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Paderborn, December 2012

vi



Abstract

Numerous dynamical systems describing real world phenomena exhibit a char-

acteristic fine structure which means that they are composed of smaller subsys-

tems interacting with each other. This interaction structure can be represented

by a coupling network whereby the original system can be viewed as a network

of dynamical systems and is commonly termed coupled cell system. Since re-

ality crucially depends on time, derived models generally tend to be subject

to temporal changes as well. Particularly in applications involving technology,

this temporal evolution often occurs as a consequence of an instantaneously

varying network structure; communication networks provide a prominent class

of examples.

In this thesis, time-varying dynamical system networks are analyzed on the

grounds of the following two structural aspects: Firstly, instantaneous modifi-

cations of the underlying coupling network generally lead to non-smooth vector

fields and, secondly, a fixed network structure naturally introduces symmetries

to the according system. These analytical and algebraic observations trigger

the system’s description as a hybrid dynamical system with local symmetry

information. In search of global structure for systems of such kind, a global

symmetry framework for hybrid dynamical systems formulated in terms of

hybrid automata is unfolded that takes into account both discrete transition

graph symmetries and local dynamical systems’ symmetries giving rise to the

concept of hybrid symmetries. Moreover, hybrid periodicity and hybrid spatio-

temporal symmetries are discussed – all in the light of classical symmetries in

the context of dynamical systems.

Restricted to a special class of switched systems which induce hybrid automata

by the choice of a switching signal, symmetry-induced switching strategies
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termed orbital switching signals are investigated and stability issues of switched

linear systems are addressed. Against this theoretical background, examples

of time-varying dynamical system networks are treated both structurally and

numerically for orbitally switched coupling networks. With a view to appli-

cations, orbital switching can be interpreted in terms of cyclically evolving

network perturbations.
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Zusammenfassung

Zahlreiche dynamische Systeme, die der Beschreibung realer Phänomene

dienen, weisen eine charakteristische Feinstruktur auf, d. h. sie setzen sich aus

kleineren Systemen zusammen, die sich wechselseitig beeinflussen. Die Struk-

tur dieses Zusammenspiels kann als Kopplungsnetzwerk dargestellt werden,

womit das ursprüngliche System als ein Netzwerk dynamischer Systeme be-

trachtet werden kann, das in der englischsprachigen Literatur üblicherweise als

Coupled Cell System bezeichnet wird. Da die Realität selbst in höchstem Maße

zeitabhängig ist, unterliegen auch zu ihrer Beschreibung entwickelte dyna-

mische Systeme prinzipiell zeitlichen Veränderungen. Insbesondere in techno-

logischen Anwendungen rührt diese Zeitabhängigkeit oftmals von einer sich in-

stantan verändernden Netzwerkstruktur her; dieses ist beispielsweise bei Kom-

munikationsnetzwerken häufig der Fall.

Der Schwerpunkt dieser Arbeit liegt in der Analyse solcher zeitabhängigen

Netzwerke dynamischer Systeme, die vorrangig auf den folgenden beiden struk-

turellen Aspekten basiert: Zum einen führen die instantanen Modifikatio-

nen des zugrundeliegenden Kopplungsnetzwerkes im allgemeinen auf nicht-

glatte Vektorfelder und zum anderen induziert eine feste Netzwerkstruktur auf

natürliche Weise Symmetrien des entsprechenden dynamischen Systems. Diese

analytischen und algebraischen Fakten veranlassen die Beschreibung des Sys-

tems als ein hybrides dynamisches System mit lokaler Symmetrie-Information.

Dies motiviert die Entwicklung eines globalen Symmetriekonzeptes für hy-

bride dynamische Systeme in Form hybrider Automaten, welches sowohl die

diskreten Symmetrien des Transitionsgraphen wie auch die klassischen Sym-

metrien der lokalen dynamischen Systeme berücksichtigt. Im Zuge dieser Kon-

struktion erfolgt die Definition hybrider Symmetrien sowie deren algebraische

und die hybride Dynamik betreffende Behandlung. Darüberhinaus werden hy-
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bride Periodizität und in diesem Zusammenhang hybride raum-zeitliche Sym-

metrien im Hinblick auf klassische Symmetrien diskutiert.

Auf der Grundlage dieser Betrachtungen werden durch Symmetrien ge-

nerierte Schaltstrategien – sogenannte orbitale Schaltsignale – für eine spezielle

Klasse von Switched Systems behandelt, welche als verallgemeinerte hybride

Automaten verstanden werden können. In diesem Kontext werden Stabilitäts-

fragen spezieller hybrider Systeme untersucht. Vor diesem theoretischen Hin-

tergrund schließt sich die strukturelle und numerische Analyse zeitabhängiger

Systemnetzwerke an, die durch das orbitale Umschalten ihrer Kopplungs-

netzwerke charakterisiert sind. Im Hinblick auf Anwendungen kann diese Art

von orbitalem Schalten als zyklisch wandernde Netzwerkstörung interpretiert

werden.
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Chapter 1

Introduction

This thesis is motivated by dynamical phenomena of networks of dynamical

systems that change in time. It approaches the issue in terms of hybrid systems

and sets up a notion of hybrid symmetry which is linked to special evolution

patterns of dynamical system networks. Before we go into detail, we embed

the subject into its scientific surroundings, discuss the motivating ideas and

introduce the fundamental components that will be involved in the analysis.

The structural composition of the thesis is pointed out afterwards.

Concerning the Mathematical Analysis of the World

Reality may be viewed as a highly dynamic multilayered phenomenon of count-

less interacting instances. These instances may be understood as units charac-

terized by spirit and purpose or simply as systems. The mathematical discipline

that is set up for handling the temporal development of a system’s states is

the theory of dynamical systems. Since – on each scale of observation – reality

tends to be extremely intricate and complex, one cannot severly pursue the

plan of formally understanding the world as a whole. Naturally, the inter-

est focuses on comparably small subsystems which to comprehend drives the

researchers’ efforts.

Reality is tightly woven of interdependencies. When trying to perceive aspects

of the real world from a scientific point of view, one sees network structures

shine through on each scale the eye accomodates to. This applies to every

aspect of life, be it nature, technology, economy or social relationship: The

world is interspersed with networks.

Besides, reality is non-static in every respect. What makes things even more
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1 Introduction

difficult and considerably harder to trace, is the awareness that as a matter of

principle everything that surrounds us crucially depends on time. Especially

not only a system’s state but the system itself is subject to permanent temporal

changes.

Consequently, we have to face the challenge of describing and analyzing reality

in terms of time-varying networks of dynamical systems if we aim to obtain

a reasonable mathematically formalized picture detail of what is commonly

called the real world. However, there is no reason to blindly assume that

networks vary smoothly in time. Already the consideration of mobile ad-hoc

communication networks or interacting robots strongly suggests that there are

quite a number of distinguished cases of dynamical system networks where the

spatially discrete network structure evolves non-smoothly in time. Even the

wink of the observer’s eye or the quantization of energy keeps us away from

a world that can in principle be experienced in a smooth manner. It is this

line of thought which introduces mixed discrete-continuous traits to the issue

and leads into the framework of hybrid systems which are characterized by a

combination of discrete events and continuous flow dynamics.

Once the awareness of network structures is established, the strongly and in-

deed

naturally related notion of symmetry enters the discussion, since the automor-

phisms of a graph typify a geometrically very descriptive occurence of symme-

try and symmetries constitute an important form of additional structure from

the dynamical system point of view inasmuch as they deeply influence the dy-

namical behaviour of the system under examination. In consideration of an

evolving network structure, symmetries themselves are bound to change and in

view of the system’s hybrid formulation a newly discovered hybrid symmetry

structure is given rise to which turns out to be closely connected to special

network evolution patterns.

This work studies the relation between hybrid symmetries of a hybrid system

and the structural as well as dynamical properties of the according hybrid

dynamics driven by symmetry-induced switching strategies. The results are il-

lustrated by means of time-varying dynamical system networks as prototypical

examples of hybrid systems possessing non-trivial hybrid symmetries. In order

to give a more precise description of the essential contents and achievements
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of this thesis, we turn towards a more elaborate characterization of the single

building blocks involved and point out the ideas as well as their realization in

more detail.

Dynamical Systems

The concept of dynamical systems represents an essential instance in order

to model various kinds of dynamic processes which appear in divers aspects

of human life, such as nature, technology and economics. Broadly speaking,

the notion of a dynamical system provides a mathematically formalized model

capturing the temporal development of a system’s state. From a strict mathe-

matical point of view, the most natural, but actually most abstract description

of dynamical systems is rooted in the field of automorphism semigroups – or

sets equipped with semigroup actions, to put it differently. More concretely,

time, which is modeled as a discrete or continuous semi-group, acts on the

phase space of the system under consideration. It is this action which specifies

the time-evolution law (or more simply, the flow of the system) that encodes

the passage in time of single states within their ambient space.1 To be more

precise, an abstract dynamical system Ψ on a non-empty set Ω – the state or

phase space – is a triple (Ω, G,Φ) further consisting of a semi-group G and an

action Φ : G× Ω→ Ω of G on Ω, i. e. the identities

Φ(e, ω) = ω and Φ (g,Φ(h, ω)) = Φ(gh, ω)

hold for all g, h ∈ G and ω ∈ Ω with e ∈ G denoting the neutral element.

On a very general level, given a dynamical system Ψ, the main interest fo-

cuses on the system’s trajectories – which are the semi-group orbits Gω0 =

{Φ(g, ω0) | g ∈ G} ⊂ Ω of an initial state ω0 ∈ Ω – in order to obtain a suffi-

cient understanding of the dynamics. Hence, trajectories are the paths of single

states in phase space. However, for different reasons, it is not sufficient or even

impossible in most cases to understand a dynamical system solely in terms of

1One should stress that commonly using the term dynamical system this evolution rule

is deterministic, i.e. given the current state of the dynamical system, there is a unique

future state for each later point in time.
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1 Introduction

its individual trajectories. Thus, appropriate methods and tools for the local

as well as global analysis of dynamical systems are necessary. These include

– amongst others – notions of stability and bifurcation theory of dynamical

systems.

Notably, in case of continuous state and time, a dynamical system straight-

forwardly gives rise to an ordinary differential equation: For X ⊂ Rn and

G = (T,+), where T is one of the (semi-)groups R, R≥0 or R≤0, a dynamical

system is a continuously differentiable map Φ : T × X → X such that the

induced one-parameter family of maps {φt}t∈T with

φt = Φ(t, ·) : X → X, x 7→ Φ(t, x)

satisfies the simple, but natural relations

φ0 = idX and φt ◦ φs = φt+s

for all s, t ∈ T. The definition of a vector field f : X → Rn by mapping a state

x ∈ X to the tangent vector of the curve φx : Φ(·, x) : R → X, t 7→ φt(x) at

t = 0, i. e.

f(x) =
d

dt
φt(x)

∣∣∣∣∣
t=0

,

leads to the ordinary differential equation

ẋ(t) = f(x(t))

with x(t) = φt(x). Conversely, under suitable conditions on the vector field, an

ordinary differential equation induces – at least locally – a dynamical system.

In case, this is also globally possible, one does not have to distinguish between a

dynamical system as an R-action and the corresponding differential equation.

As a classic introductory textbook on dynamical systems, [HS74] should be

mentioned primarily, and for a more recent and comprehensive compendium,

one should confer [KH98].

In this work, the focus concentrates on the structural treatment of dynamical

systems which is why we decide on rather plain requirements with respect to

the occuring dynamical systems: We assume X = Rn and T = R and inten-

tionally avoid to linguistically make a difference between dynamical systems
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and ordinary differential equations.

Now, we address the difference between autonomous and non-autonomous dy-

namical systems, which also plays a specific role in the upcoming considera-

tions. A dynamical system ẋ = f(x) is said to be autonomous if the vector

field f : Rn → Rn does not explicitely depend on time. In this case, the inter-

pretation is that the time-evolution law is fixed and does not change in time.

Under mild assumptions, locally, the initial value problem

ẋ = f(x), x(t0) = x0,

for some initial value x0 ∈ X has a unique solution x(t) which is a curve

Ix0 → X defined on an interval Ix0 ⊂ R that satisfies the differential equation,

namely ẋ(t) = f(x(t)) for all t ∈ Ix0 .

If explicit time-dependence is on hand, i. e. the equation has the form ẋ =

f(t, x) with vector field f : T × X → X, we speak of a non-autonomous

dynamical system and imagine a time-evolution law varying temporally as the

state itself evolves. What is special about non-autonomous dynamical systems

is that they have the cocycle property : Let the initial value problem ẋ = f(t, x),

x(t0) = x0 have a unique solution x(x0, t0, t) and write φtt0(x0) = x(x0, t0, t);

then the two-parameter family {φts}s,t∈R,s≤t of maps fulfills

φtt = idX and φts ◦ φsr = φtr

for all r, s, t ∈ R. In many cases, explicit time-dependence results from time-

variant external influences and generally introduces additional complications

with respect to analysis. If there is periodicity in time meaning f(t + T, x) =

f(t, x) for all t ∈ R, x ∈ X and some period T ∈ R, interesting symmetry prop-

erties may arise (so-called spatio-temporal symmetries, cf. [Fie88] or [GS02],

for instance); we turn to this topic later on in Chapter 6 .

Symmetries, Equivariant Dynamical Systems &

Coupled Cell Systems

A dynamical system which exhibits additional structure in terms of symmetries

is said to be equivariant. In this framework, the term �symmetry� names a
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1 Introduction

transformation of the phase space which preserves the system’s dynamic be-

haviour by taking trajectories to trajectories. The natural language for the

description of global symmetry properties is that of groups since (global) sym-

metries always form the algebraic structure of a group acting on the phase

space. This translates to an equivariance condition on the vector fields deter-

mining the induced differential equations. Symmetries of dynamical systems

may arise from the system geometry (e.g. experimental set-ups in physics

or natural arrangements and interdependencies in biology), from simplifying

modeling assumptions or from the idealization of real world phenomena (e.g.

the spherical symmetry of the Earth).

Intuitively, it appears to be obvious that the presence of symmetries strongly

shapes the overall dynamical behaviour and, generally, offers the possibility of

reducing its complexity. Furthermore, symmetries generate flow-invariant sub-

spaces of the phase space: These are regions that – once entered – cannot be left

again, and for special purposes it is convenient to restrict the system to such

a subspace. What motivates an extensive treatment of equivariant dynam-

ical systems, furthermore, is the occurence of certain dynamical phenomena

which are typically not observed in generic systems lacking symmetries, for in-

stance the existence of heteroclinic cycles. An exceedingly important branch of

equivariant dynamical system analysis is equivariant bifurcation theory. Here,

in presence of symmetries, the qualitative change of dynamics is studied while

a parameter is varied: At bifurcation points stability properties of solutions

are affected, the orbit type may change and the symmetry of trajectories may

be destroyed (symmetry breaking). Equivariant dynamical systems are treated

in the textbooks [GSS88] and [GS02], for instance.

The presence of network structures provides a rich breeding ground for sym-

metries. A coupled cell system is a network of dynamical systems – referred to

as cells – which are coupled together according to an underlying coupling net-

work – the coupled cell network – and thus influence each other dynamically.

The concept of coupled cell systems both strictly formalizes and considerably

extends the theory of equivariant dynamical systems which are composed of

smaller subsystems and whose symmetries stem from their coupling architec-

ture.

Global network symmetries are known to influence the overall dynamical be-
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havior strongly causing phenomena like synchrony of subsystems (patterns

of synchronized cells) or phase relations, for instance. However, as one can

observe, this global kind of symmetry is not the only particular structure im-

posed on a dynamical system network to create such dynamical properties.

Furthermore, global symmetries are highly sensitive with regard to perturba-

tions concerning the network topology describing the coupling. In order to

deal with problems of that type, the formalism of coupled cell systems pro-

vides a more general notion of symmetry which is of local nature, in contrast to

classical global symmetries. As a consequence, the algebraic object gathering

all the symmetry information of a system – a group in the case of classically

equivariant systems – is replaced by a more complex and robust object: the

symmetry groupoid.

The first main results in this field of study (stated by Golubitsky, Stewart

and co-workers in [GS06], for instance) comprise the complete combinatorial

classification of robust synchrony patterns (balanced equivalence relations) and

the reduction of coupled cell systems with regard to a chosen pattern of syn-

chrony (quotient networks). The preceding term �robust� refers to another

major feature of coupled cell systems: The results stated above apply to all

vector fields which are compatible with the underlying coupled cell network.

In particular, they do not depend on the explicit form of the vector fields, but

solely on the network structure given by the coupling. These characteristics

and the attribute of being composed of more elementary subsystems make the

idea of coupled cell systems amenable to applications with regard to modeling

and analysis issues of real world problems. An introduction to the formalism of

coupled cell systems can be found in [SGP03] while [GS06] should be consulted

as a survey comprising the state of research until 2006.

Hybrid Dynamical Systems

In the broadest sense, hybrid systems are dynamical systems which involve the

interaction of qualitatively different types of dynamics. More specifically, the

idea of hybrid dynamical systems considered here is born out of the combination

of continuous dynamical behavior (flowing, described by a continuous state

dynamical system) and discrete event dynamics (jumping, given by a finite
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1 Introduction

state system). Since discrete dynamics may affect the continuous evolution of

the system (and vice versa), the analysis and design of hybrid systems tends

to be substantially more difficult and complex than in the purely discrete or

continuous case.

The notion of hybrid dynamics provides an appropriate framework for system

modelling in a wide range of engineering applications: e.g. mechanical sys-

tems (collisions), electrical circuits (hybridly behaving diodes and transistors,

charging of capacitors interrupted by switching, see e. g. [HCS01]), chemi-

cal process control (control of chemical reactions by valves and pumps, see

[MRB+07] for the modeling and the dynamics of a class of controlled reverse

flow reactors), air traffic management, scheduling of automated railway sys-

tems and embedded computation. A possibility to formalize hybrid systems

and set up a mathematical environment for their modeling and analysis is to

make use of hybrid automata which – in outlines – are dynamical systems

networked by a transition graph provided with rules supervising the transient

behavior.

Specifying initial and final states, additionally, a hybrid automaton becomes

a state transition system which yields the possibility to consider reachability

questions algorithmically. For hybrid systems this translates to safety proper-

ties, for instance, which are of vital importance whenever safety of real world

systems is concerned; automated highway systems or flight control are only

two noteworthy instances.

From the dynamical systems’ point of view, even very simply structured hybrid

systems may exhibit exotic, occasionally unwanted dynamical behavior (the

Zeno property, cf. particularly [ZJLS01], or blocking). Therefore, analysis

requires different approaches and new non-standard techniques. One of the

extremely rare introductory textbooks on general hybrid systems is [vdSS00].

The hybrid automata setting and first dynamical considerations can be found

in [LJS+03].
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Time-Varying Dynamical System Networks and

Symmetries - The Root Idea

From a structural point of view, a dynamical system network is a significantly

richer object than just an ensemble of dynamical systems each being on its

own. It is the network topology which imposes a communication grid between

the systems joining them together and letting them interact to provoke collab-

orative dynamical behaviour. Therefore, what is special about such networked

systems is the interlocking of two qualitatively completely different types of

structure: The spatially discrete network structure on the one hand and the

continuous dynamics of the single systems on the other hand and both tightly

connected to form a unit.

In that spirit, a dynamical system network (or coupled cell system) can nat-

urally be viewed as a dynamical system itself defined on a high-dimensional

phase space, namely the Cartesian product of all individual phase spaces in-

volved. Thus, if this global dynamical system experiences temporal develop-

ment meaning that it is non-autonomous, this may – as a matter of fact –

be a consequence of basically two substantially distinct factors due to its pe-

culiar structure. Firstly, one of the single systems (or a group or even all of

them) may explicitely depend on time in a smooth manner while the network

architecture is temporally fixed. In this situation, we come upon a classical

non-autonomous dynamical system ẋ = F (t, x). Secondly, the underlying net-

work topology may be non-static and undergo instantaneous changes in the

course of time.2 Certainly, both kinds of time-dependence may occur simul-

taneously, but this thesis strictly focuses on the latter case. Non-autonomous

dynamical systems of that kind may arise from the discretization of partial

differential equations with evolving boundary conditions, for instance.

The crucial effect of the instantaneous network evolution is the general loss of

smoothness or even continuity with respect to the vector field. All that remains

2Of course, there are two further mechanisms to give rise to explicit dependence on time:

the instantaneous structural change of a subsystem and the smooth variation of the

underlying network structure. Both types of modification, however, are not in line with

the according object’s categorical origin and are therefore not considered here.
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1 Introduction

is the former regularity between two time instants of network modification, i. e.

during the time the network rests. It is this observation which imperatively

suggests that we have left the classical stage of dynamical systems and already

perform in the regime of hybrid systems.

Figure 1.1: Numerical example: Plot of a solution of a time-

varying dynamical system network with two distinct

network structures involved; each dynamical sys-

tem involved is 8-dimensional and the coordinates

x1, x3, x5 and x7 are plotted.

Concerning network dynamics, we assume that the number of nodes is constant

meaning that as time goes by nodes can neither vanish nor be created, changes

are completely induced by the variation of edges. Under these circumstances,

there are only finitely many ways for a given finite network to change. It

appears reasonable to administrate all possible dynamical systems resulting

from different network structures as well as the admissible transitions from

one coupling state to another: It may be forbidden that all couplings vanish

at once, for instance, or that some sequence of configurations is impossible.

Again, this approach formally brings forth a network of dynamical systems,

but notably the underlying graph structure bears a different meaning compared

to a coupled cell system. While the edges are interpreted as spatial couplings

between the subsystems in the case of a coupled cell system, they express

10



the temporal evolution of the varying system in our recently considered case.

As soon as the edges are provided with conditions that manage the passage

from one node to another along an edge, the original time-varying dynamical

system network has been transformed to a hybrid automaton, a specific way of

describing a hybrid system based on a transition graph.

Figure 1.2: Dynamics of another time-varying dynamical system

network with four possible network structures in-

volved

The substantial effect of putting a time-varying dynamical system network into

the framework of hybrid automata from a superior point of view consists in

the autonomization of the original mathematical object, i. e. the former non-

autonomous system becomes an autonomous object in the category of hybrid

systems. Now, as hinted at before, network structures generate a special form

of dynamical system symmetries strongly connected to the automorphisms of

the according coupling graph.

Examples as illustrated in Figures 1.1 and 1.2 suggest the presence of some kind

of symmetries that appear to be connected to the way the network changes.

The dynamical systems revealing the dynamics displayed in Figures 1.1 and

1.2 are treated throughout the thesis, in particuliar in Chapters 3, 5 and 6.

11



1 Introduction

What is an apparently incoherent miscellany of time-dependent symmetries

that lacks a unifying or at least connective description in algebraic terms, by

autonomization becomes an expectant collection of coexistent elements de-

manding an algebraic arrangement of the overall symmetry information genet-

ically contained in the derived hybrid system. This is the point where hybrid

symmetries are born. In order to analyze a possible interrelation between the

patterns which the dynamics of a time-varying network of dynamical systems

exhibit with its symmetries, the development of a global symmetry framework

for hybrid dynamical systems is necessary.

Subject and Structure of this Thesis

This thesis is concerned with the structural analysis of time-varying dynami-

cal systems in the setting of hybrid dynamical systems with its main focus on

symmetries. It establishes a global symmetry framework for hybrid dynamical

systems and discusses in detail a special class of switching signals which are

induced by hybrid symmetries. In this context, stabilization issues for linear

hybrid systems are addressed. Switched systems with respect to symmetry-

induced signals are found to adequately describe time-varying dynamical sys-

tem networks with perturbations or link failures moving periodically through

the network.

The thesis is structured as follows. In Chapter 2, the concept and formalism

of hybrid dynamical systems is introduced starting with the formal definition

of hybrid automata before discussing hybrid dynamics. Widely based on recent

literature, the exposition is characterized by an own accent originating from

the intention to find a closed form for presenting the hybrid system framework.

Most significantly, in the course of these modifications, purely time-dependent

switching is integrated into the hybrid automaton framework.

Chapter 3 carefully documents the development of a symmetry setting for

hybrid dynamical systems and examines hybrid dynamics in presence of such

hybrid symmetries. At the outset of Chapter 3, the nature of symmetries for

classical dynamical systems is sketched in order to provide the reader with the

basic concepts that are to be generalized to the hybrid case afterwards. The

12



construction of hybrid symmetries is carried out in two major steps: Firstly, ab-

stractly coupled equivariant dynamical systems – termed dynamical T -systems

based on a directed graph T – are considered. These are dynamical system

networks whose edges’ meaning is undetermined. For systems of that type, a

notion of symmetry is created and studied in terms of single dynamical systems

and with a view to algebraic properties. In this process a new equivariance-

like property arises for the according vector fields – termed weak equivariance

– which may be interpreted as a kind of spatio-spatial symmetry in the style of

spatio-temporal symmetries. Truly, this type of equivariance appears as a gen-

eralization of classical equivariance for vector field families set in relationship

via a graph. The second step realizing the passage from dynamical T -systems

to hybrid dynamical systems consists in the inclusion of instances supervising

the switching between adjacent dynamical systems. This leads to the comple-

tion of hybrid symmetries that – according to the qualitatively heterogeneous,

composite structure of hybrid systems – originate from the matched interlock-

ing of discrete and continuous symmetries which is also discussed in detail.

Subsequently, the immediate consequences for hybrid dynamics are addressed

coming along with the presence of hybrid symmetries. The chapter closes with

the examination of hybrid fixed-point spaces which turn out to exhibit consider-

ably weaker properties compared to their classical flow-invariant counterparts.

This awareness constitutes a major difference between hybrid and classical

symmetries arising due to the structural otherness of hybrid systems.

After Chapter 3 has covered the hybrid analog of (purely spatial) symmetries,

Chapter 4 holds the treatment of hybrid spatio-temporal symmetries. To this

end, periodicity in the dynamics of hybrid automata is inspected and charac-

terized structurally. Based thereupon, the hybrid spatio-temporal symmetries

of a single execution are established and characterized. The observation that

an execution of a hybrid automaton induces a hybrid automaton related to

the original one, gives rise to the question concerning the connection between

these systems with regard to hybrid symmetries; in the case of hybrid spatio-

temporal symmetries, it is shown that this symmetry information is passed

on to the induced systems. For the purpose of gaining a deeper understand-

ing of the impact of hybrid spatio-temporal symmetries, the perspective is

slightly changed to hybrid automata with prescribed periodic discrete state

maps. Analogous to the classical case, the hybrid time-T map with T denot-

13



1 Introduction

ing the period of the underlying switching signal decomposes to an iterate of

a related map which is connected to the hybrid spatio-temporal symmetries

of the switched system. This result allows for a characterization of spatio-

temporally symmetric executions as fixed-points of certain maps.

In Chapter 5, the focus completely turns to switched systems whose discussion

serves the purpose of examining a hybrid dynamical system from another point

of view bringing the role of switching signals to the fore and the concept of

hybrid symmetries is briefly adapted to switched systems. Afterwards, a special

class of switching signals generated by hybrid symmetries and termed orbital

switching is centered. In particular, the effect of conjugation is studied for

orbital switching signals. The role of a signal’s switching time with respect

to symmetries is figured out and orbital switching is shown to give rise to

hybrid spatio-temporal symmetries. Thus it imposes a particular structure

on the hybrid return map with respect to the period of the orbital signal.

As an application of this symmetry-based decomposition, the stabilization of

switched linear systems is investigated.

It is then that Chapter 6 turns towards time-varying networks of dynamical

systems against the background of the theoretical results developed in Chap-

ters 3 to 5. Beginning with the formal introduction of coupled cell systems

with fixed coupling topology, a special class of globally symmetric coupled cell

systems is described and exposed to smoothly varying and periodically spread-

ing network perturbations. In the course of a discretization process, a hybrid

automaton model is derived for this time-varying dynamical system network

and its hybrid symmetry properties are revealed. Numerical experiments il-

lustrate symmetry-shaped dynamics and stabilization phenomena in line with

the results of the main part of this thesis.

Finally, Chapter 7 provides a detailed conclusion of this work. After a ret-

rospective summary, the most important findings are pointed out followed by

an outlook on possible future research concerning this topic.

14



Chapter 2

Hybrid Dynamical Systems

This chapter serves as an introduction to the mathematical description of hy-

brid dynamical systems and is composed as follows: Firstly, Section 2.1 pro-

vides and discusses a formal definition of hybrid dynamical systems this thesis

fundamentally builds on. Thereupon Section 2.2 deals with the depiction of

the dynamics such systems give rise to.

2.1 The Concept of Hybrid Dynamical

Systems

We mark the beginning of seeing and understanding things from a hybrid point

of view by the rigorous definition of hybrid dynamical systems, the primary con-

cept this thesis builds on. Having laid this formal grounding, we inspect and

interpret these exceptional mathematical objects relating them to what is clas-

sically known as dynamical systems and thereby discovering their dynamical

meaning and importance.

The following definition is almost identical to the definitions given in [LJS+03]

and [SJLS05] except for the concept of clocks which I have incorporated in order

to include mixed state-time and pure time-dependent switching.1 An even

more abstract and thus more general definition can be found in [vdSS00] whose

1To avoid misconception, I would like to explicitely point out that – of course – time-

dependent switching is an important mechanism and has been extensively treated for a

couple of years now, but it has not been considered as a specific type of switching for

general hybrid automata.
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2 Hybrid Dynamical Systems

degree of generality does not meet my current intentions, however. Please

note that in the literature the term hybrid automaton is much more common

than hybrid dynamical system (at least with a view to Definition 2.1.1) which

I prefer to use throughout this thesis; the reason for my choice is that my

interest severely focuses on the dynamical understanding of hybrid automata,

i. e., the nature of its dynamics, and the term hybrid automata unnecessarily

conceals the dynamical aspect and so does not appear suitable to me.

