
Identifying Behavior Models
for Hybrid Production Systems

Asmir Vodenčarević

Dissertation
in Computer Science

submitted to the

Faculty of Electrical Engineering,
Computer Science and Mathematics

University of Paderborn

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium
(Dr. rer. nat.)

Paderborn, March 2013

I dedicate this thesis to my family.

Acknowledgements

The thesis in hand is a product of a three-year long period of research and studies in
an exciting intersection area of computer science and engineering. After summarizing
the findings in this thesis, the time has come to acknowledge and thank all the people
whose help and kindness I highly appreciate.

First of all, I would like to give many thanks to my supervisor, Prof. Dr. Hans
Kleine Büning, for providing me with both scientific and non-scientific guidance, as
well as for granting me the academic freedom to a great extent. Furthermore, I owe a
great deal of gratitude to Prof. Dr. Oliver Niggemann, who played an indispensable
role as my advisor and collaborator. I also thank Prof. Dr. Sandra Zilles for fruitful
discussions we had and for her willingness to review this thesis.

For creating the productive and joyful working environment in the research
group Knowledge-based Systems at the University of Paderborn, I thank my former
and current colleagues: Isabela Anciutti, Simone Auinger, Maik Anderka, Gerd
Brakhane, Dr. Uwe Bubeck, Dr. Markus Eberling, Dr. Thomas Kemmerich, Timo
Klerx, Dr. Theodor Lettmann, Felix Mohr and Yuhan Yan. Special thanks go to
Michael Baumann who read this thesis and provided many useful comments.

I am grateful to the International Graduate School Dynamic Intelligent Systems at
the University of Paderborn, supported by the Ministry of Innovation, Science and
Research of the federal state North Rhine-Westphalia in Germany. In particular, I
would like to thank Astrid Canisius and Prof. Dr. Eckhard Steffen for their broad
organizational and technical support.

I enjoyed the discussions with my colleague Alexander Maier, which resulted in
various scientific publications and projects. Special thanks go to Barbara Rura and
Amela Zonić for proofreading the English text and providing valuable suggestions.

Many thanks go to collaborators with whom I had inspiring discussions on differ-
ent conferences and wrote a number of papers. Moreover, I express my gratitude to
the anonymous reviewers who contributed to the quality of my published work.

I especially thank my friend Duško Kondor. I wish he were still with us.
Most of all, I thank my parents and my brother for their immense love and support.

Asmir Vodenčarević
Paderborn, March 2013

Abstract

The importance of safety and reliability in today’s complex production systems,
such as process plants, has led to the development of various anomaly detection and
diagnosis techniques. Model-based approaches have established themselves among
the most successful ones in the field. However, they depend on a behavior model
of a system, which is typically derived manually. Manual modeling of complex
production systems is a very hard task. They are characterized by both timed and
probabilistic behavior. Moreover, the overall system behavior is described by discrete
and continuous variables, and therefore such systems are called hybrid systems.
Deriving behavior models for hybrid systems manually requires significant domain
knowledge, budget and human resources as well as permanent manual updates. These
obstacles form the so-called “modeling bottleneck”.

The main goal of this thesis was to present an alternative to manual modeling, i.e.
the approach to learn behavior models for hybrid systems automatically from data.
Preliminary investigations have shown that for this endeavor, one should know at
least the structure of the system and its discrete and continuous signals, as well as to
have the measurements (logs) of those signals.

The first task included finding a suitable formalism for modeling different afore-
mentioned characteristics of hybrid systems. To address these requirements, hybrid
automata represent the best formalism choice. Besides their expressiveness, hybrid
automata can be easily visualized, understood and interpreted by humans. To learn
models for hybrid systems automatically from data, the Hybrid Bottom-Up Timing
Learning Algorithm (HyBUTLA) was developed. The extensive complexity analysis
we performed shows that the stochastic deterministic subclass of hybrid automata
with one clock (for tracking time) can be learned with the HyBUTLA algorithm
in time polynomial in the data size. To the best of our knowledge, the HyBUTLA
algorithm is the first hybrid automata learning algorithm that models a hybrid system.
We show that our approach converges to the correct automaton (the one that generated
the data) when enough learning data are available.

Moreover, the ANOmaly Detection Algorithm (ANODA) was developed, which
uses automatically learned behavior models in the anomaly detection. Our theoretical
results in model-learning and anomaly detection are validated through empirical
analyses performed in two real-world plants, as well as using artificial data. The
obtained positive results testify to the usability of our approach in practice.

Zusammenfassung

Die Wichtigkeit von Sicherheit und Zuverlässigkeit in heutigen komplexen Pro-
duktionssystemen, wie Prozessanlagen, führte zur Entwicklung von verschiedenen
Techniken zur Anomalieerkennung und Diagnose. Unter diesen haben sich modell-
basierte Ansätze als am erfolgreichsten in der Branche etabliert; diese sind jedoch
von einem Verhaltensmodell des Systems abhängig, das typischerweise manuell er-
stellt werden muss. Komplexe Produktionssysteme sind sowohl durch zeitabhängiges
probabilistisches Verhalten charakterisiert. Da das Verhalten des Gesamtsystems
durch diskrete und durch kontinuierliche Variablen beschrieben ist, nennt man solche
Systeme Hybrid-Systeme. Die manuelle Modellierung solcher Systeme ist eine sehr
schwierige Aufgabe: Sie erfordert umfangreiches Fachwissen, erhebliche Finanz-
mittel und Personal sowie ständige manuelle Updates. Diese Hindernisse bilden das
sogenannte „modeling bottleneck“.

Das Ziel dieser Arbeit war, eine Alternative zur manuellen Modellierung zu
finden, d.h. einen Ansatz zu entwickeln, der Verhaltensmodelle von Hybrid-Systemen
automatisch aus Log-Daten lernt. Voruntersuchungen haben gezeigt, dass man dafür
zumindest die Struktur des Systems, seine diskreten und kontinuierlichen Signale,
sowie deren Messwerte kennen sollte.

Die erste Aufgabe war, einen geeigneten Formalismus zur Modellierung der oben
genannten Eigenschaften von Hybrid-Systemen zu finden. Dafür erwiesen sich hybri-
de Automaten als die beste Wahl. Zusätzlich zu ihrer Ausdruckskraft haben sie den
weiteren Vorteil, leicht visualisiert, verstanden und interpretiert werden zu können.
Um Modelle automatisch zu lernen, wurde der Hybrid Bottom-Up-Timing Lear-
ning Algorithmus (HyBUTLA) entwickelt. Eine umfangreiche Komplexitätsanalyse
bezüglich des Lernens von hybriden Automaten zeigt, dass ihre stochastische deter-
ministische Unterklasse mit einem Taktgeber (zur Zeiterfassung) mit dem HyBUTLA
Algorithmus in polynomieller Zeit in der Größe der Daten gelernt werden kann. Nach
unserem besten Wissen ist der HyBUTLA Algorithmus der erste Lernalgorithmus
für hybride Automaten, der ein Hybrid-System modellieren kann. Wir zeigen, dass
unser Ansatz gegen den korrekten Automaten (derjenige, der die Daten generiert hat)
konvergiert, wenn genügend Trainingsdaten verfügbar sind.

Außerdem wurde der ANOmaly Detection Algorithmus (ANODA) entwickelt, der
erlernte Verhaltensmodelle zur Anomalieerkennung verwendet. Unsere theoretischen
Ergebnisse im Lernen von Modellen sowie in der Anomalieerkennung wurden durch
empirische Analysen sowohl in zwei realen Anlagen, als auch unter Verwendung
von künstlichen Daten validiert. Die erhaltenen positiven Ergebnisse bezeugen die
Nutzbarkeit unseres Ansatzes in der Praxis.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Modeling Bottleneck . 2
1.3 Contributions of This Thesis . 3
1.4 Potential Applications . 5
1.5 Overview . 6

Part I Background 9

2 Foundations and State of the Art 11
2.1 Systems and Models . 11
2.2 Finite Automata Formalisms . 16
2.3 Finite Automata Identification Frameworks 21
2.4 Algorithms for Learning Stochastic Finite Automata 23
2.5 Fault Detection and Diagnosis of Hybrid Systems 30
2.6 Conclusion . 34

Part II Complexity of Automata Identification 35

3 Complexity of Identifying Deterministic Automata 37
3.1 Introduction . 37
3.2 Three Classes of Deterministic Automata 39
3.3 Automaton Identification Problem 40
3.4 Identification in the Limit . 43
3.5 Polynomial Identification in the Limit 45
3.6 Conclusion . 50

4 Complexity of Identifying Stochastic Deterministic Automata 51
4.1 Introduction . 52
4.2 Notations and Automata Definitions 52
4.3 Identification in the Limit with Probability One 56
4.4 Strong Polynomial Criteria for Identification 58
4.5 Weak Polynomial Criteria for Identification 59
4.6 Summary . 61

5 Polynomial Approximations of Stochastic Automata 63
5.1 Introduction . 63
5.2 Distance Measures Between Distributions 64

xiii

xiv CONTENTS

5.3 Polynomial PAC-Learning . 65
5.4 Algorithms for Polynomial PAC-Learning of SDFAs 68
5.5 Prospects of Polynomial PAC-Learning for Hybrid Automata 69

Part III Algorithms 71

6 Automated Learning of 1-SDHAs from Data 73
6.1 Data Acquisition and Preprocessing 74
6.2 Generating Alphabet and Timing Constraints from Measurements . 76
6.3 The HyBUTLA Learning Algorithm 78
6.4 Abrupt Change Detection . 84
6.5 Modeling Autonomous Jumps with State Splits 85
6.6 Algorithm Properties . 93
6.7 Conclusion . 98

7 Anomaly Detection Based on Learned Behavior Models 101
7.1 The Principle of Model-Based Anomaly Detection 102
7.2 Anomalies in Hybrid Production Systems 102
7.3 The ANODA Algorithm . 105
7.4 Real-Time Properties of the ANODA Algorithm 107
7.5 Conclusion . 110

Part IV Case Studies in Learning and Anomaly Detection 113

8 Real-World Plants 115
8.1 Comparative Empirical Analysis on Learning Automata 116
8.2 Learning Behavior Models for the Lemgo Model Factory 118
8.3 Anomaly Detection Experiments 121
8.4 Conclusion . 131

9 Artificial Datasets 133
9.1 Empirical Analysis of Convergence and Polynomial Runtime 134
9.2 Empirical Analysis of Scalability 137
9.3 Conclusion . 148

Part V Conclusion 149

10 Conclusions and Future Work 151
10.1 Conclusions . 151
10.2 Future Work . 153

List of Abbreviations 155

List of Figures 157

List of Tables 159

References 161

Chapter 1
Introduction

1.1 Motivation

On December 23, 1998 in Niihama city located in the Ehime Prefecture in Japan, a
serious incident happened in the local chemical plant for production of methionine
and acrolein chemical compounds [JST09]. The plant had a heat exchanger-type
synthetic reactor that used the nitrate coolant for reaction control. At one point,
the flow rate of the coolant started decreasing and dropped down to about a half
of its nominal value. As a consequence, the temperature in the central part of the
heat exchanger rose to around 500 ◦C. This caused the corrosion progression of
the heat exchanger’s tube that eventually punctured. Hot nitrate coolant leaked into
the reactor and made contact with acrolein. Abnormal oxidation reaction occurred
which irreversibly led to the explosion of the reactor, causing fire in the plant and the
neighboring forest. Although no loss of life was reported, the incident caused big
material and ecological damage.

This and hundreds of other industrial accidents and disasters (especially in the
process industries such as chemical, petrochemical, oil, etc.) are analyzed in the
Failure Knowledge Database [JST09], created by the academic community of Japan
under the supervision of Japan Science and Technology Agency. In [KHH10] a
statistical analysis of accident causes is performed on 364 cases in the chemical
process industry, using the Failure Knowledge Database. It has been established that
73% of accidents occur due to technical failures, which include both design errors of
work units and failures in components of the plant. Around 23% of accidents happen
due to poor human/managerial/organizational performance and 4% of them due to
unknown cause.

Having such a high percentage of technical failures in the process industry, empha-
sizes the need for having reliable Fault Detection and Diagnosis (FDD) approaches.
One of the most popular and successful FDD approaches today is the Model-Based
Diagnosis (MBD) [dKW87, Rei87]. MBD aims at detecting and localizing anomalies
in a system (i.e. its components) by comparing its behavior with the behavior of a
reference model. The concept of model-based anomaly detection is illustrated in
Figure 1.1, where the discrepancy between observed data of a system and predicted
data of a model results in a fault hypothesis. Such a MBD approach for monitoring
of coolant flow rate at Niihama chemical plant could have detected the flow drop

1

2 1 Introduction

early and signaled the anomaly to the operator, who would then have a chance to
undertake an appropriate action.

System
Modeling

Model

Observed

data

Predicted

data
Discrepancy

Fault hypothesis

Fig. 1.1 The concept of model-based anomaly detection.

Since MBD strongly relies on a behavior model of a system, the question that
naturally arises is: Where is this model coming from? We answer it in the following
section.

1.2 The Modeling Bottleneck

This section lists common difficulties of creating behavior models of production
systems. These difficulties originate in the fact that such models are today mostly
created manually.

Manual modeling is a very hard task. It has to deal with the following serious
problems that form the so-called “modeling bottleneck” [NMVJ11, VKBNM11b]:

Extensive expert knowledge: Sufficient knowledge about the system needs to be
available. It includes the system’s structure, its signals, their dependencies and
mathematical relations.

Internal variables: In order to infer the laws of the system dynamics, the addi-
tional measurements of some internal variables are often required. Usually, some
system internals are not observable.

Resources: Manual modeling of complex systems can be performed only by ex-
perts. Additional budget is often needed not just for their services, but also for
modeling tools, software licenses, installation of sensors for required supplemen-
tary measurements etc.

Model updates: Manually created models require manual updates. In order to
preserve model adequacy and accuracy, manual updates have to be carried out
whenever something changes in a modeled system.

System complexity: Typical production systems, often found in the process in-
dustry, are complex dynamic systems that include a number of various hydraulic,
pneumatic, electric, mechanical and chemical components, distributed architec-
tures, embedded software, linear and nonlinear dynamics, different types of noises
and external disturbances. Moreover, they are characterized by a permanent inter-
action between a discrete control system (which emits typically binary control

1.3 Contributions of This Thesis 3

signals) and a physical process (i.e. a physical system that comprises mostly
continuous process variables, such as temperature or pressure). Such systems are
called hybrid systems [Bra05, Lyg06], and they are explained in detail in Section
2.1.

Promising alternatives to manual modeling are the data-driven approaches from
the field of computational learning theory [HTF08]. Instead of creating behavior
models of hybrid systems manually, we want to learn them automatically from data.
We emphasize here that we want to learn the complete model, i.e. both the model
structure (states that correspond to system modes of operation) and its parameters.
This is different from the goal of the data-driven approaches coming from control
engineering and the field of system identification theory [Lju99], which aims at iden-
tifying parameters of predefined (selected by user) mathematical relations between
system variables. Our contributions are given in the following section.

1.3 Contributions of This Thesis

The goal of this thesis is to help in resolving the modeling bottleneck of hybrid
production systems. The guiding research question in this endeavor is:

Given a system structure and measurements of its signals, how can behavior
models for its components be identified automatically?

This question can be divided into a number of more specific questions. The most
important ones are listed as follows:

1. What modeling formalism is capable of representing behavior of a typical hybrid
system?

2. How can behavior models be automatically identified from data using such mod-
eling formalism?

3. What are the complexity aspects of such an identification procedure?
4. Where and how can the available expert knowledge be utilized?
5. Are these automatically identified behavior models really usable in practice?

Answering these questions is clearly not an easy task. However, this thesis offers
several answers, which represent the contributions to the fields of modeling and
analysis of technical systems, computational learning theory, machine learning, and
artificial intelligence in general. These contributions are:

Suitability of finite automata formalisms for learning models: A number of pos-
itive identification results exist for finite automata classes. Therefore, our research
focused on learning automata models. We have found that the formalism of hy-
brid automata is capable of adequately representing hybrid production systems
(Chapters 2 and 4). This formalism is expressive enough to model both state-based
(discrete) and continuous dynamics of a system, as well as their interaction through
the industrial networks. Additionally, it takes into account stochastic variations of
production processes and timings of all changes in a system. Furthermore, hybrid
automata are easily visualized, understood and interpreted by human experts.

4 1 Introduction

The first hybrid automata learning algorithm: Our research resulted in an al-
gorithm that can learn a subclass of hybrid automata, called One-clock Stochas-
tic Deterministic Hybrid Automaton (1-SDHA) automatically from logged data
(Chapter 6). We named our algorithm the Hybrid Bottom-Up Timing Learning
Algorithm (HyBUTLA), and it is to date the first algorithm that can model all
important characteristics of hybrid systems in the formalism of hybrid automata.
It uses the same approach for learning the timing information as our Bottom-Up
Timing Learning Algorithm (BUTLA) for learning the class of One-clock Stochas-
tic Deterministic Timed Automata (1-SDTAs). The BUTLA algorithm is explained
in short later on.

Thorough complexity analysis of identifying hybrid automata: Learning of au-
tomata classes is often a hard task that can be extremely computationally expensive.
Since a hybrid automaton is one of the most complex types of finite automata,
learning it automatically has proven to be extremely difficult. Therefore, we have
conducted an extensive overview of complexity results to investigate if hybrid
automata can be learned at all, and if yes, under what constrains (Chapters 3, 4
and 5). We have proven (Chapter 6) that a subclass of 1-SDHAs is identifiable by
the aforementioned HyBUTLA algorithm in a reasonable time (HyBUTLA is a
polynomial-time algorithm). This is possible when a sufficient amount of data is
provided. Unfortunately, this amount may be overwhelming in the general case.

Expert knowledge as an asset to the learning process: The purpose of this the-
sis is not to replace the human experts in the tasks of modeling technical systems,
but to help them in overcoming the difficulties of manual modeling. As it makes
no sense to learn the already known about the system, we have defined a minimum
set of expert knowledge required for our learning approach to be successful (given
in the conclusions of Chapters 6 and 7). In principle, the structure of the system, its
discrete and continuous signals, as well as the measurements of those signals need
to be provided. Of course, when learned models are used in various application
scenarios, additional application-dependent knowledge could be used further.

Use of learned behavior models in the real-world: Any research effort should
justifiably be exposed to the question of its practical significance. Our research
is no exception. To that aim, we have chosen to demonstrate the usability of
automatically identified behavior models in the application of the model-based
anomaly detection. Selection of the application is biased towards the fact that
ensuring high safety and reliability standards is of the greatest importance in
production systems that we model. As a part of this research, we have developed
the ANOmaly Detection Algorithm (ANODA) that uses learned models to early
detect and signal deviations of an observed system behavior from its normal
operating conditions (Chapter 7). Our combined learning and anomaly detection
approach has shown good performance in two real-world production systems,
namely the Lemgo Model Factory (LMF) at the Institute Industrial IT in Lemgo,
Germany, and the Jowat AG company in Detmold, Germany (Chapter 8). In
addition, significant trials are conducted using the artificial data to experimentally
validate the convergence, polynomial runtime and scalability properties of the
HyBUTLA algorithm (Chapter 9).

1.4 Potential Applications 5

1.4 Potential Applications

Learning behavior models of technical systems has clearly a number of potential
applications, especially in model-based approaches. In this section, we list just some
of them that we consider the most important ones.

Model-based diagnosis: Satisfying high requirements on safety and reliability of
technical systems, which are becoming increasingly complex, represents one of the
key challenges of various industries today. Therefore, a number of fault detection
and diagnosis techniques have been developed over the past few decades. One
of the most important ones is certainly model-based diagnosis [dKW87, Rei87]
that aims at detecting anomalous behavior of a system and isolating a responsible
fault. It strongly relies on a given model of a system normal behavior, which is
in most cases derived manually. Our learning approach could pose a significant
asset in obtaining reliable behavior models for model-based diagnosis in a more
convenient, faster, and cheaper way. Due to the importance of safety aspects in
production facilities, this thesis brings several important results in the application
of our learning techniques in the model-based anomaly detection. These results
serve to verify the applicability of our algorithms in the real-world.

Model-based design: One of the most popular approaches for designing complex
technical systems is model-based design [NM10]. It is particularly suited for
designing control systems and it comprises four stages, namely: (i) modeling a
behavior of a running plant for which a controller is needed, (ii) designing an
appropriate controller based on the obtained plant model, (iii) simulating a plant
with a controller, and (iv) deploying a designed solution in the real-world. To
obtain a model of a plant in the first stage of the model-based design, one can also
use the data-driven approaches, i.e. our approach for learning behavior models
automatically from data could represent an important asset in this application
area.

Model-based testing: Testing plays a crucial role in the development of many
technical systems, especially embedded systems. Model-based testing [UL07]
is a technique that enables automation of the testing process through the use
of a behavior model of a system under test. Having a behavior model allows
generation of large pools of test cases automatically, which serve to test if certain
desirable properties of a system are satisfied (e.g. dead-lock freeness in real-time
systems [Ver10]). Like for model-based diagnosis and model-based design, such
behavior models can also be learned automatically from data for model-based
testing applications.

Optimization: Behavior models learned in the finite automata formalisms are
easily visualized, understood and interpreted. This enables an easy insight into the
underlying process that generated the data used for learning. Such insight could
reveal previously unknown characteristics of a modeled system, which can serve
for optimizing its controllers, equipment, and operating procedures. One simple
example is the optimization of suboptimal energy consumption in production
facilities, which is one of the crucial challenges of the European industry in the
following years [Gro06]. A prediction model that simulates the normal energy
consumption of a plant could actually be learned using our approach.

Applications of the field of grammatical inference: In general, the field of gram-
matical inference aims at finding an unknown grammar (i.e. a language, a probabil-
ity distribution, or simply a model of some system) from data typically structured

6 1 Introduction

in the form of strings of characters. These characters can represent a wide range
of data, varying from the four bases of the Deoxyribonucleic Acid (DNA), over
musical notes, to the letters of our human natural languages. Consequently, a
broad range of grammatical inference applications emerged over time, including:
discovering evolutionary interrelationships among species based on comparison
of their genetic materials, natural language processing, automated translation
systems for human languages, modeling styles of music composers etc. [dlH10].
Since our learning approach uses the formalism of finite automata, which are
typically used in grammatical inference, it could surely find its place in such
applications.

1.5 Overview

This thesis is logically divided in five parts. We give their overview as follows:

Part I Background: In the first part, we give the general background of the thesis.
Chapter 2 describes several types of technical systems and models. Special at-
tention is devoted to known finite automata models and learning frameworks, in
which they can be automatically identified from data. This chapter also provides
the state of the art of popular automata learning algorithms, as well as the existing
approaches to fault detection and diagnosis of hybrid production systems.

Part II Complexity of Automata Identification: This is the theoretical part of
the thesis.
Chapter 3 contains definitions of several known classes of deterministic finite
automata and gives an overview of the well-known negative and positive com-
plexity results for their identification. We generalize these results to one particular
class, namely determninistic hybrid automata, which can model certain hybrid
production systems.
Chapter 4 brings definitions of known stochastic versions of aforementioned deter-
ministic finite automata classes. It also provides several identification definitions
and lists the well-known complexity results for learning stochastic deterministic
automata according to these definitions. In this chapter, we also generalize the
known negative identification results to the class of stochastic deterministic hybrid
automata.
Chapter 5 introduces the reader to the existing research on polynomial approxi-
mations of stochastic deterministic automata. These approximations often serve
as a workaround for the negative identification results provided in the previous
chapter. In addition, several existing polynomial approximation algorithms are ex-
plained and prospects of approximating stochastic deterministic hybrid automata
are discussed.

Part III Algorithms: Our main contributions are algorithms that are presented in
this part.
Chapter 6 describes the existing approaches to data acquisition and processing. We
explain how the data are then used for learning the class of one-clock stochastic
deterministic hybrid automata. These automata can model all major characteristics
of hybrid production systems. In order to learn them, we have developed the
Hybrid Bottom-Up Timing Learning Algorithm (HyBUTLA), which we present in
detail. We further analyze its properties referring to definitions and results given

1.5 Overview 7

in Chapter 4 and present its strengths and weaknesses. We present the proof for
HyBUTLA convergence and its polynomial runtime.
Chapter 7 explains the general principle of model-based anomaly detection. We
further identify and present three major types of anomalies that occur in hybrid
production systems. One of our main contributions, the ANOmaly Detection
Algorithm (ANODA) is presented in detail. We prove its real-time properties that
enable it to, under certain condition, work online during the runtime of the system.

Part IV Case Studies in Learning and Anomaly Detection: This part contains
comprehensive experimental results.
Chapter 8 demonstrates the usability of our algorithms in the real-world. We make
a comparative empirical analysis of several automata learning algorithms using
the data that come from the plant of Jowat AG company. Furthermore, we use
the data from another plant, the Lemgo Model Factory located at the Institute
Industrial IT in Lemgo, to evaluate our combined model-learning and anomaly
detection approach based on the HyBUTLA and ANODA algorithms.
Chapter 9 brings our empirical analyses of convergence, polynomial runtime
and scalability of the HyBUTLA algorithm. Fur these experiments, we are using
artificially generated datasets. Convergence and runtime experiments confirm our
theoretical results given in Chapter 6. Results of the scalability analysis derive
several general observations, interesting for practitioners that want to apply the
HyBUTLA algorithm in their fields of work.

Part V Conclusion: Chapter 10 that is given in this part, summarizes our main
conclusions and contributions. Moreover, we present several possible directions
for future work.

Part I

Background

Chapter 2
Foundations and State of the Art

This chapter presents foundations and the state of the art relevant for our research.
First, Section 2.1 introduces the reader to the basic types of technical systems and
their models. In this section, we give our definitions of system components and
its parallelism model (we published them originally in [NMVJ11]). A parallelism
model describes the structure of a system. Then, special attention is devoted to finite
automata models and their identification frameworks in Section 2.2 and Section
2.3, respectively. Section 2.4 brings an overview of several popular algorithms for
learning various stochastic finite automata (partially based on our overview given in
[VMN13]). We relate to some properties of these algorithms further along this thesis.
In Section 2.5, we present several existing model-based approaches to fault detection
and diagnosis of hybrid production systems. Our model-learning algorithm, presented
later in this thesis, could pose an important asset to these approaches, as they all
depend on manually created behavior models. The chapter is finally concluded with
Section 2.6, which summarizes existing gaps of aforementioned algorithms and
approaches. The thesis addresses exactly these gaps.

2.1 Systems and Models

This thesis deals with identifying behavior models of technical systems automatically
from data. In this section, three basic types of such systems are described, as well as
models that can represent their structure and behavior.

Before the reader gets exposed to technical concepts, we first give a few general
definitions of the most relevant terms in the following. We start with the term “Sys-
tem”.

System (according to the standard DIN 19226 of the German Institute for Stan-
dardization1): “...is a set of interacting or interdependent entities, real or abstract,
forming an integrated whole, ... delimited from the environment with a boundary.
Through the boundary the system has a connection to its surroundings...” (Material,
energy and information flow).

1 http://www.din.de/

11

12 2 Foundations and State of the Art

A typical schematic representation of a system is shown in Figure 2.1. In general,
every technical system comprises input signals u and output signals y.

System
yu

Fig. 2.1 A technical system.

The following definitions are due to online Oxford Dictionaries2.

Model: a simplified description, especially a mathematical one, of a system or
process, to assist calculations and predictions.

Behavior: the way in which a machine or natural phenomenon works or functions.

Identification: the association or linking of one thing with another.

In general, we can divide today’s technical systems in three types. These are:
Discrete Event System (DES), continuous system, and hybrid system.

Discrete event systems are those system that show a state-based behavior, i.e.
they comprise a set of discrete states that represent their modes of operation and
a set of events that trigger changes between those states [CL08]. In a finite time,
these systems can have only a finite number of changes. They have three levels of
abstraction and can correspondingly be divided in non-timed DES (nDES), timed
DES (tDES), and probabilistic (timed) DES (ptDES) [Ver10]. nDES is completely
event-driven, which means that the changes between its states can occur exclusively
based on the occurrence of discrete events. In these systems, the timing of the events
is not relevant. In tDES it is important at what particular time has an event happened.
Timing information is associated with every event that can occur in every state of
the system. ptDES is practically a tDES that has a probability function associated
with every timed event, i.e. both time and probabilistic information are important. An
example of DES in the real-world is a discrete control system that controls a physical
plant by emitting appropriate value-discrete signals over time. Such signals are in
control theory typically called control signals. They can be either binary (e.g. valve
open/close), or have more discrete values.

Continuous systems are those systems whose belonging variables are value-
continuous over time [HC01b]. Real-world examples of such variables are temper-
ature, pressure, voltage etc. In the context of production systems, they are called
process variables. Changes in the continuous system are typically smooth and can
occur at any moment in time. In a finite time, these systems can have an infinite
number of changes.

Most of today’s real-world technical systems exhibit characteristics of both dis-
crete event and continuous systems. In the process industry, they usually comprise a
digital controlling mechanism embedded in a mostly analog environment [Lyg06].
These systems are called hybrid systems [Bra05, Lyg06]. As shown in Figure 2.2,
discrete control system emits control signals to the actuators such as valves and

2 http://oxforddictionaries.com/

2.1 Systems and Models 13

drives. The change of the actuators’ state (e.g. valve open/close or drive start/stop)
affects process variables of the (dominantly continuous) physical system, which
change continuously over time. Changes of these variables are recorded with a set
of sensors that send feedback information back to the control system through the
industrial network, such as PROFIBUS [Fel11]. Based on this general description,
we draw out several major characteristics of hybrid production systems:

Discrete control

system

Physical system

Actuators Sensors

Industrial network

Fig. 2.2 A hybrid system.

Parallel component structure: The overall system can comprise a number of
interconnected components that may work asynchronously and in parallel. These
components communicate via industrial networks.

State-based (discrete) behavior: Production cycles for various products typically
comprise multiple production stages. These stages are driven by the system modes
of operation or its states, which are governed by a control system. A system is
said to be in one of its states, when it executes one of the production stages.

Continuous signals: In addition to the state-based behavior, hybrid systems ex-
emplify the continuous behavior as well. It is defined by changes in the process
variables, i.e. signals that change continuously over time.

Interacting discrete and continuous dynamics: Changes in control signals of-
ten trigger changes in a continuous physical system through the actuators. Feed-
back about these changes, which is sent back to the control system via sensors,
can trigger new changes in control signals.

Timed (dynamic) behavior: Since both control signals and process variables in
hybrid production systems change their values over time, the behavior of such
systems is time-dependent (dynamic).

Stochastic behavior: Due to many unforeseen influences, such as human factor,
external disturbance, or measurement noise, production cycles of a hybrid system
can significantly differ, even in the case of producing the same product. Therefore,
all changes in the system should typically take place within certain confidence
ranges.

Just looking at these characteristics gives a rough idea about the complexity that
practitioners, who model hybrid systems, are facing.

14 2 Foundations and State of the Art

2.1.1 Parallelism Model

The overall model of a system consists of two types of models: (i) a parallelism
model of its structure, and (ii) behavior models of its components. A parallelism
model defines a hierarchical set of mutually connected components that can work in
parallel and asynchronously. Each single component works in a sequential manner
and it does not model the parallel behavior [VKBNM11a]. Division of the system into
sequential components is a prerequisite for both manual and automated derivation of
behavior models, since otherwise a component model could get too large and hardly
comprehensible to humans [NMVJ11]. For an illustration, consider the components
A and B that work in parallel and both comprise 1000 discrete states. If A and B
are modeled as a single component C, all combinations of their states are made.
The resulting component C could comprise up to 1000000 states, i.e. if the parallel
behavior is represent by means of a sequential behavior model, a combinational
growth of model states could occur.

Parallelism models typically already exist as they are derived during plant design
and planning phases. They are based on standards such as the open standard Au-
tomationML [Aut10] for factory systems. For instance, AutomationML represents
components of a plant as objects with various properties that can encapsulate other
objects (components) and also be part of a larger composition. A variety of compo-
nents can be represented, ranging from a simple screw, to conveyor belts and robotic
arms.

In order to give a formal definition of a parallelism model, we first define system
components and their types (definitions are based on our work given in [NMVJ11]).

Definition 1 (Component). A component COMP is defined by a behavior function
bC : Rm+1 → Rn, n,m ∈ N. bC is a function over m input variables and over time
and it returns n output variables.

Definition 2 (Discrete, Continuous, Hybrid Component). A component COMP
is called discrete if and only if bC is defined as bC : R×{0, 1}m → {0, 1}n, n,m ∈
N. I.e. bC is defined over m boolean input variables and over time and its output
variables are also boolean.

A component COMP is called continuous if and only if none of its input/output
variables is discrete.

A component is called hybrid if and only if it has both continuous and boolean
input/output variables.

It can be noted that these definitions do not distinguish between different plant
components such as Programmable Logic Controller (PLC), conveyor belts, etc.
Such classification is interesting for domain experts, but from a learning point of
view, a modeling formalism abstracts from such classifications. A parallelism model
can now be formally defined as a set of connected components:

Definition 3 (Parallelism Model). A parallelism model PM is defined as a tu-
ple 〈COMPS, pz 〉 where COMPS = {COMP0, . . . ,COMPr−1} is the set
of components and pz : COMPS × N → COMPS × N maps an output
variable of one component onto the input variable of another component. I.e.
pz(COMP i, k) = (COMP j , l) connects the kth output variable of COMP i with
the lth input variable of COMP j .

2.1 Systems and Models 15

2.1.2 Behavior Model

In order to model a behavior of a system, a behavior model is required for every
single component of a parallelism model. Various types of behavior models exist. In
the following, we give several common classifications (due to [Kap98, HC01b]).

A behavior model should represent all relevant changes in a component of a
system. Therefore, it has to be expressive enough to account for these changes. Based
on their nature, behavior models can be classified in the following way:

Discrete models: Models that can represent non-timed, timed, and/or probabilistic
discrete event systems are called discrete models. All changes take place in a finite
number of discrete moments. Typical examples of such models are: Petri nets
[CGS10], hidden Markov models [EAFT12], finite state automata [HZKW03],
and timed automata [Tri02, SLPQ06].

Continuous models: Strict continuous systems are modeled with continuous mod-
els such as: Kalman filters [GA08, HW02a, Hen02], differential equations [Cel91],
continuous Petri nets [DA87], and Bayesian networks [ZKH+05] (a nice overview
is given by Narasimhan [Nar02]).

Hybrid models: Systems characterized by a constant interaction between discrete
and continuous dynamics require hybrid models, which include both discrete and
continuous variables. Since most of the real-world (production) technical systems
are actually hybrid systems, a wide range of their modeling formalisms have been
developed over years. These formalisms include: particle filters [RAG04, WD09],
hybrid bond graphs [NB07], hybrid Petri nets [DA01], and hybrid automata
[ACH+95, Hen96].

An example of changes in these three model types is given in Figure 2.3.

t

u(t)

(a) Discrete model.
t

u(t)

(b) Continuous model.
t

u(t)

(c) Hybrid model.

Fig. 2.3 Example of changes in discrete, continuous, and hybrid models.

Based on the influence of stochastic variables in the system, models are divided
into stochastic (probabilistic3) and non-stochastic:

Stochastic models: Stochastic models include the effects of randomness and their
current state and output variables are described with probability functions, rather
than with unique values.

Non-stochastic models: Models that do not take the effects of random variables
into the account are called non-stochastic models.

3 In this thesis the terms stochastic and probabilistic are used interchangeably.

16 2 Foundations and State of the Art

We also distinguish between deterministic and non-deterministic models:

Deterministic models: Models whose current state depends on the previous states
and provided inputs are called deterministic. Their behavior can be exactly deter-
mined, as they always provide the same outputs given the same inputs and the
same set of previous states. There are no effects of randomness.

Non-deterministic models: Contrary to deterministic models, non-deterministic
models could provide different outputs for the same given input and the same set
of previous states.

Please note that in certain fields of machine learning, especially in grammatical
inference, there is a big representation of models defined as stochastic deterministic
(for example see the models called stochastic deterministic finite automata [CO94,
CO99]). Such models are stochastic because they account for the stochastic processes
in the system. At the same time, they are deterministic since they do not allow two or
more transitions of a model from one state to different states to be triggered by the
same event in the system. This thesis mostly deals with such models and they will be
explained in detail in Chapter 4.

Further classification is made on static and dynamic models:

Static models: Sometimes it is enough to represent the stationary states of a
system, i.e. sometimes there is no need to represent a system time evolution. For
these purposes, static models are used.

Dynamic models: When the effects of time need to be modeled, a dynamic model
is required. This model describes the time evolution of a system, i.e. its transient
processes and changes in general. Most of the real-world production systems are
modeled using dynamic models.

There are more classifications of behavior models that are not of the big im-
portance for this thesis. These are: time-variant and time-invariant models (models
whose parameters change or do not change over time), linear and nonlinear models
(based on the equations that describe them), models with concentrated and distributed
parameters, etc.

Based on hybrid system characteristics and model classifications given in this
section, it is clear that a model we need to use, in order to learn a behavior of a hybrid
system, has to be hybrid, stochastic, deterministic and dynamic.

2.2 Finite Automata Formalisms

Here we present several known finite automata models of the importance for our work
in a rather informal way. As it is a generally good practice to introduce definitions
once one needs them, and due to easier reading, we introduce automata classes
formally in the theoretical analysis part of this thesis, namely in Chapter 3 and
Chapter 4.

Significant research has been done on learning behavior models of various systems
in the formalisms of finite automata. Therefore, we were interested in discovering if
certain finite automata classes can (i) adequately represent the characteristics of tech-
nical systems, and (ii) if those automata classes can be automatically learned from
data. In the following subsections, we present several interesting classes and relate to

2.2 Finite Automata Formalisms 17

characteristics of technical systems that they can model. We are interested in deter-
ministic automata only, thus the formalism of Non-deterministic Finite Automaton
(NFA) will not be considered4.

2.2.1 Non-Stochastic Finite Automata

As defined earlier, non-timed discrete event system exhibits state-based behavior and
its timing information is not relevant. This system can be easily modeled as the well-
known Deterministic Finite Automaton (DFA) [HMU01]. A DFA basically consist
of the states and transitions, where each transition is triggered by an occurrence of
a certain event in a system. This event typically corresponds to a change in control
signal of a system, such as “valve open”. A DFA is deterministic in a sense that one
such event can trigger only one transition from one state. A simple example of a DFA
with only four states is shown in Figure 2.4. States are denoted by s0, s1, s2, and s3,
while symbols a, b, and c denote the events that trigger transitions between them.

b

as0
s1

s2

c
s3

Fig. 2.4 Deterministic Finite Automaton (DFA).

Timed discrete event systems exhibit changes over time. It is clear that DFAs
cannot be used to model these systems. Therefore, a formalism of Deterministic
Timed Automaton (DTA) has been developed [AD94, VdWW08]. In addition to
states and symbols, this formalism includes time intervals in which the transitions
should take place. Time intervals basically model the time that a system spends in
corresponding states. A DTA can have two or more transitions triggered from the
same state with the same symbol, but the time intervals of these transitions cannot
overlap. Therefore, these automata are deterministic. An example of a DTA is given
in Figure 2.5. As before, s0, s1, s2, s3 and a, b, c, are respectively the states and the
symbols that trigger transitions, while δ1, δ2, and δ3 represent the transitions’ time
intervals.

b

a δ2=[3,6]

δ1=[1,4]

s0
s1

s2

δ3=[7,14]

c
s3

Fig. 2.5 Deterministic Timed Automaton (DTA).

4 Significant resources on learning non-deterministic stochastic finite automata can be found at
http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/.

18 2 Foundations and State of the Art

In order to model a behavior of a hybrid system using non-stochastic deterministic
finite automaton, a formalism of Deterministic Hybrid Automaton (DHA) has been
developed [ACH+95, Hen96]. A DHA can model both control signals and continuous
process variables. The latter are modeled as functions that describe a continuous
evolution of a system over time. They can be in a form of differential equations
[ACH+95] or various regression functions (such as for example linear regression
[KNJ10]). Of course, DHAs are timed automata as well, since they model the timing
of changes in a system. Likewise, they can have several transitions that leave a single
state triggered by the same symbol, but the time intervals of those transitions cannot
overlap. A simple example of a DHA is shown in Figure 2.6. In comparison to DTA
shown in Figure 2.5, DHA has θ functions associated with each state. They model
the behavior of the continuous variables relevant for those states.

b

θs0

θs3

θs1
a δ2=[3,6]

δ1=[1,4]

s0
s1

s2
θs2

δ3=[7,14]

c
s3

Fig. 2.6 Deterministic Hybrid Automaton (DHA).

2.2.2 Stochastic Finite Automata

Since the behavior of most technical systems is susceptible to statistical variations
(e.g. due to noise, human factor, external disturbances etc.), in practice they should
be modeled using stochastic models. Several stochastic finite automata exist that
can respond to this task. The most simple one is the Stochastic Deterministic Finite
Automaton (SDFA) [CO94]. A SDFA is deterministic, since it cannot include multiple
transitions triggered from one state with the same symbol. In contrast to its non-
stochastic relative DFA, it includes probabilities of staying in a certain state of the
automaton, as well as probabilities of taking a certain transition to another state.
Therefore, SDFA is a stochastic model. An example is given in Figure 2.7. When the
automaton is in state s1, it can either stay in that state with probability p(s1) = 0.1,
transit to state s2 having the probability that the triggering symbol b will occur given
as p(b) = 0.2, or transit to state s3 with the probability of the occurrence of the
triggering symbol c given as p(c) = 0.7. The probability p(s1) is called the ending
state probability, while probabilities p(b) and p(c) represent transition probabilities.

b, p(b)=0.2

a, p(a)=0.8s0
s1

s2

c, p(c)=0.7
s3

p(s0)=0.2 p(s1)=0.1

Fig. 2.7 Stochastic Deterministic Finite Automaton (SDFA).

2.2 Finite Automata Formalisms 19

When the timing information is added to the SDFA model, the Stochastic De-
terministic Timed Automaton (SDTA) is obtained (an example is the Probabilistic
Deterministic Real-Time Automaton (PDRTA) [Ver10]). This automaton is similar
to DTA, but it additionally models the ending state probabilities and the transition
probabilities. Figure 2.8 shows an example. It can be seen that the transitions are not
only triggered by some symbol with a certain probability, but they also need to occur
within certain time ranges.

b, p(b)=0.2

a, p(a)=0.8 δ2=[3,6]

δ1=[1,4]

s0
s1

s2

δ3=[7,14]

c, p(c)=0.7
s3

p(s0)=0.2 p(s1)=0.1

Fig. 2.8 Stochastic Deterministic Timed Automaton (SDTA).

Finally, the most complex automaton structure that we consider is the Stochastic
Deterministic Hybrid Automaton (SDHA, see e.g. [VKBNM11a]). A SDHA (Figure
2.9) can model discrete control signals (with states and transitions), continuous
signals (using θ functions), interaction between them, timing information (using the
transition timing intervals), and stochastic behavior (with the transition and ending
state probabilities). This class of automata is suitable for modeling the complex
behavior of a hybrid production system (see Section 2.1 for an overview of hybrid
system characteristics). As the example in Figure 2.9 illustrates, θ functions of
SDHA can model different types of continuous dynamics, ranging from simple linear
functions (θs2 and θs3), to highly nonlinear signals (θs0 and θs1)

b, p(b)=0.2

θs0

θs3

θs1

a, p(a)=0.8 δ2=[3,6]

δ1=[1,4]

s0
s1

s2

θs2

δ3=[7,14]

c, p(c)=0.7
s3

p(s0)=0.2 p(s1)=0.1

Fig. 2.9 Stochastic Deterministic Hybrid Automaton (SDHA).

To avoid confusion, in Table 2.1 we give an overview of presented non-stochastic
and stochastic finite automata with respect to their ability to model certain character-
istics of technical systems.

Table 2.1 Overview of presented finite automata and the features they can model.

