic potential field. Superpositioning is
only performed for the unbound potential values. The bound values stay fixed to the ones
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assigned for the computation of the harmonic potential field. The resulting behavior of the
UAVs influenced by the bifurcating potential field is described in Section 6.5.

The superpositioned potential field φx,y,z is used by the UAVs to create formations and to
fly in formation. The harmonic potential field still contains the repulsive potential values
achieved from the Dirichlet Boundary Condition and ensures that the UAVs will not only fly
to the global equilibria but are also repelled by each other and by each obstacle. Reducing the
harmonic potentials results in higher influence of the bifurcating potential field responsible
for the establishment of formations. The achieved behavior leads to the desired formation
based on the selected values for the a, b, c parameters from Equation 6.6. The influence of
the harmonic potential field at the formation position allows the formations to dynamically
change their shapes in respect to obstacles arranged close by the trajectories.

Only potential values of the bifurcating potential field less or equal to zero are used for
superposition. Thus, the resulting potential values are less or equal to the potential values of
the harmonic potential field and the use of the negative gradient still ensures collision avoidance
as no unbound potential value can become greater or equal to one. Example potential fields
resulting from a harmonic function, a bifurcation, and the described superpositioning are
illustrated in the following section in order to give a better impression of the approach.

6.3.3. Resulting Potential Fields

The UAVs compute potential fields to simultaneously explore complex three-dimensional
terrains entirely in different formations using Equation 6.13. Formations can be established,
changed, and dissolved by the UAVs anytime. This section illustrates the three different
potential fields in order to visualize the approach.

To provide an easy and understandable visualization, the presented potential fields consider
two-dimensional terrains using a grid as underlying data structure and an obstacle free
environment. The size of the environment is 1000 × 1000 while the overall objective is to
establish a line formation at the center of the environment considered as position (0, 0). This
leads to an environmental scaling from -500 up to 500 in x - and y - direction. Measurement
units are neglected as the approach works independent of such units.

The first potential field computed by the UAVs is always based on harmonic function theory (cf.
Figure 4.4). Figure 6.2 illustrates an example potential field whereby the single potential values
are given by φhx,y = log(τx,y)

log(d) with d denoting the diagonal of the environment and τ denoting
the Euclidean distance of the single areas to the target position. The target configuration qG
contains the position (0, 0) as target position leading to a global equilibrium at this position.
The figure shows that all streamlines lead to qG independent of the initial configuration qI .
From this it follows that a UAV is always able to reach the target configuration using the
descend gradient −∇.
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Figure 6.2.: Potential field of an example harmonic function. This kind of potential fields is used
for path planning of single UAVs.

A bifurcating potential field computed using a two-dimensional version of Equation 6.6 is
presented in Figure 6.3. The bifurcation parameter µ and the amplitude α of Equation 6.6
are assigned to the value one. It has been shifted by setting v = 1, which results in a complete
superpositioning. The objective is to compute a potential field resulting in a line formation
in y - direction at x = 0. This can be achieved by setting b = 0, in order to only take the
distances in x - direction into account.

Figure 6.3 shows that the bifurcation function creates a potential field, wherein all streamlines
lead to positions at (0, ·). The use of the negative gradient −∇ always leads a UAV from its
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Figure 6.3.: Potential field of an example bifurcation computed by a two-dimensional version of
Equation 6.6. This kind of potential field can be used for formation establishment.

112



6.3. Bifurcating Potential Field Chapter 6. Behavioral Formation Flights

−500−400−300−200−100 0 100 200 300 400 500 −400−200
0 200 400−1

−0.8

−0.6

−0.4

x - dimension
y - dim

ensio
n

po
te
nt
ia
lv

al
ue

φ

Figure 6.4.: Potential field achieved by superpositioning the harmonic and the bifurcating potential
fields using Equation 6.13. This kind of potential field is used for formation movement.

initial position to a position at (0, ·). The bifurcating potential field does not take repulsive
potentials into account. Thus, it is impossible to guarantee collision avoidance using only
this potential field.

The resulting superpositioned potential field is presented in Figure 6.4. The influence of
the harmonic potential field has been set to w = 0.3 (cf. Equation 6.13) It shows that all
streamlines lead from every qI to qG , which is located at the center of the terrain. The single
φx,y have a higher increase in x - direction than in y - direction. Considering consistent
circular potential values, produced by additional UAVs ensures that all UAVs fly towards the
center point of the environment and form a line in y - direction.

The UAVs create a line formation using the resulting potential field shown in Figure 6.4. As
mentioned before, several different formation shapes are possible by changing the parameters
of Equation 6.6. The next section shows a selection of possible formation shapes computed
by the described approach.

6.3.4. Overview of Formation Shapes

Changing the shape of a formation is possible at anytime. Additionally, the formations are
highly dynamic in terms of number of participating UAVs. Further shapes like a V-formation
or a cross like shape are possible beside the mentioned line formation.

The presented formation shapes are based on the potential field calculated using Equation
6.6. Table 6.1 shows the parameter used in Equation 6.6 to achieve the shapes illustrated in
Figures 6.5 and 6.6.
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Figure µ α a b c
6.5 a) 1 1 1 0 1
6.5 b) -1 100 1 0 1
6.6 a) 1 1 0 0 1
6.6 b) 1 1 1 1 1

Table 6.1.: Parameter values used to obtain the formation shapes shown in Figure 6.5 and Figure 6.6.

Figure 6.5 a) illustrates a single line formation shape. Such a shape can easily be achieved by
assigning one of the weighting parameters a, b, or c to zero. The parameter b has been set to
zero as shown in the first row of Table 6.1 for the illustrated example causing the UAVs to
arrange themselves side by side in the y - dimension.

Changing the bifurcation parameter µ to -1 can create a double line formation as shown in
Figure 6.5 b). The amplitude of the bifurcating potential has been increased to 100 in order
to keep the two lines close to each other. Such a formation shape can also be used to create
a V-formation by rotating the two lines independently such that they cross at a precomputed
position. The method used to rotate given formation shapes around three axes is described
in detail in Section 6.4.3.

a) b)

Figure 6.5.: A line formation is shown in a) and a double line formation in b). The values
presented in the first row of Table 6.1 lead to the line formation shape and the values presented in
the second row result in a double line formation shape.

Various other kinds of formation shapes are possible beside line based formation shapes.
Figure 6.6 a) shows a two-dimensional cluster formation shape. It has been achieved by
assigning the values presented in the third row of Table 6.1. Only the parameter c has been
assigned to one affecting the resulting potential field in such a way that the UAVs arrange
themselves around the target position. Changing the bifurcation parameter µ results in two
different two-dimensional cluster formation shapes with a distance to each other related to
the given amplitude α.

Not only two-dimensional formation shapes as presented so far are possible. Figure 6.6 b)
shows a three-dimensional cluster formation shape. It has been achieved by assigning the
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a) b)

Figure 6.6.: A 2D cluster formation is shown in a) and a 3D cluster formation is shown in b).
The values presented in the third row of Table 6.1 lead to the 2D cluster formation shape and the
values presented in the fourth row result in a 3D cluster formation shape.

values as presented in the forth row of Table 6.1. The parameters a, b, and c are set to one.
Based on this assignment the UAVs arrange themselves around the target position in all three
dimensions. Changing the bifurcation parameter µ would also lead to two three-dimensional
cluster formation shapes with a distance to each other based on the amplitude α.

This section presents a selection of formation shapes achievable by the used bifurcation
approach. Several additional formation shapes can be created. Establishing and dissolving
formations can be performed anytime. Changing a formation from one shape to another can
also be conducted anytime, by just adapting the parameter values of Equation 6.6. Additional
formations, such as a ring and a double ring formation can also be created using bifurcation
theory shown, e. g., by Bennet et al. [219].

The previous sections present the approach used to establish various UAV formation shapes.
Creating formations does not yet lead to any benefit. It must also be possible to handle
the resulting formations. Handling means that requirements concerning the position where
the formation has to be created and also about the participating UAVs have to be fulfilled.
Additionally, it must be possible to move and rotate existing formations. The following
section presents the methods used to handle these issues.

6.4. Formation Handling

The UAVs cannot just fly in formation following one single path preserving the given formation
shape, due to several reasons. This would neglect the position changes of the UAVs during
flights and resulting in collisions. Furthermore, the UAVs have to avoid obstacles in a skillful
manner. Therefore, they need to change their positions inside the formation in order to still
guarantee obstacle avoidance. Collisions would still occur if the other UAVs do not take such
changes into account.
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It is also necessary for the UAVs to be able to reach consensus on the position where a
formation has to be created. A decision concerning the participants of a formation must also
be made. All requirements considered so far are accomplished in a completely decentralized
manner as described in the following section.

6.4.1. Requirements

Several objectives have to be considered in order to explore different environments using
various formations simultaneously. A position for the creation of a formation has to be found
at the beginning. Two methods are used to determine the position at which a formation
should be established. The first one is given by the task allocation methodology presented in
Chapter 7. The position is initially given by a task if the UAVs have to create a formation in
order to solve a specific task given by a third party application.

The second kind of position determination is conducted if a UAV creates a task by itself or if
a third party application forces the creation of a formation. In that case, the arithmetic mean
of the positions of the UAVs participating in the formation is computed as a first possible
consensus position. The center point of the leaf of the octree that is closest to this position
and additionally part of the free space, is selected as consensus point if the computed position
lies inside an obstacle.

The shape of a formation is always predetermined by the task to be fulfilled, by the UAV
wanting to create a formation, or by a third party application forcing the establishment of a
formation.

It is not beneficial to use only one single formation in which all UAVs participate. It must
be possible to create various formations simultaneously using different UAVs. From this
it follows that UAVs have to be selected to be participants of single formations. This is
accomplished as described in Chapter 7.

The UAVs must not necessarily be able to communicate with all other UAVs in order to
create formations. The currently possible inter-UAV communication can be mapped to
a graph G = (V,E) where V = {1, 2, . . . , N} is the set of vertices representing N UAVs.
E ⊂ V × V is the set of edges of G denoted by (i, j) representing that UAV Ui can exchange
information with UAV Uj. Ni and Cheng [220] have shown that consensus between all UAVs
represented by the graph can be obtained if a minimum spanning tree in the graph exists.
This is important for an adaptation of the approach to real world applications where perfect
communication is not guaranteed.

A formation can be created after the fulfillment of the mentioned requirements. UAVs forming
a specific formation have to successively fly to several target configurations in order to explore
some areas while simultaneously preserving the formation. Flying in formation differs from
single UAV flights and is described in the following section.
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6.4.2. Formation Flights

The next task after the fulfillment of the previously mentioned requirements is to actually
establish a formation. The UAVs participating in a formation start flying to the position
at which the formation has to be created. The paths of the single UAVs to this point can
differ in length. Additionally, the flight speed of the UAVs can differ. Thus, in a completely
decentralized system, it is not trivial to determine whether a formation has been established
or if some UAVs are still on their way to the required position.

The fact that the harmonic potential field is local equilibria free is used to decide if a formation
has been established. Each UAV checks whether it is able to fly to another position. It is
assumed that the formation has been created if each UAV participating at the formation is
unable to compute a path leading closer to the formation position.

After the creation of a formation, e. g., to explore areas of the terrain, one area to be explored
is selected and one single formation path to this area is computed. The computation is
conducted by the UAV with the lowest unique identifier (cf. Section 4.3) that participates
in the formation. The path is created using only the harmonic potential field and is
thereafter distributed to the other UAVs. It is not possible to just follow this path due to
the aforementioned reasons. So, each UAV computes a second path to the next route point
of the formation path using the superpositioned potential field. This paths lead only to a
neighboring leaf. Thus, it may happen that more than one path has to be computed to reach
the next formation route point. This is performed repeatedly until the target configuration
has been reached. Using this kind of path-following ensures that each UAV of the formation
avoids obstacles by changing the shape of the formation when necessary. It also ensures that
no UAV collides with another.

Unpredictable behavior can occur when the sign of µ changes from positive to negative.
The positions of the UAVs are then close to an unstable equilibrium with several stable
equilibria at equal distances to the unstable equilibrium. If, e. g., the UAVs should change
their formation shape from a single line to a double line, it may occur that all UAVs move
to the same equilibrium. In this case the formation shape would not change and the UAVs
would just form a line with some distance to the old one. Such behavior is avoided through
the harmonic potential field. The UAVs distribute themselves to the single equilibria based
on their unique identifier (cf. Section 4.3) and the identifier of the other UAVs participating
in the formation. Therefore, they move the equilibrium position of the harmonic potential
field to the selected equilibrium position of the bifurcating potential field.

A UAV formation should be able to fly in arbitrary directions while simultaneously preserving
the formation. Rotating the flight direction of, e. g., a line formation wherein UAVs move
side by side, by 90 degrees would result in a formation wherein the UAVs are arranged one
after the other. An adaptation of the potential field must be performed online to avoid such
formation changes. The next section presents the approach used for rotating formations.
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6.4.3. Formation Rotation

In addition to formation flights, it should be possible to rotate the formations in three
dimensions in order to respect changing flight directions.

A yaw angle βP , a pitch angle γP , and a roll angle δP have been introduced for each formation
P . Rotating the formations around three axes is based on these angles. They are similar to
the UAV angles (cf. Section 4.3) and describe the flight direction of a UAV formation in the
x, y, z plane.

The angles are based on the internal Cartesian coordinate system FW . Figure 6.7 illustrates
FW including the corresponding angles for the flight directions. An obstacle free environment
has been chosen for an example terrain.

x

yz

(0,0,0)

βP = 0◦
βP = 90◦ βP = 270◦

βP = 180◦

Figure 6.7.: Coordinate System FW and the corresponding direction angles βP .

The UAVs always fly from one configuration to the next. Additionally, all UAVs of a formation
want to reach the same target configuration during formation flights. The relationship between
the resulting flight direction of the formation and the corresponding angle needs to be defined.
An illustration of the yaw angle is shown in Figure 6.7. It is based on the distances τx and τy
between the x - and y - coordinates of the current configuration and the configuration given
by the next route point. A case by case analysis shown in Equation 6.14 finally computes βP .
The definitions and thus the equations are analogously for the pitch and roll angle.
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βP =



0, if τx = 0, τy > 0,
180, if τx = 0, τy < 0,
arctan

(
τy

τx

)
+ 90, if τx < 0,

arctan
(
τy

τx

)
+ 270, if τx > 0

(6.14)

Formation rotations are finally based on the resulting angles βP , γP , and δP . The definition
of the angles follows the international conventions in air vehicles published by the German
Institute for Standardization (in German, Deutsches Institut für Normung e.V.) [221] as
DIN 9300. The conventions have been adopted by the International Organization for
Standardization (ISO) [222] as ISO 1151-2:1985. Taking this definition into account results
in a standard 3× 3 rotation matrix presented in Equation 6.15.

R=

 cos(βP ) cos(γP ) sin(βP ) cos(γP ) − sin(γP )

cos(βP ) sin(γP ) sin(δP )−sin(βP ) cos(δP ) sin(βP ) sin(γP ) sin(δP )+cos(βP ) cos(δP ) cos(γP ) sin(δP )

cos(βP ) sin(γP ) cos(δP )+sin(βP ) sin(δP ) sin(βP ) sin(γP ) cos(δP )−cos(βP ) sin(δP ) cos(γP ) cos(δP )

 (6.15)

Multiplying the distances τx,y,z with R as shown in Equation 6.16 leads to rotated center
points for the single leaves rotated around the target position (0, 0, 0). This causes a free
rotation of the potential field in order to also rotate the resulting formation around all three
axes by replacing τx,y,z through τR in Equation 6.6.

τR = (τx, τy, τz)T ·R (6.16)

The possible rotation angles of a formation are restricted due to the use of the underlying
octree. Each UAV always moves from the center position of a leaf to the center position of a
neighboring leaf (cf. Section 5.4). So the resulting angle between the center points of two
neighboring leaves at maximum resolution is equal to the step size of the rotation.

The methods presented so far allow the UAVs to move to given target configurations and to
explore environments in formation, as well as on their own. A further step towards the design
of an autonomous UAV system is to state the global asymptotic stability of the potential
field as done in the next section.

6.5. Verification

A proof for single UAV movement based on harmonic potential fields is presented in Section 5.5
in order to show that the flight behavior of the UAVs is verifiable. This section verifies the
flight behavior of UAVs in formation based on the bifurcating potential field.
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The objective of the bifurcating potential field, is to move the UAV to the desired equilibrium
position that corresponds to the minimum potential value. Therefore, if Lyapunov’s method
can be used to show that the system is globally asymptotically stable, it will relax into the
minimum energy state given by the minimum potential value. Potential fields created by
extended Pitchfork bifurcations have been proved to be Lyapunov stable before, e. g., by
Bennet and McInnes [167], [213]. Based on the main idea of the proofs from Bennet and
McInnes, the bifurcating potential field created for the UAV system is proved as described in
the further course of this section.

Occupied areas of the environment are not taken into account by the bifurcating potential
field, but by the superpositioned potential field. Thus, the bifurcating potential field is
considered to be obstacle free in order to avoid undefined areas. Bennet and McInnes [167],
[213] argue that the repulsive potential values can be neglected if a proper scaling of attractive
and repulsive potential fields is applied.

6.5.1. Lyapunov Function Candidate

First, it must be shown that the resulting potential field is a Lyapunov function candidate in
order to show that the system is globally asymptotically stable.

The first requirement for a function to be a Lyapunov function candidate is that the equilibrium
occurs at x∗ = 0. The equilibrium created by Equation 6.6 is at x∗ = −v if µ ≥ 0. To achieve
the first requirement the function is shifted back (cf. Section 3.6.1) and

V (φbx,y,z) = µ(aτ 2
x + bτ 2

y + cτ 2
z ) + α(aτ 4

x + bτ 4
y + cτ 4

z ) (6.17)

is considered for the proof of stability. Again, let Ω be the closed domain on which φ is given.
The workspace of the UAVs is then ΩF = Ω− φhO (cf. Section 5.5.1).

Lemma 6.1. The bifurcating potential field V (φbx,y,z) is a Lyapunov function candidate.

Proof. Taking Equation 6.17 into account x∗ = 0 is given by definition. So, it is only necessary
to show that

∀φbx,y,z ∈ ΩF \ φhG : V (φbx,y,z) > 0 (6.18)

in order to show that V (φbx,y,z) is a Lyapunov function candidate.

Considering the case µ ≥ 0. From the first partial derivatives shown in Equations 6.7 to 6.9
it can be seen that the function is strictly increasing with increasing distance to the stable
equilibrium. Thus, all values except x∗ are greater than zero.
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Three zeros for each of the three partial derivatives exist if µ < 0. These zeros are the
extrema of the partial derivatives and are at the positions −

√
−µ
2α , 0, and

√
−µ
2α . These three

positions lead to four intervals that have to be investigated separately in order to show that
Equation 6.18 holds.

Let τi be the distances in the single directions and let i be the corresponding a, b, or c value.
Equation 6.19 shows the sign of the first partial derivatives for the interval ]−∞,−

√
−µ
2α [

where the function becomes zero by definition. The sign is negative denoting that the function
is strictly decreasing until it reaches zero at −

√
−µ
2α . Thus, all values of this area are greater

than zero.

∀τi ∈

−∞,−
√
−µ
2α

 :
∂φbx,y,z
∂τi

= 2µiτi + 4αiτ 3
i

u
< 0 (6.19)

The second interval to be investigated is ]−
√
−µ
2α , 0[. The sign of the first partial derivatives is

positive denoting that the function is strictly increasing in this area as shown in Equation 6.20.
Since the function is zero at −

√
−µ
2α , it follows that all values of this area are also greater

than zero.

∀τi ∈

−
√
−µ
2α , 0

 :
∂φbx,y,z
∂τi

= 2µiτi + 4αiτ 3
i

u
> 0 (6.20)

In the interval ]0,
√
−µ
2α [ the function is decreasing again until zero is reached at

√
−µ
2α as shown

in Equation 6.21. So, the resulting potential values of the function are still greater than zero.

∀τi ∈

0,
√
−µ
2α

 :
∂φbx,y,z
∂τi

= 2µiτi + 4αiτ 3
i

u
< 0 (6.21)

The last interval to be investigated is ]
√
−µ
2α ,∞[. The function is zero at

√
−µ
2α and the sign of

the first partial derivatives is positive as shown in Equation 6.22 indicating that the function
is strictly increasing. Thus, the function is positive within this area, too. From this it follows
that the function is greater than zero except for the two stable equilibrium positions where it
is zero by definition.

∀τi ∈

√−µ
2α ,∞

 :
∂φbx,y,z
∂τi

= 2µiτi + 4αiτ 3
i

u
> 0 (6.22)

So, the requirement from Equation 6.18 is fulfilled.
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It must be shown that each stable equilibrium is globally asymptotically stable in order to
show that the entire potential field is globally asymptotically stable. This can be achieved in
two steps. First, local stability is proven for the single equilibrium positions. Thereafter, a
global proof for the entire potential field is conducted. Therefore, the next section shows that
the single equilibrium positions are locally asymptotically stable by the use of Lyapunov’s
indirect method (cf. Section 3.6.4).

6.5.2. Local Convergence

An eigenvalue analysis of the linearized equations of motion has been performed in order to
show local convergence of the system. Motion is obtained from the paths planned by the
UAVs using the descent gradient −∇ of the artificial potential function. Thus, −∇ describes
a virtual force acting on each UAV to lead them towards the minimum energy state.

Lemma 6.2. The equilibrium positions of the bifurcating potential field generated using
Equation 6.6 are locally uniformly asymptotically stable.

Proof. The calculation of the eigenvalue spectrum of the system is used to determine the
local behavior. For this purpose, the equations of motion for the model are recast as follows:

ẋẏ
ż

 =


−∂V (φb

x0,y0,z0 )
∂τx

−∂V (φb
x0,y0,z0 )
∂τy

−∂V (φb
x0,y0,z0 )
∂τz

 =

f(x, y, z)
g(x, y, z)
h(x, y, z)

 , (6.23)

whereby x0, y0, and z0 denote fixed points for which ẋ = ẏ = ż = 0 such that

f(x0, y0, z0) = 0, (6.24)
g(x0, y0, z0) = 0, (6.25)
h(x0, y0, z0) = 0. (6.26)

The negative gradient −∇V (φbx,y,z) then vanishes at the equilibrium.

Let ρR be the next route point. A single equilibrium is created at position pR if µ ≥ 0 and
α > 0. Changing the number of equilibria can be done by changing µ such that µ < 0.
Up to eight different stable equilibria positions can then be generated simultaneously if
a = b = c = 1 and µ < 0. These equilibria are obtained at the following positions:

122



6.5. Verification Chapter 6. Behavioral Formation Flights

pR + (
√
−µ
2α ,

√
−µ
2α ,

√
−µ
2α ), pR − (

√
−µ
2α ,

√
−µ
2α ,

√
−µ
2α ),

pR + (
√
−µ
2α ,−

√
−µ
2α ,

√
−µ
2α ), pR − (

√
−µ
2α ,−

√
−µ
2α ,

√
−µ
2α ),

pR + (
√
−µ
2α ,

√
−µ
2α ,−

√
−µ
2α ), pR − (

√
−µ
2α ,

√
−µ
2α ,−

√
−µ
2α ),

pR + (
√
−µ
2α ,−

√
−µ
2α ,−

√
−µ
2α ), pR − (

√
−µ
2α ,−

√
−µ
2α ,−

√
−µ
2α ).

(6.27)

Taking the distances τ = (τx, τy, τz) from pR into account and expanding them about the
fixed points to linear order using Taylor Series expansion the resulting eigenvalues can be
computed via the Jacobian matrix (cf. Section 3.6.4). Using the first order term of the Taylor
Series expansion of a function around the point of interest results in the linearization of the
function [177].

τ̇xτ̇y
τ̇z

 = J

τxτy
τz

 . (6.28)

Substituting the functions from Equations 6.24 to 6.26 into the Jacobian matrix results in

J =


∂f(x,y,z)
∂τx

∂f(x,y,z)
∂τy

∂f(x,y,z)
∂τz

∂g(x,y,z)
∂τx

∂g(x,y,z)
∂τy

∂g(x,y,z)
∂τz

∂h(x,y,z)
∂τx

∂h(x,y,z)
∂τy

∂h(x,y,z)
∂τz


∣∣∣∣∣∣∣∣∣
x0,y0,z0

. (6.29)

The Jacobian matrix consists of the single derivatives of the functions f(x, y, z), g(x, y, z)
and h(x, y, h). These derivatives are given by:

∂2φ(x, y, z)
∂τ 2

x

= 12αaτ 2
x + 2aµ
u

, (6.30)

∂2φ(x, y, z)
∂τ 2

y

=
12αbτ 2

y + 2bµ
u

, (6.31)

∂2φ(x, y, z)
∂τ 2

z

= 12αcτ 2
z + 2cµ
u

, (6.32)

∂2φ(x, y, z)
∂τx∂τy

= ∂2φ(x, y, z)
∂τx∂τz

= 0, (6.33)

∂2φ(x, y, z)
∂τy∂τx

= ∂2φ(x, y, z)
∂τy∂τz

= 0, (6.34)

∂2φ(x, y, z)
∂τz∂τx

= ∂2φ(x, y, z)
∂τz∂τy

= 0. (6.35)
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As shown before, if µ ≥ 0 the equilibrium is at τ = (0, 0, 0). Substituting the matrix from
Equation 6.23 into Equation 6.29 and evaluating the Jacobian matrix at the mentioned
equilibrium position results in

J =


−2aµ
u

0 0
0 −2bµ

u
0

0 0 −2cµ
u

 . (6.36)

The eigenvalues λi of the matrix are given by the zeros of the determinant det(J − λI) = 0.
It can be seen directly that

λ1 = −2aµ
u
, λ2 = −2bµ

u
, λ3 = −2cµ

u
(6.37)

are the corresponding eigenvalues. As µ, u > 0 and a, b, c ∈ {0, 1} the eigenvalues are
negative real as long as a = b = c = 1. Hence, the equilibrium position can be considered
as asymptotically stable (cf. Section 3.6.4). It can also be concluded that the equilibrium
becomes unstable for µ < 0.

If a, b, or c is zero, the eigenvalue for the corresponding dimension becomes zero, too. In this
case no change of the values takes place in the corresponding dimension and all values in this
dimension are also zero at the positions where the distances of the other dimensions become
zero as shown, e. g., in Figure 6.3. Then, a line or area of equilibrium positions is formed
and the system will not convert to a single position but to the resulting area of equally sized
equilibrium values as desired.

As shown before, if µ < 0 the further equilibria are at τ = (±
√
−µ
2α ,±

√
−µ
2α ,±

√
−µ
2α ). Substitut-

ing Equation 6.23 into Equation 6.29 and evaluating the Jacobian matrix at the equilibrium
position τ = (−

√
−µ
2α ,−

√
−µ
2α ,−

√
−µ
2α ) results in

J =


4aµ
u

0 0
0 4bµ

u
0

0 0 4cµ
u

 . (6.38)

It can easily be seen that the eigenvalues of Matrix 6.38 are:

λ1 = 4aµ
u
, λ2 = 4bµ

u
, λ3 = 4cµ

u
. (6.39)

The single eigenvalues are also negative real as long as a = b = c = 1 because µ < 0, u > 0.
Thus, these equilibrium positions are also asymptotically stable as described earlier. The
same as before happens if a, b or c are set to zero and the equilibria will become areas. This
can be used, e. g., to create double line formations by setting one of the weighting parameters
to zero.
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Finally, the equilibrium positions with only positive signs have been evaluated. Substituting
Equation 6.23 into Equation 6.29 and evaluating the Jacobian matrix at the equilibrium
position τ = (

√
−µ
2α ,

√
−µ
2α ,

√
−µ
2α ) results in

J =


4aµ
u

0 0
0 4bµ

u
0

0 0 4cµ
u

 . (6.40)

The eigenvalues of Matrix 6.40 can also easily be determined and are:

λ1 = 4aµ
u
, λ2 = 4bµ

u
, λ3 = 4cµ

u
. (6.41)

These eigenvalues are also negative real as µ < 0, u > 0. Changing the weighting parameter
a, b, or c from one to zero leads to the same convergence behavior described before. It can also
be seen that each combination of positive and negative signs, which leads to the remaining
equilibrium positions always leads to λ = 4aµ

u
. Thus, the eigenvalues of all equilibrium

positions are negative real except for τ = (0, 0, 0) as shown before.