Given a directed graph T = (Λ, E) with vertices Λ and edges E ⊂ Λ × Λ, we

denote by s and t the source and tail maps

s : E → Λ, s(i, j) = i and t : E → Λ, t(i, j) = j. (2.1)

These maps coincide with the projections onto the first and second factor of

the product Λ× Λ.

2.1.1 Definition (Hybrid Dynamical System). Let T denote continuous

time, i. e. T ⊂ R. A hybrid dynamical system (or hybrid automaton) H of

dimension n is a septuple H = (Λ, E ,D,F , C,G,R) composed of the following

data:

• a (countable) set Λ of discrete states,

• a collection E ⊂ Λ× Λ of discrete transitions,

• a Λ-indexed family of domains D = {Dλ}λ∈Λ with Dλ ⊂ {λ} × Rn,

• a vector field family F = {fλ : Dλ → Rn}λ∈Λ,

• a collection C = {Tλ}λ∈Λ of clocks where a (continuous) clock is a one-

dimensional dynamical system on T with vector field Tλ ≡ 1,

• a collection G = {Ge}e∈E of guards Ge ⊂ Dse × T,

• and a collection R = {Re}e∈E of resets Re ⊂ Ge ×Dte × T.

The hybrid phase space D ⊂ Λ×Rn of a hybrid dynamical system H is given

by

D =
⋃
λ∈Λ

D(λ) ⊂ Λ× Rn, (2.2)

which projects surjectively onto Λ by definition. For the sake of simplicity, we
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2.1 The Concept of Hybrid Dynamical Systems

(i, j)

(xi, ti) ∈ G(i, j) (xj , 0) ∈ R(i, j)(xi, ti)

i

ẋi = F(i)(xi)

D(i)

Ti

j

ẋj = F(j)(xj)

D(j)

Tj

Figure 2.1: Graphical representation of a hybrid automaton H

based on [SJLS05]: The spheres correspond to indi-

vidual dynamical systems, while the arrows indicate

admissible transitions from one system to another.

will not distinguish between the set Dλ ⊂ {λ} × Rn and its projection onto

Rn.

The formal structure as well as the functionality of a general hybrid dynamical

system H can be briefly highlighted in the following manner: The foundation

is made up by a discrete transition graph T = (Λ, E) where Λ denotes the

set of discrete states of the system and E the admissible transitions between

these states. The hybrid system’s continuous dynamics ultimately result from

the assignment of a dynamical system ẋ = fλ(x) determined by Ψλ = (Dλ, fλ)

with Dλ ⊂ {λ} × Rn to each discrete state λ ∈ Λ in virtue of the phase

space and vector field families D and F , respectively. This discrete state-wise

introduction of dynamics results in a family of dynamical systems abstractly

connected by the discrete transitions E , which have to be enriched by conditions

that decide when discrete transitions are enabled and in which manner they

are realized. These tasks are performed by the guards and the resets : The

guards G(e) = Ge activate possible transitions between discrete states with

regard to their internal dynamical system structure, whereas the resets Re

provide the necessary initial conditions after switching discrete states in order

to maintain the further evolution of the system as a whole. The clocks collected

in C provide the possibility of triggering discrete state transitions that are
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2 Hybrid Dynamical Systems

exclusively directed by time.

Commonly, hybrid dynamical systems are graphically represented in the fol-

lowing style: The discrete states λ ∈ Λ are depicted in form of labeled spheres

connected by arrows which symbolize the discrete transitions e ∈ E . Each

sphere corresponding to a discrete state λ is equipped with the information

about the dynamical system corresponding to this state, i. e. the phase space

D(λ) and the vector field F(λ) and optionally – for the sake of completeness

– the accordant clock Tλ. Finally, nearby its source and tail every arrow rep-

resenting a transition e ∈ E is decorated by the guard data G(e) and the reset

data R(e), respectively. See Figure 2.1 for a prototypical visualization of a

hybrid dynamical system.

2.1.2 Remark (On the Nature of Guards and Resets). For convenience

in handling guards and resets in presence of clocks which definitely do not play

any role for the internal dynamics of the various discrete states, we denote by

DT,λ the extended phase space Dλ×T. Note that in Definition 2.1.1 the resets

R(e) = Re ⊂ Ge ×DT,te, e ∈ E , are formally given as graphs of generally set-

valued maps Re : Ge → DT,te, which may serve as a source of non-determinism.

For reasons of consistency, the resets R(e) ⊂ G(e)×DT,te project surjectively

onto the guards, i. e.

(R(e))T,se = G(e) for all e ∈ E , (2.3)

with XT,λ, λ ∈ M ⊂ Λ, denoting the image of a set X ⊂ ∏
µ∈M⊂ΛDT,µ

under the projection prλ :
∏
µ∈M DT,µ � DT,λ. Consequently, from the first,

the guard information is included in the resets and can always be extracted

from R. By means of this observation, it is not essential to explicitely deal

with the guards in case one has access to the reset information, but there are

imaginable situations where discussing guards and resets separately may be

highly convenient. In this context, we are forced to assume the non-emptiness

of guards and of resets, namely G(e) 6= ∅ and of resets, namely R(e)(x) 6= ∅ for

all e ∈ E and (xse, tse) ∈ G(e). What is more, with a view to clocks, the resets

are to reset the time component to zero, i.e. Re(xse, tse) = (xte, 0te), in order

to ensure that the clock of the current discrete state precisely shows how long

the system has remained in that state after the preceding transition. ♦
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2.1 The Concept of Hybrid Dynamical Systems

1

ẋ1 = F(1)(x1)

2

ẋ2 = F(2)(x2)

(1, 2)

(2, 1)

T1 T2

R
8 R

8

R
8 × {20}

R
8 × {20}

idR8

idR8

Figure 2.2: Example of a simple hybrid dynamical system with

time-dependent switching and trivial resets; hybrid

dynamical systems of that kind are to be discussed in

Section 5.1 in more detail.

2.1.3 Example. Let the hybrid dynamical system H = (Λ, E ,D,F , C,G,R)

be given by the simple transition graph T = (Λ, E) with

Λ = {1, 2} and E = {(1, 2), (2, 1)}

and the eight-dimensional dynamical systems determined by the vector fields

F(λ) : R8 → R8, λ = 1, 2, which are given by

F(1)(x) =



−(0.39 + ζ)x1 − 0.4x2 + ζx3 + εx1x
2
2

0.04x1 − (0.39 + ζ)x2 + ζx4 + 2.5εx1x2

ζx1 − (0.39 + 2ζ)x3 − 0.4x4 + ζx5 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + 2ζ)x4 + ζx6 + 2.5εx3x4

ζx3 − (0.39 + 2ζ)x5 − 0.4x6 + ζx7 + εx5x
2
6

ζx4 + 0.04x5 − (0.39 + 2ζ)x6 + ζx8 + 2.5εx5x6

ζx5 − (0.39 + ζ)x7 − 0.4x8 + εx7x
2
8

ζx6 + 0.04x7 − (0.39 + ζ)x8 + 2.5εx7x8



(2.4)
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2 Hybrid Dynamical Systems

and

F(2)(x) =



−(0.39 + 2ζ)x1 − 0.4x2 + ζx3 + ζx7 + εx1x
2
2

0.04x1 − (0.39 + 2ζ)x2 + ζx4 + ζx8 + 2.5εx1x2

ζx1 − (0.39 + ζ)x3 − 0.4x4 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + ζ)x4 + 2.5εx3x4

−(0.39 + ζ)x5 − 0.4x6 + ζx7 + εx5x
2
6

0.04x5 − (0.39 + ζ)x6 + ζx8 + 2.5εx5x6

ζx1 + ζx5 − (0.39 + 2ζ)x7 − 0.4x8 + εx7x
2
8

ζx2 + ζx6 + 0.04x7 − (0.39 + 2ζ)x8 + 2.5εx7x8



(2.5)

with x = (x1, x2, x3, x4, x5, x6, x7, x8)T ∈ R8 and real parameters ζ, ε ∈ R. The

guards are given by G(1, 2) = G(2, 1) = R8 × {20} and the resets are trivial,

i. e. R(1, 2) = R(2, 1) ∼= ∆(R8×R8)×{20}× {0}, or simply, R(e) = idR8 × 0

when understanding them as maps on G(e). Figure 2.2 provides a graphical

visualization of the hybrid dynamical system H . ♦

2.2 Hybrid Dynamics

On the grounds of Definition 2.1.1, we address the dynamic nature of hybrid

dynamical systems. The general mechanism of hybrid dynamical behavior

works as follows: The current state p = (λ, x) ∈ D of a hybrid dynamical

system consists of its discrete state λ ∈ Λ and its continuous state x ∈ Rn.

Being in discrete state λ the system evolves according to the active dynamical

system ẋλ = F(λ)(xλ) until the trajectory xλ happens to hit a guard G(e)

with se = λ which is a subset of the phase space D(λ). As soon as a guard is

met, a discrete transition to the discrete state te is enabled; in case the hybrid

dynamical system is deterministic, this transition has to take place precisely

at the moment of meeting the guard condition. The task of the resets is then

to reset the discrete state to te, provide a new continuous initial condition in

Rn and to set back the time to zero.

In the following, we give a precise definition of hybrid trajectories serving as

an analogy to the classical notion of solution with respect to a dynamical

system ẋ = f(x). In consequence of the interlocked discrete and continuous

characteristics of hybrid dynamical systems, the formulation of an according
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2.2 Hybrid Dynamics

solution or trajectory concept requires an adapted notion of time which reflects

the composite structure of the system. The central issue of this adaptation

consists in the administration of discrete transitions.

2.2.1 Definition (Hybrid Time Trajectory, cf. [SJLS05]). A hybrid time

trajectory (or, more plainly, hybrid time set) τ is a finite or infinite sequence

{Ik}Nk=0, N ∈ N0 ∪ {∞}, of intervals Ik with

• Ik = [τk, τ
′
k] for all k < N ,

• τk ≤ τ ′k = τk+1 for all k,

• in case N <∞ either IN = [τN , τ
′
N ] or IN = [τN , τ

′
N). ♦

By |Ik| = τ ′k − τk we denote the length of the interval Ik and by T the set of

hybrid time trajectories. The discrete length 〈·〉 of a hybrid time trajectory

τ = {Ik}Nk=0 is defined by the map

〈·〉 : T −→ N0 ∪ {∞} , 〈τ〉 := N, (2.6)

and its continuous length is determined by

(·) : T −→ R+ ∪ {∞} , (τ) :=
〈τ〉∑
k=0

|Ik|. (2.7)

The discrete length 〈·〉 gives rise to a set-valued map

[·] : T→ 2N0 , [τ ] :=

[〈τ〉] = {0, . . . , 〈τ〉} if 〈τ〉 <∞
N0 else.

The time instants τk of a hybrid time trajectory correspond to switching times

at which discrete transitions take place. Thus, the discrete length 〈τ〉 offers

the number of discrete transitions with respect to the hybrid time trajectory

τ , while the continuous length (τ) measures the time of flowing.

2.2.2 Definition (Execution, cp. [ZJLS00]). An execution of a hybrid dy-

namical system H is a triple χ = (τ, γ, x) where

• τ ∈ T is a hybrid time trajectory,

• γ : [τ ]→ Λ is a map encoding the visited discrete states,
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2 Hybrid Dynamical Systems

• x = {xk}k∈[τ ] is a collection of C1-maps such that xk : Ik → D(γ(k)) is a

trajectory of the corresponding dynamical system ẋγ(k) = F(γ(k))(xγ(k))

such that for all k ∈ [τ ] \ 〈τ〉 the following conditions hold:

• Admissibility of the discrete transition from γ(k) to γ(k + 1):

(γ(k), γ(k + 1)) ∈ E , (2.9)

• Guard compatibility:

(xk(τ
′
k), |Ik|) ∈ G(γ(k),γ(k+1)) ⊂ DT,γ(k), (2.10)

• Reset compatibility:Ä
(xk(τ

′
k), |Ik|), (xk+1(τk+1), 0γ(k+1))

ä
∈ R(γ(k),γ(k+1)). (2.11)

For (λ0, x0) ∈ D, we denote by E(λ0,x0) the set of all executions of H starting

in (λ0, x0). Furthermore, we set

E =
⋃

(λ0,x0)∈D
E(λ0,x0) (2.12)

to obtain a set including all executions of H . In order to account for the pos-

sible non-determinism of a hybrid dynamical system, the manner of speaking

is that a hybrid system H accepts an execution χ if it is in line with Definition

2.2.2. Essentially, an execution is a pair of maps (γ, x) governing the discrete

and continuous dynamical behavior, respectively: Here, on the discrete level,

γ outputs feasible discrete transitions at the transition times τk and, simulta-

neously, on the continuous level, the dynamical systems’ trajectories gathered

by x are in accordance with the guard and reset data contained in the system.

An exemplary plot of an execution generated by a hybrid dynamical system as

shown in Figure 2.2; the bold line segments and shading record the switching

behavior of the system. Analogous to trajectories of classical dynamical sys-

tems, we can translate an execution χ given as a triple (τ, γ, x) to the more

familiar form χ : T → D with D denoting the global hybrid phase space as

given in (2.2) and T a hybrid version of time. For this purpose, we define the
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2.2 Hybrid Dynamics

Figure 2.3: Execution of an 8-dimensional hybrid dynamical sys-

tem (of the kind as illustrated in Fig. 2.2) with each

coordinate plotted separately; the bold line segments

as well as the shading visualize the underlying hybrid

time trajectory.
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hybrid time T = Tτ induced by the hybrid time set τ = {Ik}k∈N as follows:

For a closed interval I = [a, b], we set

I) =

[a, b) if a 6= b

{a} if a = b

and I) = I in case I is right-open. Herewith, we define

T =
⋃
k∈[τ ]

{k} × I)
k ⊂ Z× R. (2.13)

Now, an execution χ = (τ, γ, x) can be written in the form

χ : Tτ → D, (k, t) 7→ χ(k, t) = (γ(k), xk(t)) . (2.14)

Note that T does not exhibit obvious algebraic structure meaning that T is

in general no subgroup of Z× R and does not even possess the structure of a

semigroup. The image of an execution χ is given by

Iχ = {χ(k, t)}(k,t)∈Tτ ⊂ D. (2.15)

By means of the discrete and continuous length of hybrid time trajectories

(see (2.6) and (2.7)), the executions of a hybrid dynamical system H can be

classified in the following manner (cf. [LJSE99], for instance):

2.2.3 Definition (Classification of Executions, see [LJSE99]). An exe-

cution χ = (τ, γ, x) of a hybrid dynamical system H is called

• finite, if 〈 τ 〉 <∞ and the interval I〈 τ 〉 is closed,

• infinite, if 〈 τ 〉 =∞ or (τ) =∞,

• Zeno, if 〈 τ 〉 =∞, but (τ) <∞. ♦

An exotic and occasionally unwanted type of hybrid dynamics is generated

by Zeno executions which perform infinitely many discrete transitions in finite

time. Zeno behavior is highly unphysical but it may arise at times due to

modelling abstraction. The class of Zeno hybrid systems which admit such un-

desirable solutions is studied in [ZJLS00] and [ZJLS01]; furthermore, [JELS99]

proposes and analyzes regularization techniques which can be applied in order

to overcome Zeno dynamics.

24



2.2 Hybrid Dynamics

Necessary and sufficient conditions for the existence and uniqueness of execu-

tions are treated in [LJSE99] and [LJS+03]; moreover, [LJS+03] additionally

discusses the continuous dependence on initial conditions. In combination with

the above presented classification of executions (together with a notion of max-

imality), the results of these articles distinguish two important classes of hybrid

dynamical systems: the deterministic and the non-blocking ones.

2.2.4 Definition (Non-Blockingness and Determinism, cf. [LJSE99]).

A hybrid dynamical system H is non-blocking if for every p0 = (λ0, x0) ∈ D
there exists at least one infinite execution χ starting at p0. H is called deter-

ministic if for every p0 ∈ D there is at most one maximal execution χ starting

at p0, where maximality means that there is no execution χ̂ such that the

hybrid time set τ is a prefix of τ̂ , i. e. 〈τ〉 ≤ 〈τ̂〉, Ik = Îk for all k ∈ [τ ] and

I〈τ〉 ⊆ Î〈τ〉 and that χ(k, t) = χ̂(k, t) for all (k, t) ∈ T . ♦

In practical applications, when analysis and modeling of hybrid dynamical

systems is concerned, mainly the finite executions play a crucial role, since

they encode the information which hybrid states are reachable by a hybrid

system in finite time. This set of states termed the reachability domain is of

major importance, for instance, whenever safety properties are inspected.

2.2.5 Definition (Reachability Domain, cp. [LJSE99]). Given a hybrid

dynamical system H with hybrid phase space D, let E<∞ ⊂ E denote the

set of all finite executions of H . For each χ ∈ E<∞ there exists a uniquely

determined final state, denoted by �(χ). The collection Reach(H ) ⊂ D of all

finite-time reachable states is given by

Reach(H ) = {(λ, x) ∈ D | ∃χ ∈ E<∞ : �(χ) = (λ, x)} (2.16)

= {�(χ) ∈ D | χ ∈ E<∞} .

and referred to as the reachability domain of H . ♦

Again in connection with safety properties a specific class of sets is of immense

importance, namely the sets that are invariant under the dynamics of a hybrid

dynamical system.

2.2.6 Definition (Hybrid Invariant Set, cp. [LJSE99] or [ZJLS00]).

Let H be a hybrid dynamical system. A subset S ⊂ D is invariant (in the

hybrid sense) if every execution χ of H starting in S always stays inside S.♦
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2 Hybrid Dynamical Systems

For clarity, it is important to stress here that invariance in the classical sense of

all dynamical systems involved is in general not sufficient to guarantee hybrid

invariance: Even when Sλ is classically invariant for every discrete state λ ∈ Λ,

an execution may exit S via a guard G(e) with te /∈ “S. This circumstance gains

special importance as soon as hybrid fixed-point spaces are treated and their

invariance is analyzed in Section 3.5.
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Chapter 3

Hybrid Symmetries

Dynamical systems in the usual sense, i.e. ordinary differential equations in

the case of continuous time or difference equations in the case of discrete time,

have gathered a broad and well-developed theory of symmetry around them-

selves: [Fie88], [GSS88], [HLB96] and [GS02] to name just a few but extremely

prominent works on symmetry.

However, looking through the literature’s glass, one cannot verify an analo-

gous statement for hybrid systems. That is to say that up to now there is

seemingly no fundamental systematic approach to the formal comprehension

and treatment of symmetry properties arising in the regime of hybrid systems.

Nevertheless, some points of contact can be located: In [HS02], where the op-

timal control problem of switched Lagrangian systems is studied in presence of

a single group of symmetries acting on all phase spaces involved while all sys-

tem components are invariant under this action. The symmetries considered

there thus do not have any hybrid traits, in particular the discrete part of the

composite system structure does not enter the treatment of symmetries at all.

In [BK08], symmetry reduction for stochastic hybrid systems is considered;

again, the considered type of symmetry is not hybrid in the sense as discussed

in this thesis. In [RMMC02], periodically forced chemical reactors are exam-

ined and symmetry properties related to the switching are detected. Modelled

as a cyclic network of identical systems subjected to discontinuous forcing, the

global system is hybrid, but the occuring spatio-temporal patterns are not at

all analyzed with regard to the overall structure of the hybrid system. Since

the components involved are all identical, symmetries simply arise from the

periodic nature of the forcing. Again, the symmetries occuring are not strictly

hybrid but exclusively induced by time.
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3 Hybrid Symmetries

In the face of these circumstances, the aim of this chapter is to overcome this

lack of elementary theory, to develop an abstract concept of hybrid symmetries

and thereby to provide an adequate framework to handle such symmetries and

to analyze their effect on the dynamics of hybrid systems.

The roadmap for this project is as follows: To begin with, Section 3.1 recalls

the classical concept of symmetries for dynamical systems ẋ = F (x) and briefly

sketches structural aspects as well as immediate consequences on the dynamics.

After that, Section 3.2 lays the groundwork for hybrid symmetries by consid-

ering the abstract predecessors of hybrid dynamical systems termed dynamical

T -systems which could carefully be viewed as prototypes for any kind of cou-

pled systems. A global notion of symmetry represented by the T -symmetries

is constructed and examined from a structural point of view. Based thereupon,

Section 3.3 pictures the way from dynamical T -systems to hybrid dynamical

systems and extends T -symmetries to hybrid symmetries creating a concept

of global symmetries for hybrid dynamical systems. It is Section 3.4 that sheds

light on the immediate consequences of hybrid symmetries on the dynamics;

the findings of this section in turn argue for the conceptual adequacy of hy-

brid symmetries. Finally, in Section 3.5 symmetry-induced hybrid fixed-point

spaces are discussed with a particular emphasis on their invariance properties

which prove to be considerably weaker than in the classical setting of equivari-

ant dynamical systems. This last mentioned fact actually constitutes a major

difference between hybrid symmetries and classical symmetries.

3.1 Classical Symmetries of Dynamical

Systems

This section serves as a guide to the formalism of symmetries in dynamical

system theory. We mainly refer to [GSS88] and [GS02]. Let Ψ = (X,F ) be a

dynamical system with phase space X ⊂ Rn and vector field F : X → Rn (at

least continuously differentiable). Here, Ψ is meant to be understood as the

ordinary differential equation ẋ = F (x).

3.1.1 Definition. A symmetry of a dynamical system Ψ = (X,F ) is an ele-

ment γ ∈ O(n) which commutes with F , i.e. γ ◦ F = F ◦ γ. In this case, F is
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3.1 Classical Symmetries of Dynamical Systems

also said to be equivariant with respect to γ. ♦

For a vector field F : Rn → Rn the unit matrix In ∈ O(n) is always a symmetry

since it trivially fulfills the equivariance condition. Before we proceed with a

characterization of symmetries in terms of dynamics, we examine a character-

istic example which is of particular importance for the course of this thesis and

which we will therefore encounter again in later chapters.

3.1.2 Example. For ζ ∈ R, we consider the eight-dimensional dynamical

system Ψ = (R8, Fζ) with vector field Fζ : R8 → R8 given by

Fζ(x) =



−(0.39 + 2ζ)x1 − 0.4x2 + ζx3 + ζx7 + εx1x
2
2

0.04x1 − (0.39 + 2ζ)x2 + ζx4 + ζx8 + 2.5εx1x2

ζx1 − (0.39 + 2ζ)x3 − 0.4x4 + ζx5 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + 2ζ)x4 + ζx6 + 2.5εx3x4

ζx3 − (0.39 + 2ζ)x5 − 0.4x6 + ζx7 + εx5x
2
6

ζx4 + 0.04x5 − (0.39 + 2ζ)x6 + ζx8 + 2.5εx5x6

ζx1 + ζx5 − (0.39 + 2ζ)x7 − 0.4x8 + εx7x
2
8

ζx2 + ζx6 + 0.04x7 − (0.39 + 2ζ)x8 + 2.5εx7x8


and x = (x1, x2, x3, x4, x5, x6, x7, x8)T ∈ R8. Let us consider the permutation

group S8 acting on R8 via

gx =
Ä
xg−1(1), xg−1(2), xg−1(3), xg−1(4), xg−1(5), xg−1(6), xg−1(7), xg−1(8)

ä
.

Let g = (1357)(2468) ∈ S8. Then the action of g on the state x can be

described in terms of the matrix

ρ(g) =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0



∈ O(8).
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3 Hybrid Symmetries

We now compute

ρ(g)Fζ(x) =



ζx1 + ζx5 − (0.39 + 2ζ)x7 − 0.4x8 + εx7x
2
8

ζx2 + ζx6 + 0.04x7 − (0.39 + 2ζ)x8 + 2.5εx7x8

−(0.39 + 2ζ)x1 − 0.4x2 + ζx3 + ζx7 + εx1x
2
2

0.04x1 − (0.39 + 2ζ)x2 + ζx4 + ζx8 + 2.5εx1x2

ζx1 − (0.39 + 2ζ)x3 − 0.4x4 + ζx5 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + 2ζ)x4 + ζx6 + 2.5εx3x4

ζx3 − (0.39 + 2ζ)x5 − 0.4x6 + ζx7 + εx5x
2
6

ζx4 + 0.04x5 − (0.39 + 2ζ)x6 + ζx8 + 2.5εx5x6


and

Fζ(ρ(g)x) = Fζ(x7, x8, x1, x2, x3, x4, x5, x6)

=



−(0.39 + 2ζ)x7 − 0.4x8 + ζx1 + ζx5 + εx7x
2
8

0.04x7 − (0.39 + 2ζ)x8 + ζx2 + ζx6 + 2.5εx7x8

ζx7 − (0.39 + 2ζ)x1 − 0.4x2 + ζx3 + εx1x
2
2

ζx8 + 0.04x1 − (0.39 + 2ζ)x2 + ζx4 + 2.5εx1x2

ζx1 − (0.39 + 2ζ)x3 − 0.4x4 + ζx5 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + 2ζ)x4 + ζx6 + 2.5εx3x4

ζx7 + ζx3 − (0.39 + 2ζ)x5 − 0.4x6 + εx5x
2
6

ζx8 + ζx4 + 0.04x5 − (0.39 + 2ζ)x6 + 2.5εx5x6



.

Thus we find the equivariance ρ(g)Fζ(x) = Fζ(ρ(g)x) for all x ∈ R8. Hence,

ρ(g) turns out to be a symmetry of the dynamical system ẋ = Fζ(x) for every

choice of ζ. ♦

The definition of symmetries as above triggers two important results: One

result concerns the dynamical behavior of the inspected dynamical system, and

the other one uncovers the algebraic structure of the collection of all symmetries

of Ψ.

3.1.3 Theorem (Dynamical Characterization of Symmetries, [GS02]).

An element γ ∈ O(n) is a symmetry of the dynamical system Ψ = (X,F ) in the

sense of Definition 3.1.1 if and only if it transforms solutions into solutions:

For every solution x(t) of Ψ, γx(t) is a solution of Ψ, as well.

This is due to the reason that one has ġx(t) = gẋ(t) = gF (x(t)) = F (gx(t)) for

a solution x(t) of Ψ = (X,F ). Essentially, this theorem states that symmetries
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3.1 Classical Symmetries of Dynamical Systems

of dynamical systems are compatible with the dynamics of the system while

leaving the set of trajectories invariant. An important example building on

Example 3.1.2 is provided below.

3.1.4 Example. Let x0 ∈ R8 be an equilibrium of Ψζ = (R8, Fζ) for some

ζ ∈ R, i. e. Fζ(x0) = 0. Then, we know by Theorem 3.1.3 that gx0 is

also a solution of Ψζ for a symmetry g of Ψζ . According to the equivariance

condition gx0 is in fact another equilibrium of Ψζ . For instance, we observe

that the origin x0 = 0 ∈ R8 is an equilibrium of Ψζ = (R8, Fζ) for every choice

of ζ since Fζ(x0) = 0. In particular, we have gx0 = x0 for all g ∈ S8 in this

case. ♦

The collection of all symmetries of a given dynamical system Ψ is well-known

to possess algebraic structure making equivariant dynamical systems amenable

to algebraic analysis.

3.1.5 Theorem (Algebraic Structure of Symmetries, [GSS88]). The col-

lection G of all symmetries of the dynamical system Ψ = (X,F ) forms a group.

It is termed the symmetry group of Ψ.

The pair (Ψ, G) is said to be an equivariant dynamical system and together

with Theorem 3.1.3 and Definition 3.1.1, we see that the vector field F is

G-equivariant. This structural statement especially ensures that whenever a

specific (non-trivial) symmetry of order ≥ 2 of a dynamical system is known,

we are assured that a whole (non-trivial) group of symmetries does exist.

3.1.6 Example. In Example 3.1.2, we have discovered the symmetry

g = (1357)(2468) ∈ S8 with representing matrix ρ(g) ∈ R8×8 of the dynamical

system Ψζ = (R8, Fζ). In a situation like this, Theorem 3.1.5 tells us that all

iterates gk, k ∈ Z, of g are symmetries of Ψζ or – differently speaking – the

cyclic group 〈g〉 ≤ S8 generated by g is a subgroup of the symmetry group G of

Ψζ . Observe that ord(g) = 4. Thus, 〈g〉 ∼= Z4 and hence Ψζ is seen to exhibit

at least the non-trivial symmetries g = (1357)(2468), g2 = (15)(26)(37)(48)

and g3 = (1753)(2864) with ρ(g2) = ρ(g)2 and ρ(g3) = ρ(g)3. ♦

An immediate consequence for the system’s dynamics brought about by sym-

metries is the generation of special flow-invariant subspaces, which are regions

of the phase space that – once entered by a trajectory – can never be left again.
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3 Hybrid Symmetries

3.1.7 Definition (Fixed-Point Spaces, see [GS02]). Let (Ψ, G) be an

equivariant dynamical system. For a subgroup Σ ≤ G define

Fix(Σ) := {x ∈ X | σx = x for all σ ∈ Σ} . (3.1)

This subset of X is referred to as the fixed-point space of Σ. ♦

Note that fixed-point spaces are indeed subspaces since the equation

Fix(Σ) =
⋂
σ∈Σ

ker(id− σ) (3.2)

holds. Furthermore, the relation Fix(gΣg−1) = gFix(Σ) is valid for a subgroup

Σ ≤ G and an element g ∈ G (cp. [GS02]).