Automaton
Characteristic of a system DFA DTA DHA SDFA SDTA SDHA

Discrete behavior Yes Yes Yes Yes Yes Yes
Continuous variables No No Yes No No Yes

Time No Yes Yes No Yes Yes
Probabilities No No No Yes Yes Yes

20 2 Foundations and State of the Art

T1 T2

V1 V2

T

(a) The system.

v1

t

level h

h1

h

v2

h2

OPEN

OPEN

CLOSE

CLOSE

p(open v1)=1 p(open v2)=1 p(close v1)=1 p(close v2)=1

δ1=[6,6] δ2=[10,10] δ3=[5,5] δ4=[8,8]

6 16 21 29

(b) Signals and the automaton.

Fig. 2.10 A tank filling system, its signals, and the automaton.

Due to the importance of the SDHA formalism, we give a small practical example
that illustrates its modeling power. Let us consider the tank filling system shown
in Figure 2.10(a). It consists of the tanks T1, T2, T , on/off valves V1, V2, and pipes
that connect them. Let us assume that tanks T1 and T2 contain a fluid, which can be
transferred to the tank T when the corresponding valves are opened. The fluid levels
in tanks T1, T2 and T are denoted by h1, h2 and h, respectively. The tank filling
system is a hybrid system, as it contains discrete elements (on/off valves) that change
the continuous dynamics (fluid levels in tanks). Figure 2.10(b) shows the changes in
tank fluid levels h1, h2 and h controlled by the changes in control signals v1 and v2

of the valves V1 and V2, respectively. First, V1 and V2 are closed and all continuous
variables (levels in three tanks) are constant. When the valve V1 is opened, the level

2.3 Finite Automata Identification Frameworks 21

h1 decreases as the fluid is transferred to the tank T , increasing its fluid level h. At
some point, the valve V2 opens as well, which makes the increase of h significantly
faster. When V1 closes, the increase of h slows down to the previous speed (tanks T1

and T2 as well as valves V1 and V2 have the same dimensions). With the closure of
V2 the levels remain constant in all three tanks. Figure 2.10(b) additionally shows the
automaton that models the behavior of this system. This automaton is derived in the
following way: (i) every change in discrete control signals triggers a new automaton
state, (ii) only the relative timing is used to define the transitions’ timing intervals
(i.e. the time is reset whenever a new state is entered), (iii) since we represent only
one filling cycle, there is only one transition between every state, and therefore all
transition probabilities equal to one, (iv) the automaton models the behavior of
the level h in the tank T in all states. If such tank filling cycles would be repeated
multiple times, this could change the transition timings and their probabilities, as
two cycles would rarely be completely identical.

2.3 Finite Automata Identification Frameworks

In this section, we give a short overview of finite automata identification frameworks.
Like in Section 2.2, our presentation is here rather informal, while the corresponding
formal definitions can be found in Chapter 3, Chapter 4 and Chapter 5. Finite
automata can be identified in the following frameworks:

Identification from given finite data: The goal of all algorithms that learn au-
tomata from data is to find the target automaton which is consistent with these
data in a sense that it correctly represents or classifies them. In modeling technical
systems, the requirement is to obtain models as small and as accurate as possible.
When learning data are predefined and finite, then we talk about the identification
from given finite data [Gol78]. Acquiring additional data is in this framework not
possible.

Identification in the limit: When we have the data source at the disposal, we
can apply the framework of identification in the limit [Gol67] to learning finite
automata. In theory, the data source can produce an infinite amount of data.
A learning algorithm continuously receives data and correspondingly outputs
different hypothesis automata. The main idea is that, provided a sufficient amount
of data (also called learning examples), a created hypothesis automaton will
eventually converge to the target automaton and will not change further when the
algorithm receives more data. This identification scenario is realistic in modeling
hybrid production systems, as logs from more production cycles (used as learning
examples) can be recorded and used if needed. To strike out the main difference
between the identification from given finite data and the identification in the limit,
we have illustrated these identification frameworks in Figure 2.11(a) and Figure
2.11(b), respectively.

PAC-learning: While the goal of both previously described frameworks is to learn
the exact target automaton from data, the framework of Probably Approximately
Correct learning (PAC-learning) [Val84] actually identifies its adequate approx-
imation. In other words, a small, predefined deviation between the identified
hypothesis and the target automata is allowed with a certain probability. A de-
viation can be even larger than its predefined value, but only with a very small

22 2 Foundations and State of the Art

MODEL

GIVEN FINITE

DATA D

Learning

algorithm

(a) Identification from given finite data.

SYSTEM

Sensor

data

Learning

algorithm
example 1

example 2

example n-1

example n

example n+1

.

.

.

.

.

.

HYPOTHESIS 1

HYPOTHESIS 2

HYPOTHESIS n-1

TARGET

TARGET

Learning

algorithm

Learning

algorithm

Learning

algorithm

Learning

algorithm

TARGET

Learning

algorithm

(b) Identification in the limit.

Fig. 2.11 Identification from given finite data and identification in the limit.

probability. PAC-learning represents the alternative to the learning in the limit,
especially in cases (i) when it is too hard to obtain the exact target automaton,
(ii) when the amount of data required for convergence is overwhelming, and (iii)
when the algorithm runtime is inefficient.

Query learning: All previous three identification frameworks belong to the type
of learning called passive learning. The learning algorithms use provided sampled
data (i.e. given learning examples or logs from some data source) and output the
exact target automaton or its approximation. They do not have any influence on
the way the data are sampled. In contrast, query learning [Ang88b] represents
the active learning [Set10] where the learning algorithm can influence or choose
the data it receives. It assumes the existence of an Oracle, which receives and
answers the queries coming from the algorithm. The Oracle typically directs a
learning process by answering the algorithm’s query if a certain learning example
is consistent with the target automaton or not. It is generally assumed that the
Oracle cannot make a mistake, and it can answer any query that the algorithm is
allowed to ask. The difference between passive and active learning is illustrated
in Figure 2.12 (due to Tong [Ton01]).

2.4 Algorithms for Learning Stochastic Finite Automata 23

World
Data Output

Model or

classifier

Passive

learner

(a) General schema for a passive learner.

World

Query

Output
Model or

classifier

Active

learner

Response

(b) General schema for an active learner.

Fig. 2.12 Difference between passive and active learning [Ton01].

2.4 Algorithms for Learning Stochastic Finite Automata

In contrast to a number of various available behavior models for technical systems
(such as Bayesian and Petri networks, Bond graphs, Kalman filters etc., see Section
2.1), only a few attempts have been made towards learning them automatically from
data. However, significant work is done in learning finite automata models from data
(types of learning data are discussed in Subsection 2.4.2). Existing algorithms learn
the structure of automata, i.e. their states and transitions. Since stochastic models
are in the focus of this thesis, in Subsection 2.4.3 we give an overview of several
algorithms that learn stochastic finite automata (partially based on the material we
published in [VMN13]).

2.4.1 State Merging Approach to Learning

Learning stochastic finite automata was a step in the field of grammatical inference5

that naturally followed the first algorithms for learning (non-stochastic) deterministic
finite automata. Consequently, this step used the main DFA learning idea that is
known as the state merging approach to learning. Although this approach yielded
famous and successful DFA learning algorithms such as the Regular Positive and Neg-
ative Inference (RPNI) [OG92], it is important to note that the first such algorithms
(Gold’s algorithm [Gol78] and Angluin’s L* [Ang87]) did not use it.

The main idea of the state merging approach to learning (and of the RPNI algo-
rithm) is to represent the learning data in a form of a tree with states and transitions,
and then to gradually create an automaton by finding and merging similar states. In
this way, a generalization takes place, as an automaton gets consistent with both
seen and unseen data (learning examples). The state merging approach to learning is
illustrated in an industrial context in Figure 2.13, and its main steps are explained in
the following.

Step 0: First, all relevant system signals are measured over multiple production
cycles of a system and logged in a database. For timed systems, logs also include

5 For a bibliographical study of grammatical inference please refer to [dlH05].

24 2 Foundations and State of the Art

MODEL
PREFIX TREE

ACCEPTOR

Step 0:

System

logs

Step 1:

Prefix

detection

LOGGED

DATA

Step 2:

State

merging

SYSTEM

Fig. 2.13 State merging approach to learning automata.

the time stamps. For hybrid systems, logs include both measurements of control
signals and continuous physical variables. The data acquisition technologies that
can be used are described in [PKN+12].

Step 1: In this step, an initial automaton, typically called the Prefix Tree Acceptor
(PTA)6, is constructed in a form of a tree-like structure. Logs of one production
cycle represent one automaton learning example. Each such example comprises
multiple events of a system. We define events as the changes in discrete (often
binary) control signals. These changes trigger transitions between automaton
states. A PTA is created by combining common initial sequences of events of
different examples (i.e. example prefixes, thus the name PTA). Each example
represents a path in a PTA starting at the initial state, ending in one of the leaf
states. The effect of combining example prefixes is that those examples share
parts of PTA paths. A PTA is practically the largest automaton that describes
all learning examples and it typically has very small or no generalization ability.
Basically, it is just a smart way to store all learning examples.

Step 2: The second step caries out the true challenges of learning. It includes the
search procedure that compares the PTA states finding those that are compatible
(i.e. similar enough). Then the pairs of compatible states are merged until the
underlying automaton is identified. Various algorithms use different means of
searching for compatible states, as well as different compatibility criteria.

Additional step: It is worth noting that some algorithms include the third, addi-
tional step (see for example [VdWW10, VdWW12]). It is the state (transition)
splitting, which can be seen as an operation opposite to state merging. Split creates
a specialized while merge creates a generalized automaton. Motives for splitting
the state are typically to make separate states for different behavioral types, e.g.
to disjoin the states that are previously mistakenly recognized as compatible and
merged or to make some merge possible.

2.4.2 Classification of Learning Algorithms

Here we present the general classification of automata learning algorithms based on
their various characteristics.

Online vs. offline algorithms: Online algorithms can request additional data or
information for learning during their runtime. Offline algorithms use only prere-
corded datasets and initially given information for learning. This classification

6 In different learning settings literature recognizes various terms, such as frequency PTA or
probabilistic PTA (e.g. see [dlH10]). However, throughout this thesis we will simply use the more
general term PTA.

2.4 Algorithms for Learning Stochastic Finite Automata 25

corresponds to classification of the learning automata identification frameworks
on passive and active learning, which is explained in Section 2.3. An example
of the online learning algorithm is the already mentioned Angluin’s L* [Ang87],
while Gold’s algorithm [Gol78] works in an offline manner (both learn DFAs).

Given finite vs. infinite data: Another classification of the algorithms is based
on different identification frameworks that they use (see Section 2.3). Input data
for learning can consist of either a given finite or an infinite number of learning
examples. Gold showed that using the former setting, even the problem of learning
the simplest DFA with k states from given finite data is NP-complete [Gol78].
This negative identification result generalizes to more complex automata classes.
However, a number of algorithms have been developed that can converge to a
target automaton when an infinite data source is present (learning in the limit
[Gol67], see Section 2.3). A number of algorithms that learn stochastic finite
automata learn in the limit. These algorithms are the ALERGIA [CO94] and MDI
[TDdlH00] that learn SDFAs, and RTI+ [VdWW10] and BUTLA [MNV+11]
that learn SDTAs with one clock for tracking the time evolution (the clock resets
at every transition). Their key ideas are explained in the following subsection, as
they are relevant for our own approach to learning stochastic deterministic hybrid
automata with one clock.

Informant vs. text identification: Informant identification is a type of supervised
learning where both learning examples that are consistent with the target au-
tomaton (called positive examples, i.e. examples that are generated by the target
automaton) as well as those that are not (called negative examples) are given to
the learning algorithm. Learning from informant is probably the best-studied topic
of grammatical inference, which resulted in a number of theoretical and empirical
results over years. Some of them are the subject of Chapter 3. In contrast, text
identification allows learning from positive examples only. It is considered to
be one of the purest and most basic problems of grammatical inference, from
which many other problems are derived [dlH10]. The motivation for learning
models from text in the industrial context is the fact that the production of a faulty
product happens rarely and therefore it is hard to collect sufficient amount of
negative learning examples. Four aforementioned algorithms, namely ALERGIA,
MDI, RTI+, and BUTLA learn from text, while algorithms RPNI (for learning
DFAs) and ID_1DTA [VdWW09] (for learning DTAs with one clock) learn from
informant.

Top-down vs. bottom-up merging order: In the state merging approach to learn-
ing, a learning algorithm searches for compatible states with the purpose of
merging them. The order of this search has significant influence on the learning
performance, especially the algorithm runtime [NSV+12]. Algorithms can use
either a top-down or a bottom-up merging order. In the former, compatibility of
the PTA states is tested starting from the initial state, and proceeding towards the
leaf states. If two states are found to be compatible, the compatibility of their
belonging subtrees is recursively also checked for compatibility. This scenario
is shown in Figure 2.14 (left). Subtrees t1 and t2 have to be compared, before
the two compatible states s1 and s2 could be merged. In the bottom-up order, the
merging process starts at leaf states and moves towards the initial state. In this
way, the recursive checks for compatibility of large subtrees are minimized (see
Figure 2.14 (right)). The ALERGIA is an example of an algorithm that uses the
top-down merging order. The BUTLA algorithm is an example of a bottom-up
merging algorithm.

26 2 Foundations and State of the Art

t1 t2

s1 s2

t

s1 s2

Fig. 2.14 Top-down (left) and bottom-up (right) merging orders.

2.4.3 Learning Algorithms in a Nutshell

Here we briefly describe four existing algorithms for learning stochastic finite au-
tomata from data. Their overview is given in Table 2.2, as well as the automata
models of corresponding systems that they learn. In addition, we briefly present
the first approach towards learning a specific subclass of hybrid automata, called
Cycle-Linear Hybrid Automata (CLHAs).

Table 2.2 Four learning algorithms, automata models and modeled systems.

Learning algorithm ALERGIA MDI RTI+ BUTLA

Automaton model SDFA SDFA SDTA with one clock SDTA with one clock

Modeled system nDES nDES ptDES ptDES

The ALERGIA algorithm: One of the most famous algorithms for learning SD-
FAs is the ALERGIA algorithm given by Carrasco and Oncina in 1994 [CO94].
It follows the aforementioned state merging approach to learning. First, it builds
a PTA based on the available learning examples. For every single PTA state, it
calculates probabilities of stopping in that state or taking a specific transition to
another state. These calculations are based on the numbers of arriving, ending,
and leaving examples for that state. Let sk denote some state of the constructed
PTA. Further, let the number of the examples that arrive to state sk be gk, the
number of the examples that end in sk be fk(#), and the number of examples
that leave sk with some symbol a be fk(a). Then the expressions fk(a)/gk and
fk(#)/gk represent the probability of leaving the state sk with the symbol a, and
the ending state probability, respectively. As the learning examples are subjected
to various statistical fluctuations, compatibility of two states, candidates for merg-
ing, is decided within a confidence range. A statistical test is used to check if
probabilities of leaving a state or ending in a state are for two tested states similar
enough. Once these probabilities are estimated based on the observations (using
the Hoeffding bound [Hoe63] given later in Chapter 6 by expression (6.2)), the
compatibility between any two states s0 and s1 is evaluated using the following
criterion:

∣∣∣∣f0

g0
− f1

g1

∣∣∣∣ >
√

1

2
log

(
2

α

)(
1
√
go

+
1
√
g1

)
, f0, g0, f1, g1 ∈ N, (2.1)

2.4 Algorithms for Learning Stochastic Finite Automata 27

where g0, g1 are the number of examples arriving at states s0 and s1 respectively,
f0, f1 are the number of examples ending/leaving those states, and (1− α)2, α ∈
R, α > 0 is the probability of correct decision. When this inequality is true,
the difference between calculated probabilities (left side of the inequality) for
states s0 and s1 is larger than a threshold that depends on a parameter α (right
side of the inequality). Therefore, the states are not compatible and will not be
merged. Otherwise, the states are marked as compatible, and then their belonging
subtrees are also recursively checked for compatibility using the same test. Once
the compatibility is satisfied for both the states and their subtrees, the states
are finally merged and probabilities are recomputed for the newly created state.
Since merging can produce non-determinism, the resulting automaton is made
deterministic by merging all non-deterministic transitions and states. Then, a
new pair of states is checked for compatibility. The runtime of the ALERGIA
algorithm is O(n3) where n is the size of the learning data. In the average case,
the runtime of the algorithm version given in [CO94] is linear in n.
From the theoretical point of view, the original ALERGIA paper [CO94] did not
provide the formal proof of the algorithm convergence. However, the same authors
give the modified algorithm version in 1999 called Regular Language Inference
from Positive Samples (RLIPS) [CO99]. It was shown that the probability that
expression (2.1) will return the correct decision is (1 − α)2, α ∈ R, α > 0. On
the other hand, de la Higuera and Thollard argue that this result holds only if each
compatibility test is independent from other tests, i.e. when different tests use
states attained by different examples [HT00]. This does not hold in the general
case, as some previous test could have already used these examples. Therefore,
the result of some previous test would have influenced the result of a new test. De
la Higuera and Thollard further give the stronger proof of ALERGIA convergence
in the same paper, which accounts for the cases of dependent compatibility
tests. Additionally, the paper introduces a novel method for identifying transition
probabilities, based on Stern-Brocot trees. Please note that the convergence to the
target automaton is reached only when both the automaton structure (states and
transitions) and probabilities are correctly identified. We strongly relate to this
fact in our own learning approach, presented later in this thesis.
Based on the algorithm classification given before, the ALERGIA algorithm is an
offline algorithm that identifies a target automaton in the limit from text. It uses
the top-down merging order.

The MDI algorithm: The compatibility check of the ALERGIA algorithm, based
on the Hoeffding bound, represents the local merging criterion. The transition and
ending state probabilities are compared for the two states candidates for merging,
as well as for their corresponding subtrees. However, there is no feedback informa-
tion about how different are the original and a newly obtained automata (i.e. the
one obtained after merging). In contrast, another SDFA learning algorithm, namely
the Minimal Divergence Inference (MDI) algorithm [TDdlH00] takes this global
information into account. It makes a trade-off between the minimal divergence of
the obtained automaton from the learning examples and the minimal automaton
size. Similarly to ALERGIA, MDI first creates a PTA from the given data. Then
it gradually merges its states, each time measuring how big the divergence from
the data is, with respect to the automaton size. When this divergence is larger
than a predefined threshold after some merge, that merge would be discarded. The
MDI compatibility criterion is based on the Kullback-Leibler divergence (K-L
divergence) between two automata (which also represent probability distributions

28 2 Foundations and State of the Art

of learning examples). K-L divergence D(A1||A2) between automata A1 and A2

is calculated as follows:

D(A1||A2) =
∑
z

p(z|LA1
) log

p(z|LA1
)

p(z|LA2
)
, (2.2)

where z represents one learning example. Let A0, A1, and A2 be respectively the
PTA, the automaton obtained by merging PTA states, and the automaton obtained
by merging A1 states. The divergence increment between A1 and A2 is given as:

∆(A1, A2) = D(A0||A2)−D(A0||A1). (2.3)

Let αM be the predefined compatibility threshold, and |A1| and |A2| the sizes
of automata A1 and A2, respectively (in the number of states). Then the MDI
compatibility criterion is given by the following inequality:

∆(A1, A2)

|A1| − |A2|
< αM . (2.4)

When this inequality is met, the divergence increment between A1 and A2 is
small enough relative to the size reduction, and the merge will be permanently
kept (not discarded). Otherwise, the search for compatible states will continue
through the automaton A1. The time complexity of the MDI algorithm reported in
[TDdlH00] is O(n2), where n is the size of the input data. Therefore, it is faster
than ALERGIA. Several experimental results indicate that MDI significantly
outperforms ALERGIA [dlH05, VTdlH+05b]. Unfortunately, the MDI algorithm
lacks the formal proof of convergence.
The MDI algorithm can be classified the same way as the ALERGIA, i.e. it is an
offline algorithm that learns SDFAs in the limit from text. It uses the top-down
merging order as well.

The RTI+ algorithm: The first algorithm for learning stochastic deterministic
timed automata (SDTAs) is given by Verwer in 2010 [VdWW10]. It is called
Real-Time Identification from Positive Data (RTI+) and it learns SDTAs with
one clock that tracks the time between successive changes in the system7. As
its name says, it learns from text, and moreover, it learns in the limit in an
offline manner using the top-down merging order. This algorithm is basically an
extension of the Real-Time Identification (RTI) algorithm [VdWW07], used for
learning non-stochastic deterministic timed automata (DTAs) with one clock (that
resets at every transition) from informant (i.e. from both positive and negative
learning examples). In addition to the automaton structure, the RTI+ identifies
two probability distributions, namely probabilities of the symbols (that trigger
transitions), and time probabilities.
First, the algorithm builds a PTA. Then it checks if its states can be either merged
or split. If no merge is possible due to the different timing constraints of the states’
transitions, a split operation is performed such that merging becomes possible.
The decision whether to perform a merge or a spit at some point is made based
on the p-value of the likelihood-ratio test for state-merging or state-splitting. All
statistical tests can be computed in polynomial time for every state. Moreover,
the number of possible iterations of the algorithm is bounded by 2n2 + n, where

7 Verwer denotes the subclass of SDTAs with one clock that resets at every transition as Probabilistic
Deterministic Real-Time Automata (PDRTAs).

2.4 Algorithms for Learning Stochastic Finite Automata 29

n denotes the size of the input data. Therefore, the RTI+ is a polynomial-time
algorithm.

The BUTLA algorithm: The focus of this thesis is on our HyBUTLA algorithm
that learns stochastic deterministic hybrid automata (SDHAs) with one clock.
The close relative of this algorithm, capable of learning stochastic deterministic
timed automata (SDTAs) with one clock, is called Bottom-Up Timing Learning
Algorithm (BUTLA) [MNV+11]. In contrast to ALERGIA and MDI, it learns
the timing information of the changes in a modeled system. Moreover, it uses
the bottom-up merging order. The similarity is that it is an offline algorithm that
also learns from positive examples only (text identification) and in the limit. The
BUTLA compatibility criterion is also based on the Hoeffding bound, just like
the compatibility criterion of the ALERGIA algorithm.
First, the BUTLA algorithm executes a preprocessing step in which for every event
in a system (timed symbol) the Probability Density Function (PDF, probability
over time) is computed. If the PDF is the sum of several Gaussian distributions,
these distributions are reasonably treated as different events during learning.
Although they have the same symbol, their timings are different enough, which
indicates that they might have been generated by different processes in a modeled
system. This situation is illustrated in Figure 2.15 (that we originally gave in
[NSV+12]). It can be seen that, based on its different timings, the control event ‘a’
results in different robot behaviors. When creating a PTA, the BUTLA algorithm
does not combine two or more such events with different timings in a single
transition. Moreover, these events are treated as different events during the merging
step as well.

Small
containers

Robot
start

Large
containers

event a

event a

time

pr
ob

ab
ili

ty

time

pr
ob

ab
ili

ty

Fig. 2.15 Different robot behavior based on the different probability over time of the same event ‘a’
[NSV+12].

Learning cycle-linear hybrid automata: It is worth noting that the first attempts
towards learning hybrid automata were made for the Cycle-Linear Hybrid Au-
tomaton (CLHA) [GMY+07]. Although CLHAs do not model probabilities, they
are relevant for this section as the first hybrid automata for which some learning
approach was developed. Their name emphasizes their cyclic structure and mod-
eled continuous dynamics that can be described by linear equations. CLHAs are
used to model the behavior of excitable cells such as neurons in living organisms.
State transitions are defined at moments when the cell electrical signal reaches its
null and inflection points. Approximation of continuous dynamics is made using

30 2 Foundations and State of the Art

the modified Prony’s method [OS95] for fitting exponential functions. However,
this approach cannot model discrete dynamics in the system, thus it is not suited
for learning models for hybrid production systems.

2.5 Fault Detection and Diagnosis of Hybrid Systems

Some of the most important properties of hybrid production systems are reliability,
safety, and efficiency. Ensuring high level of these properties is becoming increasingly
hard, as hybrid systems tend to become more complex due to the employment
of small, embedded components and distributed architectures. In this section, we
recall several existing approaches to Fault Detection and Diagnosis (FDD), with an
emphasis on those that are based on behavior models. Their variety exemplifies the
need for obtaining such models timely and inexpensively.

2.5.1 Faults and FDD Approaches

Like any running system, a hybrid production system is also prone to faults. By
fault, we consider any type of malfunction of a system component. Faults can
be classified into permanent and temporary, based on the duration of their effects
[Moh09]. Permanent faults cause a system to remain in a faulty state (e.g. broken
pump), while temporary ones disappear after some time (e.g. provisional external
disturbance). Based on a location of occurrence, faults can appear in continuous parts
(e.g. pump energy overconsumption) and discrete parts (controller software error) of a
system [Nar02]. Faults can also be abrupt, or subtle, causing slow system degradation
[FCTB10]. A particularly difficult task is diagnosing multiple and interactive faults,
especially in cases of error propagation [BS01].

To deal with some of these issues, various FDD techniques have been developed
for hybrid systems. One approach, aiming at diagnosis of sensor failures, is called
hardware redundancy [Ise06]. Redundant sensors are installed and fault is detected
whenever a discrepancy is found in their measurements. This approach is very limited
and expensive. Another model-free approach is based on expert systems [Moh09].
Domain knowledge is used to compile diagnosis rules, which enumerate symptom-
fault relationships. The existence of the vast expert knowledge is presumed, which
is in many cases very hard and costly to obtain. There are also other issues, like the
manual update of diagnosis rules, or diagnosing complex, interacting faults [SC97].

To address the shortcomings of these approaches, Model-Based Diagnosis (MBD)
techniques have been introduced [dKW87, Rei87]. MBD exploits the analytical
redundancy [Ger98] between a model and sensor data (system). Here the model
output is used as a reference to the output of a system. System faults are detected
as discrepancies between these outputs. Models usually contain a reasoning mecha-
nism for fault isolation that enables discovery of a fault source. MBD is generally
applicable, easily maintainable, and has a well-founded theory [PW03]. However,
applying MBD in practice faces many challenges, such as diagnosing multiple faults,
diagnosing highly nonlinear (complex) systems, and dealing with noisy data. These
issues are often avoided by imposing idealized assumptions [SE09].

2.5 Fault Detection and Diagnosis of Hybrid Systems 31

2.5.2 Model-Based Diagnosis Using Hybrid Automata

Here we give an overview of several MBD approaches based on hybrid automata
behavior models. Often, hybrid automata are in diagnosis tasks combined with other
modeling formalisms.

Hybrid automata with timed Petri nets and decision trees: An approach to on-
line diagnosis (during runtime) of hybrid systems that employs a hybrid automaton
is given by Zhao et al. [ZKH+05]. A model is used for fault parameterization
of both abrupt faults and subtle degradation of components. First, a model is
manually created for each of the considered system components. Then, a parallel
composition introduced by Alur et al. in [ACH+95] is used to construct the overall
model, by combining small component models. The resulting hybrid automaton is
used for generation of fault-symptom table by simulation, using predefined fault
parameters (domain knowledge). The generated table is compiled into a decision
tree using for example the ID3 algorithm [Qui86] in an offline manner. Online
system monitoring and fault detection mechanism uses manually created timed
Petri net model (see e.g. [BHR08]). Its transitions are synchronized with controller
commands. Fault is detected when some autonomous event occurs outside of its
expected time period. Fault identification is then evoked, which uses Petri net
timing information, together with generated decision tree to direct the parameter
estimation. In this way, it isolates fault candidates with high probability. Although
this work presents a real-time hybrid system diagnosis, it works well only with
discrete-event dynamics. Continuous system behavior is represented as a rather
simple linear first-order dynamic, so a huge set of real-world nonlinear systems
cannot be an object of diagnosis. It is assumed that faults happen one at the time,
and that the sensor readings are not prone to errors. In addition, computation of a
large fault-symptom table for all possible faults is in many real applications very
hard and time-consuming process, as it requires an extensive expert knowledge.
In this approach, every component had to be modeled manually before creating
the overall hybrid automaton model.

A combination of hidden Markov models and Kalman filters: A general prob-
lem in diagnosing various hybrid systems is masking of fault symptoms by
external disturbances or the measurement noise. One of the MBD approaches,
suitable for dealing with this issue, is given by Hofbaur and Williams [HW02a].
It introduces the Concurrent Probabilistic Hybrid Automaton (CPHA), as a spe-
cific combination of the Hidden Markov Model (HMM) [Rab89] and continuous
dynamic models. An overall CPHA model is a composition of CPHAs that model
individual system components. It is used for hybrid estimation of a system state.
In traditional approach, HMM model is used to track the changes in stochastic
discrete part of a system, while the Kalman filter-based state observers [GA08]
track the continuous evolution of state variables inside each of the states. In hybrid
estimation, HMM transition and observation functions are modified to depend
on continuous state variables, which are provided by the bank of Kalman filter
estimators. This enables the estimation of the autonomous state changes, i.e. those
state changes that are triggered by continuous variables, in addition to changes in
control signals. A hybrid estimator is capable of tracking a number of possible
system trajectories (behaviors), by employing Kalman filter for each one of them.
Hybrid probabilistic functions represent fault transitions that can be simultane-
ously monitored. Possible computational and memory limits are addressed with a

32 2 Foundations and State of the Art

focusing mechanism that selects only the most likely trajectories that can be taken
from every current state. In this way, a significant number of relevant trajectories
can be tracked in an online manner. By introducing hybrid probabilistic and hybrid
observation functions, this approach can successfully deal with fault symptoms
that appear on the same scale as the existing input disturbance and measurement
noise. However, in large systems, a number of such trajectories could still be
large. Therefore, tracking all of them would still be computationally demanding,
as each trajectory requires a separate Kalman filter for estimation. In addition,
some relevant fault trajectories could easily be dropped from consideration, as
their probability is typically significantly smaller comparing to the probability of
normal ones. On top of these remarks, the model of continuous behavior as well
as the HMM need to be derived manually, which is rarely a simple task.

Hybrid automata and causal graphs: The authors extended their approach to
deal with unknown system modes in [HW02b], which enabled detection of un-
foreseen and unknown faults. This is performed by decomposition of the overall
CPHA model into interconnected partitions. First, based on the expert knowledge,
a causal graph that records causal dependencies between variables of CPHA is
constructed for every state. The graph is then partitioned into the independent
subsystems that represent component clusters. Now unobservable and undeter-
mined parts of the system could be excluded from the overall estimation. State
variables in those parts are kept at their last known estimated values with increased
variances. As decomposition is performed online, if some unobservable (or un-
determined) variable becomes observable again, the estimation is restarted. This
extension is very suitable for dealing with subtle component degradation, which
is in general very hard to detect. However, it fails to provide any insight into the
unknown behavior, as it can only detect that some unknown anomaly in one of the
component clusters has happened. As for the original approach, an overall CPHA
model must here also be available (i.e. manually constructed).

Hybrid automata with particle filters and a genetic algorithm: Modeling un-
known fault modes of hybrid systems was also investigated by Wang and Dearden
[WD09]. Here a known probabilistic hybrid automaton model of a system is
presumed and unknown states are estimated using particle filters [RAG04]. If a
filter is performing badly in estimating the current state, there is a high probability
of a system being in a faulty state, indicating possible unknown fault. A particle
filter calculates the probability of every state that is reachable from the current
one. If their likelihoods are low, then most likely an unknown fault has happened.
An attempt has been made to learn unknown states (i.e. fault models) and to add
them to the existing model of known states. To this aim, a genetic algorithm was
employed. The authors also identified equation discovery methods like Lagramge
[TD97] to be promising in learning unknown system modes.

Hybrid automata and Expectation-Maximization algorithm: M. Henry intro-
duces a technique for learning a hybrid model of complex physical system dynam-
ics in [Hen02]. This has been achieved with a variant of Expectation-Maximization
(EM) algorithm [DLR77] for parameter estimation. The algorithm comprises two
steps. The first, so-called ‘E’ step, associates the sensor data with a set of sys-
tem states (Kalman filter estimation). This task is done by the state estimation
of probabilistic hybrid automaton as given in [WD09]. The second, so-called
‘M’ step, uses labeled data and weighted least square fit (i.e. linear regression
[Wei05, MC04]) to estimate equation parameters and transition probabilities for
all states in a given automaton. As this is an iterative, offline procedure, data points

2.5 Fault Detection and Diagnosis of Hybrid Systems 33

are used for parameter updates until the algorithm converges. The created automa-
ton model could then be used for online monitoring and diagnosis, as described
in [WD09]. Although the algorithm performed well in the given two examples
(one of them being linear and the other nonlinear system), both of them use small
models, consisting of only four states. The success of this algorithm in larger
systems is questionable due to two reasons. First, EM parameter estimation algo-
rithm may easily converge to local minimum. Second, as this approach relies on a
manually created automaton with given equation forms for continuous dynamics,
creating states and state equations for large systems would be very hard and time
consuming. Those states and equation forms are not learned automatically from
data. This technique learns only equation parameters and transition probabilities.

Extended discrete event system abstraction: One of the recent approaches to
diagnosis of hybrid systems that utilizes hybrid automaton model is given by
Mohammadi in [Moh09]. Here a definition of hybrid automaton is extended to
include states that model faulty behavior. A hybrid automaton model of a system
and a bank of fault detection filters (such as Kalman filters) are firstly created
separately. In the next step, they are systematically integrated to form a so-called
Extended Discrete Event System Abstraction (EDESA). EDESA is a form of
discrete event model, but it effectively includes the continuous information by
using fault detection filters for observing the continuous dynamics. However, it
has several drawbacks. Both hybrid automaton and fault detection filters need
to be created manually. Only linear dynamics is considered. When modeling
nonlinear components, linearization is performed as shown on the example of
modeling a jet engine. In many real-world scenarios, linear models are simply not
sufficient to describe system dynamics adequately. Finally, predefined tables of
component faults (expert knowledge) are used for modeling fault states in EDESA.
EDESA is capable for detecting only these faults, while adding new ones would
require significant reconfiguration.

Temporal causal graphs and Kalman filters: One of the hybrid system diagno-
sis approaches closely related to hybrid automata is proposed by Narasimhan
in [NB07]. It employs a topological, physics, and component-based modeling
formalism called Hybrid Bond Graph (HBG) [MB98]. HBG is a combination of
bond graphs, which model continuous behavior by bonds (showing energy ex-
changes between system components), and switched junctions that model discrete
changes in the system. Junctions enable creation of both parallel and serial topolo-
gies. This modeling formalism incorporates continuous and discrete aspects of a
hybrid system behavior and can be converted to hybrid automata in a systematic
way [Nar02]. Other model representations can also be derived from HBG. The
one used in [NB07], which shows causal and temporal variable relations is called
Temporal Causal Graph (TCG). Monitoring of continuous behavior is realized
with the extended Kalman filter as the observer. Since HBG associates one or
more parameters with each modeled component, faults are detected and identified
as deviations in those parameters. On the example of diagnosing an aircraft fuel
transfer system, this approach gives good results in a sense of low estimation error,
speed, and sensitivity to the measurement noise. The hybrid observer is capable
to successfully deal with state changes in an online manner. Drawbacks are the
addressing of single-time faults only and manual creation of TCGs.

By looking at these successful MBD approaches that use hybrid automata models,
one common obstacle can be noticed. To a large extent, they all depend on a manually

34 2 Foundations and State of the Art

created behavior model of a system. That is exactly the modeling bottleneck we help
to overcome in this thesis. If initial hybrid automata models could be learned auto-
matically from data, they could replace manually created models in these approaches
without big efforts.

2.6 Conclusion

In this chapter, we have given an introduction to systems and models, focusing on
several types of finite automata. They are interesting due to their ability to model
certain types of production systems, but also because some of them can be learned
automatically from data. In addition, we presented automata identification frame-
works and several learning algorithms. Finally, the importance of hybrid automata is
emphasized by showing various fault detection and diagnosis approaches of hybrid
(production) systems, which are based on hybrid automata models.

We can conclude this chapter by identifying two major obstacles in the given
state of the art, which posed a great challenge and motivation for our work and
results given in the following chapters. First, the overview of current successful
model-based fault detection and diagnosis approaches reveals the fact that hybrid
automata (or equivalent models) are typically created manually. As argued before,
manual modeling in complex production systems is a very hard task. Second, there is
no algorithm that can successfully learn hybrid automata models, which are the only
automaton formalism capable of representing both discrete and continuous dynamics
of a hybrid system.

Part II

Complexity of Automata
Identification

Chapter 3
Complexity of Identifying
Deterministic Automata

In this chapter, we give an overview of the complexity analysis for the problem
of identifying different classes of deterministic automata from data. Our goal is to
extend and generalize the existing results specifically to the class of Deterministic
Hybrid Automata (DHAs). Main definitions and known results presented in this
chapter include:

• formal definitions of three deterministic automata classes (DFAs, DTA and DHAs)
and identification settings, such as identification in the limit,

• existing negative results for identification of DFAs from given finite positive and
negative data (Theorem 1 and Theorem 2),

• positive results for learning DFAs (Theorem 3 and Theorem 5) and DTAs with
one clock (Theorem 7) in the limit from positive and negative data in polynomial
time (in the size of data) and from data of polynomial size (in the size of a target
automaton).

Based on these results, we derived the following:

• we have formally generalized the aforementioned negative results to DTA and
DHA classes (Proposition 1),

• we have shown that DHAs with one clock can be polynomially identified in the
limit from positive and negative data (Theorem 8).

3.1 Introduction

In this section, we explain the structure of this chapter and introduce basic terms
that will be formally defined in the following sections. We also present a landscape
of deterministic automata identifiability from positive and negative data (informant
identification), clearly marking gaps that this chapter closes in a formal way.

This chapter is organized as follows. Section 3.2 gives formal definitions of
three important classes of deterministic automata: a well-known Deterministic Finite

37

38 3 Complexity of Identifying Deterministic Automata

Automaton (DFA), Deterministic Timed Automaton (DTA), and Deterministic Hybrid
Automaton (DHA). Their relations are established by Observation 1 and Observation
2.

As mentioned before in Section 2.3, automata identification algorithms use either:
(i) a finite set of given input data, or (ii) an infinite input data sequence. The former
setting is analyzed in Section 3.3, which gives the well-known negative results for
automaton identification and approximation problems. We have generalized them to
the classes of DTAs and DHAs in Proposition 1. In the latter setting, the algorithm
is given more and more data, until the convergence to some target automaton is
achieved. This framework is called identification in the limit and formally defined in
Section 3.4. Section 3.5 defines polynomial identification in the limit and shows the
positive results for learning1 subclasses of DTAs and DHAs with only one clock that
tracks the time evolution. These classes are called One-clock Deterministic Timed
Automaton (1-DTA) and One-clock Deterministic Hybrid Automaton (1-DHA). Our
major positive result regarding identification of 1-DHAs is given by Theorem 8.

As explained in the previous chapter, two automata identification environments
exist [Gol67], namely informant identification and text identification. Informant iden-
tification represents supervised learning, where both positive examples (belonging to
the target automaton) and negative examples (not belonging to the target automaton)
are presented to the learner (i.e. a learning algorithm). In text identification, only
positive examples are available. In Section 3.4 it is shown that even the simplest
deterministic automata–DFAs cannot be identified in the limit from text. For that
reason, we restrict the analysis in this chapter to informant identification. Further-
more, the analysis is restricted here to the classes of deterministic automata. This
restriction will be theoretically justified later on, by recalling the negative result for
identification of non-deterministic automata (Theorem 4).

To show the scope of results given in this chapter, as well as their place in a broader
picture of deterministic automata identification, Table 3.1 is given. It presents the
identifiability from informant of five deterministic automata classes, with respect
to two aforementioned identification settings (assuming P 6= NP). Question marks
denote questions that we address in this chapter.

Table 3.1 A landscape of deterministic automata identifiability from informant.

Identification setting
Automaton identification Polynomial identification

Automata and approximation in the limit

DFAs No Yes
DTAs ? No

1-DTAs ? Yes
DHAs ? ?

1-DHAs ? ?

1 The terms learning and identification are used interchangeably.

3.2 Three Classes of Deterministic Automata 39

3.2 Three Classes of Deterministic Automata

In this section, we give definitions of three classes of deterministic automata, which
can model certain types of technical systems. Moreover, their relations are estab-
lished.

Definition 4 (Deterministic Hybrid Automaton). A determinitic hybrid automaton
(DHA) is a tuple A = (S, s0, F,Σ, T,∆, X,Θ), where

• S is a finite set of states, s0 ∈ S is the initial state, and F ⊆ S is a set of final
states.

• Σ is a finite set called the alphabet. Its elements are symbols that trigger transitions
between the states.

• T ⊆ S × Σ × S ×∆ ×X is a finite set of transitions. A transition τ ∈ T is a
tuple (s, a, s′, δ, R), where s, s′ ∈ S are the source and destination states, a ∈ Σ
is the trigger symbol, δ ∈ ∆ is the timing constraint, and R ⊆ X is the set of
clock resets.

• ∆ ⊆ {δ = [t1, t2] : t1, t2 ∈ N} is a finite set of transition timing constraints.
Constraints δ ∈ ∆ model the time spent in a state before the transition takes place.

• X is a finite set of clocks that record the continuous time evolution. The valuation
of the clock x ∈ X is defined by vt(x) : X → N.

• Θ is a finite set of functions with elements θs : Rn → Rm,∀s ∈ S, n,m ∈ N. I.e.
y = θs(t, u) is the function computing the value changes of the output signals
y ∈ Y within state s based on the time t and values of continuous input signals
u ∈ U . With Q we denote a set of discrete signals.

Figure 3.1 shows one part of deterministic hybrid automaton as an example.
According to the notation from Definition 4, it follows: s0, s1, s2, s3 ∈ S are the
automaton states, a, b, c ∈ Σ are the symbols whose occurrences trigger transitions,
δ1, δ2, δ3 ∈ ∆ are the transition timing constraints, x1, x2, x3 ∈ X are the clocks
that measure time between changes in the system (i.e. occurrences of symbols)
and θs0 , θs1 , θs2 , θs3 ∈ Θ are the functions that approximate the changes of output
signals within the corresponding states. At the beginning of a production cycle, a
plant (or a hybrid system in general) is in the state s0. When the symbol a is observed,
which corresponds to some change (also called event) in the system, the valuation
vt(x1) of the associated clock x1 is compared with the timing constraint δ1. Since
the constraint is satisfied, the transition occurs to the state s1. Otherwise, when the
symbol b is observed and the valuation vt(x2) of the clock x2 satisfies the constraint
δ2, the transition occurs to the state s2. Continuous output signals (process variables)
are approximated in every state by corresponding θ functions. Multiple continuous
output signals can be approximated in each state.

a, vt(x1)=4 Î δ1 θs3

θs2

θs0

c, vt(x3) = 3 Î δ3

δ1=[3,6] δ3=[2,4]

s3

s0

s1

θs1

δ2=[7,14]

b, vt(x2) = 9 Î δ2
s2

...

Fig. 3.1 DHA example.

40 3 Complexity of Identifying Deterministic Automata

Please note that based on the type of continuous dynamics that needs to be
modeled, various regression methods can be used for representing θ functions, such
as multiple linear regression, support vector regression or neural networks.

A deterministic timed automaton is a special kind of deterministic hybrid automa-
ton.

Definition 5 (Deterministic Timed Automaton [VdWW08]2). A deterministic
timed automaton (DTA) is a tuple A = (S, s0, F,Σ, T,∆, X), where

• S is a finite set of states, s0 ∈ S is the initial state, and F ⊆ S is a set of final
states.

• Σ is a finite set called the alphabet. Its elements are symbols that trigger transitions
between the states.

• T ⊆ S × Σ × S ×∆ ×X is a finite set of transitions. A transition τ ∈ T is a
tuple (s, a, s′, δ, R), where s, s′ ∈ S are the source and destination states, a ∈ Σ
is the trigger symbol, δ ∈ ∆ is the timing constraint, and R ⊆ X is the set of
clock resets.

• ∆ ⊆ {δ = [t1, t2] : t1, t2 ∈ N} is a finite set of transition timing constraints.
Constraints δ ∈ ∆ model the time spent in a state before the transition takes place.

• X is a finite set of clocks that record the continuous time evolution. The valuation
of the clock x ∈ X is defined by vt(x) : X → N.

Observation 1. A deterministic timed automaton (DTA) is a deterministic hybrid
automaton (DHA) A = (S, s0, F,Σ, T,∆, X,Θ), where Θ = ∅.

A well-known deterministic finite automaton is a special kind of deterministic
timed automaton.