A global uniform asymptotic stability of the linearization implies local uniform asymptotic
stability of the origin as shown by Theorem 3.3. Hence, the bifurcating potential field created
using Equation 6.6 is locally asymptotically stable.

The stability proof given so far shows local stability of the single equilibrium positions. This
does not state that the system is also globally stable. Lyapunov’s direct method has been
applied using the idea of a proof presented in [167] in the next section in order to prove
global stability.

6.5.3. Global Convergence

Lemma 6.3. The trajectory generated by the descent gradient will globally and asymptotically
converge to φhG (cf. Section 3.6.2), i. e.,

∀φbx,y,z ∈ {φ|φ(0) ∈ ΩF} : lim
t→∞

φbx,y,z(t) = φbG. (6.42)

Proof. The Lyapunov function V (φbx,y,z) is defined as the total energy of the system, whereby
φbx,y,z is given by Equation 6.17. This is a simple shifting of the function as described in
Section 3.6.1. Taking a unit mass into account, the Lyapunov function is given by the sum of
the n potential values
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V (φbx,y,z) =
n∑
i=0

φbx,y,z, (6.43)

where V (φbx,y,z) > 0 holds at any position unequal to x∗ where the system is V (φbx,y,z) = 0 by
definition (cf. Section 6.5.1).

The rate of change of the Lyapunov function can be computed using the first partial derivatives
due to the use of the descent gradient −∇. It is possible to express the change as the total
sum of the potential derivatives [167]:

V̇ =
n∑
i=0

∂V

∂φbx,y,z
. (6.44)

Then, using Equation 6.23 in combination with Equation 6.44 to take the descent gradient
−∇ instead of the gradient ∇ into account results in

V̇ = −
n∑
i=0
∇(φbx,y,z) ≤ 0. (6.45)

From Lyapunov’s direct method (cf. Section 3.6.2) it can be concluded that if V (φbx,y,z) is a
positive definite function and V̇ (φbx,y,z) is a negative definite function the system is a globally
uniformly asymptotically stable. As shown before, each of the single equilibrium positions is
also locally asymptotically stable.

A problem arises using superimposed artificial potential functions as V̇ (φbx,y,z) ≤ 0. This
implies that V̇ (φbx,y,z) could be zero at a position unequal to the equilibrium position. In
this case the system might contain local equilibria. The LaSalle theorem can be used (cf.
Section 3.6.3) to ensure that the system is asymptotically stable at the desired equilibrium
position. It extends the mentioned constraints to show that if V (0) = V̇ (0) = 0 and the set
{φbx,y,z|V̇ = 0} only occurs if φbx,y,z = x∗ then the equilibrium is asymptotically stable. Thus,
the LaSalle theorem holds true for the potential field. As it is a smooth and well defined
symmetric potential field equilibrium positions occur at the target states and the system
relaxes into the desired equilibrium positions.

The bifurcating potential field is therefore globally uniformly asymptotically stable. Due
to the superposition conducted by the system presented in this thesis, it is not necessary
to show global stability of the bifurcating potential field as it is only considered for a small
region of the entire environment at which the formation is located. Nevertheless, for the sake
of completeness and to show that bifurcating potential fields can be used for influencing the
entire environment global stability has been stated.
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The stability of the single potential fields has been stated so far. Showing that the single
parts of a system are stable does not prove that the potential field achieved by superposition
is also stable. The following section considers the stability of the resulting superpositioned
potential field.

6.5.4. Conclusion

Both, the harmonic and the bifurcating potential field are asymptotically stable. Nevertheless,
a linear superposition of these potential fields is not necessarily asymptotically stable. The
bifurcating potential field is strictly increasing with the Euclidean distance to the equilibrium
positions while the harmonic potential field is strictly increasing with the path length which
is not necessarily the same. Thus, close to occupied areas, it happens that the harmonic
potential field is decreasing with the distance to the equilibrium position while the bifurcating
potential field is increasing.

The superposition performed by the UAV system presented in this thesis takes this into
account. The UAVs use the harmonic potential field to fly close to the equilibrium positions.
Only a sphere around the equilibrium position is given by the superpositioned potential field.
A UAV will then reach the equilibrium position as long as no obstacle between the UAV
and the equilibrium position exists. Obstacles lead to rearrangement of the single UAVs
participating in a formation, which leads to an adaption of the formation due to the obstacle
as desired.

A problem may occur as the emergence of local equilibria close to obstacles is possible. It is
then possible that single UAVs get stuck, while the rest of a formation’s UAVs fly towards
the next route point. This leads to new equilibrium positions and after a while the position
at which a UAV Ui got stuck is outside of the superpositioned area. Then, only the harmonic
potential field is considered and Ui is able to leave the local equilibrium position and follows
the formation. Finally, Ui has to speed up while the other UAVs must decrease their flight
speed, so that Ui is able to catch up with the rest of the formation.

One disadvantage of harmonic functions mentioned in Section 3.3.1 occurs if a superpositioning
of several harmonic functions takes place. It has been stated that obstacle avoidance is not
guaranteed in this case [34]. This disadvantage does not hold for the presented superimposed
potential field. The potential value of obstacles is still firmly set to one. This is due to the
min-max principle (cf. Definition B.2), the highest harmonic potential value. The bifurcating
potential field only computes values for the free space and the values taken into account by
superposition are always less or equal to zero. Thus, the resulting values obtained through
an addition of the two potential fields are at any point of the resulting potential field less
than one and obstacle avoidance is still guaranteed.

Another point not considered by the proofs presented earlier are the dynamics of the resulting
system. The harmonic potential field is globally asymptotically stable. This means that a
path from each initial configuration to each target configuration can be computed using the
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descent gradient if such a path exists. But it does not consider the simultaneous movement
of other UAVs, which can make a replanning necessary to avoid collisions with other UAVs.
Such behavior can foil target reaching as the UAVs might compute paths which result in
never ending disturbances and replannings. For a real world UAV system it must be stated
that multiple UAVs do not influence each other in a way, which renders it impossible for
them to fulfill their duties and to reach their goals. One possible solution is the creation
of a task allocation systems that takes this issues into account and distributes the tasks by
considering the UAV flights necessary to reach the targets. This is neglected for the system
presented in this thesis as the evaluation of the system presented in Chapter 8 shows that
the UAVs were always able to reach their objectives.

6.6. Summary

This chapter addresses formation flights. First, a problem statement is given, then state-of-
the-art approaches using potential fields for formation flights are presented. The artificial
potential field used by the UAVs for formation flights is introduced thereafter. It is based
on bifurcation theory and the resulting potential field is superpositioned with the harmonic
potential field in order to keep the advantages of both approaches.

Examples for possible potential fields are illustrated to give a better impression of the
approach. It is possible to create different formation shapes and to create, dissolve and
change formations anytime. The resulting formations are dynamic in terms of newly added
and departing UAVs and scale well with the number of participants.

Formation handling is described in detail in the further course of the chapter. The presented
approach works completely decentralized and the UAVs have to fulfill various requirements
in order to create formations. A methodology for formation flights is also presented in this
chapter. The UAVs fly in formation using the behavioral approach (cf. Section 3.4.1) allowing
them to avoid obstacles by changing their position within the formation. It is possible to
rotate the formations around three axes as described in Section 6.4.3. Finally, the underlying
mathematics is stated to provide a first step for the use in real world applications.

As mentioned before, using a single formation containing all UAVs is adverse in many
applications. Some sort of cooperative behavior is necessary to actually enable the UAVs to
create different formations and to choose whether they want to participate in any formation.
The UAVs should only create formations resulting in higher benefit and should dissolve
formations on their own when benefits vanish. The next chapter presents a cooperative
behavior that takes such deliberations into account.
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The UAVs are able to plan paths in order to fly in complex and dynamically changing
three-dimensional environments based on the previously presented potential fields. They also
have abilities to create formations and to fly in formation. An extension has been conducted.
It enables the UAVs to autonomously plan i discrete paths ρdi

consecutively for thorough
explorations of complex and dynamically changing three-dimensional environments. An
implicit coordination has been reached by the use of information exchange concerning the
UAV configurations, as well as the areas they currently explore. A high degree of cooperation
has been achieved by formation flights.

In contrast to other approaches as, e. g., Subsumption [61] the UAVs do not work in a reactive
way. Instead, the UAVs always plan their paths using the descent gradient of an artificial
potential field based on environmental information. Additionally, an internal world model of
the environment is created during flights if no information about the terrain exists a priori.

Exploration of different environments is only one of the UAVs’ duties. A task creation
and allocation system is presented in this chapter such that various tasks can be processed
simultaneously using the previously described UAV capabilities to achieve the overall goal of
supporting ground units. Such a system can be beneficial for various applications like, e. g.,
site clearing to ensure that ground units reach specific areas, monitoring of specific areas,
delivery of goods, etc.

Different UAVs must be able to process several tasks simultaneously. From this it follows that
a higher degree of cooperation to process all tasks in an efficient way is needed. An overall
UAV behavior based on a highly dynamic task creation and allocation system and enabling
the UAVs to process tasks themselves, as well as in cooperation has been designed. The
UAVs have to create tasks themselves if this is beneficial or avoids damage. They should also
process tasks given by third party applications like ground units or control center personal.
These requirements lead to the multi-robot task allocation (MRTA) problem [223].
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The UAVs are considered to be heterogeneous in terms of their equipment ηU making them
more or less suitable to solve specific tasks. A decentralized marketplace (cf. Section 2.2.2),
where each UAV bids for the tasks it is willing to allocate, has been established. Task
processing is treated as being beneficial to the UAVs, which ensures that they actually
allocate tasks and make offers respectively. This chapter presents the task handling system
used by the UAVs to distribute various tasks via the single UAVs, as well as the constraints
given by such a system.

The aim of this chapter is to design a flexible task allocation system. It should not be limited
by the number of different tasks and equipments the UAVs can carry. It should also easily
be adaptable in order to reach further UAV behaviors if necessary. Thus, the introduced
equipments, tasks, task properties, etc. are only examples and can be replaced or modified in
order to design another system or an extension of the presented one.

The chapter first gives a problem statement on task creation, as well as task allocation.
Afterwards, state-of-the-art approaches for multi-robot multi-task allocation based on the
market place approach are presented. The following section deals with task properties, the
role system of the UAVs, and constraints to be considered. The technique for task creation
and task allocation is described in detail in the further course of the chapter. Finally, a
summary is given.

7.1. Problem Statement

The presented control architecture for multiple UAVs implies three main basics for decision
making: task creation, task allocation and coordinated task achievement. Two objectives are
mainly considered in this chapter for the design of a cooperative system where the UAVs are
able to decide autonomously how to perform all challenges in order to achieve the overall
objectives introduced in Section 1.2. The first objective addressed in this chapter is task
creation, the second objective is task allocation. Task achievement is performed using the
methods presented in Chapter 5 and Chapter 6.

Various tasks must be created and fulfilled to efficiently support ground units. They have
different requirements and might not be processable by all UAVs. Additionally, tasks can
require multiple UAVs to be processed. They are created dynamically during run time and
it takes different time spans to perform them. This makes it impossible to calculate a task
allocation that optimizes one objective, like minimizing the costs of the worst UAV, once at
the beginning.

One of the most important parts of the presented behavior is the creation of tasks by the
UAVs themselves. The next section introduces the situations leading to the creation of such
tasks.
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7.1.1. Autonomous Task Creation

The single UAVs create tasks by themselves for two purposes. The first one is damage
prevention in case of low fuel or connection loss and the second purpose is the design of an
efficient multi-UAV behavior. Task creation for damage avoidance is based on the current
UAV configuration qU (cf. Section 4.3).

Configurations forcing a task creation concern the current fuel level of a UAV U . The entry
q9 of qU is the percentage of remaining fuel. Under all circumstances it must be averted that

q9 < fs (7.1)

with fs > 0 describing a safety fuel level necessary to keep the UAV airborne. Thus, the
UAV has to land before Condition 7.1 becomes true.

Configurations treating the communication status q10 of qU are responsible for safe UAV
flights. A UAV can only avoid collisions with other UAVs if it knows all other UAVs’ current
positions. This is normally given by inter-UAV communication, used by all UAVs to send
their current configuration to other UAVs. A UAV should fly as safe as possible to the closest
landing area if the communication links fail in order to land as soon as possible.

Increasing efficiency is another purpose for task creation beside damage avoidance. Most
tasks are designed in a way that they need either only one or multiple UAVs to be processed.
Compared to that, exploratory navigation can be performed more efficiently through formation
flights in some situations. Let EU be the exploration rate achieved by exploratory navigation
through single UAVs and let EP be the exploration rate using formations. If

EP > EU (7.2)

is true, a formation should be created and exploratory navigation should then be performed
in formation until Inequality 7.2 does not hold any longer.

Beside the creation of tasks by the UAVs themselves, tasks given by ground units should also
be processed. The simple creation of tasks does not automatically lead to their execution.
Task execution should be based on an efficient task allocation and has to take various
constraints into account. The problem of multi-UAV multi-task allocation as it is considered
in this thesis is described in the following section.

7.1.2. Task Allocation

Given n UAVs Ui, 1 ≤ i ≤ n and m tasks Tj , 1 ≤ j ≤ m, whereby m, as well as n can change
at anytime. Additionally, a benefit value Bi,j of UAV Ui for task Tj is given. It is assumed
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that each UAV Ui is capable to process only one task Tj simultaneously and that each task
Tj requires at least one UAV Ui to be executed. A mapping

∀i, j : Bi,j 7→ T Ui
j (7.3)

has then to be performed where the benefit values or bids Bi,j of each UAV for each task
lead to a successive assignment T Ui

j of each task Tj to at least one UAV Ui.

Several different approaches for multi-robot multi-task allocation exist. A selection of general
state-of-the-art approaches is presented in Section 2.3.4. In addition to these approaches a
selection of today’s task allocation systems based on market places or auctions is presented
in the next section.

7.2. State-of-the-Art

A wide range of task allocation methods for multi-agent systems based on auctions exists.
Various objectives for task allocation have been identified and dependent on the kind of robots
or UAVs and on the properties of the tasks, as well as different requirements be fulfilled.
Thus, no method directly applicable to most allocation problems has been designed yet. This
section presents a selection of decentralized state-of-the-art algorithms solving the problem
of multi-robot multi-task allocation.

The first methodology presented in this section has been developed by Simon et al. [136].
They have designed a group-dependent multi-UAV multi-task allocation system by taking
different equipments into account. The equipment is different sets of sensor requirements,
whereby each task needs a specific set to be executable. An extension of the consensus-based
bundle algorithm has been developed to solve this problem. The algorithm converges to a
conflict free and feasible solution. One difference to the approach presented in this thesis is
that they allow the simultaneous assignment of UAVs to multiple tasks. Each UAV considered
by Simon et al. stores a m× n matrix with m tasks and n UAVs to achieve the mentioned
requirements. In a first step, a bid value is computed by each UAV for each task it assigned
and stored in the matrix. The bid value is based on the reward a UAV earns for processing a
task and the distance to that task. Thereafter, the single matrices are sent to neighboring
UAVs. The points in time at which bids have been received from other UAVs are also stored
as it is impossible to guarantee that each UAV always has the relevant up-to-date data.
Consensus about the task processing order for each UAV is finally achieved in decentralized
manner by the UAVs themselves.

Another approach has been designed by Delle et al. [224]. They presented a task allocation
system for the coordination of teams and evaluated it using real UAVs. The aim of their
approach is similar to the one presented in this thesis and consists mainly of environmental
exploration after disasters using a camera system. Different tasks are of different importance
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and the performance of the UAVs has to be maximized. In contrast to the UAV approach
presented in this thesis the importance of single tasks can change over time and a task
is always to send images of a specific area. Delle et al. have also created a completely
decentralized task allocation system wherein task allocation is modeled as an optimization
problem and solved fully asynchronously and in a decentralized manner using the max-sum
algorithm. A utility value similar to a bid value is computed by each UAV for each task based
on the distance to the task, the remaining battery capacity, and the properties of the task.
Thereafter, an adaptation of the max-sum algorithm solves the task assignment problem.

A further kind of task allocation is considered by Lujak et al. [225]. They assume two groups
of mobile agents, so called attackers and targets. The attackers try to capture the targets
while the targets try to move away from the attackers. Each attacker allocates one target as
its next task and has only a limited communication range and also no insights into the other
agents’ decision making processes. Lujak et al. use this scenario to investigate the problem
that not every agent has up-to-date information, which is also a realistic assumption for real
world UAV systems. Every agent stores the most recent knowledge of the actual bid value for
each target and the assignments made so far. The algorithm designed by Lujak et al. ensures
that each agent exchanges information with all other agents within a given communication
range. Thereafter, each agent updates its stored values and checks whether another target is
closer than the currently assigned one. In that case it selects the closer target and computes
a new bid value for this target.

Similar to the approaches presented in this section the presented UAV system uses tasks to
reach an efficient behavior, too. These tasks have different properties and various additional
constraints. The UAVs perform task allocation considering given constraints and try to
allocate the most important tasks. The properties of the tasks, the different UAV properties
used to allocate single tasks, and the constraints of the task allocation system are described
in detail in the following section.

7.3. Task Handling Background

Several decisions have to be made in order to design a multi UAV task creation and task
allocation system. First, the tasks themselves and their properties have to be defined. The
presented system also considers the single UAVs differently based on their equipment and the
skills resulting from the equipment. This distinction leads to an assignment of different roles
to the single UAVs. Finally, several constraints for task allocation have to be identified and
regarded.

The first step in the design of a task allocation system is the definition of the single tasks the
UAVs should process with their associated properties as presented in the following section.
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7.3.1. Task Properties and Definition

The UAVs have to allocate tasks dependent on various requirements. Each task consists of
several properties relevant for task allocation. Some of them change over the course of time
while others are static. Other properties are UAV dependent and thus different for each UAV
storing the task and the corresponding values. Table 7.1 shows the single properties each
task consists of, as well as a brief description.

Property Description
IT Importance of the task
τ̄T Normalized distance between the UAV and the task
AT Age of the task
ηT Equipment, needed to process the task
NT Number of known UAVs, able to process the task
MiT Minimum number of UAVs, needed to perform the task
MaT Maximum number of UAVs, able to perform the task simultaneously
OT Current number of UAVs processing the task simultaneously

Table 7.1.: The single properties of each task stored by the single UAVs.

It has to be ensured that some tasks like refueling are always processed before others. This
is achieved by assigning different importance values to each kind of task, which has to be
taken into account by the resulting task allocation system. A task can only be processed at a
given position p ∈ W or an area. The position leads to a distance 0 ≤ τ̄T < 1 between the
task and the UAV. The center position of an area is considered for the computation of the
distance if the task includes an area instead of a position. The UAVs normally fly from one
position to another. Thus, the distance between a UAV and a task changes over time.

A UAV is not able to process a task and as a consequence should not try to allocate a task if
it is not equipped with appropriate equipment ηT . Additionally, aging of tasks is represented
by age AT in order to avoid starvation. Tasks need a minimum number of UAVs MiT to be
performed, while a maximum number of UAVs MaT able to process the task at any given
point in time exists. Finally, the number OT of UAVs currently processing the task is also a
property.

Based on the mentioned requirements the objective of this chapter is the design of a task
allocation system were the optimal task to be allocated next Topt depends on the properties
of the currently existing n tasks Ti, 1 ≤ i ≤ n as follows:

Topt = f({IT , τ̄T , AT , ηT ,MiT : 1 ≤ i ≤ n}). (7.4)

Related to Equation 7.4, the optimal task to be processed is the one with the highest
importance, the lowest distance to the UAV, the best fitting requirements, and the oldest
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one that needs the most UAVs to be processed. It is unlikely that all of this is true for one
task. Thus, a tradeoff has to be found to ensure that each UAV is able to determine the task
that seems to be most beneficial to itself.

The first step of enabling the UAVs to allocate a task is to use the task properties for a
subdivision into different task types:

• Single UAV tasks.

– UAV dependent tasks (SUDT).

– UAV independent tasks (SUIT).

• Multi-UAV tasks (MUT).

UAV dependent tasks are the reconnection and the refueling task mentioned before. These
tasks cannot be performed by any other UAV than the one that created them. All other tasks
are independent from the UAV beside the necessary equipment and most times, different
UAVs able to process these tasks exist. Tasks that can only be processed by multiple UAVs
are always UAV independent tasks.

Table 7.2 shows an overview of all tasks, which are considered by the presented UAV system.
As mentioned before, the tasks differ in several terms and it is possible to extend the task
allocation system in order to support additional tasks in an efficient manner.

Task Description Type
Reconnect Landing the UAV due to loss of network connection SUDT
Refueling Return of the UAV to the start position for refueling SUDT
Single exploration Exploration of the environment using one single UAV SUIT
Single monitoring Monitoring of a subarea by one UAV SUIT
Road spotting Road spotting for ground units SUIT
Single deliverance Deliverance of small goods by one UAV SUIT
Multiple exploration Exploration of the environment in formation MUT
Multiple monitoring Monitoring of a subarea by several UAVs MUT
Escort Escorting ground units MUT
Multiple deliverance Deliverance of big goods by several UAVs MUT
Site clearing Movement of several obstacles in a certain order MUT

Table 7.2.: Tasks considered for the presented UAV system.

The site clearing task is a complex task where multiple obstacles have to be moved to clear
the way for ground units. The task contains the movement of obstacles in a specific order
as obstacles may lie beneath others. It is a simplified version of the site preparation task
identified by the NASA for Mars missions [226] with the need of subdividing high level tasks
into sub-tasks. Deliverable goods can be, e. g., pharmaceutical, water, food, etc., needed by
people, as well as the transportation of water used, e. g., for fire fighting.
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The presented tasks are only a small selection of tasks a multi-UAV system can fulfill. Thus,
the resulting task allocation system should be designed in a way that facilitates the possibility
to easily extend the number of supported tasks.

An example scenario with several tasks and various UAVs is presented in Figure 7.1. The
figure provides a visualization of the tasks using a cutout from the Control Station (cf.
Section 4.1.1) and gives an impression of the information ground units obtain from the task
handling. The UAVs must distribute the tasks by themselves while these tasks can appear
and disappear anytime. Tasks are always visualized the same way while the Control Station
provides a specific task description in the task list on the left hand side of the graphical user
interface.

Figure 7.1.: An example task allocation problem is shown. Three UAVs—located in the upper
right—have to allocate four different tasks—illustrated as ring shaped objects—beside exploratory
navigation.

As mentioned before, the UAVs are considered to be heterogeneous in terms of their equipment.
The equipment of a UAV is one objective to be taken into account for task allocation. Thus,
the division of labor approach (cf. Section 2.1.4) is used to distinguish single UAVs as
described in the following section.

7.3.2. Division of Labor

The UAVs need equipment in order to process the single tasks introduced in the previous
section. Each UAV has only a limited load capacity. It is therefore impossible to endow each
UAV with the entire equipment needed to process every type of task. This leads to different
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sets of equipment whereby each UAV is able to carry only one specific set. Dependent on the
set the UAVs are equipped with, they are more or less suitable for the execution of specific
tasks.

In order to model the suitability of the single UAVs, subdivision into different roles based
on the nature’s division of labor approach (cf. Section 2.1.4) is conducted. These roles are
related to the single equipment the UAVs carry and lead to specific priorities for the single
tasks as described later in Section 7.4.2. Four roles shown in Table 7.3 have been introduced
for the presented system. The roles and the corresponding equipment are only examples. In
general UAVs can carry various additional equipment leading to an increase in the number of
roles. This should also be considered in the design of the resulting task allocation system.

Role Equipment
Collector A gripper to transport and to move objects and a medium-resolution

camera
Explorer A high-resolution wide-angle camera
Prospector A high-resolution heat camera
Surveillant A medium-resolution heat camera and a medium-resolution camera

Table 7.3.: Considered UAV roles and their different equipment

Collector UAVs are equipped with a gripper and are therefore predestined for the movement
of objects necessary for delivery and site clearing tasks. The explorer UAVs carry the best
camera equipment making them the optimal choice for exploratory navigation, while the
prospector UAVs are equipped with a high-resolution heat camera in order to find, e. g.,
missing people. Finally, surveillant UAVs carry two cameras. A medium-resolution heat
camera and a medium-resolution camera. They are mainly used to monitor areas in order to
detect changes.

The roles are used to compute bid values for the different kinds of tasks as described later in
order to achieve a task allocation where a UAV that fits best to a single task will allocate it.
The roles lead to different priority values used to calculate the bid values in order to achieve
an efficient allocation. As mentioned before, UAV dependent tasks exist. The roles should
have no influence on the computation of the bid values for these tasks.

The equipment and therefore the role of a UAV cannot change during a flight period. Beside
the constraints given by the different equipment several additional requirements must be
considered to ensure a feasible task allocation without starvation, deadlocks, and redundant
task processing. The resulting constraints considered by the UAV system presented in this
thesis are introduced in the following section.
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7.3.3. Task Allocation Constraints

A multi-UAV multi-task system faces various challenges introduced in this section. The
resulting task allocation system must ensure that several requirements are always met in
order to overcome possible issues like starvation. Additionally, task execution should be as
efficient as possible.

Exploratory navigation is the main task processed as long as no task more beneficial to the
UAVs exists. This task can be processed by each UAV on its own, as well as in formation. The
UAVs exchange information about the area they want to explore next to reduce redundant
exploration and to increase the exploration rate. Areas selected by a UAV or a formation to
be explored next are not selected by other UAVs or formations simultaneously.

Table 7.2 shows several additional multi-UAV tasks with the need of multiple UAVs to be
processed beside exploratory navigation. These tasks are always executed by a UAV formation
P , whereby

P =
n⋃
i=0
Ui, (7.5)

with n describing the number of UAVs Ui participating at formation P. It is possible that
several multi-UAV tasks are processed simultaneously. In this case it has to be guaranteed
that no UAV Ui ∈ Pj tries to participate in another formation (Ui ∈ Pk) at the same time,
i. e.,

∀i∃k∀j 6= k : Ui ∈ Pj ⇒ Ui /∈ Pk. (7.6)

Another issue to be handled is information storage. UAVs can emerge and dissolve during
task execution. Thus, it is error-prone if one single UAV is treated as central information
holder as all information would be lost if the UAV vanishes. Therefore, the single tasks and
the corresponding task properties should be stored redundantly to avoid information loss
regarding the currently existing tasks. The easiest way to achieve redundancy is storing
all tasks by each UAV. Such a highly redundant storage also has the benefit of each UAV
always having up-to-date information about all tasks, allowing for an efficient and completely
decentralized task allocation given an appropriate information exchange. Additionally, cases
where idle UAVs exist while other UAVs have to process several tasks consecutively are
reduced leading to a more efficient behavior in terms of time needed to process all tasks in
this case.

Another constraint is given by the importance of the single kinds of tasks. As shown by
Constraint 7.7 tasks with much higher importance than other exist. These tasks must be
processed first to avoid damage. An example task is the refueling task created when a UAV
runs out of fuel. Such a task must be processed before all other tasks and the task currently
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executed by the UAV has to be interrupted. From this it follows that task execution must be
preemptive to obtain such behavior.

∃ITi
� ITj

(7.7)

Additionally, a reassignment of tasks to other UAVs as described by Mapping 7.8 must be
possible in order to reach efficient task procession. UAV Ui should stop the execution of task
Tj such that UAV Uk can start processing Tj if this is beneficial.

T Ui
j → T

Uk
j (7.8)

UAVs can give up on tasks for several reasons like failure of UAVs. Another reason would be
that a UAV leaves a formation to process a newly created, more important task like refueling
or re-establishing connection. This has to be taken into account and a UAV that gives up on
a task should inform the other UAVs about this decision if possible. Tasks a UAV gave up
need to be processed by other UAVs even when the UAV is unable to inform the other UAVs,
e. g., because it lost connection. The task then has to be continued by another UAV after a
given time span resulting from the point in time the task has been created and the current
time. Therefore, the age AT has been introduced before.

Each task needs some equipment ηTj
to be fulfilled. A UAV Ui must have ηUi

⊇ ηTj
to be

able to process the task as shown by Constraint 7.9. Thus, the resulting bid system in
combination with the division of labor approach presented previously has to ensure that only
UAVs carrying the equipment needed to process a task are able to allocate it.