3.1.8 Example. Let us reconsider the dynamical system Ψζ = (R8, Fζ) as in

the preceding examples. By Σg we denote the cyclic group 〈g〉 ≤ S8. We aim to

examine the fixed-point subspace Fix(Σg). For this purpose, we note that the

group of permutations Σg partitions {1, . . . , 8} into odd and even numbers since

gx = x implies x1 = x7 = x3 = x5 and x2 = x4 = x6 = x8. Consequently, we

obtain Fix(Σg) = {(x, y, x, y, x, y, x, y) | x, y ∈ R} revealing dim (Fix(Σg)) =

2. Notably, this subspace describes the set of states x ∈ R8 whose odd and

even coordinates are precisely behaving the same way, respectively, that is to

say that they are in synchrony. This is why fixed-point spaces are also often

called synchrony subspaces. ♦

As already indicated above, fixed-point subspaces are characterized by their

flow-invariance.

3.1.9 Theorem (Flow-Invariance of Fixed-Point Spaces, [GS02]).

Fixed-point spaces are flow-invariant: For an equivariant dynamical system

(Ψ, G) with Ψ = (X,F ) and any subgroup Σ ≤ G, one has

F (Fix(Σ)) ⊂ Fix(Σ). (3.3)

The proof of this meaningful statement is surprisingly simple: For x ∈ Fix(Σ),

one has F (x) = F (gx) = gF (x) for all g ∈ Σ and hence F (x) ∈ Fix(Σ).
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3.2 Dynamical T -Systems and T -Symmetries

Observe that this statement implies that aG-equivariant vector field F restricts

to maps

F |Fix(Σ) : Fix(Σ)→ Fix(Σ)

for every subgroup Σ ≤ G. This is a significant statement since the fixed-point

spaces Fix(Σ) may be of lower dimension than the whole space X such that

the task of finding equilibria with prescribed symmetries, for instance, becomes

easier. In this context, the symmetries of a state x are described by its isotropy

subgroup.

3.1.10 Definition (Isotropy Subgroup, [GS02]). Let x ∈ X be a state

of an equivariant dynamical system (Ψ, G). The isotropy subgroup of x is

determined by

Σx := {g ∈ G | gx = x} ≤ G. ♦

Observe that states on the same orbit Gx0 have conjugate isotropy group, i. e.

for g ∈ G, we have Σgx = gΣxg
−1 for every state x (cf. [GSS88]). Moreover,

Theorem 3.1.9 implies the constancy of symmetries along trajectories.

3.1.11 Corollary (Isotropy Subgroups of Trajectories, [GS02]).

Isotropy subgroups remain constant along trajectories: If x : I → X is a

solution of (Ψ, G), then Σx(0) = Σx(t) for all t ∈ I.

The preceding collection of definitions and results provide a foundation for

the treatment of symmetries in the field of dynamical systems. We will make

extensive use of that formalism for the description of the continuous part of

hybrid symmetries which we will establish in the following.

3.2 Dynamical T -Systems and T -Symmetries

The fundamental idea that is worked out below is to consider equivariant dy-

namical systems which are abstractly interconnected by means of an underlying

transition graph T = (Λ, E). In doing so, we capture the main part of the

hybrid structure a hybrid dynamical system H possesses, namely the inter-

connection of graphs and dynamical systems. Even though on this coarse level
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of description things seem to be extremely similar to coupled cell systems,

they eventually are not: The crucial difference lies in the fact that in case

of coupled cell systems, one is concerned with a high-dimensional but highly

structured dynamical system whose dynamics are influenced by all the sys-

tem’s constituents at once while in the distinguished case of hybrid dynamical

systems the constituents form the dynamics in a well-organized time-delayed

manner orchestrated by the structure of the transition graph, the guards and

the resets.

It is this primary step which lays the foundations for the hybrid character

of hybrid symmetries via the interlocking of discrete graph and continuous

dynamical system symmetries. First of all, we formalize the objects to be

considered in the following definition keeping in mind that basically from the

viewpoint of hybrid dynamical systems we step backwards from Definition

2.1.1. This could also be interpreted as an information deficiency with respect

to guards and resets. In fact, this is also equivalent to assuming that guards

and resets are trivial, i.e. each guard G(e) covers the whole phase space D(se)

and the resets essentially come as identities when they are considered in the

form of maps. What is still special about the following definition is that we

prepare the ground for the incidence of symmetries by providing the spaces

with group actions.

3.2.1 Definition (Dynamical T -System). An n-dimensional dynamical T -

system ΨT is a triple (T ,Θ,F) consisting of

• a directed graph T = (Λ, E),

• a collection Θ = {(Dλ,ΦGλ)}λ∈Λ of phase spaces Dλ ⊂ {λ}×Rn equipped

with group actions ΦGλ : Gλ ×Dλ → Dλ

• and a family F = {fλ : Dλ → Rn}λ∈Λ of vector fields. ♦

Apparently, this definition needs to be commented on. Firstly, for each λ ∈ Λ,

the pair Ψλ = (Θ(λ), fλ) sets up a dynamical system by means of the ordinary

differential equation ẋ = fλ(x) on Dλ. Secondly, note that the assignment of

a group action ΦGλ to each phase space Dλ induces a symmetry group Sλ of

the dynamical system Ψλ = (Θ(λ), fλ) via

Sλ = {gλ ∈ Gλ| gλ ◦ fλ = fλ ◦ gλ} ≤ Gλ. (3.4)
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3.2 Dynamical T -Systems and T -Symmetries

By this means, a dynamical T -system ΨT can be viewed as a family of equiv-

ariant dynamical systems Ψλ labeled by the vertices λ ∈ Λ of a digraph T .

Evidently, the graph structure of T does not play any role so far. It is now

that we take this structure into account: As inspected above, a dynamical

T -system locally – i.e. for each λ ∈ Λ – posesses symmetries in the classical

dynamical system’s sense, on the one hand. On the other hand, graphs come

along with a symmetry concept of their own: The graph T is accompanied by

its automorphism group Aut(T ) which acts on its vertices Λ via

Aut(T )× Λ→ Λ, (π, λ) 7→ π−1(λ), (3.5)

meanwhile preserving adjacency.

From a structural point of view, it is legitimate, natural and even necessary

to ask for the symmetry of a dynamical T -system as an entire mathemati-

cal object being a combination of dynamical systems and graphs. Again for

clarity, it should be pointed out that a dynamical T -system is certainly qual-

ified as a network of dynamical systems in the truest sense of the word, but

still substantially differs from what is called a coupled cell system since – un-

like coupled cell systems – dynamical T -systems do not a priori possess the

structure of a (classical) dynamical system, not even of an obviously related

map for which equivariance properties could be studied straightforwardly. The

key distinction keeping dynamical T -systems from being usual is effectively

rooted in the deficiency of information with respect to the graph structure,

especially to the meaning of the edges E . However, when interpreting them

as couplings between systems by the introduction of a coupling function that

connects source and target systems of the respective edges, we do indeed enter

the classical framework and for the treatment of the overall symmetry prop-

erties the articles [DGS96a] and [DGS96b] apply. From this point of view,

dynamical T -systems appear to generalize coupled cell systems and so take

on the role of prototypical dynamical system networks already accounting for

possible symmetries.

In order to grasp the overall symmetry structure of a dynamical T -system,

several notational provisions have to be made in advance. Consider a dynam-

ical T -system ΨT . For each λ ∈ Λ there is a group Gλ involved and for an

element gλ ∈ Gλ we set

gλΨλ =
Ä
Θ(λ), g−1

λ ◦ F(λ)
ä

and Ψgλ
λ =

Ä
Θ(λ),F(λ) ◦ g−1

λ

ä
, (3.6)
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and – doing that for all λ ∈ Λ simultaneously – for g ∈ ∏λ∈Λ Gλ, we write

gΨT = {gλΨλ}λ∈Λ and Ψg
T = {Ψgλ

λ }λ∈Λ . (3.7)

It is of importance here that a family {·λ}λ∈Λ should not be considered to be

just a set; it should be rather conceived as a map defined on the index set Λ.

Recall that the symmetries of the dynamical system Ψλ are encoded by the

group

Sλ = {gλ ∈ Gλ | gλΨλ = Ψgλ
λ } (3.8)

and that the vector field F(λ) is Sλ-equivariant. We collect all groups Gλ from

Θ and consider the direct products

H = Aut(T )×
∏
λ∈Λ

Gλ as well as Hλ = Aut(T )×Gλ, λ ∈ Λ. (3.9)

For λ ∈ Λ and an element (π, gλ) ∈ Hλ, we define

(π, gλ)Ψλ =
(
Θ(π−1(λ)),F(π−1(λ)) ◦ g−1

π−1(λ)

)
(3.6)
= Ψ

gπ−1(λ)

π−1(λ) . (3.10)

Accordingly, in the spirit of (3.7), for the dynamical T -system ΨT and (π, g) ∈
H, we set

(π, g)ΨT = {(π, gλ)Ψλ}λ∈Λ

(3.10)
=

{
Ψ
gπ−1(λ)

π−1(λ)

}
λ∈Λ

. (3.11)

Looking back, we note that Equations (3.10) and (3.11) represent the first step

towards the intertwining of discrete graph and classical symmetries. In order

to access the respective data, we utilize the projections introduced below.

3.2.2 Notation. In the following, we denote by ‘· and ·̄ the projections

H → Aut (T ) and H → ∏
λ∈ΛGλ,

respectively. Moreover, by ·̄ λ we denote the projection H → Gλ. By abuse

of notation, ‘· and ·̄ as well as ·̄ λ will also be used to denote the restric-

tions to subgroups K ≤ H. Note that these projections and their restrictions

to subgroups are group homomorphisms. ♦

When acting on the vertices λ ∈ Λ of the graph, a graph automorphism π ∈
Aut(T ) with Gπ−1(λ) = Gλ for all λ ∈ Λ simultaneously acts on the product∏
λ∈ΛGλ =

∏
λ∈ΛGπ−1(λ); in fact this action is the actual connection of graph
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1

ẋ1 = F(1)(x1)

2

ẋ2 = F(2)(x2)

(1, 2)

(2, 1)

(

R
8
,ΦS8

) (

R
8
,ΦS8

)

Figure 3.1: Example of a simple dynamical T -system which is

strongly related to the hybrid dynamical system in-

troduced in Example 2.1.3

and system symmetries. More precisely, the graph automorphism π ∈ Aut(T )

of T induces an automorphism of groups via

π∗ :
∏
λ∈Λ

Gλ →
∏
λ∈Λ

Gλ, (π∗g)λ = gπ−1(λ), (3.13)

that is to say that the action of Aut(T ) on Λ lifts to an action on the direct

group product
∏
λ∈ΛGλ. Note that ∗ is contravariant, meaning that (π1π2)∗ =

π∗2 ◦ π∗1 for two group elements π1, π2 ∈ Aut (T ).

We take a closer look at Example 2.1.3 reducing the hybrid dynamical system

H to a dynamical T -system in order to motivate the notion of T -symmetries.

3.2.3 Example. We consider the eight-dimensional dynamical T -system ΨT

with the transition graph T given by the vertices Λ = {1, 2} and the edges

E = {(1, 2), (2, 1)} and phase spaces D(1) = D(2) = R8 equipped with the

group action

ΦS8 : S8 × R8 → R8, (g, x) 7→ gx

with

gx =
Ä
xg−1(1), xg−1(2), xg−1(3), xg−1(4), xg−1(5), xg−1(6), xg−1(7), xg−1(8)

äT
(3.14)

and S8 denoting the group of permutations on 8 elements. Consider Fig. 3.1

for a structural visualisation of the system. Let the vector fields F(1) and
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F(2) be as in Eq. (2.4) and (2.5), respectively. For g = (15)(26)(37)(48) ∈ S8,

we have

gF(1)(x) =



ζx3 − (0.39 + 2ζ)x5 − 0.4x6 + ζx7 + εx5x
2
6

ζx4 + 0.04x5 − (0.39 + 2ζ)x6 + ζx8 + 2.5εx5x6

ζx5 − (0.39 + ζ)x7 − 0.4x8 + εx7x
2
8

ζx6 + 0.04x7 − (0.39 + ζ)x8 + 2.5εx7x8

−(0.39 + ζ)x1 − 0.4x2 + ζx3 + εx1x
2
2

0.04x1 − (0.39 + ζ)x2 + ζx4 + 2.5εx1x2

ζx1 − (0.39 + 2ζ)x3 − 0.4x4 + ζx5 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + 2ζ)x4 + ζx6 + 2.5εx3x4



(3.15)

and

F(2)(gx) =



−(0.39 + 2ζ)x5 − 0.4x6 + ζx7 + ζx3 + εx5x
2
6

0.04x5 − (0.39 + 2ζ)x6 + ζx8 + ζx4 + 2.5εx5x6

ζx5 − (0.39 + ζ)x7 − 0.4x8 + εx7x
2
8

ζx6 + 0.04x7 − (0.39 + ζ)x8 + 2.5εx7x8

−(0.39 + ζ)x1 − 0.4x2 + ζx3 + εx1x
2
2

0.04x1 − (0.39 + ζ)x2 + ζx4 + 2.5εx1x2

ζx5 + ζx1 − (0.39 + 2ζ)x3 − 0.4x4 + εx3x
2
4

ζx6 + ζx2 + 0.04x3 − (0.39 + 2ζ)x4 + 2.5εx3x4



. (3.16)

Comparing Eqs. (3.15) and (3.16), we find that

g ◦ F(1) = F(2) ◦ g as well as F(1) ◦ g = g ◦ F(2) (3.17)

since g is self-inverse. Observe that the unique non-trivial graph automorphism

of T is given by

π : Λ→ Λ, π(1) = 2, π(2) = 1 (3.18)

and together with Eq. (3.17) we obtain

F(π−1(1)) ◦ g = g ◦ F(1) and F(π−1(2)) ◦ g = g ◦ F(2). (3.19)

With g1 = g2 = g we can write

F(π−1(λ)) ◦ gλ = gλ ◦ F(λ) (3.20)

for all λ ∈ Λ. ♦
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We now turn to the formal definition of T -symmetries which are designed to

capture the content of symmetry exhibited by dynamical T -systems.

3.2.4 Definition (T -Symmetry). Let ΨT be a dynamical T -system. An

element (π, g) ∈ H is a pre-T -symmetry if the identity

(π, g)ΨT = gΨT (3.21)

holds. The collection of all pre-T -symmetries is denoted by S[. An element

(π, g) of S[ is a T -symmetry if the additional constancy condition

π∗g = g for all π ∈ “S[ (3.22)

is fulfilled. The collection of all T -symmetries is denoted by S. ♦

The essence of Eq. (3.21) consists in the very original conception that the

application of a symmetry leaves things unchanged. More specifically, in this

special regime of dynamical T -systems as I introduced them above, the graph

automorphism π shuffles the graph T via permutation of the vertices leaving

it invariant; meanwhile, the accumulated symmetry g ∈ ∏λ∈ΛGλ transforms

the nodal dynamical systems in just the correct way such that on the global

scale the T -system ΨT is preserved by (π, g).

However, in this context Eq. (3.22) may appear unusual and surprising. This

constancy or fixed-point condition has to be considered for purely algebraic

reasons. In the treatment of every heterogeneously composite system one has

to think about consistency or composability at some point, at least whenever

one is to deduce global statements out of local ones or even at the beginning in

the phase of modeling. It is the same thing here: The construction of a global

symmetry notion for T -systems including algebraic structure (in our case of

groups) requires an assumption ensuring that all supporting components fit

together in an algebraic sense. This is exactly what Eq. (3.22) is about.

We characterize T -symmetries in terms of phase spaces and symmetry prop-

erties of the vector fields.

3.2.5 Lemma (Characterization of (Pre-)T -Symmetries). Let ΨT be a

dynamical T -system. An element (π, g) ∈ H is a pre-T -symmetry of ΨT if

and only if

Θ(π−1(λ)) = Θ(λ) and F(π−1(λ)) ◦ g−1
π−1(λ) = g−1

λ ◦ F(λ) (3.23)
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for all λ ∈ Λ.

Proof. Just unwind Definition 3.2.4 by comparison of Equations (3.10) and

(3.21). �

Note that Θ(π−1(λ)) = Θ(λ) implies that the corresponding groups and their

actions coincide, more precisely Gπ−1(λ) = Gλ and ΦGπ−1(λ)
= ΦGλ for all λ ∈ Λ.

Before we turn to algebraic considerations, we again examine an example to

let things appear more clearly.

3.2.6 Example. Consider the general dynamical T -system as displayed in

Figure 3.2. Note that the coordinate-changing homeomorphism ι is an invo-

lution and thus generates the group 〈ι〉 ∼= Z2, which acts on Rn × Rn = R2n.

The vector fields F(1) and F(2) are topologically conjugated via ι:

1

(

R
2n

,Φ〈ι〉

)

ι : R
2n ≈

−→ R
2n

, ι(x1, x2) = (x2, x1)

f, g : R
2n

→ R
n

F(1) = (g, f ◦ ι)

2

(

R
2n

,Φ〈ι〉

)

F(2) = (f, g ◦ ι)

(1, 2)

(2, 1)

Figure 3.2: Prototypical dynamical T -system exhibiting T -

symmetries

(F(1) ◦ ι) (x1, x2) =

(
g(x2, x1)

f(x1, x2)

)
= (ι ◦ F(2)) (x1, x2).

For further investigation, we need to draw a distinction between the cases

f = g and f 6= g. First, we assume f 6= g. If so, neither F(1) nor F(2) is

equivariant with respect to ι. Figure 3.2 reveals Aut (T ) = 〈(12)〉 = S2
∼= Z2

and (π, g1, g2) ∈ S2 × Z2 × Z2 is a T -symmetry of the system if and only if

(π, g1, g2) = 1H or (π, g1, g2) = ((12), ι, ι) ,
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3.2 Dynamical T -Systems and T -Symmetries

which implies S = 〈((12), ι, ι)〉 ∼= Z2. In case f = g one has F(1) = F(2) = F

and Z2-equivariance of F , thus yielding T -symmetry S ∼= S2 × Z2.

Note that – away from the distinction of the cases f = g and f 6= g – the

above statements hold for any pair of vector fields f and g and are therefore

completely independent from the explicit choice of these vector fields.

In the light of these findings, we reconsider Example 3.2.3. A closer inspection

of the vector fields F(1) and F(2) (cp. Eqs. (2.4) and (2.5)) shows that we

have

F(1)(x) =

Ñ
g(y1, y2)

f(y2, y1)

é
and F(2)(x) =

Ñ
f(y1, y2)

g(y2, y1)

é
(3.26)

using the maps

f(x1, . . . , x8) =

â
−(0.39 + 2ζ)x1 − 0.4x2 + ζx3 + ζx7 + εx1x

2
2

0.04x1 − (0.39 + 2ζ)x2 + ζx4 + ζx8 + 2.5εx1x2

ζx1 − (0.39 + ζ)x3 − 0.4x4 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + ζ)x4 + 2.5εx3x4

ì
(3.27)

and

g(x1, . . . , x8) =

â
−(0.39 + ζ)x1 − 0.4x2 + ζx3 + εx1x

2
2

0.04x1 − (0.39 + ζ)x2 + ζx4 + 2.5εx1x2

ζx1 − (0.39 + 2ζ)x3 − 0.4x4 + ζx5 + εx3x
2
4

ζx2 + 0.04x3 − (0.39 + 2ζ)x4 + ζx6 + 2.5εx3x4

ì
(3.28)

and the grouping

y1 = (x1, x2, x3, x4), y2 = (x5, x6, x7, x8) ∈ R4. (3.29)

In terms of y1 and y2, we can write f in the following form:

f(y1, y2) = (A1 A2)

Ñ
y1

y2

é
+ h(y1) (3.30)

with

A1 =

â
−(0.39 + 2ζ) −0.4 ζ 0

0.04 −(0.39 + 2ζ) 0 ζ

ζ 0 −(0.39 + ζ) −0.4

0 ζ 0.04 −(0.39 + ζ)

ì
, (3.31)
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A2 =

â
0 0 ζ 0

0 0 0 ζ

0 0 0 0

0 0 0 0

ì
(3.32)

and

h : R4 → R4, h(x1, x2, x3, x4) = ε

â
x1x

2
2

2.5x1x2

x3x
2
4

2.5x3x4

ì
. (3.33)

Similarly, for g we obtain

g(y1, y2) = (B1 B2)

Ñ
y1

y2

é
+ h(y1), (3.34)

where the matrices B1 and B2 are given by

B1 =

â
−(0.39 + ζ) −0.4 ζ 0

0.04 −(0.39 + ζ) 0 ζ

ζ 0 −(0.39 + 2ζ) −0.4

0 ζ 0.04 −(0.39 + 2ζ)

ì
(3.35)

and

B2 =

â
0 0 0 0

0 0 0 0

ζ 0 0 0

0 ζ 0 0

ì
= AT2 . (3.36)

Thus, the dynamical T -system ΨT discussed in Example 3.2.3 exactly fits

into the class of systems illustrated by Fig. 3.2 with n = 4 and f, g as above.

Notably, f 6= g. Moreover, the symmetry element g = (15)(26)(37)(48) ∈
S8 figured out in Example 3.2.3 translates to the involution ι on R4 × R4

when we take into consideration the special structure of F(1) and F(2) as

discovered above. Hence, ΨT turns out to have at least the T -symmetries

S = 〈(π, ι, ι)〉 ∼= Z2. In fact, the vector fields F(1) and F(2) exhibit even

richer structure which we have not discussed so far and which gives rise to

additional T -symmetries. We will track the remaining symmetries later in

Example 3.2.14. ♦
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3.2 Dynamical T -Systems and T -Symmetries

The fact that S turns out to possess the structure of a group in Example 3.2.6

is no accident. We formally treat this observation in the following.

3.2.7 Proposition (Algebraic Structure of T -Symmetries). The T -

symmetries S of a dynamical T -system form a group.

Proof. We verify the group axioms: The element 1H = (idΛ, 1ÛH) ∈ H =

Aut(T )×∏λ∈ΛGλ is easily seen to play the role of the neutral element since

1HΨT = ΨT =
1ÛHΨT .

Associativity is verified via a straightforwardly executed series of elementary

computations using Definition 3.2.4 or Lemma 3.2.5. For two T -symmetries

(π1, g1), (π2, g2) ∈ S, we compute (π2, g2)(π1, g1) = (π2π1, g2g1) and

(π2π1, g2g1) Ψλ

(3.10)
=

Å
Θ
Ä
π−1

1 (π−1
2 (λ))

ä
,F
Ä
π−1

1 (π−1
2 (λ))

ä
◦ (g1)−1

π−1
1 (π−1

2 (λ))
◦ (g2)−1

π−1
1 (π−1

2 (λ))

ã
(3.23), π∗2g2 = g2

=
Å

Θ
Ä
π−1

2 (λ)
ä
, (g1)−1

π−1
2 (λ)

◦ F
Ä
π−1

2 (λ)
ä
◦ (g2)−1

π−1
2 (λ)

ã
π∗2g1 = g1, (3.23)

=
Ä
Θ(λ), (g1)−1

λ ◦ (g2)−1
λ ◦ F(λ)

ä
=

Ä
Θ(λ), (g2g1)−1

λ ◦ F(λ)
ä

(3.10)
= (g2g1)λΨλ

for all λ ∈ Λ, implying (π2, g2)(π1, g1) ∈ S. In order to prove the existence of

inverses, set λ̃ := π(λ) for (π, g) ∈ S and λ ∈ Λ. Observe thatÄ
Θ(λ),F(λ) ◦ g−1

λ

ä
=
(
Θ(λ̃), g−1

λ̃
◦ F(λ̃)

)
(3.37)

by means of (3.23) and proceed:

(π, g)−1Ψλ
(3.10)
=

Ä
Θ(λ̃),F(λ̃) ◦ g

λ̃

ä
(3.22): (π−1)∗g = g

=
Ä
Θ(λ̃),F(λ̃) ◦ gλ

ä
(3.37),(3.22)

= (Θ(λ), gλ ◦ F(λ))

= g−1

Ψλ.

Hence, (π, g)−1 ∈ S and, consequently, S is found to be a group. �
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As mentioned before, the automorphism group Aut (T ) acts on ıH =
∏
λ∈ΛGλ

via the group homomorphism

∗ : Aut (T )→ Aut(ıH), π 7→ π∗. (3.38)

For a subgroup Γ ≤ Aut (T ), the fixed-point space of Γ in ıH with respect to

(3.38) is given by

FixÛH(Γ) :=
¶
g ∈ ıH | π∗g = g for all π ∈ Γ

©
. (3.39)

Note that FixÛH(Γ) inherits the structure of a group and thus is a subgroup ofıH. This provides us with the following structural result.

3.2.8 Proposition. For the T -symmetry group S of a dynamical T -system,

one has

S ≤ Aut (T )× FixÛH(“S). (3.40)

In order to further characterize the group of T -symmetries in terms of phase

spaces and vector fields, we introduce the Θ- and F -coincidence sets in λ ∈ Λ

by

CΘ,λ :=
{
π ∈ Aut (T )

∣∣∣ Θ(π−1(λ)) = Θ(λ)
}
, (3.41)

and

CF ,λ :=
{
π ∈ Aut (T )

∣∣∣ F(π−1(λ)) = F(λ)
}
, (3.42)

analogously. Moreover, for the dynamical system Ψλ = (Θ(λ),F(λ)), we set

CΨ,λ := CΘ,λ ∩ CF ,λ. (3.43)

Finally, based on the Θ-coincidence set CΘ,λ, we define the F-similarity or

-conjugacy set

C∼F ,λ :=
{
π ∈ CΘ,λ

∣∣∣ ∃ gλ ∈ Gλ : F(π−1(λ)) = g−1
λ ◦ F(λ) ◦ gλ

}
. (3.44)

Based on Lemma 3.2.5, we figure out the characteristics of T -symmetries using

coincidence and similarity sets. This contributes to the understanding of the

(global) relationship between a T -system and its T -symmetries.

3.2.9 Proposition. Let ΨT be a dynamical T -system with T -symmetry group

S. Then the phase spaces Θ(λ) coincide along “S-orbits, more precisely:

CΘ,λ = “S for all λ ∈ Λ. (3.45)
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Moreover, for all (π, g) ∈ S, the vector fields F(π−1(λ)) and F(λ) are topo-

logically conjugated, i. e.

F(π−1(λ)) = g−1
λ ◦ F(λ) ◦ gλ, (3.46)

or, equivalently,

C∼F ,λ = “S for all λ ∈ Λ. (3.47)

In particular, both CΘ,λ and C∼F ,λ are subgroups of Aut (T ). Furthermore, if

the vector fields coincide along the orbits of “S meaning that CΨ,λ = “S for all

λ ∈ Λ, then

S ∼= “S× ÙS. (3.48)

Proof. First of all, since S is a group by Proposition 3.2.7 and the projections‘· and ·̄ are group homomorphisms, “S and ÙS are subgroups of Ĥ =

Aut (T ) and ıH =
∏
λ∈ΛGλ, respectively. Lemma 3.2.5 ensures that for all

pre-T -symmetries and - in particular - for all T -symmetries (π, g) ∈ S and

all λ ∈ Λ, we have Θ(π−1(λ)) = Θ(λ) which is equivalent to CΘ,λ = “S for all

λ ∈ Λ.

Again by means of Lemma 3.2.5, for a pre-T -symmetry (π, g) ∈ S[, we have

the relations

F(π−1(λ)) ◦ g−1
π−1(λ) = g−1

λ ◦ F(λ), λ ∈ Λ.

Incorporating the constancy condition (3.22) which alternatively reads gπ−1(λ) =

gλ for all π ∈ “S and λ ∈ Λ, we end up with

F(π−1(λ)) = g−1
λ ◦ F(λ) ◦ gλ for all λ ∈ Λ

expressing topological conjugacy of the vector fields in virtue of T -symmetries.

Since this relation holds for each T -symmetry (π, g) ∈ S, we obtain C∼F ,λ =

CΘ,λ = “S for the F -conjugacy sets.

For the last statement, it suffices to show that for each π ∈ “S and each g ∈ ÙS,

the pair (π, g) is a T -symmetry of ΨT . By assumption, we have CΨ,λ = “S.

For g ∈ ÙS there exists π̃ ∈ “S such that (π̃, g) ∈ S. Due to the first part of the

proof, we know that the identity F(λ) ◦ gλ = gλ ◦ F(π̃−1(λ)) holds, and that

Θ(π−1(λ)) = Θ(λ) is true for all π ∈ “S. The assumption Ψπ−1(λ) = Ψλ implies

F(π−1(λ)) = F(λ) for all π ∈ “S. This leads to the equivariance condition
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F(λ) ◦ gλ = gλ ◦ F(λ) imposed on g, which is obviously independent of any

π ∈ “S. Thus, (π, g) is a T -symmetry for every choice of π ∈ “S, which verifies

the last statement and thereby completes the proof of the proposition. �

In the following, we comment on the relationship between classical equivariance

of vector fields and the new type of equivariance occuring for T -symmetries.

3.2.10 Remark (Weak Equivariance). As Proposition 3.2.9 tells us, the

outcome of the symmetry concept for T -systems (as defined in Definition

3.2.4) is a collection of equations¶
gλ ◦ F(π−1(λ)) = F(λ) ◦ gλ

©
λ∈Λ

, (3.49)

which I will term weak equivariance compared to the (classical) equivariance

g ◦ F = F ◦ g for a map F and a group element g ∈ G.