Definition 6 (Deterministic Finite Automaton [HMU01]). A deterministic finite
automaton (DFA) is a tuple A = (S, s0, F,Σ, T), where

• S is a finite set of states, s0 ∈ S is the initial state, and F ⊆ S is a set of final
states.

• Σ is a finite set called the alphabet. Its elements are symbols that trigger transitions
between the states.

• T ⊆ S×Σ×S is a finite set of transitions3. A transition τ ∈ T is a tuple (s, a, s′),
where s, s′ ∈ S are the source and destination states, and a ∈ Σ is the trigger
symbol.

Observation 2. A deterministic finite automaton (DFA) is a deterministic timed
automaton (DTA) A = (S, s0, F,Σ, T,∆, X), where ∆ = ∅ and X = ∅.

3.3 Automaton Identification Problem

This section gives preliminaries and definitions for identifying deterministic automata
from given finite positive and negative data. We cite negative results for DFAs under

2 The original definition given in [VdWW08] differs slightly. Instead of the set of transition timing
constraints ∆, transition clock guards are given.
3 Often in the literature a set of transitions is given by the transition function τ : S × Σ→ S.

3.3 Automaton Identification Problem 41

these identification definitions and generalize them to DTAs and DHAs in Proposition
1.

Although the field of grammatical inference in general uses the context of learning
an unknown grammar from the set of learning examples [dlH10] (i.e. the language
that generated those examples), the definitions and results are here given in the
context of automata identification (the terms learning and identification are in this
thesis used interchangeably). In the context of identification of deterministic hybrid
automata, we try to answer the following general question: Assuming an infinite or
finite set of logs from some system (measurements from a plant), and an algorithm
capable of approximating system continuous dynamics up to a predefined error
margin, can a deterministic hybrid automaton behavior model be automatically iden-
tified? To identify a deterministic hybrid automaton, means to identify its elements
from Definition 4. Before defining this problem formally, we first explain some
preliminaries and notations.

In this chapter, we are concerned with the informant identification [Gol67], where
learning examples (the data) come in a form of non-conflicting sets of positive and
negative examples (D+, D−), i.e. D+ ∩ D− = ∅ (the learning example is defined
and explained in Definition 9 and Example 1). The identified deterministic hybrid
automaton model A needs to be consistent with the examples, i.e. it needs to accept
the positive and reject the negative ones. The automaton is said to accept the example
if the example ends in one of the automaton’s final states (states from the set F , see
Definition 4). Otherwise, the automaton rejects the example. The set of all examples
that automaton A accepts constitutes an automaton language LA, thus D+ ⊆ LA.
For a language L it holds L ⊆ Σ∗, where Σ∗ is the set of all finite strings of symbols
from Σ (i.e. learning examples). The set of all examples that automaton A rejects is
L = {z ∈ Σ∗ : z /∈ L}, thus D− ⊆ L. The length of a string z ∈ Σ∗ is denoted by
|z|. The unique string of zero length is denoted by λ and called an empty string. If for
two automata A and A′ from some class C it holds that LA = LA′ , these automata
are said to be equivalent (they represent the same language L).

We start the analysis of identifying deterministic hybrid automaton from given
finite data by citing the major result for DFAs given by Gold in 1978 [Gol78]. We
formalized the Gold’s problem of Minimum automaton identification from given data
in the following definition 4:

Definition 7 (Automaton Identification Problem). Assuming given finite sets of
positive D+ and negative D− examples (i.e. strings over a finite alphabet) and a
positive integer k (representing the minimum number of states), the automaton
identification problem is the problem of finding the automaton A ∈ C with at
most k states (called the smallest automaton) from some class of finite automata C.
Automaton A needs to be consistent with the data, i.e. it needs to accept all examples
from D+ and reject all examples from D−.

The following theorem states Gold’s result for the automaton identification prob-
lem of deterministic finite automata.

Theorem 1 ([Gol78]). The automaton identification problem for DFAs is NP-
complete.

Proof (Sketch). It is easy to show that this problem is in NP. If a solution automaton
A is given, the consistency is checked by ensuring that it accepts all examples from

4 For more general definition of the identification problem, please see [Lai88].

42 3 Complexity of Identifying Deterministic Automata

D+ and rejects all examples from D−. Ensuring that the automaton has k states
is done simply by counting the states. Both of these tasks take polynomial time.
Showing that this problem is NP-hard is more complicated. A DFA is completely
identified if its transitions are identified. In order to do so, Gold formulated the
following question: Given data with labeled positive and negative examples (D+,
D−), is there a consistent finite automaton with states reachable by these examples?
This question is called the Transition Assignment Problem PTrAss . To answer it,
given data are rearranged in a form of a state characterization matrix. Transitions
are identified by finding the missing elements of the matrix. In the proof, the missing
elements are replaced by functions of literals that belong to conjunctive normal
form (CNF) expressions. In this way, the satisfiability problem (SAT) with CNF
expressions is reduced to the PTrAss problem. Since SAT is NP-complete, it follows
that the PTrAss problem is NP-hard. Therefore, the automaton identification problem
is both in the set of NP and NP-hard problems, i.e. it is NP-complete. ut

This result raised the following interesting question: Is there a polynomial-time
algorithm that identifies approximately small DFA? Approximately small automaton
is defined in the following:

Definition 8 (Approximately Small Automaton). Assume that automaton A ∈ C
of size |A| (the number of states) from some class of automata C is the smallest
automaton consistent with the given finite sets of positive D+ and negative D−
examples. Let a polynomial PolyP be given. An approximately small automaton
A′ ∈ C is any automaton consistent with (D+, D−) for which it holds LA′ = LA
and |A′| ≤ PolyP(|A|).

Pitt and Warmuth have studied the previous question with care and proved the
following theorem:

Theorem 2 ([PW93]). The problem of identifying approximately small DFA is NP-
complete.

Proof (Sketch). If such approximately small DFA were given, it would be easy to
verify in polynomial time that it is consistent with given data (D+, D−). Checking
if its size is at most polynomially larger than the size of the smallest consistent
DFA is trivial, thus the problem of identifying approximately small DFA is in NP.
The proof that this problem is NP-hard uses a similar idea as the proof of Theorem
1. It exploits the polynomial-time reduction from the 1-in-3SAT problem, to the
problem of finding approximately small consistent DFA. In 1-in-3SAT problem,
the input is a set of clauses, each consisting of three literals where each literal can
be either a variable or its negation. In this problem, the goal is to determine if a
variable truth assignment exists, such that each clause has exactly one true literal.
1-in-3SAT problem is a variant of the 3SAT problem. Both of them are known to be
NP-complete [Sch78], and thus the problem of identifying approximately small DFA
is also NP-complete. ut

In order to show how these negative results for DFA generalize to the classes of
DTAs and DHAs, we give the following proposition with a very simple proof.

Proposition 1. The automaton identification problem for deterministic timed au-
tomata (DTAs) and deterministic hybrid automata (DHAs) is NP-complete. The
problem of identifying approximately small DTA and DHA is also NP-complete.

3.4 Identification in the Limit 43

Proof. Assume that the class of deterministic timed automata CDTA is given. Fol-
lowing Definition 4, Definition 5 and Observation 1, it is possible to represent the
class of deterministic hybrid automata CDHA using the class of CDTA:

CDHA = {(S, s0, F,Σ, T,∆, X,Θ) |
∃(S, s0, F,Σ, T,∆, X,Θ

′) ∈ CDTA :
Θ ⊇ Θ′}

where Θ′ = ∅. Assuming the class of deterministic finite automata CDFA is also
given, from Definition 5, Definition 6 and Observation 2 it follows:

CDTA = {(S, s0, F,Σ, T,∆, X) |
∃(S, s0, F,Σ, T,∆0, X0) ∈ CDFA :

∆ ⊇ ∆0X ⊇ X0}

with ∆0 = ∅ and X0 = ∅. Combining these relations, the class CDHA can be
decomposed in the following way

CDHA = {(S, s0, F,Σ, T,∆, X,Θ) |
∃(S, s0, F,Σ, T,∆0, X0,Θ

′) ∈ CDFA :
Θ ⊇ Θ′,∆ ⊇ ∆0, X ⊇ X0}.

Results from Theorem 1 and Theorem 2 for CDFA now easily generalize to DTAs and
DHAs. This result normally holds for all subclasses of DTAs and DHAs, including
1-DTAs and 1-DHAs. ut

These findings do not look promising for automatic identification of deterministic
hybrid automata from given finite data. However, research in a learning framework
called the identification in the limit [Gol67] offered some interesting results.

3.4 Identification in the Limit

In this section, a formal definition of identification in the limit is provided. The
known results that DFAs can be learned under this definition from informant and not
from text is cited. This negative result normally generalizes to the classes of DTAs
and DHAs (Corollary 1).

In the framework of identification in the limit [Gol67], the learning algorithm
is not given predefined fixed set of learning examples, but more examples can be
provided if necessary. This condition is satisfied in the application area of modeling
already running hybrid production systems, where more data can be logged when
needed.

For a better understanding of system variables and learning examples that represent
the input to the learning process, we first give a general definition of an infinite
sequence of learning examples.

Definition 9 (Infinite Sequence of Learning Examples). Let t denote the time, qk
k = 1, ..., d be discrete binary signals, up p = 1, ..., c be continuous input signals, yr
r = 1, ..., o be continuous output signals. An infinite sequence of learning examples
is a sequence:

D = {D1, D2, ..., Dn, ...},

where each example Di is distinct and represents a matrix of values:

44 3 Complexity of Identifying Deterministic Automata

Di =

ti1 qi1,1 · · · qid,1 ui1,1 · · · uic,1 yi1,1 · · · yio,1
ti2 qi1,2 · · · qid,2 ui1,2 · · · uic,2 yi1,2 · · · yio,2
...

...
...

...
...

...
...

til qi1,l · · · qid,l ui1,l · · · uic,l yi1,l · · · yio,l

 ,
where j = 1, ..., l, tij ∈ N are the time stamps, k = 1, ..., d and j = 1, ..., l,
qik,j ∈ {0, 1} are the values of discrete binary signals, p = 1, ..., c and j = 1, ..., l,
uip,j ∈ R are the values of continuous input signals, and r = 1, ..., o and j = 1, ..., l,
yir,j ∈ R are the values of continuous output signals. The number of the time stamps,
the number of values of every discrete signal qk, the number of values of every
continuous input signal up, and the number of values of every continuous output
signal yr in the example Di is the same and equals to l.

For clarity, we give the following example.

Example 1. A learning example Di for l = 4 (number of values of every signal),
d = 2 (two discrete binary signals), c = 2 (two continuous input signals), and o = 1
(one continuous output signal) could be given as:

Di =

1 1 0 1.3 7.4 10.4
2 0 0 1.5 7.2 11.7
3 0 1 1.8 7.1 12.2
4 0 1 2.1 6.7 13.3

 ,
where according to Definition 9 it follows: [ti1, t

i
2, t

i
3, t

i
4] = [1, 2, 3, 4] are the values

of the time stamp t, [qi1,1, q
i
1,2, q

i
1,3, q

i
1,4] = [1, 0, 0, 0] are the values of the discrete

binary signal q1, [qi2,1, q
i
2,2, q

i
2,3, q

i
2,4] = [0, 0, 1, 1] are the values of the discrete

binary signal q2, [ui1,1, u
i
1,2, u

i
1,3, u

i
1,4] = [1.3, 1.5, 1.8, 2.1] are the values of the

continuous input signal u1, [ui2,1, u
i
2,2, u

i
2,3, u

i
2,4] = [7.4, 7.2, 7.1, 6.7] are the values

of the continuous input signal u2, and [yi1,1, y
i
1,2, y

i
1,3, y

i
1,4] = [10.4, 11.7, 12.2, 13.3]

are the values of the continuous output signal y1. In this example, the time between
successive samples is incremented by one. However, this is not the case in general.
Depending on the data acquisition mechanism and its precision, the timing between
any two successive samples does not have to be equal. Moreover, this timing can
be recorded in various units, such as seconds or milliseconds, which can always be
represented as positive integers in order to satisfy Definition 4.

Please note that the learning example Di ∈ D represents the string of symbols
z ∈ Σ∗ given in the previous section. As mentioned before, those examples that are
accepted by the automaton A are called positive examples for that automaton and
they constitute the set D+ ⊆ LA. All rejected examples belong to a set of negative
examples D−.

According to Gold, identification in the limit is defined as follows:

Definition 10 (Identification in the Limit [Gol67]). A class of automata C is iden-
tifiable in the limit by an algorithm Ψ, if, for any automaton A ∈ C and for any
infinite sequence of examples (D+, D−) with D+ = LA and D− = LA, there is
some automaton A′ and a number n ∈ N, such that for all i ≥ n, Ψ on input of the
first i examples from (D+, D−) returns A′ and moreover LA′ = LA.

3.5 Polynomial Identification in the Limit 45

Successful identification in the limit from informant assumes the existence of an
input characteristic sample set with which the identification algorithm returns the
correct (target) automaton ([dlH97], [Gol78], [VdWW08]). This set is defined as
follows:

Definition 11 (Characteristic Set [VdWW08]). A characteristic set Dca of an au-
tomaton A for an identification algorithm Ψ is a finite set of examples (Dca+ ∈ LA,
Dca− ∈ LA) such that:

• given Dca as input, algorithm Ψ returns the correct (target) automaton A, i.e. Ψ
returns the automaton A′ such that LA′ = LA,

• Dca needs to be monotonous, i.e. if more correctly labeled examples are added to
Dca such that D+ ⊇ Dca+ and D− ⊇ Dca−, the algorithm Ψ still identifies the
automaton A′ using (D+, D−), such that LA′ = LA.

The framework of identification in the limit poses the work-around for the negative
results given by Theorem 1 and Theorem 2. In 1967, Gold gave and proved the
following theorem:

Theorem 3 ([Gol67, Pit89]). DFAs are identifiable in the limit, and are not identifi-
able in the limit from text only.

Proof (Sketch). In proving the first part of the theorem, Gold uses the technique
called the identification by enumeration that always outputs the smallest automaton
consistent with the so-far received examples. Although DFAs are identified in the
limit, this technique is computationally inefficient [Pit89]. When it comes to identi-
fication of DFAs in the limit from text, Gold shows that this is not possible due to
the following. In general, DFAs belong to a class of languages that contain all finite
and at least one infinite language. Gold constructs a text for learning such an infinite
language in the limit. This text constantly repeats a text for learning some of the finite
languages from the same class. Since the repetitions can occur an infinite number
of times (because the language is infinite), the identification algorithm mistakenly
outputs the finite language indefinitely long. ut

By following the decomposition given in the proof of Proposition 1, we can
generalize the negative result of the previous theorem to the classes of DTAs and
DHAs.

Corollary 1. DTAs and DHAs are not identifiable in the limit from positive examples
only.

For this reason we have restricted our analysis of DHA identifiability in this
chapter to informant identification only.

3.5 Polynomial Identification in the Limit

After obtaining the positive result for identifying DFAs in the limit from informant,
the natural question that appeared is: Could DFAs be identified in the limit from
informant in polynomial time from data of some reasonable (polynomial) size? Since
this question has the great impact on learning DTAs and DHAs, it has been studied in
this section. Out major result, that DHAs with one clock are polynomially identifiable
in the limit from informant, is given by Theorem 8.

46 3 Complexity of Identifying Deterministic Automata

Definition 12 (Polynomial Identification in the Limit [dlH97, VdWW08]). A
class of automata C is polynomially identifiable in the limit iff there exist two
polynomials PolyP , PolyQ and an algorithm Ψ such that:

• given an input data sample (D+, D−) of size5 n, the algorithm Ψ returns the
automaton A ∈ C consistent with (D+, D−) in time bounded by PolyP(n),

• for each automaton A ∈ C of size |A| (number of states), there exists a character-
istic set (Dca+, Dca−) of size bounded by PolyQ(|A|) for which, on data (D+,
D−), if D+ ⊇ Dca+ and D− ⊇ Dca−, Ψ returns A′ such that LA′ = LA.

It is clear that if the given data (D+,D−) do not include a characteristic set (Dca+,
Dca−) of size polynomial in the size of the automaton A ∈ C, the class C is not
polynomially identifiable in the limit. If a class of (non-stochastic) deterministic
automata C is polynomially identifiable in the limit, we say that it is identifiable
from polynomial data in polynomial time. The existing results for the polynomial
identification in the limit are now recalled.

Theorem 4 ([dlH97]). If P 6= NP, the class of non-deterministic finite state automata
(NFAs) is not polynomially identifiable in the limit.

Proof (Sketch). The proof builds up on a result presented in [GJ90] that given two
NFAs, the problem of determining if they represent the same language (if they are
equivalent) is co-NP-complete. This is the case even if the size of their alphabets is
one (|Σ| = 1). From this result it follows that if the size of given two NFAs is smaller
than some number |A|, there is no polynomial Poly(|A|) that bounds the size of the
input sample needed for testing the equivalence. According to Definition 12, the
existence of such polynomial is required for polynomial identification in the limit.
However, if the size of NFAs is exactly Poly(|A|), the NFA equivalence problem
would be in P (contradiction to the result of [GJ90]). Assuming P 6= NP, it follows
that NFAs are not polynomially identifiable in the limit. ut

Again by following decomposition given in the proof of Proposition 1, this nega-
tive result easily generalizes to the Non-deterministic Timed Automaton (NTA) and
Non-deterministic Hybrid Automaton (NHA). That is the reason why we restricted
the analysis only to deterministic automata.

Corollary 2. If P 6= NP, the classes of NTAs and NHAs are not polynomially identifi-
able in the limit.

The positive result for identification in the limit of DFAs given in Theorem 3 was
further extended by E. M. Gold to account for the polynomial learning time.

Theorem 5 ([Gol78]). The class of deterministic finite automata (DFAs) is polyno-
mially identifiable in the limit.

Proof (Sketch). Gold gives a DFA identification algorithm that has the following
properties:

• feasible (resulting automaton consistent with given data (D+, D−)),
• identifies consistent automaton A using data (D+, D−) where D+ ⊇ Dca+ and
D− ⊇ Dca−, and (Dca+, Dca−) is the characteristic set,

5 The sample size denotes here the total sum of lengths of the examples. Please note that the sample
size can sometimes also denote the number of learning examples [dlH06].

3.5 Polynomial Identification in the Limit 47

• computes in time polynomial in the size of learning data (D+, D−)),
• the size of the characteristic set is polynomial in the size of identified automaton.

These properties are satisfied using the Timid State Characterization algorithm,
where the automaton transitions are identified using state characterization matrix
(recall proof of Theorem 1). The algorithm ensures consistency of the automaton
only if enough data (characteristic set) is available. In [OG92] yet another algorithm,
called Regular Positive and Negative Inference (RPNI) was given that polynomially
identifies DFAs in the limit by the means of state merging. ut

In [VdWW08] Verwer investigated if this positive result for polynomial identi-
fication in the limit of DFAs could generalize to the class of deterministic timed
automata (DTAs). His findings are summarized as follows:

Theorem 6 ([VdWW08]). The class of deterministic timed automata (DTAs) is not
polynomially identifiable in the limit.

Proof (Sketch). In order to be polynomially identifiable in the limit, a class of
automata C must have the property of polynomial distinguishability. This property
means that given any two automata A1 ∈ C and A2 ∈ C, such that LA1

6= LA2
, a

polynomial Poly must exist that bounds the length of an example (string), which
belongs to one automaton, and not to the other. DTAs with at least two clocks
(|X| = 2, recall Definition 4) are not polynomially reachable, i.e. the examples of
the length that is exponential in the size of the automaton may be needed in order
to reach some of its states6. This is of course valid for the entire class of DTAs.
Since they are not polynomially reachable, these automata are not polynomially
distinguishable. The automaton characteristic set contains examples that cannot
be bounded by a polynomial function, and thus, by Definition 12, DTAs are not
polynomially identifiable in the limit. ut

This again generalizes to deterministic hybrid automata (DHAs).

Corollary 3. The class of deterministic hybrid automata (DHAs) is not polynomially
identifiable in the limit.

There is, however, one subclass of DTAs that can be identified from polynomial
data in polynomial time. This class is called One-clock Deterministic Timed Automata
(1-DTAs), and it represents the class of DTAs with a single clock, i.e. |X| = 1 (recall
Definition 5).

Theorem 7 ([VdWW09]). The class of one-clock deterministic timed automata (1-
DTAs) is polynomially identifiable in the limit.

Proof (Sketch). The proof is not trivial and it consists of two parts given in papers
[VdWW08] and [VdWW09]. We give only the main elements here. The first paper
shows that 1-DTAs are, in contrast to other DTAs, polynomially reachable, which is
a requirement for polynomial distinguishability. This was proven by observing that
the shortest example that ends in some state s ∈ S can cause at most |S| resets of
a clock x ∈ X , and that this example can visit each state at most |S| times. Thus,
its length is bounded by |S| × |S|. The length of the shortest example that belongs
to a symmetric difference of two 1-DTAs is also bounded by polynomial, which
makes this class polynomially distinguishable. The paper [VdWW09] presents an
identification algorithm ID_1DTA that satisfies the following properties:

6 Verwer gives an example of a DTA that is not polynomially reachable in [VdWW08].

48 3 Complexity of Identifying Deterministic Automata

• identification of a single transition requires time polynomial in the size of the
input data,

• the number of transitions to be identified is polynomial in the size of the input
data,

• for each transition there exists a characteristic set of size polynomial in the size of
the smallest 1-DTA consistent with the input examples,

• the number of transitions to be identified is polynomial in the size of the smallest
1-DTA consistent with the input examples.

By Definition 12 this algorithm identifies 1-DTAs in polynomial time from polyno-
mial data, thus 1-DTAs are polynomially identifiable in the limit. ut

Our goal now is to extend this positive result to the subclass of deterministic hybrid
automata (DHAs), namely the One-clock Deterministic Hybrid Automata (1-DHAs).
A specific characteristic of 1-DHAs that distinguishes them from 1-DTAs is the
ability to model the continuous dynamics by learning Θ functions using continuous
data. In order for 1-DHAs to be polynomially identifiable in the limit in the sense
of Definition 12, their Θ functions have to be learnable in polynomial time. This
requirement is given by the following lemma.

Lemma 1. A methodM exists that learns functions θs ∈ Θ,∀s ∈ S of any DHA
(including 1-DHAs) within predefined marginal error ε in polynomial time.

Proof. According to the lemma statement, a methodM has to have the following
properties:

error(M(θs)) ≤ ε and

runtime(M(θs)) ∈ O(Poly)

for some polynomial Poly .
For proving the first property it is enough to recall the Universal approximation

theorem given by G. Cybenko in 1989 [Cyb89]. By this theorem, a feed-forward
artificial neural network with a finite number of hidden neurons in a single hidden
layer and continuous sigmoid (as well as other more general) activation functions is
an universal approximator of continuous functions.

Now let methodM be approximator from the Universal approximation theorem.
Neural network time complexity for a single approximation is O(kmME), with
k data points for approximation, m predictors, M hidden neurons and E training
epochs [HTF08]. In the case of DHA, predictors are all continuous input variables
U and the time t, thus the number of predictors is m = |U |+ 1, and there are |Θ|
functions to approximate. Therefore, the overall time complexity of the methodM
is O(k|U |ME|Θ|). This completes the proof. ut

The value of the predefined marginal error ε depends on the application area.
In safety-related tasks, it is important that θ functions approximate the continuous
dynamics in the system as good as possible, i.e. with very small error (e.g. less than
5%). Information about allowed ε values for different signals come both from the
analysis of a system and expert knowledge.

Theorem 8. The class of one-clock deterministic hybrid automata (1-DHAs) is poly-
nomially identifiable in the limit.

3.5 Polynomial Identification in the Limit 49

Proof. Polynomial identification in the limit of 1-DTAs has been given by Theorem
7. In the proof of Proposition 1, the class of deterministic timed automata (DTAs) is
shown as a subclass of deterministic hybrid automata (DHAs):

CDHA = {(S, s0, F,Σ, T,∆, X,Θ) |
∃(S, s0, F,Σ, T,∆, X,Θ

′) ∈ CDTA :
Θ ⊇ Θ′}

where Θ′ = ∅. The same relationship holds for the subclasses with only one clock,
i.e. when |X| = 1:

C1−DHA = {(S, s0, F,Σ, T,∆, {x},Θ) |
∃(S, s0, F,Σ, T,∆, {x},Θ′) ∈ C1−DTA :

Θ ⊇ Θ′}
where Θ′ = ∅. If Θ functions of 1-DHA would not have to be learned, we would
essentially have to learn 1-DTA, which, according to Theorem 7, are polynomially
identifiable in the limit. Since learning Θ functions is also possible in polynomial
time (Lemma 1), 1-DHAs are also polynomially learnable in the limit. This completes
the proof. ut

Corollary 4. 1-DHAs are polynomially identifiable in the limit when their continuous
output signals y ∈ Y are approximated by functions θs ∈ Θ, ∀s ∈ S within marginal
error ε using multiple linear regression with ordinary least squares method for
parameter estimation.

Proof. As the corollary states, for multiple linear regression with ordinary least
squares (OLS) estimation it holds:

error(OLS (θs)) ≤ ε, ∀θs ∈ Θ, ∀s ∈ S.

The time complexity of the least squares method that learns a single function is
O(km2) [HTF08] where k is the number of data points used for approximation and
m is the number of parameters to be estimated. In order to learn a regression function
θs ∈ Θ for all states s ∈ S of the automaton A, the least squares estimation needs
to be performed |S| times. This increases the approximation time complexity to
O(km2|S|). Further, in the worst case there is no expert knowledge about which
output signals from the set Y are relevant for which states. In this case all of them
need to be approximated in every single state. This gives the final time complexity
of O(km2|S||Y |). The approximation is polynomial in both the number of output
signals |Y | and the number of states |S|, thus 1-DHAs are polynomially identifiable
in the limit when multiple linear regression with ordinary least squares method is
used for parameter estimation. ut

Observation 3. When multiple linear regression uses only linear terms, the number
of parameters that need to be estimated in the worst case is:

m = |U |+ 2,

where |U | is the number of input signals (Definition 4), and additional two parameters
are the constant and the time coefficient. For this scenario, the total approximation
time complexity is O(k|U |2|Θ|), which can be written as O(k|U |2|S||Y |) (knowing
that |Θ| = |S||Y |). The approximation is polynomial in both the number of input sig-
nals |U | and the number of functions |Θ| that approximate output signals. Therefore,
1-DHAs are polynomially identifiable in the limit when multiple linear regression
with linear terms is used for parameter estimation.

50 3 Complexity of Identifying Deterministic Automata

Although this theoretical result is positive, please note that the polynomial iden-
tification in the limit of 1-DHAs remains hard task in many practical cases. For
example, even when a simple regression method such as multiple linear regression
is used, it is not always easy to satisfy all multiple linear regression assumptions
(like e.g. normal distribution of multiple regression residuals [MC04]). Another issue
is the identification time. To illustrate this, it is enough to recall that the number
of parameters to be estimated in ordinary least square estimation is m = |U | + 2
for each approximation. In a complex process plant, number of input continuous
signals |U | of a modeled component can be large. As the time complexity of multi-
ple linear regression with ordinary least squares estimation is quadratic in |U |, the
approximation runtime could still be long.

3.6 Conclusion

This chapter gave an overview of complexity results for the identification of determin-
istic finite automata (DFAs) and deterministic timed automata (DTAs) from data, and
generalized them to deterministic hybrid automata (DHAs). Due to negative results in
text identification (i.e. from positive examples only) of (non-stochastic) deterministic
finite automata, the analysis is focused on informant identification (both positive and
negative examples are available). The problem of identifying a DFA with k states is
proven to be NP-complete. Furthermore, this DFA cannot be approximated within
any polynomial in k. This holds for both DTAs and DHAs. However, in the learning
framework of identification in the limit, DFAs can be identified successfully, and
moreover in polynomial time using polynomial data. This result generalizes to a sub-
class of DTAs, called one-clock deterministic timed automata (1-DTAs). In Theorem
8, we extended this finding to the one-clock deterministic hybrid automata (1-DHAs).
The algorithm ID_1DTA for learning 1-DTAs can be modified to approximate the
continuous dynamics in the states in order to learn 1-DHAs polynomially in the limit
from informant.

Despite this positive theoretical result, two major obstacles exist in practice. Our
ultimate goal is to identify behavior models of hybrid systems. First, probabilistic
behavior in such systems is common, and it cannot be modeled using (non-stochastic)
deterministic hybrid automata for which a positive identification result is given.
Second, learning examples that can be logged in hybrid (production) systems are
dominantly positive [Ang88a, CO99] (i.e. measurements come from normal system
behavior), thus text identification environment is a prerequisite in this application
area.

For these reasons, the following chapter analyses complexity of identifying
stochastic deterministic hybrid automata from text.

Chapter 4
Complexity of Identifying
Stochastic Deterministic
Automata

The goal of this chapter is to provide the background knowledge relevant for the
identification of Stochastic Deterministic Hybrid Automata (SDHAs), which are
capable of representing real-world hybrid production systems. In particular, the key
points in this chapter are:

• basic notations, formal definitions of three stochastic deterministic automata
classes (SDFAs, SDTAs and SDHAs) and identification settings are given,

• an existing negative result for identification of SDFAs (Theorem 9) from a rea-
sonable number of positive examples is cited (i.e. from data of the size that is
polynomially linked with the size of the target automaton) and generalized to
stochastic deterministic timed and hybrid automata with one clock that counts the
relative time between successive changes in a system1,

• existing positive results are presented for identifying SDFAs (Theorem 10) and
SDTAs with one clock (Theorem 11) from positive examples in a reasonable time
(i.e. in time that is polynomially linked with the size of the input data).

We will relate to these results in Chapter 6, where we present our algorithm for
learning SDHAs with one clock and prove its convergence and runtime properties.
We emphasize that this chapter deals with learning stochastic deterministic automata
from text, i.e. from positive learning examples only.

1 Whenever we refer to one clock automata in this thesis, we assume the clock uses the relative
timing. Such automata with one clock that resets at every transition are often called real-time
automata (e.g. [Ver10]).

51

52 4 Complexity of Identifying Stochastic Deterministic Automata

4.1 Introduction

This section introduces learning stochastic finite automata from text and explains the
structure of this chapter.

Despite the positive identification result for non-stochastic one-clock deterministic
hybrid automata given in the previous chapter, two major problems remained: (i) non-
stochastic automata cannot model probabilistic behavior, and (ii) in the real-world,
available data for learning contain dominantly positive examples [Ang88a, CO99].
These constraints, imposed by our application area, make it an imperative to use the
text identification environment for learning stochastic automata (i.e. to learn from
positive examples only).

The first challenge to overcome was Gold’s result given in [Gol67], that even
the simplest deterministic automata, such as DFAs, cannot be identified in the limit
from text. However, Angluin shows in [Ang88a] that the assumption of stochastic
behavior of the underlying process that generates the sequence of positive learning
examples has huge implications on automata identification. Statistical regularity
of data samples, generated according to the same probability distribution, is able
to compensate for the lack of negative data. In this chapter, we present the known
results for text identification of Stochastic Deterministic Finite Automata (SDFAs)
and Probabilistic Deterministic Real-Time Automata (PDRTAs) in order to extend
them to the class of One-clock Stochastic Deterministic Hybrid Automata (1-SDHAs)
in Chapter 6. Please note that some authors use the term probabilistic, rather than
stochastic. We decided to follow the original nomenclature of automata classes from
their corresponding papers. The reader can find an extensive survey of stochastic
automata in [VTdlH+05a].

The chapter is organized as follows. In Section 4.2, these automata classes are
formally defined and some important background information is given. The extension
of Gold’s identification framework [Gol67] to the stochastic automata classes is called
identification in the limit with probability one [dlHO04]. It is defined in Section 4.3
together with the strong and weak polynomial identification criteria. Well-known
negative results concerning the former are summarized in Section 4.4 (Theorem
9) and extended to the classes of PDRTAs and 1-SDHAs (Corollary 5). The latter
criteria are analyzed in Section 4.5, where the well-known positive results for SDFAs
and PDRTAs are given (Theorem 10 and Theorem 11, respectively). We use these
results in Chapter 6, where we present our algorithm that learns SDHAs with one
clock and prove its properties.

4.2 Notations and Automata Definitions

In this section, three classes of stochastic finite automata are formally defined and
their relations are established. In addition, the reader is introduced to the important
notations used throughout the thesis.

In informant identification the learning data come in a form of sets of positive and
negative examples, usually denoted by (D+, D−). The subject of this chapter is the
text identification environment, where D− = ∅. For simplicity, the set of available
positive examples will be denoted by D instead of D+. In the following, we explain
used notations that are similar to [CO99].

4.2 Notations and Automata Definitions 53

An alphabet Σ is a finite set of symbols. Symbols are denoted by letters a, b, c.
Strings of symbols represent the examples (words), usually marked by letters u, v,...,z.
An empty string is denoted by λ. Σ∗ is a set of all finite strings of symbols from
Σ. A stochastic language L represents a probability density function over Σ∗. An
automatonA defines a stochastic languageLA. A probability of a string z ∈ Σ∗ in the
language LA is denoted by p(z|LA). The sum of probabilities of all strings in Σ∗ that
belong to a language LA equals to one [dlH10, HMU01], i.e.

∑
z∈Σ∗ p(z|LA) = 1.

For a given dataD that belong to an automaton language LA over Σ, it holdsD ⊆ Σ∗.
Two automata A and A′ from some class of stochastic automata C are equivalent, if
they define the same stochastic language, i.e. if LA = LA′ . Two stochastic languages
are equal if they include the same strings and if probability of every string is equal:

LA = LA′ ⇐⇒ ∀z ∈ Σ∗ : p(z|LA) = p(z|LA′).

Definition 13 (Stochastic Deterministic Hybrid Automaton). A stochastic deter-
ministic hybrid automaton (SDHA) is a tuple A = (S, s0,Σ, T,∆, P,X,Θ), where

• S is a finite set of states and s0 ∈ S is the initial state.
• Σ is a finite set called the alphabet. Its elements are symbols that trigger transitions

between the states.
• T ⊆ S × Σ × S ×∆ is a finite set of transitions. A transition τ ∈ T is a tuple

(s, a, s′, δ), where s, s′ ∈ S are the source and destination states, a ∈ Σ is the
trigger symbol, and δ ∈ ∆ is the timing constraint.

• ∆ ⊆ {δ = [t1, t2] : t1, t2 ∈ N} is a finite set of transition timing constraints.
Constraints δ ∈ ∆ model the time spent in a state before the transition takes place.

• P is a set of probability functions with the elements p : S×(Σ∪{λ})×S×∆→
Q ∩ [0, 1]. P includes both transition probabilities and probabilities of a string
ending in a state.

• X is a finite set of clocks that record the continuous time evolution. The valuation
of the clock x ∈ X is defined by vt(x) : X → N.

• Θ is a finite set of functions with elements θs : Rn → Rm,∀s ∈ S, n,m ∈ N. I.e.
y = θs(t, u) is the function computing the value changes of the output signals
y ∈ Y within state s based on the time t and values of continuous input signals
u ∈ U . With Q we denote a set of discrete signals.

As in the case of DHAs (see Definition 4), θ functions of SDHAs can also be
learned using a range of regression methods (e.g. multiple linear regression).

Please note, that in contrast to non-stochastic deterministic automata (such as
DFA), stochastic deterministic automata do not contain final (accepting) states.
Learning examples (also called strings or words in the literature) could end in
arbitrary states, and moreover these examples are strictly positive. Therefore, the
notation of final states is here not required. Furthermore, the analysis is in this
chapter restricted to those stochastic automata that are deterministic. A deterministic
automaton is one that does not include two transitions from the same state, which
have the same triggering symbol and overlapping timing constraints. As in [HT00],
only rational probabilities will be used. The reason is the way the probabilities are
estimated from learning examples, i.e. as ratio of the number of examples that leave
the automaton state (or stay in that state) and the number of examples that attain the
state.

Verwer proved in [VdWW08] that the class of non-stochastic deterministic timed
automata (DTAs) with more than one clock that counts time, cannot be efficiently

54 4 Complexity of Identifying Stochastic Deterministic Automata

identified (i.e. in polynomial time from polynomial data, see Theorem 6 in Section
3.5). This negative result naturally generalizes to all deterministic automata that
model time with clocks. The same argument holds also for stochastic automata
[Ver10]. Therefore, the attention is directed here to the subclass of DHAs, namely a
One-clock Stochastic Deterministic Hybrid Automaton. It uses relative timing, i.e.
the clock counts the time between two successive events. Whenever a new event is
observed, the clock is reset. To ease readability, this automaton is separately defined.

Definition 14 (One-Clock Stochastic Deterministic Hybrid Automaton). A one-
clock stochastic deterministic hybrid automaton (1-SDHA) is a SDHA that uses a
single clock to record the continuous time evolution, i.e. |X| = 1.

An example of a 1-SDHA is given in Figure 4.1. According to Definition 13 and
Definition 14, it follows: s0, s1, s2 ∈ S, a, b ∈ Σ, δ1, δ2 ∈ ∆, and θs0 , θs1 , θs2 ∈ Θ.
Assume the system is in the state s0 where its continuous dynamics is defined by
the function θs0 . If the symbol a is observed at the time instance that satisfies the
constraint δ1, a transition occurs to the state s1. In the recorded logs of a system,
such transition was triggered by 70% of the examples, giving p(s0, a, s1, δ1) = 0.7.
The probability of the other transition is p(s0, b, s2, δ2) = 0.2. The probability of
staying in the state s0 is denoted by p(s0, λ, s0, δ0), where λ is an empty string and
δ0 = [0, 0] is a notation used for the timings constraint in the ending state probability.
It is important to make clear that λ does not trigger any transitions from the state
s0. For simplicity, we will denote the ending state probability of the state s0 with
p(s0) instead of p(s0, λ, s0, δ0). Although we conveniently write probabilities as
real numbers, please keep in mind that we basically use only rational probabilities,
i.e. aforementioned probabilities can be as well written as p(s0, a, s1, δ1) = 7

10 ,
p(s0, b, s2, δ2) = 1

5 and p(s0) = 1
10 .

θs0

θs2

θs1
a, p(s0,a,s1,δ1)=0.7

δ2=[6,11]

δ1=[1,4]

...

...

...

s0

s1

s2

b, p(s0,b,s2,δ2)=0.2

p(s0,λ,s0,δ0)=0.1

Fig. 4.1 An example of one-clock stochastic deterministic hybrid automaton.

One-clock Stochastic Deterministic Timed Automaton (1-SDTA) has been defined
by Verwer in [Ver10] and called Probabilistic Deterministic Real-Time Automaton
(PDRTA). As stated before, in this chapter we use the original notations, thus the
name PDRTA will be used. In order to present the identification results for PDRTAs
and to place them in the broader picture of identifying stochastic deterministic
automata, their definition is given in the following.

Definition 15 (Probabilistic Deterministic Real-Time Automaton [Ver10]). A
probabilistic deterministic real-time automaton (PDRTA) is an ordered list of ele-
ments A = (S, s0,Σ, T,H, PΣ, Pt), where

• S is a finite set of states and s0 ∈ S is the initial state.

4.2 Notations and Automata Definitions 55

• Σ is a finite set called the alphabet. Its elements are symbols that trigger transitions
between the states.

• T is a finite set of transitions. A transition τ ∈ T is a tuple (s, a, s′, [t1, t2]),
where s, s′ ∈ S are the source and destination states, a ∈ Σ is the trigger symbol,
and [t1, t2], t1, t2 ∈ N is the time interval.

• H is a finite set of bins (time intervals) h = [t1, t2], t1, t2 ∈ N, known as
histogram.

• PΣ = {p(s, a, ∗) | a ∈ Σ, s ∈ S} is a finite set of symbol probabilities. For every
state s ∈ S, it holds

∑
a∈Σ p(s, a, ∗) = 1, where ∗ is an arbitrary state.

• Pt = {p(s, h, ∗) | h ∈ H, s ∈ S} is a finite set of time-bin probabilities. For
every state s ∈ S, it holds

∑
h∈H p(s, h, ∗) = 1, where ∗ is an arbitrary state.

Please note that PDRTA also has only one clock that counts relative time. An
example of PDRTA is given in Figure 4.2.

a, p(s0,a,s1)=p(s0,h1,s1)=0.8

h2=[6,11]

h1=[1,4]

...

...

...

s0

s1

s2
b, p(s0,b,s2)=p(s0,h2,s2)=0.2

Fig. 4.2 An example of probabilistic deterministic real-time automaton.

In the following, a stochastic version of the well-known Deterministic Finite
Automaton (DFA) is defined. It is called Stochastic Deterministic Finite Automaton
(SDFA) and illustrated in Figure 4.3.

Definition 16 (Stochastic Deterministic Finite Automaton [CO99, HT00]). A
stochastic deterministic finite automaton (SDFA) is a tuple A = (S, s0,Σ, T, P),
where

• S is a finite set of states and s0 ∈ S is the initial state.
• Σ is a finite set called the alphabet. Its elements are symbols that trigger transitions

between the states.
• T ⊆ S×Σ×S is a finite set of transitions. A transition τ ∈ T is a tuple (s, a, s′),

where s, s′ ∈ S are the source and destination states, and a ∈ Σ is the trigger
symbol2.

• P is a set of probability functions with the elements p : S × (Σ ∪ {λ})× S →
Q ∩ [0, 1]. P includes both transition probabilities and probabilities of a string
ending in a state.

Observation 4. A stochastic deterministic finite automaton (SDFA) is a probabilistic
deterministic real-time automaton (PDRTA) A = (S, s0,Σ, T,H, PΣ, Pt), with
H = ∅ (no time intervals are associated with transitions), Pt = ∅, and a final set of
symbol probabilities PΣ extended with an empty string to obtain PΣ∪{λ}.

2 Some authors give a set of transitions as a transition function τ : S × Σ→ S.

56 4 Complexity of Identifying Stochastic Deterministic Automata

a, p(s0,a,s1)=0.8
...

...

...

s0

s1

s2

b, p(s0,b,s2)=0.2

Fig. 4.3 An example of stochastic deterministic finite automaton.

Observation 5. A stochastic deterministic finite automaton (SDFA) is a one-clock
stochastic deterministic hybrid automaton (1-SDHA) A = (S, s0,Σ, T,∆, P,X,Θ),
with ∆ = ∅, X = ∅ and Θ = ∅.

4.3 Identification in the Limit with Probability One

Here we define positive learning examples and the identification in the limit with
probability one, as well as weak and strong identification criteria.

This chapter deals with learning stochastic deterministic automata. As already
stated, the goal is to present some well-known results for identification of SDFAs and
PDRTAs, but also to answer the following open question: Given any infinite sequence
of positive examples (that eventually contains all of them) drawn according to some
probability distribution, can a one-clock stochastic deterministic hybrid automaton
that defines that distribution be automatically identified? The general definition of
an infinite sequence of learning examples is already given in Section 3.4 (Definition
9) and it is also applicable for the case of learning stochastic automata. Since we use
only text for learning, we define positive learning examples.

Definition 17 (Positive Learning Examples). Learning examples from the infinite
sequence:

D = {D1, D2, ..., Dn, ...}

are denoted as positive with respect to the language LA if:

∀Di ∈ D : p(Di|LA) > 0,

i.e. if all examples are drawn according to the language LA.

Every learning example Di ∈ D corresponds to the string of symbols z ∈ Σ∗

explained in the previous section. These two notations are in this chapter used
interchangeably.

In order to identify stochastic automata, the identification framework similar to
Gold’s identification in the limit [Gol67] for learning non-stochastic automata is
used (see Definition 10). In the setting of learning stochastic automata, it is called
identification in the limit with probability one [dlHO04]. The main idea is that as the
sequence of positive examples used for learning increases, it gets unlikely that the
identified empirical probability distribution (automaton) will be too far away from
the theoretical (target) one [dlH10]. Therefore, the probability of converging to the
target automaton after some finite time equals to one. Of course, the actual moment

4.3 Identification in the Limit with Probability One 57

of convergence cannot be known beforehand. Nevertheless, one can try to find an
algorithm that identifies such automaton correctly, and moreover, in polynomial time.
The following definition is given (based on [dlHO04]):

Definition 18 (Identification in the Limit with Probability One). A class of au-
tomata C is identifiable in the limit with probability one, if there exists an identi-
fication algorithm Ψ that given any automaton A ∈ C and any infinite sequence
of positive examples D = {D1, D2, ..., Dn, ...} for A (that eventually contains all
examples from the language LA defined by A) it holds:

∃n ∈ N,∀i ≥ n : p(LΨ({D1,D2,...,Di}) = LA) = 1.