∀1 ≤ i ≤ n, 1 ≤ j ≤ m : ηTj
⊆ ηUi

(7.9)

The refueling task and the reconnection task are special tasks and have to be processed
before all other tasks. A connection loss to the other UAVs makes safe flights impossible as
the UAV lacks information about the positions of the other UAVs. It then has to fly to the
next landing zone while it simultaneously tries to reconnect in order to minimize the collision
probability.

A highly dynamic environment wherein tasks can appear and disappear anytime is considered.
It makes no sense for each UAV to calculate and offer bids for every single task it is informed
about. Thus, each UAV only makes offers for the task it wants to allocate next. The UAVs
store the 0 < o ≤ OT highest bid values made by other UAVs for each task currently processed.
If a task processed by another UAV Uj is the most beneficial to UAV Ui, it compares its
own bid value Bi with the previously calculated bid value Bj of UAV Uj. In this case two
possibilities exist:
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Bi > Bj, (7.10)
Bi ≤ Bj. (7.11)

If Condition 7.10 holds, the UAV is treated to take over the task. If Condition 7.11 holds
true, the UAV tries to offer the bid value for the task for which it has computed the next
lower bid value. It then offers bid values for tasks with the next highest bid value repeatedly
until an allocatable task has been found. Conditions 7.10 and 7.11 are only considered if the
number of UAVs currently processing the related task OT is equal to the maximum number
MaT of UAVs able to process the task. The UAVs always process the task for which they
have computed the highest bid value if OT < MaT holds.

To ensure that tasks created by the UAVs themselves, as well as tasks created by ground
units or control center personal are processed, it must be ensured that these tasks are or
are going to become more beneficial to the UAVs than exploratory navigation. Additionally,
tasks must become more beneficial over time to avoid starvation. Otherwise it is possible
that new tasks more beneficial than old ones are created consistently and starvation of tasks
becomes possible. Exceptions are continuously performed tasks like monitoring. They should
only become more beneficial as long as no UAV has allocated these tasks.

This section describes the task properties, the role system of the UAVs, and constraints that
have to be considered by the task allocation system. Based on the information presented so
far in this chapter a task handling can be designed. Thus, the following section describes
the resulting task creation and task allocation system used to design an efficient multi-UAV
behavior that considers all relevant constraints.

7.4. Task Handling

The resulting task handling approach is divided into two subareas. The first part of this
section describes task creation by the UAVs themselves. It takes place if it leads to an
increase in efficiency or if it is required for damage avoidance. The second part of the section
presents the resulting task allocation system. Two situations at which the UAVs create
tasks on their own are considered. The first situation is the avoidance of damage while the
second situation is the increase of the system’s efficiency. The following section describes the
resulting situations forcing the UAVs to create new tasks by themselves.

7.4.1. Autonomous Task Creation

Let U be a UAV and let T be a task. Three different states for the creation of a task directly
by a UAV have been identified for the resulting system. The two states responsible for the

140



7.4. Task Handling Chapter 7. Cooperative Behavior

avoidance of damage are directly related to the configuration qU of a UAV U presented in
Table 4.3 and depend on the entries q9 of qU and q10 of qU .

Configurations qU forcing a UAV U to create a task by itself depend on the fuel level and
the UAV’s speed. Each UAV U has a fuel level 0 ≤ q9 ≤ 100, whereby q9 decreases by one
every time span ts. Additionally, U has a maximum speed q2, which is part of qU and the
environment a diagonal d. To preserve some safety level, it is assumed that U needs at the
longest time

tm = d · 1.5
q2

(7.12)

to reach the fuel station. Combining Equation 7.12 with the fuel level leads to the creation
of a refueling task if Condition 7.13 is true.

ts · q9 ≤ tm (7.13)

Further configurations qU forcing the creation of a task are based on the communication
status represented by entry q10 of qU . Every UAV exchanges information with all other UAVs.
It creates a reconnect task if it does not receive messages from other UAVs and the Control
Station (cf. Section 4.1) within a certain time span. Messages received by the Control Station
are considered such that a single UAV is also able to work in the environment.

The tasks based on the previously described two configurations are responsible for avoiding
damage to the UAVs. They cannot be performed by UAVs other than the one that created
the tasks. The third situation considered for task creation should lead to an increase in
efficiency. The task created for this purpose can be performed by any UAV carrying the
required equipment.

A UAV U processing the single exploration task selects unexplored nodes successively at its
favorite altitude represented by entry q4 of qU to be explored next (cf. Section 5.4.1). Let
we be the width of the terrain a single UAV camera picture shows and let le be the length
of the terrain a single UAV camera picture shows. Both values depend on the height of the
UAV and the camera’s flare angle. Based on these values the UAV is able to explore an area
Ae = we · le at the ground of the environment mainly based on its current altitude and the
flare angle θd of the bird’s eye camera it carries. Inclines of the underlying environment are
neglected for task creation.

After the selection of an unexplored leaf li by a UAV the maximum coherent and convex area
of unexplored leaves Aux = xux · yux in the x, y plane containing li is computed. If for this
area

n,m > 2: xux ≥ n · we ∧ yux ≥ m · le (7.14)
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is true, U creates a multi-exploration task with MiT = 3 and MaT = max{n,m}. Such a
task creation to reach an increase in efficiency is an example far from optimal. One possibility
for a more beneficial creation system might be the use of learning strategies, enabling the
UAVs to learn when the creation of tasks leads to better results. Nevertheless, the chosen
approach should give a first impression of the benefit reachable by the use of formations for
exploratory navigation.

Besides for the creation of tasks, task allocation has to take place in order to actually process
the single tasks. As described in the previous section each task has several properties and the
single UAVs are treated to be heterogeneous in terms of their equipment. Additionally, some
constraints must be considered. This leads to the resulting task allocation system presented
in the following section.

7.4.2. Task Allocation

The last design step of the presented multi-UAV system is the task allocation approach.
Based on this approach the UAVs decide on their own, which tasks they fulfill at which time.
The main task is exploratory navigation by single UAVs. This task is replaced if other tasks
become more beneficial. Exploratory navigation itself can be conducted by single UAVs and
in formation, whereby formations can lead to a more efficient exploration. The UAVs create
formations in the cases described in Section 7.4.1. Exploration in formation is evaluated in
Section 8.4 and 8.5.

The number of UAVs participating at a formation is restricted by the number of existing
UAVs able to process the multi-UAV task, the size of the area to be explored, and tasks
of higher importance. Single UAVs can leave formations anytime in order to conduct other
tasks if tasks more beneficial than the current formation task come into existence.

As mentioned before, several different tasks exist in addition to exploratory navigation and the
UAVs use a decentralized market place (cf. Section 2.2.2) to perform task allocation. A bid
system has been designed taking the equipment of the UAVs into account by simultaneously
respecting the constraints introduced before.

Priorities have been introduced for single tasks (cf. Section 7.3.1) in order to determine tasks
more beneficial to a UAV than others, as well as tasks that need to be processed before all
other. The priorities of the tasks depend on the equipment of the UAV, leading to a specific
role (cf. Section 7.3.2). Table 7.4 shows the priority values for the single tasks the UAVs of
the system presented in this thesis use. These priorities are only a selection and different
values should be used by other systems if this seems to be beneficial.

Each UAV uses the role-dependent priority values from Table 7.4 to compute the resulting bid
values based on its role. The priorities of the tasks reconnect and refueling are independent
of the role as these tasks must always be processed first in order to avoid damage.
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hhhhhhhhhhhh
Task Role Collector Explorer Prospector Surveillant

Single exploration 0.1 0.5 0.3 0.3
Multiple exploration 0.1 0.7 0.5 0.5
Reconnect 1.1 1.1 1.1 1.1
Refueling 1.2 1.2 1.2 1.2
Single monitoring 0.1 0.3 0.4 0.5
Multiple monitoring 0.1 0.5 0.6 0.7
Escort 0.2 0.4 0.3 0.2
Road spotting 0.3 0.4 0.5 0.6
Single deliverance 0.5 0.0 0.0 0.0
Multiple deliverance 0.7 0.0 0.0 0.0
Site clearing 0.6 0.0 0.0 0.0

Table 7.4.: The single task priorities dependent on the UAV role

Tasks the UAVs cannot process are assigned to a priority value of zero. This must lead to
bid values BT of zero. Additionally, tasks that have to be performed before all other tasks
are assigned to priorities greater than one in order to compute higher bid values for these
tasks than for the remaining. Thus, bid values 0 ≤ BT < 1 are computed for the remaining
tasks. The resulting equation for the computation of bid values is developed step-wise in the
further course of this section.

First, the single priorities and the distance between the UAV and the target position of the
task is taken into account to achieve a bid function. This results in a bid value BT for each
single task T as follows:

BT = Ic+τ̄T
T , (7.15)

whereby the priority of a task is denoted by the value IT , which is taken up to the power of
c ∈ {0, 1} plus the normalized distance τ̄T . The priorities are based on the role of a UAV
and are presented in Table 7.4. The normalized distance 0 ≤ τ̄T < 1 between a UAV and a
task is strictly increasing with the distance to the center of corresponding task’s target area.

The value c ∈ {0, 1} is set to zero for each task except the refueling task. For refueling, it
is set to one in order to increase the resulting bid value. This ensures that the bid value is
1 ≤ BT < 1.1 for the reconnecting task and 1.2 ≤ BT < 1.44 for the refueling task. Due to
the other tasks’ priorities, which are less than one, the resulting bid values are also less or
equal to one.

Equation 7.15 assures that the refueling task is executed before all other tasks followed by the
reconnection task. This avoids an alternating connection fail and connection establishment
to cause the UAV to switch between the refueling and the reconnection task until it runs out
of fuel.
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The next task property taken into account for the resulting bid values of uncritical tasks is
the age of the task 0 < AT ≤ 1 as shown in Equation 7.16 to avoid starvation.

BT = Ic+τ̄T
T · AT (7.16)

AT is always set to one for the two critical tasks reconnecting and refueling. For all other
tasks AT is assigned to an initial value when a task is created and increases over time
until it becomes one. Exploratory navigation is an exception. This task is created once at
the beginning of the simulation. It is reset to the initial value each time the UAV pauses
exploratory navigation to start another task execution in order to avoid that the aging value
of this task is always one.

A task becomes more beneficial the higher its aging value is in order to avoid starvation. To
increase the bid values of multi-UAV tasks dependent on the number of UAVs needed to
process the task, the minimum number of UAVs needed (MiT ) and the number of UAVs
able to process the task (NT ) has also been taken into account for the computation of a
multi-UAV value V presented in Equation 7.17. The number of necessary UAVs is always
known to the UAV as it is always sent to them with the task itself. The number of UAVs
able to process the task might not be known if communication problems occur and single
UAVs are unable to exchange information with each other.

V =

0, if NT < MiT ,
MiT
NT

, else.
(7.17)

The first case of Equation 7.17 multiplied with the bid value ensures that the bid values for
tasks needing more UAVs than exist are zero, whereby NT denotes the number of UAVs able
to process the task. Such cases can occur as UAVs can leave the application anytime in order
to refuel, when they lost connection, or if they are ordered back. The second case multiplied
with the bid value decreases the resulting bid values for tasks needing several UAVs to be
processed less than for tasks needing only one UAV. It also ensures that the values for the
refueling and reconnecting tasks are always one. This is due to the fact that only the UAV
that created the tasks is able to process them, i. e., NT = MT = 1 holds for these tasks.
Finally, it is ensured that 0 ≤ V ≤ 1.

The number of currently participating UAVs OT is not considered. This allows UAVs to take
over tasks more easily if they are more suitable for the execution of the task than other UAVs
currently performing it. Finally, Equation 7.18 is used by the UAVs to calculate the bid
values BT for the single tasks.

BT = Ic+τ̄T
T · AT · V (7.18)
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A UAV computes a bid value BT for each single task if it needs to allocate a new task.
Afterwards, an offer is made for the task with the highest bid value if Condition 7.10 holds
true or if OT < MaT . Each UAV also recalculates after a minimum time span the bid values.
It returns the current task into its task list and starts processing a new one if the bid values
indicate that a new task allocation is more beneficial. Recalculations of the bid values are
also performed every time a UAV completes a task and every time the UAV receives a new
task. A task can become more beneficial as, e. g., the distance to tasks, as well as the age
changes over time. The UAVs can also create new tasks, which can then be most beneficial
to them. Additionally, tasks created by other UAVs or by third parties can be received.

In classical market places a time span, within bids can be offered for each task, exists. All
bids for a specific task are then offered during this time span. In contrast to that approach,
the UAVs can make offers for tasks as long as these tasks are not fulfilled. This makes it
possible that UAVs more suitable for tasks than the UAV currently processing them can take
over, after they fulfilled the one currently the most beneficial to them, in order to increase
the multi-UAV behavior’s efficiency.

Two different ways to create multi-UAV tasks exist. UAVs create tasks for exploratory
navigation in formation if this results in a more beneficial exploration of single areas. The
other possibility is that third party applications like ground units create such tasks. This can
be, e. g., monitoring of special areas.

If a multi-UAV task for which MiT UAVs are needed has been created, all UAVs compute
an offer for this task. A UAV makes an offer if such a task is most beneficial to it. The
MiT ≤ i ≤MaT UAVs with the highest offers are finally selected for task execution.

7.5. Summary

The behavior presented in this section is mainly based on two methodologies: task creation and
task allocation. The environment changes dynamically and tasks can appear and disappear
anytime. Thus, not all tasks are known a priori. This makes it impossible to compute
an optimal processing sequence for all tasks once at the beginning. Amongst others, task
creation is used by the UAVs to reach a more beneficial exploration in terms of decreasing
the time needed to explore entire environments.

Task allocation is not only based on one objective to be optimized like the overall time needed
to process all tasks. It takes several properties, like different priorities, various requirements,
the age of the task, and also the distance of the tasks to the UAVs into account. Each UAV
computes a bid value to determine the task most beneficial to itself based on the properties.
Afterwards, it tries to allocate and thereafter to fulfill the task. These properties allow
changes of the objectives to be optimized by, e. g., changing the priority values of the single
tasks.
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The UAV behavior is completely decentralized and autonomous. A central instance assigning
the single tasks to the UAVs and also creating tasks as, e. g., exploratory navigation in
formation would reduce the complexity of the approach. However, this would lead to a
bottleneck and to a single point of failure. Additionally, the approach would not be as robust,
flexible, and scalable as a decentralized one. These are some of the main characteristics which
should be supported by an autonomous multi-UAV system as mentioned in Chapter 1.

Several different kinds of tasks with different requirements like necessary equipment and
minimum number of executing UAVs are considered. An equation to calculate a bid value
that forms the basis for task allocation is presented in this chapter. The equation can also be
used for further types of tasks and ensures that tasks with unique requirements, e. g., if they
need to be processed first are executed in a way that all requirements are fulfilled. Starvation
of tasks is also avoided.

The methods presented in Chapter 4 to Chapter 7 describe the entire multi-UAV system
in detail. Validation of the mathematical approaches is also conducted in the course of
the relevant chapters and the UAVs have all necessary capabilities to reach the objectives
introduced in Section 1.2.

The task handling approach presented in this chapter is less formal than the potential field
approaches. Therefore, no proof of desired properties like stability is given in this chapter.
An evaluation of the resulting system is presented in the following chapter including the task
handling system using the example tasks and priorities. The empirical evaluation shows that
an implementation of the approach works well and that all approximations described in the
preceding chapters result in a computable and efficient system. Additionally, the efficiency of
the approach concerning exploratory navigation using different numbers of UAVs is evaluated
in the following chapter.
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A detailed description of the system presented in this thesis is given throughout the course of
Chapters 4 to 7. Several approximations have been introduced for the resulting approach.
They decrease the computational effort needed to compute paths from the initial configurations
qI of the UAVs to the target configurations qG. The basics of the potential field approaches
have been verified by showing that they are globally asymptotically stable as described in
Section 5.5 and Section 6.5. The verification takes a continuous mathematical space into
account.

This chapter presents the evaluation of the entire system. It shows that the approximations
made to reduce the computational complexity do not break the system, that the single parts
of the system work well with each other, and that the approach is efficient by running various
tests using the implementation of the approach. It is also shown that the objectives for a
cooperative UAV system, described in Section 1.2, have been reached.

A simulation environment of the resulting system has been implemented for several reasons.
As mentioned before, a simulation should be created for safety reasons (cf. Section 1.2). It is
also used to examine whether the methods work using discrete arithmetic provided by a CPU.
It enfolded a Control Station (cf. Section 4.1.1) responsible for the creation and visualization
of different environments in three dimensions. Additionally, UAVs are simulated as described
in Section 4.1.2. They exchange data with the Control Station using TCP/IP in order to
receive information regarding new and deleted targets and obstacles, as well as about the
environment. They also exchange data with each other using UDP/IP, to always plan their
actions based on up-to-date information. All parts of the system have been implemented
using GNU g++-4.7 [179].

Several different tests on various environments have been run and published before [3], [4],
[5], [6], [8]. They show that the UAVs are always able to fulfill their tasks. The presented
evaluation results contain the computation times needed to compute the potential fields, the
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reduction of nodes achieved by octree use (cf. Section 4.2), and show the increase in efficiency
gained by raising the number of participating UAVs for exploratory navigation.

The single test runs are presented during the following sections including exploratory navi-
gation with and without the possibility to create formations. The environment is in some
tests known a priori while the UAVs have to explore a completely unknown environment
in other test runs. All UAVs used for the test cases have been simulated through a single
PC simultaneously. Additional tests regarding obstacle avoidance behavior for both, single
UAVs and UAV formations, as well as further test runs regarding the task allocation system
described in Chapter 7 are also presented.

The following section describes the assumptions made for the evaluation. These assumptions
are partly unrealistic for a real world system. Thereafter, the test environment is introduced.
The measured result values and the parameter settings, as well as the objectives to be
evaluated are motivated in the further course of the chapter. The following section presents
test results for exploratory navigation without formation flights based on the potential
field introduced in Chapter 5. Afterwards, test runs evaluating formation flights using the
superpositioned potential field presented in Chapter 6 are performed and the results are
compared with the previous test results. The last test section considers the UAV behavior
with focus on the methodology described in Chapter 7. Finally, a conclusion considering the
achieved results and a summary of the chapter is given.

8.1. Assumptions

The tests performed in this chapter are based on assumptions that might not hold for
real world environments. No artificial disturbances regarding the network communication
have been introduced. Thus, as a single PC simulates all UAVs a nearly perfect network
communication is given. In contrast to this thesis, only wireless solutions are suitable for
UAV flights in real world environments. These solutions cannot always guarantee perfect
communication, e. g., due to network range if techniques like W-Lan are used. Communication
can become more robust by the use of a combination of, e. g., LTE, UMTS and dedicated
satellite connections. Additionally, interferences, e. g., due to objects being between the UAVs
and the counterpart station can always occur. This can cause communication loss, as well as
long delays. Section 4.4 briefly introduces a few possible solutions for the establishment of
robust wireless communication networks in order to overcome the mentioned issues.

Another challenge real world systems have to face is positioning. The UAVs used for this
evaluation can rely on a perfect positioning. The use of currently available positioning systems
like GPS [227] results in inaccuracies. Such a system has various deviations and it is not
possible to always receive a perfect positioning the UAVs can rely on. The deviations have to
be taken into account for real world applications in order to avoid obstacles and other UAVs.
The future use of Galileo [228] might reduce the deviations but it will still not be possible to
receive a perfect positioning at all. Thus, state-of-the-art UAV systems that fly in formation
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rely on a tracking system based on bird’s eye cameras as, e. g., presented in [132] to compute
nearly perfect positions. But such systems cannot be installed in every area UAVs might
work in future applications.

A possibility to reduce the positioning inaccuracies is the use of sensors to detect obstacles
and other UAVs close by. Such sensor information can be merged with the received position
in order to compute a more precise one. Another way to overcome the positioning problem in
real world applications is the use of a relative positioning system as it is performed, e. g., in
SLAM approaches (cf. Section 2.2.3). The positions computed by the localization part can
also be merged with positions received from a positioning system to reach higher accuracy.

The UAVs used for the evaluation are able to fly from one route point to another in a straight
line. In real world applications especially in environments consisting of various obstacles wind
influences can make this impossible. While the wind influence in an obstacle free environment
is most times relatively steady and thus the UAVs might be able to compensate it, strong
wind changes are often caused due to obstacles. Strong wind that often changes its direction
and strengths after obstacles must be compensated or at least taken into account by obstacle
growing in order to avoid collisions using real world UAVs.

The evaluation is based on the assumptions described in this section. A test environment has
been created. It is based on real world data in order to achieve meaningful results. The tests
consider the potential fields presented before, as well as the task handling approach. They
do not consider parts necessary for a real world UAV system and therefore neglected in this
thesis. Thus, for the evaluation of the presented UAV system the assumptions can be made
and the potential fields are still valid. The following section introduces the environment.

8.2. Experimental Setup

The environment used for the evaluation is based on a heightmap obtained from SRTM data
[229] in order to create a realistic environment. SRTM stands for the shuttle radar topography
mission of the NASA. It was flown on the space shuttle Endeavour that launched for this
mission on 11. February 2000 and took eleven days to measure the world. Digital elevation
data of the earth’s land mass between 60 degrees north latitude and 54 degrees south latitude
have been produced. The achieved data are freely available with a horizontal resolution of
one arcsecond (30 m at the equator) for the United States territory and three arcseconds (90
m at the equator) for the rest of the world. The vertical resolution is approximately 6 m.

SRTM data require sensor processing if they are used for autonomous real world flights,
since the resolution is too coarse to only rely on this data. In future, more detailed data
should be available with a resolution of up to one meter through the German TerraSAR-X
satellite [230], [231]. Nevertheless, sensor inputs will then still be necessary as the terrain
data provided by satellites does not include buildings, trees, power supply lines, etc.
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The test terrain is a heightmap representing a part of the European mountain range Alps and
has been scaled to a size of 4, 000 m× 4, 000 m. It includes the Lago di Cavazzo lake in the
Province of Udine, Friuli-Venezia Giulia, Italy. The terrain has been scaled to a maximum
height of 1, 200 m. The resulting heightmap heights vary between 31.77 m and 650.26 m.
The simulated UAVs flew at a favorite altitude of 150 m and a maximum altitude of 300 m
with a speed of 80 km/h and a climbing speed of 2.22 m/s. This results in a free space CF of
approximately 1.9 billion m3 the UAVs have to explore.

The UAVs have been equipped with a high resolution bird’s eye camera pointing directly
towards the ground in order to explore the underlying terrain. Thus, the single UAVs are
assigned to the role explorer (cf. Section 7.3.2). The camera has a flare angle of 64◦ and a
camera ratio of 16 : 9. This leads to a maximum area of approximately 228, 500 m3, a single
UAV can explore at a time, with this camera at its favorite altitude. The UAV equipment
also includes a front camera for all test runs to reach comparability of the single test series.
Such a camera is necessary for exploratory navigation in unknown environments to detect
obstacles. It has the same flare angle as the bird’s eye camera and it is assumed that the
UAVs are able to detect obstacles within a range of 100 m. Thus, this camera is able to
explore an area of up to 67, 700 m3 if no obstacles reduce the visibility range. Using a camera
is kind of unrealistic to detect obstacles in a distance of 100 m. But techniques like lidar
(light detection and ranging) or radar (radio detection and ranging) can be used by real world
UAVs to reach such detection ranges.

The exploration rate and the necessary time to entirely explore the environment is directly
related to the UAV’s speed and to the area the cameras can explore at a moment. Changing
these values will result in different exploration durations.

The UAVs are homogeneous regarding their dimensions, which are treated to be 8m×8m×4m
to ensure a safe distance between them. The dimensions of the UAVs and the dimensions of
the environment result in a maximum octree level of eight leading to a maximum number of
88 = 16, 777, 216 leaves. The environment created at last is visualized by the Control Station
shown in Figure 8.1.

An extension of the terrain by four models created with 3ds max [182] has been performed.
The UAVs have to fly through these models in order to entirely explore the environment.
These three-dimensional models are a Buddhist temple [232] shown in Figure 8.2 a), a bridge
[233] shown in Figure 8.2 b), a triumph arch [234] shown in Figure 8.2 c), and finally a model
of the Eiffel Tower [235] shown in Figure 8.2 d). The model of the Eiffel tower has been
scaled to its original height of 324 m. The other three models have been scaled such that they
are big enough to be entered by the UAVs. All models are distributed over the environment
in a way that the UAVs can reach and enter them. They are freely available on the internet
and demonstrate that the approach works not only with models explicitly created for the
system but also with further three-dimensional objects such as real buildings.

It is assumed that real UAVs are equipped with dedicated CPUs for path computation. The
multi-core CPU used for the test runs distorts some of the computation time results presented
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Figure 8.1.: Visualization of the test environment using the Control Station.

in the following sections. This is due to the simple fact that path computation for n UAVs
using m < n cores leads to simultaneous calculations on the same cores. Nevertheless, the
tests have been run on an AMD Phenom II X6 1100T processor with 6× 3.3 GHz as one
objective is to show that the approach is computationally efficient using up-to-date hardware.

The selected environment is based on real world data and thus represents a possible en-
vironment, through which real UAVs might fly in the future. It has been extended with
three-dimensional models to respect that real environments also contain three-dimensional
structures to be explored, e. g., in case of disasters or in order to find missing people. It
is still partly a fictive environment based on real data, which makes it a representative
environment leading to relevant results. A countrified environment has been chosen to
evaluate the formation approach. Formation flights seem not be very beneficial in a city
with many skyscrapers and small street canyons. For such environments only the harmonic
potential field approach presented in Chapter 5 might be more beneficial if the main task is
exploratory navigation.

The following section introduces, explains, and motivates the measured values used to evaluate
the approach. It additionally presents the parameter settings of the single test series used
during exploratory navigation.
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a) b)

c) d)

Figure 8.2.: The four models included in the test environment: a Buddhist temple [232] shown in
a), a bridge [233] shown in b), a triumph arch [234] shown in c), and the Eiffel Tower [235] shown
in d).

8.2.1. Measured Values and Parameter Settings

A wide range of results is presented in the following sections. These results often show specific
values like the time needed to compute single potential fields. The gained values are only
partly reproducible as they depend on various factors, like the start positions of the UAVs,
which UAV moves first, the scheduler of the operating system, the used C++ compiler, as
well as the code optimization options used for compiling and so on. Nevertheless, these values
are presented and used to formulate statements regarding the objectives to be evaluated
because it makes, e. g., no big difference if potential field computation takes in average 110
milliseconds or 112 milliseconds. It would be considered as efficient in both cases. The
evaluation has not been conducted to just show some specific values but to investigate if the
objectives of Section 1.2 have been reached. Therefore, it has been evaluated
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• if the approach is efficient using up-to-date hardware.

• what benefit has been achieved by the use of the octree.

• if an increase in the number of UAVs influences the results positively.

• if the consecutive computation of the potential fields leads to the expected behavior

– during non-formation flights.

– during formation flights.

– in static environments represented by a priori known terrains.

– in dynamic environments represented by a priori unknown terrains.

• if a combination of non-formation flights and formation flights can lead to an increase
in efficiency.

• how single UAVs perform obstacle avoidance.

• how UAV formations change in order to avoid obstacles.

• how the task allocation approach works.

Various tests performed using the implementation of the approach in order to give answers
to these questions are presented in the further course of this chapter. One focus of this
thesis lies on efficient exploration of three-dimensional environments. Thus, the presented
environment has been explored in four test series under differing environmental conditions
and varying UAV capabilities, regarding the formation’s abilities to show that the designed
system is able to achieve entire explorations of the environment. The conditions of the single
test series are in the following:

1. The environment is known a priori and the UAVs do not fly in formation.

2. The environment is unknown a priori and the UAVs do not fly in formation.

3. The environment is known a priori and the UAVs always fly in formation.

4. The environment is unknown a priori and the UAVs always fly in formation.

Each of the test series contains four test runs while the single runs differ in number of UAVs.
Runs using three, six, nine, and twelve UAVs have been performed. Various results have been
obtained from each test run. Some of them are average values whereby in this context the
term average denotes the arithmetic mean.

One UAV from each test run has been selected to show main results graphically, using
diagrams. The most important results consider efficiency in terms of durations the single
explorations took and efficiency in terms of low time spans single potential field computations
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last. The percentage of explored area in the course of time is presented for each single test run
to show that the UAVs are able to entirely explore the environment, as well as to highlight
effects caused by varying the number of UAVs.