Let me comment on this. Weak equivariance may be considered to be a gener-

alization of classical equivariance in the following sense: Observing that weak

equivariance occurs for a family F = {F(λ)}λ∈Λ of maps rather than for an

individual map, we see that there are essentially two distinct ways for weak

equivariance to collapse to classical equivariance. Firstly, if the graph T is

trivial in the sense that it solely consists of a simple node λ0 (this corresponds

to the case of a simple map), its unique automorphism π is forced to be the

identity, namely π−1(λ0) = λ0, and Eq. (3.49) results in a simple equivariance

condition for F(λ0). Secondly, in case the graph T is not trivial and the graph

automorphism π (stemming from the T -symmetry (π, g) ∈ S) fixes some ver-

tex λ0 ∈ Λ, then the vector field F(λ0) experiences equivariance with respect

to gλ0 . We put this last observation in the following

3.2.11 Lemma. Let Σλ = {π ∈ Aut (T ) | π−1(λ) = λ} be the isotropy group

of the discrete state λ ∈ Λ. Then Hλ ⊂ Sλ with

Hλ =

gλ ∈ Gλ

∣∣∣∣∣∣ (π, g) ∈ S ∩

Ñ
Σλ ×

∏
λ∈Λ

Gλ

é
and Sλ captures the symmetries of the dynamical system Ψλ.1

1A slightly more general version of this statement is contained in the later Proposition
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Thus classical equivariance may turn up locally as a special form of weak

equivariance.

The other significant aspect arguing for the attribute weak concerns the topo-

logical conjugacy (which has already been mentioned in the formulation of

Proposition 3.2.9) of the vector fields F(π−1(λ)) and F(λ) under the action

of a T -symmetry (π, g). Dynamically, this means that the dynamics of the

dynamical systems Ψπ−1(λ) and Ψλ are strongly related: The homeomorphism

gλ transforms orbits of Ψπ−1(λ) into orbits of Ψλ. Against this background,

the predicate weak is meant to refer to this softening of dynamic equality to

similarity in the topological sense. ♦

By means of Propositions 3.2.8 and 3.2.9, we are enabled to deduce structural

information for the T -symmetry group in some special cases.

3.2.12 Corollary. Let ΨT be a dynamical T -system. If T is of trivial sym-

metry or if “S ≤ Aut(T ) is the trivial subgroup, then

S ∼= “S =
∏
λ∈Λ

Sλ, (3.52)

where Sλ ≤ Gλ is the symmetry group of the dynamical system Ψλ (cp. (3.8)).

If “S acts transitively on Λ and CF ,λ = “S for all λ ∈ Λ, i.e. F = F(λ) for all

λ, then

S ∼= Aut (T )× S, (3.53)

where S denotes the symmetry group with respect to the vector field F .

Proof. In case “S = 1, we detect S ∼= ÙS ≤ FixÛH(“S) =
∏
λ∈ΛGλ, using

Proposition 3.2.8. Moreover, the identity (π, g)ΨT = gΨT simplifies to the

3.2.13. Note that with the subgroup

Hπ,λ = (̆Hπ)λ, where Hπ = ·̂ −1
(π) ∩S (3.50)

the set Hλ = {gλ ∈ Gλ | (π, g) ∈ S ∩ (Σλ ×
∏
λ∈ΛGλ)} can be written in the form

Hλ =
⋃
π∈Σλ

Hπ,λ ⊂ Gλ. (3.51)

As a union of subgroups, Hλ does not necessarily show the structure of a group itself.
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equivariance condition F(λ) ◦ gλ = gλ ◦ F(λ) for every λ ∈ Λ and forces

g ∈ ∏λ∈Λ Sλ. Thus, ÙS =
∏
λ∈Λ Sλ.

In case, “S acts transitively on Λ, the coincidence CΨ,λ = “S of dynamical

systems on “S-orbits ensures that Ψλ = Ψ is constant on Λ. This implies

FixÛH(“S) = ∆(Gcard(Λ)) ∼= G, where G denotes the group acting on each D(λ)

and ∆(Gn) is the diagonal subgroup of Gn. Using Proposition 3.2.8, we findÙS ≤ G. Again, due to the constancy F(λ) = F , the T -symmetry condition

(π, g)ΨT = gΨT breaks down to classical equivariance yielding ÙS ∼= S, where

S ≤ G denotes the group of symmetries corresponding to Ψ. Furthermore, for

the discrete part of S, we find “S = Aut (T ). Finally, Proposition 3.2.9 gives

S = “S× ÙS, which leaves us to conclude that S ∼= Aut (T )× S. �

For an illustration of Corollary 3.2.12, see Figure 3.3 which shows two examples

of equivariant dynamical T -systems with identical local dynamics ruled by

Ψλ and G-equivariant vector fields. In particular, this example shows the

interaction of discrete graph symmetries and continuous dynamical system

symmetries as the transition graph changes symmetry. What is more, we see

that the interaction of discrete graph symmetries and local dynamical systems’

symmetries is of a qualitatively very noteworthy kind: In case of their presence,

the graph symmetries restrain the local symmetries, and the more symmetric

the transition graph happens to be the stronger the local symmetries are forced

to settle on diagonals and therefore are sentenced to contraction. To put it

in an even more vivid way, the comparatively loose direct product
∏
λ∈ΛGλ is

stamped on a strict polydiagonal structure by the graph symmetries. Figure 3.4

provides an exemplary illustration of this fact.

Beside Figures 3.3 and 3.4 another prototypical instance that considerably con-

tributes to the understanding of the nature of T -symmetries is discussed in

Example 3.2.6. It demonstrates the generation of mixed-type symmetries in a

situation where both vector fields are neither identical nor exhibit any sym-

metry. This almost suggests asking for details in a situation where the vector

fields still do not coincide, but both bring into equation non-trivial symmetry

properties. More precisely, we ask the following question: In which manner

are symmetries of one local system linked with symmetries of other systems if

T -symmetries are present or – more carefully worded – under which conditions

and in which form do T -symmetries arise in a situation like that? The follow-
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(D,ΦG)

(D,ΦG)(D,ΦG)

F

FF

1 2

3

(a)

(D,ΦG)

(D,ΦG)(D,ΦG)

F

FF

1 2

3

(b)

Figure 3.3: Dynamical T -systems with T -symmetry groups S ∼=
G × G × G (trivial transition graph symmetry) and

S ∼= Z3 ×G (transitive action of “S)
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(D,ΦG)

(D,ΦG)(D,ΦG)

F

FF

1 2

3

(a)

(D,ΦG)

(D,ΦG)(D,ΦG)

F

FF

1 2

3

(b)

Figure 3.4: Dynamical T -systems with T -symmetry groups S ∼=
S3×G (complete symmetry of T ) and S ∼= Z2×G×G
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ing proposition shows that T -symmetries transport local classical dynamical

system symmetries and hence uncovers the relationship of T -symmetries and

local symmetries. Note that the following proposition is connected to Lemma

3.2.11 and Corollary 3.2.12.

3.2.13 Proposition. Let ΨT be a dynamical T -system with T -symmetry

group S. Then for every T -symmetry (π, g) ∈ S and λ ∈ Λ, Sλ and Sπ−1(λ)

are conjugated, i. e. there exists a subgroup Hπ,λ ≤ Gλ such that h−1
λ Sλhλ =

Sπ−1(λ) for all hλ ∈ Hπ,λ. Moreover, for a T -symmetry (π, g) ∈ S, one has

gλ ∈ Sλ if and only if π ∈ CF ,λ (3.54)

and

g ∈
∏
λ∈Λ

Sλ if and only if π ∈
⋂
λ∈Λ

CF ,λ. (3.55)

In particular, (idΛ, g) is a T -symmetry of ΨT if and only if g ∈ FixÛH(“S) ∩∏
λ∈Λ Sλ.

Proof. Let gλ ∈ Sλ be a symmetry of the dynamical system Ψλ, i. e., gλ ◦
F(λ) = F(λ) ◦ gλ, and (π, h) ∈ S a T -symmetry. For kλ = h−1

λ gλhλ we see

that

kλ ◦ F(π−1(λ)) = h−1
λ ◦ gλ ◦ F(λ) ◦ hλ

= h−1
λ ◦ F(λ) ◦ gλ ◦ hλ

= F(π−1(λ)) ◦ h−1
λ ◦ gλ ◦ hλ

= F(π−1(λ)) ◦ kλ

and, consequently, kλ ∈ Sπ−1(λ) ≤ Gπ−1(λ), where we note once more that

Gπ−1(λ) = Gλ. Thus,

h−1
λ Sλhλ ≤ Sπ−1(λ)

for hλ ∈ Hπ,λ = {hλ ∈ Gλ| (π, h) ∈ S}.2 Similarly, one has hλSπ−1(λ)h
−1
λ ≤ Sλ

implying Sπ−1(λ) ≤ h−1
λ Sλhλ and finally h−1

λ Sλhλ = Sπ−1(λ).

Now consider a T -symmetry (π, g) ∈ S with the special property that there is

an index λ ∈ Λ such that gλ is a symmetry of the according dynamical system

2Observe that Hπ,λ is nothing but (Ĥπ)λ with Hπ = ·̂ −1
(π)∩S. See also Lemma 3.2.11.
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Ψλ, i. e. gλ ∈ Sλ, which is equivalent to the equivariance relation

gλ ◦ F(λ) = F(λ) ◦ gλ.

By the T -symmetry property, the weak equivariance equation

gλ ◦ F(π−1(λ)) = F(λ) ◦ gλ

coexists. These two equations are easily seen to harmonize if and only if

F(π−1(λ)) = F(λ) or π ∈ CF ,λ. Especially, if g ∈ ∏
λ∈Λ Sλ meaning that

each component gλ of g is a symmetry of the corresponding system Ψλ, this

is equivalent to π ∈ CF ,λ for every λ ∈ Λ or π ∈ ⋂
λ∈ΛCF ,λ. Noting that

idΛ ∈
⋂
λ∈Λ CF ,λ, we see that (idΛ, g) ∈ S if and only if g additionally fulfills the

compatibility condition π∗g = g for all π ∈ “S, i. e., g ∈ FixÛH(“S) ∩∏λ∈Λ Sλ. �

We finish the coarse structural treatment of T -symmetries by returning to

Example 3.2.6 and reconsider it in the light of Proposition 3.2.13.

3.2.14 Example. We have seen in Example 3.2.6 that the vector fields

F(1),F(2) :
Ä
R4
ä2 → ÄR4

ä2
of the dynamical T -system ΨT are of the following form:

F(1)(y1, y2)
(3.26)
=

Ñ
g(y1, y2)

f(y2, y1)

é
(3.30),(3.34)

=

Ñ
B1 B2

A2 A1

éÑ
y1

y2

é
+

Ñ
h(y1)

h(y2)

é
(3.56)

and

F(2)(y1, y2)
(3.26)
=

Ñ
f(y1, y2)

g(y2, y1)

é
(3.30),(3.34)

=

Ñ
A1 A2

B2 B1

éÑ
y1

y2

é
+

Ñ
h(y1)

h(y2)

é
. (3.57)

With

C1 =

Ñ
−(0.39 + ζ) −0.4

0.04 −(0.39 + ζ)

é
, C2 =

Ñ
−(0.39 + 2ζ) −0.4

0.04 −(0.39 + 2ζ)

é
,

(3.58)
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I2 denoting the identity matrix and 0 the zero matrix on R2, we can write the

matrices A1, A2, B1, B2 ∈ R4×4 as block matrices

A1 =

Ñ
C2 ζI2

ζI2 C1

é
, A2 =

Ñ
0 ζI2

0 0

é
(3.59)

and

B1 =

Ñ
C1 ζI2

ζI2 C2

é
, B2 =

Ñ
0 0

ζI2 0

é
. (3.60)

Furthermore, let y1 = (z1, z2), y2 = (z3, z4) and z = (z1, z2, z3, z4) ∈ (R2)4 ∼= R8

and let us define

H : (R2)4 → (R2)4, H(z1, z2, z3, z4) =
Ä
h̃(z1), h̃(z2), h̃(z3), h̃(z4)

äT
(3.61)

with

h̃(x, y) =

Ñ
εxy2

2.5εxy

é
. (3.62)

Thereby, F(1) and F(2) can be considered as vector fields (R2)
4 → (R2)

4
given

by

F(1)(y1, y2) = F(1)(z) = Az +H(z) (3.63)

and

F(2)(y1, y2) = F(2)(z) = Bz +H(z) (3.64)

with

A =

Ñ
B1 B2

A2 A1

é
=

â
C1 ζI2 0 0

ζI2 C2 ζI2 0

0 ζI2 C2 ζI2

0 0 ζI2 C1

ì
(3.65)

and

B =

Ñ
A1 A2

B2 B1

é
=

â
C2 ζI2 0 ζI2

ζI2 C1 0 0

0 0 C1 ζI2

ζI2 0 ζI2 C2

ì
, (3.66)

respectively. Viewing the vector fields F(1) and F(2) as maps (R2)4 → (R2)4,

the T -symmetry (π, ι, ι) of ΨT appears as the element Υ1 = (π, g1, g1) with π
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1 2

(1, 2)

(2, 1)

(

(R2)4,ΦS4

)

(

(R2)4,ΦS4

)

(

ΣA1Σ ΣA2Σ
A2 A1

)

z + H(z)

(

A1 A2

ΣA2Σ ΣA1Σ

)

z + H(z)

Figure 3.5: Dynamical T -system ΨT with vector fields (2.4) and

(2.5) from Example 2.1.3 with T -symmetries S ∼=
Z2 × Z2

unchanged and g1 = (13)(24) ∈ S4. Furthermore, we find for g2 = (14)(23) ∈
S4

g2Az =

â
ζz3 + C1z4

ζz2 + C2z3 + ζz4

ζz1 + C2z2 + ζz3

C1z1 + ζz2

ì
=

â
C1 ζI2 0 0

ζI2 C2 ζI2 0

0 ζI2 C2 ζI2

0 0 ζI2 C1

ìâ
z4

z3

z2

z1

ì
= Ag2z,

i. e. g2 is a classical symmetry ofA and thus of F(1) (sinceH is S4-equivariant).

Note that this symmetry corresponds to a reflection of the matrix entries of

the block matrix A with respect to the anti-diagonal which in turn originates

from the relation

ΣAi = BiΣ i = 1, 2 , with Σ =

Ñ
0 I2

I2 0

é
. (3.67)

Now with ‹Σ =

Ñ
0 Σ

Σ 0

é
(3.68)

being the matrix representation of g2 ∈ S4 acting on (R2)
4
, we have‹ΣA =

Ñ
ΣA2 ΣA1

ΣB1 ΣB2

é
(3.67)
=

Ñ
B2Σ B1Σ

A1Σ A2Σ

é
= A‹Σ. (3.69)

Hence, the dynamical system Ψ1 = ((R2)4,F(1)) has the symmetry group

S1 = 〈g2〉 ∼= Z2. According to Proposition 3.2.13, T -symmetries transport

54
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classical symmetries. In our case, this means that g′2 = g−1
1 g2g1 is a classical

symmetry of Ψ2 = ((R2)4,F(2)). We obtain

g′2 = (13)(24)(14)(23)(13)(24) = (14)(23) = g2, (3.70)

since g1 is self-inverse and commutes with g2. Thus g2 turns out to be a

symmetry of Ψ2, as well, and we get S2 = S1
∼= Z2. Due to Proposition

3.2.13, we also know that Υ2 = (idΛ, g2, g2) is another T -symmetry of ΨT .

For algebraic reasons or more precisely on the grounds of Proposition 3.2.7,

which says that the T -symmetries form a group, we know that

Υ3 = Υ1Υ2 = (π, g1, g1) (idΛ, g2, g2) = (π, g3, g3) (3.71)

with g3 = g1g2 = (13)(24)(14)(23) = (12)(34) is another T -symmetry of ΨT .

Thus, we end up with the T -symmetry group

S = 〈Υ1,Υ2〉
= {1,Υ1,Υ2,Υ3}
= {(idΛ, id, id) , (π, (13)(24), (13)(24)) , (idΛ, (14)(23), (14)(23)) ,

(π, (12)(34), (12)(34))}
∼= Z2 × Z2.

(3.72)

In particular, all T -symmetries are of order two and S is commutative but

not cyclic. ♦

As we will pass from dynamical T -systems to hybrid dynamical systems by

comprising the transitional dynamics directed by guards and resets in the next

section, we will go ahead towards hybrid symmetries which heavily build on

T -symmetries and will provide dynamical meaning for the abstract objects we

have dealt with above.

3.3 Hybrid Dynamical Systems and Hybrid

Symmetries

It is the task of this section to make the rather abstract definitions and consid-

erations of the preceding section amenable to the analysis of hybrid dynamical

systems.
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Having established a symmetry notion for extremely general and hence ab-

stract dynamical system networks - the dynamical T -systems -, which already

possesses hybrid traits in the sense that graph and dynamical system sym-

metries are non-trivially interconnected, we are in the situation to take the

remaining structure into account which distinguishes T -systems and hybrid

dynamical systems and thereby complete a truly hybrid symmetry framework.

For this purpose, we discuss guards and resets in detail, as well as the alge-

braic structure of the emerging hybrid symmetries. As it will become evident

in the course of the forthcoming investigations, T -symmetries represent the

structural core of hybrid symmetries underlining their importance once more.

Let us consider a hybrid dynamical system H = (Λ, E ,D,F , C,G,R). Equip-

ping the phase spaces D(λ) with group actions ΦGλ , we can perceive the hybrid

dynamical system H as a dynamical T -system completed by clocks, guards

and resets. Consequently, from the converse point of view, we can interpret

H to be modeled on the T -system ΨT exhibiting the T -symmetry group

S. Having said this, from now on every hybrid dynamical system that we

encounter is assumed to be accompanied by group actions ΦGλ , which is why

we write H = (Λ, E ,Θ,F , C,G,R), henceforth.

We intend to establish a connection between S and the instances C,G,R, which

determine the transitional dynamics of H . Let U = {Ue}e∈E be a family of

E-indexed phase subspaces of the form Ue ⊂ DT,se ×DT,te. The action of Gλ

on Dλ extends to an action on the extended phase space DT,λ = Dλ×T simply

by

gλ(xλ, tλ) = (gλxλ, tλ). (3.73)

This means that - on the spatial component - Gλ acts as before while leaving

the temporal component unaffected. In this sense, for a T -symmetry (π, g) ∈
S ≤ Aut(T )×∏λ∈ΛGλ we define

(π, g)Ue := gπ−1(e)Uπ−1(e), (3.74)

where ge = (gse, gte) ∈ Gse×Gte acts component-wise on DT,se×DT,te. In case

Ue ⊂ DT,se, Equation (3.74) reduces to

(π, g)Ue := gπ−1(se)Uπ−1(e). (3.75)

It is now that we introduce the concept of hybrid symmetries by making use
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3.3 Hybrid Dynamical Systems and Hybrid Symmetries

of Eqs. (3.74) and (3.75) in order to bring together T -symmetries, guards and

resets.

3.3.1 Definition (Hybrid Symmetries). Let H = (Λ, E ,Θ,F , T ,G,R) be

a hybrid dynamical system with underlying dynamical T -system ΨT =

(T ,Θ,F). An element Υ = (π, g) of H = Aut(T ) × ∏
λ∈ΛGλ is a hybrid

symmetry of H if it is a T -symmetry of ΨT and leaves the guards G(e) and

resets R(e) invariant:

ΥG(e) = G(e) and ΥR(e) = R(e) (3.76)

for all discrete transitions e ∈ E . ♦

Before analyzing the algebraic structure of hybrid symmetries, we take a closer

look on the invariance condition imposed on the resets. While the guards are

simply subsets of the extended phase spaces DT,λ, the resets R(e) ⊂ DT,se ×
DT,te as introduced in Definition 2.1.1 may be interpreted as possibly set-valued

maps (as already hinted at in Remark 2.1.2). Keeping this in mind, we trace

the meaning of reset invariance and see that it translates to a weak form of

equivariance when considering the resets as maps rather than as graphs of

maps. Viewed as (generally set-valued) maps, the resets R(e) ⊂ Ge × DT,te

take the form

Re : Ge( DT,te, (se, x, t) 7→
Ä
te, R̄e(x), 0

ä
, (3.77)

where R̄e : Dse → Dte is the essential reset of the spatial component.

3.3.2 Lemma. For a T -symmetry Υ = (π, g) ∈ S, the invariance with re-

spect to Υ, i. e. ΥR(e) = R(e) for all e ∈ E, is equivalent to the weak

equivariance

R̄e ◦ gse = gte ◦ R̄π−1(e). (3.78)

Proof. The invariance condition ΥR(e) = gπ−1(e)R(π−1(e)) = R(e) tells us

that for each y ∈ R(π−1(e)) the point gπ−1(e)y represents an element in R(e).

Explicitely, we have

gπ−1(e)

Ä
(π−1(se), x, t), (π−1(te), R̄π−1(e)(x), 0)

ä
=
Ä
(π−1(se), gπ−1(se)x, t), (π

−1(te), gπ−1(te)R̄π−1(e)(x), 0)
ä

∈ Gπ−1(e) ×DT,π−1(te).
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Now, in order to perceive this point as an element of R(e), using π∗g = g, we

have to conclude that gte ◦ R̄π−1(e) = R̄e ◦ gse giving us the weak equivariance

as stated above. �

We now turn to the algebraic structure of hybrid symmetries: While Proposi-

tion 3.2.7 tells us that the T -symmetries S form a group, it is not obvious at

first sight that the additional invariance of guards and resets does indeed pre-

serve the algebraic structure of S. In fact, we find that it does when subjecting

the matter to a formal treatment.

For a family U = {Ue}e∈E , as above, we define the U-stabilizer ΣU to be the

set

ΣU = {Υ ∈ S | ΥUe = Ue for all e ∈ E } . (3.79)

In the following, we uncover the algebraic structure of the stabilizer ΣU .

3.3.3 Lemma. For a family U = {Ue}e∈E , ΣU is a subgroup of S which acts

on U in accordance with (3.74) and (3.75).

Proof. Certainly, the neutral element 1S = (idΛ, 1ÛH) of S is in ΣU . Let

Υ1 = (π1, g1) and Υ2 = (π2, g2) be two elements of ΣU . Then, in particular,

we have

Υ1Ue = Ue and Υ2Uπ−1
1 (e) = Uπ−1

1 (e),

or, equivalently (keeping in mind (3.74) and (3.75)),

Ue = (g1)π−1
1 (e)Uπ−1

1 (e) and Uπ−1
1 (e) = (g2)π−1

2 (e)Uπ−1
2 (π−1

1 (e)).

Combining these and using g1, g2 ∈ FixÛS(“S), we end up with

Ue = (g1)π−1
1 (e)(g2)π−1

2 (e)Uπ−1
2 (π−1

1 (e)) = (g1g2)(π1π2)−1(e) U(π1π2)−1(e) = (Υ1Υ2)Ue,

which shows that Υ1Υ2 ∈ ΣU . Let Υ = (π, g) ∈ ΣU and e ∈ E . We set

e′ = π(e). Since ΥUe′ = Ue′ , we note

Ue′ = geUe (3.83)

and compute

Υ−1Ue = g−1
π(e)Uπ(e)

e′ = π(e)
= g−1

e′ Ue′
(3.83)
= g−1

e′ geUe.
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Now, the constancy condition π∗g = g implies that ge = gπ−1(e′) = ge′ , which

finally shows that Υ−1 ∈ ΣU and hence that ΣU is indeed a subgroup of S.

Furthermore, we observe that Υ2(Υ1Ue) = Υ2Ue = Ue holds for all e ∈ E , which

yields Υ2(Υ1Ue) = (Υ2Υ1)Ue for all Υ1,Υ2 ∈ ΣU and all e ∈ E . Therefore, U
is a ΣU -set. �

Hence, the guard and reset stabilizer ΣG and ΣR turn out to be subgroups of

the T -symmetry group S. Recall that in Remark 2.1.2, we pointed out that

the guards are contained in the resets in a very natural manner. Thus, the

question arises how the stabilizers ΣG and ΣR are related to one another. We

will answer this in the following.

3.3.4 Lemma. The reset stabilizer ΣR is a subgroup of the guard stabilizer

ΣG.

Proof. Bearing in mind Remark 2.1.2, for e ∈ E , we can write

Re ⊂ (Re)se × (Re)te
(2.3)
= Ge × (Re)te

and, accordingly, for an automorphism π ∈ Aut (T ), we find

Rπ−1(e) ⊂ Gπ−1(e) ×
Ä
Rπ−1(e)

ä
tπ−1(e)

.

Then, for an element Υ = (π, g) ∈ ΣR, we have

Re = ΥRe = geRπ−1(e) ⊂
Ä
gseGπ−1(e)

ä
×
Å
gte
Ä
Rπ−1(e)

ä
tπ−1(e)

ã
, (3.87)

which – via projection – implies the guard invariance

Ge
(2.3)
= (Re)se

(3.87)
=
Ä
geRπ−1(e)

ä
se

(2.3)
= gseGπ−1(e) = ΥGe.

Hence, Υ ∈ ΣG and ΣR turns out to be a subgroup of ΣG. �

3.3.5 Corollary. For e ∈ E and Υ = (π, g) ∈ ΣR, one has

g−1
te (Re)te =

Ä
Rπ−1(e)

ä
π−1(te)

. (3.89)

Proof. Consider Equation (3.87) and observe

(Re)te = gte
Ä
Rπ−1(e)

ä
tπ−1(e)

.

Using the commutativity t ◦ π−1 = π−1 ◦ t we end up with the identity stated

above. �
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The following lemma provides us with a class of hybrid systems for which the

stabilizers ΣG and ΣR coincide.

3.3.6 Lemma. Let H be a hybrid dynamical system with T -symmetries S.

If the resets R(e) are trivial (meaning R(e) = idG(e) for all e ∈ E), and for all

discrete transitions e ∈ E the source se and the target te are similar as vertices

of the transition graph T , then ΣR = ΣG.

Proof. Since Lemma 3.3.4 states the subgroup relation ΣR ≤ ΣG, it suffices

to show the converse ΣG ≤ ΣR. Reviewing the proof of Lemma 3.3.4 and using

Corollary 3.3.5, we observe that it remains to verify the identity

(R(e))te = gte
Ä
R(π−1(e))

ä
π−1(te)

(3.90)

for each (π, g) ∈ ΣG. Now, let (π, g) be an element of ΣG. By definition, we

have

G(e) = gseG(π−1(e)). (3.91)

The triviality of the resets enforces

(R(e))te = G(e) (3.92)

for all e ∈ E , especially for π−1(e). The similarity of source se and target te

encodes the fact that se and te belong to the same “S-orbit and, thus, induces

the equality

gse = gte. (3.93)

Now, by means of (3.92) and (3.93), Equation (3.91) translates to the desired

identity (3.90). Ultimately, we find (π, g) ∈ ΣR and, consequently, ΣG = ΣR.�

As a matter of fact, the additional guard and reset invariance preserves the

group structure provided by the T -symmetry group S and thus completes

the construction of a global symmetry organizing object for hybrid dynamical

systems. Furthermore, it should be pointed out that so far the group Aut(T )×∏
λ∈ΛGλ is understood to simultaneously act on all phase spaces involved. We

will see that the action of the hybrid symmetry group H lifts to an action on

the hybrid phase space D ⊂ Λ×Rn, which opens up the possibility to analyze

hybrid dynamics in the presence of hybrid symmetries.
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3.3.7 Theorem. The hybrid symmetries of a hybrid dynamical system H

form a group, the hybrid symmetry group H, which acts on the hybrid phase

space D =
⋃
λ∈ΛD(λ) ⊂ Λ× Rn via the action

H×D → D, ((π, g), (λ, x)) 7→
(
π−1(λ), g−1

π−1(λ)x
)
. (3.94)

Proof. By means of Proposition 3.2.7 and Lemma 3.3.3, we are aware of the

fact that S, the guard stabilizer ΣG and the reset stabilizer ΣR are subgroups

of H = Aut (T )×∏λ∈ΛGλ. By Definition 3.3.1, the collection H of all hybrid

symmetries is given by the intersection

H = S ∩ ΣG ∩ ΣR (3.95)

of groups which itself features the structure of a group. Note that due to

Lemma 3.3.4, we have H = ΣR, i. e. the reset stabilizer encodes the complete

hybrid symmetry structure of the hybrid dynamical system. In order to provide

evidence that the group H acts on D =
⋃
λ∈ΛD(λ) ⊂ Λ × Rn via the hybrid

action specified in (3.94), we first of all note that 1H(λ, x) = (λ, x) for all

(λ, x) ∈ D where 1H = (idΛ, 1ÛH) is the neutral element of H. Secondly, for two

hybrid symmetries Υ1 = (π1, g1),Υ2 = (π2, g2) ∈ H, we compute

Υ2 (Υ1(λ, x))
(3.94)
=

Å
π−1

1

Ä
π−1

2 (λ)
ä
, (g1)−1

π−1
1 (λ)

(g2)−1

π−1
1 (π−1

2 (λ)) x
ã

π∗g = g
=

(
(π2π1)−1 (λ), (g2g1)−1

(π2π1)−1(λ) x
)

(3.94)
= (π2π1, g2g1) (λ, x)

= (Υ2Υ1)(λ, x),

which documents the H-action on D and completes the proof. �

3.3.8 Remark. The proof of Theorem 3.3.7 shows that the hybrid symmetries

H form a subgroup of the T -symmetries S. For this reason, all structural

statements of Section 3.2 immediately carry over to hybrid symmetries and

thus can be directly applied to general hybrid dynamical systems which exhibit

symmetries. ♦

In order to conclude this section, we reconsider Example 2.1.3 from the view-

point of hybrid symmetries.
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3 Hybrid Symmetries

3.3.9 Example. We know from Example 3.2.6 that the underlying dynamical

T -system ΨT has as special fine structure in terms of the maps f and g

(cf. (3.30) and (3.34)) which is also indicated in Fig. 3.6. Moreover, ΨT

possesses S = 〈(π, ι, ι)〉 ∼= Z2 as its T -symmetry group with transition graph

automorphism π = (12) interchanging the discrete states 1 and 2 and the

involution ι : R4 ×R4 → R4 ×R4 that interchanges arguments. We now focus

on guards and resets. Recall that the guards are given by G(1, 2) = G(2, 1) =

R8 × {20}. For Υ = (π, ι, ι), we find that

ΥG(1, 2) = ιG(π−1(1), π−1(2)) = ιG(2, 1) = ι(R8×{20}) = R8×{20} = G(1, 2)

since ι acts trivially on the temporal component by (3.73). Thus, ΥG(e) = G(e)

holds for all e ∈ E which implies ΣG = S. The resets are essentially given by

identities, i. e. they are of the form R(e) = {((se, x, 20), (te, x, 0)) | x ∈ R8}.
Therefore, ΥR(e) = R(e) for all e ∈ E yielding ΣR = ΣG and, thus, we obtain

H = S ∼= Z2 (3.96)

for the hybrid symmetry group H of H .