Please note that the identification takes place if and only if the examples from D are
drawn according to the language (distribution) LA that A defines (recall Definition
17).

This definition ensures that output automaton will eventually converge to the
target automaton. However, it does not constrain the time and data size needed for
convergence. For that reason, the following two definitions are provided (also based
on [dlHO04]). The first one bounds the time, while the second bounds both the time
and data size.

Definition 19 (Weak Polynomial Identification in the Limit with Probability
One). A class of automata C is weak polynomially identifiable in the limit with
probability one, if there exists an identification algorithm Ψ and a polynomial PolyP
for which for any automaton A ∈ C and any infinite sequence of positive examples
D = {D1, D2, ..., Dn, ...} drawn according to the language LA that A defines:

• Ψ identifies A in the limit with probability one,
• Ψ works in time bounded by PolyP(||{D1, D2, ..., Dn}||), where n ∈ N is the

minimal number of positive examples from Definition 18 and ||{D1, D2, ..., Dn}||
is the sum of lengths of the examples Di, i = 1, ..., n.

Definition 20 (Strong Polynomial Identification in the Limit with Probability
One). A class of automata C is strong polynomially identifiable in the limit with
probability one, if there exists an identification algorithm Ψ and two polynomials
PolyP and PolyQ for which for any automaton A ∈ C, and any γ > 0, and any
infinite sequence of positive examples D = {D1, D2, ..., Dn, ...} drawn according
to the language LA that A defines:

• Ψ identifies A in the limit with probability one,
• Ψ works in time bounded by PolyP(||{D1, D2, ..., Dn}||, 1

γ), where n ∈ N is the
minimal number of positive examples from Definition 18 and ||{D1, D2, ..., Dn}||
is the sum of lengths of the examples Di, i = 1, ..., n,

• if n ≥ PolyQ(|A|, 1
γ), then p(LΨ({D1,D2,...,Dn}) = LA) ≥ 1− γ.

Variable γ represents the confidence parameter, i.e. it is a probability that data
sampling (acquisition of the learning data) has gone wrong. It is intuitively clear that
the smaller γ, the more data would be required for learning. The number |A| is the
size of the automaton A, i.e. the number of its states.

58 4 Complexity of Identifying Stochastic Deterministic Automata

For easier reading, we introduce several abbreviations. Identification in the limit
with probability one is abbreviated with ‘IDLimitProb1’. For weak and strong poly-
nomial IDLimitProb1, we will use ‘WeakPolyIDLimitProb1’ and ‘StrongPolyIDLim-
itProb1’ respectively. We emphasize that all three identification definitions relate to
the identification from positive examples only, i.e. from text.

In order to place the identification of one-clock stochastic deterministic hybrid
automata (1-SDHAs) in a broader landscape of learning stochastic automata from text,
we give Table 4.1. It shows the learnability of different stochastic automata defined in
the previous section, with regard to aforementioned identification definitions. It can
be seen that results already exist for SDFAs and PDRTAs. In this thesis, we answer
the open questions for PDRTAs and 1-SDHAs.

Table 4.1 A landscape of stochastic deterministic automata identifiability from text.

Automata
Identification definition SDFAs PDRTAs 1-SDHAs

IDLimitProb1 Yes Yes ?
WeakPolyIDLimitProb1 Yes Yes ?
StrongPolyIDLimitProb1 No ? ?

4.4 Strong Polynomial Criteria for Identification

In this section, we cite the negative StrongPolyIDLimitProb1 result for SDFAs (see
Table 4.1) and generalize it to PDRTAs and 1-SDHAs.

Strong polynomial identification in the limit with probability one given by Defi-
nition 20, requires a successful convergence, polynomial runtime in the size of the
input data, and moreover, identification from polynomial number of examples in
the size of the target automaton. We recall aforementioned major negative Strong-
PolyIDLimitProb1 result in the following theorem (due to de la Higuera [dlHO04]).

Theorem 9 ([dlHO04]). The class of SDFAs is not StrongPolyIDLimitProb1.

Proof (Sketch). Probabilistic languages A1, A2, ..., Am (distributions, automata)
are considered. Distinguishing with high probability that a string z belongs to one
language and not the other requires already a dataset of the size exponential in m.
The argument is that different distributions are all binomials. In order to distinguish
each binomial with probability at least 1 − γ (see Definition 20), an exponential
number of strings in m is needed. ut

Following Observation 4 and Observation 5, this negative result generalizes to the
classes of PDRTA and 1-SDHA.

Corollary 5. PDRTAs and 1-SDHAs are not StrongPolyIDLimitProb1.

Verwer argues without proof in [Ver10] that, in analogy to non-stochastic One-
clock Deterministic Timed Automata (1-DTAs) [VdWW08], a sufficient input data
(called a characteristic set) of polynomial size could also exist for learning PDRTAs.

4.5 Weak Polynomial Criteria for Identification 59

If this were the case, then PDRTAs would be StrongPolyIDLimitProb1. Nevertheless,
Theorem 9 and Corollary 5 reject this possibility. Of course, learning some specific
subclass of PDRTAs (or 1-SDHAs) under StrongPolyIDLimitProb1 criteria could
still be possible. Finding such a subclass has been left to future work, as the research
presented in this thesis is focused on the algorithm that learns 1-SDHAs under
WeakPolyIDLimitProb1 definition.

Due to negative results for StrongPolyIDLimitProb1, the following section focuses
on WeakPolyIDLimitProb1, i.e. on the results in ensuring identification convergence
and polynomial runtime of algorithms, which learn stochastic deterministic automata.

4.5 Weak Polynomial Criteria for Identification

This section presents known positive results concerning WeakPolyIDLimitProb1 and
IDLimitProb1 of SDFAs and PDRTAs, i.e. ‘Yes’ answers from Table 4.1 are here
addressed. It serves as basis for our own new results in identification of 1-SDHAs,
which are given in Chapter 6.

According to Definition 19, two preconditions are required for WeakPolyIDLimit-
Prob1: convergence of the learning algorithm to the target automaton (identifying
structure and probabilities), and its polynomial runtime in the size of the input data.

4.5.1 Identification of SDFAs

De la Higuera has addressed the question of WeakPolyIDLimitProb1 of SDFAs
[dlHO04]. He proves that SDFAs are WeakPolyIDLimitProb1, and also implicitly
that SDFAs are IDLimitProb1. The following theorem gives this result.

Theorem 10 ([dlHO04]). The class of SDFAs is WeakPolyIDLimitProb1.

Proof (Sketch). The proof uses the Chebyshev distance measure between two distri-
butions [APR02] (automata) A and A′:

d∞(A,A′) = maxz∈Σ∗ | p(z|A)− p(z|A′) | .

Assuming the examples are randomly drawn according to distribution A, A′

represents the empirical distribution built from a sample of the size n. Angluin
[Ang88a] gives a measure I(n) =

√
6a(log n)/n, a > 1, so that with probability

one it holds:
d∞(A,A′) ≤ I(n).

Using a simple enumerative algorithm, a distribution is identified for which this
inequality holds. As the size n of the sample grows, the empirical distribution
A′ comes closer to the target distribution A, which generated the learning data.
Eventually, the convergence takes place (i.e. in the limit with probability one). To
make the algorithm polynomial, the time is tracked that the algorithm is entitled to in
order to remain polynomial, using the current examples. The algorithm runs as far
as it can go within that time, and returns whatever solution it obtains. With the next
example it gets more time, and continues the previous computation. Basically the
order of the polynomial changes, but the algorithm remains polynomial. ut

60 4 Complexity of Identifying Stochastic Deterministic Automata

Corollary 6. Previous theorem implicitly states that SDFAs are IDLimitProb1. The
first part of the theorem proof is enough to prove this corollary.

Two famous algorithms for learning SDFAs are already described in Section
2.4, namely the ALERGIA [CO94], and the Minimal Divergence Inference (MDI)
algorithm [TDdlH00]. They identify SDFAs in the sense of WeakPolyIDLimitProb1
definition. The convergence of the ALERGIA algorithm has been formally proven
[CO99, HT00].

4.5.2 Identification of PDRTAs

Identification of stochastic deterministic timed automata (SDTAs) was researched by
Verwer [Ver10]. For a subclass called probabilistic deterministic real-time automata
(PDRTA, see Definition 15), i.e. timed automata with only one clock that counts the
time between consecutive events (relative timing), we recall the following theorem:

Theorem 11 ([Ver10]). The class of PDRTAs is WeakPolyIDLimitProb1.

Proof (Sketch). Verwer gives the algorithm Real-Time Identification from Positive
Data (RTI+) [VdWW10] that identifies PDRTAs. It is based on an informant identi-
fication counterpart algorithm RTI (both positive and negative examples exist) that
learns Deterministic Real-Time Automata (DRTAs)3. The RTI+ identifies both the
automaton structure (states and transitions), as well as two probability distributions:
probabilities of the events (symbols that trigger transitions), and time probabilities.
These distributions are assumed to be independent. In addition to merging, a splitting
step is also introduced. The decision whether to merge two states or split a single state
is based on the likelihood-ratio test that gives the p-value. High p-value indicates that
two states are similar and can be merged. Low p-value indicates that a state should
be split. If a split of a state is found that results in a p-value lower than 0.05, the
split with the lowest p-value is performed. If a merge is found with the p-value larger
than 0.05, the merge with the largest p-value is performed. Alternatively, other statis-
tical tests can be used, such as the Kolmogorov-Smirnov test and Fisher’s method
[Ver10]. Verwer shows that by increasing the amount of learning data, the p-value
resulting from any used test converges to zero for two different states. Therefore, in
the limit such states will never be merged (p-value greater than 0.05 is needed to
make a merge). Although some extra splits are possible, they do not influence the
correctness of the learned language, but only increase the model size. Statistical tests
are computed in polynomial time for every state. In addition, the algorithm makes
maximum 2n2 + n iterations, where n is the size of the input sample. Thus, the
runtime of the RTI+ algorithm is polynomial in the size of the input data. ut

Corollary 7. Previous theorem implicitly proves that PDRTAs are IDLimitProb1.

Verwer argues that RTI+ could be adjusted to identify SDFAs [Ver10], if statistical
tests would be modified (presumably to exclude statistical tests for time probabilities
from consideration).

3 DRTAs are basically 1-DTAs where the clock resets at every transition.

4.6 Summary 61

4.5.3 Identification of 1-SDHAs

Aforementioned positive results for weak polynomial identifiability of SDFAs and
PDRTAs in the limit with probability one from text look promising for the prospects
of 1-SDHA identification. And indeed, we have developed a 1-SDHA learning
algorithm and proven its WeakPolyIDLimitProb1 properties. Due to their importance,
but also logical belonging to the Algorithms part of this thesis (Part III), they are
positioned in Chapter 6 that presents our major contributions.

4.6 Summary

In this chapter, we have analyzed the identifiability of stochastic deterministic au-
tomata from positive examples only. Three definitions are given for identification
in the limit with probability one: convergence to the target automaton (IDLimit-
Prob1), convergence in polynomial time (WeakPolyIDLimitProb1), and convergence
in polynomial time and from data of polynomial size (StrongPolyIDLimitProb1).
Well-known results are presented for stochastic deterministic finite automata (SDFAs,
Theorem 9, Theorem 10, and Corollary 6) and probabilistic deterministic real-time
automata (PDRTAs, Theorem 11 and Corollary 7).

We generalized the negative result of StrongPolyIDLimitProb1 for SDFAs, to the
classes of PDRTAs and 1-SDHA (Corollary 5). Unfortunately, there is no polynomial
that bounds the data size needed for identification of any of these automata classes.
However, positive WeakPolyIDLimitProb1 results for SDFAs and PDRTAs provide
motivation to investigate the learnability of 1-SDHAs under the same criteria. These
results are presented in the Part III of this thesis.

Chapter 5
Polynomial Approximations of
Stochastic Automata

This chapter presents the foundations and major results in finding polynomial ap-
proximations of stochastic automata. Such approximations represent an alternative to
learning the exact automata in the strong sense (i.e. in polynomial time from data of
polynomial size). As given in the previous chapter (Theorem 9 and Corollary 5), the
considered classes of stochastic automata (SDFAs, PDRTAs and 1-SDHAs) cannot
be identified from a reasonable amount of positive data (i.e. from data whose size is
polynomial in the size of the target automaton).

Significant positive results exist in learning approximately correct SDFAs from
data of polynomial size. We believe that these results could be extended to the classes
of PDRTAs and 1-SDHAs.

5.1 Introduction

In the learning framework of identification in the limit with probability one, the
goal was to learn the exact empirical probability distribution (automaton) from a
sequence of positive examples drawn according to that distribution. In the worst
case, the identification takes place only in the limit, i.e. if an available sequence of
examples is infinite. This learning approach could however still result in models
that are good enough for certain real-world applications when a finite sequence of
examples is given. Nevertheless, identification in the limit with probability one of
stochastic automata remains a hard task in general.

The field of computational learning theory has offered an alternative, which,
to some extent, eases the learning task. In contrast to the exact identification, the
framework of Probably Approximately Correct learning (PAC-learning) proposed by
Valiant [Val84] allows for a small divergence between the learned empirical and the
target automata, limited by the threshold error ε. In addition, the PAC-learning criteria
also restrict the probability of this error, thus permitting the divergence to be larger
than ε, but with very small probability γ (i.e. in few cases only). The probability γ

63

64 5 Polynomial Approximations of Stochastic Automata

and the error ε represent confidence and approximation parameters, respectively. A
good overview of PAC-learning framework can be found in [KV94].

This chapter is organized as follows. First, several distance measures between
stochastic automata that are relevant for PAC-learning are presented in Section 5.2.
Then, the polynomial PAC-learning framework is formally defined in Section 5.3.
Major positive result that SDFAs are polynomially PAC-learnable is cited and ex-
plained in this section (Theorem 12). Section 5.4 briefly presents three algorithms for
learning SDFAs in the PAC setting. Finally, we conclude the chapter with prospects
of polynomial PAC-learning for 1-SDHAs in Section 5.5.

5.2 Distance Measures Between Distributions

To be able to shortly present several significant positive results in PAC-learning,
which could serve as a good basis for future work on PAC-learning of stochastic
deterministic hybrid automata, we here show several important distance measures of
divergence between two distributions LA and LA′ (i.e. between stochastic languages
defined by automata A and A′). These measures could be used by PAC-learning
algorithms in order to compare such divergence with the error parameter ε.

As argued in [dlH10], being able to measure the distance between distributions is
important for several reasons, including:

Model selection: When several stochastic models are compared, their deviation
from the target model needs to be measured.

State merging criterion in learning algorithms: It can be measured how does
the divergence between models change if the states of one model are merged.
The MDI algorithm (see Subsection 2.4.3) [TDdlH00] for learning stochastic
deterministic finite automata uses such merging criterion.

Model classification: Stochastic models can be classified based on their similari-
ties. These similarities can be calculated using nearest neighbor method based on
a distribution distance measure.

In the following, we give an overview of several important distance measures
between the stochastic automata (based on [dlH10]).

The Manhattan distance (typically denoted by d1 or L1) between distributions LA
and LA′ is defined as the sum of the absolute differences between the probabilities
that the strings of symbols z ∈ Σ∗ are drawn according to LA and LA′ , respectively.
It is calculated as follows:

d1(LA, LA′) =
∑
z∈Σ∗

| p(z|LA)− p(z|LA′) | . (5.1)

The Euclidean distance (typically denoted by d2 or L2) between distributions
LA and LA′ is defined as the square root of the sum of squared absolute differences
between the probabilities that the strings of symbols z ∈ Σ∗ are drawn according to
LA and LA′ , respectively:

d2(LA, LA′) =

√∑
z∈Σ∗

| p(z|LA)− p(z|LA′) |2. (5.2)

5.3 Polynomial PAC-Learning 65

Both Manhattan and Euclidean distances are special cases of dk distance given as:

dk(LA, LA′) = k

√∑
z∈Σ∗

| p(z|LA)− p(z|LA′) |k. (5.3)

Very important distance measure for PAC-learning is the Chebyshev distance,
which calculates the greatest difference between probabilities that the strings z ∈ Σ∗

are drawn according to LA and LA′ :

d∞(LA, LA′) = max
z∈Σ∗

| p(z|LA)− p(z|LA′) | . (5.4)

It is obtained as the limit of the expression (5.3), when k → ∞. This measure
expresses the absolute difference between corresponding probabilities, i.e. it works
with most important (highest) values, while differences between small values are
neglected.

The counterpart of the Chebyshev distance is the logarithmic distance that ex-
presses only relative differences between distributions. It does not matter if these are
the differences between large or small values of probabilities. Logarithmic distance
is given as:

dlog(LA, LA′) = max
z∈Σ∗

| log p(z|LA)− log p(z|LA′) | . (5.5)

Another measure, commonly used by several algorithms that learn stochastic
automata, is the Kullback-Leibler (K-L) divergence (also known as information
divergence and relative entropy). In the sense of expressing the absolute or relative
difference, it is somewhere between the Chebyshev and logarithmic distances. It is
defined as follows:

dKL(LA, LA′) =
∑
z∈Σ∗

p(z|LA) log
p(z|LA)

p(z|LA′)
. (5.6)

Table 5.1 gives the classification of described distance measures with respect to
the level of the importance of probabilities they consider [dlH10].

Table 5.1 Classification of distance measures. Measures on the left side express relative differences
between probabilities without considering their absolute values. Measures on the right side express
absolute differences.

relative difference ←→ absolute difference

dlog, dKL, d1, d2, ..., dk, d∞

5.3 Polynomial PAC-Learning

In this section, we recall the definition of polynomial PAC-learning, cite and explain
the major result of de la Higuera, that SDFAs can be learned under this definition.
This result opens prospects for polynomial PAC-learning of 1-SDHAs.

66 5 Polynomial Approximations of Stochastic Automata

In Section 4.4, we have recalled the result of [dlHO04] that even the simplest
stochastic deterministic finite automata (SDFAs) are not strong polynomially iden-
tifiable in the limit with probability one. This identification criterion is two folded:
the algorithm needs to learn in time polynomial in the size of the input data, and
to use data of the size polynomial in the size of the target automaton. The former
has been satisfied by several SDFA learning algorithms (ALERGIA [CO94], MDI
[TDdlH00]), but the latter criterion cannot be satisfied [dlHO04]. This negative result
naturally generalizes to the more complex stochastic deterministic automata, such
as PDRTAs and 1-SDHAs. PAC-learning framework opens space for making the
polynomial approximation of the target automaton, i.e. to learn from polynomial data
size while accepting certain small error.

In the following, we give definitions for an ε-good hypothesis (i.e. approximation
of the target automaton) and for polynomial PAC-learning (due to [dlHO04] and
[RST95]).

Definition 21 (ε-good Hypothesis). Let automata A and A′ be given that belong to
some class of automata C. Automaton A′ is called an ε-good hypothesis with respect
to automaton A if d(LA, LA′) < ε for ε ≥ 0, where d(LA, LA′) is some distance
measure between distributions LA and LA′ .

Definition 22 (Polynomial PAC-learning). A class of automata C is polynomially
PAC-learnable using distance d, if there exists a learning algorithm Ψ and a polyno-
mial PolyQ that given any automaton A ∈ C and any sequence of positive examples
D = {D1, D2, ..., Dn} of size PolyQ(|A|) drawn according to the language LA that
A defines, it holds:

• with probability at least 1− γ, Ψ(D1, D2, ..., Dn) returns an ε-good hypothesis
with respect to automaton A, i.e.

p(d(LA, LΨ(D1,D2,...,Dn)) < ε) ≥ 1− γ,

• Ψ(D1, D2, ..., Dn) works in time polynomial in 1
ε , 1

γ , |Σ|, |A|, and LS =

maxi(|Di|), where |Di| is the length of the example Di ∈ D.

In order to present the well-known result for polynomial PAC-learning of SDFAs,
the following lemma is given due to [Ang88a].

Lemma 2 ([Ang88a]). Let LA be any distribution on Σ∗, let a > 0 and let I(n) =√
6a(logn)

n . Then:

• with probability at least 1− n−a,
• with probability one and for all but a finite number of values of n:

d∞(LA, LA′) ≤ I(n), (5.7)

where LA′ is the empirical distribution built from an input data of size n.

Theorem 12 ([dlHO04]). The class of SDFAs is polynomially PAC-learnable using
Chebyshev distance measure d∞.

Proof. (Sketch, [dlH10], [dlHO04]) Even the simplest algorithm Ψ that only builds
a prefix tree acceptor whose size is polynomially linked with the size of the learning
data D = {D1, D2, ..., Dn} satisfies the criteria from Definition 22, when the

5.3 Polynomial PAC-Learning 67

Chebyshev distance d∞(LA, LΨ(D1,D2,...,Dn)) is used. The maximum value of this
distance is one by definition and moreover it is bounded by the value I(n) from the
expression (5.7), which converges very fast as n grows. ut

Observation 6. The result from Theorem 12 no longer holds when distance measures
d1(LA, LΨ(D1,D2,...,Dn)) and d2(LA, LΨ(D1,D2,...,Dn)) are used. The reason is that
these measures are unbounded and can in general case grow with n.

In order to illustrate convergence of the bound I(n) from the expression (5.7), the
following example is given.

Example 2. Table 5.2 shows the influence of the number n of compared examples of
two distributions LA and LA′ on distribution distance measures d1(LA, LA′) and
d2(LA, LA′), and on the bound I(n) given in Lemma 2 (parameter a = 2). Both
sets of examples are generated from the standard uniform distribution on the open
interval (0, 1). Due to their cumulative property, both distance measures grow with n.
On the other hand, the value I(n) that bounds the distance d∞(LA, LA′) decreases
with n.

Table 5.2 The influence of the number of examples on several distance measures.

n 10 102 103 104 105 106

d1(LA, LA′) 5.1682 31.4561 321.7636 3.2813 · 103 3.3355 · 104 3.3338 · 105

d2(LA, LA′) 1.8779 3.9528 12.5206 40.2572 129.0636 408.4201
I(n) 1.6623 0.7434 0.2879 0.1051 0.0372 0.0129

The influence of the number of examples n on the bound I(n) is also shown graph-
ically in Figure 5.1. In addition, the figure shows the probability that the distance
d∞(LA, LA′) is bounded by I(n). It can be seen that in this example the probability
of the expression (5.7) converges to one very fast.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

Number of examples n

V
a
lu
e
o
f
th
e
b
o
u
n
d
I
(n

)
a
n
d
it
s
p
ro
b
a
b
il
it
y

Bound I(n)
Probability 1− n−a

Fig. 5.1 Influence of n on bound I(n) and the probability 1− n−a.

68 5 Polynomial Approximations of Stochastic Automata

When learning automata in the PAC setting, it is worth to note the significant
work, which has been done in modeling noise. This work has been motivated by the
fact that every information source is in practice susceptible to noise. Noise, which
can occur both in the learning examples themselves, as well as in their class labels,
can have big effect on learnability. Although in learning stochastic deterministic
automata from text only positive examples exist, still (like in the presence of both
positive and negative examples) some external instance (oracle, domain expert) needs
to provide the information if the examples are positive. In other words, learning from
text can also be influenced by the class noise. Several specific noise models have been
developed over years such as constant partition classification noise [Dec97], random
classification noise [AL88], and malicious classification noise [Slo95]. These noise
models are uniformly studied under the statistical query model [Kea98], but as
argued in [JHZ12], this model is hardly extendable to new noise models and it does
not permit the study on noise properties, which would enable PAC-learning from
noisy data. This problem was addressed in the same paper that introduced a novel
framework for a wide class of noise models, under which PAC-learning can be
guaranteed. Such an approach could be easily extended to guarantee learning in the
limit from both informant and text.

5.4 Algorithms for Polynomial PAC-Learning of SDFAs

Here we briefly present three existing algorithms for polynomial PAC-learning of
SDFAs.

Early results on polynomial PAC-learning of stochastic deterministic finite au-
tomata (SDFAs) were negative. In [KMR+94] a relation has been established be-
tween certain parity functions and distributions generated by 2-letter SDFAs. Under
generally accepted assumption that such parity functions are not polynomially PAC-
learnable, it has been concluded that this result also holds for the whole class of
SDFAs.

However, several algorithms have been developed that use rigorous constraints in
order to make the learning of SDFAs in the PAC learning framework possible. They
are presented in the following.

Learn-Acyclic-PFA: The pioneer algorithm was given by Ron et al. [RST95] and
called Learn-Acyclic-PFA. It polynomially PAC-learns acyclic distinguishable
SDFAs. The definition of distinguishability is given as follows (due to [RST95]):

Definition 23 (Distinguishability). For 0 ≤ µ ≤ 1 two states s1, s2 ∈ S of the
automaton A are called µ − distinguishable if there exists a string z ∈ Σ∗ for
which |p(s1, z)− p(s2, z)| ≥ µ, where p(s1, z) and p(s2, z) are probabilities that
the automaton will generate a string that starts in s1 and s2, respectively. Automa-
ton A is µ− distinguishable if its every pair of states is µ− distinguishable.

µ− distinguishable SDFAs are easier to learn because it is guaranteed that for
any 2 states a string exists whose difference in probability when using these states
as its initial states is above the given threshold µ [dlH05]. The distance measure
used by Learn-Acyclic-PFA for calculating the error between the target and the
hypothesis automata is K-L divergence, given by expression (5.6). Although
this algorithm works with distributions over Σ∗, it is basically restricted to the

5.5 Prospects of Polynomial PAC-Learning for Hybrid Automata 69

automata of bounded size (i.e. Σk for some fixed k), as it learns only acyclic
SDFAs. It has been tested in two applications: the cursive handwriting recognition
system and learning pronunciation models for spoken words. Models have shown
good performance, especially in comparison to hidden Markov models and their
large learning times [RST95].

C-T Algorithm: The first algorithm that could polynomially PAC-learn the whole
class of SDFAs (both acyclic and cyclic) has been proposed by Clark and Thollard
in [CT04]. This algorithm is sometimes denoted as C −T algorithm [CG08]. The
used distance measure between the target and hypothesis automata is again the
K-L divergence. Therefore, it is said that it KL-PAC learns SDFAs. In contrast to
Learn-Acyclic-PFA, the C − T algorithm can learn all distributions (languages)
over Σ∗. In addition, yet another parameter is introduced, namely an upper bound
on the expected length of generated strings. The parameters that the C − T algo-
rithm requires as input are the alphabet size |Σ|, confidence γ, approximation ε,
distinguishability µ, and the bound on the longest string LS that can be generated
from any automaton state. Moreover, for successful polynomial PAC-learning,
the algorithm assumes that the size of the target automaton is at most |A| states
and that A is µ − distinguishable. Then the algorithm computes the number
n = poly(|Σ|, |A|, ln(1

γ), 1
ε ,

1
µ ,LS) and requests the input data D of the size n.

Only then, it applies fairly standard state merging technique and processes the
data D again using the parameters |A|, ε, µ, and LS while merging. Eventually it
polynomially KL-PAC learns the target automaton.

The algorithm of Castro and Gavaldà: As argued in [CG08], although the C −
T algorithm is indeed a polynomial PAC-learning algorithm, it has several prac-
tical drawbacks. First, during the computation it uses a number of parameters
including the distinguishability parameter µ. Its value is unknown and has to be
guessed, using case-based trial-and-error procedure. This is in most practical
cases a hard task. Second issue is that although the C−T algorithm uses the input
data of the polynomial size n = poly(|Σ|, |A|, ln(1

γ), 1
ε ,

1
µ ,LS), the order of the

polynomial easily gets overwhelming (in [CG08] the order of 1024 is obtained for
fairly low values of parameters: |Σ| = 2, |A| = LS = 6, and ε = γ = µ = 0.1).
This happens because it always computes and requires the worst case data size. In
order to overcome these issues, Castro and Gavaldà proposed the improved C−T
algorithm [CG08]. It does not need any information about the distinguishability
of the target automaton as the input. Moreover, the input basically consists of only
parameters |Σ| and γ. It takes the available data D and tries to extract as much
information as possible from them, which is from the practical point of view much
more realistic setting. During computation, it uses no parameters whatsoever,
which is its biggest advantage. The approach has been demonstrated in learning
few small targets (8 to 10 states), as well as using the real-world dataset coming
from an ecommerce site (travel agency, nontrivial structures with 30-50 states).

5.5 Prospects of Polynomial PAC-Learning for Hybrid Automata

Looking at Theorem 12 and several mentioned polynomial PAC-learning algorithms
for SDFA, the question naturally arises if one-clock stochastic deterministic hybrid
automata could be learned under the PAC-learning setting. Based on the fact that

70 5 Polynomial Approximations of Stochastic Automata

just like SDFAs, probabilistic deterministic real-time automata can also be identified
in the limit with probability one, Verwer argues in [Ver10] that they could probably
also be polynomially PAC-learnable. We believe that this could also be the case for
1-SDHAs. Our algorithm HyBUTLA (given in Chapter 6), which learns 1-SDHAs in
the limit with probability one from text, needs to be adjusted to measure the error in
merging the states. In addition, a polynomial would have to be found that limits the
amount of the learning examples that is necessary to bound this error. However, this
work remains to be done in future.

Part III

Algorithms

Chapter 6
Automated Learning of
1-SDHAs from Data

In this chapter, we present our major contribution: the approach for automated
learning of 1-SDHAs from data. The main results given here are as follows:

• we describe how a set of symbols, which trigger transitions between automaton
states, and those transitions’ timing constraints, are generated from logged data,

• we give the HyBUTLA algorithm that learns 1-SDHA models for hybrid produc-
tion systems,

• we prove that the HyBUTLA algorithm identifies the class of 1-SDHAs in the
limit with probability one from positive learning examples only,

• we show that our algorithm runs in time polynomial in the size of the input data,
• the expert knowledge needed for a successful application of the HyBUTLA

algorithm is identified.

The key property that makes the class of 1-SDHAs identifiable in the limit with
probability one by the HyBUTLA algorithm from positive examples only, is that the
examples come from a well-defined probability distribution. Statistical regularity in
such data is able to compensate for the lack of negative examples [Ang88a].

The structure of this chapter is as follows. Section 6.1 describes the means of data
acquisition from distributed production systems. In addition, the existing technology
for filtering noisy data in industrial facilities is explained. The data we used for
learning in Section 8.2 of this thesis have been filtered using this technology. We
illustrate how we generate a set of symbols and a set of transition timing constraints
of 1-SDHA from logged measurements in Section 6.2. Section 6.3 finally presents
our HyBUTLA algorithm in several steps. The means of detecting abrupt changes in
system continuous dynamics is given in Section 6.4. Special attention is devoted to
the operation of splitting an automaton state in Section 6.5. This operation is based
on the abrupt change detection and makes it easier and faster to approximate the
continuous dynamics of a modeled system. In Section 6.6, we prove the convergence
and polynomial runtime properties of the HyBUTLA algorithm (Theorem 14). The
conclusion is given in Section 6.7, together with the required expert knowledge for
our learning approach. This chapter is based on materials that we partially published
in [NMVJ11, VKBNM11a, VKBNM11b, NSV+12, FFP+12, Vod12, Vod13].

73

74 6 Automated Learning of 1-SDHAs from Data

6.1 Data Acquisition and Preprocessing

Before any learning from data could take place, data acquisition and preprocessing
need to be performed in a real-world system. In the following two subsections, we
give a very brief introduction to several basic techniques for acquiring and preparing
the data for modeling tasks. Readers interested in more details about these techniques
can follow the corresponding given references.

6.1.1 Generic Data Acquisition for Distributed Production Systems

The main prerequisite of our approach for automated learning of behavior models is
having the logs of relevant discrete and continuous signals of a system. Acquisition of
such process data is in complex (distributed) hybrid production systems a challenging
task. As we emphasized in [FFP+12], this is due to the following issues:

Heterogeneous automation systems: A large variability of communication pro-
tocols, interfaces, machinery, and control devices from different vendors can be
found in a typical production system. Obtaining unified data from several system
modules that comprise such different elements is not easy.

Timing requirements and synchronized measurements: Different modules of
an automation system (e.g. sensors) often do not use the same time base. Therefore,
process data originating at these modules need to be synchronized in time with an
acceptable accuracy.

Data integration: Existing solutions for data acquisition often use proprietary
interfaces. They prevent the data to be accessed in an easy way.

These obstacles are illustrated in Figure 6.1. It shows an example of a shop
floor with two production cells, each containing two production modules. Different
industrial network protocols, such as Modbus/TCP, PROFINET or EtherCAT, can be
found in these systems.

PLC PLC

Fig. 6.1 An example of a shop floor communication (reproduced from [PKN+12] with added
Programmable Logic Controllers (PLCs)).

Solutions to aforementioned issues are given in [PN12] and further extended with
application examples in [PKN+12]. Since these solutions were applied in acquisition

6.1 Data Acquisition and Preprocessing 75

of data used for learning models in one part this work (Section 8.2), we summarize
them here without entering unnecessary details. More information can be found in
the corresponding papers.

The architecture of generic synchronized data acquisition approach is given in
Figure 6.2. The main idea is to place distributed probes, called dataloggers, in all
relevant segments of industrial networks. They log communication between drives,
actuators, sensors, and Programmable Logic Controllers (PLCs) without influencing
the normal network traffic. As they can be easily adapted to different network pro-
tocols such as PROFIBUS [PM08] or EtherCAT [Eth08], they are suitable for data
acquisition in heterogeneous automation systems. The issue of time synchroniza-
tion is solved using the precision time protocol defined in the IEEE 1588 standard
[IEC04]. Finally, data integration is enabled through the OPC Unified Architecture
(OPC-UA) [MLD09]. OPC-UA server receives the data from dataloggers via UDP/IP
interface, integrates them, and makes them accessible using an uniform interface and
standardized protocols such as SOAP/http (for Windows clients or smart phone plat-
forms) or OPC-UA binary protocol (for Supervisory Control And Data Acquisition
(SCADA) industrial control systems [Boy08]).

(Industrial)

Ethernet

UDP/IP

OPC UA Server

UDP/IP

IEEE 1588
Datalogger Datalogger

Internet

iOS

OPC UA Client

Android

OPC UA Client

Windows

OPC UA Client

SOAP/http

SOAP/http

SOAP/http

SOAP/http

Variable

Names

Variable

Names

(Industrial)

Ethernet

PLC
IO

Device

IO

Device
PLC

IO

Device

IO

Device

Fig. 6.2 The architecture of generic synchronized data acquisition approach (reproduced from
[PN12]).

76 6 Automated Learning of 1-SDHAs from Data

6.1.2 Dealing with Measurement Noise in Industry

Our learning algorithm learns models using data that are logged during the runtime
of a modeled system. As mentioned before, these logs include both control signals
and measurements of continuous process (physical) variables. In production facilities,
such measurements are always prone to corruption due to several errors. Sources
of measurement errors could be, for example, poor cabling practices, uncalibrated
instruments, environmental changes, or induced measurement noise, which occurs
when a measurement is transmitted from one point to another point in a system
[HC01a]. Clever handling of measuring devices could prevent such errors to a
large extent, but typically it is not possible to completely remove signal noise.
Therefore, advanced filtering and other signal processing technologies are applied
before measurements are logged in a database. Filtering is a procedure for decreasing
the measurement noise (called denoising), i.e. filters ideally enable propagation of
only desired frequency ranges of a signal.

Before we explain where the filtering takes place in an industrial facility, it is
important to note the following. Physical signals (process variables such as pressures,
temperatures etc.), are in the industry typically measured, converted to an electric
current signal and scaled to the range of 4-20 mA. Conversion elements used to this
aim are called transducers. Transducers that incorporate processing of the measured
signal are typically called transmitters [HC01a]. After conversion to the electrical
signal, a measurement is transmitted through the industrial network back to control
system, where it is used for controlling purposes and logged in a database. Before
logging, it is converted back to its original physical unit. An example of a program
for converting and scaling a physical variable in an industrial context is the Siemens
function FC41 [Man06].

Based on the size and complexity of an industrial facility, filters for denoising can
be implemented in its different parts. In the case of smaller plants that use simpler
control systems, sufficient filtering typically takes place already in transmitters. They
comprise several elements for measuring, converting, scaling, and denoising physical
variables. An example of transmitters for pressure, differential pressure, flanged
level, and absolute pressure are Siemens SITRANS P Series DSIII Transmitters
[Man10]. Complex and large plants are controlled by distributed control systems
such as Siemens TELEPERM XP, which incorporate more advanced denoising filters
in the control system itself [Man94]. In such plants, denoising is often done both in
transmitters and in control system. Logged data that we use for learning models are
typically already denoised, using one of these approaches.

6.2 Generating Alphabet and Timing Constraints from
Measurements

In this section, we illustrate how we generated a set of symbols, which trigger
transitions between the automaton states, and those transitions’ timing constraints
(an alphabet Σ and a set ∆ according to Definition 13) from logged measurements
of a running system. These measurements come in a form of a sequence of learning
examples that is defined in Section 3.4.

According to Definition 9, each learning example Di is a matrix of values:

6.2 Generating Alphabet and Timing Constraints from Measurements 77

Di =

ti1 qi1,1 · · · qid,1 ui1,1 · · · uic,1 yi1,1 · · · yio,1
ti2 qi1,2 · · · qid,2 ui1,2 · · · uic,2 yi1,2 · · · yio,2
...

...
...

...
...

...
...

til qi1,l · · · qid,l ui1,l · · · uic,l yi1,l · · · yio,l

 ,
where j = 1, ..., l, tij ∈ N are the time stamps, k = 1, ..., d and j = 1, ..., l,
qik,j ∈ {0, 1} are the values of discrete binary signals, p = 1, ..., c and j = 1, ..., l,
uip,j ∈ R are the values of continuous input signals, and r = 1, ..., o and j = 1, ..., l,
yir,j ∈ R are the values of continuous output signals. In the following example, we
show how an alphabet Σ and a set of transition timing constraints ∆ are generated
from such matrices.

Example 3. Let a learning example Di be recorded in a hybrid system with three
discrete control signals and three continuous process variables. Let it be given as the
following matrix with 10 rows (i.e. logged samples from a system):

Di =

1 0 0 0 1.3 9.6 14.5
2 0 0 0 1.5 9.5 14.4
3 0 0 1 1.8 9.3 14.1
4 0 0 1 2.1 8.9 13.6
5 0 0 1 2.2 8.5 13.3
6 0 1 1 2.3 8.4 13.2
7 0 1 1 2.4 8.2 13.1
8 0 1 1 2.6 5.1 12.9
9 0 0 1 2.9 7.9 12.7
10 0 0 1 3.1 7.8 12.6

.

Initially, symbols of an alphabet Σ are defined as changes in discrete signals only.
Discrete parts of samples in which these changes take place are marked in the matrix
above. They represent the symbols of an alphabet. The timing of each such sample
relative to the timing of the previous such sample defines a corresponding sym-
bol’s timing constraint. Therefore, the given learning example defines the following
symbols and timing constraints:

a = 000, δ1 = [1, 1]

b = 001, δ2 = [3− 1, 3− 1] = [2, 2]

c = 011, δ3 = [6− 3, 6− 3] = [3, 3]

b = 001, δ4 = [9− 6, 9− 6] = [3, 3],

where a, b, c ∈ Σ and δ1, δ2, δ3, δ4 ∈ ∆. Of course, the first symbol of the alphabet
is always defined by the discrete part of the example’s first sample. Consequently,
this symbol’s timing constraint is always δ1 = [1, 1].

A set of symbols Σ and a set of transition timing constraints ∆, generated as
explained in this example, represent an input to our HyBUTLA learning algorithm.
We present it in the following section.

78 6 Automated Learning of 1-SDHAs from Data

6.3 The HyBUTLA Learning Algorithm

In this section, we present our Hybrid Bottom-Up Timing Learning Algorithm (Hy-
BUTLA) that learns behavior models for components of a hybrid system in the
formalism of one-clock stochastic deterministic hybrid automata, which use the
relative timing (i.e. only the time between consecutive events is modeled). This
algorithm identifies the correct automaton structure (states and transitions), transition
timing constraints, transition and ending state probabilities, as well as functions that
approximate the continuous dynamics of a system. Its main characteristics are as
follows:

Modeling continuous behavior: By learning functions that approximate the con-
tinuous dynamics, the HyBUTLA algorithm models the continuous behavior of
a system. Each automaton state, created based on a change in discrete control
system, is associated with a certain portion of logs of continuous input and output
signals (process variables). These logs, together with their timing information,
are used as input for machine learning methods. In that way the functions that
approximate the continuous dynamics are learned. Depending on the application,
a number of such methods can be used with the HyBUTLA algorithm, ranging
from linear regression for piecewise linear systems, to neural networks for highly
nonlinear systems.

Bottom-up merging order: The HyBUTLA algorithm is, together with its related
algorithm BUTLA for learning timed automata [MNV+11], the first algorithm
that uses the bottom-up merging order. This improves the algorithm runtime
[NSV+12] as the recursive compatibility checks of large subtrees are avoided.

Novel learning of time: For each symbol of the given alphabet (corresponding
to a discrete change in a system1), a Probability Density Function (PDF) of its
timing is computed over all available learning examples. By finding minima in
that PDF, it is established if it represents the sum of several Gaussian distributions.
When this is the case, those changes in the system are treated separately despite
the same symbol they have. This has a huge impact on the learning process,
because transitions that are triggered by the same symbol cannot be merged
due to different Gaussian distributions whom their timings belong to. The same
procedure is applied in the BUTLA algorithm [MNV+11] (please recall Figure
2.15 in Subsection 2.4.3).

Besides these main characteristics, let us emphasize once more that the HyBUTLA
algorithm is an offline algorithm that learns 1-SDHAs in the limit with probability
one from text (i.e. from positive learning examples only).

The HyBUTLA algorithm identifies 1-SDHAs using the approach illustrated in
Figure 6.3. The pseudocode of the algorithm is given in Figure 6.4. It uses the general
state merging approach to learning (recall Figure 2.13 in Subsection 2.4.1). The steps
of the learning approach, together with corresponding lines of the pseudocode, are
described in the following.

Step 0: Sensor readings of all relevant discrete signals and process variables are
logged in a database over multiple production cycles of a hybrid system. These
readings include the timing information. In general, the more logged cycles, the

1 In general, symbols can be assigned to other types of changes in a system, i.e. changes in continuous
signals or valuations of clocks (timers).

6.3 The HyBUTLA Learning Algorithm 79

MERGED TREE

PREFIX TREE

ACCEPTOR

Step 0:

System

logs

Step 1a:

Prefix

detection

LOGGED

DATA

Step 2a:

State

merging

SYSTEM

Step 1b:

Learning

functions

PREFIX TREE

ACCEPTOR

Step 2b:

Learning

functions

MERGED TREE

Step 3a:

State

splitting

MERGED AND

SPLIT TREE

LEARNED

1-SDHA MODEL

Step 3b:

Learning

functions

Fig. 6.3 The approach for learning 1-SDHAs with the HyBUTLA algorithm.

Given:
(1) Symbols Σ with their timings ∆ based on changes in discrete signals q ∈ Q
(2) Sequence of positive examples D
Result: 1-SDHA A
(0) ∀a ∈ Σ find sum of PDFs: PDF (a) :=

∑
τ=(∗,a,∗,δ)∈T δ, where ∗ is an arbitrary

element. By finding minima in PDF (a), segment it in clusters di(a), i ∈ N.
(1) Build prefix tree A = (S, s0,Σ, T,∆, P, x,Θ) based on D.