The second value, which is graphically illustrated, is the number of unbound nodes #lun
taken into account for potential field computations. The most costly part of potential field
computation is the relaxation of the harmonic potential field (cf. Section 5.3.3). Many
researchers try to relax until they reach a given precision, which results in a number of ni
iterations needed to stabilize the potential field. Approximately ni ' 1

4s · nl iterations are
necessary to reach a predefined precision of ε < 10−s, s ∈ R>0,[188], whereby nl denotes the
number of octree leaves. Such a precision is not computed by the UAVs present in this thesis.
They create potential fields “good enough” for path planning. So, the number of unbound
nodes is presented and compared to the single computation durations ti, the iteration depth
∅depth of the relaxation resulting from the termination conditions (cf. Section 5.3.4), and the
average duration t∅ needed to compute the single potential fields. These durations are also
illustrated graphically.

For each test run the minimum number of unbound leaves #min(lun), the maximum number
of unbound leaves #max(lun), and the average number of unbound leaves #∅(lun) used for
potential field computation by taking all UAVs of each test run into account are presented.
These leaves influence the computation times directly.

Additionally, the minimum number of leaves #min(li), the maximum number of leaves #max(li),
and the average number of leaves #∅(li) taken into account for potential field computations
are presented. These numbers show the significant decrease in the number of necessary leaves
through the use of an octree compared to grid-like structures.

The number of potential field computations #computations, is also presented. This value in
combination with the durations the single explorations took, leads to the average time
difference between two potential field computations ∅tdiff . If the UAVs are able to compute
the potential fields several times within this time difference, they are able to compute a new
path before they reach their target configuration. They will fly smoothly without waiting for
newly computed paths in this case.

Beside the graphical representation of the computation durations for a selected UAV per
test run, the minimum computation duration tmin, the maximum computation duration
tmax, the average computation duration t∅, and the complete computation duration tcomplete
considering all UAVs of each test run are presented.

The presented durations do not denote the time the computation threads spend at the CPU.
They are real durations from the start to end of the computation. These times are considered
to be more relevant, as real UAVs would also have additional tasks to solve, such as requests
from the operating system or stabilizing the UAV in midair, delaying the resulting potential
field. This makes it nearly impossible to achieve exactly the same specific values running the
following tests twice. Nevertheless, the main statements can be repeated by repeating the
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tests and only differences of a few negligible milliseconds are achieved by repeating the test
runs. Thus, the aforementioned evaluation objectives can be audited.

The iteration of the relaxation has terminated during the following test series if (1) no
reachable local equilibrium was left, if (2) the mean potential value change is less than 0.001,
or if (3) the iteration depth is equal to the number of considered nodes multiplied by 0.01
plus ten additional iterations (cf. Section 5.3.4). The constant ten has been chosen to ensure
that even by a low number of nodes taken into account multiple iterations can be performed
to compute out possible existing local equilibria.

These settings have direct influence on the durations needed to compute the single potential
fields, as well as on the UAVs exploration capabilities. Using these thresholds such that only
a low number of iterations is possible, lowers the times needed to compute the potential
fields. This can result in remaining local equilibria, making it impossible for the UAVs to
thoroughly explore the environment.

The three termination conditions are mainly responsible for the number of iterations conducted
by the UAVs during potential field computations. The number of iterations also affects the
computation duration. Hence, the average iteration depth ∅depth taking all UAVs of the
single test runs into account is presented.

Another part of cost reduction regards the number of nodes taken into account for potential
field computations. Leaves, further away from the UAV than 150 m are combined to larger
leaves, which are then considered during the following tests.

All UAVs start their flights within a radius of 200 m. This small start area results in
disturbances at the beginning of the single test runs. The disturbances increase when the
number of UAVs raises. If they are too high, several possibilities to overcome them exist.
One possible solution is the distribution of the UAVs over a larger area, which is unlikely for
most applications. Another solution would be to start the UAVs one after another with an
appropriate time interval between the starts.

The next two sections present the exploration capabilities of the designed system in detail,
whereby the next section evaluates the approach without formation flights. The tests described
in the succeeding section are run, using formation flights only.

8.3. Decentralized Exploration

The results presented in this section have been obtained while the UAVs never create
formations and plan their trajectories based on the potential field presented in Chapter 5.
One focus lies on the exploration rate over time. Additionally, the number of nodes used for
the potential field computations and the durations needed to compute the single potential
fields are graphically presented using the results obtained by a single UAV per test run.
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The tests have been run in order to show that several of the objectives necessary to create
a robust, flexible and scalable system (cf. Section 1.2) are reached by the designed system.
It is investigated whether the UAVs are able to entirely explore the environment in both
states, the terrain information is known a priori and the terrain information is unknown a
priori. Additionally, it is shown that the approach is computationally efficient and that the
behavior is completely autonomous and distributed as claimed in Section 1.2. Further on,
the efficiency of the potential field computation and the benefit achieved by using an octree
as underlying data structure has been investigated.

All exploratory navigation tests presented in this thesis are conducted as follows. The
UAVs first connect themselves to the Control Station (cf. Section 4.1.1) in order to receive
environmental information. They do not receive any other helpful data or commands from
the Control Station beside information regarding the terrain. Thus, the UAV behavior is
completely autonomous and distributed.

As described in Section 5.4.1, an entire exploration is done stepwise at different altitudes.
The UAVs first select leaves at their favorite altitude as part of their next target configuration
due to quality requirements of the camera equipment. If all leaves at their favorite altitude
have been reached, they start selecting leaves at their favorite altitude multiplied by two and
so on until the maximum altitude has been reached. Finally, the remaining unexplored areas
of the environment, like rooms in buildings, are explored.

The test environment is described in the previous section and test cases with different numbers
of UAVs have been run. The results show that the exploration rate could be increased by
raising the number of UAVs due to inter-UAV communication (cf. Section 4.4). Four test
runs have been conducted for each parameter setting using three, six, nine, and twelve UAVs.

The presented calculation durations for the computation of the single potential values φhx,y,z
are achieved by the algorithm presented in Appendix A.5 and include the following six tasks:

1. Creation of the Dirichlet Boundary Condition (cf. Section 5.3.1).

2. Creation of a list of all unbound leaves (cf. Section 5.3.5).

3. Conduction of the pre-calculations (cf. Section 5.3.5).

4. Computation of the first approximation (cf. Section 5.3.2).

5. Relaxation of the first approximation (cf. Section 5.3.3).

6. Check for termination conditions (cf. Section 5.3.4).

Path computation itself is not included in the durations as it is based on the negative gradient
−∇. The computation of a first route point consists only of comparing the potential value
of the leaf enclosing the UAV with the potential values of the neighboring leaves. These
comparisons are done in less than one millisecond and thus have no noticeable influence on
the results. The computation durations show the efficiency of the approach. These durations,
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as well as additional results are presented in the next sections obtained by exploratory
navigation in an a priori known environment through three, six, nine, and twelve UAVs
without formation flights.

8.3.1. Known Environment

The environment presented in Section 8.2 has been known to the UAVs a priori and has been
explored four times using different numbers of UAVs in the first test series. Additionally,
the UAVs do not create formations in these test series. Figure 8.3 shows the percentage of
explored space over time. The x - axis represents the time line. It starts at time zero, which
marks the start of the simulation and illustrates the duration of the exploration in minutes.
The y - axis shows the percentage of explored free space CF at each point in time.
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Figure 8.3.: Percentage of explored free space at each point in time for an environment known a
priori without formation abilities by 3, 6, 9, and 12 UAVs performing exploratory navigation.

It can be seen that an exploration of the entire free space has been achieved in all four
test runs. The time needed to explore the environment decreases significantly by increasing
the number of UAVs from three to six. Three UAVs needed 335.28 minutes to explore the
environment while six UAV performed the task in 195.93 minutes. A further reduction of the
exploration duration down to 157.71 minutes has been achieved by using nine UAVs while
twelve UAVs were able to explore the entire environment in 137.25 minutes.

These durations show that raising the number of UAVs leads to a benefit regarding the time
needed to entirely explore the environment. Nevertheless, while an increase from three to six

157



Chapter 8. Evaluation 8.3. Decentralized Exploration

UAVs results in a benefit of 139.35 minutes a further raise of three UAVs to nine reduced
the time needed only by about 38.22 minutes. The last increase of the number of UAVs to
twelve reduced the time needed only by about 20.46 minutes. This shows that the exploration
duration does not correlate linearly with the number of UAVs used for exploratory navigation.
Instead, the benefit is lowered the more UAVs are used.

Using real UAVs leads to costs per flight hour. Taking the complete flight times into account
results in 1,005.84 minutes using three UAVs, 1,175.22 minutes using six UAVs, 1,419.39
minutes using nine UAVs, and 1,647 minutes using twelve UAVs to entirely explore the
environment. So, considering the costs per flight hour, it becomes more beneficial to only use
a relatively low number of UAVs for exploratory navigation.

Figure 8.3 also shows the exploration rate to decrease, the more free space has been explored.
Three UAVs, e. g., needed only 57 minutes to explore 50% of the environment while it took
them two hours to explore 77.5%. To reach an exploration of further 17.5% to 95% took them
about an additional hour and they had to spend another two and a half hours to explore the
remaining 5% of the environment. This is mainly caused by the relatively uncoordinated
exploration at the beginning. The UAVs start like foraging ants (cf. Section 2.1.1) by
spreading out in various directions to explore the environment and thus several small areas
are missed. These areas are distributed over the environment and have to be explored one
after another at the end of the exploration

Figure 8.4 shows the number of unbound nodes taken into account for the single potential
field computations by one selected UAV per test run. The potential field computations
are numbered from 1 to number of potential field calculations #computations needed by the
selected UAVs until the entire free space has been explored. They are pictured on the x -
axis. The y - axis shows the number of explored nodes used to compute the potential field
number i = 1, . . . ,#computations. The unbound nodes have been selected as they influence the
necessary time to compute the potential fields directly, while the bound nodes only need to
be assigned to a fixed value (cf. Section 5.3). It can be seen that the number of explored
nodes is relatively steady independent of the number of UAVs used for the single test runs.
A maximum number of 8,324 explored nodes has been taken into account for potential field
computations by the presented UAVs. The differences in the number of nodes results from
the position of each UAV during potential field computations. The closer the UAV is to
the center of the environment the higher is the number of leaves. This is due to the fact
that if the UAV is, e. g., more than 150 m away from the center of the terrain, 7

8 of the
environmental nodes can be combined to seven nodes.

Table 8.1 shows several statistical data regarding the nodes considered for potential field
computations. The complete number of nodes #(li) taken into account for potential field
calculations lies within the range from 575 to 12,852 for all UAVs, while the number of
explored nodes #(lun) is between 67 and 12,131. These values are barely influenced by the
number of UAVs used for single test runs.
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Figure 8.4.: Nodes considered for the single potential field computations using an environment
known a priori without formation abilities by the use of 3, 6, 9, and 12 UAVs for exploratory
navigation.

The highest average number of nodes has been considered by six UAVs, which needed 4,054.13
nodes in average. The maximum average number of unbound nodes has also been taken into
account by six UAVs, which needed 2,769.92 unbound nodes in average. This shows that the
number of UAVs does not correlate with the number of octree nodes needed to compute the
potential fields.

The maximum number of 12,468 nodes used for potential field computations shows the great
advantage of a tree-based data structure compared to a grid-like structure, which would
have resulted in approximately 16.777 million leaves (cf. Section 8.2) to reach an equal
discretization.

Additionally, it can be seen from Table 8.1 that raising the number of UAVs will result in
an increase of the number of necessary computations #computations to entirely explore the
environment. The number of computations is an indicator for distortion of UAVs amongst
others. As they always get too close to each other, avoidance paths are calculated.

Figure 8.5 shows the single durations needed to calculate the potential fields, as well as the
average durations. Always one UAV has been selected from each test run for the representation
of this data. The x - axis shows the computation number while the y - axis illustrates the
durations needed to compute the single potential fields, as well as the average computation
durations in milliseconds.
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3 UAVs 6 UAVs 9 UAVs 12 UAVs
#min(lun) 67.00 67.00 67.00 67.00
#max(lun) 8,476.00 11,464.00 11,261.00 12,131.00
#∅(lun) 2,381.64 2,769.92 2,688.79 2,641.78
#min(li) 603.00 659.00 575.00 575.00
#max(li) 9,479.00 12,314.00 11,852.00 12,468.00
#∅(li) 3,608.05 4,054.13 3,921.35 3,898.93
#computations 2,862.00 3,135.00 3,346.00 3,750.00

Table 8.1.: Minimum #min(lun), maximum #max(lun), and average #∅(lun) number of unbound
nodes, as well as minimum #min(li), maximum #max(li), and average #∅(li) number of nodes
used for potential field computation. The number of potential field computations #computations is
presented, too.

The average duration increases significantly at the beginning and decreases in the further
course of exploratory navigation. This is independent from the number of UAVs used for
the test runs. It results, on the one hand, from the fragmentation of the environment at the
beginning. The UAVs start to fly in different directions, which results in small explored areas
distributed all over the environment.

On the other hand, the UAVs start in short distance to each other. This causes a higher
complexity of the area considered to be at maximum discretization level and leads to a
higher number of necessary iterations to compute out all local equilibria created by the small
obstacle areas, which are close to each other and are caused by the other UAVs. These two
effects are reduced over time in this test series, leading to a decrease of the durations needed
to compute the single potential fields.

It can also be seen that the duration needed for potential field computations increases when
the number of UAVs is raised. This is not surprising as more UAVs lead to a higher complexity
of the environment. The average computation durations t∅ using the selected UAVs from the
test runs with three and six UAVs are 75.77 milliseconds and 102.38 milliseconds, which does
not differ as much as the computation durations between six, nine (134.36 milliseconds) and
twelve (226.48 milliseconds) UAVs. This can partially be explained by the number of cores
and the number of simulated UAVs. As mentioned before using more than six UAVs on a
CPU with only six cores leads to simultaneous potential field computations on the same core.
This is an external influence and increases the durations needed to calculate single potential
fields. Nevertheless, it can be seen in Figure 8.5 that the single computation durations ti
for the selected UAVs are above one second, six times only, which only occurs, using twelve
UAVs. Thus, it can be assumed that the approach is really efficient.

Table 8.2 shows some statistical data regarding the calculation durations needed to compute
the potential fields by taking all UAVs of the single test runs into account. The maximum
computation duration tmax for potential field calculations are often peaks, e. g., using six
UAVs tmax took 639 milliseconds, while it only occurred five times during the entire test
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Figure 8.5.: Single computation durations ti, as well as the average computation durations t∅
needed to compute the potential fields in an environment known a priori without formation abilities
by the use of 3, 6, 9, and 12 UAVs for exploratory navigation.

run, that more than 500 milliseconds were necessary to compute the potential field. But in
average it took only 102.38 milliseconds to compute the potential fields.

The results presented in Table 8.2 also show that the statement “raising the number of UAVs
also increases the average computation durations t∅” holds true for all UAVs. Doubling the
number of UAVs from three to six increased the computation durations by approximately
35% to 102.38 milliseconds. Tripling the number of UAVs from three to nine leads to higher
computation durations of approximately 77% to 134.36 milliseconds, while the use of twelve
UAVs resulted in durations of approximately 299% higher than in case of three UAVs up to
226.48 milliseconds. Nevertheless, a maximum average duration of 226.48 milliseconds by the
use of twelve UAVs enabling them to entirely explore such a large environment denotes a
really fast path planning approach.

The average iteration depth ∅depth needed to reach the termination conditions introduced
before, shows that this depth is not directly related to the number of UAVs as it increases
by raising the UAVs from three to six while the lowest value has been reached using twelve
UAVs. It can also be seen that a higher number of UAVs also leads to an increase of the
entire computation durations tcomplete from 216.86 seconds using three UAVs up to 849.31
seconds using twelve UAVs.

Finally, Table 8.2 shows the average time elapsed between two potential field computations
∅tdiff in seconds. These values are between 21.09 seconds and 26.35 seconds. Comparing
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3 UAVs 6 UAVs 9 UAVs 12 UAVs
tmin ms. 31.00 32.00 32.00 33.00
tmax ms. 443.00 639.00 1,102.00 1,687.00
t∅ ms. 75.77 102.38 134.36 226.48
tcomplete sec. 216.86 320.95 449.57 849.31
∅depth 8.37 11.05 9.67 7.77
∅tdiff sec. 21.09 22.50 25.45 26.35
#computations 2,862.00 3,135.00 3,346.00 3,750.00

Table 8.2.: Minimum tmin, maximum tmax, and average t∅ durations needed for potential field
computations. Additionally, the complete duration tcomplete needed for the computations, the average
iteration depth ∅depht, the average duration difference between two potential field computations
∅tdiff and the complete number of necessary computations #computations by taking all UAVs of the
single test runs into account.

them with the durations needed to compute a potential field–the average durations t∅, as well
as the maximum durations tmax–shows that the UAVs are able to compute various paths on
their way from the initial configuration to the target configuration. It is not always desirable
to reach a long time span between two potential field computations as this also indicates that
the UAVs must plan long paths from one unexplored area to another. Such cases result in
higher durations necessary for the entire exploration of the environment.

This section presents in detail the abilities of the UAV system described in this thesis without
formation flights in an a priori known environment. In addition to these capabilities, the
UAVs are able to entirely explore unknown environments, for which the results are described
in the following section.

8.3.2. Unknown Environment

The test series described in the previous section has been repeated, while the terrain was
unknown a priori to the UAVs. Unknown environments lead to different results as the UAVs
are then not only able to compute paths to unexplored areas, but also to occupied areas they
detect during path following. In such cases a recalculation of the path is performed.

The detection of formerly unknown obstacles makes the environment more dynamic. UAVs
working in real world environments must be able to react properly to new situations like
newly detected obstacles intersecting their paths. The section presents results obtained in
such a dynamic scenario and shows that the system is able to face this challenge.

The intention of this test series is to show that the objectives of Section 1.2 have also been
reached for exploratory navigation in unknown environments. This is important for many
applications, such as the exploration after big disasters, which caused significant changes to
the affected terrain.
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Figure 8.6 shows the exploration rate over the course of time. The x - axis represents the
time line while the y - axis shows the percentage of explored free space at any point in
time. It can be seen that environmental exploration took longer in each test run than in the
corresponding test runs described within the previous section. This shows that the approach
becomes more efficient, the more information the UAVs have on the environment.
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Figure 8.6.: Percentage of explored free space at each point in time for an environment unknown a
priori without formation abilities by 3, 6, 9, and 12 UAVs performing exploratory navigation.

It can also be seen that the use of twelve UAVs results in a small benefit compared to the test
run with nine UAVs in this test series. An increase of the number of UAVs from three to six
decreased the time needed to entirely explore the environment from 583.75 minutes to 395.36
minutes and a further raise of the UAVs to nine additionally reduced the time needed to
231.01 minutes. Exploratory navigation of the entire environment took 218.8 minutes using
twelve UAVs, which is not a big benefit compared to the result using nine UAVs. Taking
the costs per flight hour into account, leads to the same result, which was obtained in the
previous section. The lesser UAVs are used, the lesser number of flight hours is necessary to
entirely explore the environment. This effect would only be reversed if the duration needed
to explore the entire environment could be reduced significantly, e. g., about more than half
if twice the number of UAVs are used.

A higher duration is needed in all four test runs to entirely explore the environment, compared
to the results obtained when the environment was known a priori. This is caused by newly
detected obstacles as these obstacles often make the current path obsolete and a new path
has to be computed. The result also means that the path computed before is less optimal
than it would be if information on the obstacles exists before path planning starts. Thus, the
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better knowledge the UAVs have regarding the environment, the more efficient the paths are,
which they compute.

The exploration rate of the free space is similar for the first 20% in all test runs. Noticeable is
that nine UAVs were able to explore 90% of the environment faster than twelve UAVs. Only
at the end, when the UAVs had to visit the small remaining unexplored areas the distribution
of twelve UAVs allowed them to explore the entire environment faster than nine UAVs.

Exploration of unknown environments leads to a high number of environmental changes
making the environment highly dynamic. The results show that the UAVs are able to entirely
explore such environments. This means that they behave self-adaptive to environmental
changes, which fulfills one objective from Section 1.2.

Figure 8.7 shows the number of unbound nodes used to compute the single potential fields
by one chosen UAV per test run. The computations are numbered from 1 to #computations.
The number of nodes is pictured on the y - axis while the number of the potential field
computations is shown on the x - axis.
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Figure 8.7.: Nodes considered for the single potential field computations using an environment
unknown a priori without formation abilities by the use of 3, 6, 9, and 12 UAVs for exploratory
navigation.

Similar to the results obtained in an a priori known environment, the number of nodes
is relatively steady independent from the number of used UAVs for the single test runs.
It always lies below 10,000, which is much less than the 16.777 million leaves a grid-like
structure would have produced. This again shows the benefit achieved through the octree.
Reducing the number of nodes is necessary to guarantee fast potential field computations (cf.

164



8.3. Decentralized Exploration Chapter 8. Evaluation

Section 5.3.3). The octree fulfills this objective without breaking the approach as still entire
explorations of the environment under varying conditions have been achieved.

Table 8.3 shows several statistical data regarding the nodes taken into account for potential
field computation. Compared to exploratory navigation in an a priori known environment,
the average number of nodes #∅(li) taken into account is higher. This results from the
distribution of the occupied space. In a known environment all occupied leaves are known
at the beginning and the UAVs are able to combine them to bigger nodes and thus reduce
the overall number of nodes. This is not the case in unknown environments and results in a
higher number of nodes as only small areas are marked as occupied in the beginning.

Another noticeable aspect shown in Table 8.3 is the number of potential field computations.
Compared to the results obtained in an a priori known environment more potential field
computations were necessary in all four test runs. This is caused by newly detected obstacles.
These obstacles can on the one hand intersect the current path of the UAVs, which forces
a new path computation. On the other hand, newly detected obstacles can lead to areas
unreachable for the UAVs, but set as reachable before obstacle detection. A new path
computation must occur if these unreachable areas have been selected as next target area
earlier.

3 UAVs 6 UAVs 9 UAVs 12 UAVs
#min(lun) 37.00 67.00 37.00 37.00
#max(lun) 8,594.00 8,466.00 10,602.00 10,119.00
#∅(lun) 2,044.23 2,196.71 2,351.04 2,361.30
#min(li) 505.00 603.00 617.00 400.00
#max(li) 12,580.00 13,448.00 13,434.00 14,169.00
#∅(li) 4,466.40 4,652.04 4,826.21 4,891.05
#computations 3,982.00 4,994.00 4,652.00 5,056.00

Table 8.3.: Minimum #min(lun), maximum #max(lun), and average #∅(lun) number of unbound
nodes, as well as minimum #min(li), maximum #max(li), and average #∅(li) number of nodes
used for potential field computation. The number of potential field computations #computations is
presented, too.

Figure 8.8 shows the durations needed to calculate the single potential fields, as well as the
average durations. Similar to the results shown in the other diagrams, one single UAV has
been selected from each test run to graphically represent the obtained data. The x - axis
shows the number of potential field computations #computations while the y - axis shows the
durations needed to compute the potential fields.

It can be seen that the results regarding the computation times are higher than the ones
achieved in the test series with an a priori known environment. This means that the higher
complexity a dynamic environment comes with, directly influences the efficiency of potential
field computations.
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Figure 8.8.: Single computation durations ti, as well as the average computation durations t∅
needed to compute the potential fields in an environment unknown a priori without formation abilities
by the use of 3, 6, 9, and 12 UAVs for exploratory navigation.

The computation times are relatively high at the beginning of exploratory navigation and
diminish over the course of time similar to the results achieved by the use of an a priori
known environment. The peaks are also similar to the ones in an a priori known environment
and thus the approach is also efficient for dynamic environments with many environmental
changes. So, the objective from Section 1.2 that the approach has to be computationally
efficient can be reached using harmonic potential fields in both applications, static and highly
dynamic environments.

Other statements from the previous section also hold true for unknown environments. The
durations needed to compute potential fields rise with an increasing number of UAVs. This
is caused by the higher complexity, more UAVs lead to. The durations do not correlate
linearly with the number of UAVs. The UAV representing three UAVs in Figure 8.8 needed
140.70 milliseconds in average, while the UAV selected to represent six UAVs needed 160.74
milliseconds. This is only a small increase. A much higher raise of the durations has been
achieved by nine UAVs where the presented UAV needed 249.48 milliseconds in average. But
even the average duration of 378.36 milliseconds necessary to compute the potential fields
using twelve UAVs is still a good result as the selected UAV was able to compute nearly three
potential fields in average per second. With these durations the UAVs are able to quickly
react to newly detected obstacles and to compute feasible paths avoiding obstacles.

Table 8.4 shows some statistical data regarding the computation durations needed to calculate
the single potential values by taking all UAVs of the test runs into account. It can be seen
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that similar to the results obtained in the test runs with an a priori known environment
raising the number of UAVs increases the durations necessary for potential field computations.
Increasing the number of UAVs from six to nine results in much higher durations than in an
a priori known environment. This is partially caused by the higher computational effort an
unknown environment leads to. Determination of unreachable areas, e. g., has to be done
several times for unknown environments. As the simulations are conducted using a six core
CPU such computations have a higher effect on simultaneous potential field computations if
they have been performed on the same core.

3 UAVs 6 UAVs 9 UAVs 12 UAVs
tmin ms. 36.00 44.00 43.00 74.00
tmax ms. 577.00 1,002.00 1,883.00 2,581.00
t∅ ms. 140.46 178.98 357.78 463.00
tcomplete sec. 559.31 893.82 1,270.12 2,193.72
∅depth 6.66 8.17 8.08 7.73
∅tdiff sec. 25.45 28.50 26.81 31.16
#computations 3,982.00 4,994.00 4,652.00 5,056.00

Table 8.4.: Minimum tmin, maximum tmax, and average t∅ durations needed for potential field
computations. Additionally, the complete duration tcomplete needed for the computations, the average
iteration depth ∅depht, the average duration difference between two potential field computations
∅tdiff and the complete number of necessary computations #computations by taking all UAVs of the
single test runs into account.

The duration of more than two and a half seconds the potential field computation took
at maximum is not a good result. But this value is more than five times higher than the
average duration needed and only single peaks are that high. Such values can be avoided by
introducing different termination conditions for the potential field relaxation (cf. Section 5.3.4).
Instead of or additionally to a maximum iteration depth used by the UAVs presented in this
thesis, a maximum time span after which potential field computation stops can be introduced.
Such a termination condition might be useful if real time constrains must be met, but can
also lead to suboptimal trajectories.

Using three and six UAVs results in average durations of less than 200 milliseconds for
potential field computations. Even 463 milliseconds using twelve UAVs is not a bad result.
Potential field computations are only conducted in order to compute new paths. These
new paths often lead to directional changes the UAVs must perform. Physics like inertia
of physical bodies—especially if they move with high speed—often cause much longer time
spans for direction changes than 178 milliseconds, which are, e. g., in average needed by six
UAVs for recalculations. Thus, using real world UAVs a higher time to react to environmental
changes than in simulation is indispensable and has to be considered during the design of
such a system.

The average number of iterations needed to compute the potential fields are between 6.66
and 8.17. They are less than the average iterations needed in an a priori known environment.
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This is mainly based on the fact that the environment is obstacle-free at the beginning of
the exploration and thus the first approximation often leads directly to an equilibrium-free
potential field.

Finally, Table 8.4 shows the time elapsed between two potential field computations. The
average durations lie between 25.45 seconds and 31.16 seconds. From this it follows that
it is in average possible to compute several potential fields before recalculation must be
performed. The time differences are higher than in an a priori known environment. This is
caused by the path recalculations necessary to avoid newly detected obstacles. Such obstacle
avoidance often cause the UAVs to rotate if new paths result in directional changes. Rotation
takes longer for the simulated UAVs than straight forward flights and therefore causes longer
durations needed to follow such paths. But rotating the UAVs is necessary. Backwards or
sidewards flight in unknown environments with obstacle detection capabilities only built into
the front of the UAVs will result in collisions.

This section presents in detail the abilities of the UAV system described in this thesis without
formation abilities in an unknown environment. In addition to these capabilities, the UAVs
are able to entirely explore environments in formation as shown in the following section.