1 2

(1, 2)

(2, 1)

T1
T2

R
8 × {20}

R
8 × {20}

idR8

idR8

(

R
4
× R

4
,Φ〈ι〉

)

(

R
4
× R

4
,Φ〈ι〉

)

(

ẋ1

ẋ2

)

=

(

g(x1, x2)
f(x2, x1)

) (

ẋ1

ẋ2

)

=

(

f(x1, x2)
g(x2, x1)

)

Figure 3.6: Hybrid dynamical system H with vector fields (2.4)

and (2.5) from Example 2.1.3 with hybrid symmetries;

cp. Fig. 2.2 and Fig. 3.2.

Note that this is a special instance of Lemma 3.3.6. ♦
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3.4 Consequences of Hybrid Symmetries

3.4 Consequences of Hybrid Symmetries

After having developed a notion of symmetry for hybrid dynamical systems

and having revealed its algebraic properties in the foregoing section, we intend

to shed light on the immediate consequences of hybrid symmetries on hybrid

dynamics. First of all, we focus on the implications for executions and show

that hybrid symmetries preserve their characteristic structure specified by Def-

inition 2.2.2. For this purpose, we prescribe the action of hybrid symmetries

on hybrid trajectories as follows:

3.4.1 Definition. For an execution χ = (τ, γ, x) of H and a hybrid symmetry

Υ = (π, g) ∈ H we define

Υχ = (τ, πγ, gx) , (3.97)

with

πγ : [τ ]→ Λ, (πγ)(k) = π−1 (γ(k))

and

gx =
{
g−1
π−1(γ(k))xk : Ik → D(π−1(γ(k)))

}
k∈[τ ]

. ♦

Perceiving an execution χ of H as a map T → D (cp. Eqs. (2.13) and (2.14)),

for a hybrid symmetry Υ = (π, g) ∈ H, we obtain

Υχ(k, t) =
(
π−1(γ(k)), g−1

π−1(γ(k))xk(t)
)

(3.100)

for all (k, t) ∈ T , in accordance with the hybrid action of H on D (cf. Theorem

3.3.7). In the next step, we prove that - analogous to the classical case - hybrid

symmetries transform executions to executions, i. e. they leave the property of

being an execution invariant. Note that this is the first and at the same time

most important evidence that the concept of hybrid symmetries as it has been

set up in Definition 3.3.1 is adequate and not completely unfeasible.

3.4.2 Proposition (H-Invariance of E). Let H be a hybrid dynamical sys-

tem with hybrid symmetry group H. For every execution χ of H and for every

hybrid symmetry Υ ∈ H, Υχ is an H -execution, as well. In other words, the

set E of all H -executions is H-invariant.
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3 Hybrid Symmetries

Proof. Let χ : T → D be an execution of H and Υ = (π, g) ∈ H a hybrid

symmetry. According to Definition 2.2.2, xk : Ik → D(γ(k)) is a trajectory of

the dynamical system Ψγ(k) = (D(γ(k)),F(γ(k))), i.e. we have

d

dt
xk(t) = F(γ(k)) (xk(t)) . (3.101)

For every k ∈ [τ ], Lemma 3.2.5 provides the identity

g−1
γ(k) ◦ F(γ(k)) = F

Ä
π−1(γ(k))

ä
◦ g−1

π−1(γ(k)). (3.102)

For the path g−1
π−1(γ(k))xk : Ik → D(π−1(γ(k))), we compute

d

dt

(
g−1
π−1(γ(k))xk(t)

)
π∗g = g

= g−1
γ(k)

Ç
d

dt
xk(t)

å
(3.101)

= g−1
γ(k)F(γ(k)) (xk(t))

(3.102)
= F

Ä
π−1(γ(k))

ä (
g−1
π−1(γ(k))xk(t)

)
,

showing that g−1
π−1(γ(k))xk is indeed a trajectory of the dynamical system

Ψπ−1(γ(k)) = (Θ (π−1(γ(k))) ,F (π−1(γ(k)))). Since ek := (γ(k), γ(k + 1)) ∈ E
by assumption, application of the T -automorphism π yields

π−1(ek) =
Ä
π−1(γ(k)), π−1(γ(k + 1))

ä
∈ E .

Moreover, (xk(τ
′
k), |Ik|) ∈ G(ek) impliesÄ
g−1
γ(k)xk(τ

′
k), |Ik|

ä
∈ g−1

γ(k)G(ek) = G(π−1(ek)),

due to the fact that ΥG(ek) = G(ek) holds. Likewise, the reset relation

((xk(τ
′
k), |Ik|), (xk+1(τk+1), 0)) ∈ R(ek)

in conjunction with the reset invariance ΥR(ek) = R(ek) ensuresÄ
(g−1
γ(k)xk(τ

′
k), |Ik|), (g−1

γ(k+1)xk+1(τk+1), 0)
ä

∈ (gγ(k), gγ(k+1))
−1R(ek) = R(π−1(ek)),

ultimately verifying that Υχ is indeed an execution of H . �
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Note that – on the basis of Definition 3.4.1 – the hybrid time trajectory τχ of

an execution χ = (τ, γ, x) ∈ E is not affected by hybrid symmetries, i.e. τχ =

τΥχ for every hybrid symmetry Υ ∈ H. Since, contrariwise, the classification

of executions covered by Definition 2.2.3 is solely based on the discrete and

continuous length of hybrid time trajectories, hybrid symmetries have no effect

on this partition.

Among others, the preceding result yields the fact that the reachability do-

main which is of utmost importance whenever a hybrid system’s safety proper-

ties are analyzed behaves invariantly under hybrid symmetry transformations.

This offers the possibility of reducing computational effort when computing

Reach(H ) by effective exploitation of known symmetry features.

3.4.3 Corollary (H-Invariance of Reach(H )). Given anH-symmetric hy-

brid dynamical system H , its reachability domain Reach(H ) ⊂ D is H-

invariant.

Proof. At first, by Theorem 3.3.7 the global hybrid phase space D ⊂ Λ×Rn is

an H-space. By Definition 2.2.5, for every reachable state (λ, x) ∈ Reach (H ),

there exists a finite execution χ ∈ E<∞ with final state �(χ) = (λ, x). Now,

Proposition 3.4.2 asserts that Υχ ∈ E<∞ for all Υ ∈ H. Observing �(Υχ) =

Υ� (χ), we see that Υ(λ, x) ∈ Reach (H ). Thus, Reach (H ) is H-invariant.�

3.5 Hybrid Fixed-Point Spaces

Having seen that hybrid symmetries structurally preserve the dynamics of a

hybrid dynamical system, we turn towards symmetry-induced subsets of the

hybrid phase space, so-called fixed-point spaces. It is one of the pivotal points

in the theory of equivariant dynamical systems that the fixed-point spaces

induced by a subgroup of the symmetry group are flow-invariant (see [GSS88]

and [GS02], for instance). In contrast to the classical case of equivariant vector

fields we are involved with families of weakly equivariant vector fields. We

cannot expect that hybrid objects behave as advantageous as in the smooth

case; nonetheless we can ask for the structure and invariance properties of

hybrid fixed-point spaces.
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3 Hybrid Symmetries

3.5.1 Definition (Hybrid Fixed-Point Space). Let H be a hybrid dy-

namical system with hybrid symmetry group H. For a subgroup Ξ ≤ H define

Fix(Ξ) = {p = (λ, x) ∈ D | Υp = p for all Υ ∈ Ξ} (3.106)

with respect to the action (3.94) of H on D. It is referred to as the hybrid

fixed-point space of Ξ. ♦

Given a hybrid dynamical system H , for each phase spaceD(λ) with according

group action of Gλ and a subgroup Hλ ≤ Gλ, we can consider the λ-localized

fixed-point space

Fixλ(Hλ) = {x ∈ Dλ | gλx = x for all gλ ∈ Hλ} ⊂ Dλ, (3.107)

which corresponds to the fixed-point space in the classical framework of dy-

namical systems. On the discrete side, given the transition graph T = (Λ, E)

and a subgroup Γ ≤ Aut(T ), we can define the T -fixed-point set

FixT (Γ) =
{
λ ∈ Λ

∣∣∣ π−1(λ) = λ for all π ∈ Γ
}
⊂ Λ. (3.108)

Making use of these concepts, we can describe hybrid fixed-point spaces in the

following way.

3.5.2 Lemma. For a subgroup Ξ ≤ H, one has

Fix(Ξ) =
⋃

λ∈FixT (Ξ̂)

{λ} × Fixλ(ÙΞλ), (3.109)

where “Ξ ≤ Aut (T ) and ÙΞλ ≤ Gλ denote the corresponding projections of Ξ.

Proof. Keeping in mind (3.94), for p = (λ, x) ∈ Fix(Ξ) and Υ = (π, g) ∈ Ξ,

we find

(λ, x) = p = Υp =
(
π−1(λ), g−1

π−1(λ)x
)
.

By means of the constancy condition g ∈ FixÛH(Ĥ), this implies π−1(λ) = λ

for all π ∈ “Ξ as well as gλx = x for all gλ ∈ ÙΞλ. Thus, λ ∈ FixT (“Ξ) and

x ∈ Fixλ(ÙΞλ) leading to the desired statement. �

This lemma shows that hybrid fixed-point spaces are locally given by classical

fixed-point spaces which are connected on the grounds of a subgraph of the
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3.5 Hybrid Fixed-Point Spaces

transition graph T which is still to be specified. An execution staying in a

fixed-point space forever is easily characterized by a straightforward application

of Lemma 3.5.2.

3.5.3 Corollary. Let H be a hybrid dynamical system with hybrid symmetries

H. Furthermore, let Ξ ≤ H be a subgroup and χ an execution of H . Then χ

stays in Fix(Ξ) all the time if and only if

γ(k) ∈ FixT (“Ξ) and xk(t) ∈ Fixγ(k)(ÙΞγ(k)) (3.110)

for all (k, t) ∈ T .

The following considerations give attention to the surprising fact that hybrid

fixed point spaces are not as invariant as they are celebrated to be in the

classical dynamical system setting. In order to tackle the invariance properties

of hybrid fixed-point spaces, we provide a simple characterization of hybrid

invariance according to Definition 2.2.6 and afterwards introduce the concepts

of invariant subgraphs and output sets.

We intend to characterize hybrid invariance in terms of the data a hybrid

dynamical system is made of. Consider an invariant subset S ⊂ D and an

execution χ of H starting in S. Then for each λ ∈ Λ and k ∈ γ−1(λ),

one has χ(k, t) ∈ S ∩ D(λ), otherwise S would not be invariant. Since

χ(k, t) = (γ(k), xk(t)), this translates to xk(t) ∈ Sλ. Whenever a discrete

transition takes place (with regard to an edge e ∈ E), the reset R(e) has to

map the corresponding state again into S since otherwise invariance would be

violated. Hence, we arrive at the following simple characterization based on

own considerations.

3.5.4 Lemma. Let H be a hybrid dynamical system. A set S ⊂ D is invari-

ant if and only if it is locally invariant (in the classical sense), i.e. for every

execution χ starting in S and every λ ∈ Λ

xγ(k)(t) ∈ Sλ = S ∩ D(λ) for all k ∈ γ−1(λ) and t ∈ Ik, (3.111)

and reset-invariant, i.e.

R(e) (G(e) ∩ ST) ⊂ DT,te ∩ ST for all e ∈ E (3.112)

with ST = S × T denoting the temporal extension of S.
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3 Hybrid Symmetries

The discrete traits of hybrid invariance turn out to be connected with the

notions of invariant subgraphs and output sets which are introduced and ex-

amined in the following.

3.5.5 Definition (Invariant Subgraph). Let T = (Λ, E) be a directed

graph. A subgraph T ′ = (Λ′, E ′) of T is called invariant if every directed

path ω : Z → Λ of T starting in T ′ stays there, i.e. ωi = ω(i) ∈ Λ′ and

(ωi, ωi+1) ∈ E ′ for all i ∈ Z. ♦

3.5.6 Definition (Output Sets). Let T = (Λ, E) be a directed graph. The

T -output set OT (λ) of a vertex λ ∈ Λ is given by

OT (λ) = {e ∈ E| se = λ} . (3.113)

For a subset L ⊂ Λ of vertices , we set

OT (L) =
⋃
λ∈L
OT (λ) = {e ∈ E| se ∈ L} (3.114)

for the output set of L. ♦

We spotlight the relation of invariant subgraphs and output sets in the follow-

ing lemma.

3.5.7 Lemma. Let T = (Λ, E) be a directed graph and T ′ = (Λ′, E ′) a sub-

graph of T . Then the following statements are equivalent:

(i) T ′ is invariant.

(ii) OT (Λ′) ⊂ E ′.

Proof. [(i)⇒ (ii)] Let T ′ be invariant and let e ∈ OT (λ) for λ ∈ Λ′. Then

there is a dipath ω of T starting in ω0 = λ such that (ω0, ω1) = e. By

invariance of T , we know that e ∈ E ′. Since this argument holds for all

e ∈ OT (λ), we see that OT (λ) ⊂ E ′. Moreover, the inclusion holds for

every λ ∈ Λ′ which leaves us to conclude that OT (Λ′) ⊂ E ′.

[(ii)⇒ (i)] Let ω a dipath of T starting in ω0 = λ ∈ Λ′. Then e0,1 = (ω0, ω1) ∈
OT (λ) ⊂ E ′ by (ii). Inductively, ei,i+1 = (ωi, ωi+1) ∈ O(ωi) ⊂ E ′ for all

i ∈ N verifying invariance of T ′. �
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As indicated above by Lemma 3.5.2, a specific subgraph of the transition graph

T plays a crucial role in describing the mixed structure of hybrid fixed-point

spaces. This subgraph turns out to be the fixed graph with respect to a

subgroup of Aut (T ).

3.5.8 Definition. Let T = (Λ, E) be a directed graph. For a subgroup Γ ≤
Aut (T ), the Γ-induced fixed graph FixΓ(T ) = (Λ′, E ′) v T is determined by

the vertices Λ′ = FixT (Γ) and the edges E ′ = (Λ′ × Λ′) ∩ E . ♦

We characterize the invariance of a Γ-induced fixed graph in terms of the Γ-

action on the output set O(FixT (Γ)).

3.5.9 Lemma. Let T = (Λ, E) be a directed graph and FixΓ(T ) = (Λ′, E ′) its

fixed graph induced by a subgroup Γ ≤ Aut(T ). Then FixΓ(T ) is invariant if

and only if Γ fixes an edge e ∈ E of T whenever it fixes its source se.

Proof. By means of Lemma 3.5.7, invariance of FixΓ(T ) is equivalent to the

inclusion OT (Λ′) ⊂ E ′, where OT (Λ′) = {e ∈ E| se ∈ Λ′}. For an element

e ∈ OT (Λ′), one has π−1(se) = se for all π ∈ Γ by definition and it is an edge

of the fixed graph FixΓ(T ) if and only if additionally π−1(te) = te holds for

all π ∈ Γ, i.e. if π−1(e) = e for all π ∈ Γ. Consequently, OT (Λ′) ⊂ E ′ holds

true iff Γ fixes every edge e ∈ E whose source se is fixed by Γ. �

Taking into account the preceding considerations, we finally provide a suffi-

cient condition for the invariance of the hybrid fixed-point space Fix(Σ) which

essentially affects the discrete part “Σ ≤ Aut (T ) of the group Σ ≤ H.

3.5.10 Proposition. Let H be a hybrid dynamical system and Σ ≤ H a sub-

group of its hybrid symmetries. Moreover, let the resets R(e) be single-valued

for e ∈ OT (FixT (“Σ)). If the “Σ-induced fixed graph Fix
Σ̂

(T ) is invariant, the

hybrid fixed-point space Fix(Σ) is invariant as well.

Proof. Due to Lemma 3.5.4 it is sufficient to prove local flow-invariance and

reset-invariance of Fix(Σ). For p = (λ, x) ∈ Fix(Σ) and Υ = (π, g) ∈ Σ,

Lemma 3.2.11 applies (since π ∈ Σλ is equivalent to λ ∈ FixT (〈π〉) ⊂ FixT (Σ))

and we have

g−1
π−1(λ)F(λ)(x) = g−1

λ F(λ)(x) = F(λ)
Ä
g−1
λ x
ä

= F(λ)(x).
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Thus by the classical result, Fix(Σ) is locally flow-invariant. Let e ∈ OT (FixT (“Σ))

be a discrete transition. For p = (se, x) ∈ Fix(Σ) ∩ G(e) and Υ = (π, g) ∈ Σ,

we have

R(e) = ΥR(e) = g−1
e R(π−1(e)) = g−1

e R(e)

since we have π−1(e) = e due to Lemma 3.5.9. Now, ge-invariance of the graph

R(e) ⊂ DT,se × DT,te enforces the equivariance g−1
te ◦ Re = Re ◦ g−1

se of the

underlying reset maps which is due to Lemma 3.3.2. Hence, we find

g−1
te Re(x) = Re

Ä
g−1
se x
ä

= Re(x) (3.115)

for all x ∈ G(e) ∩ Fix(Σ). Since card(R(e)(x)) = 1, Equation (3.115) implies

reset-invariance of Fix(Σ). Consequently, Fix(Σ) is invariant. �

3.5.11 Example. Let us consider the hybrid dynamical system H2 displayed

in Fig. 3.7 with vector fields F(1) and F(2) last structurally discussed in

Example 3.2.14 and vector field F(3) : (R2)
4 → (R2)

4
defined by

F(3)(z) =

Ñ
A B

B A

é
z +H(z) (3.116)

with

A =

Ñ
C2 ζI2

ζI2 C2

é
, B =

Ñ
0 ζI2

ζI2 0

é
(3.117)

and C2 as in (3.58). This special structure imposes D4-equivariance on F(3),

i.e. we have S3 = D4 ≤ S4. We want to figure out the hybrid symmetries

H2 of H2. First of all, the transition graph T has the automorphism group

Aut(T ) = 〈(12)〉 ∼= Z2. The T -symmetries of the underlying T -system are

captured by S2 = S×D4 where S ∼= Z2×Z2 is the T -symmetry group of the

T -system treated in Example 3.2.14. This is true because the discrete state 3

is fixed by Aut(T ); apart from that the vector field F(3) is not related to the

other two vector fields so that T -symmetries involving F(3) in a connective

manner cannot arise anyhow.

Now we address the guards. For λ ∈ Λ, a subgroup Hλ ≤ Gλ and ε > 0 the

ε-approximated fixed-point space Fixε(Hλ) is given by

Fixε(Hλ) =
¶
(λ, x) ∈ D(λ) | dist||·|| (x,Fix(Hλ)) < ε

©
. (3.118)
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Figure 3.7: Hybrid dynamical system H2 with hybrid symmetries

H2
∼= Z2×D4 and invariant fixed-point spaces Fix(Ξ)

for each subgroup Ξ ≤ H2.
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Recall that the classical fixed-point space Fix(Hλ) isNGλ(Hλ)-invariant. Choos-

ing an NGλ(Hλ)-invariant norm || · ||, we compute for (λ, x) ∈ Fixε(Hλ) and

g ∈ NGλ(Hλ)

dist||·|| (gx,Fix(Hλ)) = dist||·|| (gx, gFix(Hλ))

= min
y∈Fix(Hλ)

d||·|| (gx, gy)

= min
y∈Fix(Hλ)

d||·|| (x, y)

= dist||·|| (x,Fix(Hλ)) < ε.

Thus we find gx ∈ Fixε (Hλ) and consequently gFixε (Hλ) ⊂ Fixε (Hλ). Also,

we find gFixε (Hλ) ⊂ Fixε (Hλ), finally implying gFixε (Hλ) = Fixε (Hλ).

Hence Fixε (Hλ) is NGλ(Hλ)-invariant.

Let the subgroups Σ1,Σ2 ≤ S4 be given by

Σ1 = 〈(24)〉 and Σ2 = 〈(13)〉. (3.119)

With guards

G(1, 3) = Fixε(Σ2) and G(2, 3) = Fixε(Σ1), (3.120)

the guard stabilizer ΣG becomes

ΣG = {(idΛ, id, id, g3) , (π, (12)(34), (12)(34), g3) | g3 ∈ D4} , (3.121)

and thus we obtain the hybrid symmetry group

H2 = ΣG ∼= Z2 ×D4 (3.122)

for H2. Let Ξ be a subgroup of H2 with “Ξ ∼= Z2. We aim to examine Fix(Ξ).

First, we identify the “Ξ-induced fixed graph Fix
Ξ̂
(T ): Its vertices are given

by FixT (“Ξ) = {3} and the edges E ′ = ∅ since (3, 3) is not an edge of T . Thus

Fix
Ξ̂
(T ) is the trivial subgraph of T solely consisting of the discrete state 3.

Recall that T has edges E = {(1, 2), (2, 1), (1, 3), (2, 3)}, i.e. there is no e ∈ E
whose source is fixed by “Ξ. In this situation, Lemma 3.5.9 yields invariance of

the fixed graph Fix
Ξ̂
(T ) (in fact, this is obvious since its output set is empty).

By means of Proposition 3.5.10, Fix(Ξ) is found to be invariant. ♦

By an explicit incorporation of the guards as triggering instances for discrete

transitions, Proposition 3.5.10 can be generalized as follows.
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3.5.12 Theorem. Let H be a hybrid dynamical system with single-valued re-

sets R(e) for e ∈ OT (FixT (“Σ)) and let Σ ≤ H be a subgroup of its hybrid

symmetries such that for each edge e ∈ OT (FixT (“Σ)) at least one of the fol-

lowing two statements holds:

(1) te ∈ FixT (“Σ)

(2) Fixse(ÙΣse) ∩ G(e) = ∅ .

Then Fix(Σ) is invariant.

Proof. Let χ be an execution of H starting in p0 = (λ0, x0) ∈ Fix (Σ).

Consider an edge e ∈ OT (FixT (“Σ)) of T . By definition, the source se of e is

a vertex of the fixed graph Fix
Σ̂

(T ), meaning π−1(se) = se for all π ∈ “Σ. If

additionally its target te is an element of FixT (“Σ), then e itself is fixed by “Σ
and an execution visiting Dse is unable to quit the vertex set Λ′ = FixT (“Σ)

via e since it will be reset to an element of Λ′ by R(e). So is χ, and as in the

proof of Proposition 3.5.10 by virtue of the hybrid symmetries, χ is reset to

the local fixed-point space Fixte(ÙΣte) by R(e) (cp. Eq. (3.115)).

In case there is π ∈ Σ with π−1(te) 6= te and the isolation condition Fixse(ÙΣse)∩
G(e) = ∅ holds, an execution staying in Fixse(ÙΣse) cannot leave Λ′ by e either

since it cannot hit the guard G(e) triggering a transition along e.

Hence, in both cases the execution χ cannot leave the fixed-point set Fix(Σ)

showing that Fix (Σ) is invariant. �

Obviously, if condition (1) holds for all edges in question, we find ourselves

in the situation of Proposition 3.5.10 since te ∈ FixT (“Σ) for every edge e ∈
OT (FixT (“Σ)) is equivalent to the invariance of the “Σ-induced fixed graph

Fix
Σ̂

(T ) by Lemma 3.5.9. In case of purely temporal switching, condition (2)

cannot be met non-trivially at all since spatially the guards are then given by

the complete space D(λ) which has an empty intersection with the se-local

fixed-point space Fixse(ÙΣse) if and only if Fixse(ÙΣse) is empty itself.

3.5.13 Example. We consider the hybrid dynamical system H3 illustrated

in Fig. 3.8. The dynamical systems Ψ1,Ψ2 and Ψ3 are given as for H2 in

Example 3.5.11. Note that H3 is similar to H2; the only difference lies in the

additional edges (3, 1) and (3, 2) with according guard and reset data.
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Fixδ(Σ1)
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Figure 3.8: Hybrid dynamical system H3 with hybrid symmetries

H3
∼= Z2 ×D4 and invariant hybrid fixed-point space

Fix(Ξ) with Ξ = 〈(π, (12)(34), (12)(34), (12)(34))〉 ∼=
Z2.
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3.5 Hybrid Fixed-Point Spaces

For λ ∈ Λ, Hλ ≤ Gλ and δ > 0, we set

Fixδ(Hλ) =
¶
(λ, x) ∈ D(λ) | dist||·|| (x,Fix(Hλ)) > δ

©
. (3.123)

Analogous to Fixε(Hλ), Fixδ(Hλ) is NGλ(Hλ)-invariant. Let

G(3, 1) = Fixδ(Σ1) and G(3, 2) = Fixδ(Σ2) (3.124)

be the guards for the two recent edges with Σ1 = 〈(24)〉 and Σ2 = 〈(13)〉. We

assume that δ ≥ ε. Observe that the T -symmetry group as well as the guard

stabilizer are the same as in Example 3.2.14. Therefore, we also end up with

the same hybrid symmetries H3
∼= Z2 ×D4. We specify the subgroup Ξ ≤ H3

with “Ξ ∼= Z2 by

Ξ = 〈(π, (12)(34), (12)(34), (12)(34))〉 ∼= Z2. (3.125)

In this example the “Ξ-induced fixed graph Fix
Ξ̂
(T ) is still given by the simple

vertex 3. However, in this case the output set of the discrete state 3 is not-

empty since we have

OT

Ä
FixT (“Ξ)

ä
= {(3, 1), (3, 2)}

implying that the fixed graph Fix
Ξ̂
(T ) is not invariant. This is why Proposi-

tion 3.5.10 does not apply. For the 3-localized fixed-point space Fix3(ÙΞ3), we

obtain

Fix3(ÙΞ3) = Fix3 (〈(12)(34)〉) (3.126)

and observe that Fix (〈(12)(34)〉) ⊂ Fix (〈(12)〉) and Fix (〈(12)(34)〉) ⊂ Fix (〈(34)〉).
Futhermore, on account of the relation δ ≥ ε we note that Fixδ(Σi) ⊂ {3} ×
R8 r Fixε(Σi) implying

G(3, 1) ∩ Fix3(ÙΞ3) = ∅ and G(3, 2) ∩ Fix3(ÙΞ3) = ∅.

Hence, our example meets the assumptions of Theorem 3.5.12 which in turn

ensures the invariance of Fix(Ξ). ♦
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Chapter 4

Periodicity in Hybrid Dynamics

and Hybrid Spatio-Temporal

Symmetries

Contrary to the spatial symmetry a solution x(t) of a G-equivariant dynamical

system Ψ can exhibit which is encoded by its isotropy subgroup Σx(t) ≤ G, it

may possess symmetry in time. The simplest (and purest) case of temporal

symmetry is periodicity of x(t), i.e. there exists T > 0 such that x(t+T ) = x(t)

for all t ∈ R. If there exists a period T which is minimal with respect to this

property, the group of temporal symmetries of x(t) is given by the subgroup

TZ ≤ R. T -periodicity can also be formulated as an invariance property with

regard to the shift action σTx(·) = x(· + T ), where the shift operator σT acts

on maps C(R,Rn) rather than on vectors. Spatial and temporal symmetries

may be viewed as the boundary-posts of symmetry with regard to the solu-

tions of dynamical systems that give rise to an intermingled notion of symme-

try – termed spatio-temporal symmetry – in between, which are examined in

[Fie88] and [GS02], for instance. The occurence of spatio-temporally symmet-

ric phenomena is not restricted to single solutions of autonomous dynamical

systems, but may more generally be treated for non-autonomous systems that

are forced periodically in time, i.e. for the explicitely time-dependent vector

field F : R×D → Rn, a period T > 0 exists such that F (t+ T, ·) = F (t, ·) for

all t ∈ R (see [Lam98]).

After hybrid symmetries have been set up successfully in the last chapter,

this chapter intends to trace the classical idea of spatio-temporal symmetries

in the framework of hybrid dynamical systems. Subsequently, we describe
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4 Periodicity in Hybrid Dynamics and Hybrid Spatio-Temporal Symmetries

and inspect the periodicity of executions in Section 4.1 whereupon hybrid

spatio-temporal symmetries that conceptually build on Chapter 3 are treated in

Section 4.2. Finally, in Section 4.3, we will turn away from specific executions

and discuss hybrid spatio-temporal symmetry properties in a broader sense,

namely of hybrid dynamical systems with respect to a given periodic switching

signal. In this context, we figure out the structural consequences of hybrid

spatio-temporal symmetries on the hybrid time-T map over one period of the

switching signal in question.

4.1 Periodic Executions

In the course of this section we aim to explore periodicity – or purely temporal

symmetry in a manner of speaking – in the framework of hybrid dynamical

systems. By means of an execution we unfold the notion of hybrid periodicity

and work out the hybrid details setting it apart from the periodicity of classical

trajectories.

4.1.1 Definition (Hybrid Periodicity). An execution χ : T → D of a hy-

brid dynamical system H is periodic if there exists a pair Pχ = (Nχ, Tχ) ∈
N× R≥0 such that

χ(φ+ Pχ) = χ(φ) (4.1)

holds for all φ = (k, t) ∈ T . Pχ is called the hybrid period of χ with Nχ being

the discrete and Tχ the continuous period of χ. ♦

Recently, the equivalent notion of hybrid periodic orbit has explicitely occured

in the article [WA10], where rank properties of Poincaré maps are investigated.