A is a 1-SDHA according to Definition 14.
(2) ∀s ∈ S learn θs ∈ Θ using the time t, inputs u ∈ U , and outputs y ∈ Y
(3) for all s, s′ ∈ S in a bottom-up order
(4) if compatible(s, s′) then
(5) A = merge(s, s′)
(6) determinize(A)
(7) end if
(8) end for
(9) A = split(A)
(10) return A

Fig. 6.4 The HyBUTLA algorithm.

better. The logs of production cycles represent a sequence of learning examples
D, which is given to the HyBUTLA algorithm as an input. Since we are interested
in learning normal behavior, only logs taken under normal operating conditions
of a system are used. Therefore, a sequence D is a sequence of positive learning
examples. Controlled jumps (changes in discrete signals Q) in all examples
Di ∈ D are used to define a finite set of symbols Σ, as explained in Section
6.2. The timing of the occurrence of each symbol a ∈ Σ relative to the timing
of the occurrence of its preceding symbol is used for defining its timing interval
(constraint) δ ∈ ∆. The sets Σ and ∆ also represent inputs to the HyBUTLA
algorithm. Timing constraints δ, expressed as Probability Density Functions
(PDFs), are combined for every symbol a ∈ Σ (see Figure 2.15 in Subsection
2.4.3). By finding minima of their combined PDFs, the time clusters di(a), i ∈ N
are formed (line 0 in Figure 6.4). Later on, during the merging process, these
clusters will serve to check if timings of two transitions are similar enough, i.e. if
they belong the same time cluster.

80 6 Automated Learning of 1-SDHAs from Data

Step 1: After the creation of time clusters, the examples are ordered lexicographi-
cally, i.e. sorted by length and the alphabet2. If the timings of common symbols
from different learning examples belong to the same time cluster, they are com-
bined (Step 1a in Figure 6.3, line 1 of the HyBUTLA algorithm) in a tree-like
structure called the Prefix Tree Acceptor (PTA). Every example represents a path
in a PTA (i.e. a sequence of states and transitions), which starts at the initial state.
Different examples can share parts of the paths. For a better understanding of
this process, we have illustrated it in Figure 6.5. An exemplary system has three
discrete binary signals, namely q1, q2, and q3. Controlled jumps (changes) of
these signals are shown for three learning examples: D1, D2, and D3. It can be
seen that every specific controlled jump corresponds to a specific symbol of the
alphabet Σ in the following way:

• “OPEN” event of the signal q1 triggers the symbol a,
• “OPEN” event of q2 triggers b,
• “OPEN” event of q3 triggers f ,
• “CLOSE” event of q1 triggers c,
• “CLOSE” event of q2 triggers e.

The figure also shows the PTA constructed from these examples. When symbols
a, b, and c in all three examples D1, D2, and D3 have the timing intervals that
belong to the same time cluster, they are combined in one branch of the PTA. Its
timing intervals are extended to include the minimum and the maximum timing
of their corresponding transitions. The symbol f is specific for example D1 only,
and therefore the transition it triggers is not combined with any other in the PTA.
In contrast, symbol e exists in both D2 and D3, but since its timings in these two
examples belong to different time clusters, they are not combined in one branch.
After a structure of the PTA has been created, continuous data corresponding to
logs of continuous input signals u ∈ U , continuous output signals y ∈ Y , and the
time t are used for learning functions θs ∈ Θ,∀s ∈ S (Step 1b in Figure 6.3, line
2 of the HyBUTLA algorithm). For each state s, only portions of continuous data
that were logged when the system was in that particular state are used for learning
its θs function. Various learning methods can be used, ranging from relatively
simple multiple linear regression with linear terms, to much more complex support
vector regression or neural networks. The approximation accuracy is expressed as
the coefficient of determination R2(θ) [MC04], which is a value between 0 and 1
that shows the portion of variability in the observed data yj that is accounted by
the learned θ function. It is defined as:

R2(θ) = 1− SS error

SS total
= 1−

∑
j

(yj − θj)2

∑
j

(yj − y)2
, (6.1)

where SS error is the sum of squares of errors, SS total is the total sum of squares,
θj are values of the learned θ function at j points, and y is the mean of observed
data yj . Basically, R2(θ) is a measure of the goodness of fit that describes how
well a learned θ function fits yj data points. An R2(θ) value closer to 0 indicates
a very poor fit, while value closer to 1 indicates a good fit.

2 This sort is typical for some algorithms (e.g. ALERGIA) and it enables easier enumeration of
automaton states.

6.3 The HyBUTLA Learning Algorithm 81

q1

q2

q3

q1

q2

q3

t

OPEN

OPEN

CLOSE

CLOSE

δ1=[6,6] δ2=[10,10] δ3=[5,5] δ4=[11,11]

6 16 21 32

t

OPEN

OPEN

CLOSE

CLOSE

δ1=[7,7] δ2=[9,9] δ3=[8,8] δ4=[5,5]

7 16 24 29

q1

t

q2

OPEN

OPEN

CLOSE

δ1=[6,6] δ2=[8,8] δ3=[7,7] δ4=[9,9]

6 14 21 30

q3
OPEN

a

a

a

b

b

b

c

c

c

e

e

f

δ1=[6,7] δ2=[8,10] δ3=[5,8]
δ5=[5,5]

a b c

f

e

δ6=[11,11]

δ4=[9,9]

D1

D2

D3

PTA

e

Fig. 6.5 An illustration of building a prefix tree acceptor from learning examples.

Step 2: A PTA created in the previous step is just a smart way of representing the
learning data. It describes an informational content of only those examples that
were used for learning. Thus, it hardly generalizes to unseen examples. Typically,
a PTA has a large number of states even for small systems with only a few signals
and short production cycles. Therefore, it is not easily visualized and understood
by human experts. For all these reasons, PTA states are merged (Step 2a in Figure
6.3). First, the compatibility is checked for all states in a bottom-up order. States
found to be compatible with respect to the criteria given below are merged. Their
portions of continuous data used for learning θ functions are merged as well,
and a new θ function is learned for the newly created state (Step 2b in Figure

82 6 Automated Learning of 1-SDHAs from Data

6.3). Since merging can produce non-determinism, (i.e. several transitions which
are triggered by the same symbol and whose time intervals belong to the same
time cluster could appear from one source state to several destination states) a
determinization procedure is performed. It merges non-deterministic outgoing
transitions and their corresponding states recursively. Step 2 is implemented in
lines 3-8 of the HyBUTLA algorithm in Figure 6.4.
The function compatible for testing the compatibility between two states s and
s′ is given in Figure 6.6. It checks whether the probabilities for taking a specific
transitions or for ending in the state are similar enough for these states. We
use the same statistical measure of similarity that was used for learning SDFAs
in the ALERGIA algorithm [CO94]. This measure is based on the Hoeffding
bound [Hoe63], which shows that given a Bernoulli variable of probability p and
observed frequency of fg , then with probability of at least 1− α, α ∈ R, α > 0 it
holds:

∣∣∣∣p− f

g

∣∣∣∣ <
√

1

2g
log

(
2

α

)
. (6.2)

We implemented the similarity measure of the ALERGIA algorithm [CO94] as
the function fractions-different, which tests whether two fractions f0

g0
and f1

g1
are

significantly different:

fractions-different(g0, f0, g1, f1) :=

∣∣∣∣f0

g0
− f1

g1

∣∣∣∣ >√
1

2
log

(
2

α

)(
1
√
go

+
1
√
g1

)
, f0, g0, f1, g1 ∈ N. (6.3)

Since it involves a pair of Bernoulli variables, the probability that this function
will return the correct answer is at least (1− α)2, α ∈ R, α > 0 [CO99]. When
the inequality is true, two fractions are considered to be too different. First, the
following quantities are calculated in the function compatible (Figure 6.6):

• the number of examples that attain a state s with a transition triggered by a
symbol a whose timing constraint is δ (∀a ∈ Σ,∀δ ∈ ∆ and ∀s ∈ S, line 1),

• the number of all examples that enter a state s′,∀s′ ∈ S (line 2),
• the number of all examples that leave a state s,∀s ∈ S (line 3),
• the number of all examples that end in a state s,∀s ∈ S (line 4).

These quantities are obtained by simply counting the number of examples that
trigger the corresponding transition τ ∈ T . The examples that end in a state are
also counted for estimating the ending state probability. For these counts, a simple
function: Num : T → N is used.
The similarity of ending state probabilities is computed for two states s and s′,
using the expression (6.3). If these probabilities are too different, the function
compatible returns false and the states are declared as not compatible (lines 5-7
in Figure 6.6). Otherwise, it is checked for each specific symbol a ∈ Σ if the
probabilities of the incoming transitions are similar (lines 8-9 in Figure 6.6). In
addition, the membership of those transitions’ timing intervals δ ∈ ∆ to the same

6.3 The HyBUTLA Learning Algorithm 83

Given: s, s′ ∈ S
Result: decision true or false
(1) f(a, δ, s) :=

∑
τ=(∗,a,δ,s)∈T Num(τ), a ∈ Σ, δ ∈ ∆, s ∈ S where ∗ is an arbitrary

element.
(2) fin(s′) :=

∑
τ=(∗,∗,s′,∗)∈T Num(τ), s′ ∈ S

(3) fout(s) :=
∑
τ=(s,∗,∗,∗)∈T Num(τ), s ∈ S

(4) fend(s) := fin(s)− fout(s), s ∈ S
(5) if fractions-different(fin(s), fend(s), fin(s′), fend(s′)) then
(6) return false
(7) end if
(8) for all a ∈ Σ
(9) if fractions-different(fin(s), f(a, δ, s), fin(s′), f(a, δ′, s)) then
(10) return false
(11) end if
(12) if δ ∈ di(a) and δ′ ∈ dj(a) and i 6= j then
(13) return false
(14) end if
(15) if not compatible(s1, s2) where (s, a, s1, δ1), (s′, a, s2, δ2) ∈ T then
(16) return false
(17) end if
(18) end for
(19) return true

Fig. 6.6 The function compatible.

time cluster is tested (line 12 in Figure 6.6). When both conditions are satisfied
for states s and s′, the compatibility of their corresponding subtrees is checked
too. This check is performed by calling the function compatible recursively for
all states in subtrees (line 15 in Figure 6.6). Finally, when all criteria are satisfied,
the states are declared as compatible and can be merged as well as their subtrees.
Estimations of transition and ending state probabilities are made using the function
Num in the following way. The number of examples that attain a state s ∈ S
equals the sum of the number of examples that end in a state and the number of
examples that leave the state:∑

(τ=(s′′,b,s,δ′)∈T),s′′∈S,b∈Σ,δ′∈∆ Num(τ) =

Num(s, λ, s, δ0) +
∑

(τ ′=(s,c,s′,δ)∈T),s′∈S,c∈Σ,δ∈∆ Num(τ ′),

where λ is an empty string. It does not trigger any transitions and we denote its
timing constraint as δ0 = [0, 0]. Now we can get the expression for calculating
the probability of a transition (s, a, s′, δ):

p(s, a, s′, δ) =
Num(s, a, s′, δ)∑

(τ=(s′′,b,s,δ′)∈T),s′′∈S,b∈Σ,δ′∈∆ Num(τ)
. (6.4)

The probability that the example ends in a state s is then as follows:

p(s, λ, s, δ0) = 1−
∑

a∈Σ,s′∈S,δ∈∆

p(s, a, s′, δ). (6.5)

Please note that in addition to testing the similarity of ending state and transition
probabilities, as well as the membership of those transitions’ time intervals to

84 6 Automated Learning of 1-SDHAs from Data

the same time cluster, the initial version of our HyBUTLA algorithm [NMVJ11,
VKBNM11a, VKBNM11b] included similarities of θ functions of two states
candidates for merging in the compatibility criteria. This additional compatibility
check highly depended on the type of regression functions used for approximation.
When multiple linear regression was used, it was checked if at least 50% of the
corresponding regression coefficients are similar, i.e. if their relative difference
is not larger than some predefined threshold (e.g. 5% or 10%). When neural
networks are used for regression, the similarity of states’ θ functions had to be
defined differently, e.g. as similarity of the corresponding neurons’ biases and
weights. This compatibility criterion introduced an extensive complexity to our
algorithm, and was therefore removed from the version of the algorithm that was
used later on [NSV+12, Vod12, FFP+12, Vod13, VMN13].

Step 3: In order to speed up the algorithm, fast machine learning methods for
learning Θ functions can be used. However, they may suffer from the lack of
accuracy. For that reason, the additional splitting step is provided (Step 3a in
Figure 6.3, line 9 in Figure 6.4). In general, it finds those states with small
function approximation accuracy (i.e. with low R2(θs)), and splits them at points
where the approximated signal changes abruptly. Then new functions are learned
for two new states, using portions of continuous data that correspond to those
states (Step 3b in Figure 6.3). This operation also accounts for the autonomous
jumps in a system (i.e. it models significant changes in continuous signals). Abrupt
changes in a signal are detected using the wavelet transform. Due to complexity
and importance of this step, it is described separately in the following two sections.

6.4 Abrupt Change Detection

Our approach for learning behavior models of hybrid systems presented in this
thesis is partially based on detecting abrupt changes in system continuous signals.
Therefore, a brief review of several techniques for abrupt change detection is given
in this section.

As explained earlier, hybrid systems comprise both discrete and continuous dy-
namics. These dynamics induce two types of changes in a system [NB02]:

Controlled jumps: Changes in discrete control signals imposed by a control sys-
tem are called controlled jumps. These changes trigger state changes of the
actuators, which further change the state of the continuous physical system.

Autonomous jumps: Continuous process variables of a system can abruptly
change the state of a system without the influence of a control system. This
happens due to threshold crossings or some external influences (e.g. disturbances
or human factors). Such changes are called autonomous jumps.

An example of these changes is given in Figure 6.7. Contrary to control jumps,
which are normally present in every hybrid production system, autonomous jumps
are often artificially introduced to ease the modeling tasks, especially when complex
nonlinear dynamics is present in the system [MB00]. Moreover, while control jumps
are predefined and can be used in a form of a list of symbols that trigger transitions
between system states, autonomous jumps need to be detected first. Their detection
represents a specific challenge in many tasks, including learning behavior models.

6.5 Modeling Autonomous Jumps with State Splits 85

t

u(t)

1

(a) Controlled jump.
t

u(t)

u0

(b) Autonomous jump.

Fig. 6.7 Two types of jumps in a hybrid production system.

In the previous two decades, a significant research has been done on detecting
abrupt changes, which represent autonomous jumps in production systems. This
research resulted in a number of various approaches. These are roughly divided in
linear model-based approaches (parameter estimation for a given model, see e.g.
[BN93]), model-free approaches (such as support vector machines for abrupt change
detection [DD03]), and non-parametric approaches (Discrete Fourier Transform
[OS09] and Discrete Wavelet Transform (DWT) [AAB09, Uv08]). A more detailed
classification can be found in [Uv05]. These approaches are used in a wide range
of applications, including condition monitoring, seismic data processing, quality
control, image processing, and prediction of natural disasters [BN93]. DWT is often
used for segmenting continuous signals, particularly for purposes of fault detection
and diagnosis (please see [Uv05, GCMC00, ZY01]).

In our model-learning endeavor, we assume no a priori knowledge about the
types of existing signals, thus the model-based approaches cannot be applied. Due to
the effectiveness, speed, and popularity of DWT in analyzing both sinusoidal and
impulse, high-frequency and low-frequency signal components, we have applied
it to detecting autonomous jumps in continuous process variables. This step is an
integral part of our comprehensive approach for learning behavior models of hybrid
production systems. It is explained in the following section.

6.5 Modeling Autonomous Jumps with State Splits

In this section, we describe how the HyBUTLA algorithm was extended to model the
autonomous jumps in the continuous part of a hybrid system. We give details of the
abrupt change detection and provide the recursive split function. State split criteria
are presented in detail and the proof for the benefits of the split function is given.

The following text is based on the work that we published in [Vod12] and [Vod13].
The initial version of the HyBUTLA algorithm [VKBNM11a] suffered from the

following drawbacks:

1. Neglected autonomous jumps: Although continuous signals in the real systems
often include abrupt changes, these are not taken into account by the algorithm.
New states are derived solely based on controlled jumps.

2. Insufficient runtime performance: In order to adequately approximate nonlinear
functions that can change abruptly, the advanced and time-consuming regression
methods are often needed.

86 6 Automated Learning of 1-SDHAs from Data

3. Dependence of state merging on approximation functions: The additional cri-
teria for state compatibility that compared similarities between θ functions of
states candidates for merging had to be defined differently based on the type of
these functions. As stated in the previous section, if multiple linear regression is
used, it is checked if the corresponding regression coefficients of functions from
the two states are similar enough. For neural networks, the weights and biases of
neurons would have to be compared, etc.

In [Vod12] we have extended the HyBUTLA algorithm to account for autonomous
jumps originating in continuous signals. When an abrupt change is detected in
some automaton state, this state is split into two states at the moment when that
change occurs. Such moments can be detected using discrete wavelet transform.
This enabled simpler and much faster regression methods, such as multiple linear
regression, to reach high approximation accuracy, even when modeling nonlinear
systems. Moreover, modeling autonomous jumps excluded the need to compare θ
functions of two states before merging.

The effects of the state split are illustrated in Figure 6.8. Figure 6.8(a) shows the
automaton before applying the split function. The continuous dynamics in the state s
comprises two different trends, which are approximated by the function θs. Using
discrete wavelet transform described later on, a point in time tsplit has been detected
when the abrupt change between these trends takes place. The state is then split at this
particular point (given that other criteria explained later in this section are fulfilled),
resulting in two new states s1 and s2. Figure 6.8(b) shows the result of the splitting. A
new symbol e is generated that triggers the transition (with probability one) between
two newly created states. A new transition timing constraint δe is created based on
the timing of detected abrupt change, and new functions θs1 and θs2 are learned.

a, p(s,a,s',δi)=0.8

δi=[5,9]

p(s')=0.1

θs'

s'

θs

s

p(s)=0.2

tsplit=3

(a) Automaton before splitting.

θs1

s1

p(s1)=0

a, p(s,a,s',δie)=0.8

δie=[2,6]

p(s')=0.1

θs'

s'

θs2

s2

p(s2)=0.2

e, p(s1,e,s2,δe)=1

δe=[3,3]

(b) Automaton after splitting.

Fig. 6.8 The effects of the split function.

6.5.1 Discrete Wavelet Transform

As already mention in Section 6.4, non-parametric approaches to abrupt change
detection include Fourier Transform (FT) and Wavelet Transform (WT). In contrast

6.5 Modeling Autonomous Jumps with State Splits 87

to FT, which represents the signal as the sum of sinusoids of different frequencies
and gives the amplitude-frequency relation, WT preserves the time information of
the original signal. The Fourier Transform is given by:

F (ω) =

∞∫
−∞

f(t)e−jωtdt, (6.6)

where f(t) is the transformed signal. The Continuous Wavelet Transform (CWT)
breaks the signal into the sum of scaled and shifted versions of the so-called mother
wavelet ψ(t). A mother wavelet is basically a signal of limited length and zero
average value. The CWT of the signal f(t) is calculated as follows [Uv05]:

CWT (a, b) =
1√
|a|

∞∫
−∞

f(t)ψ∗
(
t− b
a

)
dt, (6.7)

where ψ∗(t) is a complex conjugate of the mother wavelet, and b, a ∈ R, a 6= 0 are
the shifting and the scaling parameters, respectively. The parameter b represents the
time parameter, while a relates to the frequency. By changing b values, a mother
wavelet ψ(t) is shifted over the signal f(t). Changes in parameter a stretch or
compress the mother wavelet, thus enable detection of both slow and fast components
of the signal. Higher values of CWT (a, b) coefficients indicate higher correlation
with f(t).

Various forms of the mother wavelet ψ(t) exist. The simplest one that is often
used in abrupt change detection is the Daubechies 1 wavelet, also known as db1
or the Haar wavelet [Dau92]. This wavelet was used as an asset to the HyBUTLA
algorithm. It is defined as:

ψ(t) =

1 if t ∈ [0, 0.5)
−1 if t ∈ [0.5, 1)
0 if t /∈ [0, 1).

(6.8)

The calculation of CWT for all values of a and b over all time is very computa-
tionally inefficient. Therefore, the much faster Discrete Wavelet Transform (DWT)
[Dau92, AAB09, Uv05] is used instead. It is calculated only for a limited number
of a and b values. By inserting a = am0 , b = ham0 b0 and t = kT in expression (6.7),
where k, h,m ∈ N+, the expression for calculating DWT is obtained:

DWT (m,h) =
1√
am0

∑
f(kT)ψ∗

(
kT − ham0 b0

am0

)
. (6.9)

An example of the abrupt change detection in a signal using DWT is given in
Figure 6.9. It shows one active power signal (Figure 6.9(a)) measured in a real small
process plant (presented in Section 8.2) and its discrete wavelet transform (Figure
6.9(b)) calculated using the Haar wavelet. It can be seen that the largest coefficient in
the absolute value (obtained at the sample 172 in Figure 6.9(b)) corresponds to the

88 6 Automated Learning of 1-SDHAs from Data

0 50 100 150 200 250 300 350 400
250

300

350

400

Time (s)

A
ct
iv
e
p
ow

er
si
g
n
a
l
(W

)

(a) An active power signal recorded in a real plant and its biggest abrupt change
(dashed red line).

0 50 100 150 200 250 300 350 400
−50

−40

−30

−20

−10

0

10

20

30

40

Samples

W
av
el
et

co
effi

ci
en
ts

(b) DWT of the given signal.

Fig. 6.9 A real-world signal and its Discrete Wavelet Transform.

biggest abrupt change in the signal (marked by a dashed red line in Figure 6.9(a)).
This fact is exploited by the split function.

6.5.2 The split Function

When a new state s ∈ S of the automaton is generated either based on controlled
or autonomous jump, its θs function (see Definition 13) for approximating the
behavior of the continuous output signal(s) needs to be learned. To this aim, various

6.5 Modeling Autonomous Jumps with State Splits 89

regression methods can be used that take the values of the continuous input signals
u ∈ U , continuous output signals y ∈ Y , and time t as inputs. The measure of
deviation between the learned function θs and the real values yj of the approximated
output signal y is expressed as the coefficient of determination, already given by the
expression (6.1). The criteria that have to be fulfilled in order to split the state s are
as follows:

1. Low R2(θs) value: The lowest acceptable R2(θs) value is given by threshold σ.
In case R2(θs) < σ, the state s is a candidate for splitting.

2. Avoiding dummy states: Dummy states are states where θs function is trivial, i.e.
that contain only two yj points for learning the function (simple linear regression
would result in R2(θs) = 1). Allowing the creation of dummy states could
result in a rapid increase of their number, which is contradictory to the general
requirement of having the model as small as possible. Therefore, the split is
performed only if it would generate two new states with each having at least three
data points for learning the θs function.

3. Positive transition timings after split: When discrete wavelet transform iden-
tifies the time tsplit as a point of splitting, this time has to be subtracted from
δ intervals of all transitions that leave the state s. If all these intervals remain
positive, the split takes place. This situation is already shown in Figure 6.8. If
in this particular case would be tsplit = 6, we would have δie = [−1, 3] (i.e. a
negative timing) which is not allowed by Definition 13.

4. Increased model average R2: Splitting the states could decrease the average R2

of the model. Therefore, it is preformed only if it brings the global increase in
the function approximation accuracy (i.e. if the average R2 gets increased). In
[Vod12], we gave this requirement as the theorem with the proof for its neces-
sary condition. Subsection 6.5.3 gives proofs for both necessary and sufficient
conditions, which we originally published in [Vod13].

The recursive split function is given in Figure 6.10. It receives the already created
automaton A that models only controlled jumps. In addition, a threshold value σ is
given for the lowest allowed R2 value of the function θs in the state s. The function
split outputs a new automaton Asplit that models both controlled and autonomous
jumps. At first, an automaton Asplit is initialized with the elements of the automaton
A (line 0). Then the state s whose θs function does not satisfy the threshold σ is
found (line 1, see criterion 1 for the state split above). Discrete wavelet transform of
the output signal y ∈ Y used for learning that θs function is calculated (line 2) and
its coefficients are iterated (line 3). The largest (in the absolute value) coefficient ck
is found (line 4). Then the state s is split into the states s1 and s2 at the point tsplit ,
which denotes the relative timing of occurrence of coefficient ck (line 5). Ending
state probabilities are associated with new states, as well as the new symbol e that
triggers a transition τe between them (lines 6-7). The probability of this transition is
p(s1, e, s2, δe) = 1 and its timing constraint δe = [tsplit , tsplit] (lines 8 and 9). For
newly created states, functions θs1 and θs2 are learned using their corresponding
portions of continuous data (line 10). The if -condition in line 11 tests compliance
with criteria 2 and 3 for the state split (see above). When s1 and s2 are not dummy
states, and when the split results in positive transition timings of the transitions
that leave the state s, the elements of the automaton Asplit are updated (line 12). In
case the criteria are not fulfilled for coefficient ck and its timing tsplit (line 13), the
next largest coefficient of discrete wavelet transform is evaluated. The procedure is
repeated for every state with insufficient R2 value. Finally, if the automaton Asplit is

90 6 Automated Learning of 1-SDHAs from Data

Given:
(1) 1-SDHA A = (S, s0,Σ, T,∆, P, x,Θ)
(2) Predefined threshold σ for the lowest allowed R2 value
Result: New automaton Asplit that models abrupt changes
(0) Asplit = A % initialisation of the automaton Asplit

(1) for all s ∈ S | R2(θs) < σ
(2) C = DWT (y) | y = θs(t, u) % calculate DWT, C is a set of DWT coefficients
(3) while notEmpty(C)
(4) ck = max(abs(C)) % find the largest DWT coefficient in the absolute value

tsplit is the relative time of the coefficient ck.
(5) Create states s1 and s2 by splitting the state s at point tsplit .
(6) Ending state probabilities of created states are p(s1) = 0 and p(s2) = p(s).
(7) Generate the symbol e that triggers transition τe between s1 and s2.
(8) The probability of transition τe is p(s1, e, s2, δe) = 1.
(9) The timing constraint of generated symbol e is δe = [tsplit , tsplit].
(10) Learn functions θs1 and θs2 for states s1 and s2, respectively.
(11) if (s1 and s2 are not dummy states) and

(intervals δie = [ti1 − tsplit , ti2 − tsplit] are positive,
where δi = [ti1, ti2] are timings of all transitions τi ∈ T leaving the state s)
then

(12) Update automaton Asplit = (Ssplit , s0,Σsplit , Tsplit ,∆split , Psplit , x,Θsplit) :
Ssplit = (S\{s}) ∪ {s1, s2}
Σsplit = Σ ∪ {e}
Tsplit = T ∪ {τe}
∆split = (∆\{δi}) ∪ {δe, δie}
Psplit = (P\{p(s)}) ∪ {p(s1, e, s2, δe), p(s1), p(s2)}
Θsplit = (Θ\{θs}) ∪ {θs1 , θs2}

(13) else C = C\{ck}
(14) end if
(15) end while
(16) end for
(17) if average R2

A < average R2
Asplit

then
(18) Asplit = split(Asplit)
(19) else return A
(20) end if

Fig. 6.10 The recursive split function.

obtained whose average accuracy R2
Asplit

(over all states) is larger than the average
accuracy R2

A of the automaton A, the function split is recursively called providing
Asplit as an input (lines 17-18). Otherwise, if no better automaton than A could be
created, or if no split has been performed, the automaton A is returned (line 19).

6.5.3 The Benefits of the split Function

As we argued in [Vod12], the split function needs to ensure both the local and global
increase of the function approximation accuracy, expressed as the coefficient of
determination R2. When state sk ∈ S is split into states s′k and s′′k , the local increase
is ensured under the condition:

6.5 Modeling Autonomous Jumps with State Splits 91

R2(θs′k) > R2(θsk) and R2(θs′′k) > R2(θsk). (6.10)

The global increase is ensured when the following holds:

R2(θs′k) +R2(θs′′k) > R2(θsk) +R2
A, (6.11)

where R2
A is the average coefficient of determination over w states of the automaton

A, calculated as:

R2
A =

w−1∑
i=0

R2(θsi)

w
. (6.12)

The conditions (6.10) and (6.11) can be better understood using the following exam-
ple.

Example 4. Let an automaton A be given that has four states: S = {s0, s1, s2, s3}
with the coefficients of determination respectively: R2(θs0) = 0.4, R2(θs1) = 0.1,
R2(θs2) = 0.2, and R2(θs3) = 0.3. Their average value is R2

A = 0.25. Assume the
state s2 is now split into states s′2 and s′′2 . A new automaton Asplit is obtained that
has five states, i.e. Ssplit = {s0, s1, s

′
2, s
′′
2 , s3}. Let the corresponding coefficients

of determination of the new states be R2(θs′2) = 0.21 and R2(θs′2) = 0.22. Since
both values are higher than R2(θs2), the local accuracy increase given by expression
(6.10) is ensured, but not the global one since:

R2(θs′2) +R2(θs′′2) = 0.43 6> R2(θs2) +R2
A = 0.45.

In this case, the split would be rejected. However, if the split of s2 would result in
states s′2 and s′′2 such that R2(θs′2) = 0.21 and R2(θs′2) = 0.26, both conditions
would be satisfied and the split would be performed (assuming other criteria given
in the previous subsection are also satisfied).

We gave the following theorem in [Vod13], which proves that the expression
(6.11) is the necessary and sufficient condition for ensuring the global increase of the
function approximation accuracy.

Theorem 13. Let A = (S, s0,Σ, T,∆, P, x,Θ) be the hybrid automaton with |S| =
w states. Its average R2 value is given by the expression (6.12). The split of a
state sk ∈ S into the states s′k and s′′k brings the global increase of the function
approximation accuracy iff for the two resulting states s′k and s′′k the condition given
by the inequality (6.11) holds.

Proof. After the state sk ∈ S is split, a new automaton Asplit is obtained with the
number of states |Ssplit | = w+ 1. The global increase of the function approximation
accuracy is obtained under the condition:

R2
Asplit

> R2
A. (6.13)

92 6 Automated Learning of 1-SDHAs from Data

The proof of the if-part of the theorem is given first (initially published in [Vod12]),
i.e. prove (6.13) assuming (6.11). Expression (6.11) can be rewritten as:

R2(θs′k) +R2(θs′′k)−R2(θsk)−R2
A > 0.

The R2 values of the states unaffected by split are added and subtracted:

k−1∑
i=0

R2(θsi) +R2(θs′k) +R2(θs′′k) +

w−1∑
i=k+1

R2(θsi)

−
k−1∑
i=0

R2(θsi)−R2(θsk)−
w−1∑
i=k+1

R2(θsi)−R2
A > 0.

The first line is the averaged R2 for the automaton Asplit multiplied by (w + 1) > 0,
thus it follows:

(w + 1)R2
Asplit

−

[
w−1∑
i=0

R2(θsi) +R2
A

]
= (w + 1)R2

Asplit
− (w + 1)R2

A > 0.

When this inequality is divided by (w + 1) > 0, it is finally obtained:

R2
Asplit

−R2
A > 0. (6.14)

The expressions (6.13) and (6.14) are equal, thus the if-part of the theorem is proven.
We now prove the only-if-part of the theorem: prove (6.11) assuming (6.13). Two
average values from the inequality (6.13) can be subtracted as follows:

k−1∑
i=0

R2(θsi) +R2(θs′k) +R2(θs′′k) +
w−1∑
i=k+1

R2(θsi)

w + 1
−

w−1∑
i=0

R2(θsi)

w
=

w

[
k−1∑
i=0

R2(θsi) +R2(θs′k) +R2(θs′′k) +
w−1∑
i=k+1

R2(θsi)

]
− (w + 1)

w−1∑
i=0

R2(θsi)

w(w + 1)
=

w

[
k−1∑
i=0

R2(θsi) +R2(θs′k) +R2(θs′′k) +
w−1∑
i=k+1

R2(θsi)

]
w(w + 1)

−

w

[
k−1∑
i=0

R2(θsi) +R2(θsk) +
w−1∑
i=k+1

R2(θsi)

]
w(w + 1)

−

w−1∑
i=0

R2(θsi)

w(w + 1)
> 0.

The last expression can be rewritten in the following way:

6.6 Algorithm Properties 93

w
[
R2(θs′k) +R2(θs′′k)−R2(θsk)

]
w(w + 1)

− R2
A

w + 1
> 0,

which is (multiplied by (w + 1) > 0) equal to the expression (6.11). ut

6.6 Algorithm Properties

In Section 4.4, it has been shown that 1-SDHAs cannot be learned in the sense of
strong polynomial identification in the limit with probability one (StrongPolyIDLim-
itProb1). However, here we prove that our HyBUTLA algorithm satisfies the criteria
of weak polynomial identification in the limit with probability one (WeakPolyIDLim-
itProb1), i.e. we show that it identifies 1-SDHAs in the limit with probability one in
time polynomial in the size of the input data (see Definition 19 in Section 4.3).

In order to achieve WeakPolyIDLimitProb1 of 1-SDHAs, our algorithm basically
needs to ensure the following:

1. Convergence: (i) identification of automaton states S and transitions T (i.e. its
structure), (ii) identification of symbol probabilities and ending state probabilities
P and (iii) identification of transition timings ∆.

2. Polynomial runtime: algorithm runtime must be polynomial in the size3 n of
the input sample D. Since the HyBUTLA algorithm learns Θ functions that
approximate the continuous dynamics of a system, we impose the additional
requirement on the algorithm to adequately approximate the continuous output
signals by these functions, and moreover, in polynomial time.

Lemma 3. The HyBUTLA algorithm identifies the correct automaton structure
(states and transitions) in the limit with probability one.

Proof. Following [CO94], [CO99] and [HT00], the HyBUTLA algorithm uses the
same statistical measure for deciding if two states are compatible, i.e. this measure is
based on the Hoeffding bound (expression (6.2)) and implemented as the function
fractions-different (expression (6.3)). Therefore, in this proof we summarize and
extend the results given in these papers.

The probability that any of the two estimations f0
g0

and f1
g1

in the function fractions-
different is wrong is bounded by α. Thus, the probability that the function works
with wrong estimations is at most 2α.

By tn we denote the number of the PTA states obtained after receiving the input
sample D of size n. The function compatible (see Figure 6.6) compares the transition
probabilities, but also the ending state probabilities for a pair states. Since there are
at most tn states and tn − 1 transitions in a subtree, the function fractions-different
is called not more than 2tn times in one iteration of the HyBUTLA algorithm (i.e. in
one call of the function compatible).

The total probability that any performed test in the function compatible will fail is
thus limited by 2α · 2tn.

3 The sample size can be expressed either as a number of examples, or as a total sum of lengths of
the examples [dlH06]. The given results hold for both cases.

94 6 Automated Learning of 1-SDHAs from Data

As argued in [HT00], the given probability bound is valid only when the result
of the test implemented in the function fractions-different is independent from other
tests. This is obviously not the case, as some previous successful test could have
already used at least one state from the considered pair (candidates for merging). The
probability that this previous test was incorrectly successful is also bounded by 2α.
In this case, the total probability that any performed test that uses the incorrect result
of a previous test will fail is thus limited by

p(En) = (2α+ 2α)2tn, (6.15)

where En is an error event.
Since the number of tests grows with n, we allow the parameter α to depend on n

and denote it by αn. The parameter αn will be chosen so that the sum
∑∞
n=1 nαn is

finite (as in [CO99]). The number of PTA states tn can grow at most linearly with
n, thus tn = cn, where c ∈ (0, 1] is a constant. The same holds for the number
of examples that arrive at any of considered states, i.e. g0 = c0n and g1 = c1n,
c0, c1 ∈ (0, 1] are constants. It follows:

p(En) = 8αntn = 8cnαn. (6.16)

By the Borel-Cantelli lemma [Fel50], if
∑∞
n=1 p(En) <∞, then with probability

one only finitely many events En exist4. By choosing αn = k
n2 , where k > 0 is a

constant (similar to [HT00]), we can write:

lim
n→∞

p (En) = lim
n→∞

(
8cn

k

n2

)
= 0. (6.17)

The probability that the function compatible returns a wrong result goes to zero as
n grows. Regardless of how many previous (dependent) tests might have been wrong,
the probability of the error event always goes to zero in the limit. It is important to
note that the function compatible is in the HyBUTLA algorithm called only a finite
number of times.

To complete the proof it is also important to consider the test of similarity between
time intervals δ ∈ ∆ of transitions that passed the compatibility check given by the
function fractions-different. This simple test is deterministic, i.e. it comes down to
checking whether intervals belong to the same time cluster (line 12 in Figure 6.6).
When this is the case, the states will be merged. The similarity test for time intervals
does not depend on any probabilistic parameters (such as αn), i.e. it never inserts an
error in the merging process. Thus, the lemma is proven. ut

Observation 7. Carrasco and Oncina [CO94] classify the errors of the compatibility
test based on the Hoeffding bound in the following way:

• Type I error: Two compatible states are not merged.
• Type II error: Two non-compatible states are merged.

It is easy to see how both of these errors disappear when the number of examples n
grows.

The global probability of type I error pg(TypeI) for the whole automaton, assum-
ing independent tests, is bounded by:

4 No assumption of the independence of those events is required by Borel-Cantelli lemma.

6.6 Algorithm Properties 95

pg(TypeI) = 2αn(|Σ|+ 1)tn. (6.18)

During the merging process, the algorithm makes at most 1
2 tn(tn − 1) comparisons

of the states. By m we denote the number of states of the final automaton. If type II
error happened, in the worst case there were in total 1

2m(m− 1)(|Σ|+ 1) wrong
comparisons. Following the expression (6.3), the error of each comparison is given
as:

error =

√
1

2
log

(
2

αn

)(
1
√
go

+
1
√
g1

)
, (6.19)

thus the global probability of type II error pg(TypeII) is bounded by:

pg(TypeII) =
1

2
m(m− 1)(|Σ|+ 1) · error . (6.20)

Now if we pick αn as in the proof above so that αn = k
n2 , knowing that tn = cn,

go = c0n and g1 = c1n (k > 0, c, c0, c1 ∈ (0, 1]), it is easy to see that both
pg(TypeI) and pg(TypeII) converge to zero as n grows.

Observation 8. The choice of the αn parameter has significant influence on the
convergence speed. By choosing αn = k

n2 , go = c0n and g1 = c1n (k > 0, c0, c1 ∈
(0, 1]), the error expression (6.19) becomes:

error1 =

√
1

2
log

(
2n2

k

)(
1
√
c0n

+
1
√
c1n

)
. (6.21)

For taking αn = k
n3 , we similarly get:

error2 =

√
1

2
log

(
2n3

k

)(
1
√
c0n

+
1
√
c1n

)
. (6.22)

When n grows, the first error expression converges to zero faster than the second one.
Figure 6.11 illustrates these cases for k = c0 = c1 = 1 and n = 1000. This means
that, as we increase the value of the αn parameter, the convergence speed increases
as well.

Lemma 4. The HyBUTLA algorithm identifies the correct transition probabilities of
a 1-SDHA in the limit with probability one.

Proof. In this proof, we use a common measure of distance between two probability
distributions, known as Kullback-Leibler (K-L) divergence or relative entropy (it
has also been used as a measure of divergence between two automata in the MDI
algorithm, see Subsection 2.4.3). For two probability distributions P1 and P2, K-L
divergence is defined as:

dKL(P1||P2) =
∑
i

P1(i) log
P1(i)

P2(i)
. (6.23)

When rolling a die, a probability of getting any of the 6 outcomes j is pj = 1/6.
Thus if the number of runs is denoted by m it holds for all j:

96 6 Automated Learning of 1-SDHAs from Data

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Size n of the input data

E
rr
o
r
va
lu
e

Error by expression (6.21)
Error by expression (6.22)

Fig. 6.11 Convergence speed for different selection of αn. Convergence is faster for larger values
of αn.

lim
m→∞

pj(m) = pj . (6.24)

In the sense of K-L divergence, when the number of runs m grows, the estimated
probability P2 comes closer to the actual probability P1 and eventually dKL(P1||P2)
goes to zero. However, this does not hold when the number of possible outcomes j is
infinite (p∞ = 1/∞ = 0).

In the context of identifying transition probabilities of a 1-SDHA, the expression
(6.23) gets the following form:

dKL(A||A′) =
∑
z∈Σ∗

p(z|LA) log
p(z|LA)

p(z|LA′)
. (6.25)

Similarly to [CO99], we define the so-called support of the language LA as a
subset R(LA) = {z ∈ Σ∗ : p(z|LA) > 0}. Since R(LA) is infinite in general case,
it includes those examples z whose probability p(z|LA) > 0 is arbitrarily small.
When a finite input sample is given, it might not include such examples so their
probabilities will be incorrectly estimated as zero. Therefore, the expression (6.25)
would obtain large value.

However, if the structure of the automaton A is identified in the limit with prob-
ability one, i.e. from a sequence of positive examples D (see Lemma 3), all such
small probabilities can be correctly estimated by counting the numbers of examples
that visit, leave and end in corresponding states. In this case, the K-L divergence
dKL(A||A′) will eventually converge to zero. This means that the transition probabil-
ities, as well as the ending state probabilities, will be estimated correctly in the limit
with probability one. ut

The means of estimation of the transition and ending state probabilities are given
by the following corollary.

6.6 Algorithm Properties 97

Corollary 8. Based on the previous lemma, a transition probability as well as an
ending state probability are correctly estimated using expressions (6.4) and (6.5),
respectively.

Lemma 5. The HyBUTLA algorithm identifies the correct transition timings.

Proof. Assume there are two transitions τ ′ = (s, a, s′, δ′) and τ ′′ = (s, a, s′′, δ′′)
that should be merged after merging their corresponding states (states were merged
according to the compatibility criteria of the function compatible given in Figure
6.6). Let their time intervals be δ′ = [t′1, t

′
2] and δ′′ = [t′′1 , t

′′
2]. The time interval of

the resulting transition is calculated according to the following:

δ = [min(t′1, t
′′
1),max (t′2, t

′′
2)]. (6.26)

In this way, the resulting δ interval always includes the time spans of both transi-
tions, thus no wrong timing is included. ut

The following two lemmas consider the runtime properties of the HyBUTLA
algorithm.

Lemma 6. The HyBUTLA algorithm learns functions θs ∈ Θ,∀s ∈ S of a 1-SDHA
by the means of an approximation methodM within predefined marginal error ε in
polynomial time.

Proof. In the proof of Lemma 1 in Section 3.5, it has been shown that a methodM
exists with the following properties:

error(M(θs)) ≤ ε and

runtime(M(θs)) ∈ O(Poly)

for some polynomial Poly and θs ∈ Θ,∀s ∈ S are the functions of a 1-DHA. Since
these functions have no specific properties comparing to those of 1-SDHAs (see
Definition 4 and Definition 13), the proof of Lemma 1 proves this lemma as well. ut

As stated in Section 3.5, the value of the predefined marginal error ε depends on
the application area. The allowed ε values for approximated continuous output signals
are obtained by analyzing the modeled system and using the expert knowledge.

Observation 9. Depending on the type of continuous output signals y ∈ Y that need
to be approximated, sometimes the faster methods also capable of reaching marginal
error ε in polynomial time could be used. For example, for piecewise linear signals,
linear regression could be used etc.

Lemma 7. The HyBUTLA algorithm runs in time polynomial in the size of the input
data n.

Proof. (Rework of the proof that we published in [NSV+12]) After receiving input
sample D of size n, a prefix tree is constructed with tn states. Then the Θ functions
are learned for every state. These actions are done in Step 1 in Figure 6.3, and
they run in O(tn). In Step 2, the HyBUTLA algorithm compares t2n states in the
worst case. Function compatible (see Figure 6.6) recursively checks compatibility of
corresponding child states. Then the compatible states are merged, the automaton is

98 6 Automated Learning of 1-SDHAs from Data

determinized and the Θ functions are learned for newly created states. Thus the total
runtime of this step is O(t3n).

Now we analyze the time complexity of the additional Step 3 for splitting the
states. Splitting is based on discrete wavelet transform, whose time complexity
is O(N), where N is the number of data points for its calculation [GB97]. The
maximum number of states to be split in one iteration of the split function is the size
of the prefix tree tn (worst case when no merges have happened). There is a finite
number of its iterations. DWT is calculated for each of the tn states, thus it runs in
O(tn). The Θ functions are once again learned for the states created in this step of
the algorithm. According to Lemma 6, these functions are learned in polynomial
time.

The number of PTA states is linear in the size of the input sample, i.e. tn =
cn, where c ∈ (0, 1] is a constant. Therefore, the overall time complexity of the
HyBUTLA algorithm is O(n3). ut

Theorem 14. The class of 1-SDHAs is WeakPolyIDLimitProb1.