8.4. Exploration in Formation

An evaluation of the system using the superpositioned potential field described in Chapter 6
is presented in this section. In contrast to the previous section, the potential field allows the
creation of formations for the presented test runs. The conditions for the test runs are equal
to the ones in the test series described before and the focus also lies on the same results. The
tests have been run in order to show that the objectives reached by non-formation flights are
also achieved through the use of formation flights. This is necessary as if the UAVs were, e. g.,
unable to entirely explore the environment the formation approach would only be usable for
a limited number of applications.

Sections 5.5 and 6.5 showed that the single potential fields computed by the UAVs are uniformly
globally asymptotically stable. Still, this verification says nothing about the superpositioned
potential field and the dynamics of the system achieved by consecutively computed potential
fields influenced by flying UAVs. To show that the computed superpositioned potential field is
also stable such that entire explorations are possible, the test runs from the previous sections
have been repeated while the UAVs always fly in formation.

The presented calculation durations for the computation of the potential fields are achieved
by the consecutive run of the algorithms presented in Appendix A.5 and Appendix A.6.
Calculating the superpositioned potential field includes two additional tasks beside the five
tasks needed to compute the harmonic potential field as used in the test runs, described in
the previous section:
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1. Computation of the bifurcating potential field (cf. Section 6.3.1).

2. Superpositioning of the two potential fields (cf. Section 6.3.2).

During formation flights one selected UAV of the formation computes a formation path all
UAVs have to follow. Therefore, the UAVs continuously recalculate the potential field in
order to follow the formation path without colliding with each other (cf. Section 6.4.2). One
intention for presenting the computation times is to show the efficiency of the continuous
potential field updates, needed for collision avoidance. Thus, the UAVs selected to graphically
show the results are UAVs not responsible for the computation of formation paths (cf.
Section 6.4.2). For continuous path recalculations during formation path following settings
that differ from the ones used to compute the formation paths towards unexplored areas
have been used. The maximum iteration depth of the harmonic potential field relaxation has
been set to number of used nodes multiplied by 0.01 and the distance after which leaves are
combined has been set to 50 meters (cf. Section 5.3.4) for formation path following. This has
been conducted to reach a further reduction of the computation times as these paths consist
only of one route point (cf. Section 6.4.2) such that they do not cover long distances, which
makes it unnecessary to consider a long distance for potential field computation. Additionally,
short distances lead to frequent path computation. Furthermore, the same conditions as in
the previous test series for potential field computations are used to compute formation paths.

The formations used to achieve the following results are static, single line formation shapes.
Always three UAVs form one formation and entirely explore the environment by keeping the
formation. As mentioned before, it does not seem to be very beneficial using only one single
formation for exploratory navigation. Nevertheless, a first step to design a behavior, which
uses formation flight for exploratory navigation such that an increase in efficiency is obtained,
is to investigate the exploration behavior in formation. Thus, this section evaluates how the
system behaves if exploratory navigation is conducted using formation flights only.

The next section shows the achieved results using formations to explore the a priori known
environment presented in Section 8.2. Single test runs using three, six, nine and twelve UAVs
have been performed.

8.4.1. Known Environment

The test runs presented in Section 8.3.1 have been repeated with the difference that the
UAVs now have to fly in fixed formations. Based on the number of used UAVs between one
and four formations have been created for the single test runs in order to entirely explore
the environment. Figure 8.9 shows the percentage of explored space over time. The x - axis
represents the time line while the y - axis shows the percentage of explored free space at any
point in time.

It can bee seen that the UAVs were always able to entirely explore the a priori known
environment in formation. This shows that the superpositioned potential field leads to the
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expected behavior. The duration needed by three UAVs forming one single formation to
explore the entire environment was 492.92 minutes. This duration can be decreased to 408.84
minutes using six UAVs, forming two formations. A further reduction of the necessary time
down to 203.25 minutes has been achieved by using nine UAVs, forming three formations,
while twelve UAVs needed only 196.46 minutes, flying in four formations.
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Figure 8.9.: Percentage of explored free space at each point in time for an environment known a
priori with formation abilities by 3, 6, 9, and 12 UAVs performing exploratory navigation.

From these results it can be seen that raising the number of UAVs from six to nine leads to a
significant increase of efficiency while a further enhancement from nine to twelve UAVs barely
results in a noticeable benefit in this test scenario. Comparing the results with the durations
needed by the UAVs without formation flights shows that always using formations decreases
the efficiency of the approach significantly. From this it follows, that the use of formation
flights for exploratory navigation is not automatically beneficial and it has to be considered
whether the creation of a formation really makes sense. Taking the costs per flight hour
into account as described in the previous sections, leads to the same result described before.
Reducing the number of used UAVs decreases the costs to entirely explore the environment.

Figure 8.10 shows the number of nodes taken into account for the single potential field
computations. Therefore, the results of one UAV per test run has been used to illustrate them
graphically. Formation flights are conducted as follows. First, one of the UAVs computes a
formation path the complete formation has to follow. Then each UAV computes its own path
to the next route point of the formation path while these paths only lead to a neighboring leaf.
This ensures collision avoidance (cf. Section 6.4.2). The UAVs selected to represent the results
graphically are UAVs not responsible for computing formation paths. The x - axis of the

170



8.4. Exploration in Formation Chapter 8. Evaluation

diagram presented in Figure 8.10 shows the number of potential field calculations #computations

while the y - axis shows the single unbound leaves used for the single computations.
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Figure 8.10.: Nodes considered for the single potential field computations using an environment
known a priori with formation abilities by the use of 3, 6, 9, and 12 UAVs for exploratory navigation.

It can be seen that much more potential field calculations are necessary to safely fly in
formation, than in the test runs using non-formation flights. In case of three UAVs more
than 9.000 calculations have been performed, while three UAVs not flying in formation only
need approximately 1.000 potential field calculations to entirely explore the environment as
presented in Figure 8.4. Furthermore, reducing the distance, in which leaves at maximum
level are considered from 150 meters to 50 meters reduces the number of used nodes from
approximately 8.000 to 1.200. This should lead to lower durations needed to compute the
single potential fields and enables more calculations in the same time span.

Table 8.5 shows several statistical data considering the octree created for this test series. The
number of nodes #(li) taken into account for potential field computations lies within the
range from 92 to 12,293 for all UAVs, while the number of explored nodes #(lun) lies between
30 and 10,804 nodes. Similar to the results obtained by non-formation flights, the number of
used UAVs has no noticeable influence on the number of nodes.

In contrast to the results obtained by non-formation flights, the average number of used
nodes has been decreased significantly. This was assumed as the distance, at which nodes of
maximum level are taken into account for potential field computations, has been reduced
from 150 meters to 50 meters. The highest average number of nodes has been taken into
account by nine UAVs, which averagely used 768.25 nodes for potential field calculations.
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The highest average number of unbound nodes has also been achieved by nine UAVs, which
needed 632.30 nodes in average.

Again, the average numbers show that due to the use of an octree, a dramatic reduction
of nodes, necessary for potential field computations, can be achieved compared to grid-like
structures, which would need approximately 16.777 million nodes to equally represent the
environment. It also indicates that formation flights are computationally efficient.

A noticeable result shown in Table 8.5 regards the number of potential field computations
#computations. This number increases significantly from 30,702 by the use of three UAVs to
48,404 using six UAVs. A further raise of the number of UAVs to nine and twelve leads to a
reduction of #computations needed for the entire exploration of the environment. This result
shows that no statement about the number of potential field computations can be made
based on the number of UAVs.

3 UAVs 6 UAVs 9 UAVs 12 UAVs
#min(lun) 42.00 36.00 30.00 37.00
#max(lun) 10,101.00 10,239.00 10,804.00 10,039.00
#∅(lun) 507.28 525.69 632.30 616.79
#min(li) 113.00 113.00 113.00 92.00
#max(li) 11,796.00 11,649.00 12,293.00 10,956.00
#∅(li) 647.85 692.00 768.25 749.04
#computations 30,702.00 48,404.00 34,586.00 33,666.00

Table 8.5.: Minimum #min(lun), maximum #max(lun), and average #∅(lun) number of unbound
nodes, as well as minimum #min(li), maximum #max(li), and average #∅(li) number of nodes
used for potential field computation. The number of potential field computations #computations is
presented, too.

Figure 8.11 shows the durations needed to calculate the single potential fields. The UAVs
used to represent the data are the same as the ones used earlier to present the results in
Figure 8.10. The x - axis shows the computation number while the y - axis shows the duration
needed to compute the single potential fields, as well as the average computation duration.
In contrast to the representation used in the previous sections, two diagrams are used to
illustrate the results. The first one shows the single durations, while the second one presents
the average duration. Using two diagrams is due to visibility reasons.

The average duration increases significantly at the beginning while they become relatively
steady afterwards compared to the test runs without formation capabilities. This behavior is
independent of the number of UAVs. This indicates that the single formations were close
to each other during the entire exploration phase, causing a consistent computational effort
as the results are not repeated in the following test series. Additionally, it shows that the
disturbances caused by the other formations have a noticeable effect on the computation
durations.
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The durations still increase if the number of UAVs is raised due to the higher complexity
resulting from more UAVs. It can be seen that no noticeable spikes occur using the selected
settings for potential field computation. The single durations needed by the selected UAVs
are always within a small range. Additionally, only a few computations using twelve UAVs
took more than 512 milliseconds. This shows that formation flights are also computationally
efficient as claimed in Section 1.2.

The average computation durations t∅ of the selected UAVs from the test runs with three
and six UAVs are 92.72 milliseconds and 117.98 milliseconds. These times do not differ as
much as the durations achieved using nine (143.37 milliseconds) and twelve UAVs (293.06
milliseconds). Nevertheless, even an average computation time of less than 300 milliseconds
is considered to be really efficient.

Table 8.6 shows some statistical data regarding the computation durations needed to compute
the potential fields by taking all UAVs of each single test run into account. In contrast to
Figure 8.11, these data include formation path computations. Thus, the maximum calculation
durations for potential field computations are peaks, which is similar to the results obtained
in the previous sections. This effect is obvious using twelve UAVs. The maximum duration
necessary to compute a potential field was 1,902 milliseconds while only 293.89 milliseconds
were needed in average.

3 UAVs 6 UAVs 9 UAVs 12 UAVs
tmin ms. 50.00 59.00 65.00 79.00
tmax ms. 482.00 697.00 971.00 1,902.00
t∅ ms. 90.47 115.91 145.86 293.89
tcomplete sec. 2,777.82 5,749.70 5,044.57 9,894.20
∅depth 1.03 1.05 1.04 1.04
∅tdiff sec. 2.89 3.04 3.17 4.20
#computations 30,702.00 48,404.00 34,586.00 33,666.00

Table 8.6.: Minimum tmin, maximum tmax, and average t∅ durations needed for potential field
computations. Additionally, the complete duration tcomplete needed for the computations, the average
iteration depth ∅depht, the average duration difference between two potential field computations
∅tdiff and the complete number of necessary computations #computations by taking all UAVs of the
single test runs into account.

The previously made statement, that raising the number of UAVs increases the computation
times, holds true for all UAVs during formation flights. Doubling the number of UAVs
from three to six increases the computation durations by approximately 28% from 90.47
milliseconds to 115.91 milliseconds. Tripling the number of UAVs from three to nine raises
the durations by approximately 61% to 145.86 milliseconds, while another increase to twelve
UAVs leads to 293.89 milliseconds, which is approximately 225% higher than the result
obtained by three UAVs. Nevertheless, the average duration of 293.89 milliseconds using
twelve UAVs enabling them to entirely explore such a complex environment, denotes a highly
efficient path planning approach.
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Figure 8.11.: Single computation durations ti, as well as the average computation durations t∅
needed to compute the potential fields in an environment known a priori with formation abilities by
the use of 3, 6, 9, and 12 UAVs for exploratory navigation.
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The time needed to compute all potential fields tcomplete is also presented in Table 8.6. It can
be seen that it has been raised about more than fifty percent by doubling the number of
UAVs from three to six. A further increase to nine UAVs reduces the computational effort,
while twelve UAVs lead to a further increase of the computational effort. Thus, no valid
statement regarding an effect of the number of UAVs on the overall computational effort can
be made for formation flights in a priori known environments. What can be stated is that
formation flights cause a much higher computational effort than non-formation flights when
the results shown in this table are compared to Tables 8.2 and 8.4.

The average iteration depth ∅depth is similar for the single test runs. It is mainly influenced
by the termination condition, which terminates the iterations of the relaxation if the depth is
greater or equal to the number of nodes multiplied by 0.01 during formation path following.
As only a low number of nodes has been used to compute potential fields for formation path
following, the average iteration depth is close to one.

Finally, Table 8.6 shows the average time elapsed between two potential field computations
∅tdiff in seconds. This duration lies between 2.89 seconds by the use of three UAVs and
4.20 seconds using twelve UAVs. It is mainly influenced by path following computations.
As only paths to neighboring nodes are computed if the UAVs follow a formation path fast
recalculations often have to be performed. A further extension of the presented system could
be to just update the potential field in this case, instead of conducting complete recalculations
as it is performed by the system presented in this thesis. Nevertheless, the average time
spans between two potential field computations are below the maximum durations needed to
compute a potential field, enabling the UAVs to fly smoothly without needing to wait for
potential field computations to be finished after they have reached their target configurations.

This section describes in detail the formation abilities of the multi-UAV system presented in
this thesis for exploratory navigation in an a priori known environment. In addition it has to
be investigated if the UAVs are also able to entirely explore unknown environment in formation
in order to evaluate whether the approach is also stable in highly dynamic environments,
which is necessary in order to use formation flights in a wide range of applications. The
results obtained by these test runs are presented in the following section.

8.4.2. Unknown Environment

The test runs described in the previous section have been repeated, whereby this time the
environment has been set to be unknown to the UAVs a priori. Figure 8.12 shows the
percentage of explored free space over time. The x - axis represents the time line while the y -
axis shows the percentage of explored free space. It can be seen that the UAVs were still able
to entirely explore the environment. One effect, well-marked for this test series, is that the
UAVs do not need such long time spans to explore the last percentage of the environment,
as in the test runs without formations. This indicates that it should be possible to reach a
benefit by combining formation flights and non-formation flights.
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Figure 8.12.: Percentage of explored free space at each point in time for an environment unknown
a priori with formation abilities by 3, 6, 9, and 12 UAVs performing exploratory navigation.

Similar to the results obtained earlier, a raise of the number of UAVs reduces the time needed
to entirely explore the environment. Three UAVs needed 649.25 minutes while six UAVs were
able to explore the environment in 481.9 minutes. A further increase to nine UAVs leads to a
total time of 415.32 minutes, while twelve UAVs were able to perform exploratory navigation
of the entire environment in 372.55 minutes. Comparing these results with the corresponding
results achieved by non-formation flights, indicates that in unknown environments, it is not
beneficial either to always fly in formation.

The results also show that the necessary durations do not correlate linearly with the number
of UAVs as in the earlier test runs. The first increase to six UAVs reduces the time needed
by about 167.35 minutes. A further increase from six to nine UAVs results in a benefit of
66.58 minutes, while twelve UAVs were able to save additional 42.77 minutes. Thus, using
formation flights, the benefit reached by a higher number of UAVs decreases as more UAVs
are used.

Figure 8.13 shows the number of unbound nodes taken into account for the single potential
field computations. The results are achieved by one selected UAV per test run, not responsible
for the computation of the formation path. The number of potential field computations
#computations is pictured on the x - axis while the y - axis shows the number of unbound nodes
used to compute the single potential fields.

It can be seen that the number of nodes does not differ much from the results obtained for
the a priori known environment. Always less than 1,400 nodes have been taken into account,
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which still indicates that the potential field computation should be performed really efficient.
The number of nodes does not change noticeably with a changing number of UAVs used for
the single test runs, as well as the resulting number of formations. Thus, in this test series
the octree leads to a high reduction of nodes necessary to compute the single potential fields,
too.
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Figure 8.13.: Nodes considered for the single potential field computations using an environment
unknown a priori with formation abilities by the use of 3, 6, 9, and 12 UAVs for exploratory
navigation.

Table 8.7 shows several statistical data regarding the octree nodes, necessary for potential
field computations. The entire number of nodes #(li) taken into account for potential field
computations is between 106 and 13,371 for all UAVs. The number of unbound nodes #(lun)
lies thereby in the range from 36 to 10,593. Like in the previous test runs these values are
not noticeably influenced by the number of used UAVs.

The highest average number of nodes has been taken into account by nine UAVs, which
needed 834.36 nodes in average. The maximum average number of unbound nodes #∅(lun)
has also been used by nine UAVs. They needed 616.8 unbound nodes on average to compute
the single potential fields. Thus, in this test case no valid statement regarding a correlation
between the number of UAVs and the number of used nodes can be given.

Regarding the number of potential field computations necessary to entirely explore the
environment, shows the same effect as in the test runs using an a priori known environment.
The number increases significantly while raising the number of UAVs from three to six.
Further increases of the number of UAVs lead to a reduction of the necessary computations.
This substantiates the statement made in the previous section, that the number of UAVs has
no direct influence on the needed number of potential field calculations.
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3 UAVs 6 UAVs 9 UAVs 12 UAVs
#min(lun) 36.00 39.00 48.00 42.00
#max(lun) 9,706.00 10,593.00 10,544.00 10,102.00
#∅(lun) 595.10 575.77 616.80 576.13
#min(li) 106.00 120.00 106.00 127.00
#max(li) 11,649.00 13,371.00 11,985.00 12,237.00
#∅(li) 784.72 801.80 834.36 797.42
#computations 33,633.00 51,339.00 49,179.00 42,547.00

Table 8.7.: Minimum #min(lun), maximum #max(lun) and average #∅(lun) unbound nodes, as
well as minimum #min(li), maximum #max(li) and average #∅(li) nodes used for potential field
computation. The number of potential field computations #computations is presented, too.

Figure 8.14 shows the durations needed to calculate the single potential fields, as well as
the average durations in milliseconds. The same UAVs selected to represent the results in
Figure 8.13 have been used to illustrate these results. The x - axis shows the computation
number while the y - axis shows the duration needed to compute the single potential fields
and the average computation durations reached by the selected UAVs in milliseconds. Two
diagrams are used to illustrate the results. The upper diagram shows the durations needed to
calculate the single potential fields and the lower diagram illustrates the average computation
times.

It can be seen that the durations are much higher than for the test runs using an a priori
known environment. But they decrease over time in contrast to the results obtained in an a
priori known environment. This indicates that the single formations are not that close to each
other during the entire exploration than in the previous test series because UAVs close to each
other lead to a higher complexity as then the nodes they occupy are considered at maximum
level for potential field computations. One interesting aspect is, that the durations’ decrease
is higher over time the more UAVs are used. This can be seen by the average durations using
six UAVs. After approximately 7,000 computations, six UAVs averagely needed less time to
compute the potential fields than three UAVs. This effect is true for all explorations thus
at the end the UAV representing three UAVs averagely needed less time for potential field
computation than the selected UAV of the test run with six UAVs.

The increase of the durations, resulting during potential field computation, compared to
exploration of an a priori known environment is much more pronounced in case of formation
flights. This holds true for all test runs. Such an increase can lead to problems if it results in
computation durations higher than the time spans between two potential field computations.
As aforementioned, several possible solutions exist to overcome this issue.

Table 8.8 shows some statistical data regarding the computation durations needed to compute
the potential fields by taking all UAVs for each of the single test runs into account. Similar
to the results obtained before, the maximum computation durations for potential field
calculations are single peaks. The worst value has been achieved by the use of nine UAVs
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Figure 8.14.: Single computation durations ti, as well as the average computation durations t∅
needed to compute the potential fields in an environment unknown a priori with formation abilities
by the use of 3, 6, 9, and 12 UAVs for exploratory navigation.
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whereby one UAV once needed 4,133 milliseconds for the computation of a single potential
field. In contrast to this value the UAVs needed 468.46 milliseconds on average, which shows
the big gap between the single durations needed to compute the potential fields.

This test results again show that the average time t∅ needed to compute the potential fields
increases with an increasing number of UAVs. The complete time tcomplete to compute all
potential fields, shows that the test runs described in this section needed by far the highest
computational effort.

3 UAVs 6 UAVs 9 UAVs 12 UAVs
tmin ms. 127.00 76.00 124.00 152.00
tmax ms. 1,244.00 1,956.00 4,133.00 3,993.00
t∅ ms. 239.14 248.70 468.46 624.82
tcomplete sec. 8,042.83 12,768.16 23,038.43 26,584.12
∅depth 1.06 1.06 1.08 1.09
∅tdiff sec. 3.47 3.38 4.56 6.30
#computations 33,633.00 51,339.00 49,179.00 42,547.00

Table 8.8.: Minimum tmin, maximum tmax, and average t∅ durations needed for potential field
computations. Additionally, the complete duration tcomplete needed for the computations, the average
iteration depth ∅depht, the average duration difference between two potential field computations
∅tdiff and the complete number of necessary computations #computations by taking all UAVs of the
single test runs into account.

Comparing the average durations for the computations of the potential fields with the average
time span ∅tdiff between the single calculations, shows that the UAVs were mostly still able
to compute new potential fields before they reach their target position. The high peaks on
the other hand show that this might not be true for all path following activities. Thus, one
has to take this into account for the design of a real world UAV system.

It is indicated that in case of exploratory navigation, only flying in formation is not beneficial
compared to non-formation flights. But one advantage of formation flights in case of
exploratory navigation, regarding the time span needed to explore the last percentage of the
environment, has been noticed in this section. Thus, a combination of both approaches to
increase efficiency should be possible. The results obtainable by a combination of formation
flights and non-formation flights are amongst others presented in the following section.

8.5. Cooperative Behavior

This section presents several tests regarding the UAV behavior and the task allocation system
described in Chapter 7. First, a test run combining non-formation flights and formation
flights to entirely explore the test environment is presented. The test shows an obtainable
benefit reached by combining both approaches in contrast to using non-formation flights or
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formation flights only. Thereafter, obstacle avoidance behavior for both, single UAVs and
UAV formations, is evaluated. It illustrates some of the self-adaptation capabilities of single
UAVs and UAV formations, regarding the environment and environmental changes. The final
tests presented in this thesis concern the task allocation system and describe possible task
distribution over a single UAV, as well as over multiple UAVs.

The results used to describe the avoidance and task allocation behavior are presented
using screenshots of the Control Station’s cutouts instead of diagrams used in the previous
sections. The cutouts show the initial configuration, the final configuration, and additional
configurations if necessary.

8.5.1. Behavioral Exploration

Four test series regarding exploratory navigation have been conducted and the results are
presented in detail in the previous sections. The tests considered non-formation flights and
formation flights in a priori known, as well as in unknown environments. They showed that
the behavior resulting from the consecutive computation of the single potential fields is stable
such that the UAVs are always able to entirely explore the environment. It is also shown
that potential field computation is efficient using the octree described in Section 4.2.

Another statement made in the previous chapters is that a combination of formation flights
and non-formation flights can increase efficiency even in case of exploratory navigation if
higher efficiency is defined as lower durations needed, to entirely explore the environment.
The previous tests show that this is not the case when the UAVs always fly in formation.
Nevertheless, combining both approaches can increase efficiency. Therefore, a test run
combining non-formation flights with formation flights is presented in this section. The
formation shape the UAVs create is a line formation equal to the formation shape used to
obtain the results in the previous section. The combined approach is compared to the results
achieved with the same settings in the previous sections.

One of the main objectives for the resulting multi-UAV system mentioned in Section 1.2 is to
create and dissolve formations dynamically. The test run presented in this section shows that
such a behavior has been reached.

The environment was known a priori in this test scenario and six UAVs must explore the
entire terrain. Figure 8.15 shows the exploration rate over time. The x - axis shows the
time elapsed since the simulation has been started in minutes while the y - axis shows the
percentage of explored free space. The result from Section 8.3.1 where six UAVs explored
the environment using non-formation flights is presented by the red line. Additionally, the
result from Section 8.4.1 where six UAVs explored the terrain in formation is illustrated by
the green line. It can be seen that the UAVs need a noticeable higher duration to entirely
explore the environment if they always fly in formation. These results are compared to the
use of a combination of the approaches, represented by blue line. It can also be seen that
the time needed by six UAVs without formation capabilities, which was 195.93 minutes to
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entirely explore the environment could be reduced to 172.37 minutes using a combination of
formation flights and non-formation flights. So, for this test scenario, a benefit of more than
ten percent has been reached, which shows that even the non-optimal strategy presented in
Section 7.4.1 can result in a noticeable increase of efficiency.
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Figure 8.15.: Percentage of explored free space at given points in time comparing non-formation
flights, formation flights and a combination by six UAVs in an a priori known environment.

Using both flight types as described in Section 7.4.1 the UAVs first create one big formation,
consisting of six UAVs until approximately ten percent of the environment has been explored.
This can also be seen in Figure 8.15. The exploration rate using the combined approach is
worse at the beginning compared to the other ones. This is due to the time the UAVs need
to create the formation. The more UAVs participate in a formation the longer it takes to
establish the formation at a given point in space. Thus, the result is even worse than in the
formation only approach where two formations consisting of three UAVs have been created
at the beginning.

The exploration rate using the combined approach is the highest of the three presented test
runs, after the exploration of the first ten percent of the free space. Additionally, the UAVs
were able to explore the last remaining percent of unexplored terrain faster than the UAVs
using the other approaches. This mainly results from the fact that they miss less small areas
at the beginning of exploratory navigation than the UAVs using one of the other approaches.
Thus, less small areas, which are distributed over the environment must be reached at the
end.

The UAVs did not form more formations in this test run. Several times, single UAVs created
multiple exploration tasks (cf. Section 7.4.1), but the UAVs were widely scattered over the
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terrain and thus the multiple exploration tasks do not seem be very beneficial to the other
UAVs.

The results presented in Figure 8.15 show that a combination of formation flights and non-
formation flights can lead to an increase in efficiency for exploratory navigation. Nevertheless,
only one single run is presented and the results might not hold for all possible environments
and numbers of used UAVs. Further interesting research would be to investigate, in which
cases formation flights always reduce the duration needed to explore both, entire environments
and parts of environments, in order to design a highly beneficial approach combining non-
formation flights and formation flights.

Results concerning the number of used nodes and the computation times needed to compute
the single potential fields are not presented for this test run. They are similar to the results
obtained before, which are described in detail in the previous sections.

Another important issue to be addressed for UAV flights is that obstacle avoidance must
be guaranteed and that the UAVs themselves, as well as formations they create, are able to
adapt to the environment. Thus, the following sections first show the avoidance behavior of
single UAVs and thereafter the avoidance behavior of a UAV formation.

8.5.2. Single UAV Obstacle Avoidance

One of the main objectives mentioned in Section 1.2 is to reach an intelligent UAV behavior
for self-adaptation to environmental changes. Therefore, it should be demonstrated that
such a behavior has been reached. The test run presented in this section shows an example
path change caused by a newly detected obstacle. This is a simple test but it shows the
resulting behavior without leading to hardly understandable results. The behavior shown in
this section is essential for UAV flights in order to avoid damage. The UAV starts at position
pU = (2050; 500; 140) in the previously described environment and has to move to a target
position pG = (2048; 650; 100).

Figure 8.16 shows the initial path to reach the target position, computed by the UAV. The
red UAV in the upper right of the figure is able to compute a smooth and short path depicted
as red line towards the target, which is illustrated in the lower left part of the figure as a ring
shaped object. Target areas are always represented on the terrain ground for better visibility
and to avoid confusion due to various hovering textures representing target areas. Using the
descent gradient, the UAV was able to plan a path consisting of 13 route points to reach the
target area.

The UAVs’ previously computed path has been intersected by an obstacle, shown in Figure 8.17.
Such an occupied area could arise, e. g., by detecting a hangar unknown before or by a newly
introduced no-fly area. The obstacle is illustrated as yellow-black-striped object and stretches
from position (2000; 525; 100) to (2100; 575; 140). The resulting intersection forces a new
path planning in order to avoid the obstacle. Thus, a new path is computed and presented
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Figure 8.16.: The trajectory planned by the red UAV from its position to the target position
illustrated as ring shaped object. No obstacle has to be avoided.

Figure 8.17.: Newly computed trajectory after an obstacle intersected the previously computed
UAV path.
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as a red line in Figure 8.17. It can be seen that the UAV is able to avoid the obstacle by
simultaneously reaching the target position using an extended path of 15 route points.