Hybrid periodicity can be straightforwardly characterized in terms of discrete

and continuous components as follows.

4.1.2 Lemma. An execution χ is Pχ-periodic with Pχ = (Nχ, Tχ) if and only

if the relations

γ(k +Nχ) = γ(k) and xk+Nχ(t+ Tχ) = xk(t) (4.2)

hold for all (k, t) ∈ T .
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4.1 Periodic Executions

Proof. Decryption of (4.1) via (2.14) yields the desired statement. �

It is important to note that for an execution χ with minimal period Pχ =

(Nχ, Tχ), the discrete part Nχ is not necessarily minimal when considered as

the discrete period of γ, i.e. there generally exists a minimal N < Nχ such

that γ(k +N) = γ(k) for all k. Obviously, N has to divide Nχ.

An execution χ determines a subgraph Tχ of the transition graph T = (Λ, E)

in the following way, which I have not encountered in the literature so far.

4.1.3 Definition. For an execution χ of H , the χ-induced transition graph

Tχ = (Λχ, Eχ) is determined by

Λχ = im(γ) ⊂ Λ and Eχ = {(γ(k), γ(k + 1)) | k ∈ [τ ]} ⊂ E . (4.3)

Its vertices are given by the image of the discrete state map γ and its edges

are given by adjacent values of γ. Descriptively speaking, the graph Tχ traces

the path an execution χ takes inside the transition graph T without unfolding

it by marking the part of T the execution visits along its way. This subgraph

will turn out to be useful in the course of the forthcoming analysis.

Below, we mention the implications of periodicity on the χ-induced transition

graph Tχ (for the χ-induced transition graph see Definition 4.1.3).

4.1.4 Corollary. Let χ be a periodic execution with minimal period Pχ =

(Nχ, Tχ). Then if Nχ 6= 0, the χ-induced subgraph Tχ = (Λχ, Eχ) is a cycle

graph with card(Λχ)|Nχ.

Proof. By Lemma 4.1.2, one has γ(k + Nχ) = γ(k) for all k ∈ Z≥0. Since

(γ(k+N−1), γ(k+N)) = (γ(k+N−1), γ(k)) ∈ Eχ, the tuple (γ(0), . . . , γ(N−
1)) represents a cycle of Tχ and thus of T . Notably, the periodicity of γ forces

card(Λχ)|Nχ. �

Note carefully that under the assumptions of the above corollary Tχ is a cycle

graph, but not necessarily a cyclic graph, since γ may run around in T arbi-

trarily. In case Nχ = 0, the execution stays in a single discrete state all the

time (forcing the induced transition graph to be trivial) and thus hybrid peri-

odicity reduces to classical periodicity of a solution x(t). In order to obtain a
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4 Periodicity in Hybrid Dynamics and Hybrid Spatio-Temporal Symmetries

more detailed view on hybrid periodicity, we introduce the discrete trace of an

execution χ which provides a graphical characterization of the discrete period.

4.1.5 Definition. Let χ be a periodic execution with period Pχ = (Nχ, Tχ).

The discrete trace T ∗
χ = (Λ∗χ, E∗χ) of χ is determined by the vertices

Λ∗χ =
{(

[k]Nχ , γ(k)
)
| k ∈ Z≥0

}
⊂ Z/NχZ× Λ (4.4)

and by

E∗χ =
{((

[k]Nχ , γ(k)
)
,
(
[k + 1]Nχ , γ(k + 1)

))∣∣∣ k ∈ Z≥0

}
⊂ Λ∗χ × Λ∗χ (4.5)

as edges. ♦

Note that T ∗
χ is a unidirectional cyclic graph of size Nχ that can be considered

to be a refinement of Tχ insofar as T ∗
χ untangles the χ-induced transition graph

Tχ by comprising the visiting multiplicities of discrete states. For a periodic

execution χ, Figure 4.1 contrasts the χ-induced transition graph Tχ with the

according discrete trace T ∗
χ in an exemplary manner; in turn, this gives a

discrete characterization of the execution displayed in Figure 4.2. Analogous

to the χ-induced hybrid dynamical system Hχ modelled on the χ-induced

transition graph, we consider the hybrid trace H ∗
χ of χ to be the according

hybrid dynamical system that is built on the discrete trace T ∗
χ of χ. More

precisely, the hybrid trace H ∗
χ is given by the data

Ä
Λ∗χ, E∗χ,Θ∗χ,F∗χ, T ∗χ ,G∗χ,R∗χ

ä
with

Θ∗χ(λk) = Θ(γ(k)),

F∗χ(λk) = F(γ(k)),

T ∗χ (λk) = T (γ(k)),

G∗χ(ek) = G(γ(k), γ(k + 1)),

R∗χ(ek) = R(γ(k), γ(k + 1)),

where λk = ([k] , γ(k)) and ek = (λk, λk+1).

Apparently, the discrete period Nχ and the continuous period Tχ are not at all

separated quantities, but strongly interwoven. Therefore, we aim to character-

ize the hybrid period Pχ in more detail by examining the interplay between the
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([0], 1)

([1], 2)

([2], 1)

([3], 2)([4], 1)

([5], 2)

([6], 1)

([7], 2)

([8], 1)

([9], 2)

([10], 1) ([11], 2)

([12], 1)

([13], 2)

1 2Tχ

T
∗

χ

Figure 4.1: Induced transition graph Tχ (center) and discrete

trace T ∗χ of a periodic execution χ with discrete pe-

riod Nχ = 14; cp. Figure 4.2.
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4 Periodicity in Hybrid Dynamics and Hybrid Spatio-Temporal Symmetries

discrete and the continuous period. For this purpose, we consider the following

map based on the hybrid time set τ of χ:

Θ(q)
τ : Z≥0 → R≥0, N 7→

q+N−1∑
k=q

|Ik|, q ∈ Z≥0 (4.6)

and set Θτ = Θ(0)
τ . Note that for N ∈ Z≥0 and an n-tuple (m1, . . . ,mn),

0 ≤ n < N , of integers satisfying 0 = m0 < m1 < · · · < mn < mn+1 = N , one

has

Θτ (N) =
n∑
j=0

Θ(mj)
τ (mj+1 −mj). (4.7)

It turns out that Θτ fundamentally relates the discrete to the continuous pe-

riod.

4.1.6 Proposition. Let χ = (τ, γ, x) be a periodic execution of the hybrid

dynamical system H with hybrid period Pχ = (Nχ, Tχ). Then Θ(q)
τ (Nχ) = Tχ

for all q ∈ Z≥0 and Θτ induces a map‹Θχ : Z/NχZ→ R/TχZ. (4.8)

Proof. When considering χ as a map χ : T → D, we observe that for N ∈ Z≥0

the time T = Θτ (N) is the time the initial state χ(0, 0) needs to evolve to

χ(N, τN) along χ, i.e. τN = T . Hence, if χ is periodic with period Pχ =

(Nχ, Tχ), we can conclude that Θτ (Nχ) = Tχ. The identity xk+Nχ(t + Tχ) =

xk(t) on Ik entails the relation Ik+Nχ = Ik + Tχ with Ik + Tχ denoting the

right-shift [τk + Tχ, τ
′
k + Tχ] of the interval Ik by Tχ. Thus,∣∣∣Ik+Nχ

∣∣∣ = |Ik| for all k ∈ Z≥0 (4.9)

and

Θτ (Nχ) =
Nχ−1∑
k=0

|Ik| =
q+Nχ−1∑
k=q

|Ik| = Θ(q)
τ (Nχ) for all q ∈ Z≥0. (4.10)

Since every integer multiple of Nχ occurs as a discrete period of χ, as well, we

have

Θ(q)
τ (rNχ) = Θτ (rNχ)

(4.7)
=

r−1∑
j=0

Θ(jNχ)
τ (Nχ) =

r−1∑
j=0

Θτ (Nχ) = rΘτ (Nχ) (4.11)
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4.1 Periodic Executions

for r ∈ N and q ∈ Z≥0, where we use the (r − 1)-tuple (m1, . . . ,mr−1) given

by mj = jNχ. For q ∈ {0, 1, . . . , Nχ − 1} we obtain

Θτ (q + rNχ) = Θτ (q) + Θ(q)
τ (rNχ)

(4.11)
= Θτ (q) + rΘτ (Nχ).

Thence, the map‹Θχ : Z/NχZ→ R/TχZ, ‹Θχ ([N ]) = [Θτ (N)]

is well-defined. �

1 2
c

c

F1 F2

Figure 4.2: Execution χ with minimal hybrid period Pχ =

(14, 336) and induced hybrid subsystem Hχ displayed

above

In case, χ is a periodic execution with uniform hybrid time trajectory, i.e.

|Ik| = β ∈ R≥0 for all k ∈ Z, one has

Tχ = Θτ (Nχ) = βNχ. (4.12)
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4 Periodicity in Hybrid Dynamics and Hybrid Spatio-Temporal Symmetries

We say that χ is temporally uniform. Figure 4.2 shows a temporally uniform

execution with period Pχ = (14, 336). By Eq. (4.12), we find that β = |Ik| = 24

in this example.

4.2 Hybrid Spatio-Temporal Symmetries

Having inspected hybrid periodicity, we aim to set up the concept of hybrid

spatio-temporal symmetries for executions of hybrid dynamical systems guided

by the classical notion of spatio-temporal symmetries for solutions of dynamical

systems. From now on, we require that the hybrid dynamical systems we deal

with are both deterministic and non-blocking (see Chapter 2.2).

Let ∆(Z×Z) denote the diagonal subgroup of Z×Z. For a periodic execution

χ of a hybrid dynamical system H with hybrid period Pχ = (Nχ, Tχ) ∈ Z×R,

we note that Pχ∆(Z× Z) = {(kNχ, kTχ) | k ∈ Z} is a subgroup of Z× R and

consider the quotient group

Πχ = (Z× R) /Pχ∆(Z× Z). (4.13)

Obviously, Πχ may be perceived as a subgroup of (Z/NχZ)× (R/TχZ).

We motivate the following definition of hybrid spatio-temporal symmetries in

strong analogy to the classical case which is treated in [GS02] and [Fie88], for

instance. In general, spatio-temporal symmetries arise when (spatial) symme-

tries meet (temporal) periodicity. In that spirit, we consider a hybrid dynam-

ical system H with hybrid symmetries H. Let χ be a periodic execution of

H with hybrid period Pχ. Then by Proposition 3.4.2 for a hybrid symmetry

Υ ∈ H, Υχ is an execution of H , as well. Moreover, Υχ is periodic with the

same period Pχ. There are two distinct cases that may occur: The images Iχ
and IΥχ of χ and Υχ, respectively, intersect each other or they do not. In case

Iχ ∩ IΥχ 6= ∅, the determinism of H forces Iχ and IΥχ to coincide. Then,

uniqueness of executions implies the existence of P = (N, T ) ∈ Z × R with

0 ≤ N ≤ Nχ and 0 ≤ T ≤ Tχ such that Υχ(φ−P ) = χ(φ) holds for all φ ∈ T .

Upon this observation, we formulate the subsequent definition.

4.2.1 Definition (Spatio-Temporal Symmetries). Let H be a hybrid dy-

namical system with hybrid symmetry group H and χ a periodic execution of
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4.2 Hybrid Spatio-Temporal Symmetries

H with hybrid period Pχ = (Nχ, Tχ). An element (Υ, P ) ∈ H×Πχ is a hybrid

spatio-temporal symmetry of χ if

Υχ(φ− P ) = χ(φ) (4.14)

holds for all φ = (k, t) ∈ T . ♦

1 2
c

c

F1 F2

Figure 4.3: Execution with hybrid period P = (14, 336) and non-

trivial spatio-temporal symmetries

We characterize spatio-temporal symmetries of an execution χ = (τ, γ, x) by

means of its discrete and continuous data.

4.2.2 Lemma. An element (Υ, P ) ∈ H×Πχ with Υ = (π, g) and P = (N, T )

is a spatio-temporal symmetry of χ if and only if the relations

π−1(γ(k −N)) = γ(k) and g−1
γ(k−N)xk−N(t− T ) = xk(t) (4.15)

hold for all (k, t) ∈ T .

Proof. Rewrite the equation in (4.14) using Definition 3.4.1 and Eq. (2.14).�
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4 Periodicity in Hybrid Dynamics and Hybrid Spatio-Temporal Symmetries

It should not come as a surprise that the set of hybrid spatio-temporal symme-

tries exhibits algebraic structure. As in the classical case, there is even more

structure to be detected for spatio-temporal symmetries than for purely spatial

hybrid symmetries: Spatial and temporal symmetries are knotted in a chara-

teristic manner. For a hybrid dynamical system H with hybrid symmetries

H and Pχ-periodic execution χ, we set

Hχ = {Υ ∈ H | Iχ = IΥχ} (4.16)

to capture the portion of hybrid symmetries that fix the image of χ as a set.

Notably, for each Υ ∈ Hχ there is P ∈ Πχ such that the pair (Υ, P ) is a hybrid

spatio-temporal symmetry of χ. Let Θ : Hχ → Πχ be the map defined by

Θ(Υ) = P .

4.2.3 Proposition. Let H be a hybrid dynamical system with hybrid symme-

try group H and Pχ-periodic execution χ. The collection Ξχ of spatio-temporal

symmetries of χ possesses the following algebraic structure:

(1) Ξχ is a group.

(2) Ξχ is a twisted subgroup of Hχ × Πχ with twist Θ.

(3) The temporal part ‹Ξχ ≤ Πχ is a twisted subgroup of Z/NχZ × R/TχZ
with twist ‹Θ as defined in Proposition 4.1.6.

Proof. The group structure is easily detected: For two spatio-temporal sym-

metries (Υi, Pi) ∈ Ξχ, i = 1, 2, one has

(Υ1Υ2, P1 + P2)χ(φ) = Υ1Υ2χ(φ− P1 − P2) = Υ1χ(φ− P1) = χ(φ) (4.17)

and the inverse of (Υ, P ) ∈ Ξχ is given by (Υ, P )−1 = (Υ−1,−P ) which is

obviously a spatio-temporal symmetry of χ. Thus, Ξχ forms a group. From

Eq. (4.17), we see that for Υ1,Υ2 ∈ Hχ we have Θ(Υ1Υ2) = P1 + P2 =

Θ(Υ1) + Θ(Υ2). Moreover, Θ(Υ−1) = −P = −Θ(Υ). Hence, Θ is a group

homeomorphism and each element ξ ∈ Ξχ can be written as ξ = (Υ,Θ(Υ)).

Therefore, Ξχ is a twisted subgroup of Hχ × Πχ with twist Θ.

We now turn to the temporal subgroup ‹Ξχ ≤ Πχ of Ξχ. First, we notice that

Eq. (4.15) of Lemma 4.2.2 forces

|Ik+Ni | = |Ik| , i = 1, 2 (4.18)
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4.2 Hybrid Spatio-Temporal Symmetries

for all k ∈ Z≥0. Being aware of that, we find

Θ(N1)
τ (N2) =

N1+N2−1∑
k=N1

|Ik| =
N2−1∑
k=0

|Ik+N1|
(4.18)
=

N2−1∑
k=0

|Ik| = Θτ (N2) (4.19)

and conclude

Θτ (N1 +N2) = Θτ (N1) + Θ(N1)
τ (N2) = Θτ (N1) + Θτ (N2).

On the grounds of Proposition 4.1.6, this finally leads to‹Θχ([N1] + [N2]) = ‹Θχ([N1]) + ‹Θχ([N2]).

Thus, the restriction ‹Θχ

∣∣∣
Z

: Z → R/TχZ (4.20)

with Z = prZNχ (‹Ξχ) ≤ Z/NχZ is a group homomorphism and every P ∈ Πχ

can be written as

P = (N, ‹Θχ(N)) ∈ Z/NχZ× R/TχZ. (4.21)

Hence, ‹Ξχ is a twisted subgroup of Z/NχZ× R/TχZ with twist ‹Θχ|Z . �

4.2.4 Corollary. If the discrete period Nχ of χ is prime, ‹Ξχ is either trivial

or isomorphic to ZNχ.

Proof. The assumption that Nχ is prime forces N = 1 or N = Nχ, since

for N ∈ Z/NχZ, one has Nord(N) = Nχ and thus N divides Nχ. Hence,

[N ]Nχ = 1 or [N ]Nχ = 0 and Proposition 4.2.3 entails ‹Ξχ
∼= ZNχ or ‹Ξχ = 1,

respectively. �

Having clarified the basic algebraic circumstances under which our current

considerations take place, we now aim to establish a connection between the

hybrid spatio-temporal symmetries of an execution χ of a hybrid dynamical

system H and the hybrid symmetries of the induced hybrid system Hχ.

4.2.5 Lemma. For a hybrid dynamical system H with hybrid symmetries

H, let χ be a periodic execution with minimal period Pχ and spatio-temporal

symmetries Ξχ. Then the map

r̂χ : “Ξχ → Aut (Tχ) , π 7→ π|Λχ , (4.22)

is a well-defined group homomorphism, where “Ξχ ≤ Ĥ is the obvious projection.
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4 Periodicity in Hybrid Dynamics and Hybrid Spatio-Temporal Symmetries

Proof. For π ∈ “Ξχ, there isN ∈ N such that the identity π−1(γ(k)) = γ(k+N)

holds for all k ∈ Z thus showing that Λχ is “Ξχ-invariant. Hence π restricts to

a bijection π|Λχ : Λχ → Λχ. For ek = (γ(k), γ(k + 1)) ∈ Eχ, one has

π|−1
Λχ(ek) =

Ä
π|−1

Λχ(γ(k)), π|−1
Λχ(γ(k + 1))

ä
= (γ(k +N), γ(k +N + 1))

= ek+N ∈ Eχ

and so π|Λχ is adjacency-preserving. Therefore, π|Λχ ∈ Aut (Tχ) proving that

rχ is well-defined. Clearly, (π1 ◦ π2) |Λχ = π1|Λχ ◦ π2|Λχ as well as π|−1
Λχ =

(π−1) |Λχ for all π, π1, π2 ∈ “Ξχ characterizing r̂χ as a group homomorphism. �

Using this statement, we can relate the spatio-temporal symmetry properties

of an execution χ to the hybrid symmetries of the induced hybrid system Hχ.

4.2.6 Proposition. Let χ = (τ, γ, x) be a periodic execution with minimal

period Pχ = (Nχ, Tχ) and (Υ, P ) ∈ Ξχ a spatio-temporal symmetry of χ where

Υ = (π, g) and P = (N, T ). Then Υ induces a hybrid symmetry ‹Υ = (π̃, g̃) of

the induced system Hχ with π̃ = π|Λχ.

Proof. We define ‹Υ = (π̃, g̃) by π̃ = r̂χ(π) and g̃ = Ûrχ(g) where the map Ûrχ is

the projection ÙΞχ →
∏
λ∈Λχ

Gλ, g 7→ g̃ with g̃λ = gλ.

We verify that ‹Υ is a hybrid symmetry of Hχ. First of all, for λ ∈ Λχ we see

that

Θχ

Ä
π̃−1(λ)

ä
= Θ(π−1(λ)) = Θ(λ) = Θχ(λ)

and

Fχ
Ä
π̃−1(λ)

ä
◦ g̃−1

λ = F
Ä
π−1(λ)

ä
◦ g−1

λ

= g−1
λ ◦ F(λ)

= g̃−1
λ ◦ Fχ(λ).

Moreover, we have

g̃π̃−1(λ) = g−1
π (λ) = gλ = g̃λ
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4.2 Hybrid Spatio-Temporal Symmetries

for all λ ∈ Λχ. Hence, π̃∗g̃ = g̃ for all ν ∈ Ĥχ and thus ‹Υ is a Tχ-symmetry.

Lastly, we find ‹ΥRχ(ek) = g̃π̃−1(sek)Rχ

Ä
π̃−1(ek)

ä
= gπ−1(sek)R

Ä
π−1(ek)

ä
= R(ek)

= Rχ(ek)

for all ek ∈ Eχ finally proving that ‹Υ is a hybrid symmetry of Hχ. �

This provides us with the following algebraic connection between hybrid spatio-

temporal symmetries and hybrid symmetries of the induced hybrid system.

4.2.7 Corollary. For a periodic execution χ with hybrid spatio-temporal sym-

metries Ξχ the map

rχ = (r̂χ, Ûrχ) : ΞHχ → Hχ, Υ = (π, g) 7→ ‹Υ = (r̂χ(π), Ûrχ(g)) (4.23)

is a well-defined group homomorphism. Here, ΞHχ is the projection of Ξχ onto

H and Hχ is the hybrid symmetry group of Hχ.

In order to explore the nature of hybrid spatio-temporal symmetries further,

we lift such symmetries to the hybrid trace H ∗
χ .

4.2.8 Proposition. Let χ = (τ, γ, x) be a periodic execution with minimal

period Pχ = (Nχ, Tχ) and (Υ, P ) ∈ Ξχ a spatio-temporal symmetry of χ where

Υ = (π, g) and P = (N, T ). Then the hybrid symmetry Υ induces a hy-

brid symmetry ‹Υ = (π̃, g̃) of the hybrid trace T ∗
χ of χ. Moreover, ord(‹Υ) =

ord(π̃) = ord(Υ) = κ with κ = Nχ
N

= Tχ
T

.

Proof. We define π̃ by

Λ∗χ → Λ∗χ, π̃−1
(
[k]Nχ , γ(k)

)
=
(
[k +N ]Nχ , π

−1(γ(k))
)
. (4.24)

Via the identity π−1(γ(k − N)) = γ(k) we get π−1(γ(k)) = γ(k + N) for all

k and by cyclicity of T ∗
χ , π̃ turns out to be an automorphism of T ∗

χ . For

κN = Nχ
N

, we compute

π̃−κN
(
[k]Nχ , γ(k)

)
(4.24)
=

(
[k + κNN ]Nχ , π

−κN (γ(k))
)

=
(
[k +Nχ]Nχ , γ(k + κNN)

)
=

(
[k]Nχ , γ(k)

)
, (4.25)
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using Nχ-periodicity in the last step. Thus, ord(π̃) ≤ κN . Since κN is the

minimal positive non-zero integer satisfying [k + κNN ]Nχ = [k]Nχ , we see that

ord(π̃) ≥ κN , finally yielding ord(π̃) = κN . For the continuous part, we set

g̃ ∈
Nχ−1∏
k=0

Gλk with g̃λk = gγ(k), λk =
(
[k]Nχ , γ(k)

)
∈ Λ∗χ, (4.26)

for all k ∈ {0, . . . , Nχ − 1}. We show that ‹Υ = (π̃, g̃) is a hybrid symmetry of

H ∗
χ : We have

Θ∗
Ä
π̃−1(λk)

ä
= Θ∗

(
[k +N ]Nχ , π

−1(γ(k))
)

= Θ
Ä
π−1(γ(k))

ä
= Θ (γ(k))

= Θ∗(λk)

and

F∗
Ä
π̃−1(λk)

ä
◦ g̃−1

λk
= F

Ä
π−1(γ(k))

ä
◦ g−1

γ(k)

= g−1
γ(k) ◦ F(γ(k))

= g̃−1
λk
◦ F∗ (λk)

for all k ∈ {0, . . . , Nχ − 1}. Moreover,

g̃π̃−1(λk) = gπ−1(γ(k)) = gγ(k) = g̃λk ,

which indeed holds for all π̃ ∈ “S∗χ. Thus, ‹Υ is a T ∗
χ -symmetry of the according

T ∗
χ -system. Finally,‹ΥR∗(λk, λk+1) = g̃−1

π̃−1(λk)
R∗(λk, λk+1)

= g−1
π−1(γ(k))R(γ(k), γ(k + 1))

= R (γ(k), γ(k + 1))

= R∗ (λk, λk+1)

verifying that ‹Υ is a hybrid symmetry of H ∗
χ .

We now consider the map ‹Υ = (π̃, g) : ZNχ×Dχ → ZNχ×Dχ which is induced

by the hybrid symmetry Υ and given by‹Υ (
[k]Nχ , γ(k), xγ(k)(t)

)
=
(
π̃−1

(
[k]Nχ , γ(k)

)
, g−1
π−1(γ(k))xγ(k)(t)

)
. (4.27)
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Let κT = Tχ
T

. From Nχ = κNN we obtain

Tχ = Θτ (Nχ) = κNΘτ (N) = κNT,

and, consequently, κT = κN = κ. We carry on computing‹Υκ
(
[k]Nχ , γ(k), xγ(k)(t)

)
= (π̃κN , gκT )

(
[k]Nχ , γ(k), xγ(k)(t)

)
(4.27)
=

(
π̃−κN

(
[k]Nχ , γ(k)

)
, g−κT
π−κN (γ(k))

xγ(k)(t)
)

(4.25), (4.15)
=

(
[k]Nχ , γ(k), xγ(k−κNN)(t− κTT )

)
=

(
[k]Nχ , γ(k), xγ(k)(t)

)
.

From ord(π̃) = κ, we can conclude that ord(‹Υ) = κ and similarly ord(Υ) = κ.

Note – however – that ord(g) ≤ κT = κ and not necessarily ord(g) = κ. �

Similar to Corollary 4.2.7, we obtain the following statement.

4.2.9 Corollary. For a periodic execution χ with hybrid spatio-temporal sym-

metries Ξχ, the map

r∗χ =
Ä
r̂∗χ, Ûr∗χä : ΞHχ → H∗χ, Υ = (π, g) 7→ ‹Υ =

Ä
r̂∗χ(π), Ûr∗χ(g)

ä
(4.28)

is a well-defined group homomorphism.

This concludes the structural study of hybrid spatio-temporal symmetries and

we pass on to question how to utilize this structure for the dynamical analysis.

4.3 Return Maps and Hybrid Symmetries

It is the task of this section to turn away from the rather narrow view of the

preceding considerations and to expand the horizon towards a more global

understanding of hybrid spatio-temporal symmetry phenomena: Accordingly,

we step from individual periodic executions together with their hybrid spatio-

temporal symmetry groups on to hybrid dynamical systems equipped with

a periodic switching signal giving rise to spatio-temporal symmetries of the

system. Thus, we pass on to a more broadly based treatment of spatio-temporal
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4 Periodicity in Hybrid Dynamics and Hybrid Spatio-Temporal Symmetries

symmetries in which the foregoing perception will finally turn up again. At this

point, it should be stressed that a periodic execution clearly holds a periodic

switching signal and, hence, naturally blends in with the upcoming findings.

We consider a hybrid dynamical system H with hybrid symmetries H. Let

σ = (τ, γ) be a switching signal for H of period Nσ, i.e. γ(k+Nσ) = γ(k) and

Ik+Nσ = Ik + Θτ (Nσ) for all k ∈ Z. Then σ gives rise to the switched system

Hσ modelled on the induced transition graph Tσ = (Λσ, Eσ). The hybrid phase

space Dσ of Hσ is given by Dσ =
⋃
λ∈Λσ D(λ) where Λσ = im(γ) ⊂ Λ.

4.3.1 Definition. Let σ be an Nσ-periodic switching signal. A hybrid spatio-

temporal symmetry of Hσ is a pair (Υ, N) ∈ H × Z/NσZ with Υ = (π, g)

satisfying

(Υ, N)F(γ(k)) = gγ(k) ◦ F (γ(k +N)) ◦ g−1
γ(k+N) = F(γ(k)) (4.29)

and

π−1 (γ(k −N)) = γ(k) (4.30)

for all k ∈ Z. ♦

Note that on account of the constancy condition π∗g = g we have

gγ(k) = gπ−1(γ(k)) = gγ(k+N) (4.31)

for all k ∈ Z ensuring that (4.29) is well-defined.

4.3.2 Lemma. Let σ be a Nσ-periodic switching signal and (Υ, N) a hybrid

spatio-temporal symmetry of the induced hybrid system Hσ. Then gγ(·) is con-

stant on Z if and only if gγ(0) = gγ(1) = · · · = gγ(N−1).

Proof. Successive application of (4.31) leads to

gγ(k) = gγ(k+nN) (4.32)

for all k, n ∈ Z. Especially, for n = 1, we obtain gγ(k+N) = gγ(k). Since every

k ∈ Z can be written in the form

k = k0 + k1N + k2Nσ
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4.3 Return Maps and Hybrid Symmetries

with k0 ∈ I0 = {0,±1, . . . ,±(N − 1)}, k1 ∈ I1 =
¶
0,±1, . . . ,±Nσ

N

©
and k2 ∈

Z, we find

gγ(k) = gγ(k0+k1N+k2Nσ) = gγ(k0+k1N) = gγ(k0)

already proving the equivalence of statements. �

The group of hybrid spatio-temporal symmetries of Hσ is denoted by Ξσ. Let

φλ : T×D(λ)→ D(λ) denote the flow of the vector field F(λ) corresponding

to the discrete state λ ∈ Λ. For a switching signal σ = (τ, γ) of H , note that

the induced hybrid dynamical system Hσ is deterministic and non-blocking.