Proof. The result follows from Lemmas 3, 4, 5, 6, and 7. ut

Corollary 9. 1-SDHAs are IDLimitProb1. This result follows from Lemmas 3, 4, 5,
and 6.

Observation 10. Please note that the class of 1-SDHAs is polynomially reachable.
This means that a polynomial Poly exists such that for any state s from any 1-SDHA
A, there exists a learning example Di with |Di| ≤ Poly(|A|), such that Di reaches s
in A [VdWW08]. The papers [AD94] and [HKPV98] give the following decidability
preconditions for the reachability problem of hybrid automata: (i) decoupled output
variables, (ii) initialization after flow changes (i.e. after state transitions) and (iii)
having only one clock. As we emphasized in [NSV+12], the class of 1-SDHAs fulfills
these conditions as follows: (i) the output variables are decoupled based on the
available expert knowledge, (ii) Θ functions implicitly reinitialize these variables
and (iii) only one clock is used that is also reinitialized after every transition (i.e.
the clock is reset).

6.7 Conclusion

In this chapter, we presented our approach for automated learning of behavior
models for hybrid production systems from data. We have described all stages of
this approach, including data acquisition, noise removal and the learning algorithm.
Major contributions of the chapter are:

1. We gave the HyBUTLA algorithm that is, to the best of our knowledge, the first
algorithm for learning hybrid automata models, which can adequately represent
characteristics of a hybrid production system (i.e. 1-SDHA models). The models
are learned automatically from data recorded in a system.

2. We proved the convergence and polynomial runtime properties of the HyBUTLA
algorithm. This algorithm learns 1-SDHA models in the limit with probability one
from positive examples (text) only. Moreover, it is a polynomial-time algorithm,
i.e. it learns 1-SDHAs in time polynomial in the size of the input data.

6.7 Conclusion 99

3. Our research has shown that the successful application of the HyBUTLA algorithm
depends on the following expert knowledge:

• the structure of a system needs to be known (i.e. the parallelism model given
by Definition 3 in Subsection 2.1.1 must exist) and represented as a set of
sequential components that can be individually modeled by the HyBUTLA
algorithm,

• for each modeled component, sets of its discrete signals Q, continuous input
signals U and continuous output signals Y need to be known (see Definition
13 in Section 4.2),

• every used learning example needs to comprise logs (measurements) of all
aforementioned signals.

Please note that we want to learn a model of normal system behavior. Therefore,
we use only logs of normal production cycles, i.e. the positive learning examples. We
assume that all these examples are correctly labeled as normal by human experts. This
assumption is realistic in real-world hybrid production systems. Based on product
specifications and its characteristics, the experts can easily say if the corresponding
production cycle was normal or not. When, for any reason, some learning examples
are mistakenly labeled as positive, our approach will not produce a reliable model of
normal behavior.

The HyBUTLA algorithm however does not overcome the obstacle given by
Corollary 5 in Section 4.4 that 1-SDHAs cannot be learned from data, whose size
is polynomially linked with the size of the target automaton (i.e. HyBUTLA does
not learn under the strong identification criteria given by Definition 20 in Section
4.3). Finding a special type of 1-SDHAs that can be potentially learned in the strong
sense still remains a challenge for future work.

Chapter 7
Anomaly Detection Based on
Learned Behavior Models

In the previous chapter, we presented our HyBUTLA algorithm that identifies behav-
ior models for hybrid production systems automatically from data. In this chapter, we
give an approach for using these models in the anomaly detection application. This
approach serves to demonstrate that the models learned by the HyBUTLA algorithm
are really usable in solving complex safety-related tasks of real-world production
systems. The main results are summarized as follows:

• we give the ANODA algorithm that uses automatically learned behavior models
for model-based anomaly detection,

• we provide a condition under which the anomaly detection system that uses the
ANODA algorithm is the real-time system and can be used for online system
monitoring,

• the expert knowledge needed for the ANODA algorithm to be successful is
identified.

While here we give only the algorithm and show its real-time property, the
conducted experiments are given in the following chapter.

We have organized this chapter in several sections. First, we explain the basic
principle of model-based anomaly detection that uses behavior models learned
with the HyBUTLA algorithm in Section 7.1. Then, in Section 7.2 we give our
two definitions that ease the introduction to common types of anomalies in hybrid
production systems. We have also cited Hawkins’ definition of an outlier, which
focuses our attention on detecting the abnormal behavior of a system. In addition,
we describe control sequence, timing and process variable anomalies in a system.
Finally, Section 7.3 presents our ANODA algorithm, as well as six specific fault
types that the algorithm detects. As the algorithm works in an online manner (in
parallel with the running system), it is important that it satisfies the properties of a
real-time system. In Section 7.4 we recall definitions of real-time systems and prove
the condition under which the anomaly detection system, that uses our ANODA
algorithm, is a real-time system (Theorem 15). Section 7.5 concludes the chapter and
lists the expert knowledge that the ANODA algorithm requires as an input. Parts of
this chapter are based on our work published in [VKBNM11b] and [FFP+12].

101

102 7 Anomaly Detection Based on Learned Behavior Models

7.1 The Principle of Model-Based Anomaly Detection

In this section, we illustrate the principle of model-based anomaly detection that
relies on learned behavior models.

One of the most important tasks in modern industrial systems is to ensure the high
level of their reliability and safety, which is also of the greatest importance for their
productivity and efficiency. This task is becoming increasingly challenging, due to
the rapid evolution and increasing complexity of such systems. However, various
approaches have been developed over years to address this challenge (see Section
2.5), many of which are based on behavior models.

Automatic identification of behavior models can be positioned in the larger picture
that also includes the application of those models in the model-based anomaly
detection. As illustrated in Figure 7.1, the behavior model of a system can be learned
using the HyBUTLA algorithm in an offline manner, assuming enough learning
examples are provided. Once the reliable model is obtained, it can be used in parallel
with the system during its runtime, i.e. in an online manner. The set of inputs that
the system receives is also provided to its behavior model. The model calculates
the prediction of the output, which can be both the value of the continuous output
signal and the value of the discrete signal and its timing. The anomaly detection
algorithm compares such a prediction with the observation coming from a system in
the real-time. In case any significant discrepancy is detected, the anomaly (fault) is
signaled to the operators of the system, which conduct a necessary action.

 Offline learning

SYSTEM

1-SDHA MODEL

HyBUTLA

learning algorithm

 Online anomaly detection

X

ANOMALY

DETECTION

ALGORITHM

yobserved

ypredicted

Fault

Fault

Input u

Expert

knowledge

Logs

Fig. 7.1 Anomaly detection based on models learned with the HyBUTLA algorithm.

7.2 Anomalies in Hybrid Production Systems

Here we recall basic definitions of interest for anomaly detection, and explain three
typical anomaly types that occur in hybrid production systems.

Generally speaking, the purpose of the anomaly detection is to find the anomalous
(i.e. unlike, unexpected) objects, usually referred to as the outliers, which are caused
by the faulty operating conditions. To be able to present types of these objects, we
give the following two definitions, that we initially published in [VKBNM11b].

7.2 Anomalies in Hybrid Production Systems 103

Definition 24 (Path Through the Automaton). Let A = (S, s0,Σ, T,∆, P, x,Θ)
be a hybrid automaton, according to Definition 14. A path PA through the automaton
is defined as a sequence of transitions, i.e. PA ⊆ T .

Definition 25 (Observation of a System). An observation of a system is defined as
a tuple o = (a, t,u, y), where:

• a ∈ Σ is the symbol that triggers a transition,
• t is a relative time value (relative to the last control signal change),
• u is the vector of values of the continuous input signals, which is used for predict-

ing the output value yp,
• y is the observed value of the continuous output signal, which is compared with

the predicted output yp.

Anomalies in complex systems can have various causes. It is well-known that
every dataset coming from a real-world running entity (such as a component of
a process plant) comprises a so-called natural (normal) variability. For example,
while most of the measurements of some constant signal under the same normal
operating conditions have similar values, sometimes a measurement appears whose
value is “far away” from the others. Based on such a measurement, the anomaly
detection algorithms could wrongly recognize a faulty condition of a system. This
data variability can be created by the imperfections in sensors, measurement noise,
external disturbances or a human factor. Anomaly detection algorithms often need to
be adjusted to account for this phenomenon. We are however interested in detecting
the real anomalies, i.e. those that are caused by the faulty operating conditions
appearing in a system during its runtime. These are defined by a statistician D.
Hawkins.

Definition 26 (Hawkins’ Definition of an Outlier [Haw80]). An outlier is an ob-
servation that differs so much from other observations as to arouse suspicion that it
was generated by a different mechanism.

Anomalies in hybrid production systems can originate in both discrete control
system, as well as in the continuous physical system. Three common types of
anomalies are explained in the following.

Control sequence anomaly: In production facilities, the process is controlled by
a control system, which emits discrete control signals such as the signal to open
or close a valve. After emitting such control signal, the control system receives
the feedback signal within some predefined time interval. This feedback carries
the information was the action successfully executed or not. The control sequence
anomaly occurs when the control or feedback signal is wrong. When we look at
the automaton model of the system, where each control signal and its feedback is
represented as a transition from one state to another, it gets clear that by following
the transitions that are triggered in normal operating conditions, one can easily
detect the abnormal behavior. Since the probability of triggering a non-existing
transition is zero, the appearance of every transition-triggering symbol in any state
in which that particular symbol should not occur, signals an anomaly.
This can be illustrated on the example of a heater that heats a raw material in some
container. After the temperature reaches the predefined threshold, the following
control signal (symbol) should be ‘heater off’. The control sequence anomaly
is detected if instead of that symbol, a symbol ‘empty container’ occurs, which

104 7 Anomaly Detection Based on Learned Behavior Models

opens the container and releases the material. Figure 7.2 illustrate this scenario,
where the anomaly is represented as a non-existing path through the automaton,
i.e. PAautomaton 6= PAobserved.

s4

s5

serr

heater off

empty container

s3

heater on

PAautomaton = (...(s3, ´heater on´, s4, δ1), (s4, ´heater off´, s5, δ2), ...)

PAobserved = (...(s3, ´heater on´, s4, δ1), (s4, ´empty container´, serr, δerr))

δ1

δ2

δerr

Fig. 7.2 Example of the control sequence anomaly.

Timing anomaly: Using the automaton behavior model, observed timings of all
occurring symbols (changes in discrete control signals) are simply compared with
the learned timing constraints (i.e. time intervals δ, see Definition 13). The timing
anomaly is detected when the existing symbol is observed before or after the
corresponding time interval of the transition it triggers. Based on the existing time
delays in the system and the requirements imposed on time (such as real-time
requirements), the timing anomaly can be reported to the operator in various ways.
When the symbol timing is “very close” to the transition time interval (but still
outside of that interval, e.g. less than a second too early or too late), some sort of
warning could be signaled. When the symbol timing is however “far away” from
the interval, an alarm could be raised to the operator.
An example of such an anomaly is illustrated in Figure 7.3. While being in a state
s1, an observation: o = (a, t,u, y) is recorded, where t = 7. Although the symbol
is correct, it can be seen that its timing t 6∈ δ since it occurred two time units
too late. Thus, the anomaly is detected. Time units can be expressed as any time
instance (e.g. seconds or minutes), depending on the concrete system in question.

s1 s2
...a

δ=[2,5]
...

o = (a, 7, u, y)

Fig. 7.3 Example of the timing anomaly.

Process variable anomaly: Both aforementioned anomaly types originate in the
discrete control system. A very important anomaly type that can occur in the
continuous physical system is the process variable anomaly. In every system, it is
important to monitor the values of the continuous output variables that depend
on the values of the continuous input variables. Typically, all such outputs need
to be compared with their reference (predicted) values, which describe their
normal behavior. Normally, the thresholds are given for all output variables and
when the difference between the observed and the reference value exceeds the
corresponding threshold, an anomaly is signaled. The use of learned behavior

7.3 The ANODA Algorithm 105

models, which also model the behavior of continuous output variables, enables
calculation of reference values dynamically, based on provided inputs.
A real-world example of the process variable anomaly is given in Figure 7.4
(that we originally published in [FFP+12]). A one-clock stochastic deterministic
hybrid automaton behavior model has been learned for a component of a hybrid
system. The monitored output process variable is the component active power,
whose normal behavior (prediction of the model) is given in Figure 7.4(a). This
figure also shows several states of the corresponding learned automaton, whose θ
functions approximate marked segments of the signal. Figure 7.4(b) shows the
active power signal observed during the runtime of the system. It can be seen that
the process variable anomaly has been detected in the automaton state s1.

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

Time (s)

A
c
ti

v
e
 p

o
w

e
r

(W
)

s0

s1 s2

...

a
b c

s3

...

(a) Predicted behavior (normal).

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

Time (s)

A
c
ti

v
e
 p

o
w

e
r

(W
)

(b) Observed behavior (energy overconsumption).

Fig. 7.4 Real-world example of the anomalous energy consumption [FFP+12].

7.3 The ANODA Algorithm

In order to demonstrate the usability of learned 1-SDHA models in anomaly detec-
tion applications, we have developed the ANOmaly Detection Algorithm (ANODA)
[VKBNM11b]. It is presented in this section.

The ANODA algorithm runs the model in parallel with the system and detects
all significant discrepancies between their behaviors, which could indicate: control

106 7 Anomaly Detection Based on Learned Behavior Models

sequence, timing, and process variable anomalies that are explained in the previous
section. More specifically, the algorithm targets the following fault types:

1. unknown control event occurred (f1),
2. control event occurred too early (f2),
3. control event occurred too late (f3),
4. signal zero value (f4),
5. signal drop (negative offset into the signal, f5),
6. signal jump (positive offset into the signal, f6).

Fault f1 is a control sequence anomaly, f2 and f3 are timing anomalies, while
faults f4, f5, and f6 represent process variable anomalies.

Since it works in an online manner, the ANODA algorithm receives the observa-
tions of a system periodically, at the rate that corresponds to the sampling rate of the
system. The sampling rate could vary significantly based on the application area (e.g.
1 sample per second (1 Hz) for fast processes or 1 sample per minute for processes
with large time delays).

The ANODA algorithm is given in Figure 7.5. It uses the learned one-clock
stochastic deterministic hybrid automaton (1-SDHA) A for monitoring the behavior
of a running system. Its observations, which include the observed symbol a ∈ Σ, its
timing t, the vector of continuous input values u, and the observed continuous output
value y are periodically provided to the algorithm. In addition, the ANODA uses
case-based expert knowledge, which includes a predefined alarm threshold ξ and the
measurement range [LR,HR] of the monitored output y. The difference between
y and the predicted output value yp is calculated and compared with the deviation
ξ from the measurement range. In case this difference is lower or higher than the
allowed value, an alarm is triggered.

The algorithm works as follows. First for every received observation o =
(a, t,u, y), the set T ′ is defined that contains all transitions from the current state
scurr that can be triggered by the symbol a (line 1 in Figure 7.5). The minimum
tmin and the maximum tmax timing of the appearance of the symbol a is found (if
T ′ = ∅ these values are not defined and will not be further used by the algorithm). In
case T ′ is an empty set, the fault unknown event is detected (lines 2-3). Otherwise,
the transitions τ ∈ T ′ are iterated (line 5), and it is checked if any of them has
the time interval δτ that contains the observed symbol time t (line 6). If none such
transition exists, it is checked how much earlier or later than expected has the symbol
a occurred, by comparing its timing t with tmin and tmax values respectively. Based
on this comparison, either the fault event too early (lines 22-23) or the fault event too
late (lines 24-25) is signaled to the operator. However, if the transition τ is found
whose timing constraint δτ contains t and whose destination is some state snew ,
this state is set to be the current state scurr (line 7). Based on the timing t and the
inputs u, the predicted output value yp is calculated by the function θscurr (line 8).
Then the difference diff between yp and y is calculated (line 9). In case yp 6= 0 and
y = 0, the fault zero value of the signal (lines 10-11) is signaled. Otherwise, based
on the comparison of diff with the allowed deviation ξ of the monitored variable
from the lower LR and upper HR value of the measurement range, the faults signal
drop (lines 12-13), and signal jump (lines 14-15) can be detected respectively. If
diff is actually within the predefined tolerance, the algorithm returns “OK” (line 17)
indicating that the given observation is anomaly-free. Please note that in order for
the ANODA algorithm to work, a measurement range [LR,HR] needs to be known,

7.4 Real-Time Properties of the ANODA Algorithm 107

Given:
(1) 1-SDHA A = (S, s0,Σ, T,∆, P, x,Θ) according to Definition 14
(2) An observation o = (a, t, u, y) (according to Definition 25).

ANODA algorithm receives such observations periodically.
(3) ξ is a predefined alarm threshold for monitoring continuous output signal (e.g. 5% or 10%)
(4) [LR,HR],LR > 0 is a measurement range for monitored output variable y.

This range us used as a reference for discrepancy calculation.
(5) scurr := s0, at the beginning, the current state is the initial state
Result: detected fault (if there exists one), otherwise “OK”
(1) T ′ = {τ = (scurr , a, snew , δτ) ∈ T}, scurr ∈ S, a ∈ Σ, ∀snew ∈ S,∀δτ ∈ ∆

T ′ ⊆ T is a set of all transitions with the source state scurr and the symbol a.
Find tmin = minτ (t1τ) and tmax = maxτ (t2τ) where δτ = [t1τ , t2τ], τ ∈ T ′

(2) if T ′ = ∅ then
(3) return fault: unknown event
(4) else
(5) while notEmpty(T ′) do
(6) if t ∈ δτ then
(7) scurr := snew
(8) yp = θscurr (t, u)
(9) diff = yp − y
(10) if y = 0 and yp 6= 0 then
(11) return fault: zero value of the signal
(12) else if diff ≥ ξ · LR then
(13) return fault: signal drop
(14) else if diff ≤ −ξ ·HR then
(15) return fault: signal jump
(16) else
(17) return OK
(18) end if
(19) else T ′ = T ′\{τ}
(20) end if
(21) end while
(22) if t < tmin then
(23) return fault: event too early at least tmin − t time instances
(24) else if t > tmax then
(25) return fault: event too late at least t− tmax time instances
(26) end if
(27) end if

Fig. 7.5 The ANODA algorithm.

i.e. it needs to be provided by the domain experts for every monitored continuous
output variable.

7.4 Real-Time Properties of the ANODA Algorithm

Since the ANODA algorithm works in an online manner, it is important to analyze
its real-time properties. In this section, we first cite several important definitions of
real-time systems. Then we give and prove the condition under which the anomaly
detection system that uses the ANODA algorithm is a real-time system.

Hybrid production systems belong to a group of systems in which data are being
processed in periodic and timely manner. One of the main properties of such systems

108 7 Anomaly Detection Based on Learned Behavior Models

is that there is a certain delay between reception of the input data and appearance of
the output data (i.e. a processing result). This delay is called the response time of the
system, and is defined in the following.

Definition 27 (The Response Time of the System [Lap04]). The time between
the presentation of a set of inputs to a system (stimulus) and the realization of the
required behavior (response), including the availability of all associated outputs, is
called the response time of the system.

The system that has limits imposed on its allowed response time is generally
known as the Real-Time System (RTS). One of the broadest and oldest definitions is
given by Young:

Definition 28 (Real-Time System [You82]). A Real-time system is any information
processing activity or system which has to respond to externally generated input
stimuli within a finite and specifiable delay.

From the philosophical point of view, any practical real-world system is actually
the real-time system. Therefore, a distinction is made between so-called soft, hard
and firm RTSs. These are defined as follows:

Definition 29 (Soft Real-Time System [Lap04]). A soft real-time system is one in
which performance is degraded but not destroyed by failure to meet response-time
constraints.

Definition 30 (Hard Real-Time System [Lap04]). A hard real-time system is one
in which failure to meet a single deadline may lead to complete and catastrophic
system failure.

Definition 31 (Firm Real-Time System [Lap04]). A firm real-time system is one
in which a few missed deadlines will not lead to total failure, but missing more than
a few may lead to complete and catastrophic system failure.

The examples of a soft, hard and firm RTS are respectively an automated teller
machine, a flight control system of a combat aircraft, and an operating system such as
UNIX that responds to user commands within several seconds [Lap04]. Further RTS
applications, such as process control and manufacturing, can be found in [BW01].

A failure of the anomaly detection systems in production facilities to timely detect
emerging anomalies and to trigger the appropriate alarms correspondingly, could
result in catastrophic failures that jeopardize human lives and property. Such systems
need to be sufficiently fast, accurate and reliable. Therefore, they represent a type of
hard RTS. Since they need to monitor the condition of a system in an online manner
(i.e. during runtime), they periodically receive a set of inputs and need to periodically
return the predictions of the outputs. We now give and prove the following theorem
that gives the condition under which the anomaly detection system, which employs
the ANODA algorithm, is a hard RTS:

Theorem 15. Anomaly detection system that uses the ANODA algorithm for online
monitoring of a monitored system is the RTS if it holds:

Tresp ≤
1

fs
, (7.1)

7.4 Real-Time Properties of the ANODA Algorithm 109

where Tresp is the response period of the ANODA algorithm, and fs is the sampling
rate of a monitored system. The rate fs corresponds to the rate with which the
algorithm receives observations from the system.

Proof. We use the proof by contradiction. Let us assume the following:

Tresp >
1

fs
. (7.2)

As already explained, the ANODA algorithm periodically receives the observations
of a system (see Definition 25) and checks the correctness of the observed control
signals and their timings, as well as the normality of the values of continuous output
variables. It uses the values of continuous input variables to predict the values of
continuous outputs. Then it compares these predictions with real, observed values
of the outputs. If their discrepancy is larger than some predefined threshold, the
algorithm signals an appropriate anomaly.

Let to1 , to2 , to3 ... be the absolute timings of the corresponding observations
o1, o2, o3... that the ANODA algorithm periodically receives with the sampling rate
fs. Let tr1 , tr2 , tr3 ... be the absolute timings of the corresponding responses of the
algorithm. These timings are denoted in Figure 7.6, which shows the communication
between the monitored and the anomaly detection system.

Monitored system

Anomaly detection system that uses the ANODA algorithm

tto1 to2 to3 to4 to5tr1 tr2 tr3

Tresp

1/fs
0

Fig. 7.6 Timings of observations and responses for Tresp >
1
fs

.

In general case, there is no parallel processing, i.e. the ANODA algorithm can
process only one observation at the time. For example, the processing of the obser-
vation o2 can only start at the time tr1 , i.e. after the processing of the observation
o1 has been finished. From Definition 28 it follows that the difference tri − toi ,∀i
needs to be finite, in order for a system to be a RTS.
From (7.2) we further have:

Tresp −
1

fs
= ∆t. (7.3)

Timings of responses of the ANODA algorithm are then (as shown in Figure 7.6):

tr1 = Tresp ,

tr2 = 2 · Tresp ,

110 7 Anomaly Detection Based on Learned Behavior Models

...
tri = i · Tresp ,

...

Timings of the observations are:

to1 = 0,

to2 =
1

fs
,

...

toi = (i− 1) · 1

fs
,

...

By subtracting the timing of the i-th observation from the timing of the i-th response
it is obtained:

tri − toi = i · Tresp − (i− 1) · 1

fs
= i ·

(
Tresp −

1

fs

)
+

1

fs
. (7.4)

From (7.3) we get:

tri − toi = i ·∆t+
1

fs
. (7.5)

In the limit it is obtained:

lim
i→∞

(tri − toi) = lim
i→∞

(
i ·∆t+

1

fs

)
=∞, (7.6)

which means that the response time of the ANODA algorithm gradually grows with
the number of received observations and eventually gets infinite. That is contradictory
to Definition 28.

In the online monitoring, it is important that the algorithm returns the feedback
about the normality of the current observation, before the next observation comes.
Only in that way the potentially required actions (in case the anomaly is detected)
could be timely undertaken. Otherwise, a catastrophic system failure could occur.
Therefore, when the condition (7.1) given in Theorem 15 is satisfied, the anomaly
detection system that uses the ANODA algorithm for online monitoring is a hard
RTS. ut

7.5 Conclusion

This chapter gave an insight in one of the most important application areas of behavior
models: the model-based anomaly detection. It introduced the means of detecting
anomalous behavior of a system by using automatically learned behavior models.
Our contributions given in this chapter are:

7.5 Conclusion 111

1. We presented our ANODA algorithm, which uses automatically learned behavior
models for detecting abnormal behavior of a hybrid production system. Models
are learned using the HyBUTLA algorithm presented in the previous chapter.

2. We have proven that the anomaly detection system, which uses the ANODA
algorithm, satisfies the property of the real-time system under the given condition
(Theorem 15). When this condition is satisfied, the algorithm can be applied in
the online monitoring of a system behavior.

3. In addition to fulfilling the real-time property condition and having the behavior
model available, the ANODA algorithm requires the following expert knowledge:

• sampling rate fs of a monitored system, which is typically known for every
plant (needed for evaluating the real-time condition),

• response period Tresp of the ANODA algorithm, which needs to be obtained
separately from simulations for every concrete system (needed for evaluating
the real-time condition),

• measurement range [LR,HR],LR > 0 for every process variable that we want
to monitor (needed for detecting process variable anomalies),

• a predefined alarm threshold ξ that defines the allowed deviation of a monitored
variable from its normal value.

Part IV

Case Studies in Learning and
Anomaly Detection

Chapter 8
Real-World Plants

In this chapter, we demonstrate the practical applicability of our HyBUTLA and
ANODA algorithms in the real-world. We conducted experiments in two running
production facilities, i.e. in the plant of Jowat AG in Detmold, Germany, and in the
Lemgo Model Factory at the Institute Industrial IT in Lemgo, Germany. Our main
contributions given in this chapter are the following:

• we give the comparative empirical analysis on learning several types of stochastic
finite automata, including 1-SDHAs,

• we identify the important trade-off between the model size reduction and the
accuracy of approximating the continuous dynamics in a system, which enables
selection of the appropriate model depending on the application area,

• in the real plant, we show that the prediction errors of the HyBUTLA algorithm
drop as more data are used for learning,

• we show how even behavior models identified using only 12 learning examples
can detect six types of faults (described in Section 7.3) in the real system with
excellent or acceptable accuracies.

The chapter is structured as follows. First, in Section 8.1 we define several criteria
for comparing the four algorithms that learn different stochastic finite automata,
namely the algorithms ALERGIA, MDI (both for learning SDFAs), BUTLA (for
learning 1-SDTAs) and HyBUTLA (for learning 1-SDHAs). We have evaluated and
compared them using a dataset coming from the plant of Jowat AG. Section 8.2
describes the Lemgo Model Factory and presents several models learned using the
HyBUTLA algorithm for one of its components. We devoted a special attention to
applying these models to anomaly detection using the ANODA algorithm in Section
8.3. Finally, the chapter is concluded in Secion 8.4.

While some experimental results presented in this chapter are new, some are
already published with various experimental settings and parameters in [VKBNM11a,
VKBNM11b, NSV+12, FFP+12, Vod12, Vod13, VMN13].

115

116 8 Real-World Plants

8.1 Comparative Empirical Analysis on Learning Automata

In this section, we present the evaluation results of the ALERGIA, MDI, BUTLA,
and HyBUTLA algorithms (see Section 2.4.2) using the same data coming from the
plant of Jowat AG.

In general, different algorithms are often applied in different areas using different
datasets. Therefore, it is often hard to compare them empirically, which creates a lack
of comparative analyses in many fields. Such is the field of grammatical inference
and learning stochastic finite automata, where algorithms learn somewhat specific
structures for which common comparison criteria have to be defined [VMN13]. In
order to help solving this issue, we conducted the empirical analysis given in this
section. Since the HyBUTLA is to date the only algorithm capable of learning hybrid
automata, we cannot compare it with other hybrid automata learning approaches.
However, by ignoring the continuous data and the timing information, we were able
to compare the models it learns with the models learned by the other aforementioned
three algorithms. Moreover, the HyBUTLA is the only algorithm out of the four
algorithms that includes the splitting step. To make the comparison possible, the
splitting step (i.e. the split function given in Subsection 6.5.2) was here excluded
from consideration. The common comparison criteria are described in the following
subsection.

8.1.1 Common Criteria for Evaluating Learning Algorithms

First, we have defined the common criteria for evaluating the learning algorithms.
We have originally published them in [VMN13] and they are given as follows:

#states: The number of states is the primary measure of the automaton size. In
general, the goal is to obtain the smallest possible behavior model of a system, with
the highest possible accuracy of representing system dynamics.

#merges: The number of successful merges tells how many pairs of states have
been merged during learning. It is closely related to the number of states, as the sum:
(#states + #merges) equals to the number of states in the prefix tree. State merging is
used to reduce the automaton size, but also to increase its generality. Intuitively, the
more successful merges, the higher is the generalization ability of the algorithm.

#comparisons: During a merging step, a search procedure is performed in order
to find as many compatible states as possible. The more comparisons are made, the
higher is the chance that compatible states will be found and merged.

#determinizations: As stated earlier, some algorithms use a top-down, while others
use a bottom-up merging order. While merging in a top-down order, the large subtrees
of a prefix tree are encountered. Thus, the occurrence of non-determinism in the
automaton is more frequent. The number of determinizations indicates the portion of
non-determinism created during the merging step, which needs to be resolved by the
learning algorithm.

Size reduction (%): Size reduction is the measure of the relative difference between
the sizes of the prefix tree (#PTAstates) and the final automaton (#states). It is
calculated as (#PTAstates - #states) ·100 / #PTAstates. Successful algorithms can
achieve high rates of size reduction.

8.1 Comparative Empirical Analysis on Learning Automata 117

R2 (%): The averaged coefficient of determination R2 (%) over the automaton
states (given by the expression (6.12)) shows the portion of variability in the contin-
uous data that is accounted for by the regression function used for approximation.
Average R2 can be measured only for the HyBUTLA algorithm and it shows its
ability to model the continuous dynamics of the system. In the following experiments,
Multiple Linear Regression with Linear Terms (MLR-LT) was used as the regression
method [HTF08].

8.1.2 Algorithm Evaluation at Jowat AG

With the courtesy of the Jowat AG company, we were able to conduct experiments at
one of the plants, using the ALERGIA, MDI, BUTLA, and HyBUTLA algorithms.
We have originally published the following two paragraphs in [VMN13] (the first
one being publicly available description of the company).

The Jowat AG with headquarters in Detmold is one of the leading suppliers of
industrial adhesives. These are mainly used in woodworking and furniture manufac-
ture, in the paper and packaging industry, the textile industry, the graphic arts, and
the automotive industry. The company was founded in 1919 and has manufacturing
sites in Germany in Detmold and Zeitz, plus three other producing subsidiaries, the
Jowat Corporation in the USA, the Jowat Swiss AG, and the Jowat Manufacturing in
Malaysia. The supplier of all adhesive groups is manufacturing approx. 70,000 tons
of adhesives per year, with around 790 employees. A global sales structure with 16
Jowat sales organizations plus partner companies is guaranteeing local service with
close customer contact.

The data was logged in one of the plants, during production of one product. In
total 14 production cycles were logged. The modeled part of the system is the input
raw material subsystem, which contains 6 material supply units (smaller containers)
connected to a large container where materials are mixed. Recorded discrete variables
are 15 valve open signals and their feedbacks (in total 30 discrete variables). The
continuous output variable whose dynamics was learned is the large container weight.
Continuous input variables are weights of 6 smaller containers and the pressure of
the raw material pump. The results of the algorithms’ comparison are given in Table
8.1.

Table 8.1 Algorithm comparison for Jowat AG data.

Algorithm
Criterion ALERGIA MDI BUTLA HyBUTLA

#states 27 16 17 13
#merges 418 429 473 507

#comparisons 1025 605 4526 3576
#determinizations 348 578 150 111
Size reduction (%) 93.93 96.4 96.5 97.5
MLR-LT R2 (%) - - - 89.8

We interpret these results as in [VMN13]. In modeling the component of this
real-world system, all four algorithms achieved high size reduction rates. This shows

118 8 Real-World Plants

their ability to produce small and more general models. Learned models with 13
to 27 states can be easily visualized, understood and interpreted by human experts.
Therefore, they provide a good insight in the system modes of operation and its
behavior in general. Obtaining such insight from prefix trees with several hundreds of
states (in this case 400–500 states) is not possible. It can be seen that the bottom-up
algorithms (i.e. BUTLA and HyBUTLA) perform much more comparisons than the
top-down algorithms (ALERGIA and MDI). Although this negatively affects their
runtime, it basically means that they perform a more thorough search for compatible
states in the prefix tree. Unfortunately, at the time of writing this thesis the only
available implementations of the algorithms were on different platforms, so we could
not make a reliable comparison of the runtime itself. Another interesting aspect is that
the top-down algorithms create more non-determinism during merging, which needs
to be resolved. Thus, they perform significantly more determinizations. Last but
not the least, even with relatively simple regression method, such as multiple linear
regression with linear terms, and without applying the additional splitting step of the
HyBUTLA algorithm, it still achieved a relatively high R2 value of around 90%. In
the following, such learned behavior models will be used for anomaly detection.

8.2 Learning Behavior Models for the Lemgo Model Factory

This section first briefly describes the second real-world production facility that we
used for demonstrating our approach, the so-called Lemgo Model Factory. Then, the
models learned for a component of this facility using the HyBUTLA algorithm are
presented. Such models are used for executing the anomaly detection experiments,
which are presented in Section 8.3.

8.2.1 Plant Description

The Lemgo Model Factory (LMF) is the exemplary hybrid production system at the
Institute Industrial IT in Lemgo, Germany. It represents a small plant for storing,
transporting, processing and packing bulk materials, such as corn. It is made of several
modules, namely: the storage system, transportation system, weighting station, bottle-
filling mechanism, material-processing facility, product packing system, bearing
robot, and lid robot. These modules consist of a number of components, such as
distributed PLCs, industrial networks (using e.g. the PROFINET protocol [PM08]),
conveyor belts, and a popping machine. These components are already identified by
the manually created parallelism model, which is explained in Subsection 2.1.1. The
plant comprises around 250 measurable discrete and continuous signals. We show
one part of the plant’s interior in Figure 8.1.

The component of the LMF that we modeled using our HyBUTLA algorithm is
the popping machine. It consists of one container, the fan and the heater. First, the
corn is delivered to the container and then the heater and fan are activated. The fan
blows the hot air inside the container and creates popcorn as a result.

Logs made during described production cycle represent one learning example of
the popping machine. They comprise the time stamp and the logs of: six discrete
binary control signals, five continuous input signals and one continuous output signal.

8.2 Learning Behavior Models for the Lemgo Model Factory 119

Fig. 8.1 One part of the Lemgo Model Factory.

This signal is the active power of the popping machine heater. Figure 8.2 shows its
typical time diagram. The normal measurement range of this signal is 150–3250 W.
This information (expert knowledge) is important for the ANODA algorithm, which
can detect significant deviations of this signal from the lower or upper bound of the
measurement range. The data sampling rate at the popping machine is 1 Hz. For
learning models, we had logs of 12 production cycles at our disposal, which are by
experts identified as normal (i.e. recorded during normal operating conditions in the
plant). Logs of the additional 13th cycle are used as a test example for the anomaly
detection experiments given in the following section. In the average, the example
length is 191 samples (i.e. the average production cycle lasts around three minutes).

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

Time (s)

A
ct
iv
e
p
ow

er
(W

)

Fig. 8.2 Active power signal of the popping machine heater.

120 8 Real-World Plants

8.2.2 Models Learned with the HyBUTLA Algorithm

In our papers cited at the beginning of this chapter, we have published several case
studies conducted at LMF and gave properties of various models learned using the
HyBUTLA algorithm. In all those cases, an interesting trade-off was observed that
we want to present and explain here. To that aim, we first give properties and learning
times of several popping machine models identified by our algorithm. The general
goal was to learn the smallest possible model, with the highest possible accuracy of
approximating the continuous output signal.

The properties of the Prefix Tree Acceptor (PTA) and two specific learned behavior
models are given in Table 8.2. We denoted the first learned model by Amin . It is the
smallest model identified by the HyBUTLA algorithm without the application of the
additional splitting step (model obtained for α = 0.25, see the expression (6.3)). The
split function (see Subsection 6.5.2) was applied to this model and resulted in the
second model denoted by Asplit . For these three models (i.e. PTA, Amin and Asplit)
Table 8.2 gives: their number of states, the size reduction (in relation to the PTA
size), the average model coefficient of determination achieved using the multiple
linear regression with linear terms (MLR − LT R2), and total learning times.

Table 8.2 Properties of learned behavior models and their learning times.

Automaton
Properties PTA Amin Asplit

#states 52 7 24
Size reduction (%) 0 86.5 53.9
MLR-LT R2 (%) 78.3 75.1 93.5
MLR-LT time (s) 3.4 7.1 185.3

It can be seen that by merging the PTA states a very small model Amin is obtained
with only seven states. Thus, the reduction of the PTA size obtained by merging its
states is over 86%. By applying the splitting step, this size reduction has unfortunately
decreased, but the MLR-LT R2 of the final Asplit model has increased by around
18% in the absolute value comparing to Amin . It is interesting that this final model
has higher MLR-LT R2 even than the PTA itself.

Table 8.2 presents only three specific learned models. However, during the splitting
step a number of models with different sizes and coefficients of determination were
created. We have summarized their main properties and showed them graphically
in Figure 8.3. Three aforementioned models are denoted at the bottom of the figure.
This figure illustrates the existing trade-off between the model size reduction and the
accuracy of approximating the continuous output signal. It demonstrates the benefit
that our split function has brought to the HyBUTLA algorithm. Depending on the
application area, the flexibility now exists to select a model with the appropriate
size-accuracy ratio. Furthermore, the model with the R2 of over 93% (Asplit) is in
this example learned using the simple MLR-LT method for regression. This approach
is several times faster than our previous approach without the split function, where
continuous output signals had to be learned with neural networks in order to achieve
high R2 values [VKBNM11a].

8.3 Anomaly Detection Experiments 121

52
PTA

7
Amin

8 10 13 15 16 17 18 19 21 23 24
Asplit

0

10

20

30

40

50

60

70

80

90

100

Number of model states

P
T
A

si
ze

re
d
u
ct
io
n
a
n
d
m
o
d
el

R
2
(%

)

bC

bC bC
bC

bC
bC bC bC bC bC

bC
bC bC

rS
rS rS

rS

rS
rS rS rS rS rS rS rS rS

Size reduction (%)
MLR-LT R2 (%)

bC
rS

Fig. 8.3 Trade-off between the size reduction and function approximation accuracy.

8.3 Anomaly Detection Experiments

This section demonstrates the usability of behavior models learned with our Hy-
BUTLA algorithm in the anomaly detection application. Experiments are conducted
at the LMF using our ANODA algorithm for anomaly detection (see Section 7.3).
We have already published several such studies in papers cited at the beginning of
this chapter. However, they focus on special types of anomalies (e.g. signal drop by
10% [VKBNM11a, FFP+12]). Here we give much more comprehensive results (e.g.
signal drop by various values, ranging from 2% to 25%).

8.3.1 The Setting

As already explained in Section 7.3, the ANODA algorithm targets six types of faults,
namely (i) unknown control event occurred (f1), (ii) control event occurred too early
(f2), (iii) control event occurred too late (f3), (iv) signal zero value (f4), (v) signal
drop (negative offset into the signal, f5), and (vi) signal jump (positive offset into
the signal, f6). Faults f1, f2, and f3 originate in discrete control system, while faults
f4, f5, and f6 occur in continuous physical system.

For evaluating the performance of the ANODA algorithm in detecting these faults,
the ratios of the numbers of correctly and incorrectly classified samples are used.
These are defined by a table called confusion matrix [Faw06]. The general confusion
matrix is shown in Table 8.3 and it presents the number of True Positive, False
Positive, False Negative, and True Negative samples. These numbers are explained
as follows:

• True Positive (TP) is a sample that is truly anomalous and recognized as such by
the anomaly detection algorithm.

• False Positive (FP) is a sample that is anomaly-free, but recognized as anomalous.

122 8 Real-World Plants

• False Negative (FN) samples contain an anomaly, which is not detected by the
algorithm.

• True Negative (TN) is a truly normal sample that is recognized as such by the
algorithm.

Table 8.3 The confusion matrix.

Actual condition
Test outcome Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Based on the numbers of these samples, the following performance metrics are
calculated (all expressed as a percentage):

• Specificity (true negative rate) is the probability that the test outcome is negative
(i.e. anomaly-free), given that the condition is indeed negative (not anomalous).
We calculate it using the formula:

Specificity =

∑
TN∑

FP +
∑
TN

. (8.1)

• Sensitivity (true positive rate) is the probability that the test outcome is positive (i.e.
the anomaly is detected), given that the condition is indeed positive (anomalous).
It is calculated as:

Sensitivity =

∑
TP∑

TP +
∑
FN

. (8.2)

• Accuracy is a single number that summarizes capabilities of the anomaly detection
algorithm. It represents the probability of accurate test outcomes:

Accuracy =

∑
TP +

∑
TN∑

TP +
∑
TN +

∑
FP +

∑
FN

. (8.3)

We use these performance metrics to evaluate how good our ANODA algorithm
detects certain deviations of monitored signals from their normal values.

As explained before, the ANODA algorithm receives observations (measurements
of input and output signals) periodically, uses inputs and learned behavior model
to predict outputs, and compares those predictions with the outputs’ real values (as
shown in Figure 7.1). In our real-world example at the LMF, the sampling rate is
1 Hz, which means that the algorithm receives one observation from the system
per second. Following Theorem 15, the ANODA algorithm can work only when its
response time is not greater than the period of receiving observations from the system.
Our analysis and simulations have shown that for the popping machine component
of the LMF, algorithm’s maximum response time is 1.4 ms. Therefore, the condition
given by Theorem 15 is in this case fulfilled.

Please note that in models used for anomaly detection in experiments given here,
the behavior of continuous output signals (i.e. the θ functions of automata) is learned
using relatively simple multiple linear regression with linear terms. The usage of

8.3 Anomaly Detection Experiments 123

more sophisticated regression methods (e.g. support vector regression) would most
likely improve the results at the cost of an increased runtime of our approach.

8.3.2 Anomalies in the Discrete Control System

8.3.2.1 Anomaly Detection

The faults unknown control event occurred, control event occurred too early and
control event occurred too late originate in the discrete control system. In order to
evaluate how good the ANODA algorithm detects such faults in the popping machine
component of the LMF, we conducted a number of experiments.

The behavior model (one-clock stochastic deterministic hybrid automaton) was
learned using logs of 12 production cycles (i.e. the training set). The aforementioned
faults are inserted in the logs of the 13th cycle, which was not used for learning (i.e.
the test set). For each fault type, we performed 100 experiments whose results are
averaged. In the absence of these artificially induced faults, the test cycle fully com-
plies with the learned model, i.e. normally no alarms would be signaled. Therefore
and due to the fact that all anomalies in the discrete control system can be detected
in a deterministic way as described in Section 7.2, maximum values of specificity,
sensitivity and accuracy are reached.

8.3.2.2 Generalization of Learned Models

Aforementioned positive result tells however nothing about the generalization of
learned models, i.e. it is questionable how good a learned model generalizes to
an independent dataset that was not used for learning. We want to show that the
number of wrongly detected faults by the learned model and the ANODA algorithm is
significantly smaller when more examples are used for learning. In order to assess the
model generalization, we use a technique called the K-fold cross validation [RN10].
The available dataset is divided into K equal subsets of learning examples. Then K
rounds of learning are carried out, each time keeping 1/K of examples as the test set,
while remaining are used for learning. For every learned model, an error is measured
on test examples and the results are averaged. In our experiments on generalization,
we first used the modified 2-fold cross validation. Modification comes from that
fact that the number of examples available for these experiments from the popping
machine component of the LMF is 13, and therefore two subsets cannot have the
same size.

Nevertheless, we first picked seven cycles as a training set and used other six
for testing. Training cycles are selected using a random number generator with an
uniform distribution. The results are shown in Table 8.4. Since both the training and
test set comprise the positive (i.e. normal) learning examples, we have measured the
number of wrongly detected faults in the discrete control system for each individual
test cycle and then summarized the results. As Table 8.4 shows, only unknown event
fault had low prediction error of about 5%, while both event too early and event too
late had unacceptable errors of around 13% and 29% respectively. In total, around
47% of correct events were falsely recognized as anomalous, since they are not
represented in the learned model of normal behavior.