The test presented in this section gives an impression of the obstacle avoidance behavior
of single UAVs. A more challenging obstacle avoidance methodology is necessary to avoid
obstacles in formation. This can often be reached, only by changing the formation shape as
presented in the following section.

8.5.3. Obstacle Avoidance in Formation

Another considerable issue is obstacle avoidance in formation. The UAVs have to change the
formation shape in order to be able to overcome an obstacle in the test run presented in
this section. Formation flights can not efficiently be performed in complex and dynamically
changing environments if the formations are unable to adapt themselves to the environment.
The test run presented in this section shows the UAV behavior for obstacle avoidance resulting
from the superpositioned potential field described in Section 6.3.2. It is shown that the
UAV formation is able to overcome an obstacle by changing the shape of the formation.
The triumph arch presented in Figure 8.2 has been chosen as obstacle. Additionally, the
environment has been extended by a wall, to ensure that the formation not just flies around
the triumph arch. The wall is illustrated as a yellow-black-striped object in Figures 8.18 to
8.20. Finally, the maximum altitudes of the UAVs have been set, such that they are unable
to fly above the triumph arch. This is necessary as the UAVs tend to avoid areas surrounded
by obstacles like the small passage provided by the triumph arch due to the approximations
and termination conditions performed to efficiently compute the harmonic potential field.

To complete this test run, four UAVs start at differing positions as shown in Figure 8.18.
The triumph arch is depicted in the center of the figure, while the yellow-black-striped object
represents the mentioned wall. The UAVs have to fly to the two target positions illustrated
as ring shaped objects. The first target position is the one before the triumph arch. It is
used as consensus point where the UAVs have to establish the formation. The second target
position lies behind the triumph arch such that the UAVs have to move through the passage,
which is too small for the formation to fly through, without changing its shape.

Based on the start positions, they first compute a consensus point at which they create the
formation shape. A line formation has to be created as presented in Figure 8.19. It can be
seen that the UAVs were able to create the mentioned formation shape.

The first target area is deleted after the creation of the formation shape, as the corresponding
task is fulfilled. This is graphically shown in Figure 8.20. The following task is to reach the
remaining target area in formation. Between the UAV formation and the target area is now
the triumph arch, which offers only a small passage the UAVs have to fly through. They are
unable to fly through this passage by simultaneously keeping the formation shape. Thus,
they adapted the formation shape as presented in Figure 8.20.
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Figure 8.18.: The initial configuration used to show the obstacle avoidance behavior of a UAV
formation. The red UAVs are distributed over the environment and have to create a line formation
at the target position in front of the triumph arch represented by a ring shaped object.

Figure 8.19.: Cutout of the Control Station after the UAVs created a line formation in which
they have to fly to the second target position behind the triumph arch represented by a ring shaped
object.
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Figure 8.20.: Cutout of an screenshot from the Control Station showing the change of the
formation shape conducted by the UAVs to adapt the formation to the environment in order to
fly through the small passage given by the triumph arch.

Figure 8.21.: The final configuration after the test run. The red UAVs were able to restore the
original line formation shape and fly towards the target configuration.
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After they passed the small passage, the original line formation shape is restored and the
UAVs fly to the target position, as shown in Figure 8.21. They were able to perform this task,
always using the same equation with the same parameters responsible for the creation of the
formation shape (cf. Section 6.3.1). Thus, it is not necessary to detect and to directly consider
obstacles as they are taken into account during potential field computation independent of
the current formation parameters.

The position of the scene camera has been moved such that the camera is inside the arch for
the creation of Figure 8.21. This has been done to provide an image of the entire formation
at the final target area. The single paths of the UAVs are not shown for this test run, as
they would cause too much confusion.

The test runs presented in this and the previous section give a short impression of the UAVs’
self-adaptation behavior, resulting from the potential field approach. The results show that
the corresponding objective from Section 1.2 has been reached. Beside path planning and
path following behavior, a task allocation system has been designed. It is briefly evaluated
during the following section for a single UAV and a multi-UAV scenario.

8.5.4. Single UAV Task Allocation

The test run performed in this section considers the self-organizing behavior of a single UAV,
which is another objective mentioned in Section 1.2. The presented test for evaluating the
task allocation system, described in detail in Section 7.4.2, regards the allocation behavior of
a single UAV. Therefore, a UAV has to fulfill three different tasks. The test run shows that
the task allocation behavior of single UAVs works as expected. The initial position of the
UAV and the positions of the single tasks are presented in Table 8.9. Additionally, the role
of the UAV and the task types are also shown in the table.

Name x - position y - position z - position role / type
U1 2050 500 140 Prospector UAV
T1 2060 406 100 Single deliverance
T2 1988 363 100 Single monitoring
T3 2015 451 100 Road spotting

Table 8.9.: Initial position of the UAV and its role, as well as positions of the tasks and task types.

Normally, the visualization of tasks vanishes as soon as the tasks are fulfilled as shown in the
previous section. This visualization behavior has been turned off as illustrated in Figure 8.23
for the tests regarding task allocation in order to be able to directly compare the trajectories
the UAVs used to complete the test runs with the positions of the single tasks.

Specific task priorities result from the task types in combination with the UAV role (cf.
Table 7.4). These priorities are as follows: 0.5 for road spotting, 0 for single deliverance, 0.4
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Figure 8.22.: Illustration of the initial state before task allocation. The tasks T1, T2 and T3 are
illustrated as ring shaped objects while the red UAV is in the left part of the image.
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Figure 8.23.: Illustration of the UAV path, which is marked as a blue line. It shows that the UAV
moves to the third task T3 followed by the second T2 before it starts exploratory navigation.

189



Chapter 8. Evaluation 8.5. Cooperative Behavior

for single monitoring, and 0.3 for single exploration. As mentioned before, single exploration
is always a task, even if it is not created explicitly.

The test run considers task allocation behavior only and neglects task execution. Meaning
that, e. g., the UAV only has to fly to the initial position of the road spotting task and must
not actually spot a road in order to fulfill it. This behavior has been chosen, because only
the task allocation system is evaluated in this chapter.

Figure 8.22 shows the environment with the red UAV in the upper left and the tasks—
illustrated as ring shaped objects—before task allocation occurs. Additionally, the UAV
U1 and also the tasks T1, T2 and T3 are labeled to provide discriminability. The UAV then
starts to fulfill the single tasks. It first moves to the road spotting tasks T3, which is the one
resulting in the highest bid value due to the distance to the UAV and the priority of the
task. The second task fulfilled by the UAV is the single monitoring task T2. Subsequently to
the fulfillment of these two tasks, the UAV starts to explore the environment as the single
deliverance task T1 is not processable by the UAV, due to its current equipment. This is
represented by the priority value zero leading to a bid value of zero using Equation 7.18.

Figure 8.23 shows the paths of the UAV illustrated as coherent blue line. It can be seen that
the UAV flies in the prescribed order, from one task to another, until it starts exploratory
navigation. It can also be seen that the paths towards the task’s target areas are not the
shortest ones. This is a result of the approximations performed to efficiently compute the
harmonic potential field (cf. Section 5.3.4). Using a higher iteration depth for the relaxation
(cf. Section 5.3.3) and combining a lower number of nodes to bigger nodes increases the
optimality of the resulting paths. Nevertheless, the allocation order shows that the task
allocation system works as expected for this test run and that the UAV is able to execute
self-organized task allocation.

Various additional tests regarding single UAV task allocation could be conducted to investigate
the influence of different ages, as well as the tradeoff between the distance to the task and
the priorities (cf. Equation 7.18). But the values selected for the presented system are only
example values and can be changed, such that the expected behavior is triggered. The test
run performed in this section gives a first impression of the results obtainable using the task
allocation system, described in detail in Chapter 7. Beside single UAV task allocation, the
allocation behavior of several UAVs is briefly evaluated in the following section.

8.5.5. Multi-UAV Task Allocation

The evaluation of the multi-UAV task allocation behavior beside single UAV task allocation
behavior is necessary, too. It must be ensured that different UAVs do not fulfill single tasks
redundantly, while other tasks starve in order to arrive at an efficient multi-UAV system. The
test run presented in this section evaluates this. Additionally, it is shown, that two of the
main objectives from Section 1.2, stating that the UAVs must have a completely autonomous
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and distributed behavior and that simultaneous task allocation has to be performed by the
UAVs, have been reached.

To demonstrate this, three UAVs with differing roles have to allocate five tasks during this
test run. It is shown that task allocation works as expected and that it is efficient. The start
positions of the UAVs and their roles are presented in Table 8.10. Additionally, the table also
shows the positions of the tasks and the single task types.

Name x - position y - position z - position role / type
U1 2140 575 140 Explorer UAV
U2 1910 540 140 Surveillant UAV
U3 2010 410 140 Collector UAV
T1 2100 530 100 Multiple monitoring
T2 1940 490 100 Single deliverance
T3 2050 370 100 Single monitoring
T4 1960 360 100 Road spotting
T5 2090 450 100 Escort

Table 8.10.: Initial positions of the UAVs, positions of the tasks, and task types

Table 8.11 shows the resulting priorities for the single UAVs. Again, executing the single
tasks has been neglected and the UAVs only have to fly to the task positions, except for the
multiple monitoring task. This behavior is selected to show an issue to be handled by such a
task allocation system. The role prospector UAV is not considered for this test run as the
UAV used for the test presented in the previous section has been assigned to this role and
thus the tests obtained in that test run give an impression of the task allocation behavior
reached by using prospector UAVs.

hhhhhhhhhhhh
Task UAV U1 U2 U3

Multiple monitoring 0.5 0.7 0.1
Single deliverance 0.0 0.0 0.5
Single monitoring 0.3 0.5 0.1
Road spotting 0.4 0.6 0.3
Escort 0.4 0.2 0.2
Single exploration 0.5 0.3 0.1

Table 8.11.: The single task priorities dependent on the UAV role

Figure 8.24 shows the initial setup of the test run. The red UAVs are illustrated, as well as
the target positions of the single tasks. As before, the target positions of the single tasks are
depicted as ring shaped objects. Additionally, the UAVs U1,U2 and U3 and also the tasks
T1, . . . , T5 are labeled to provide discriminability.
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Figure 8.25 shows the paths of the single UAVs computed to reach the target positions of
the tasks, as well as the end positions of the UAVs. The paths are colored based on the
corresponding UAV. U1 creates red paths and the paths of U2 are green while the paths of U3
are illustrated by a blue line.

As aforementioned, the tasks are considered to be fulfilled as soon as a UAV reaches the
corresponding target position except for the multiple monitoring task T1 in order to show
an issue to be handled if multi-UAV tasks are supported. The multiple monitoring task
is considered to be fulfilled as soon as a minimum of three UAVs reach the target area of
this task. As can be seen in Figure 8.25 UAV U1 starts exploring the environment as the
exploration path is, due to the close unexplored space, most beneficial. After some time
it reaches a state in which it is close to the multiple monitoring task, such that it takes
over this task. Thereafter, it flies to the task and waits for further UAVs in order to fulfill
it. During this test run, no further UAVs selected T1 and thus U1 never moved on. Such
a behavior is not only inefficient as one UAV does not do much more than to wait, it can
also lead to starvation of other tasks if no further UAV is able to fulfill them. The UAVs
should not start processing multi-UAV tasks as long as the minimum number of UAVs MiT
needed to perform this task (cf. Section 7.3.1) select it as next to be executed, in order to
overcome such behavior. In the mean time, the UAVs selecting the multi-UAV task as next
to be executed, should put the task aside and perform other tasks.

The second UAV U2 started close to the single deliverance task T2. The priority of this task
is zero to U2 and thus the UAV first starts to explore the environment as all other tasks are
much further away than the closest unexplored space. It never stopped exploratory navigation
during this test, as at the points in time it got close to one task’s target position, such that
the task would become more beneficial to U2 than single exploration the corresponding task
has already been fulfilled by U3.

The UAV mainly responsible for task allocation and fulfillment during this test run was U3.
Its priority for single exploration is only 0.1 and thus most other tasks are more beneficial to
this UAV. It started close to the road spotting task T4 and allocated this one directly as next
to be executed. During its flight towards the target area of T4 it got close to T2 and due to
the higher priority (0.5 instead of 0.3) it would be possible that U3 changes its task to be
processed next. This was not the case during this test run since checks for more beneficial
tasks are not continuously performed, but rather from time to time, in order to avoid cases
in which a UAV ends by only changing the next task. For this test run the result is that
the UAV did not recognize that T2 was the most beneficial for a short time period and U3
fulfilled T4 first. After fulfilling T4 task T2 becomes most beneficial to U3 followed by T5 and
T3. After fulfilling T3 only task T1 was left with U1 waiting for further UAVs to solve the
task, too. This task has the same priority to U3 as exploratory navigation and since the next
unexplored area is closer than T1, U3 started to perform the single exploration task.

The test runs presented so far evaluate several parts of the system presented in this thesis.
Based on the achieved results, a conclusion is given in the following section.
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Figure 8.24.: Illustration of the initial state before task allocation. The single tasks T1, . . . , T5 are
illustrated as ring shaped objects while the red UAVs U1,U2 and U3 are also distributed over the
environment.
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Figure 8.25.: The paths, as well as the final positions of the UAVs after task allocation and flights
to these tasks. The paths are colored whereby different colors have been used to represent the path of
the single UAVs
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8.6. Conclusion

The results of the test runs described in this chapter, show that it is possible to create
a dynamic potential field system leading to entire explorations of static, as well as highly
dynamic environments based on real world terrain information. An example application where
dynamically created and dissolved formations lead to a faster exploration of the environment
has also been presented. The UAVs were always able to entirely explore the environment.
Even the interaction of the UAVs, which consecutively compute differing potential fields does
not break the system.

Based on the described results, it can be stated that the approach is computationally efficient.
This is mainly due to the highly dynamic world model, provided by an octree (cf. Section 4.2).
Noticeable is that the necessary computational effort rises with a higher complexity of the
exploration task. The lowest computational effort was needed to explore the a priori known
environment without formation flights, while the highest one has been reached by exploratory
navigation of the unknown environment flying in formation.

Further tests beside the ones regarding UAV behavior for exploratory navigation have been
conducted. It can be seen from the achieved results that the designed system leads to an
intelligent behavior for self-adapation to environmental changes and that the UAVs are able
to simultaneously create and allocate tasks. Thus, the evaluation has shown that the system
presented in this thesis reached all objectives from Section 1.2.

The test series showed that the simple use of formation flights is far from beneficial in case
of exploratory navigation. Comparing the durations needed by differing numbers of UAVs
in unknown and a priori known environments showed in all test runs that never flying in
formation is more beneficial than always flying in formation. Nevertheless, it has also been
shown that a skillful use of additional formation flights in combination with non-formation
flights can decrease the time needed to entirely explore the environment. Thus, formation
flights are not always worse than non-formation flights but they must be used cautiously.

Due to the termination conditions (cf. Section 5.3.4), the discretization errors, and approxi-
mations an entire exploration of any kind of environment is not necessarily guaranteed. The
discretization, as well as the termination conditions must be such that the UAVs do not
create and fly into local equilibria. It has been shown in Section 5.5 that a harmonic potential
field is globally asymptotically stable. Thus, UAVs create and fly only in local equilibria if
the termination conditions are not sufficient. In this cases, a higher iteration depth and a
higher distance at which nodes are combined vanishes the local equilibria and the UAVs are
able to reach their target areas.

Further exploratory navigation tests using differing environments, as well as other numbers
of UAVs and formations and also differing formation sizes would also be interesting. The
results obtained from such further tests could be compared with the presented results in
order to find more similarities and to detect contingencies, which occur only in the presented
test scenarios. Testing additional parameter settings for the termination conditions and the
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distance in which leaves at maximum level are considered, could lead to a more efficient
exploration behavior.

The test runs regarding the UAV behavior show that single UAVs are able to avoid obstacles,
as well as that they can adapt formation shapes by themselves in order to overcome large
obstacles. It has also been briefly shown that the task allocation system works as expected,
using single UAV task allocation and multi-UAV task allocation. Not any part of the system
has been evaluated in this chapter as this would exceed the thesis. To entirely evaluate a
complex multi-UAV system, various additional tests have to be performed.

A part of the UAV system that has been neglected in this chapter is task processing. Additional
tests with tasks to be processed, which have additional constraints would be interesting.
A multiple deliverance task, e. g., has most times the constraint that the UAVs are not
allowed to change their position inside the formation. Further checks with such constraints to
investigate whether the UAVs are able to overcome obstacles for which they have to change
the formation shape would also be worth performing.

Test runs using varying numbers of UAVs to show the interactions of the UAVs with each
other should be performed, too. It would also be interesting to show, how changing numbers
of UAVs affect the efficiency of the system and to deeply investigate the properties robustness,
flexibility, and scalability mentioned in Chapter 1, as the three properties are essential for
the survival of animal societies and also beneficial for complex multi-UAV systems like the
one presented in this thesis.

Finally, jumping to wrong conclusions should be avoided. The evaluation states that the
system works and that it is efficient in theory. A wide range of additional tests must be
run in order to port it to real UAVs. In that case it has to be investigated how the system
behaves on faulty sensor inputs and with an inaccurate positioning system, not only of the
UAV itself but also of all other UAVs flying simultaneously in the environment. This can,
e. g., be simulated using white noise. The influence of environmental conditions like changing
wind directions, rain and so on must also be investigated in order to adopt the system to real
world UAVs, as well as several other conditions not mentioned in this section.

8.7. Summary

This chapter presents the evaluation of the multi-UAV system. To evaluate the system, a
simulation environment has been used instead of real UAVs. This is necessary for first tests
regarding the UAV behavior due to several reasons explained in Section 1.2. Additionally,
multiple assumptions that might not hold for real world applications have been made.
Thereafter, an introduction of the environment used to evaluate the system takes place. It
is based on real world data, in order to achieve meaningful results and has been extended
by three-dimensional structures, to show that the approach works in three-dimensional
environments.
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Based on the environment, various parameters have been set and differing values were
measured to provide results regarding the objectives of the evaluation. They are presented
after the environment’s description. The single objectives of the evaluation are also described
in detail.

After this introduction, test series regarding exploratory navigation have been performed.
First, the UAVs had to explore the environment without formation capabilities. The explo-
rations took place in a priori known environments, as well as in unknown environments and
were repeated using differing number of UAVs.

Thereafter, the test series have been run again while this time the UAVs always fly in
formation. A comparison of the obtained results to the results achieved before takes place and
based on these results, a last test run regarding exploratory navigation has been conducted.
For the last test run, six UAVs combined non-formation flights with formation flights in order
to achieve a benefit, concerning the duration needed to entirely explore the a priori known
environment.

In addition to the test series regarding exploratory navigation, a brief evaluation of the UAV
behavior is presented. Therefore, test runs regarding obstacle avoidance behavior of single
UAVs and UAVs in formation are described. Finally, the task allocation system is briefly
evaluated using a single UAV and several UAVs, which had to allocate various tasks.

During the last chapters, the entire system is described in detail. It is also evaluated in this
chapter and therefore completely described. The next chapter gives a summary of the thesis
and an outlook on future work.
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Chapter 9
Summary and Outlook

Autonomous robot movement received increasing attention by researchers in the beginning of
the 1980s through the introduction of several popular methodologies. Henceforth, countless
methods to autonomously move single robots right up to coordination approaches for hetero-
geneous robot groups have been designed. Contemporarily, a new research area called swarm
robotics arose.

A wide range of approaches based on different research areas have been designed and a few of
them have become popular. Numerousness research conducted by several researchers over the
course of the last decades has been extended and combined in this thesis for the development
of a cooperative UAV system usable to support ground units in various applications. A
summary of the resulting system presented in this thesis is given in the following section.

9.1. Summary

A unique multi-UAV path planning system extended by methods for exploratory navigation
and for the establishment of formations based on harmonic function theory is presented.
It goes far beyond state-of-the-art systems. The UAVs are able to entirely explore three-
dimensional environments consisting of complex structures like buildings, tunnels, etc. on
their own, as well as in formation.

Inter-UAV communication is one basis for cooperative UAV behavior. Additionally, the
UAVs have abilities to dynamically create formations that support a changing number of
participants by the use of bifurcation theory. Establishing and dissolving a formation, as well
as changing the formation shape can be conducted anytime.

Formation flights are based on a behavioral approach enabling the UAVs to change their
positions related to the formation in order to avoid obstacles and other UAVs autonomously.
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This is the first system combining harmonic function theory and bifurcation theory to create
dynamic formations used for exploratory navigation in complex and dynamically changing
three-dimensional environments. The resulting UAV behavior is verifiable, e. g., by showing
that the created potential fields are globally asymptotically stable. A verification is important
to apply the system to real world applications. Further properties of the system are:

• Self-adaptation related to environmental changes.

• Self-optimization due to the designed task creation and task allocation approach.

• Verifiable due to the use of Lyapunov stability theory.

• Cooperative as the UAVs exchange information to increase efficiency.

• Able to explore complex and dynamically changing three-dimensional environments.

The three objectives robustness, flexibility, and scalability observed by Sahin et al. [17]
(cf. Chapter 1) are also covered by the resulting system. The completely autonomous
and decentralized architecture ensures that failures of single UAVs do not cause the entire
system to break down. Such faults are compensated by other UAVs. This makes the system
robust. The absence of a centralized coordination instance avoids possible bottlenecks and
makes the system highly scalable. Artificial potential fields provide the single UAVs with
abilities for self-coordination and the market place approach provides necessary capabilities
for simultaneous task procession leading to a highly flexible system.

9.2. Contributions

A survey of agent coordination and robotic movement for single agents and for heterogeneous
robot groups is provided in Chapter 2. Swarm approaches from nature adaptable for robot
control are also presented in that chapter. Chapter 3 introduces the basic methodologies
used to design the resulting system. The remainder delivers the following contributions:

• An architecture for terrain representation as path planning basis (Chap-
ter 4). The presented architecture is mainly based on an octree as highly dynamic
data structure leading to fast potential field computations and feasible paths. The
UAVs receive the environmental information as triangle meshes to make the system
universally applicable.

• A potential field represented by a harmonic function for path computations
(Chapter 5). The combination of artificial potential field theory and harmonic
functions is used and adapted to work with a dynamically changing octree in three
dimensions. This provides the capabilities needed to entirely explore dynamic three-
dimensional environments including complex structures like buildings, tunnels, etc. The
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method mathematically guarantees obstacle avoidance and can lead to a sound path
planning application.

• A potential field based on bifurcation theory for formation flights (Chap-
ter 6). The normal form of a Pitchfork bifurcation has been extended for potential
field computations allowing the UAVs to establish different formation shapes in three
dimensions. The octree is still the basis of the internal world model. The potential
field is superpositioned with the harmonic potential field in a way that preserves the
advantages of both methodologies.

• A behavioral approach for task creation and task scheduling to create a
cooperative UAV behavior (Chapter 7). The UAVs establish formations au-
tonomously if a formation is beneficial. They also create tasks on their own if this is
necessary to avoid damage. A task scheduling approach based on a decentralized market
place has also been designed for the support of ground units in various applications.

• A detailed evaluation of the single parts, as well as of the overall system
using a large and highly complex terrain (Chapter 8). An implementation of
the system has been conducted and a large and complex environment based on real
world data has been created to evaluate the approach. The evaluation shows that the
system works using discrete arithmetic and that it is highly efficient.

The mentioned contributions have been published in the following journal, book, and confer-
ence proceedings:

• ICAS: 6th International Conference on Autonomic and Autonomous Systems, 2010
(best paper award, invitation to write a journal article for ThinkMind) [3],

• ICARCV: 11th International Conference on Control Automation Robotics Vision,
2010 [6],

• ThinkMind: International Journal On Advances in Software, 2011, pages 351–370 [5],

• ICARA: The 5th International Conference on Automation, Robotics and Applications,
2011 (invitation to write a book chapter in Recent Advances in Robotics and Automation)
[4],

• Studies in Computational Intelligence: Recent Advances in Robotics and Au-
tomation, 2013 [8],
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9.3. Outlook

The presented system covers a wide range of applications. It is a step towards a completely
autonomous real world UAV system for the support of ground units without the need of
human interactions. Still, several challenges for the design of a real world system exist. Until
now, the approach has been tested only simulative. An interesting and also challenging task
would be an adoption to real UAVs. The UAVs should be equipped with sensors like cameras,
laser, radar, etc. to adjust inaccuracies of a positioning system like GPS. Such sensors are
usable to detect the surrounding environment and to map it to the world model of the UAVs.
Three-dimensional maps of terrains might then be created. Such a system can be used, e. g.,
in disaster areas to quickly create an overall map of the area. Several approaches for the
creation of maps from single pictures exist. One of these approaches is, e. g., presented in [7],
[9] and [10].

Positioning of the UAVs must also be verifiable at least in terms of inaccuracies to adopt the
approach for the use in real environments. Known inaccuracies can be compared, e. g., by
obstacle growing. Inter-UAV communication is also an issue for real world scenarios. Only
a limited communication range exists if technologies like wireless LAN are used. Routing
protocols can be an interesting point to make the communication task more robust.

Another interesting point of future work would be the extension of the approach to work in a
more heterogeneous robotic environment. Fixed wing UAVs, as well as different unmanned
ground vehicles and unmanned underwater vehicles could be introduced to make the system
suitable for additional applications. One application could be the erection of skyscrapers, in
which UAVs transport material to the upper levels of the building.

The evaluation of the approach shows that using formations to entirely explore environments
is not necessarily beneficial. A skillful behavior able to use formations only when it is
beneficial is definitely worth to be designed. A few first thoughts about how such a behavior
can be created are presented in Section 7.4.1. A further idea would be the use of expert
knowledge given by control station personal. Nevertheless, formation capabilities allow the
execution of several tasks single UAVs are unable to process.

The introduction of learning algorithms to support UAV behavior, as well as for target
selection during exploratory navigation could lead to an increase in efficiency regarding
the system’s overall performance. The designed system can be made more robust through
approaches from the area of swarm intelligence, which might also be used to supersede the
global positioning system.

The mentioned aspects are still interesting and relevant for the design of a completely
autonomous and decentralized real world UAV system. Based on the behavior resulting from
the methods presented in this thesis the UAVs are able to coordinate themselves, to plan paths
to each reachable region of various three-dimensional environments, to create formations, to
fly in formation, and to distribute tasks on their own. Thus, this thesis provides a first step
towards a decentralized multi-UAV system.
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Appendix A
Algorithms

The most important algorithms used for the design of the system presented in this thesis
are described in detail in this appendix. They are all based on the octree introduced in
Section 4.2. The octree is the basic data structure for terrain representation, as well as for
path planning and is used as world model.

Functional descriptions of the algorithms are provided in the single chapters of the thesis.
The appendix gives more detailed insights to the implementation of single algorithms and
presents them using pseudo code. A brief overview of the algorithms and their duties is
provided in the following.

• The neighbor finding algorithm presented in Appendix A.1 is the most frequently used
algorithm within this thesis. It takes a node and a search direction as input and returns
a list of neighboring nodes. Several other algorithms rely on the output of the neighbor
finding algorithm.

• It is possible that the terrain consists of unreachable areas. To avoid the selection of
such areas by the UAVs as next to be explored, which would lead to path computation
failures, nodes enclosing such areas are marked as occupied. An algorithm based on the
flood fill method has been designed for this purpose. It is presented in Appendix A.2.

• The UAVs fly in dynamically changing complex three-dimensional environments. An up-
date algorithm has been designed in order to reach an efficient mapping of environmental
changes into the internal world model. It is described in Appendix A.3.

• The update algorithm increases the number of octree nodes. Such an increase slows
down the entire system’s performance. A node combination algorithm is used to
overcome this problem. It is presented in Appendix A.4.

• UAV flights are based on artificial potential field theory. Two potential field algorithms
have been designed for the resulting system. The harmonic potential field algorithm
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described in Appendix A.5 is used for path planning and the bifurcating potential field
algorithm presented in Appendix A.6 is used for formation flights.

• Finally, a highly complex UAV system with purposes to simultaneously process several
different tasks autonomously and to efficiently perform exploratory navigation needs
a task creation algorithm presented in Appendix A.7 and a task allocation algorithm
described in Appendix A.8 for task distribution.

The single algorithms are described in detail in the following sections starting with the
neighbor finding approach. References to the corresponding sections that describe the
functionality and provide the mathematical equations are also included in the next sections.