Therefore, for every p ∈ Dσ, there exists a unique infinite execution χ = (σ, x)

with χ(0, 0) = p. Moreover, for every t ∈ R there is a unique index k ∈ Z with

t ∈ I)
k, i.e. (k, t) ∈ T . We define the hybrid flow of Hσ by

Φσ : T×Dσ → Dσ, Φ(t, p) = Φt(p) = (γ(k), xk(t)). (4.33)

Let Ûφλ and ÙΦσ denote just the continuous part of φλ and Φσ, respectively. Due

to the special structure of hybrid systems, the hybrid evolution operator ΦI

decomposes as follows for some interval I ⊂ R:

4.3.3 Proposition. Let σ = (τ, γ) be a switching signal for H . Then for an

interval I = [a, b] ⊂ R, one has

Φσ
I = φ

γ(k)
b−τ ′

k
◦ φγ(k−1)

ck−1
◦ · · · ◦ φγ(l+1)

cl+1
◦ φγ(l)

τl−a (4.34)

with k, l ∈ Z being defined by b ∈ I
)
k and a ∈ I

)
l . If σ is Nσ-periodic and

(Υ, N) ∈ Ξσ is a hybrid spatio-temporal symmetry of the induced hybrid system

Hσ with Υ = (π, g) such that gγ(k) = gγ(k+1) for all k ∈ Z, then with T =

Θτ (N)

Φσ
[(n−1)T,nT ] = Υ−k ◦ Φσ

[(n+k−1)T,(n+k)T ] ◦Υk (4.35)

holds for all k, n ∈ Z.

Proof. For a, b ∈ R, there exists a uniquely determined pair (k, l) ∈ Z× Z of

indices such that a ∈ I)
l = [τl, τ

′
l ) and b ∈ I)

k = [τk, τ
′
k). Looking at (4.33), we

immediately see that ΦI may be written as the composition

Φσ
[a,b] = φ

γ(k)
b−τ ′

k
◦ φγ(k−1)

ck−1
◦ · · · ◦ φγ(l+1)

cl+1
◦ φγ(l)

τl−a
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with cj = |Ij| = τ ′j − τj. First, observe that for a hybrid symmetry Υ = (π, g)

(4.29) carries over to the hybrid flow in form of

φ
γ(k)
|I| = Υ−1 ◦ φγ(k+N)

|I+Θτ (N)| ◦Υ, (4.36)

where we use the equivalent relations π−1(γ(k)) = γ(k+N) and π(γ(k+N)) =

γ(k) and recall that hybrid symmetries act via Υ(λ, x) =
(
π−1(λ), g−1

π−1(λ)x
)
.

Note that on the continuous level Eq. (4.36) takes the formÛφγ(k)
|I| = gγ(k) ◦ Ûφγ(k+N)

|I+Θτ (N)| ◦ g
−1
γ(k+N). (4.37)

Set T = Θτ (N). Applying Eq. (4.36), we obtainÙΦσ
[(n−1)T,nT ] = Ûφγ(nN−1)

|InN−1| ◦
Ûφγ(nN−2)
|InN−2| ◦ · · · ◦

Ûφγ((n−1)N+1)
|I(n−1)N+1| ◦

Ûφγ((n−1)N)
|I(n−1)N |

=
(
gγ(nN−1) ◦ Ûφγ((n+1)N−1)

|InN−1+T | ◦ g
−1
γ((n+1)N−1)

)
◦
(
gγ(nN−2) ◦ Ûφγ((n+1)N−2)

|InN−2+T | ◦ g
−1
γ((n+1)N−2)

)
◦ . . .

◦
(
gγ((n−1)N+1) ◦ Ûφγ(nN+1)

|I(n−1)N+1+T | ◦ g
−1
γ(nN+1)

)
◦
(
gγ((n−1)N) ◦ Ûφγ(nN)

|I(n−1)N+T | ◦ g
−1
γ(nN)

)
= gγ(nN−1) ◦ Ûφγ((n+1)N−1)

|I(n+1)N−1| ◦
Ûφγ((n+1)N−2)
|I(n+1)N−2| ◦ . . .

◦ Ûφγ(nN+1)
|InN+1| ◦

Ûφγ(nN)
|InN | ◦ g

−1
γ(nN)

on the continuous side, where we use |Ik + T | = |Ik+N | and the constancy

condition gγ(k) = gγ(k′) for all k, k′ ∈ Z. In the hybrid notation along the lines

of Eq. (4.36), the above identity reads

Φσ
[(n−1)T,nT ] = Υ−1 ◦ Φσ

[nT,(n+1)T ] ◦Υ. (4.38)

Hence, via repeated application of this equation we end up with

Φσ
[(n−1)T,nT ] = Υ−k ◦ Φσ

[(n+k−1)T,(n+k)T ] ◦Υk (4.39)

as stated above, thus completing the proof. �

The preceding proposition yields the basis for a structural decomposition of

the hybrid time-Tσ map on the grounds of hybrid spatio-temporal symmetries.

This statement is an adaption for the hybrid case of Jeroen Lamb’s work on

smooth non-autonomous dynamical systems exhibiting periodicity in time (see

[Lam98]).
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4.3.4 Theorem. Let σ = (τ, γ) be a Nσ-periodic switching signal and Hσ the

induced switched system. Let (Υ, N) ∈ Ξσ be a hybrid spatio-temporal symme-

try of Hσ with Υ = (π, g) such that gγ(·) is constant on Z. Then, the hybrid

time-Θ(Nσ) map ΦΘτ (Nσ) = Φ[0,Θτ (Nσ)] admits the following decomposition:

Φσ
Θτ (Nσ) = Υκ ◦

Ä
Υ−1 ◦ Φσ

Θτ (N)

äκ
(4.40)

with κ = Nσ
N

.

Proof. For Tσ = Θτ (Nσ), we have

Φσ
Tσ = Φσ

[(κ−1)T,Tσ ] ◦ Φσ
[(κ−2)T,(κ−1)T ] ◦ · · · ◦ Φσ

[T,2T ] ◦ Φσ
[0,T ] (4.41)

and since

Φσ
[(n−1)T,nT ] = Υ−k ◦ Φσ

[(n+k−1)T,(n+k)T ] ◦Υk (4.42)

holds due to Proposition 4.3.3, we see

Φσ
Tσ =

Ä
Υκ−1 ◦ Φσ

T ◦Υ−κ+1
ä
◦
Ä
Υκ−2 ◦ Φσ

T ◦Υ−κ+2
ä
◦ . . .

◦
Ä
Υ ◦ Φσ

T ◦Υ−1
ä
◦ Φσ

T

= Υκ−1 ◦ Φσ
T ◦Υ−1 ◦ Φσ

T ◦ · · · ◦Υ−1 ◦ Φσ
T ◦Υ−1 ◦ Φσ

T

for the pairs (n, k) ∈ Z× Z with n = 1, . . . , κ and n− k = 1 or, equivalently,

Φσ
Tσ = Υκ ◦Υ−1 ◦ Φσ

T ◦
Ä
Υ−1 ◦ Φσ

T

ä
◦ · · · ◦

Ä
Υ−1 ◦ Φσ

T

ä
◦
Ä
Υ−1 ◦ Φσ

T

ä
︸ ︷︷ ︸

κ times

= Υκ ◦
Ä
Υ−1 ◦ Φσ

T

äκ
,

yielding the desired statement. �

From a structural point of view, Definition 4.2.1 and 4.3.1 appear to introduce

quite similar concepts. This is indeed so and we will now render this similarity

more precisley and bring together the two manifestations of spatio-temporal

symmetries.

4.3.5 Proposition. Let χ be an execution of H with respect to an Nσ-periodic

switching signal σ = (τ, γ). Let (Υ, N) ∈ Ξσ be a hybrid spatio-temporal

symmetry of Hσ with Υ = (π, g) such that gγ(·) is constant on Z. For F =

F (σ,Υ, N) = Υ−1 ◦ Φσ
Θτ (N), one has

F ◦ Φσ
Tσ = Φσ

Tσ ◦ F. (4.43)

Further, let be p = χ(k, t) for some (k, t) ∈ T . Then p is an n-periodic point

of F if and only if (Υ, N)n is a hybrid spatio-temporal symmetry of χ.
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Proof. Using Theorem 4.3.4, with T = Θτ (N) we obtain

F ◦ Φσ
Tσ =

Ä
Υ−1 ◦ Φσ

T

ä
◦
Ä
Υ−1 ◦ Φσ

T

äκ
=
Ä
Υ−1 ◦ Φσ

T

äκ ◦ ÄΥ−1 ◦ Φσ
T

ä
= Φσ

Tσ ◦ F.

For (k, t) ∈ T and p = χ(k, t), we compute

F n(p) = F n−1
Ä
Υ−1Φσ

T (p)
ä

= F n−1
Ä
Υ−1χ(k +N, t+ T )

ä
= F n−1

Ä
π(γ(k +N)), gγ(k+N)xγ(k+N)(t+ T )

ä
(4.30)
= F n−1

Ä
γ(k), gγ(k+N)xγ(k+N)(t+ T )

ä
= F n−2

ÄÄ
Υ−1 ◦ Φσ

T

ä Ä
γ(k), gγ(k+N)xγ(k+N)(t+ T )

ää
= F n−2

Ä
Υ−1

Ä
γ(k +N), gγ(k+2N)xγ(k+2N)(t+ 2T )

ää
= F n−2

Ä
γ(k), g2

γ(k+2N)xγ(k+2N)(t+ 2T )
ä

= . . .

=
Ä
γ(k), gnγ(k+N)xγ(k+nN)(t+ nT )

ä
,

using the relation Φσ
[mT,(m+1)T ] = g−mγ(·) ◦Φσ

[0,T ]◦gmγ(·) (cp. Proposition 4.3.3) in the

sixth step. Thus, if F n(p) = p, then (Υn, nN) = (Υ, N)n is a spatio-temporal

symmetry of χ (and vice versa) by means of Lemma 4.2.2. �
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Chapter 5

Symmetry Switching

As already discussed in earlier parts of this thesis, hybrid dynamical systems

compared to non-autonomous dynamical systems have a tendency to be non-

deterministic in the sense that the sequence of vector fields may vary due to

different underlying discrete state maps. Treating hybrid dynamical systems

theoretically, it is – from a structural point of view – unfavorable to extract

the switching laws from executions since there may be many executions guided

by the same switching sequence. Thus in order to obtain a broader view on

the structural nature of a hybrid system’s dynamics, we shift our point of

view as follows: Instead of examining a hybrid automaton we consider an

according switched system which may be understood as a dynamical T -system

equipped with a collection of switching signals each of which induces a hybrid

automaton whose dynamics can be studied as in the preceding chapters. The

essential advantage of this way of perception lies in the possibility to treat a

hybrid dyamical system as a system that allows for different hybrid modes of

dynamics: Certainly, in the first instance, hybridity is locally caused by the

abrupt change of vector fields; nonetheless, hybridity also appears on a global

scale in form of the various switching signals, i. e. the divers coexistant manners

of varying the vector fields. Approaching this point philosophically, one might

say that a hybrid dynamical system is characterized by different specifications

of time each of which is realized by an according switching signal.

The core subject of this chapter is the analysis of a specific type of switching

referred to as symmetry switching or orbital switching which is characterized

by the fact that it is generated by internal structural information of the overall

hybrid system itself, more specifically by hybrid symmetries. Signals of this

kind may thus be understood as a manifestation of the system’s genetical inside

and may thence be classified to be of self-organized switching type. Accord-
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ing to the general considerations above, such signals give rise to a temporal

structure which could be referred to as eigentime in a broader not strictly

mathematical meaning.

Stability is a highly important concept in the field of dynamical systems which

– with a view to applications – is closely connected to questions of safety and

relieability. In particular consideration of hybrid systems, whose dynamical

behaviour strongly depends on the current switching sequence that may be

generated by the system itself under state-dependent switching or chosen in

advance for time-dependent switching, stability gains an even more central

status since in principle it can be accessed more directly than in the case of

a classical dynamical system. While in the latter case stability is an inherent

property of the system, for hybrid systems the situation is considerably dif-

ferent since the (inherent) stability properties of the involved subsystems do

not determine the hybrid system’s stability properties on their own but deeply

interact with the switching law at work. Consequently, already the adequate

choice of switching signals may lead to manifestations of stability. Stability of

hybrid systems is the subject of numerous publications; among the leading sur-

vey articles on this matter, there are [LM99], [DK01], [SWM+07] and [LA09].

Most of the contributions to the stability analysis of hybrid systems can be

traced back to two principal methods involving multiple Lyapunov functions

on the one hand, see e. g. [CGA05], and the notion of dwell time discussed

in [HM99], for instance. Besides, there are a few different approaches as pre-

sented in [YCJ09] where also unstables modes are considered and [AL01] and

[ML06] where Lie-algebraic stability conditions are developed. In [MRA+07],

connections between the chosen switching strategy of a hybrid system and its

stability are investigated for a class of identical chemical reactor networks. As

in [MRB+07], temporally induced symmetry properties arise and are exploited

for the numerical analysis.

First of all, Chapter 5.1 centers on switched systems against the background of

hybrid dynamical systems as treated before emphasizing the role of switching

signals. In Chapter 5.2, we briefly review the concept of hybrid symmetries as

introduced in Chapter 3 for the case of switched systems where we incorpo-

rate the slowness of signals and address the question concerning symmetries

of signal-induced systems. Subsequently, we focus on orbital switching which
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specifies a subclass of signals that are generated by hybrid symmetries. In this

context, we discuss the orbitally induced switched systems and the decompo-

sition of return maps, always taking slowness – i. e. the temporal composition

of signals – into account. Finally, Chapter 5.4 addresses stabilization issues of

switched linear systems utilizing spatio-temporal symmetry properties.

5.1 Switched Systems and Induced Hybrid

Automata

Having dealt with hybrid automata so far, we next discuss a special class of

switched systems which are closely connected with hybrid dynamical systems in

accordance with Definition 2.1.1 and whose dynamics are naturally considered

from a shifted point of view. More precisely, a switched system is similar to a

dynamical T -system and may be described as a general preform of a hybrid

automaton insofar as a chosen switching signal carves out an induced T -system

and moreover provides the necessary guard and reset data. In respect thereof,

switched systems turn out to be the accurate objects for the remaining part

of this thesis. Very broadly speaking, a switched system can be thought of

as a collection of dynamical systems together with an external switching rule

(or rather a whole class of admissible switching rules) that chooses (or more

descriptively, switches) among the systems involved in the course of time.

Switching Signals and Switched Systems

The general concept of switching signals is very simple; a switching signal can

be described in terms of map that manages the transitions of a system that

lives on a countable set of states. In principle, a switching signal can be defined

on both time and the set of states itself. However, we restrict to the case of

purely temporal switching.

5.1.1 Definition (Switching Signal). Let Λ be a countable set of discrete

states. A (temporal) switching signal σ on Λ is a map T→ Λ, where T denotes

R for continuous and Z for discrete time. ♦
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A switching signal σ : T→ Λ naturally induces a partition {Ik}k∈N of the time

set T: Dependent on the time model T, we have for continuous time T ⊂ R

Ik = [τk, τ
′
k) ⊂ R with τk < τ ′k and τ ′k = τk+1 (5.1)

and for discrete time T ⊂ Z

Ik = {τk, τk + 1, . . . , τ ′k} ⊂ Z with τk ≤ τ ′k and τ ′k + 1 = τk+1, (5.2)

where the time instants τk ∈ T correspond to the times of switching. We

collect them in the set ∆σ, i. e. ∆σ = {τk}k∈N. In particular, σ is completely

determined by its values on ∆σ and thus induces a map

σ̂ : N→ Λ by σ̂(k) = σ(τk).

As soon as there is more structure on Λ meaning that Λ is the vertex set of a

graph, it is necessary to tackle the question of compatibility of the signal with

the discrete structure imposed on Λ by the edges of the graph.

5.1.2 Definition (Weak Admissibility). Let T = (Λ, E) be a directed graph.

A switching signal σ : T→ Λ is weakly admissible if

(σ̂(k), σ̂(k + 1)) ∈ E for all k ∈ N. (5.3)

Descriptively speaking, a signal is weakly admissible if it solely switches along

edges, i. e. between between vertices that are connected by an edge. In case

the set of edges is complete, weak admissibility no longer has a distinguished

meaning. For the qualitative study of hybrid dynamics that unfurl subject

to a given switching signal σ, not only the sequence of discrete transitions is

of importance but undoubtedly also the temporal aspect, meaning the time

duration for which the systems stay in the discrete states is of much interest.

In order to formally access this temporal data, we introduce the notion of

slowness.

5.1.3 Definition (Slowness). Let σ be a switching signal and β : E → T≥0

a map. Then σ is said to be β-slow if

|Ik| = β (σ̂(k), σ̂(k + 1)) for all k ∈ N, (5.4)

100



5.1 Switched Systems and Induced Hybrid Automata

where

|Ik| = τ ′k − τk ∈ R≥0 and = card(Ik) ∈ Z≥0 (5.5)

in case of continuous and discrete time, respectively. We refer to β = β(σ) as

the slowness (map) of the signal σ and write

βσ,k = β (σ̂(k), σ̂(k + 1)) . (5.6)

If β is a globally constant function, we identify it with its unique value β ∈ T≥0

and β-slowness then simplifies to βσ,k = β for all k ∈ N. In this case, we refer

to σ as being uniformly β-slow. ♦

The subsequent definition of switched systems is tailored with regard to the

purpose of this thesis and thus may appear unusual at first sight for adepts

of switched systems since an underlying switching graph is incorporated; how-

ever, in later sections when symmetries come into play, this interpretation of

switched systems will turn out to be appropriate. Furthermore, we restrict

ourselves to the simplifying assumption that all dynamical systems involved

possess the same phase space, and we solely consider purely time-dependent

switching.

5.1.4 Definition (Switched System). An n-dimensional switched system S

is a quintuple S = (Λ, E ,D,F ,Ω) where

• T = (Λ, E) is the directed transition or switching graph,

• Ψ = {Ψλ}λ∈Λ is a collection of n-dimensional dynamical systems Ψλ =

(D,F(λ)) sharing one phase space D ⊂ Rn and

• Ω is the set of all weakly admissible switching signals σ : T→ Λ with T
denoting time. ♦

Whenever we intend to put a special stress on the presence of the switching

graph T , we will speak of a switched T -system in the style of dynamical

T -systems which will enter the discussion as soon as symmetries enter the

scene.
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Induced Hybrid Automata and Executions

For a switched system S , in general, the choice of a non-complete transition

graph T corresponds to restricting the set Ω of weakly admissible signals;

certainly, T can be chosen as the complete graph on the vertices Λ such that

– from the first – Ω is not subject to any graph-theoretical constraints.

Similar to Definition 4.1.3, we formalize the notion of signal-induced switching

graphs in the following.

5.1.5 Definition (Induced Switching Graph). Let S = (Λ, E ,D,F ,Ω)

be a switched system. For a weakly admissible switching signal σ the σ-induced

switching graph Tσ = (Λσ, Eσ) is given by

Λσ = im(σ) and Eσ = {(σ̂(k), σ̂(k + 1)) | k ∈ N} ⊂ E . (5.7)

For a subgraph ›T of T , we say that a switching signal σ of S is ›T -exploring

if Tσ = ›T . ♦

Having this definition at hand, we see that the slowness β of a switching signal

σ is actually a map Eσ → R≥0.

By weak admissibility, the induced switching graph Tσ is a subgraph of T . In-

tuitively, a switched system together with a weakly admissible switching signal

may be considered as a special instance of a hybrid dynamical system along

the lines of Definition 2.1.1. However, practically, things are more involved

than they seem to be. It is the purpose of this section to discuss these compli-

cations and to set up a reasonable groundwork for the appropriate treatment

of induced hybrid automata.

We aim at giving a precise description of the induced hybrid systems we are

led to when dealing with switched systems and focussing specific switching

signals. However, for certain reasons which will be discussed in the following,

we have to reduce the set Ω of admissible switching signals by imposing further

conditions on the signals. This is due to the fact that – given a β-slow graph-

admissible signal σ – the set {βσ,k}k∈N in general has a greater cardinality than

the set Eσ. Since the guards of the induced hybrid automaton are created by

the numbers βσ,k, this may lead to different guards (especially more than one!)
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assigned to the same edge. So far, if we solely assume admissibility of signals,

there is nothing that keeps a signal from doing that. Let Gσ,i
e , i ∈ {1, . . . , nσ,e},

denote the different guards that arise due to the switching signal σ for the edge

e ∈ Eσ and nσ,e their number.

There are different ways to deal with this fact. The first possibility is to create

a new vertex and a new edge of the transition graph whenever a different guard

is given rise to by the signal. Practically, this means that for an edge e ∈ Eσ,

the vertex se ∈ Λσ is copied nσ,e−1 times and the copies (se)i, 2 ≤ i ≤ nσ,e, are

built into the induced graph via the edges ei, 2 ≤ i ≤ nσ,e, where (se)i = s(ei).

The obvious consequence of this method is the enlargement of the switching

graph, i. e. the σ-induced transition graph is in general no subgraph of the

original switching graph. In this case, it is difficult or even impossible to

relate the original switching graph to the σ-induced transition graph which

is why we will avoid this mechanism. Though if we want to end up with

a subgraph of the switching graph, in principle we have to face a multi-graph

hybrid dynamical system or – which is even worse – a hybrid dynamical system

of non-autonomous type whose data changes in the course of time. Both cases

are not to be considered in this thesis. In order to avoid the occurence of

hybrid systems of that kind, we have to phrase conditions keeping us away

from them. Thus the second possibility is to form exactly one guard for each

edge e ∈ Eσ on the basis of all guards Gσ,i
e assigned to e. More concretely, we

set

Ge =
nσ,e⋃
i=1

Gσ,i
e ⊂ {se} × Rn × R. (5.8)

Care is needed when we compare the dynamics of the switched system S

driven by a specific switching signal σ ∈ Ω to the dynamics of the induced

hybrid system Sσ. In case of purely state-dependent switching, i. e. the

switching signals are of the form σ : D → Λ, every solution of the switched

system S can be recovered as an execution of the hybrid automaton Sσ.

However, if the switching is completely time-dependent, things are different.

Then the guards are of the form Dσ̂(k) × {βσ,k}. Let us consider the case that

nσ,e > 1 for some edge e ∈ Eσ meaning that the signal σ induces more than

one guard assigned to the edge e. Then we find

Ge =
nσ,e⋃
i=1

Gσ,i
e = D ×

¶
ce1 , . . . , cenσ,e

©
.
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Obviously the resulting hybrid automaton has the same dynamics as the au-

tomaton with guards Ge = D× {ce} where ce = min1≤i≤nσ,e cei . Consequently,

executions with temporal data cei > ce cannot occur for this way of realizing

the system. With regard to the underlying switching signal σ, this means an

immense loss of information.

To overcome or rather avoid such loss of graph-theoretical relations and sig-

nal data, we impose additional adequate restrictions on switching signals and

thereby introduce a stricter form of admissibility which does not only take into

account the transition graph compatibility, but also pays regard to the tempo-

ral composition of switching signals. For that purpose, recall that a switching

signal σ directly induces a hybrid time trajectory τσ = {Ik}k∈N in accordance

with Definition 2.2.1.

5.1.6 Definition (Strong Admissibility). Let S = (Λ, E ,D,F ,Ω) be a

switched system. A weakly admissible switching signal σ ∈ Ω is strongly

admissible if for every e ∈ Eσ there is a constant ce ∈ R≥0 such that

|Ik| = ce for all k ∈ N with (σ̂(k), σ̂(k + 1)) = e, (5.9)

where τσ = {Ik}k∈N is the σ-induced hybrid time trajectory. We denote by

Ωs the collection of all strongly admissible signals of the switched system S .

Clearly, Ωs ⊂ Ω. ♦

For simplicity, we say that a switching signal is admissible with respect to

a switched system S if it is both weakly and strongly admissible. Loosely

speaking, strong admissibility extends weak admissibility (which is a discrete

graph-theoretical condition) to the slowness β of a signal σ and forces the slow-

ness map β to be compatible with the underlying induced switching graph as

well. On this basis, we can straightforwardly define induced hybrid automata

as follows.

5.1.7 Definition (Induced Hybrid Automaton). Let S = (Λ, E ,D,F ,Ω)

be a switched system. For a strongly admissible β-slow signal σ ∈ Ω, the

σ-induced hybrid automaton or σ-switched system Sσ is given by the data

(Λσ, Eσ,Dσ,Fσ,Gσ,Rσ) where

• Tσ = (Λσ, Eσ) is the σ-induced switching graph,

104
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• Dσ is the phase space family D = {Dλ}λ∈Λσ
given by Dλ = {λ} × D,

• Fσ is the reduced vector field family F restricted to Λσ,

• Gσ = {Ge}e∈Eσ is the guard collection induced by σ, i. e. Ge = Dse×{ce}

• and Rσ = {Re}e∈Eσ is a family of trivial resets. ♦

It should be pointed out here once more that it is the strong sense of admissi-

bility that makes it possible to interpret an induced hybrid dynamical system

Sσ as a hybrid automaton with transition graph Tσ < T . The global hybrid

phase space D takes the form

D = Λ×D. (5.10)

Similar to hybrid automata, we graphically represent a σ-switched system in

the way Fig. 5.1 shows. Note that Example 2.1.3 deals with a special hybrid

(i, j)

i

ẋi = F(i)(xi)

j

ẋj = F(j)(xj)

c(i,j) ∈ R≥0

D D

idD

σ ∈ Ω

Figure 5.1: Graphical representation of a switched system S

based on Fig. 2.1: Note that the transition graph

structure and the constants ce are induced by the cur-

rent switching signal σ ∈ Ω.

dynamical system that fits into the framework of switched systems. Translated

to the slowness of a switching signal σ, the condition (5.9) comes along as

βσ,k = βσ,k′ (5.11)
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whenever σ̂(k) = σ̂(k′) and σ̂(k + 1) = σ̂(k′ + 1). From now on, each time we

encounter a β-slow switching signal σ, we assume that β respects the above

condition, i. e. the switching signal σ is strongly admissible.

For a specified switching signal σ, a solution of the σ-switched system Sσ

is a collection of local solutions xk of the dynamical system Ψλ = (D,F(λ))

orchestrated by the switching signal.

5.1.8 Definition. Let Sσ be a σ-switched system. A solution of Sσ is a

family

xσ = {xk : Ik → D}k∈N (5.12)

such that xk is a solution of the dynamical systems Ψσ̂(k) for all k ∈ N. ♦

One should note with care that even the strong sense of admissibility of

switching signals cannot keep an induced hybrid automaton from being non-

deterministic:

5.1.9 Note. Consider a switching graph T = (Λ, E). If there is a vertex

λ ∈ Λ such that card (OT (λ)) ≥ 2 and which is reachable from some λ̃ ∈
tOT (λ) (meaning that there is a directed path from λ̃ to λ), then there exists

an admissible switching signal σ such that the σ-switched system Sσ is non-

deterministic.

Since card (OT (λ)) ≥ 2 holds, there are discrete states λ′, λ′′ ∈ Λ such that

e′ = (λ, λ′) and e′′ = (λ, λ′′) are edges of T , and since there is path from λ′

back to λ, say, there exists an admissible β-slow switching signal σ : R → Λ

with λ′, λ′′ ∈ Λσ and (σ̂(k′), σ̂(k′ + 1)) = e′ and (σ̂(k′′), σ̂(k′′ + 1)) = e′′ for

some k′, k′′ ∈ N and βσ,k′ = βσ,k′′ = c. Then the induced switching graph

Tσ has OTσ(λ) ≥ 2 and has guards Ge′ = D × {c} = Ge′′ giving rise to

non-determinism.

As opposed to Sections 2.1 and 2.2, we aim to comment on the choice of

the time model (continuous or discrete) here and interpret Definition 5.1.4 in

the light of these alternatives. In this spirit, S induces a discrete-time or a

continuous-time switched system dependent on the form of T. For continuous

time, we spotlight the relation of switched and hybrid dynamical systems as

presented in Section 2.1.
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In case of continuous time, we can think of a switched system S as a dynamical

system described by a sort of differential equation

ẋ(t) = F(σ(t))(x(t)),

where the vector field changes possibly discontinuously with respect to a switch-

ing signal σ : R→ Λ whose discontinuities ∆σ correspond to the discrete tran-

sitions the system experiences. In this setting, a solution is a family of paths

xk : Ik → D fulfilling the corresponding differential equation, more precisely

ẋk(t) = F (σ̂(k)) (xk(t)) for all t ∈ Ik. (5.13)

For a linear switched system S with matrix family F = {Aλ}λ∈Λ ⊂ Rn×n a

solution xσ with respect to a switching signal σ can be explicitely expressed as

follows:

5.1.10 Lemma (cp. [Gök04]). Let S be a continuous-time linear switched

system and σ an admissible β-slow switching signal with σ(0) = λ0. A solution

of Sσ with initial condition xσ(0)(0) = x0 ∈ D then takes the form

xσ(t)(t) = exp

(
Aσ(τN )

(
t−

N−1∑
k=0

βσ,k

))
N−1∏
k=0

exp
Ä
Aσ(τN−1−k)βσ,N−1−k

ä
x0 (5.14)

for t ∈ IN .

Once a switching signal σ has been chosen, in discrete time, a switched system

has the form of a difference equation

x(k + 1) = F(σ(k))(x(k))

with respect to a switching signal σ : Z → Λ. In this case, a solution occurs

as a family of orbits xk : Ik → D satisfying

xk(t) = F (σ̂(k)) (xk(t)) for all t ∈ Ik = {τk, τk + 1, . . . , τ ′k} . (5.15)

Essentially, the fundamental difference between hybrid automata and switched

systems lies in the point of view: While – given a hybrid automaton – the

central question posed concerns the characterization of the executions that the

system accepts, for switched systems, executions are generated by specified

external switching signals that are analyzed thereupon. In this sense, the

transfer from hybrid dynamical systems to switched systems corresponds to

shifting the point of view on the origin of hybrid dynamics.
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5.2 Switched Systems and Hybrid Symmetries

In the following, we will discuss switched systems in the presence of hybrid

symmetries. We consider a switched system S = (T ,D,F ,Ω). Recall that

the choice of an admissible switching signal σ ∈ Ω determines the guards of the

induced hybrid dynamical system, which are given by G(e) = {se} ×D × {ce}
with switching time ce ∈ R≥0 corresponding to the discrete transition e ∈ E .