124 8 Real-World Plants

Table 8.4 Results of the modified 2-fold cross validation for the component of the LMF. Cycles: 2,
3, 6, 7, 10, 12, and 13 are used for learning.

Wrongly detected faults
#Unknown #Events #Events #Incorrect #Total

Test cycle ID events too early too late events events

1 1 0 3 4 4
4 0 1 1 2 8
5 0 2 3 5 8
8 0 1 1 2 7
9 0 1 3 4 7
11 1 0 0 1 4

#False alarms 2 5 11 18 -
Prediction error (%) 5.26 13.16 28.95 47.37 -

After folding the training and test set in our modified 2-fold cross validation, a
new model was learned (this time using six cycles), and the prediction error was
measured on the remaining seven (in this case test) cycles. Results are shown in Table
8.5. In this case, the event too late fault had a low prediction error of about 5%, while
the prediction error of the other two considered faults was unacceptably high. In this
case, around 36% of the total number of correct events are wrongly recognized as
incorrect.

Table 8.5 Results of the modified 2-fold cross validation for the component of the LMF. Cycles: 1,
4, 5, 8, 9, and 11 are used for learning.

Wrongly detected faults
#Unknown #Events #Events #Incorrect #Total

Test cycle ID events too early too late events events

2 1 2 1 4 4
3 1 0 0 1 1
6 1 0 0 1 1
7 1 0 0 1 5
10 0 2 0 2 8
12 0 1 0 1 8
13 1 1 1 3 9

#False alarms 5 6 2 13 -
Prediction error (%) 13.89 16.67 5.56 36.11 -

The prediction errors from Table 8.4 and Table 8.5 are averaged for each fault and
given in Table 8.6.

Table 8.6 Averaged prediction error from Table 8.4 and Table 8.5.

Wrongly detected faults
#Unknown #Events #Events #Incorrect

events too early too late events

Average prediction errors (%) 9.58 14.92 17.26 41.74

8.3 Anomaly Detection Experiments 125

In order to observe the quality of learned models with respect to the increased
size of the training set, we also conducted validation experiments using the Leave-
One-Out Cross Validation (LOOCV) technique, which is a type of the K-fold cross
validation. The LOOCV is an extreme case where the number K equals the number
of the available learning examples. It is the most computationally expensive version
of the K-fold cross validation. Table 8.7 gives the results of the LOOCV for the
learned behavior model of the LMF popping machine. It can be seen that, comparing
to Table 8.6, significantly lower prediction errors for all three fault types are observed.
The total number of the events wrongly recognized as incorrect has dropped by about
19% and 7% in the absoulute values when 12 examples instead of respectively seven
and six are used for learning the model (i.e. #Incorrect events from Table 8.7 is
compared with #Incorrect events given in Table 8.4 and Table 8.5, respectively). In
general, these experiments showed the expected result - lower prediction errors are
obtained when models are learned using larger training datasets.

Table 8.7 Results of the LOOCV for the component of the LMF.

Wrongly detected faults
#Unknown #Events #Events #Incorrect #Total

Test cycle ID events too early too late events events

1 0 1 3 4 6
2 1 0 2 3 4
3 1 0 3 4 5
4 0 1 1 2 8
5 0 0 1 1 8
6 0 2 1 3 11
7 1 0 0 1 5
8 0 0 0 0 7
9 0 1 1 2 7
10 0 1 0 1 8
11 0 1 2 3 8
12 0 0 0 0 8
13 1 1 1 3 9

#False alarms 4 8 15 27 -
Prediction error (%) 4.26 8.51 15.96 28.72 -

8.3.3 Anomalies in the Continuous Physical System

Here we present the capabilities of the ANODA algorithm to detect anomalies in the
continuous physical system of the LMF popping machine component. Targeted faults
are signal zero value, signal drop and signal jump. They occur in the continuous
output signal of this component, i.e. in its active power signal.

8.3.3.1 Signal Zero Value

The fault signal zero value is detected when the model prediction of the value of
continuous output variable is different from zero, while its corresponding observed

126 8 Real-World Plants

value equals to zero. Detection of this fault could for example indicate the sensor
failure or interrupted communication cable in the system. In order to evaluate the
capability of the ANODA algorithm to detect this particular fault, a number of
experiments were conducted.

The used behavior model is learned from the training set of 12 logged LMF
production cycles. The remaining cycle was used for testing in a way that a number
of non-zero values of its output variable were artificially set to zero. Experiments
are conducted for three portions of anomalous samples in the cycle, namely for 30%,
50% and 70% of them. This means that at first, we have artificially set the value of
continuous output variable in 30% of randomly chosen samples in the test cycle to
zero, and then measured the ability of the ANODA algorithm to detect those samples.
Then, we repeated the experiments for 50% and 70% of the anomalous samples
in the test cycle. For each of these portions of anomalous samples, the experiment
was repeated 100 times, each time inserting zeros at different, randomly selected
positions. To this aim, a random number generator with an uniform distribution is
used. Table 8.8 shows the obtained specificity, sensitivity and accuracy averaged
over 100 experiments for each portion of anomalous samples. For the active power
signal of the LMF popping machine component (signal is shown in Figure 8.2), all
instances of this fault can be detected.

Table 8.8 Detection of zero signal - testing data.

Portion of anomalous samples (%)
Performance metrics 30 50 70

Specificity (%) 100 100 100
Sensitivity (%) 100 100 100
Accuracy (%) 100 100 100

8.3.3.2 Signal Drop

The ANODA algorithm detects the fault signal drop when the observed value of the
monitored signal drops below its predicted (normal) value by more than defined by
some threshold. In industrial applications, this threshold is obtained as a deviation ξ
(e.g. 5% or 10%) from the lower bound of the signal measurement range. In the case
of the popping machine active power signal, an alarm is raised when the difference
between the predicted and observed values gets equal to or greater than ξ·150 W (the
measurement range for this signal is [150, 3250] W).

For performing these experiments, the same learned behavior model was used as
in the case of the signal zero value fault. Logs of one production cycle (that was not
used for learning) are used as a testing example, in which we artificially inserted a
number of negative offsets from the normal signal value, ranging from 2% to 25%.
Experiments are also done for three portions of anomalous samples, namely when
the signal drop is inserted in 30%, 50% and 70% of the total number of samples in
the example. For each portion of anomalous samples and for each deviation from the
normal value, we conducted 100 experiments, each time measuring the performance
metrics.

8.3 Anomaly Detection Experiments 127

Figure 8.4 graphically shows the performance metrics for the case of having 30%
of anomalous samples in the test cycle. Shown results are the average values and
standard deviations of performance metrics over 100 experiments conducted for each
denoted offset from the normal signal value1. It can be seen that the larger deviations
from the normal value (i.e. negative offsets of 12% or larger) are more easily detected
by the ANODA algorithm. When deviations are equal to or larger than 15%, all three
performance metrics are over 90%. Small deviations are understandably harder to
detect. In contrast to specificity, which reaches high value aleardy at the deviation of
5%, the sensitivity is especially low for small deviations and has in general larger
standard deviation. When detecting the signal drop fault in these cases, the algorithm
(i.e. the classifier) has difficulties recognizing truly anomalous samples, because the
values of deviations are extremely small comparing to the measurement range (e.g.
the deviation of 2% from 150 W is only 3 W). Therefore, lower sensitivity values are
recorded for lower deviations from the normal signal value.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Portion of the negative offset (signal drop in %)

P
er
fo
rm

a
n
ce

m
et
ri
cs

fo
r
te
st

cy
cl
e
(%

)

rS

rS rS rS rS rS rS rS

uT

uT

uT

uT

uT

uT uT uT

bC

bC
bC

bC

bC
bC bC bC

Specificity (%)
Sensitivity (%)
Accuracy (%)

rS
uT
bC

Fig. 8.4 Detection of signal drop for 30% of anomalous samples.

In order to validate the robustness of the ANODA algorithm in detecting the signal
drop fault, we have additionally conducted experiments for the cases of having 50%
and 70% of anomalous samples in the testing example. The goal was to evaluate if
the algorithm performance will be significantly changed in the presence of the much
larger number of anomalous samples. The results are graphically shown in Figure 8.5
and Figure 8.6, respectively. For all three cases (30%, 50% and 70% of anomalous
samples) the trends for specificity, sensitivity and accuracy are in general very similar.
It can be noted that only the accuracy is degraded in the presence of larger portions
of anomalous samples for smaller deviations. This is, as mentioned above, due to
the fact that the signal drop fault is very hard to detect for small deviations from the

1 The results shown in figures 8.5, 8.6, 8.7, 8.8, and 8.9 also represent the average values and
standard deviations of performance metrics over 100 experiments for each denoted offset from the
normal signal value.

128 8 Real-World Plants

measurement range. Therefore, when more samples that are anomalous are present,
the accuracy of the algorithm is somewhat lower.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Portion of the negative offset (signal drop in %)

P
er
fo
rm

a
n
ce

m
et
ri
cs

fo
r
te
st

cy
cl
e
(%

)

rS

rS rS rS rS rS rS rS

uT uT

uT

uT

uT

uT
uT uT

bC

bC

bC

bC

bC

bC bC bC

Specificity (%)
Sensitivity (%)
Accuracy (%)

rS
uT
bC

Fig. 8.5 Detection of signal drop for 50% of anomalous samples.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Portion of the negative offset (signal drop in %)

P
er
fo
rm

a
n
ce

m
et
ri
cs

fo
r
te
st

cy
cl
e
(%

)

rS

rS rS rS rS rS rS rS

uT
uT

uT

uT

uT

uT
uT uT

bC

bC

bC

bC

bC

bC bC bC

Specificity (%)
Sensitivity (%)
Accuracy (%)

rS
uT
bC

Fig. 8.6 Detection of signal drop for 70% of anomalous samples.

Although not as interesting as the experiments on testing data, we have also
conducted the experiments on training data. First, the model was learned using 12
normal learning examples. Then, each example was modified to include a certain
portion of anomalous samples (as in the experiments on test data, 30%, 50% and 70%

8.3 Anomaly Detection Experiments 129

of anomalous samples). Such modified examples have been used as the “testing data”
one at the time, each time measuring how well the model detects anomalies at corre-
sponding positions in each particular modified training example. The performance
metrics were averaged over 100 experiments performed for each negative offset and
each portion of anomalous samples. For the signal drop fault, the obtained sensitivity
is higher on training data than on aforementioned testing data, for all three portions
of anomalous samples. However, the average specificity is lower on training data as
well as the accuracy for larger negative offsets. In general, the standard deviations
are for all three measures (sensitivity, specificity and accuracy) larger than for the
testing data. The reason is most likely the averaging of the results over 12 examples,
in contrast to using the real testing data with only one learning example. However,
this interesting trend, as well as the lower specificity and accuracy for larger negative
offsets observed on the training data, remain to be analyzed in future.

8.3.3.3 Signal Jump

The fault signal jump is detected when the monitored signal jumps above its predicted
(normal) value by more than defined by the given threshold. Typically in the industry,
the threshold for this type of fault is calculated as a deviation ξ from the upper bound
of the signal measurement range. Concretely for the active power of the popping
machine component at the LMF, this threshold is obtained as a product ξ·3250 W.
When the difference between the observed and the predicted values of this signal is
equal to or greater than this product, the anomaly is signaled to the operator.

The experimental setting is the same as in the case of the signal drop fault, i.e. the
same behavior model is used, 100 experiments are performed for various deviations
ranging from 2% to 25%, and experiments are repeated for 30%, 50% and 70% of
anomalous samples in the test cycle.

Experimental results for the case of 30% of anomalous samples in the test cycle
are given in Figure 8.7. In general, like in the case of the signal drop fault, better
detection results are observed for larger deviations from the normal value. However,
the sensitivity retains acceptable values (between 80% and 90 %) regardless of
the extent of the inserted deviation. Both accuracy and specificity are below 50%
for small deviations and grow to over 90% as the deviation increases over 15%.
Significantly larger sensitivity for the signal jump fault is explained by the fact that
even small deviations from the large upper bound of the active power measurement
range can be detected relatively easy. This is due to their much larger absolute values.
For example, the deviation of 2% from 3250 W is 65 W, which is easier to detect
than the same deviation from the lower bound of the measurement range that was in
this case 3 W.

For evaluating the robustness of the ANODA algorithm in detecting the signal
jump fault, we have also conducted experiments for the cases of having 50% and 70%
of anomalous samples in the test cycle. The results are given in Figure 8.8 and Figure
8.9, respectively. The general trends are similar like in the previous case. The only
significant difference is that the accuracy values are slightly increased in the presence
of more anomalous samples for the negative offset of 2%. As explained above, the
signal jump fault is for the algorithm relatively easy to detect, as it works with
relatively large values in this case. Nevertheless, this finding is not very interesting,
since having high accuracy in detecting deviations of about 2% from the nominal
value is a requirement that is rarely imposed in hybrid production systems.

130 8 Real-World Plants

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Portion of the positive offset (signal jump in %)

P
er
fo
rm

a
n
ce

m
et
ri
cs

fo
r
te
st

cy
cl
e
(%

)

rS

rS

rS

rS

rS
rS

rS rS

uT uT uT uT uT
uT uT uT

bC

bC

bC

bC
bC

bC
bC bC

Specificity (%)
Sensitivity (%)
Accuracy (%)

rS
uT
bC

Fig. 8.7 Detection of signal jump for 30% of anomalous samples.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Portion of the positive offset (signal jump in %)

P
er
fo
rm

a
n
ce

m
et
ri
cs

fo
r
te
st

cy
cl
e
(%

)

rS

rS

rS

rS

rS
rS

rS rS

uT
uT uT uT

uT

uT
uT

uT

bC

bC

bC

bC

bC bC
bC bC

Specificity (%)
Sensitivity (%)
Accuracy (%)

rS
uT
bC

Fig. 8.8 Detection of signal jump for 50% of anomalous samples.

In the same way as described at the end of the previous subsection, we have
conducted the experiments on training data for the fault signal jump as well. All 12
normal production cycles were used as the testing data one at the time, after changing
the certain portion of their samples to make them anomalous. The performance
metrics were in this case also averaged over 100 experiments for each positive offset
and each portion of anomalous samples. For this fault, the obtained specificity is
in general always higher on training data than on the testing data. Both average
sensitivity and average accuracy for larger negative offsets are however lower on
training data. Furthermore, the observed standard deviations are generally larger on

8.4 Conclusion 131

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Portion of the positive offset (signal jump in %)

P
er
fo
rm

a
n
ce

m
et
ri
cs

fo
r
te
st

cy
cl
e
(%

)

rS rS

rS

rS

rS

rS
rS rS

uT uT uT uT uT uT uT uT

bC bC
bC

bC

bC bC bC bC

Specificity (%)
Sensitivity (%)
Accuracy (%)

rS
uT
bC

Fig. 8.9 Detection of signal jump for 70% of anomalous samples.

training data. We believe that this is again due to averaging the results. Nevertheless,
we leave the interpretation of these results on the training data to future work.

8.4 Conclusion

In this chapter, we have demonstrated the application of our model-learning and
anomaly detection approaches in the real-world. We have applied the HyBUTLA
algorithm to model components of two production facilities.

At the plant of Jowat AG we have conducted the comparative empirical analysis
of four algorithms for learning three types of stochastic finite automata, namely
SDFA, 1-SDTA and 1-SDHA. All algorithms resulted in relatively small models (13
to 27 states) that can be easily understood, visualized and interpreted by humans.
The bottom-up algorithms BUTLA and HyBUTLA make a more thorough search for
compatible states than the top-down algorithms ALERGIA and MDI. This property
is, however, paid with an increased runtime. Moreover, the bottom-up algorithms
create much less non-determinism during the merging step.

Our general goal of learning is to obtain models as small as possible, which
approximate the continuous dynamics as good as possible. On the example of learning
the behavior model for a popping machine component of the Lemgo Model Factory,
we have shown an interesting trade-off between these requirements. The merging
step of the HyBUTLA algorithm increases the model size reduction (in relation to
the size of the initial PTA model) but at the same time it decreases the accuracy
of approximating the continuous dynamics of the system (i.e. its average R2). By
merging the states, it gets harder to represent the portions of continuous data that
originated at those states with one regression function. The splitting step has the
opposite effect. It decreases the size reduction (i.e. increases the model size) but
increases the average model R2. These two steps together enable finding an optimal

132 8 Real-World Plants

trade-off between these two properties of the model, depending on the application
area.

The K-fold cross validation, conducted at the Lemgo Model Factory, has shown
that the learned model’s prediction errors in the discrete control system have signifi-
cantly smaller values when more examples are used for learning. Furthermore, the
anomaly detection experiments have shown that the ANODA algorithm can detect
all instances of the faults: unknown control event, control event too early, control
event too late and signal zero value, using the model learned by the HyBUTLA
algorithm. The faults signal drop and signal jump can be detected with the acceptable
performance only for larger deviations from the normal signal value (15% and larger).
The experiments also showed that the increase in the portion of anomalous samples
does not influence the performance of the anomaly detection system significantly. In
general, all these results are promising considering that (i) only 12 learning examples
are used for learning the used model and (ii) the relatively simple regression method
(i.e. the multiple linear regression with linear terms) has been used to learn and later
predict the behavior of the continuous part of the system.

Chapter 9
Artificial Datasets

Due to the limitations on the amount and structure of data that could be logged in a
real plant, artificially generated datasets often pose the only available resource for
conducting tests of certain algorithms’ properties. Artificial data generation enables
(i) the creation of arbitrary number of arbitrary complex learning examples and (ii)
the evaluation of the learned model by comparing it to the target model that generated
the data.

In this chapter, we have used artificially generated data for conducting several
experiments with our HyBUTLA algorithm. The main contributions are as follows:

• we use the data generated by the benchmark target automaton to confirm our theo-
retical HyBUTLA convergence and polynomial runtime results experimentally,

• we conduct comprehensive experiments to show the scalability capabilities of the
HyBUTLA algorithm,

• given that discrete signals in a modeled system are independent, we formally
show that the maximum number of state merges, performed by the HyBUTLA
algorithm, is bounded by a function that is linear in the number of those signals,

• we formally show that when the number of discrete signals in a modeled system
is equal to or larger than the given limit, no state splits can be performed by the
HyBUTLA algorithm,

• general observations are derived that can help practitioners in modeling hybrid
systems with the HyBUTLA algorithm.

The chapter is organized as follows. In Section 9.1, we experimentally confirm the
HyBUTLA convergence and polynomial runtime properties given by Theorem 14 in
Section 6.6, that the class of 1-SDHAs can be identified in the limit with probability
one in polynomial time. These experiments are conducted using artificial data, which
are generated according to a predefined model. Section 9.2 brings the HyBUTLA
scalability analysis, i.e. the learning and runtime properties of the algorithm are
analyzed in the presence of the increasing numbers of discrete control and continuous
physical signals in a system. We give bounds on the number of merges (Theorem
16) and number of splits (Theorem 17) that the HyBUTLA algorithm can perform
under certain constraints. The chapter is concluded in Section 9.3. We have partially
published both the convergence and scalability experiments in [VMN13].

133

134 9 Artificial Datasets

9.1 Empirical Analysis of Convergence and Polynomial Runtime

In this section, we demonstrate the convergence and polynomial runtime properties
of the HyBUTLA algorithm. To that aim, we use the benchmark target Reber-like
model. It is based on the Reber grammar [Reb67] that has already been used as a
predefined distribution for learning stochastic deterministic finite automata from data
[CnCV93, CO94, CO99]. The Reber-like automaton that comprises eight states is
shown in Figure 9.1. Transitions are shown with their corresponding probabilities
that are the same as in [CO99], while Reber-like grammar also includes transition
time intervals. For simplicity, we associated the same time intervals to all transitions
and denoted the transitions that lead from different states to the same state with the
same symbol. Probabilities of the two transitions whose source and destination states
are the same (see transitions P(0.6) and X(0.7) in Figure 9.1), denote the ending state
probabilities. For our experiments, Reber grammar was changed so that the equal
subsequent symbols do not occur. This constraint is imposed by our application area
(modeling technical systems), where equal subsequent symbols do not happen under
normal operating conditions (e.g. a valve can open only once, and then it needs to
close before the next opening).

B(1.0)

T(0.5)

V(0.5)

P(0.6)
W(0.4)

X(0.7)
U(0.3)

W(0.5)

S(0.5)

E(1.0)

S(0.5)

V(0.5)

[6,6]

[6,6][6,6]
[6,6]

[6,6][6,6]

[6,6] [6,6]

[6,6]

[6,6]

Fig. 9.1 The Reber-like model.

The generated dataset comprises 200 learning examples, drawn according to the
Reber-like grammar. The average length of an example is 25 timed samples. Each
dataset comprises a time stamp, three discrete variables that encode the symbols
shown in Figure 9.1, one continuous input and one continuous output variable.
Continuous variables have no influence on the convergence in the case of the Reber-
like target and therefore they are not in the focus of this section. Nevertheless,
we added them in order to make our dataset hybrid (i.e. to include both discrete
and continuous variables). They are randomly generated according to a Gaussian
distribution. Output and input signals have a mean value and a standard deviation of
respectively 12.6± 1.26 and 2.2± 0.22.

The HyBUTLA algorithm receives the generated data as an input. The results
are given graphically in Figure 9.2. They are obtained for a value of the confidence
parameter α = 0.01 (this parameter is needed for computation of the function
fractions-different given by the expression (6.3) in Section 6.3). The plot shows the
number of states of the hypothesis automaton as a function of the number of learning
examples. It can be seen that when the size of the input data is large enough, the
number of states always converges to the correct value defined by the Reber-like

9.1 Empirical Analysis of Convergence and Polynomial Runtime 135

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

Number of learning examples

N
u
m
b
er

o
f
st
a
te
s

bC bC bC

bC

bC

bC bC

bC bC

bC bC bC bC bC bC bC bC bC bC bC

Fig. 9.2 Convergence of the HyBUTLA to the target Reber-like automaton for α = 0.01.

automaton (i.e. to eight states, see Figure 9.1). Furthermore, the convergence is
achieved with a relatively small number of learning examples (about one hundred).
Moreover, the transition and ending state probabilities are correctly inferred provided
any number of examples greater than or equal to one hundred.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Number of learning examples

A
lg
o
ri
th
m

ru
n
ti
m
e
(s
)

Experimentally measured runtime
Approximation by a second-order polynomial

Fig. 9.3 Runtime of the HyBUTLA algorithm for α = 0.01 and its quadratic approximation.

In addition to convergence, we have also measured the algorithm runtime. Our idea
was to validate the HyBUTLA theoretical polynomial runtime result experimentally.
As given by Lemma 7 in Section 6.6, its time complexity isO(n3), where n is the size

136 9 Artificial Datasets

of the input data. The empirical runtime, measured on a PC with the Intel(R) Xeon(R)
W3503 CPU @ 2.40 GHz and 6 GB RAM that runs a MATLAB implementation
of the HyBUTLA, is shown in Figure 9.3 (again for α = 0.01). We made an
approximation of the runtime curve by a second-order polynomial. It can be seen
that even for larger sizes of the input data, the runtime is quadratic in the average
case. This confirms our theoretical result.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

Number of learning examples

N
u
m
b
er

o
f
st
a
te
s

bC

bC

bC

bC

bC

bC bC bC bC bC bC bC bC bC bC bC bC bC bC bC

Fig. 9.4 Convergence of the HyBUTLA to the target Reber-like automaton for α = 0.1.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Number of learning examples

A
lg
o
ri
th
m

ru
n
ti
m
e
(s
)

Experimentally measured runtime
Approximation by a second-order polynomial

Fig. 9.5 Runtime of the HyBUTLA algorithm for α = 0.1 and its quadratic approximation.

9.2 Empirical Analysis of Scalability 137

In Section 6.6, we made the observation that by increasing the value of the α
parameter, the convergence speed can be increased as well (Observation 8). In order
to experimentally show this trend, we repeated the convergence experiments for α =
0.1. The convergence to the Reber-like automaton and the empirical runtime of the
algorithm are given in Figure 9.4 and Figure 9.5, respectively.

By increasing the value of α by factor ten, the convergence was reached signif-
icantly faster, i.e. with only 60 learning examples. Already at that point, both the
automaton structure and all of its probabilities were correctly identified. The runtime
of the algorithm is still quadratic in the size of the input data, being slightly shorter
than in the previous case.

9.2 Empirical Analysis of Scalability

The goal of the scalability experiments is to evaluate the HyBUTLA algorithm
performance in the presence of an increasing number of two types of signals in
the system: discrete and continuous. A number of experiments were conducted
by increasing the number of one type of signals, while keeping the number of
the other type constant. We first give the overall setting of the experiments in the
following subsection. Then we present the results obtained on datasets with a constant
number of continuous signals (Subsection 9.2.2). They are followed by the results
for a constant number of discrete signals (Subsection 9.2.3). The results are given
graphically for the Prefix Tree Acceptor (PTA), merged hybrid automaton (MERGE
step), and split hybrid automaton (SPLIT step). The given performance metrics
include the number of PTA states, the number of merges, the number of splits, the
average model coefficient of determination (R2), the size reduction (in relation to
PTA size), and the learning time. We also give some general results that bound the
maximum number of merges and the minimum number of splits that the HyBUTLA
algorithm can perform under given conditions.

9.2.1 The Setting of the Experiments

The setting of the experiments is explained here briefly. In total, 88 artificial datasets
were generated. Each dataset comprises 10 learning examples. The size of each
learning example was picked from a range of [150, 250] samples, with a random
number generator that uses an uniform distribution. Multiple linear regression with
linear terms was used as a regression method of the HyBUTLA algorithm. The
experiments were conducted using the same PC as in Section 9.1 (CPU @ 2.40 GHz
and 6 GB RAM).

A normal distribution was used for generating both the continuous input signals
and the output signal. The mean value and standard deviation for input signals is
220± 22 and for the output signal 1206± 120.6.

Discrete signals were generated following an uniform distribution. They repre-
sent independent binary variables. Locations and lengths of bit-switches are picked
randomly for every signal. Each discrete signal changes two times in every learning
example.

138 9 Artificial Datasets

In all experiments, we kept the number of the continuous output signals constant
at the value one, while we varied the number of both discrete and continuous input
signals. For easier reading, the number of continuous input signals will be denoted
by c, and the number of discrete signals by d.

9.2.2 Analysis with a Constant Number of Continuous Signals

For each of the three automaton structures (PTA, merged and split automaton), four
sets of experiments were conducted. The number of discrete signals (d) has been
increased up to 50, while keeping the number of continuous signals (c) constant at
values: 1, 5, 25, and 50. We give the results graphically by the corresponding plots.

9.2.2.1 Prefix Tree Acceptor (PTA) Results - Constant c

Figure 9.6 gives the PTA results for four different numbers of continuous signals in
the system (1, 5, 25, and 50).

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
0

20

40

60

80

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

2

4

6

8

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of continuous variables = 1

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
0

50

100

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

2

4

6

8

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of continuous variables = 5

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
20

40

60

80

100

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

2

4

6

8

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of continuous variables = 25

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
60

70

80

90

100

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
2

4

6

8

10

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of continuous variables = 50

Fig. 9.6 Constant number of continuous signals - PTA results.

It can be seen that the number of PTA states #PTAstates grows at most linearly with
the number of independent discrete signals. Since the number of learning examples
is kept constant across different experiments and their size is always taken from the

9.2 Empirical Analysis of Scalability 139

same range ([150, 250]), the increase in d generates more states and thus the number
of samples per each state decreases. This makes it easier to approximate the output
signal by using the inputs, thus the average R2 rises with d for all four values of c.
The size reduction of the final model with the number of states denoted by #states
is computed in relation to the PTA size #PTAstates, i.e. by using the expression
(#PTAstates - #states) ·100 / #PTAstates. Since in these experiments we only created
prefix trees and no merging took place, #PTAstates and #states were always equal.
Therefore, the size reduction was always equal to zero in PTA experiments. This can
be seen in the reduction diagrams for all four values of c. In addition, in all four cases
we observe that the learning time increases approximately linearly with the increase
of d.

9.2.2.2 Merged Hybrid Automaton (MERGE step) Results - Constant c

Results for the merged hybrid automaton, obtained after applying the MERGE step
on PTA models, are summarized in Figure 9.7. For all four values of c, it can be
observed that the number of merges increases with d. In Subsection 9.2.4 we will
bound this growth with a linear function.

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

5

10

15

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
40

60

80

100

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

500

1000

1500

2000

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of continuous variables = 1

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

10

20

30

40

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
80

85

90

95

100

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

500

1000

1500

2000

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of continuous variables = 5

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

20

40

60

80

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
40

60

80

100

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

500

1000

1500

2000

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of continuous variables = 25

0 20 40 60
0

200

400

600

800

Number of discrete variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

50

100

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
40

60

80

100

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

1000

2000

3000

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of continuous variables = 50

Fig. 9.7 Constant number of continuous signals - MERGE results.

As more states are merged, their corresponding continuous datasets are combined,
making it more difficult to approximate the output signal. Therefore, the MERGE step
decreases the average R2 in general (see Figure 8.3 in Section 8.2). The increase of

140 9 Artificial Datasets

d has the opposite effect (as stated in the previous subsection). Therefore, significant
variations of the average R2 values are recorded in these experiments, based on what
effect was dominant for a particular model (the merging or the increase of d). For
example, when c = 5, the number of merges gets constant for d greater than 45. Thus,
the increase of d is for matching models more dominant than the number of merges
and recorded average R2 values are correspondingly much larger for these models.
Similarly, peaks in average R2 values can be observed in diagrams for c = 1, c = 25
and c = 50 exactly for values of d that correspond to somewhat lower number of
merges. That is, wherever fewer merges are observed, the average R2 obtains higher
values.

In Figure 9.6 we saw that the number of PTA states increases approximately
linearly with d. When merging states, the size reduction is computed in relation to the
PTA size, as shown in the previous subsection. Therefore, whenever fewer merges
are performed for some value of d, a drop is observed in the size reduction for that
value. This trend can nicely be seen in Figure 9.7 for c = 5 when the number of
merges is constant. Since the number of PTA states for the corresponding values of d
is growing and no merges are occurring, the drop can be seen in size reduction.

The experimental learning time is for all values of c subquadratic.

9.2.2.3 Split Hybrid Automaton (SPLIT step) Results - Constant c

The SPLIT step is applied on merged hybrid automata. The graphical results for this
step are given in Figure 9.8.

The number of splits depends on the fulfillment of the conditions described in
Subsection 6.5.2. However, it can be noted that the number of splits is high for lower
values of d and it decreases as d increases. Eventually, it drops to zero for large d
values. We have analyzed this trend in Section 9.2.4.

Since the split function is applied in order to increase the averageR2, this measure
is in direct connection to the number of splits. For models with higher number of
preformed splits, significantly higher average R2 values are observed. This can be
seen in diagrams for all four values of c in Figure 9.8. For example, for c = 25 the
peak in the number of splits exists for d = 20. Correspondingly, the peak is observed
in the average R2 values for d = 20.

The size reduction is inversely proportional to the number of splits. More splits
produce more states, thus lower the model size reduction in relation to the PTA
size. Sometimes a negative reduction is obtained, which means that the split hybrid
automaton is bigger in the number of states than the initial PTA model. In the example
for c = 25 and d = 20, a drop is recorded in the size reduction, since there is a peak
in the number of splits for that particular model.

The learning time is of course longer where more splits are performed and in
general, it grows with d. In the aforementioned example with the peak in the number
of splits (c = 25, d = 20), longer learning time is needed for obtaining that particular
model.

9.2 Empirical Analysis of Scalability 141

0 20 40 60
0

10

20

30

40

Number of discrete variables

N
u
m

b
e
r

o
f

s
p
lit

s

0 20 40 60
0

20

40

60

80

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-400

-200

0

200

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

5

10

15

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of continuous variables = 1

0 20 40 60
0

5

10

15

20

Number of discrete variables

N
u
m

b
e
r

o
f

s
p
lit

s

0 20 40 60
0

20

40

60

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-50

0

50

100

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

5

10

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of continuous variables = 5

0 20 40 60
0

1

2

3

4

Number of discrete variables

N
u
m

b
e
r

o
f

s
p
lit

s

0 20 40 60
0

20

40

60

80

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-50

0

50

100

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

5

10

15

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of continuous variables = 25

0 20 40 60
0

20

40

60

Number of discrete variables
N

u
m

b
e
r

o
f

s
p
lit

s
0 20 40 60

20

40

60

80

100

Number of discrete variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-600

-400

-200

0

200

Number of discrete variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

10

20

30

Number of discrete variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of continuous variables = 50

Fig. 9.8 Constant number of continuous signals - SPLIT results.

9.2.3 Analysis with a Constant Number of Discrete Signals

In this analysis, the number of continuous input signals (c) has been increased up
to 50, while keeping the number of discrete signals (d) constant. Similarly to the
previous analysis, four sets of experiments were conducted for each of the three
automaton structures (PTA, merged and split automaton), namely for keeping d
constant at values: 1, 5, 25, and 50. The results are given graphically.

9.2.3.1 Prefix tree acceptor (PTA) results - constant d

Results for the PTA are given in Figure 9.9. Since new states of the PTA are generated
solely based on changes in discrete signals, the increase of c does not affect the
number of PTA states. This number remains constant for all four values of d shown
in the figure.

However, c affects the average R2 of the obtained models, since more predictors
can approximate the output variable more easily. For all four cases (when d equals 1,
5, 25, and 50), it can be seen that the average R2 grows with the number of predictors
c.

Since in the PTA experiments (just as shown in Subsection 9.2.2.1) the number of
PTA states equals the number of the states in the final model (i.e. PTA is the final
model), the size reduction maintains the zero value.

142 9 Artificial Datasets

The more predictors are present in the system, the more time is needed for learning
the model θ functions. For all four values of d, the runtime of the algorithm grows
with c. We emphasize that the time was measured experimentally on a PC running
multiple processes. That accounts for certain small variations in the recorded runtime
of the algorithm. Nevertheless, the experiments clearly indicate the existing relation
between the algorithm runtime and the number of continuous signals c.

0 20 40 60
741

741.5

742

742.5

743

Number of continuous variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
60

70

80

90

100

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
6

8

10

12

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of discrete variables = 50

0 20 40 60
427

427.5

428

428.5

429

Number of continuous variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
40

60

80

100

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
3

4

5

6

7

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of discrete variables = 25

0 20 40 60
88

88.5

89

89.5

90

Number of continuous variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
20

40

60

80

100

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

1

2

3

4

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of discrete variables = 5

0 20 40 60
8

8.5

9

9.5

10

Number of continuous variables

N
u
m

b
e
r

o
f

s
ta

te
s

0 20 40 60
0

20

40

60

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-1

-0.5

0

0.5

1

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

1

2

3

4

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

PTA plots for number of discrete variables = 1

Fig. 9.9 Constant number of discrete signals - PTA results.

9.2.3.2 Merged Hybrid Automaton (MERGE step) Results - Constant d

The results of the MERGE step for constant d are shown in Figure 9.10.
The merging criteria include checking the similarity in probabilities of transitions

and ending states, and it is not influenced by the continuous signals in the system.
Therefore, the number of merges remains constant with the growth of c in all four
sets of experiments (i.e. for d kept constant at values: 1, 5, 25, and 50). Consequently,
the size reduction remains constant as well.

Here the average R2 also increases with the growth of c, as it is easier to approxi-
mate the output signal with more predictors included in the merged automaton model,
just as it was the case with the PTA. We can also observe that the relation between
the average R2 and c is approximately linear.

The similarity to PTA results exists also in the learning time, i.e. more time is
needed for learning models with larger c.

9.2 Empirical Analysis of Scalability 143

0 20 40 60
730

730.5

731

731.5

732

Number of continuous variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

10

20

30

40

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
97

98

99

100

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
2000

2200

2400

2600

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of discrete variables = 50

0 20 40 60
388

388.5

389

389.5

390

Number of continuous variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

50

100

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
89

90

91

92

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
320

340

360

380

400

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of discrete variables = 25

0 20 40 60
80

80.5

81

81.5

82

Number of continuous variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

10

20

30

40

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
90

91

92

93

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
5

10

15

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of discrete variables = 5

0 20 40 60
4

4.5

5

5.5

6

Number of continuous variables

N
u
m

b
e
r

o
f

m
e
rg

e
s

0 20 40 60
0

5

10

15

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
54

55

56

57

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

0.2

0.4

0.6

0.8

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

MERGE plots for number of discrete variables = 1

Fig. 9.10 Constant number of discrete signals - MERGE results.

9.2.3.3 Split Hybrid Automaton (SPLIT) Results - Constant d

Figure 9.11 presents the results of the SPLIT step for the constant number of discrete
signals d.

Interestingly, the significant number of splits is obtained only in two sets of
experiments, namely for d = 1 and d = 5. For d = 25 only one split is performed
and for d = 50, there were no splits. The same trend is observed in Figure 9.8. When
the number of discrete signals in the system is too large, fewer or no splits can be
performed. This trend is analyzed in the following section. The number of splits also
depends on the fulfillment of the split function criteria, described in Subsection 6.5.2.

As in the previous two cases (PTA and MERGE step), average R2 of the mod-
els obtained with the SPLIT step also grows with c. Moreover, average R2 gets
additionally increased when more splits are performed.

The size reduction is inversely proportional to the number of splits. This can be
seen in diagrams for d = 1 and d = 5. The more splits are performed, the more new
states are generated in the final model. This lowers the size reduction. For d = 1
it can be seen that the size reduction gets negative, which means that the number
of states in final models created by the split function got bigger than the number
of states in the initial prefix trees. The size reduction remains constant for constant
number of splits, which can be seen in diagrams for d = 25 and d = 50.

Again, the learning time generally grows with c. We emphasize again that the
experimentally measured learning time was influenced by other processes running
on the same PC.

144 9 Artificial Datasets

0 20 40 60
-1

-0.5

0

0.5

1

Number of continuous variables
N

u
m

b
e
r

o
f

s
p
lit

s
0 20 40 60

0

10

20

30

40

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
97

98

99

100

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
5

10

15

20

25

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of discrete variables = 50

0 20 40 60
0

0.5

1

1.5

2

Number of continuous variables

N
u
m

b
e
r

o
f

s
p
lit

s

0 20 40 60
0

50

100

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
89

90

91

92

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
4

6

8

10

12

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of discrete variables = 25

0 20 40 60
15

20

25

30

35

Number of continuous variables

N
u
m

b
e
r

o
f

s
p
lit

s

0 20 40 60
20

40

60

80

100

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
55

60

65

70

75

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
5

10

15

20

25

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of discrete variables = 5

0 20 40 60
0

20

40

60

Number of continuous variables

N
u
m

b
e
r

o
f

s
p
lit

s

0 20 40 60
20

40

60

80

100

Number of continuous variables

A
v
e
ra

g
e
 R

2
 (

%
)

0 20 40 60
-600

-400

-200

0

Number of continuous variables

R
e
d
u
c
ti
o
n
 (

%
)

0 20 40 60
0

20

40

60

Number of continuous variables

L
e
a
rn

in
g
 t

im
e
 (

s
)

SPLIT plots for number of discrete variables = 1

Fig. 9.11 Constant number of discrete signals - SPLIT results.

9.2.4 General Scalability Results

Here we show some general dependencies between the numbers of signals in a system
and the model-learning performance. First, in Theorem 16 we give the maximum
number of merges that can be performed under the given conditions. Then in Theorem
17 we show that if the number of discrete signals in the system is equal to or greater
than the given bound, no splits of the automaton states can be performed.

Theorem 16. Assume a set D = {D1, D2, ..., Dk}1 of k learning examples is given,
where each example contains d mutually independent discrete signals (change in one
signal does not affect changes in other signals). Then for the maximum number of
merges Mmax of the automaton states it holds:

Mmax ≤ kzmaxd,

where zmax denotes the maximum number of changes (bit-switches) over all discrete
signals in all learning examples.

Proof. Since the PTA transitions are triggered by the changes in discrete signals
only, let us assume the worst case where every change in every discrete signal and in
every example triggers a transition to a new state, which was not triggered before.
This is the worst case, because the number of PTA states is then maximized and that

1 The learning example is illustrated in Section 3.4, Example 1.

9.2 Empirical Analysis of Scalability 145

is contrary to the general requirement of having models as small as possible. Further
let zij denote the number of changes of the jth discrete signal in the ith learning
example, where i = 1, ..., k, and j = 1, ..., d. The number of PTA states t(Di) that
is generated by the example Di is then:

t(Di) =

d∑
j=1

zij . (9.1)

This case is illustrated in Figure 9.12. It shows the example Di with the number of
timed samples l = 7. The first column is the time, next three columns are discrete
binary signals q1, q2 and q3 (i.e. d = 3), last two columns are continuous input and
continuous output signals, respectively. The signal q3 changes once (blue frame in
Figure 9.12) and thus generates the state s1. The signal q2 changes twice (green
frames), generating states s2 and s3. The states s4, s5 and s6 are generated by three
changes in signal q1 (red frames). The state s0 is the initial state, which is shared
between all examples Di, i = 1, ..., k. For the values of signals q1, q2 and q3 in Di,
it holds respectively: zi1 = 1, zi2 = 2 and zi3 = 3.

s0

s1

s2

s3

s4

s5

s6

Di

Fig. 9.12 States generated by the example Di.

The total number of PTA states tn, triggered by all k examples is as follows:

tn = t(D) =

k∑
i=1

t(Di) + 1 =

k∑
i=1

d∑
j=1

zij + 1. (9.2)

Additive factor ‘1’ accounts for the initial state. The maximum number of merges
Mmax is obtained when the merging criteria hold for every pair of states, i.e. when
the whole PTA is merged into a single state. In that case, we have:

Mmax = tn − 1. (9.3)

Combining (9.2) and (9.3), it follows:

Mmax =

k∑
i=1

d∑
j=1

zij . (9.4)

As stated in the theorem, zmax denotes the maximum number of changes (bit-
switches) over all examples and signals, i.e.

146 9 Artificial Datasets

zmax = max
i,j
{zij}. (9.5)

From (9.4) we finally obtain:

Mmax ≤
k∑
i=1

d∑
j=1

zmax = kzmaxd, (9.6)

thus the theorem is proven. ut

Example 5. Using the expression given by (9.6), we can calculate the theoretical
maximum number of merges for all four datasets given in Figure 9.10. For values
of d that equal to 1, 5, 25, and 50, we get Mmax values of 20, 100, 500, and 1000
respectively (in our experiment setting zmax = 2, k = 10). Figure 9.10 shows exper-
imentally obtained number of merges, respectively: 5, 81, 389, and 731. Theoretical
maxima are never violated.

Theorem 17. Assume a set D = {D1, D2, ..., Dk} of k learning examples is given,
where each example contains d mutually independent discrete signals (change in one
signal does not affect changes in other signals). Then the number of splits N of the
automaton states equals to zero for sufficiently large d.

Proof. The goodness of fit of approximating the continuous output signal in an
automaton state is expressed as the coefficient of determination R2(θ), which shows
how good the learned θ function represents the observed data yj . It is given by the
expression (6.1) in Section 6.3 but for easier reading we repeat it here:

R2(θ) = 1− SS error

SS total
= 1−

∑
j

(yj − θj)2

∑
j

(yj − y)2
,

where SS error is the sum of squares of errors, SS total is the total sum of squares,
θj are values of learned θ function at j points, and y is the mean value of observed
data yj . The average coefficient of determination of the whole model is calculated
according to:

R2
A =

w−1∑
h=0

R2(θsh)

w
,

where w denotes the number of automaton states. The higher R2
A, the fewer splits

are needed and vice versa. Therefore, the connection between these variables has the
following form:

N = C(1−R2
A), (9.7)

where C ∈ (0,∞) is an unknown multiplicative factor. Let LS denote the size
(number of samples) of the longest learning example, i.e.