A.1. Neighbor Finding

The neighbor finding algorithm is based on ray tracing used in the computer graphics domain.
The functionality and advantages of the algorithm are briefly described in Section 4.2.4. The
algorithm takes a node li at level n and a search direction as input. The output is a list of
the neighboring nodes in the search direction.

First, offsets are computed a priori as presented in Listing A.1. These offsets are based on
the dimensions of the single leaves at each level of the octree. The computation can easily be
done using the Pythagorean theorem. Twenty-six offsets representing the twenty-six possible
search directions are computed for each of the octree’s levels. A single offset is half of the
dimension of the node at the given level in the search direction plus half of the dimension
that a node at maximum level has in the given direction.

CalculateOffsets ( terrain_dimensions , octree_levels )
node_dimensions = terrain_dimensions

for(i ← 9; i ≤ octree_levels ; i++)
offsets [i] = CalculateOffsets ( node_dimensions )
node_dimensions /= 2

Listing A.1: Method to compute offsets a priori.

The algorithm determines neighboring nodes by finding areas that enclose specific positions.
To compute such positions, the relevant offset is added to the center position of the start node
li at level n as shown in Listing A.2. This ensures that the computed position is enclosed by
the corresponding neighboring leaf.

It is necessary to determine all neighboring leaves of a leaf for potential field computation.
Leaves at the environment border do not have neighboring nodes in every direction. Thus,
checking the existence of neighboring leaves is necessary. The method FindEqualLevelNeighbor
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FindOcTreeNeighbors (node , direction , root_node )
neighbors ← root_node

neighbor_position ← node. center + offset [node.level ][ direction ]
neighbors ← NULL

if( neighbor_position is outside the terrain )
return no_neighbors_exist

FindEqualLevelNeighbor ( neighbor_position , neighbors , direction )
return neighbors_found

Listing A.2: Entry method for the neighbor finding algorithm. The methods main responsibility is
the computation of a specific point enclosed by the neighboring leaf.

in Listing A.3 is called if a neighboring node exists. It determines a single neighboring node
in the search direction at level r ≤ n based on the previously computed position.

Each node is either a leaf or is subdivided by eight child nodes. The single children always
encapsulate the same parts of the parent node. These parts are illustrated in Figure 4.7 and
are in particular at the lower left front, the lower left back, the lower right front, the lower

FindEqualLevelNeighbor ( neighbor_position , neighbors , direction )
for (i ← 0; i < node.level; i++)

if ( neighbors is leaf)
neighbors_found ← neighbors
return

child_number ← 0
if ( neighbor_position .x > neighbors . center .x)

child_number += 1
if ( neighbor_position .y > neighbors . center .y)

child_number += 2
if ( neighbor_position .z > neighbors . center .z)

child_number += 4

neighbors ← neighbors .child[ child_number ]

num_childs_in_dir ← GetNumChilds ( direction )
switch ( num_childs_in_dir )

case 1:
FindNeighborAlongVertex ()

case 2:
FindNeighborsAlongEdge ( neighbors )

case 4:
FindNeighborsAlongFace ( neighbors )

Listing A.3: The method determines a neighbor node with a level lower or equal to the level of
the start node. If that node is not a leaf, additional methods are called to determine the single
neighboring leaves.
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right back, the upper left front, the upper left back, the upper right front and the upper
right back of the parent node. The for loop in Listing A.3 is used to iteratively run from the
current node to the child node that encloses the computed position. The loop

terminates if the current node is a leaf or if the node level is equal to the node level of li. The
corresponding neighbor leaf has been found in these cases. The computation of the resulting
child number is based on the distribution of the single children presented in Figure 4.7.

Only one neighboring leaf exists if the node determined by method FindEqualLevelNeighbor
is a leaf. It is then stored in the list of found neighbors and the algorithm terminates.

A distinction based on the search direction takes place if the determined node is not a leaf.
Only one neighboring leaf exists if the search direction leads to neighboring leaves along a
vertex. In this case, the method FindNeighborAlongVertex shown in Listing A.4 is called. Two
child nodes are neighbors of li if the search direction leads to neighboring nodes along an edge.
In that case the method FindNeighborsAlongEdge shown in Listing A.5 is called. The last case
is that the search direction leads to neighboring nodes along a face. Then four child nodes
of the currently determined nodes are neighbors and the method FindNeighborsAlongFace
shown in Listing A.6 is called.

Only one single neighbor node exists if a neighboring leaf along a vertex has to be determined.
Method FindNeighborAlongVertex is called if this leaf is additionally at a higher level than
li. The method moves iteratively starting with the previously determined node to one of
the child nodes until a leaf node has been reached. The child node to which the method
moves is the one that encapsulates the area of the parent node. This node lies in the opposite
direction of the search direction and leads to the correct neighbor leaf.

FindNeighborAlongVertex ()
for (i ← node.level; i ≤ tree_depth ; i++)

if ( neighbors is not leaf)
neighbors ← neighbors .child[ search_direction [0]]

neighbors_found ← neighbors

Listing A.4: Method to find a single neighbor leaf along a vertex.

Method FindNeighborsAlongEdge presented in Listing A.5 is also used to find neighbors of
higher level than n. The methodology is similar to the one used by method FindNeighborA-
longVertex. Based on the previously determined neighbor node two neighboring child nodes
are recursively selected. The selected child nodes are the one that encapsulate the area of
the parent node that lies in the opposite direction of the search direction. The recursions
stop when all reached nodes are leaves. Each determined leaf is added to the found neighbor
list. Finally, the found neighbor list contains all neighboring leaves of li.

Neighboring leaves can also be adjacent to li along a face. Method FindNeighborAlongFace
presented in Listing A.6 is used to find these neighboring leaves. It works similar to the
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methods FindNeighborAlongVertex and FindNeighborAlongVertex and also starts with the
previously determined node. The method recursively selects four child nodes encapsulating
the areas in the opposite direction of the search direction. The recursions stop if all reached
nodes are leaves. Each leaf that is determined this way is added to the found neighbor
list. Finally, the found neighbor list contains all neighboring leaves of li in the given search
direction.

FindNeighborsAlongEdge (node)
if (node is leaf)

neighbors_found . push_back (node)
else

FindNeighborsAlongEdge (node.child[ search_direction [0]])
FindNeighborsAlongEdge (node.child[ search_direction [1]])

Listing A.5: Method to find neighboring leaves along an edge.

FindNeighborsAlongFace (node)
if (node is leaf)

neighbors_found . push_back (node)
else

for (i ← 0; i < 4; i++)
FindNeighborsAlongFace (node.child[ search_direction [i]])

Listing A.6: Method to find neighboring leaves along a face.

The algorithm is subdivided into six methods and is able to determine neighboring leaves of
given nodes in twenty-six different search directions. It is computationally fast as it works
mainly on pointer arithmetic. Only simple comparisons to decide whether a node is a leaf
and simple addition operations must be performed by the algorithm.

A.2. Flood Fill

The UAVs fly in highly complex three-dimensional environments. In such terrains areas
unreachable for the UAV can exist, e. g., rooms in buildings the UAV cannot enter. This
has to be taken into account for a completely autonomous UAV system, in order to ensure
that a UAV does not select such an area as its next target. Otherwise, it would be unable to
compute a feasible path.

An algorithm based on the flood fill technique of paint programs has been adapted to overcome
the problem. The algorithm is also briefly described in Section 4.2.2 and works as follows.

First, the algorithm uses the methodology presented in Listing A.3 to determine the leaf
that currently encloses the UAV. The method FindReachableTerrain presented in Listing A.8
takes this leaf as input to detect all areas of the environment the UAV can reach. Afterwards,
the method SetOccupied presented in Listing A.9 assigns all unreachable areas to CO.
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The method FindReachableTerrain presented in Listing A.8 is used to detect all reachable
nodes. The leaf enclosing the UAV is the entry point for the search. First, it is checked
whether the leaf to be examined is occupied or has been checked before. No further actions
are conducted for the leaf in these cases.

If no examination of the leaf has been conducted before, the leaf is set to be reachable.
Afterwards, the neighbor finding algorithm described in Appendix A.1 is used to determine
all neighboring leaves of the current leaf. The method FindReachableTerrain is then called
again for each neighboring node. It terminates when no further leaf passes the initial check.
After the termination of the method all leaves li ∈ CF the UAV is able to reach are marked
as reachable.

SetUnreachableTerrainOccupied (root_node , uav_position )
uav_node ← root_node

for (i ← 0; i < tree_depth ; i++)
if ( uav_node is leaf)

break
child_number ← 0
if ( uav_position .x > uav_node . center .x)

child_number += 1
if ( uav_position .y > uav_node . center .y)

child_number += 2
if ( uav_position .z > uav_node . center .z)

child_number += 4

uav_node ← uav_node .child[ child_number ]

FindReachableTerrain ( uav_node )
SetOccupied ( root_node )

Listing A.7: Entry method of the algorithm used to assign unreachable leaves to CO.

FindReachableTerrain ( uav_node )
if ( uav_node∈ CO or uav_node . is_reachable )

return

uav_node . is_reachable ← true

for (i ← 0; i < 26; i++)
neighbors ← FindOcTreeNeighbors (uav_node , i)

foreach ( neighbor in neighbors )
FindReachableTerrain ( neighbor )

Listing A.8: Method to determine nodes reachable by the UAV.

The method SetOccupied presented in Listing A.9 is called after method FindReachableTerrain
terminated. The method takes the root node as input and recursively moves through the
entire octree. It assigns each leaf that is in CF and not marked as reachable to CO.
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The algorithm is executed every time the UAV receives new terrain objects and maps them
into the octree. It is also executed if the environment is unknown a priori and newly explored
occupied leaves intersect the current path of the UAV. This ensures that a UAV will never
select an unreachable area as its next target area. It also decreases the computational effort
for the potential field computations as leaves, irrelevant for the computations, are no longer
treated as unbound leaves and may also be combined with occupied leaves to even larger
leaves.
SetOccupied (node)

if (node is not leaf)
foreach (child)

SetOccupied (child)
return

if (node is not reachable )
node. space_type ← CO
node. potential ← 1.f

node. reachable ← false

Listing A.9: Method to assign unreachable nodes to CO.

A.3. Update Octree

The internal world model of the UAVs is based on an octree (cf. Section 4.2). This octree
is dynamically changeable (cf. Section 4.2.1) in order to internally represent environmental
changes like newly explored terrain (cf. Section 4.3.1). An adaption of classical ray tracing
algorithms has been designed and is used to continuously update the octree.

The main purpose of the update octree algorithm is the mapping of newly explored terrain
into the octree. The entry method is Explore presented in Listing A.10. First, values to help
computing the maximum environment explorable by the camera are calculated. These values
are four two-dimensional boundaries on the terrain ground.

Based on the previously computed boundaries, method DetermineExploredNodes presented in
Listing A.11 is used to actually determine ground positions that lie within the area the camera
equipment of the UAV can explore. Finally, method SendRay presented in Listing A.12 is
used to compute discretized rays that determine the newly explored nodes.

Explore (UAV)
cam_boundaries ← CalcCamViewBoundaries (position , angles , CameraRatio ,

CameraFlareAngle )
DetermineExploredNodes ( position )

Listing A.10: Entry method to map environmental changes into the octree.
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First, it is assumed that the environment below the UAV is obstacle free. This enables
the computation of the terrain ground’s boundary positions, enclosing a two-dimensional
area on the terrain ground the camera can explore. Equations A.1 to A.8 compute eight
coordinates—four in x - dimension and four in y - dimension—leading to four two-dimensional
boundary points. These points are illustrated in Figure A.1 and are in particular (cbx0, cby0),
(cbx1, cby1), (cbx2, cby2) and (cbx3, cby3).

The UAV U is always at a specific position pU with pU(i) denoting the x, y, and z dimension
of the position. Additionally, the UAVs can rotate around a yaw βU , a pitch γU , and a roll δU
angle. These angles must also be taken into account to compute a proper area explored by
the UAV. Further on, the camera of the UAV has a ratio r and a flare angle θ and is mounted
at a camera angle λ. The ratio leads to a flare angle for the width θw and a flare angle for
the height θh of the camera. These angles are also taken into account for the computation of
the boundary points.

cbx0 = tan
(
δU −

θw
2 + λ

)
·pU(z)·cos(βU)−tan

(
γU + θh

2 + λ

)
·pU(z)·sin(βU)+pU(x) (A.1)

cby0 = tan
(
δU −

θw
2 + λ

)
·pU(z)·sin(βU)+tan

(
γU + θh

2 + λ

)
·pU(z)·cos(βU)+pU(y) (A.2)

cbx1 = tan
(
δU + θw

2 + λ

)
·pU(z)·cos(βU)−tan

(
γU + θh

2 + λ

)
·pU(z)·sin(βU)+pU(x) (A.3)

cby1 = tan
(
δU + θw

2 + λ

)
·pU(z)·sin(βU)+tan

(
γU + θh

2 + λ

)
·pU(z)·cos(βU)+pU(y) (A.4)

cbx2 = tan
(
δU + θw

2 + λ

)
·pU(z)·cos(βU)−tan

(
γU −

θh
2 + λ

)
·pU(z)·sin(βU)+pU(x) (A.5)

cby2 = tan
(
δU + θw

2 + λ

)
·pU(z)·sin(βU)+tan

(
γU −

θh
2 + λ

)
·pU(z)·cos(βU)+pU(y) (A.6)

cbx3 = tan
(
δU −

θw
2 + λ

)
·pU(z)·cos(βU)−tan

(
γU −

θh
2 + λ

)
·pU(z)·sin(βU)+pU(x) (A.7)

cby3 = tan
(
δU −

θw
2 + λ

)
·pU(z)·sin(βU)+tan

(
γU −

θh
2 + λ

)
·pU(z)·cos(βU)+pU(y) (A.8)

The UAVs’ rotation possibilities around three axes often avoid that the ground area of the
camera view is like a rectangular shape but similar to a trapezoid as shown in Figure A.1.

Based on the four boundary points, method DetermineExploredNodes shown in Listing A.11
calculates ground positions to which rays have to be send. The method first sets the space
type of the node enclosing the UAV as free space. The system supports aging of data and
therefore the exploration time is stored at the node, too. The next step is to sort the boundary
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(cbx0, cby0)

(cbx1, cby1)

(cbx2, cby2)

(cbx3, cby3)

(cbx0,1, cby0,1)
X

Figure A.1.: Schematic illustration of an area at the terrain ground that might be explorable.

points (cbxi, cbyj) in a specific way to ensure that the arrangement of the nodes is always the
same independent of the yaw angle of the UAV.

The end position for the first ray is the first boundary point (cbx0, cby0). This point is due to
the sorting mentioned before always in the lower left related to FW as shown in Figure A.1.
The second boundary point (cbx1, cby1) is in the lower right of the terrain. The third boundary
point (cbx2, cby2) is the one in the upper right while the fourth boundary point (cbx3, cby3) is
in the upper left.

The method now moves in spiral form from one boundary point to another until the leaf at the
center of the boundary positions is reached. A single movement step requires a movement in
x - direction, as well as in y - direction and is computed as follows. To move, e. g., starting at
(cbx0, cby0) towards (cbx1, cby1) requires a movement in x - direction equal to the x - dimension
of a leaf at maximum resolution. Let x(li) be the size of a leaf in x - direction at maximum
resolution. Then

n = cbx1 − cbx0

x(li)
(A.9)

movement steps are necessary. Based on the n steps computed using Equation A.9 the
movement in y - direction ym per step to compute new positions is computed by

ym = cby0 − cby1

n
. (A.10)
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Computing the movement between the other boundary points is performed analogously. The
next computed position (cbx0,1, cby0,1)—marked by a red X in Figure A.1—is finally given by

cbx0,1 = cbx0 + x(li) (A.11)
cby0,1 = cby0 + ym. (A.12)

DetermineExploredNodes ( position )
uav_node . space_type ← CF
uav_node . exp_time ← now
sortet_bounds ← SortCamBoundaries ( cam_boundaries )

ray_end ← sorted_bounds .x
number_leaves ← distances / min_node_size

step_distances ← distances / number_leaves
exploring ← true

while ( exploring )
exploring ← false
for (i ← 0; i < number_leaves .x1; i++)

SendRay ()
ray_end .x += min_node_size .x
ray_end .y += step_distances .y1
exploring = true

number_leaves .x1 -= 2
for (i ← 0; i < number_leaves .y1; i++)

SendRay ()
ray_end .x += step_distances .x1
ray_end .y -= min_node_size .y
exploring = true

number_leaves .y1 -= 2
for (i ← 0; i < number_leaves .x2; i++)

SendRay ()
ray_end .x -= min_node_size .x
ray_end .y += step_distances .y2
exploring = true

number_leaves .x2 -= 2
for (i ← 0; i < number_leaves .y2; i++)

SendRay ()
ray_end .x += step_distances .x2
ray_end .y += min_node_size .y
exploring = true

number_leaves .y2 -= 2
SendRay ()

Listing A.11: Method for the determination of end positions for rays.
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Each computed position is used as an end position of a ray. Method SendRay presented
in Listing A.12 is called to finally determine the newly explored nodes. It is similar to
classical ray tracing approaches. Compared to classical ray tracing not every polygon of the
environment is checked whether it is intersected by a ray. The rays intersect a single leaf at
every position of the environment. Thus, it is only necessary to discretize the ray in a way
that each intersected leaf can be determined.

First, the three-dimensional vector new_position from Listing A.12 is set to the UAV position.
The ray always starts at the UAV position. Thereafter, a so called node_diff is computed.
This is also a three-dimensional vector and it is initialized with the distance of the UAV
to the end position of the ray. The end position has previously been computed in method
DetermineExploredNodes. The vector node_diff is then divided by a step size, which is also
a three-dimensional vector, on the one hand taking the z dimension of a leaf at maximum
level. On the other hand, taking the corresponding x and y values one has to move within
these dimensions in order to compute a point on the ray if the z - dimension is subtracted
from the previous point. In general, the discretization of the rays works analogously to the
method introduced before for the determination of the end positions of the rays.

The following while loop subtracts the node_diff vector continuously from the vector new_-
position, to compute positions that lie on the ray until the ray exits the environment. Each
leaf at maximum level enclosing a position computed this way, is determined to use the
approach presented in method FindEqualLevelNeighbor from Listing A.3 to compute leaves
at maximum level based on positions. The leaves are finally set to be newly explored until a
node assigned to an occupied space is reached. Using the two termination conditions ensures
that the while (true) loop terminates.

SendRay ()
new_position ← position
node_diff ← position - ray_end
node_diff /= step_size

while (true)
new_position -= node_diff

if ( new_position is outside the terrain )
return

new_explored ← GetMaxLevelLeafFromPosition ( new_position )

if ( p_new_explored∈ CO )
break

new_explored . space_type ← CF
new_explored . last_visit ← now

Listing A.12: Method to determine the newly explored leaves.

The discretization of the ray using the node_diff vector is an approximation. Not every
node intersected by a ray is computed this way. This is desired as only nodes for which the
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main volume lies inside the exploration area should be assigned to CE . Basing the value on
the z axis leads to an insufficient exploration when the flare angle of the camera is set to
a value greater than 120◦. In that case the node_diff vector should be based on the x and
the y dimension. The UAVs considered in this thesis have a much lesser flare angle so this
computation is sufficient for the presented work.

A.4. Combine Octree

The UAVs are able to successively explore the environment using the update octree algorithm
presented in Appendix A.3. This algorithm creates new leaves at maximum level leading
to an increasing number of unbound leaves. The unbound leaves are taken into account by
the algorithms for potential field calculations presented in Appendix A.5 and Appendix A.6.
An increasing number of unbound leaves results in increasing computation times for these
algorithms. A combination of leaves is conducted by the algorithm CombineTree presented
in Listing A.13 in order to cushion this effect.

The algorithm takes the root node as input and moves recursively through the entire octree.
Leaves are combined and the recursion allows a combination of all possible leaves in one
single run.

The algorithm is called recursively with each of the eight child nodes of the current node as
input if the check fails. First, the leaf property of the node is checked again. The children of
a node could have been combined such that the status of a non-leaf might has changed due
to the recursion. Leaves containing a UAV are not combined. Another check considering
the possibility to combine leaves is only performed for one leaf of each node. The seventh
child node (cf. Figure 4.7) is chosen. Only one leaf is examined in order to avoid redundant
checks. The seventh child node is used for this purpose as the recursion is executed for all
single child nodes before the examination of the first leaf starts. Using another child node
would cause the method to examine nodes combined before and thus non-existent at the time
they are checked. Additionally, only leaves not encapsulating a UAV are combinable. This is
checked, too.

The parent node is determined after the selection of a leaf to be a possible candidate for a
combination. The siblings of the leaf are then also investigated using the parent node to
easily access them. Only nodes assigned to the same space type can be combined. From this
it follows, that all siblings of a node must be assigned to the same space type as the original
node.

A further check is required as the system supports aging of data. Leaves assigned to CF can
only be combined if the difference of the points in time they were explored (cf. Section 4.2.3)
is below a given threshold. This threshold depends on the time, after which a newly explored
leaf is considered unexplored again.

212



A.4. Combine Octree Appendix A. Algorithms

Child leaves of a node are combined if they passed the previously described checks. An
approximation of the points in time the single leaves have been recently explored is conducted
during a leaf combination. The parent node of the leaves to be combined is set to the
arithmetic mean of the single points in time the leaves have been explored lastly.

CombineTree (node , child_number )
if (node is not leaf)

foreach (child)
CombineTree (child , child_number )

if (node is not leaf or child_number 6= 7 or node encloses uav)
return

node ← node. parent

for (i ← 0; i < 7; i++)
if(node.child[i]. type 6= node.child [7]. type or node.child[i])

return

if (node.child [7]. type ∈ CF and aging is active )
for (i ← 0; i < 7; i++)

if (node.child [7]. exp_time - node.child[i]. exp_time > threshold )
return

node. exp_time ← 0
for (i ← 0; i < 8; i++)

node. exp_time += node.child[i]. exp_time
node. exp_time /= 8

node. ground_height = 0.f
for (i ← 0; i < 8; i++)

if (node.child[i]. ground_height > node. ground_height )
node. ground_height ← node.child[i]. ground_height

node. space_type ← node.child [7]. space_type
if (node. space_type∈ CO )

node. potential ← 1.f

for (i ← 0; i < 8; i++)
delete node.child[i]

node.leaf ← true

Listing A.13: Algorithm for node combination to reduce the number of octree nodes.

Each leaf stores its distance to the closest underlying environment. This is used to easily
determine the nodes that enclose the favorite height of the UAV (cf. Section 4.3). The new
leaf obtains the maximum distance of the child nodes. This ensures that the UAV selecting a
leaf at its favorite altitude as next to be explored does not reduce its altitude in order to
achieve a larger exploration area.
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The new leaf is assigned to the space type of its child nodes and its potential value is bound
to one if it contains occupied space in order to fulfill the Dirichlet Boundary Condition (cf.
Section 5.3.1). Finally, the children of the node are deleted and the node becomes a leaf.

The algorithm presented in this appendix ensures that the system uses some of the advantages
offered by an octree. It decreases the number of nodes by combining leaves with similar
properties.

A.5. Harmonic Potential Field Calculations

The UAVs main duty is to fly from initial configurations qI to target configurations qG in
order to process tasks and to explore environments. UAV flights are due to several reasons
based on previously planned trajectories. Artificial potential field theory combined with
harmonic function theory is used for the computation of such trajectories.

The algorithm presented in this appendix computes an approximation of a three-dimensional
harmonic function. This harmonic function represents an artificial potential field. Trajectories
can then be computed, using the descent gradient (cf. Chapter 5).

The algorithm performs a three step procedure as shown in the main method CalculatePo-
tentialField presented in Listing A.14. First, some computations including the creation of the
Dirichlet Boundary Condition (cf. Section 5.3.1) are conducted by the method Precalculations
presented in Listing A.15. Afterwards, a first approximation of a harmonic function is
computed by the method FirstApproximation presented in Listing A.16. This approximation
is finally relaxed towards a harmonic function as presented in Listing A.17. The resulting
potential field guides the UAVs to the target configurations qG while it simultaneously ensures
obstacle avoidance.

CalculatePotentialField (root_node , target )
Precalculations (root_node , target )
FirstApproximation ( target )
while ( termination_conditions not fulfilled )

Relaxation ()

Listing A.14: Main potential field calculation method.

First, some preparations presented by method Precalculations from Listing A.15 are conducted.
The method takes the root node as input and runs recursively through the entire octree. Only
leaves or nodes further away than distance τ are relevant for potential field computations (cf.
Section 5.3.4) and therefore all other nodes remain unconsidered.

A distinction of leaves takes place in order to create the Dirichlet Boundary Condition. Every
leaf assigned to CO obtains a potential value of one and every leaf assigned to CG obtains a
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potential value of zero. These leaves are the so called bound leaves (cf. Section 5.3.1). Leaves
enclosing other UAVs are also assigned to CO.

Potential values need to be calculated for the remaining unbound leaves. The algorithm utilizes
the fact that the octree is static during potential field computations. The most costly part of
the relaxation is the consideration of the different leaf dimensions (cf. Section 5.3.3). Thus,
another approximation performed by the algorithm is to take only the average distance of the
neighboring leaves in each direction into account. First, the neighbor nodes in each of the six
relevant directions are computed for each unbound leaf. Afterwards, the arithmetic mean of
the distances to the neighboring nodes is computed for each direction. Thereafter, the same
is conducted for the opposite directions needed by the relaxation equation. The relaxation
equation includes a division by a combination of the distances as shown in Equation 5.18.
All calculated values and the corresponding unbound leaves are finally stored in a list.

Precalculations (node , target )
dist ← GetDistanceToTarget (node , target )

if (node not leaf and dist < τ )
foreach (child of node)

Precalculations (child , target )
return

switch (node. space_typ )
case CO :

node. potential ← 1
case CG

node. potential ← 0
default :

leaf_values .leaf ← leaf
for ( direction ← 0; direction < 6; direction ++)
leaf. neighbors ← FindNeighbors ( direction )

leaf_values . avg_dist [dir] ← CalcAgvDist (dir)
leaf_values . opp_dist [dir] ← CalcOppDist (dir)

leaf_values .div ← CalculateDivisor ()
leaf_list . push_back ( leaf_values )

Listing A.15: Method performing precalculations including Dirichlet Boundary Condition.

After the computation of all necessary values and the introduction of the Dirichlet Boundary
Condition, a list containing all relevant data has been created. The method FirstApproxima-
tion presented in Listing A.16 is then called and runs through the entire list. It computes a
first approximation of the resulting harmonic function by computing single potential values.
The bound values set by the method Precalculations are fixed during the complete computa-
tion of the potential field. Only the unbound values are stored in the list and thus only the
potential values of these leaves are computed. The resulting potential field is the combination
of the bound and unbound leaves.
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FirstApproximation ( target )
foreach (leaf in leaf_list )

dist ← GetDistanceToTarget (leaf , target )
leaf. potential ← 1 -(1/ dist)

Listing A.16: First approximation of the harmonic potential field.

The last step of the potential field computation is the relaxation of the approximated values
towards a harmonic function. For this purpose, method Relaxation presented in Listing A.17
is called in a while loop.

The method also uses the list created by method Precalculations. It runs through leaf_list
and assigns each potential value to the arithmetic mean of the surrounding potential values.
An approximation takes place and only the arithmetic mean of the potential values in each
direction is considered. The method starts by summing up the single potential values in each
direction.

The cumulative potential values are divided by the number of neighbors in the corresponding
directions that reach the arithmetic mean value if neighbors in the current direction exist.
The values are then multiplied by the average distance of the neighbors in the corresponding
direction. The resulting potential values are multiplied with the relevant distances given by
the current direction to compute the numerator of Equation 5.18.

Relaxation ()
foreach ( leaf_values in leaf_list )

leaf_values .leaf. potential ← 0.0

for ( direction ← 0; direction < 6; direction ++)
pre_potential [dir] ← 0.0
foreach ( neighbor in leaf_values . neighbors [ direction ])

first_potential += neighbor . potential

if( leaf_values .leaf. neighbors [dir ]. number > 0
first_potential /= leaf_values . neighbors [ direction ]. number
pre_potential [dir] ← first_potential * leaf_values . avg_dist [dir]

for (dir ← 0; direction < 6; direction += 2)
leaf_values .leaf. potential += leaf_values . opp_dist [dir /2] * (

pre_potential [dir] + pre_potential [dir +1])

leaf_values .leaf. potential ← leaf_values . potential / leav_values .div

Listing A.17: Relaxation of approximated values towards a harmonic potential field.

The distance must be subtract out and thus the resulting potential values are divided by the
denominator of Equation 5.18 to achieve the arithmetic mean. Finally, the resulting potential
value must be assigned to the corresponding leaf. This way each leaf gets the arithmetic
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mean of the surrounding potential values, independent from the dimensions of its neighbors.
This method approximates the potential field closer to a harmonic function with each call.

As mentioned before, it is not necessary to compute a perfect harmonic function to be able
to plan feasible paths. Thus, method CalculatePotentialField presented in Listing A.14
implements termination conditions introduced in Section 5.3.4. The algorithm terminates
and the descent gradient is used to compute a feasible path from qI to qG if one of these
termination conditions is fulfilled.

A.6. Bifurcating Potential Field Calculations

Formation flights are possible beside single UAV flights from initial configurations qI to target
configurations qG in order to explore the environment and to solve various tasks. They are
achieved by an extension of the harmonic potential field for path planning computed by the
algorithm presented in Appendix A.5.

The algorithm presented in this section computes a potential field for formation flights based
on bifurcation theory and is superpositioned with the previously computed harmonic potential
field.

The entry method CalculateBifurcatingPotentialField presented in Listing A.18 takes the
position of the UAV, its next path point, the roll angle, and the pitch angle of the formation
as input.

CalculateBifurcatingPotentialField (position , next position , γP , δP , root)
βP ← CalculateYawAngle (position ,next position )

CalculatePotentialValues (root)

Listing A.18: Entry method for the calculation of a bifurcating potential field.

First, the yaw angle βP of the resulting formation is computed using the current route point
and the next route point of the formation. The angle is used to rotate the potential field in
order to rotate the formation such that the formation shape is prepared (cf. Section 6.4.3).
Afterwards, method CalculatePotentialValues presented in Listing A.19 is called with the root
node of the octree, as well as parameters v (cf. Equation 6.6) and w (cf. Equation 6.13)and
the target position as input for the computation of the resulting potential values.

The method CalculatePotentialValues from Listing A.19 runs recursively through the entire
octree. Only leaves or nodes further away than distance τ are taken into account for potential
field computations (cf. Section 5.3.4). Additionally, the Dirichlet Boundary Condition created
by method Precalculations presented in Listing A.15 for the computation of the path planning
potential field is respected by neglecting all leaves assigned to CO. First, the Euclidean
distance τ from the node to the target node is computed for the remaining unbound leaves.
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To be able to rotate a formation when necessary, a rotation of the distance around the target
position is also conducted.

CalculatePotentialValues (node , v, w, target )
dist ← GetDistanceToTarget (node , target )

if (node not leaf and dist < τ )
foreach (child)

CalculatePotentialValues (child)
return

if (node space type ∈ CO )
return

τ ← ComputeDistances ()
if ( rotation is necessary )
τ ← RotateDistances ()

τ̄ ← GetNormalizedDistances (τ )

u← (|µ|+ α) · (a+ b+ c)

bifurcation_potential ← µ(aτ̄2
x + bτ̄2

y + cτ̄2
z )

bifurcation_potential ← bifurcating_potential + α(aτ̄4
x + bτ̄4

y + cτ̄4
z )

bifurcation_potential ← bifurcating_potential / u
bifurcation_potential ← bifurcating_potential - v

if ( bifurcation_potential < 0)
node. potential ← node. potential · 0.5 + bifurcation_potential

Listing A.19: Method for the calculation of the single bifurcating potential values.

A potential value for each leaf is now computed using Equation 6.6 as shown in Listing A.19.
Finally, the bifurcation value is superpositioned with the previously computed harmonic
potential value using the case differentiation as described in Section 6.3.2. This leads to the
resulting superpositioned potential field for formation flights.

A.7. Task Creation

Task creation is performed when at least one of the three situations described in Section 7.4.1
occurs. The algorithm mainly checks whether at least one of the “if queries”, presented in
Listing A.20 holds. A refueling task is created and afterwards allocated when the fuel level
of the UAV is below the threshold defined in Equation 7.13.

A UAV tries to reestablish communication and simultaneously flies to the next landing area
if it does not receive messages for a given time span, neither from the Control Station nor
from other UAVs it creates a reconnect task.
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The last check considers the creation of formations. A UAV creates a new task requiring
several UAVs to explore the area in formation if it processes the single UAV exploration task
and if it selects a large area, as defined in Equation 7.14, as next to be explored.

CreateNewTask ()
if( fuel_level < fuel_threshold )

CreateRefuelingTask ()
AllocateTask ()

if( time_since_last_message < time_threshold )
CreateReconnectTask ()
AllocateTask ()

if( current_task == SingleExploration )
area_size ← ComputeSizeOfAreaToBeExploredNext ()
if( area_size ≥ CameraArea ·4n)

CreateMultiExplorationTask ()
AllocateTask ()

Listing A.20: Algorithm for task creation in order to increase efficiency and to avoid damage.

A.8. Task Allocation

The last algorithm presented in this appendix is responsible for task allocation and shown in
Listing A.21. It is called continuously in order to perform a reallocation if the fulfillment of
tasks by other UAVs is delayed or if a new task more beneficial than the current one has
been received.

AllocateTask ()
foreach (task in task_list )

ComputeBidValue ()

while ( search_for_task )
next_task ← GetTaskWithHighestBidValue ()
if ( next_task .type == SingleExploration )

search_for_task ← false
else if ( next_task . own_bid_value ≤ next_task . foreign_bid_value )

next_task . own_bid_value ← 0
else

search_for_task ← false

If ( next_task .type 6= Refueling 6= Reconnect 6= SingleExploration )
SendBidValueToOtherUAVs ()

Listing A.21: Task allocation algorithm.

The algorithm first runs through the entire task list and calculates a bid value for each task
based on the current configuration of the UAV as shown in Equation 7.18. The following
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while loop then selects the task with the highest bid value. The UAV starts to explore the
environment on its own if the most beneficial task is exploratory navigation. A check is
performed whether the task to be allocated is not exploratory navigation and whether it is
currently processed by another UAV. In this case, a bid value from the UAV processing the
task has been received before. If this bid value is higher than the one the UAV computed, it
sets its own bid value to zero and selects the task which has then the highest bid value. A
UAV takes over a task and informs the other UAVs if the bid value the UAV computed is
higher than the one of the UAV currently processing the task.

Refueling and reconnection tasks will always be executed first and the bid values computed
for these tasks are not send to other UAVs.
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Definition B.1. Mean - Value property: Let Ω be a domain in Euclidean space possessing
finite measure. Let the complement of Ω possess non-empty interior. Assume now that a
point p ∈ Ω exists such that for every harmonic function φ in Ω and integrable over Ω the
mean value of φ over Ω equals φ(p). Then Ω is a sphere with center at p [157].

Definition B.2. Min - Max Principle: A harmonic function f(x, y) defined on a closed
domain Ω takes its minimum and maximum values on the boundaries [158].

Definition B.3. Uniques Principle: If f(x, y) and g(x, y) are harmonic functions defined
on a closed domain Ω such that f(x, y) = g(x, y) for every bound point, then ∀x, y : f(x, y) =
g(x, y) [34].

Definition B.4. Analytic: An analytic function is an infinitely differentiable function such
that the Taylor series at any point x0 in its domain Ω

T (x) =
∞∑
n=0

f (n)(x0)
n! (x− x0)n

converges to f(x) for x in a neighborhood of x0.

Definition B.5. Completeness: If a path ρd from qI to qG exists and the configuration
space contains a finite number of configurations, then a discrete path ρd is always computed
by a complete planner. If such a path does not exist, the planner returns an error.

Definition B.6. Sound: A path planner is sound if it always computes a discrete path ρd,
leading to the target configuration qG if such a path exists. If not, the planner returns an
error.

Definition B.7. Dirichlet Boundary Condition: When imposed on an ordinary or a
partial differential equation, it specifies the values a solution needs to take on the boundary of
the domain. The question of finding solutions to such equations is known as the Dirichlet
Problem.
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Definition B.8. Dirichlet problem: It is the problem of finding a function, which solves
a specified partial differential equation in the interior of a given region that takes prescribed
values on the boundary of the region.

Definition B.9. Equilibrium: Let li be a leaf with potential value φli. The leaf li is an
equilibrium or minimum if no neighboring leaf lj : (li, lj) ∈ N , i 6= j with a potential value
φlj < φli exists.

Definition B.10. Bivariate function: A function is called bivarite if it contains two
variables, e. g., f(x, y) = x+ y2

Definition B.11. Finite difference approximation: Following the definition from Smith
[207] applying Taylor’s theorem to any smooth function f results in:

f(x+ h) = f(x) + f ′(x)h+ 1
2h

2f ′′(x) + 1
6h

3f ′′′(x) +O(h4),

f(x− h) = f(x)− f ′(x)h+ 1
2h

2f ′′(x)− 1
6h

3f ′′′(x) +O(h4).
(B.1)

It is deduced that

f ′(x) = f(x+ h)− f(x)
h

+O(h). (B.2)

Hence, f(x+h)−f(x)
h

is a first order forward finite difference approximation to f ′(x). It is called
first order as the error term known as truncation error is O(h). Subtracting the two Taylor
expansions results in:

f ′(x) = f(x+ h)− f(x− h)
2h +O(h2). (B.3)

This is the second order finite difference.

Analogous, approximations for higher derivatives can be found. A second order central finite
difference for the second derivative is:

f ′′(x) = f(x+ h)− 2f(x) + f(x− h)
h2 +O(h4). (B.4)
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Nomenclature

−∇ Descent gradient, page 34

#∅(li) Average number of leaves, page 154

#∅(lun) Average number of unbound leaves, page 154

#computations Number of computations, page 154

#max(li) Maximum number of leaves, page 154

#max(lun) Maximum number of unbound leaves, page 154

#min(li) Minimum number of leaves, page 154

#min(lun) Minimum number of unbound leaves, page 154

#lun Number of unbound leaves, page 154

α Amplitude of a bifurcation function, page 45

τ̄ Normalized Euclidean distance 0 ≤ τ̄ < 1, page 134

τ̄T Normalized Euclidean distance between a UAV and a task, page 134

τ̄x Normalized distance 0 ≤ τ̄x < 1 in x - direction, see equation (6.4), page 108

τ̄y Normalized distance 0 ≤ τ̄y < 1 in y - direction, see equation (6.4), page 108

τ̄z Normalized distance 0 ≤ τ̄z < 1 in z - direction, see equation (6.4), page 108
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Nomenclature

βP Yaw angle of a formation, page 118

βU Yaw angle of a UAV, page 77

δP Roll angle of a formation, page 118

δU Roll angle of a UAV, page 77

ηT Equipment needed to process a task, page 134

ηU Equipment of a UAV, page 130

γP Pitch angle of a formation, page 118

γU Pitch angle of a UAV, page 77

λ Camera angle of the bird eye camera, page 78

BT The bid value for a task Ti, see equation (7.18), page 144

CE Explored space, page 65

CF Free space, page 31

CG Target space, page 65

CO Occupied space, see equation (3.3), page 30

CUK Unknown space, page 65

CUX Unexplored space, page 65

C Configuration space, see equation (3.1), page 29

D Neighboring direction related to the octree, page 33

EP Current exploration rate using UAV formations, see equation (7.2), page 131

EU Current exploration rate using single UAVs, see equation (7.2), page 131

FW Cartesian coordinate system, page 30

N The set of all pairs of neighboring nodes li and lj, page 33
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Nomenclature

Oj A three-dimensional obstacle, page 29

P A UAV formation, page 104

RU Role of a UAV, page 29

T A single task, page 131

TU The task currently executed by a UAV, page 29

U A single UAV, page 29

W A terrain, see equation (3.5), page 33

e Euler number, page 37

µ Bifurcation parameter, page 45

∇ Gradient, page 88

∇2 Laplace operator, see equation (3.10), page 37

Ω Closed domain on which the φh are given, page 37

ω Limit set, page 54

Ωc Compact set, page 54

φ A potential value, page 28

φhG Bound potential value of target areas, page 39

φhO Bound potential value of occupied areas, page 39

φx,y,z Superpositioned potential field, see equation (6.13), page 110

φbx,y,z Three-dimensional bifurcation potential value, see equation (6.6), page 109

φhx,y,z Three-dimensional harmonic potential value, see equation (5.5), page 88

ρ A path, page 31

ρd A discrete path, see equation (3.6), page 34
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Nomenclature

ρUi
Path of a specific UAV, page 42

τi Euclidean distance in direction i, page 92

τx,y,z Three-dimensional Euclidean distance, see equation (5.3), page 88

θd Flare angle of the bird’s eye camera, page 78

θf Flare angle of the front camera, page 78

∅tdiff Time difference between two potential field computations, page 154

∅depth Average iteration depth, page 155

a Weight value for the bifurcating x - dimension, see equation (6.5), page 108

AT Age of a task, page 134

b Weight value for the bifurcating y - dimension, see equation (6.5), page 108

c Weight value for the bifurcating z - dimension, see equation (6.5), page 108

d Diagonal of the environment, page 78

IT Importance of a task, page 134

J Jacobian matrix, see equation (3.25), page 55

li Single leaf of the octree, page 32

M Positively invariant set, see equation (3.22), page 54

MaT Maximum number of UAVs able to perform a task simultaneously, page 134

MiT Minimum number of UAVs needed to perform a task, page 134

NT Number of UAVs able to process a task, page 134

OT Current number of UAVs processing a task simultaneously, page 134

p Point in FW , page 29

pG Target position of a UAV in FW , page 29
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Nomenclature

pI Initial position of a UAV in FW , page 29

pU Current position of a UAV in FW , page 29

qO An obstacle configuration, page 39

qU Current configuration of a UAV, page 56

qi A single configuration q ∈ C, page 29

qG A target configuration qG ∈ CG, page 29

qI Initial configuration of a UAV qI ∈ C, page 29

qU UAV configuration qU ∈ C, page 29

S Set, see equation (3.23), page 54

t∅ Average computation duration, page 154

ti Single computation duration, page 154

tcomplete Complete computation duration, page 154

tmax Maximum computation duration, page 154

tmin Minimum computation duration, page 154

u Divisor for the bifurcating potential values, see equation (6.6), page 109

V A continuous function, see equation (3.17), page 53

v Shifting value for the bifurcating potential values, see equation (6.6), page 109

x∗ Equilibrium position, page 51

227





List of Figures

1.1 Commercial UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Reaper MQ 9 control station and drone . . . . . . . . . . . . . . . . . . . . . 4

2.1 Flock of birds and school of fish . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 State-of-the-art ground robots . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Non-mechanical robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Animal like robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 State-of-the-art UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Conceptual subdivision using an octree . . . . . . . . . . . . . . . . . . . . . 32
3.2 Attractive and repulsive potential fields . . . . . . . . . . . . . . . . . . . . . 36
3.3 Example harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Discretization error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Cusp Equilibrium Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Bifurcation change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Subcritical and Supercritical bifurcation . . . . . . . . . . . . . . . . . . . . 46

4.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Example Heightmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Terrain visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 UAV behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Obstacle growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Subdivision of a terrain through an octree . . . . . . . . . . . . . . . . . . . 71
4.7 Resulting child nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Camera equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.9 Octree exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 A two-dimensional harmonic potential field . . . . . . . . . . . . . . . . . . . 95
5.2 Environment before exploration . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Environment after exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 UAV formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

229



List of Figures

6.2 Example harmonic potential field . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Example bifurcating potential field . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Example superpositioned potential field . . . . . . . . . . . . . . . . . . . . . 113
6.5 Line and double line formation . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6 2D and 3D cluster formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Example task allocation problem . . . . . . . . . . . . . . . . . . . . . . . . 136

8.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 The 4 3D-models of the test environment . . . . . . . . . . . . . . . . . . . . 152
8.3 Exploration rate for a known environment without formation flights . . . . . 157
8.4 Considered nodes for a known environment without formation flights . . . . 159
8.5 Computation durations for a known environment without formation flights . 161
8.6 Exploration rate for an unknown environment without formation flights . . . 163
8.7 Considered nodes for an unknown environment without formation flights . . 164
8.8 Computation durations for an unknown environment without formation flights 166
8.9 Exploration rate for a known environment with formation flights . . . . . . . 170
8.10 Considered nodes for a known environment with formation flights . . . . . . 171
8.11 Computation durations for a known environment with formation flights . . . 174
8.12 Exploration rate for an unknown environment with formation flights . . . . . 176
8.13 Considered nodes for an unknown environment with formation flights . . . . 177
8.14 Computation durations for an unknown environment with formation flights . 179
8.15 Exploration rates of all approaches . . . . . . . . . . . . . . . . . . . . . . . 182
8.16 UAV path without obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.17 UAV path with obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.18 Start configuration for obstacle avoidance in formation . . . . . . . . . . . . 186
8.19 Line formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.20 Formation change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.21 Final configuration for obstacle avoidance in formation . . . . . . . . . . . . 187
8.22 Environment before single UAV task allocation . . . . . . . . . . . . . . . . . 189
8.23 Environment after single UAV task allocation . . . . . . . . . . . . . . . . . 189
8.24 Environment before multi-UAV task allocation . . . . . . . . . . . . . . . . . 193
8.25 Environment after multi-UAV task allocation . . . . . . . . . . . . . . . . . . 193

A.1 Explored terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

230



List of Tables

4.1 Node properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Node determination operations . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 UAV configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Bifurcation parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Task properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 UAV tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 UAV roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4 Task priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.1 Node results in a known environment without formations . . . . . . . . . . . 160
8.2 Computation durations in a known environment without formations . . . . . 162
8.3 Node results in an unknown environment without formations . . . . . . . . . 165
8.4 Computation durations in an unknown environment without formations . . . 167
8.5 Node results in a known environment with formations . . . . . . . . . . . . . 172
8.6 Computation durations in a known environment with formations . . . . . . . 173
8.7 Node results in an unknown environment with formations . . . . . . . . . . . 178
8.8 Computation durations in an unknown environment with formations . . . . . 180
8.9 Initial UAV and target positions for single UAV task allocation . . . . . . . . 188
8.10 Initial UAV and target positions for multi-UAV task allocation . . . . . . . . 191
8.11 Task priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

231





Own Publications Related to the Thesis

[1] N. Prüßner, W. Richert, C. Rasche, and A. Rettberg, “Action selection for multi-
smdp based robots with dynamically priotized goals,” in Proceedings of the IADIS
International Conference Intelligent Systems and Agents 2010 (part of MCCSIS 2010),
Freiburg, Germany, 29.–31. July 2010, pp. 75–82, [Online Available; Condition from 03.
June 2013]. http://www.iadisportal.org/digital-library/action-selection-for-multi-smdp-
based-robots-with-dynamically-prioritized-goals.

[2] C. Rasche, A. Jungmann, T. Schierbaum, B. Werdehausen, and B. Kleinjohann, “Towards
hierarchical self-optimization in autonomous groups of mobile robots,” in Proceedings
of the 10th IEEE International Conference on Industrial Informatics, ser. INDIN 2012,
IEEE. IEEE Xplore, 25.–27. July 2012, pp. 1098–1103, [Online Available; Condition
from 03. June 2013]. http://dx.doi.org/10.1109/INDIN.2012.6301137.

[3] C. Rasche, C. Stern, W. Richert, L. Kleinjohann, and B. Kleinjohann, “Combining
autonomous exploration, goal-oriented coordination and task allocation in multi-uav
scenarios,” in Proceedings of the 2010 Sixth International Conference on Autonomic and
Autonomous Systems (ICAS 2010), ser. ICAS ’10, IARIA. Cancun, Mexico: IEEE
Computer Society, 7.–13. March 2010, pp. 52–57, [Online Available; Condition from 03.
June 2013]. http://dx.doi.org/10.1109/ICAS.2010.16.

[4] C. Rasche, C. Stern, L. Kleinjohann, and B. Kleinjohann, “A distributed multi-uav
path planning approach for 3d environments,” in Proceedings of the 5th International
Conference on Automation, Robotics and Applications (ICARA 2011). Wellington, New
Zealand: IEEE Xplore, 6.–8. December 2011, pp. 7–12, [Online Available; Condition
from 03. June 2013]. http://dx.doi.org/10.1109/ICARA.2011.6144847.

[5] C. Rasche, C. Stern, L. Kleinjohann, and B. Kleinjohann, “Coordinated exploration and
goal-oriented path planning using multiple uavs,” International Journal On Advances in
Software, vol. 3, no. 3&4, pp. 351–370, April 2011, [Online Available; Condition from
03. June 2013]. http://www.thinkmind.org/index.php?view=article&articleid=soft_v3_
n34_2010_3.

233

 http://www.iadisportal.org/digital-library/action-selection-for-multi-smdp-based-robots-with-dynamically-prioritized-goa ls
 http://www.iadisportal.org/digital-library/action-selection-for-multi-smdp-based-robots-with-dynamically-prioritized-goa ls
http://dx.doi.org/10.1109/INDIN.2012.6301137
http://dx.doi.org/10.1109/ICAS.2010.16
http://dx.doi.org/10.1109/ICARA.2011.6144847
http://www.thinkmind.org/index.php?view=article&articleid=soft_v3_n34_2010_3
http://www.thinkmind.org/index.php?view=article&articleid=soft_v3_n34_2010_3


Own Publications Related to the Thesis

[6] C. Rasche, C. Stern, L. Kleinjohann, and B. Kleinjohann, “Role-based path planning and
task allocation with exploration tradeoff for uavs,” in Proceedings of the 11th International
Conference on Control Automation Robotics Vision (ICARCV 2010). Singapore: IEEE
Xplore, 7.–10. December 2010, pp. 417–422, [Online Available; Condition from 03. June
2013]. http://dx.doi.org/10.1109/ICARCV.2010.5707317.

[7] C. Stern, C. Rasche, L. Kleinjohann, and B. Kleinjohann, “Efficient alignment of aerial
images based on virtual forces,” in Proceedings of the Eighth International Conference on
Autonomic and Autonomous Systems, ser. ICAS 2012, IARIA. St. Maarten, Netherlands
Antilles: IEEE Xplore, 25.–30. March 2012, pp. 93–98, [Online Available; Condition
from 03. June 2013]. http://www.thinkmind.org/index.php?view=article&articleid=
icas_2012_4_40_20110.

[8] C. Rasche, C. Stern, L. Kleinjohann, and B. Kleinjohann, “A 3d path planning approach
extended by bifurcation theory for formation flights,” in Recent Advances in Robotics
and Automation, ser. Studies in Computational Intelligence, G. Sen Gupta, D. Bailey,
S. Demidenko, and D. Carnegie, Eds. Springer Berlin Heidelberg, 2013, vol. 480, pp. 103–
113, [Online Available; Condition from 03. June 2013]. http://dx.doi.org/10.1007/978-3-
642-37387-9_8.

[9] C. Stern, C. Rasche, L. Kleinjohann, and B. Kleinjohann, “Towards using virtual
forces for image registration,” in Proceedings of the 5th International Conference on
Automation, Robotics and Applications, ser. ICARA 2011, Wellington, New Zealand,
6.–8. December 2011, pp. 447 –452, [Online Available; Condition from 03. June 2013].
http://dx.doi.org/10.1109/ICARA.2011.6144925.

[10] C. Stern, C. Rasche, L. Kleinjohann, and B. Kleinjohann, “Evaluating quality of online
image registration of aerial images using virtual forces,” in Proceedings of the 16th
International Conference on Image Processing, Computer Vision, & Pattern Recognition,
ser. IPCV 2012, Las Vegas, Nevada, USA, 16.–19. July 2012.

234

http://dx.doi.org/10.1109/ICARCV.2010.5707317
http://www.thinkmind.org/index.php?view=article&articleid=icas_2012_4_40_20110
http://www.thinkmind.org/index.php?view=article&articleid=icas_2012_4_40_20110
http://dx.doi.org/10.1007/978-3-642-37387-9_8
http://dx.doi.org/10.1007/978-3-642-37387-9_8
http://dx.doi.org/10.1109/ICARA.2011.6144925


Bibliography

[11] M. Dorigo, V. Maniezzo, A. Colorni, and V. Maniezzo, “Positive feedback as a search
strategy,” Politecnico di Milano, Tech. Rep., 1991, [Online Available; Condition from
03. June 2013]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6342.

[12] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of
cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 26, no. 1, pp. 29–41, February 1996, [Online Available; Condition from
03. June 2013]. http://dx.doi.org/10.1109/3477.484436.

[13] D. Karaboga and B. Akay, “A survey: algorithms simulating bee swarm intelligence,”
Artificial Intelligence Review, vol. 31, no. 1, pp. 61–85, 2009, [Online Available; Condition
from 03. June 2013]. http://dx.doi.org/10.1007/s10462-009-9127-4.

[14] N. Xiong, J. He, Y. Yang, Y. He, T. Kim, and C. Lin, “A survey on decentralized
flocking schemes for a set of autonomous mobile robots,” Journal of Communications,
vol. 5, no. 1, 2010, [Online Available; Condition from 03. June 2013]. http://dx.doi.org/
10.4304/jcm.5.1.31-38.

[15] K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori, A. Hayashi, and
N. Kanehira, “Humanoid robot hrp-4 - humanoid robotics platform with lightweight and
slim body,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, September 2011, pp. 4400–4407, [Online Available; Condition from 03.
June 2012]. http://dx.doi.org/10.1109/IROS.2011.6094465.

[16] N. J. Mlot, C. A. Tovey, and D. L. Hu, “Fire ants self-assemble into waterproof
rafts to survive floods,” Proceedings of the National Academy of Science, vol. 108,
pp. 7669–7673, May 2011, [Online Available; Condition from 03. June 2013]. http:
//dx.doi.org/10.1073/pnas.1016658108.

235

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6342
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1007/s10462-009-9127-4
http://dx.doi.org/10.4304/jcm.5.1.31-38
http://dx.doi.org/10.4304/jcm.5.1.31-38
http://dx.doi.org/10.1109/IROS.2011.6094465
http://dx.doi.org/10.1073/pnas.1016658108
http://dx.doi.org/10.1073/pnas.1016658108


Bibliography

[17] E. Sahin, S. Girgin, L. Bayindir, and A. E. Turgut, “Swarm robotics,” in Swarm
Intelligence: Introduction and Applications. Springer, 2008, pp. 87–100, [Online
Available; Condition from 03. June 2013]. http://dx.doi.org/10.1007/978-3-540-74089-
6_3.

[18] S. J. Park, T. K. Yeu, S. M. Yoon, S. Hong, and K. Y. Sung, “A study of sweeping
coverage path planning method for deep-sea manganese nodule mining robot,” in
OCEANS 2011, September 2011, pp. 1–5, [Online Available; Condition from 03. June
2012]. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6107109.

[19] K. Alam, T. Ray, and S. Anavatti, “A new robust design optimization approach
for unmanned underwater vehicle design,” Journal of Engineering for the Maritime
Environment, February 2012, [Online Available; Condition from 03. June 2012]. http:
//dx.doi.org/10.1177/1475090211435450.

[20] M. Lewis, M. Bunting, B. Salemi, and H. Hoffmann, “Toward ultra high speed loco-
motors: Design and test of a cheetah robot hind limb,” in Proceedings of the 2011
IEEE International Conference on Robotics and Automation (ICRA), May 2011, pp.
1990–1996, [Online Available; Condition from 03. June 2012]. http://dx.doi.org/10.
1109/ICRA.2011.5979812.

[21] J. de Best, R. van de Molengraft, and M. Steinbuch, “A novel ball handling mecha-
nism for the robocup middle size league,” Mechatronics, vol. 21, no. 2, pp. 469–478,
2011, [Online Available; Condition from 03. June 2012]. http://dx.doi.org/10.1016/j.
mechatronics.2010.04.001.

[22] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L.
Christensen, A. Decugníere, G. A. D. Caro, F. Ducatelle, E. Ferrante, A. F̈oster,
J. M. Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M. M. de Oca,
R. O’Grady, C. Pinciroli, G. Pini, P. Ŕetornaz, J. Roberts, V. Sperati, T. Stirling,
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