LS = max
i
{li}, (9.8)

where li is the length of i-th example. Since all k examples share the initial state, for
the number of automaton states tn it holds:

tn ≤ k(LS − 1) + 1. (9.9)

9.2 Empirical Analysis of Scalability 147

Similarly to the previous proof, let us assume the worst case scenario where split
can be performed after every sample of every learning example. In this way, all
created states will have only one corresponding sample. We call such states dummy
states. This setting is illustrated in Figure 9.12 for one example Di. Looking at the
expression for calculating R2(θ), it is clear that for dummy states there is only 1 data
point for approximation and thus it holds:

yj = θj ⇒ R2(θ) = 1. (9.10)

From (9.3), (9.6) and (9.9) it follows that the maximum number of created (dummy)
states is:

tn = kzmaxd+ 1 = k(LS − 1) + 1, (9.11)

where zmax is maximum number of changes (bit-switches) over all signals and
examples. During the SPLIT step, R2

A approaches to 1 as the number of states w
approaches tn, so it follows:

lim
w→kzmaxd+1

R2
A = lim

w→kzmaxd+1

w−1∑
h=0

R2(θsh)

w
=

kzmaxd∑
h=0

R2(θsh)

kzmaxd+ 1
= 1, (9.12)

as every R2(θsh) = 1 for w = kzmaxd+ 1 (see (9.10)). In this case, the number of
splits given by (9.7) equals to zero. From the expression (9.11) follows the number
of discrete signals for which N = 0:

d ≥ tn − 1

kzmax
=
k(LS − 1) + 1− 1

kzmax
=

LS − 1

zmax
. (9.13)

This completes the proof. ut

Observation 11. In practical cases we do not aim at unrealistic R2
A = 1, but rather

at R2
A greater or equal to some given threshold. Therefore, we do not allow creation

of dummy states by the SPLIT step.

Example 6. Using the expression (9.13), we can calculate the minimum number
of discrete signals for which the number of splits gets the zero value. Since in the
experiments we did not allow creation of dummy states, but allowed minimum of
3 samples per automaton state, the maximum number of obtained states is tn =

bk(LS−1)+1
3 c. The expression (9.13) now becomes:

d ≥ tn − 1

kzmax
=
bk(LS−1)+1

3 c − 1

kzmax
.

For our experimental setting (k = 10,LS = 250, zmax = 2), we get:

d ≥
b 10·(250−1)+1

3 c − 1

10 · 2
≈ 42.

Looking at Figure 9.8, but also at Figure 9.11, we can verify that the number of splits
N is always zero for d ≥ 42.

148 9 Artificial Datasets

9.3 Conclusion

In this chapter, we have used artificial datasets to demonstrate the convergence,
polynomial runtime and scalability properties of the HyBUTLA algorithm.

The convergence of the algorithm has been shown on the typical benchmark target
automaton with only eight states (the Reber-like model). The algorithm learned the
correct automaton using the relatively small number of learning examples (60–100
examples, based on the value of α parameter of the Hoeffding bound). Moreover,
the experimentally measured runtime of the algorithm is quadratic in the size of the
input data.

The HyBUTLA scalability was also evaluated using artificially generated datasets.
Experiments showed the influence that the numbers of continuous (c) and discrete (d)
signals in the system have on the model-learning performance. The first general result
(Theorem 16) is that the maximum number of merges of PTA states is bounded by a
function linear in d, assuming that discrete signals are independent (the change in
one signal does not affect other signals). The second result (Theorem 17) shows that
the number of state splits goes to zero for sufficiently large d. Both these findings are
formally proven. Based on both experimental and theoretical results, several general
observations important for modeling hybrid production systems with the HyBUTLA
algorithm in practice can be derived. These are illustrated in Table 9.1 and explained
in the following.

Table 9.1 General observations for modeling hybrid production systems with the HyBUTLA
algorithm.

Dominantly discrete system Dominantly continuous system
(larger d, smaller c) (smaller d, larger c)

larger PTA smaller PTA
many merges fewer or no merges

higher size reduction lower size reduction
fewer or no splits many splits
lower average R2 higher average R2

For dominantly discrete systems, one can expect to obtain large PTAs, but at the
same time to benefit a lot from the MERGE step in the sense of size reduction. Very
small models (high reduction rates) could be obtained. Unfortunately, this typically
produces lower accuracy of approximating continuous output signals (low average
R2). In this case, the SPLIT step cannot significantly increase average R2 due to the
large d values, which cause fewer or no splits.

For dominantly continuous systems, the situation is converse. With smaller d,
PTAs of the small size are obtained. Larger c does not influence the PTA size and
the number of merges. A small d enables very few or no merges, thus the MERGE
step does not bring significant benefit in modeling such systems, in the sense of
size reduction. However, a significant number of SPLITS can be expected and thus
higher average R2 values. The trade-off in this case is the increased model size, as
the SPLIT step can produce models several times larger than the initial PTA.

Part V

Conclusion

Chapter 10
Conclusions and Future Work

In this chapter, we shortly present the main conclusions and contributions of this
thesis. Every conducted research answers certain opened questions, but also opens
the new ones. Our research presented in this thesis is no exception, and therefore we
give an outlook of future work.

10.1 Conclusions

This thesis was started with the example of the dangerous abnormal behavior of the
production process in the local chemical plant in Niihama city in Japan. This and
a number of other incidents in industrial facilities emphasized the need of having
reliable anomaly detection and diagnosis approaches. Most of such approaches today
are based on manually created behavior models. Since manual modeling is a very
hard task, this thesis offers an alternative that comes from the field of computational
learning theory.

We investigated the identification of behavior models for production systems
automatically from data. The nature of such systems is hybrid, as they exhibit state-
based (discrete), continuous, timed, and probabilistic behavioral aspects. Due to
the well-founded theory for various finite automata and their ability to represent
characteristics of different technical systems, we focused our attention on learning
automata behavior models. Our ultimate goal was to develop an approach for learning
hybrid automata, which can adequately model hybrid production systems.

First, we gave an overview of systems and models, focusing on several types of
finite automata in Chapter 2. Additionally, we cited a number of existing anomaly
detection and diagnosis approaches that are based on hybrid automata (and similar)
models. In contrast to the number of these approaches, there is to date no algorithm
that can learn hybrid automata automatically from data.

By generalizing the existing results of learning a few classes of deterministic
automata, we have showed in Chapter 3 that the deterministic hybrid automata with
one clock that tracks the continuous time evolution and resets at every transition can
be learned from positive and negative examples (i.e. logs taken during normal and
abnormal plant operation) in the limit (i.e. when enough data are available).

151

152 10 Conclusions and Future Work

However, due to the inability of such automata to model stochastic behavior of
a plant, but also due to the lack of negative learning examples in practice, we have
investigated the identifiability of stochastic automata only from positive examples in
Chapter 4. Several algorithms exist that can learn stochastic deterministic finite au-
tomata and one-clock stochastic deterministic timed automata from positive examples
in the limit with probability one (i.e. learning the correct target automaton). Moreover,
their runtime is polynomial in the size of the input data. The key property that makes
the stochastic automata identifiable in the limit with probability one from positive
examples is that they come from well-defined probability distributions [Ang88a].
This property compensates for the lack of negative examples. These existing positive
results directed our research to identifying the One-clock Stochastic Deterministic
Hybrid Automata (1-SDHAs).

In Chapter 6, we presented our Hybrid Bottom-Up Timing Learning Algorithm
(HyBUTLA) for learning 1-SDHAs automatically from positive data in the limit with
probability one. We proved its convergence properties and showed that its runtime
is polynomial in the size of the input data. The negative result that even the sim-
plest stochastic deterministic finite automata cannot be learned from data of the size
polynomial in the size of the automaton, unfortunately generalizes to 1-SDHAs. A
potential workaround for this issue is the framework of Probably Approximately Cor-
rect learning (PAC-learning) which enables identification of approximately correct
automata from polynomial data (see discussion in Chapter 5).

In addition to the learning algorithm, we have presented our ANOmaly Detection
Algorithm (ANODA) in Chapter 7. It uses the automatically learned behavior models
for model-based anomaly detection. We have proven its real-time properties that
enable its online application (i.e. during the runtime of the monitored system).

The real-world applicability of our model-learning and anomaly detection ap-
proaches has been demonstrated in two real plants in Chapter 8. Promising experi-
mental results were obtained.

Experimental validation of the HyBUTLA convergence, polynomial runtime and
scalability properties has been performed using the artificially generated datasets in
Chapter 9.

In the following, we summarize the main contributions of this thesis:

• We have found a formalism of 1-SDHAs to be both learnable from data and
suitable for modeling main characteristics of hybrid production systems, such as
interacting discrete-continuous dynamics, timed and stochastic behavior.

• We have developed the first hybrid automata learning algorithm: the HyBUTLA
algorithm.

• We positioned our learning approach in the larger picture of the existing relevant
complexity results. We showed that the HyBUTLA algorithm learns 1-SDHAs
from positive examples in the limit with probability one in polynomial time.

• The expert knowledge required for our approach is identified. The HyBUTLA
algorithm uses typically available knowledge, comprising the information about:
(i) the structure of the system, (ii) the associated signals for every modeled
component, and (iii) logs of those signals. The ANODA algorithm requires the
following knowledge: (i) the system sampling rate, (ii) the algorithm response
time for considered system, (iii) measurement ranges for monitored continuous
output variables, and (iv) a predefined threshold for signaling the alarm.

• We conducted the extensive experiments in two real plants as well as on the
artificial data. They empirically confirm the HyBUTLA convergence, polynomial

10.2 Future Work 153

runtime and scalability properties, but also show the applicability of our approach
in the real-world.

10.2 Future Work

During this research, we have identified several possible directions of future work.
We explain them in the following:

Algorithm optimization: In its current state, the HyBUTLA algorithm learns
functions that approximate the continuous output signals (θ functions) of the
system in several steps. First, the functions are learned for all prefix tree states.
Then, whenever two automaton states are merged, functions are learned for the
newly created state. Finally, whenever a state is split, functions need to be learned
for the two obtained states. In this way, functions are often learned for those states
that will be merged or split in subsequent algorithm steps. It would be possible
to speed up the algorithm by only maintaining the pointers to data required for
learning the θ functions of automaton states, and to learn all those functions only
at the end, after both merge and split steps are completed.

PAC-learning of hybrid automata: The number of positive examples needed for
learning 1-SDHAs in the limit with probability one cannot be in general bounded
by a polynomial in the size of the target automaton. However, we are confident that
learning of 1-SDHAs from a polynomial amount of data is possible in the PAC-
learning framework. The price to pay is the fact that in this framework, instead of
learning the correct automaton, a probably approximately correct automaton is
learned, i.e. a small error between the target and the learned automaton will exist
with certain probability.

Modeling non-production hybrid systems: In this work, we focused exclusively
on learning models for hybrid production systems, such as process plants. In
such facilities, more empirical analyses can be performed using our approach,
closing all the gaps that our own analyses might have left open. However, there
are also other types of hybrid systems that suffer from known drawbacks of
manual modeling. An example is the electric car, which also comprises discrete,
continuous, timed, and stochastic behavioral aspects.

Different application areas: We have evaluated our approach in the application
of model-based anomaly detection. In Section 1.4 we have listed a number of
other possible application areas, such as the model-based design, testing and
optimization. We think that models, automatically learned by our HyBUTLA
algorithm, could in many cases replace manually created behavior models used in
these applications.

Extending the ANODA algorithm: The ANODA algorithm uses the behavior
model learned by the HyBUTLA algorithm in order to detect the anomalous
behavior, i.e. the faults in discrete control and continuous physical system. Model-
based diagnosis however includes both fault detection and fault isolation. This
means that a reasoning mechanism exists, which isolates a faulty component and
finds a concrete failure that caused the anomalous behavior. By adding such a
mechanism to the ANODA algorithm, it could be updated from model-based
anomaly detection to model-based diagnosis algorithm.

Abbreviations

1-DTA One-clock Deterministic Hybrid Automaton 38
1-DTA One-clock Deterministic Timed Automaton 38
1-SDHA One-clock Stochastic Deterministic Hybrid Automaton . . . 4
1-SDTA One-clock Stochastic Deterministic Timed Automaton . . . 54
ANODA ANOmaly Detection Algorithm 4
BUTLA Bottom-Up Timing Learning Algorithm 29
CLHA Cycle-Linear Hybrid Automaton 29
CPHA Concurrent Probabilistic Hybrid Automaton 31
CWT Continuous Wavelet Transform 87
DES Discrete Event System . 12
DFA Deterministic Finite Automaton 17
DHA Deterministic Hybrid Automaton 18
DTA Deterministic Timed Automaton 17
DWT Discrete Wavelet Transform 85
EDESA Extended Discrete Event System Abstraction 33
EM Expectation-Maximization 32
FDD Fault Detection and Diagnosis 1
FN False Negative . 122
FP False Positive . 121
FT Fourier Transform . 86
HBG Hybrid Bond Graph . 33
HMM Hidden Markov Model . 31
HyBUTLA Hybrid Bottom-Up Timing Learning Algorithm 4
K-L divergence Kullback-Leibler divergence 27
LMF Lemgo Model Factory . 4
LOOCV Leave-One-Out Cross Validation 125
MBD Model-Based Diagnosis 1
MDI Minimal Divergence Inference 27
MLR-LT Multiple Linear Regression with Linear Terms 117
NFA Non-deterministic Finite Automaton 17
NHA Non-deterministic Hybrid Automaton 46
NTA Non-deterministic Timed Automaton 46
OPC-UA OPC Unified Architecture 75
PAC-learning Probably Approximately Correct learning 21
PDRTA Probabilistic Deterministic Real-Time Automaton 19
PLC Programmable Logic Controller 14
PTA Prefix Tree Acceptor . 24
RLIPS Regular Language Inference from Positive Samples 27
RPNI Regular Positive and Negative Inference 23

155

156 ABBREVIATIONS

RTI Real-Time Identification 28
RTI+ Real-Time Identification from Positive Data 28
RTS Real-Time System . 108
SDFA Stochastic Deterministic Finite Automaton 18
SDHA Stochastic Deterministic Hybrid Automaton 19
SDTA Stochastic Deterministic Timed Automaton 19
TCG Temporal Causal Graph 33
TN True Negative . 122
TP True Positive . 121
WT Wavelet Transform . 86

List of Figures

1.1 The concept of model-based anomaly detection. 2

2.1 A technical system. 12
2.2 A hybrid system. 13
2.3 Example of changes in discrete, continuous, and hybrid models. . . 15
2.4 Deterministic Finite Automaton (DFA). 17
2.5 Deterministic Timed Automaton (DTA). 17
2.6 Deterministic Hybrid Automaton (DHA). 18
2.7 Stochastic Deterministic Finite Automaton (SDFA). 18
2.8 Stochastic Deterministic Timed Automaton (SDTA). 19
2.9 Stochastic Deterministic Hybrid Automaton (SDHA). 19
2.10 A tank filling system, its signals, and the automaton. 20
2.11 Identification from given finite data and identification in the limit. . 22
2.12 Difference between passive and active learning [Ton01]. 23
2.13 State merging approach to learning automata. 24
2.14 Top-down (left) and bottom-up (right) merging orders. 26
2.15 Different robot behavior based on the different probability over time

of the same event ‘a’ [NSV+12]. 29

3.1 DHA example. 39

4.1 An example of one-clock stochastic deterministic hybrid automaton. 54
4.2 An example of probabilistic deterministic real-time automaton. . . . 55
4.3 An example of stochastic deterministic finite automaton. 56

5.1 Influence of n on bound I(n) and the probability 1− n−a. 67

6.1 An example of a shop floor communication (reproduced from
[PKN+12] with added Programmable Logic Controllers (PLCs)). . 74

6.2 The architecture of generic synchronized data acquisition approach
(reproduced from [PN12]). 75

6.3 The approach for learning 1-SDHAs with the HyBUTLA algorithm. 79
6.4 The HyBUTLA algorithm. 79
6.5 An illustration of building a prefix tree acceptor from learning examples. 81
6.6 The function compatible. 83
6.7 Two types of jumps in a hybrid production system. 85
6.8 The effects of the split function. 86
6.9 A real-world signal and its Discrete Wavelet Transform. 88
6.10 The recursive split function. 90

157

158 LIST OF FIGURES

6.11 Convergence speed for different selection of αn. Convergence is
faster for larger values of αn. 96

7.1 Anomaly detection based on models learned with the HyBUTLA
algorithm. 102

7.2 Example of the control sequence anomaly. 104
7.3 Example of the timing anomaly. 104
7.4 Real-world example of the anomalous energy consumption [FFP+12].105
7.5 The ANODA algorithm. 107
7.6 Timings of observations and responses for Tresp > 1

fs
. 109

8.1 One part of the Lemgo Model Factory. 119
8.2 Active power signal of the popping machine heater. 119
8.3 Trade-off between the size reduction and function approximation

accuracy. 121
8.4 Detection of signal drop for 30% of anomalous samples. 127
8.5 Detection of signal drop for 50% of anomalous samples. 128
8.6 Detection of signal drop for 70% of anomalous samples. 128
8.7 Detection of signal jump for 30% of anomalous samples. 130
8.8 Detection of signal jump for 50% of anomalous samples. 130
8.9 Detection of signal jump for 70% of anomalous samples. 131

9.1 The Reber-like model. 134
9.2 Convergence of the HyBUTLA to the target Reber-like automaton

for α = 0.01. 135
9.3 Runtime of the HyBUTLA algorithm for α = 0.01 and its quadratic

approximation. 135
9.4 Convergence of the HyBUTLA to the target Reber-like automaton

for α = 0.1. 136
9.5 Runtime of the HyBUTLA algorithm for α = 0.1 and its quadratic

approximation. 136
9.6 Constant number of continuous signals - PTA results. 138
9.7 Constant number of continuous signals - MERGE results. 139
9.8 Constant number of continuous signals - SPLIT results. 141
9.9 Constant number of discrete signals - PTA results. 142
9.10 Constant number of discrete signals - MERGE results. 143
9.11 Constant number of discrete signals - SPLIT results. 144
9.12 States generated by the example Di. 145

List of Tables

2.1 Overview of presented finite automata and the features they can model. 19
2.2 Four learning algorithms, automata models and modeled systems. . 26

3.1 A landscape of deterministic automata identifiability from informant. 38

4.1 A landscape of stochastic deterministic automata identifiability from
text. 58

5.1 Classification of distance measures. Measures on the left side express
relative differences between probabilities without considering their
absolute values. Measures on the right side express absolute differences. 65

5.2 The influence of the number of examples on several distance measures. 67

8.1 Algorithm comparison for Jowat AG data. 117
8.2 Properties of learned behavior models and their learning times. . . . 120
8.3 The confusion matrix. 122
8.4 Results of the modified 2-fold cross validation for the component of

the LMF. Cycles: 2, 3, 6, 7, 10, 12, and 13 are used for learning. . . 124
8.5 Results of the modified 2-fold cross validation for the component of

the LMF. Cycles: 1, 4, 5, 8, 9, and 11 are used for learning. 124
8.6 Averaged prediction error from Table 8.4 and Table 8.5. 124
8.7 Results of the LOOCV for the component of the LMF. 125
8.8 Detection of zero signal - testing data. 126

9.1 General observations for modeling hybrid production systems with
the HyBUTLA algorithm. 148

159

References

[AAB09] V. Alarcon-Aquino and J. A. Barria. Change detection in time series using the
maximal overlap discrete wavelet transform. 39(2):145–152, 2009.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. h. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[AL88] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning,
2(4):343–370, April 1988.

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, November 1987.

[Ang88a] D. Angluin. Identifying languages from stochastic examples. Technical report,
Yale University, YALEU/DCS/RR-614, March 1988.

[Ang88b] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, April
1988.

[APR02] J. Abello, P. M. Pardalos, and M. G. C. Resende, editors. Handbook of massive
data sets. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[Aut10] Automation Markup Language AutomationML. www.automationml.org, 2010.
[BHR08] P. Bouyer, S. Haddad, and P. A. Reynier. Timed petri nets and timed automata:

On the discriminating power of zeno sequences. Information and Computation,
206(1):73 – 107, 2008.

[BN93] M. Basseville and I. V. Nikiforov. Detection of abrupt changes: theory and appli-
cation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[Boy08] S. A. Boyer. SCADA: Supervisory Control And Data Acquisition. Instrument
Society of America, North Carolina, USA, 2 edition, 2008.

[Bra05] M. S. Branicky. Introduction to hybrid systems. In Handbook of Networked and
Embedded Control Systems, pages 91–116. Birkhauser, Boston, MA, USA, 2005.

[BS01] C. Baydar and K. Saitou. Prediction and diagnosis of propagated errors in assembly
systems using virtual factories. Application Brief, ASME Journal of Computers and
Information Science in Engineering, 1(3):261–265, 2001.

[BW01] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages: ADA
95, Real-Time Java, and Real-Time POSIX. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 3rd edition, 2001.

[Cel91] F. E. Cellier. Continuous System Modeling. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1991.

[CG08] J. Castro and R. Gavaldà. Towards feasible pac-learning of probabilistic determin-
istic finite automata. In Proc. of the 9th intl. colloquium on Grammatical Inference:
Algorithms and Applications, ICGI ’08, pages 163–174, Berlin, Heidelberg, 2008.
Springer-Verlag.

[CGS10] M. P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete event systems
using petri nets with unobservable transitions. Automatica, 46(9):1531–1539,
September 2010.

161

162 References

[CL08] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. 2.ed.
Springer, 2008.

[CnCV93] M. A. Castaño, F. Casacuberta, and E. Vidal. Simulation of stochastic regular
grammars through simple recurrent networks. In Proc. of the Intl. Workshop on
Artificial Neural Networks: New Trends in Neural Computation, IWANN ’93, pages
210–215, London, UK, 1993. Springer-Verlag.

[CO94] R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a
state merging method. In the Proc. of the Second Intl. Colloquium on Grammatical
Inference and Applications ICGI ’94, pages 139–152, London, UK, 1994. Springer-
Verlag.

[CO99] R. C. Carrasco and J. Oncina. Learning deterministic regular grammars from
stochastic samples in polynomial time. In RAIRO - Theoretical Informatics and
Applications, volume 33, pages 1–20, 1999.

[CT04] A. Clark and F. Thollard. Pac-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research, 5:473–497, December 2004.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-
ics of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[DA87] R. David and H. Alla. Continuous petri nets. In Proc. of the 8th European Workshop
on Application and Theory of Petri Nets, pages 275–294. Zaragoza, Spain, 1987.

[DA01] R. David and H. Alla. On hybrid petri nets. Discrete Event Dynamic Systems,
11(1-2):9–40, January 2001.

[Dau92] I. Daubechies. Ten lectures on wavelets. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1992.

[DD03] F. Desobry and M. Davy. Support vector-based online detection of abrupt changes.
In Proc. of the IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP’03), pages 872–875, Hong Kong, China, 2003.

[Dec97] S. E. Decatur. Pac learning with constant-partition classification noise and applica-
tions to decision tree induction. In Proc. of the Fourteenth Intl. Conf. on Machine
Learning, ICML ’97, pages 83–91, San Francisco, CA, USA, 1997. Morgan Kauf-
mann Publishers Inc.

[dKW87] J. de Kleer and B. C. Williams. Diagnosing Multiple Faults. Artificial Intelligence,
32(1):97–130, 1987.

[dlH97] C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine
Learning, 27:125–138, May 1997.

[dlH05] C. de la Higuera. A bibliographical study of grammatical inference. Pattern
Recognition, 38(9):1332–1348, 2005.

[dlH06] C. de la Higuera. Data complexity issues in grammatical inference. In Data
Complexity in Pattern Recognition, Part I, pages 153–169. Springer London, UK,
2006.

[dlH10] C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010.

[dlHO04] C. de la Higuera and J. Oncina. Learning stochastic finite automata. In Procs. of
the 7th Intl. Colloquiuum on Grammatical Inference (ICGI), LNAI 3264, pages
175–186, 2004.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society, Series B,
39(1):1–38, 1977.

[EAFT12] B. Esmael, A. Arnaout, R. K. Fruhwirth, and G. Thonhauser. Improving time series
classification using hidden markov models. In Proc. of the 12th Intl. Conf. on
Hybrid Intelligent Systems HIS 2012, pages 502–507, Pune, India, 2012.

[Eth08] Industrial communication networks - Fieldbus specifications - Part 5-10: Applica-
tion layer service definition - Type 10 elements (IEC 61158-5-10:2007), 2008. DIN
EN 61158-5-10:2008-09.

[Faw06] T. Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27:861–874,
June 2006.

[FCTB10] D. P. Filev, R. B. Chinnam, F. Tseng, and P. Baruah. An industrial strength
novelty detection framework for autonomous equipment monitoring and diagnostics.
Industrial Informatics, IEEE Transactions on, 6(4):767 –779, nov. 2010.

[Fel50] W. Feller. An introduction to probability theory and its applications. John Wiley
and Sons, New York, NY, USA, 1950.

References 163

[Fel11] M. Felser. PROFIBUS Manual – A collection of information explaining PROFIBUS
networks. epubli GmbH, Berlin, Germany, 2011.

[FFP+12] S. Faltinski, H. Flatt, F. Pethig, B. Kroll, A. Vodenčarević, A. Maier, and O. Nigge-
mann. Detecting anomalous energy consumptions in distributed manufacturing
systems. In Proc. of the 10th IEEE Intl. Conf. on Industrial Informatics INDIN’2012,
pages 358–363, Beijing, China, July 2012.

[GA08] M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and Practice Using
MATLAB. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2008.

[GB97] H. Guo and C. S. Burrus. Wavelets transform based fast approximate fourier
transform. In Proc. of the IEEE Intl. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP ’97), volume 3, pages 1973–1976, 1997.

[GCMC00] H. Guo, J. A. Crossman, Y. L. Murphey, and M. Coleman. Automotive signal
diagnostics using wavelets and machine learning. Vehicular Technology, IEEE
Transactions on, 49(5):1650 –1662, sep 2000.

[Ger98] J. J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker
Inc., New York, NY, USA, 1 edition, 1998.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[GMY+07] R. Grosu, S. Mitra, P. Ye, E. Entcheva, I. V. Ramakrishnan, and S. A. Smolka.
Learning cycle-linear hybrid automata for excitable cells. In Proc. of HSCC07,
the 10th Intl. Conf. on Hybrid Systems: Computation and Control, volume 4416 of
LNCS, pages 245–258. Springer Verlag, 2007.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[Gol78] E. M. Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302–320, 1978.

[Gro06] High-Level Group. MANUFUTURE - Strategic Research Agenda. Technical
report, European Commission, 2006.

[Haw80] D. M. Hawkins. Identification of outliers. Chapman and Hall Ltd., London, UK;
New York, NY, USA, 1980.

[HC01a] K. M. Hangos and I. T. Cameron. Measurement and Instrumentation Principles.
Butterworth-Heinemann, Woburn, MA, USA, 2001.

[HC01b] K. M. Hangos and I. T. Cameron. Process Modelling and Model Analysis. Academic
Press, London, UK, 2001.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In Proc. of the 11th Annual IEEE
Symposium on Logic in Computer Science, LICS ’96, pages 278–292, Washington,
DC, USA, 1996. IEEE Computer Society.

[Hen02] M. M. Henry. Model-based estimation of probabilistic hybrid automata. Master’s
thesis, Massachusetts Institute of Technology, Department of Aeronautics and
Astronautics, Cambridge, MA, USA, May 2002.

[HKPV98] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? J. Comput. Syst. Sci., 57(1):94–124, 1998.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[HT00] C. de la Higuera and F. Thollard. Identification in the limit with probability one
of stochastic deterministic finite automata. In Proc. of the 5th Intl. Colloquium on
Grammatical Inference: Algorithms and Applications, ICGI ’00, pages 141–156,
London, UK, 2000. Springer-Verlag.

[HTF08] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data
mining, inference and prediction. Springer, New York, NY, USA, 2 edition, 2008.

[HW02a] M. W. Hofbaur and B. C. Williams. Mode estimation of probabilistic hybrid
systems. In Proc. of the Intl. Conf. on Hybrid Systems: Computation and Control,
pages 253–266. Springer Verlag, 2002.

[HW02b] M. W. Hofbaur and B. C. Williams. Proc. of the 13th intl. workshop on the
principles of diagnosis (dx-02). pages 97–105, Semmering, Austria, may 2002.

[HZKW03] S. Hashtrudi Zad, R. H. Kwong, and W. M. Wonham. Fault diagnosis in discrete-
event systems: framework and model reduction. Automatic Control, IEEE Transac-
tions on, 48(7):1199 – 1212, 2003.

164 References

[IEC04] IEC/IEEE. Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems. IEC 61588 First edition 2004-09; IEEE 1588, 2004.

[Ise06] R. Isermann. Fault-Diagnosis Systems: An Introduction from Fault Detection to
Fault Tolerance. Springer-Verlag, Heidelberg/Berlin, Germany, 1 edition, 2006.

[JHZ12] S. Jabbari, R. C. Holte, and S. Zilles. Pac-learning with general class noise models.
In The 35th German Conf. on Artificial Intelligence (KI’2012), pages 73–84, 2012.

[JST09] JST. Failure knowledge database. Japan Science and Technology Agency, Online
available at http://www.sozogaku.com/fkd/en/index.html, 2009.

[Kap98] J. N. Kapur. Mathematical Modelling. New Age International (P) Ltd., New Delhi,
India, 1 edition, 1998.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM,
45(6):983–1006, November 1998.

[KHH10] K. Kidam, M. Hurme, and M. H. Hassim. Technical analysis of accident in chemical
process industry and lessons learnt. Chemical Engineering Transactions, 19:451–
456, 2010.

[KMR+94] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. On
the learnability of discrete distributions. In Proc. of the twenty-sixth annual ACM
symposium on Theory of computing, STOC ’94, pages 273–282, New York, NY,
USA, 1994. ACM.

[KNJ10] B. Kumar, O. Niggemann, and J. Jasperneite. Statistical models of network traffic.
In Intl. Conf. on Computer, Electrical and Systems Science,, pages 146–154. Cape
Town, South Africa, Jan 2010.

[KV94] M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory.
MIT Press, Cambridge, MA, USA, 1994.

[Lai88] P. D. Laird. Learning from good and bad data. Kluwer Academic Publishers,
Norwell, MA, USA, 1988.

[Lap04] P. A. Laplante. Real-Time Systems Design and Analysis: An Engineer’s Handbook.
IEEE Press, Piscataway, NJ, USA, 3 edition, 2004.

[Lju99] L. Ljung. System identification: theory for the user. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2 edition, 1999.

[Lyg06] J. Lygeros. Lecture notes on hybrid systems, AUT06-08. Technical report, Decem-
ber 2006.

[Man94] Siemens Manual. Teleperm xp, as 620 automation system, function block for group
control level (ap), fb175 nlfilt (non-linear filter), 1994.

[Man06] Siemens Manual. Application on control technology - scaling and unscaling analog
values v1.0, 2006.

[Man10] Siemens Manual. Sitrans p, series dsiii transmitters for pressure, differential
pressure, flanged level, and absolute pressure model 7mf4*33-, 2010.

[MB98] P. J. Mosterman and G. Biswas. A theory of discontinuities in physical system
models. Journal of the Franklin Institute, 335(3):401–439, January 1998.

[MB00] P. J. Mosterman and G. Biswas. Towards procedures for systematically deriving
hybrid models of complex systems. In Proc. of the 3rd Intl. Workshop on Hybrid
Systems: Computation and Control, HSCC ’00, pages 324–337, London, UK, 2000.
Springer-Verlag.

[MC04] H. Motulsky and A. Christopoulos. Fitting models to biological data using linear
and nonlinear regression: A practical guide to curve fitting. Oxford University
Press, New York, USA, 2004.

[MLD09] W. Mahnke, S. H. Leitner, and M. Damm. OPC Unified Architecture. Springer-
Verlag Berlin Heidelberg, 2009.

[MNV+11] A. Maier, O. Niggemann, A. Vodenčarević, R. Just, and M. Jäger. Anomaly
detection in production plants using timed automata. In Proc. of the 8th Intl. Conf.
on Informatics in Control, Automation and Robotics (ICINCO), pages 363–369,
Noordwijkerhout, The Netherlands, July 2011.

[Moh09] R. Mohammadi. Fault diagnosis of hybrid systems with applications to gas turbine
engines. PhD thesis, Concordia University, Montreal, Canada, 2009.

[Nar02] S. Narasimhan. Model-based Diagnosis of Hybrid Systems. PhD thesis, Vanderbilt
University, Faculty of the Graduate School, Nashville, TN, USA, 2002.

[NB02] S. Narasimhan and G. Biswas. An approach to model-based diagnosis of hybrid
systems. In Proc. of the 5th Intl. Workshop on Hybrid Systems: Computation and
Control, HSCC ’02, pages 308–322, London, UK, 2002. Springer-Verlag.

References 165

[NB07] S. Narasimhan and G. Biswas. Model-based diagnosis of hybrid systems. Sys-
tems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
37(3):348 –361, May 2007.

[NM10] G. Nicolescu and P. J. Mosterman. Model-Based Design for Embedded Systems.
CRC Press, Boca Raton, FL, USA, 2010.

[NMVJ11] O. Niggemann, A. Maier, A. Vodenčarević, and B. Jantscher. Fighting the modeling
bottleneck - learning models for production plants. In Proc. of the Model-Based De-
velopment of Embedded Systems Workshop MBEES2011, pages 157–166. Dagstuhl,
Germany, February 2011.

[NSV+12] O. Niggemann, B. Stein, A. Vodenčarević, A. Maier, and H. Kleine Büning. Learn-
ing behavior models for hybrid timed systems. In Twenty-Sixth Conference on
Artificial Intelligence (AAAI-12), pages 1083–1090, Toronto, Ontario, Canada,
2012.

[OG92] J. Oncina and P. Garcia. Identifying regular languages in polynomial time. In
Advances in Structural and Syntactic Pattern Recognition, volume 5 of Series in
Machine Perception and Artificial Intelligence, pages 99–108. World Scientific,
1992.

[OS95] M. R. Osborne and G. K. Smyth. A modified prony algorithm for exponential
function fitting. SIAM Journal of Scientific Computing, 16:119–138, 1995.

[OS09] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[Pit89] L. Pitt. Inductive inference, dfas, and computational complexity. In Proc. of the Intl.
Workshop on Analogical and Inductive Inference, AII ’89, pages 18–44, London,
UK, 1989. Springer-Verlag.

[PKN+12] F. Pethig, B. Kroll, O. Niggemann, A. Maier, T. Tack, and M. Maag. A generic
synchronized data acquisition solution for distributed automation systems. In Proc.
of the 17th IEEE Intl. Conf. on Emerging Technologies and Factory Automation
ETFA’2012, Krakow, Poland, September 2012.

[PM08] R. Pigan and M. Metter. Automating with PROFINET: Industrial Communication
Based on Industrial Ethernet. Publicis Publishing, Erlangen, Germany, 2 edition,
2008.

[PN12] F. Pethig and O. Niggemann. A process data acquisition architecture for distributed
industrial networks. In Embedded World Conference 2012, March 2012.

[PW93] L. Pitt and M. K. Warmuth. The minimum consistent dfa problem cannot be
approximated within any polynomial. J. ACM, 40(1):95–142, January 1993.

[PW03] B. Peischl and F. Wotawa. Model-based diagnosis or reasoning from first principles.
IEEE Intelligent Systems, 18(3):32–37, 2003.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
[Rab89] L. R. Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. Proc. of the IEEE, 77(2):257–286, feb 1989.
[RAG04] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter: Particle

Filters for Tracking Applications. Artech House, Boston, London, UK, 2004.
[Reb67] A. S. Reber. Implicit learning of artificial grammars. Journal of Verbal Learning

and Verbal Behavior, 6(6):855 – 863, 1967.
[Rei87] R. Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence,

32(1):57–95, 1987.
[RN10] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, Upper Saddle River, NJ, USA, 3 edition, 2010.
[RST95] D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic proba-

bilistic finite automata. In Proc. of the 8th annual conf. on Computational learning
theory, COLT ’95, pages 31–40, New York, NY, USA, 1995. ACM.

[SC97] M. Sanseverino and F. Cascio. Model-based diagnosis for automotive repair. IEEE
Expert, 12(6):33 –37, nov/dec 1997.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proc. of the tenth
annual ACM symposium on Theory of computing, STOC ’78, pages 216–226, New
York, NY, USA, 1978. ACM.

[SE09] P. Struss and B. Ertl. Diagnosis of bottling plants - first success and challenges. In
Proc of the 20th Intl. Workshop on Principles of Diagnosis (DX-09), Stockholm,
Sweden, 2009.

[Set10] B. Settles. Active learning literature survey. Technical report, January 2010.

166 References

[Slo95] R. H. Sloan. Four types of noise in data for pac learning. Inf. Process. Lett.,
54(3):157–162, May 1995.

[SLPQ06] P. Supavatanakul, J. Lunze, V. Puig, and J. Quevedo. Diagnosis of timed automata:
Theory and application to the damadics actuator benchmark problem. Control
Engineering Practice, 14(6):609–619, June 2006.

[TD97] Lj. Todorovski and S. Dzeroski. Declarative bias in equation discovery. In Proc. of
the 14th Intl. Conf. on Machine Learning, ICML ’97, pages 376–384, San Francisco,
CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[TDdlH00] F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic dfa inference using
kullback-leibler divergence and minimality. In Proc. 17th Intl. Conf. on Machine
Learning, pages 975–982. Morgan Kaufmann, 2000.

[Ton01] S. Tong. Active Learning: Theory and Applications. PhD thesis, Stanford University,
Stanford, CA, USA, 2001.

[Tri02] S. Tripakis. Fault diagnosis for timed automata. In Proc. of the Intl. Conf. on
Formal Techniques in Real Time and Fault Tolerant Systems (FTRTFT’02), pages
205–224, 2002.

[UL07] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers, San Francisco, CA, USA, 2007.

[Uv05] A. Ukil and R. Živanović. Detection of abrupt changes in power system fault
analysis: A comparative study. In Proc. of the Southern African University Power
Engineering Conference, Johannesburg, South Africa, 2005.

[Uv08] A. Ukil and R. Živanović. Adjusted haar wavelet for application in the power
systems disturbance analysis. Digit. Signal Process., 18:103–115, March 2008.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, November 1984.

[VdWW07] S. Verwer, M. de Weerdt, and C. Witteveen. An algorithm for learning real-time
automata. In Benelearn, pages 128–135, 2007.

[VdWW08] S. Verwer, M. de Weerdt, and C. Witteveen. Polynomial distinguishability of
timed automata. In Proc. of the 9th intl. colloquium on Grammatical Inference:
Algorithms and Applications, ICGI ’08, pages 238–251, Berlin, Heidelberg, 2008.
Springer-Verlag.

[VdWW09] S. Verwer, M. de Weerdt, and C. Witteveen. One-clock deterministic timed au-
tomata are efficiently identifiable in the limit. In Proc. of the 3rd Intl. Conf. on
Language and Automata Theory and Applications, LATA ’09, pages 740–751,
Berlin, Heidelberg, 2009. Springer-Verlag.

[VdWW10] S. Verwer, M. de Weerdt, and C. Witteveen. A likelihood-ratio test for identi-
fying probabilistic deterministic real-time automata from positive data. In Proc.
of the 10th intl. colloquium on Grammatical inference: theoretical results and
applications, ICGI’10, pages 203–216, Berlin, Heidelberg, 2010. Springer-Verlag.

[VdWW12] S. Verwer, M. de Weerdt, and C. Witteveen. Efficiently identifying deterministic
real-time automata from labeled data. Machine Learning, 86(3):295–333, March
2012.

[Ver10] S. Verwer. Efficient Identification of Timed Automata: Theory and Practice. PhD
thesis, Delft University of Technology, Delft, the Netherlands, 2010.

[VKBNM11a] A. Vodenčarević, H. Kleine Büning, O. Niggemann, and A. Maier. Identifying
behavior models for process plants. In Proc. of the 16th IEEE Intl. Conf. on Emerg-
ing Technologies and Factory Automation ETFA’2011, pages 937–944, Toulouse,
France, September 2011.

[VKBNM11b] A. Vodenčarević, H. Kleine Büning, O. Niggemann, and A. Maier. Using behavior
models for anomaly detection in hybrid systems. In Proc. of the 23rd Intl. Symp. on
Information, Communication and Automation Technologies-ICAT 2011, Sarajevo,
Bosnia and Herzegovina, October 2011.

[VMN13] A. Vodenčarević, A. Maier, and O. Niggemann. Evaluating learning algorithms
for stochastic finite automata - comparative empirical analyses on learning models
for technical systems. In Proc. of the 2nd Intl. Conf. on Pattern Recognition Appli-
cations and Methods ICPRAM 2013, pages 229–238, Barcelona, Spain, February
2013.

[Vod12] A. Vodenčarević. Learning behavior models of hybrid systems using wavelets for
autonomous jumps detection. In Proc. of the 10th IEEE Intl. Conf. on Industrial
Informatics INDIN’2012, pages 151–156, Beijing, China, July 2012.

References 167

[Vod13] A. Vodenčarević. Modelling abrupt changes: enhanced learning of behaviour
models for manufacturing systems. International Journal of Service and Computing
Oriented Manufacturing, 1(1):5–24, 2013.

[VTdlH+05a] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco. Proba-
bilistic Finite-State Machines-Part I. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(7):1013–1025, 2005.

[VTdlH+05b] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco. Proba-
bilistic finite-state machines-part ii. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(7):1026–1039, 2005.

[WD09] M. Wang and R. Dearden. Detecting and learning unknown fault states in hybrid
diagnosis. In Proc. of the 20th Intl. Workshop on Principles of Diagnosis (DX-09),
pages 19–26, Stockholm, Sweden, 2009.

[Wei05] S. Weisberg. Applied Linear Regression. John Wiley & Sons, Inc., Hoboken, New
Jersey, USA, 3rd edition, 2005.

[You82] S. J. Young. Real Time Languages: Design and Development. Ellis Horwood
Publishers, Chichester, UK, 1982.

[ZKH+05] F. Zhao, X. D. Koutsoukos, H. W. Haussecker, J. Reich, and P. Cheung. Monitoring
and fault diagnosis of hybrid systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 35(6):1225–1240, 2005.

[ZY01] H. Q. Zhang and Y. Yan. A wavelet-based approach to abrupt fault detection and
diagnosis of sensors. Instrumentation and Measurement, IEEE Transactions on,
50(5):1389 –1396, oct 2001.

	Introduction
	Motivation
	The Modeling Bottleneck
	Contributions of This Thesis
	Potential Applications
	Overview

	Part I Background
	Foundations and State of the Art
	Systems and Models
	Finite Automata Formalisms
	Finite Automata Identification Frameworks
	Algorithms for Learning Stochastic Finite Automata
	Fault Detection and Diagnosis of Hybrid Systems
	Conclusion

	Part II Complexity of Automata Identification
	Complexity of Identifying Deterministic Automata
	Introduction
	Three Classes of Deterministic Automata
	Automaton Identification Problem
	Identification in the Limit
	Polynomial Identification in the Limit
	Conclusion

	Complexity of Identifying Stochastic Deterministic Automata
	Introduction
	Notations and Automata Definitions
	Identification in the Limit with Probability One
	Strong Polynomial Criteria for Identification
	Weak Polynomial Criteria for Identification
	Summary

	Polynomial Approximations of Stochastic Automata
	Introduction
	Distance Measures Between Distributions
	Polynomial PAC-Learning
	Algorithms for Polynomial PAC-Learning of SDFAs
	Prospects of Polynomial PAC-Learning for Hybrid Automata

	Part III Algorithms
	Automated Learning of 1-SDHAs from Data
	Data Acquisition and Preprocessing
	Generating Alphabet and Timing Constraints from Measurements
	The HyBUTLA Learning Algorithm
	Abrupt Change Detection
	Modeling Autonomous Jumps with State Splits
	Algorithm Properties
	Conclusion

	Anomaly Detection Based on Learned Behavior Models
	The Principle of Model-Based Anomaly Detection
	Anomalies in Hybrid Production Systems
	The ANODA Algorithm
	Real-Time Properties of the ANODA Algorithm
	Conclusion

	Part IV Case Studies in Learning and Anomaly Detection
	Real-World Plants
	Comparative Empirical Analysis on Learning Automata
	Learning Behavior Models for the Lemgo Model Factory
	Anomaly Detection Experiments
	Conclusion

	Artificial Datasets
	Empirical Analysis of Convergence and Polynomial Runtime
	Empirical Analysis of Scalability
	Conclusion

	Part V Conclusion
	Conclusions and Future Work
	Conclusions
	Future Work

	List of Abbreviations
	List of Figures
	List of Tables
	References