By Sσ we denote the induced switched system and refer to it as the σ-switched

system Sσ which may be considered to be a hybrid dynamical system along

the lines of Definition 2.1.1. Nonetheless, without specifying any switching

signal, we can formally interpret a switched system in terms of a dynamical

T -system (cp. Definition 3.2.1) and thus deal with its T -symmetries. Insofar,

with a view to symmetries, the choice of a switching signal establishes the step

from T -symmetries to hybrid symmetries. For the switched system S , let

ST = (T ,Θ,F) denote the underlying T -system where Θ = (D,ΦG) provides

the group action necessary for the treatment of T -symmetries. Further, let S

be the accordant group of T -symmetries. Due to the elementary structure of

guards and resets, the guard and reset stabilizers simplify to

ΣG =
¶
(π, g) ∈ S | cπ−1(e) = ce for all e ∈ E

©
and ΣR = ΣG. (5.16)

Recall that the slowness β of a switching signal administers the switching times

via β(e) = ce. Consequently, a particular role is taken up by a signal’s slowness

since it considerably influences the occuring hybrid symmetries of the induced

switched system. So, we arrive at the following straight characterization of

hybrid symmetries for switched systems.

5.2.1 Lemma. Let S be a switched system, σ ∈ Ω a β-slow admissible

switching signal and Sσ the according σ-switched system. Then, an element

Υ = (π, g) ∈ Aut (Tσ) × G is a hybrid symmetry of Sσ if and only if it is

a T -symmetry of STσ and the graph automorphism π preserves its switching

times, i.e. β (π−1(e)) = β(e) for all e ∈ Eσ.

By virtue of Theorem 3.3.7, the hybrid symmetriesHσ of the σ-switched system

Sσ form a group, more precisely a subgroup of Aut (Tσ) × G. Note that

in contrast to hybrid symmetries of a general hybrid system, for switched

systems of the type considered here there is only a single group G involved

108



5.2 Switched Systems and Hybrid Symmetries

1 2

(1, 2)

(2, 1)

c(1,2)

c(2,1)

σ ∈ Ω

(

A1 A2

ΣA2Σ ΣA1Σ

)

z + H(z)
(

ΣA1Σ ΣA2Σ
A2 A1

)

z + H(z)

(

(R2)4,ΦS4

)

(

(R2)4,ΦS4

)

idR8

idR8

Figure 5.2: Switched system built on the T -system displayed in

Figure 3.5.

and, consequently, we only have to deal with a simple g ∈ G instead of a more

complicated g ∈ ∏λ∈ΛGλ which keeps us away from compatibility conditions

like π∗g = g and leaves us on a technically plainer level of thinking.

5.2.2 Example. We consider the continuous-time σ-switched system Sσ il-

lustrated in Fig. 5.2 with switching signal σ : R≥0 → {1, 2} determined by

σ(0) = 1 and alternating between the discrete states 1 and 2. As discussed

in Example 3.2.14, its underlying dynamical T -system ST has symmetries

S = {1,Υ1,Υ2,Υ3} with

Υ1 = (π, (13)(24), (13)(24)) ,

Υ2 = (idΛ, (14)(23), (14)(23)) ,

Υ3 = (π, (12)(34), (12)(34)) .

Let β : {(1, 2), (2, 1)} → R>0 be the slowness map of the signal σ, i.e. β(1, 2) =

c(1,2) and β(2, 1) = c(2,1). In case β(1, 2) = β(2, 1), the hybrid symmetries of

Sσ are H = S. Otherwise, if β(1, 2) 6= β(2, 1) holds, the hybrid symmetries

of Sσ reduce to H = 〈Υ2〉 ∼= Z2. ♦

For a given switched system S with underlying dynamical T -system ST

exhibiting T -symmetries S, we say that a switching signal σ ∈ Ω is maximally

symmetry-supporting if Sσ features the hybrid symmetries Hσ = S. Lemma

5.2.1 as well as Example 5.2.2 already hint at the meaning of slowness with

regard to maximally symmetry-supporting signals. Let T ∗ = (Λ∗, E∗) be a

subgraph of the switching graph. We call an admissible switching signal σ

T ∗-exploring if Λσ = Λ∗ or equivalently Tσ = T ∗.
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5.2.3 Corollary. Let S be a switched system with underlying T -system ST

and T -symmetries S. Then a T -exploring admissible switching signal σ is

maximally symmetry-supporting if and only if its slowness β is “S-invariant.

Proof. Consider a T -exploring admissible switching signal σ of S meaning

that Tσ = T , in particular Eσ = E . Assume that its slowness map β : E → R≥0

is “S-invariant, i.e. β ◦ π−1 = β for all π ∈ “S. Especially, for e ∈ E , we have

cπ−1(e) = β(π−1(e)) = β(e) = ce

for all π ∈ “S. Since this identity holds for every e ∈ E , we find that Hσ = S

and, thus, σ is maximally symmetry-supporting. �

Note that “S-invariance of β translates to the constancy of β on “S-orbits of

edges e ∈ Eσ. Consider a switched system S with T -symmetries S. When

choosing a switching signal σ the question arises under which conditions T -

symmetries of S induce hybrid symmetries of Sσ. This is to ask for the

preservation of T -symmetries under the influence of a switching signal. For the

case of switched systems, there is a comparably easy and satisfying answer to

this question since we are free from compatibility questions for g, as mentioned

above.

5.2.4 Proposition. Let S be a switched system with T -symmetries S and

σ a β-slow admissible switching signal. Then a T -symmetry Υ = (π, g) ∈ S

induces a hybrid symmetry Υσ ∈ Hσ of Sσ if and only if π restricts to a

symmetry of Tσ, i.e. πσ = π|Λσ ∈ Aut (Tσ), and βπ−1
σ ◦σ,k = βσ,k for all k ∈ Z.

Proof. Suppose that Υ = (π, g) ∈ S is a T -symmetry of S such that the

restriction πσ = π|Λσ is a graph automorphism of the σ-induced switching

graph. For Υσ = (πσ, g) we then see

ΥσF(λ) = g ◦ F(π−1
σ (λ)) ◦ g−1 = F(λ)

for all λ ∈ Λσ since Υ is a T -symmetry of S . If additionally cπ−1(σ̂(k),σ̂(k+1)) =

βπ−1
σ ◦σ,k = βσ,k = c(σ̂(k),σ̂(k+1)) holds for all k ∈ Z, Lemma 5.2.1 ensures that

Υσ is a hybrid symmetry of Sσ. The converse direction is clear by definition.�
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5.3 Symmetry Switching

We now turn to the formal definition and analysis of symmetry switching. The

idea is to generate switching signals from the symmetries of a given switched

system S . Descriptively speaking, after having chosen a T -symmetry Υ =

(π, g) of S , orbital switching is a way of running through the orbit generated by

the automorphism π starting in a specified vertex λ0. We particularly examine

the hybrid automata induced by such symmetry-related switching signals.

5.3.1 Definition (Orbital Switching). Let S be a switched system with

underlying dynamical T -system ST admitting the T -symmetry group S.

For π ∈ “S, a switching signal σ : T→ Λ is called π-orbital if it is of the form

σ̂(k) = π−k(λ0) for all k ∈ N, (5.17)

where λ0 is the initial discrete state. ♦

The dependence on the initial state λ0 ∈ Λ and the generating element π ∈ “S
will be indicated as σ = σλ0π , where necessary. To begin with, we address the

issue of admissibility for orbital switching signals.

5.3.2 Lemma. Let S be a switched system with T -symmetries S and π ∈“S. Then the π-orbital switching signal σλ0π is admissible if and only if eπ0 =

(λ0, π
−1(λ0)) is an edge of T .

Proof. If eπ0 is an edge of the switching graph T , then so is π−k(eπ0 ) for all

k ∈ N, because π is a graph automorphism of T . Moreover, we have

E 3 π−k(eπ0 ) =
Ä
π−k(λ0), π−(k+1)(λ0)

ä
=
Ä
σλ0π (τk), σ

λ0
π (τk+1)

ä
.

Hence, σλ0π is admissible if and only if eπ0 ∈ E . �

It is clear from the definition that orbital switching belongs to the class of

periodic switching signals. The period can be obtained from the slowness β of

the signal as shown below.

5.3.3 Lemma. For π ∈ “S, β-slow π-orbital switching π is periodic with hybrid

period Pσ = (Nσ, Tσ), where

Nσ = ord(π) and Tσ =
ord(π)−1∑
k=0

βσ,k. (5.18)
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The parametrized slowness map βσ : Z→ R is Nσ-periodic, i. e. βσ,k = βσ,k+Nσ .

Especially, for uniformly β-slow π-orbital switching σ, one has

Tσ = ord(π)β. (5.19)

Proof. Let σ = σλ0π be a β-slow π-orbital switching signal. Set Nσ = ord(π).

Then we obtain

σ̂(k +Nσ) = π−k−ord(π)(λ0) = π−k(λ0) = σ̂(k)

for the discrete part σ̂ of σ. Since

Tσ = Θ(Nσ) =
ord(π)−1∑
k=0

|Ik| =
ord(π)−1∑
k=0

βσ,k,

we know that σ (t+ Tσ) = σ(t) for all t ∈ T. For the slowness βσ one has

βσ(k +Nσ) = β (σ̂(k +Nσ), σ̂(k +Nσ + 1))

= β (σ̂(k), σ̂(k + 1))

= βσ(k)

by Nσ-periodicity of σ̂. Thus βσ is of period Nσ. If σ is uniformly β-slow, then

βσ,k = β for all k ∈ N which implies Tσ = ord(π)β. �

5.3.4 Remark. However, note carefully that Pσ is generally not minimal as

a period of the signal σ = σλ0π . The minimal period - in general - depends on

both, the order of π and its relation to the initial discrete state λ0. This is due

to the fact that the order N of a cyclic point λ0 ∈ Λ of a graph automorphism

π may be smaller than the order of π as a group element, i. e. N < Nσ. For

instance, if λ ∈ FixT (〈π〉) then N = 1 since σ̂(1) = π−1(λ0) = λ0 = σ̂(0).

Also, Nσ does not have to be minimal as a period of βσ. ♦

We will come back to this fact a little later. Beforehand, we will address some

basic properties of orbital switching. Let Γπ denote the cyclic group generated

by a graph automorphism π ∈ “S, i. e. Γπ = 〈π〉.

5.3.5 Lemma. Let S be a switched system with T -symmetries S. Let Υ =

(π, g) ∈ S and λ0 ∈ Λ such that the β-slow π-orbital switching signal σ = σλ0π
is admissible.
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5.3 Symmetry Switching

(a) The image Λσ ⊂ Λ of σ is Γπ-invariant. The same is true for Eσ, i. e.

the σ-induced switching graph Tσ is Γπ-invariant.

(b) For λ ∈ Γπλ0, the β-slow switching signals σλ0π and σλπ differ by a time

shift, i. e. there exists θ
(k)
λ ∈ T such that

σλπ(t) = σλ0π (t+ θ
(k)
λ ). (5.20)

Proof. For the first statement, observe that the image Λ
σ
λ0
π

of the switching

signal σλ0π is the orbit of the initial discrete state under the group Γπ, i. e.

Λ
σ
λ0
π

= Γπλ0 which is clearly Γπ-invariant. For λ ∈ Γπλ0 and uniformly β-slow

switching σλ0π there exists κλ ∈ Z such that λ = π−κλ(λ0). Thus, for t ∈ Ik we

get

σλπ(t) = π−k(λ) = π−k(π−κλ(λ0)) = π−(k+κλ)(λ0) = σλ0π (t+ θ
(k)
λ )

with

θ
(k)
λ =

k+κλ−1∑
l=k

βσ,l.

Hence, for initial states in the orbit Γπλ0, the corresponding switching signals

σλπ and σλ0π can be transformed into each other by shifting time. �

In the following, we consider orbital switching signals induced by conjugated

graph symmetries and study their relationship to each other. Here, we make

use of the standard notation gh = h−1gh with h ∈ H ≤ G and g ∈ G for

conjugation with respect to a group G.

5.3.6 Proposition. Let S be a switched system with hybrid symmetries S.

Let Υ = (π, g) ∈ S and λ0 ∈ Λ such that the β-slow π-orbital switching signal

σ = σλ0π is admissible.

(a) For each ν ∈ “S, orbital switching σλ0π relates to conjugation by ν as

follows:

σλ0πν = ν−1 ◦ σν(λ0)
π . (5.21)

(b) If ν ∈ N
Ŝ

(Γπ), then πν-orbital switching either corresponds to π-orbital

or to π−1-orbital switching, i. e. ν determines the direction of time.

(c) If ν and π commute, π-orbital and πν-orbital switching coincide.
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Proof. By definition of π-orbital switching for ν ∈ “S and t ∈ Ik we compute:

σλ0πν (t) =
Ä
ν−1πν

ä−k
(λ0)

=
Ä
ν−1π−1ν

äk
(λ0)

=
Ä
ν−1π−kν

ä
(λ0) = ν−1σν(λ0)

π (t),

already yielding (a). Now, with a view to (b), let ν ∈ N
Ŝ

(Γπ) which is equiva-

lent to ν−1Γπν = Γπ. Since (ν−1πν)k = ν−1πkν, we have ord(ν−1πν) = ord(π)

and

Γπν =
¨
ν−1πν

∂
= ν−1 〈π〉 ν = ν−1Γπν = Γπ. (5.22)

In fact, π and its inverse π−1 = πord(π)−1 are the only elements in Γπ of order

ord(Γπ). This necessarily forces πν ∈ {π, π−1}. In case, πν = π, which is

equivalent to the case that π and ν commute, πν = νπ, we have σλ0πν ≡ σλ0π
proving (c). Otherwise, given πν = π−1, we end up with σλ0πν ≡ σλ0π−1 . Observing

that σλ0π−1(t) = σλ0π (−t), we eventually see that conjugation by ν ∈ N
Ŝ

(Γπ)

solely affects the direction of time verifying (b). This completes the proof. �

Next, we aim to address the hybrid automata induced by orbital switching.

By Lemma 5.3.3, we know that β-slow π-orbital switching σ = σλ0π is periodic

with some hybrid period Pσ = (Nσ, Tσ) and that its σ-parametrized slowness

map

βσ : Z→ R, βσ(k) = β (σ̂(k), σ̂(k + 1)) = βσ,k

is Nσ-periodic itself. However, as indicated before, in general there is no reason

for Nσ to be minimal as a period of βσ. In case, βσ exhibits even richer temporal

symmetries meaning that Nσ is not minimal as a period of βσ providing us

with N ∈ N such that N < Nσ and βσ(k + N) = βσ(k) for all k ∈ Z, we

may ask for the consequences on the symmetry properties of the σ-switched

system Sσ. The following proposition provides information on the relation

between periodicity of the slowness βσ and hybrid symmetry properties of the

σ-switched system Sσ.

5.3.7 Proposition. Let S be a switched system with T -symmetries S. Fur-

thermore, let Υ = (π, g) ∈ S be a T -symmetry and σ = σλ0π a β-slow π-orbital

switching signal with initial discrete state λ0 ∈ Λ such that eπ0 = (λ0, π
−1(λ0)) ∈
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E. If βσ is periodic with period N ≤ Nσ, then Υ induces the hybrid symme-

try ΥN
σ ∈ Hσ where Υσ = (π|Λσ , g), and (ΥN

σ , N) ∈ Hσ × Zord(Υ) is a hybrid

spatio-temporal symmetry of the σ-switched system Sσ.

Proof. First of all, admissibility of σ follows from Lemma 5.3.2 since eπ0 ∈ E .

We consider the induced switching sequence σ̂ : Z → Λ and for k ∈ Z we

compute

πN(σ̂(k)) = πN
Ä
π−k(λ0)

ä
= π−(k−N)(λ0) = σ̂(k −N).

Thus, we find

π−N (σ̂(k −N)) = σ̂(k) or π−N (σ̂(k)) = σ̂(k +N) (5.23)

for all k ∈ Z. Due to Lemma 5.3.5, the set Λσ is π-invariant and hence π

restricts to a bijection πσ = π|Λσ : Λσ → Λσ. Since we additionally have

Eσ = Γπe
π
0 , πσ turns out to be adjacency-preserving with respect to the σ-

induced transition graph Tσ. Therefore, πσ is an automorphism of Tσ. For

algebraic reasons, πNσ ∈ Aut (Tσ). The N -periodicity of βσ now enforces

βπ−N◦σ,k = β
Ä
π−N(σ̂(k)), π−N(σ̂(k + 1))

ä
= β (σ̂(k +N), σ̂(k +N + 1))

= βσ,k+N

= βσ,k.

Applying Proposition 5.2.4, we see that ΥN
σ =

Ä
πNσ , g

N
ä

is a hybrid symmetry

of Sσ. Moreover, we find

F(σ̂(k +N)) ◦ g−N = F
Ä
π−Nσ (σ̂(k))

ä
◦ g−N = g−N ◦ F(σ̂(k))

due to Eq. (5.23) and the fact that ΥN
σ is a hybrid symmetry of Sσ. Hence,Ä

ΥN
σ , N

ä
turns out to be a hybrid spatio-temporal symmetry of Sσ in accor-

dance with Definition 4.3.1. �

Since orbital switching induces hybrid spatio-temporal symmetries of the in-

duced switched system, the hybrid time-T map with T being the period of the

switching signal decomposes in a special way according to Section 4.3 which is

the subject of the following proposition.
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5.3.8 Proposition. Let S = (Λ, E ,Θ,F ,Ω) be a switched system with T -

symme-tries S. For a T -symmetry Υ = (π, g), let σ be an admissible β-slow

π-orbital switching signal σ = σλ0π with initial discrete state λ0 ∈ Λ and N-

periodic slowness βσ. Then the hybrid time-Tσ map Φσ
Tσ – with Tσ = Θ(Nσ)

and Nσ the discrete period of σ – is of the form

Φσ
Tσ = Υord(π)

σ ◦
Ä
Υ−Nσ ◦ Φσ

Θτ (N)

ä ord(π)
N . (5.24)

Proof. First of all, for a T -symmetry Υ = (π, g) ∈ S the β-slow π-orbital

switching signal σ is periodic with hybrid period Pσ = (Nσ, Tσ) where Nσ =

ord(π) and Tσ =
∑ord(π)−1
k=0 βσ,k according to Lemma 5.3.3. Since βσ is N -

periodic, Proposition 5.3.7 provides the fact that ΥN
σ = (πNσ , g

N) is indeed a

hybrid symmetry of the σ-switched system Sσ. Again by virtue of Proposi-

tion 5.3.7, we also know that
Ä
ΥN
σ , N

ä
is a hybrid spatio-temporal symmetry

of Sσ. Trivially, for switched systems, gσ̂(·) is constant on Z. Thus, all require-

ments of Theorem 4.3.4 are met and for the time-Tσ map Φσ
Tσ we obtain the

decomposition

Φσ
Tσ =

Ä
ΥN
σ

äκ ◦ ÄΥ−Nσ ◦ Φσ
Θτ (N)

äκ
with κ = Nσ

N
already proving the statement. �

The finest possible decomposition of the hybrid time-Θ(Nσ) map is obtained

in the case where the slowness map β is constant (uniform slowness).

5.3.9 Corollary. Let Υ = (π, g) ∈ S be a T -symmetry of the switched system

S . For an admissible uniformly β-slow π-orbital switching signal σ = σλ0π , the

σ-switched system Sσ exhibits the hybrid spatio-temporal symmetry (Υσ, 1) and

for the hybrid time-Tσ map Φσ
Tσ , one has

Φσ
βord(π) = Υord(π)

σ ◦
Ä
Υ−1
σ ◦ Φσ

Θτ (1)

äord(π)
. (5.25)

Proof. The statement stems from the observation that for uniformly β-slow

switching σ the induced slowness map βσ has period 1. Then, according to

Proposition 5.3.7, (Υσ, 1) is a hybrid spatio-temporal symmetry of Sσ and in

accordance with Proposition 5.3.8, Φσ
Tσ can be written as

Φσ
βord(π) = Υord(π)

σ ◦
Ä
Υ−1
σ ◦ Φσ

Θτ (1)

äord(π)
,

completing the proof. �
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With these preparations at hand, we turn to stabilization issues of switched

linear systems in the subsequent section.

5.4 Stabilization and Symmetry Switching

In this section, in which we are going to address stability of a switched system

under orbital switching, we restrict ourselves to linear switched systems, i.e.

F is a collection of square matrices. We write A = {Aλ}λ∈Λ ⊂ RM×M for

clarity. We assume that all matrices involved are invertible. Recall that a

matrix A ∈ RM×M is Schur stable if all of its eigenvalues lie strictly inside the

unit disc, i.e. %(A) < 1 with %(A) denoting the spectral radius of A. A matrix

A is called Hurwitz if all of its eigenvalues have negative real parts.

Consider a linear switched system S together with a β-slow switching signal

σ. Due to Lemma 5.1.10, a solution of the σ-induced system Sσ is given by

xσ(t)(t) = exp

(
Aσ̂(N)

(
t−

N−1∑
k=0

βσ,k

))
N−1∏
k=0

exp
Ä
βσ,N−1−kAσ̂(N−1−k)

ä
x0 (5.26)

for t ∈ IN . Thus, for N ∈ N we obtainÙΦσ
Θ(N) =

N−1∏
k=0

exp
Ä
βσ,N−1−kAσ̂(N−1−k)

ä
(5.27)

for the continuous part of the hybrid time Θ(N)-map Φσ
Tσ . Especially, in case

the signal σ is periodic with hybrid period Pσ = (Nσ, Tσ), the (continuous part

of the) time-Tσ map isÙΦσ
Tσ =

Nσ−1∏
k=0

exp
Ä
βσ,Nσ−1−kAσ̂(Nσ−1−k)

ä
. (5.28)

An important question arising for switched systems concerns their asymp-

totic stability. The following (reformulated) result from [Gök04] addresses the

asymptotic stability of a switched system that is subject to a periodic switching

signal.

5.4.1 Theorem ([Gök04]). Let S be a linear switched system and σ a pe-

riodic switching signal with hybrid period Pσ = (Nσ, Tσ). Then the σ-switched
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system Sσ is asymptotically stable if and only if the matrix ÙΦσ
Tσ is Schur

stable. Equivalently, Sσ is asymptotically stable if and only if the matrix

Mσ = 1
Tσ

log ÙΦσ
Tσ is Hurwitz.

The proof of this theorem consists in an application of the Floquet theorem,

the main theorem of Floquet Theory.

5.4.2 Lemma. For a linear switched system S with T -symmetries S, let

Υ = (π, g) ∈ S be a T -symmetry and σ = σλ0π an admissible β-slow π-

orbital switching signal with N-periodic βσ. Moreover, let ρ : ÙS → O(M) be

a representation of ÙS ≤ G. For Σ = ρ(g), the continuous part of the time-Tσ

map is ÙΦσ
Tσ = Σ−ord(π)

(
ΣN

N−1∏
k=0

exp
Ä
βσ,N−1−kAσ̂(N−1−k)

ä) ord(π)
N

. (5.29)

For uniformly β-slow π-orbital switching σ, one hasÙΦσ
Tσ = Σ−ord(π) (Σ exp (βAλ0))

ord(π) . (5.30)

Proof. By virtue of Propositions 5.3.7 and 5.3.8 we arrive at the identity

Φσ
Tσ = ΥNσ

σ ◦
Ä
Υ−Nσ ◦ Φσ

Θ(N)

äNσ
N

for the hybrid time-Tσ map. Via Eq. (5.27) and due to the fact that hybrid

symmetries act as Υ(λ, x) = (π−1(λ), g−1x) , we indeed obtainÙΦσ
Tσ = Σ−ord(π)

(
ΣN

N−1∏
k=0

exp
Ä
βσ,N−1−kAσ̂(N−1−k)

ä) ord(π)
N

proving the first statement. For the second statement, simply note that uni-

formly β-slow switching corresponds to the case N = 1. With βσ,0 = β and

σ̂(0) = λ0 we arrive at the desired statement. �

For a β-slow π-orbital switching signal σλ0π and N ∈ N, let ‹Aβπ,N be the matrix‹Aβπ,N =
N−1∏
k=0

exp
Ä
βσ(N − 1− k)Aπ−N+1+k(λ0)

ä
. (5.31)
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5.4.3 Theorem. For a linear switched system S , let λ0 ∈ Λ and Υ = (π, g) ∈
S such that eπ0 and eπ

−1

0 are edges of the switching graph T . Let σ = σλ0πν denote

β-slow πν-orbital switching σ = σλ0πν with N-periodic slowness βσ, N ≤ Nσ. If

the matrices ‹Aβπ,N and ‹Aβπ−1,N are Schur stable, then S is asymptotically stable

under the switching signal σλ0πν for all ν ∈ N
Ŝ

(Γπ).

Proof. Let ν be an element of the normalizer N
Ŝ

(Γπ) and ‹Υ = (ν, g̃) an

according T -symmetry of S . We consider β-slow πν-orbital switching σ

with N -periodic slowness βσ. In accordance with Proposition 5.3.6 (b), we

know that πν ∈ {π, π−1}, i.e. σ corresponds to π- or π−1-orbital switching.

Since eπ0 , e
π−1

0 ∈ E , the signal σλ0πν is admissible due to Lemma 5.3.2. Let

ρ : ÙS→ O(M) be a representation of ÙS. Now, Lemma 5.4.2 applies and with

ρ(g̃−1gg̃) = Σ and ord(πν) = ord(π) we obtainÙΦσ
Tσ = Σ−ord(π)

Ä
ΣN ‹Aσπν ,Nä ord(π)

N .

For the spectral radius of ÙΦσ
Tσ , we obtain

%
ÄÙΦσ

Tσ

ä
= %

Å
Σ−ord(π)

Ä
ΣN ‹Aβπν ,Näord(π)

ã
= %

ÅÄ
ΣN ‹Aβπν ,Näord(π)

ã
by invariance of % under multiplication by orthogonal matrices. We can proceed

using Gelfand’s formula %(A) = limk→∞ ‖Ak‖
1
k and find

%
ÄÙΦσ

Tσ

ä
≤ %

Ä
ΣN ‹Aβπν ,Näord(π)

= %
Ä ‹Aβπν ,Näord(π)

.

Since ‹Aβπν ,N = ‹Aβπ,N or = ‹Aβπ−1,N , by assumption we have %
Ä ‹Aβπν ,Nä < 1 yielding

%
ÄÙΦσ

Tσ

ä
< 1. According to Theorem 5.4.1, S is asymptotically stable under

β-slow πν-orbital switching for every ν ∈ N
Ŝ

(Γπ). �

Especially for uniformly β-slow orbital switching we obtain the following symmetry-

related stability result.

5.4.4 Corollary. For a linear switched system S , let λ0 ∈ Λ and Υ = (π, g) ∈
S such that eπ0 and eπ

−1

0 are edges of the switching graph T . If there exists

λ ∈ Λσ with ‹Aβλ = exp (βAλ) Schur stable, S is asymptotically stable under

uniformly β-slow πν-orbital switching σ = σλ0πν for all ν ∈ N
Ŝ

(Γπ).
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Proof. For λ ∈ Λσ = Γπλ0 there exists kλ ∈ {0, . . . , ord(π)} such that λ =

π−kλ(λ0) = σλ0π (kλ). Then for the hybrid symmetry Υkλ =
Ä
πkλ , gkλ

ä
one has

Aλ0 = ΣkλAλΣ
−kλ and thus exp(βAλ0) = Σkλ exp(βAλ)Σ

−kλ . That is why we

have %(‹Aβλ) = %(‹Aβλ0). Observe that in this case ‹Aβπ,1 = ‹Aβλ0 = exp(βAλ0) =‹Aβπ−1,1 holds. Consequently,

%
Ä ‹Aβπ,1ä = %

Ä ‹Aβπ−1,1

ä
= % (exp(βAλ0)) = % (exp(βAλ)) < 1,

hence both ‹Aβπ,1 and ‹Aβπ−1,1 are Schur stable, and Theorem 5.4.3 yields the

desired result. �

Herewith, we arrive at a stability result which on the one hand accounts for

the hybrid symmetries of the switched system and on the other hand takes

notice of the temporal organization of the switching signal. It is not surprising

that the strongest result occurs for the case of uniform switching. Moreover,

we see that stability properties pertain conjugacy classes of orbital switching

signals, when mild algebraic requirements are assumed.

120



Chapter 6

Time-Varying Networks of

Dynamical Systems

The general way of analyzing a phenomenon occuring in the real world with

respect to mathematics, is to set up a mathematical model, which will then re-

place the original phenomenon in the course of further examination. However,

what sounds so plain and straightforward at first is usually closely accompanied

by immense difficulties arising from hard-to-take decisions and severe choices

due to missing or unavailable knowledge.

The treatment of non-autonomous dynamical systems plays a major role within

the construction of various models for all kinds of real world phenomena. One

may even say that everything that surrounds us (be it embedded in nature,

linked with technology or characterized by social attributes) non-trivially de-

pends on time: Time directs everything, from the progressional expansion of

the universe up to the life story of a cell – reality is definitely non-static.

What makes things even more intricate is the impression that reality is superla-

tively complex. Essentially, reality draws this intricacy from its composition of

countless interacting instances, which is mathematically formulated in terms of

networked dynamical systems or coupled cell systems. Taking care of explicit

time-dependence, one ends up with time-varying dynamical system networks

as general models to adequately describe real world issues. As spatially dis-

crete structures, networks naturally evolve instantaneously, i. e. in discrete

manners, while the single systems – communicating via network structures –

evolve continuously. It is this matter which a priori classifies time-varying

dynamical system networks as hybrid systems.
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This closing chapter finally centers on such time-varying dynamical system net-

works and their relation to hybrid dynamical systems from the special view-

point of symmetries and thus takes on the leading motives discussed at the

outset of this thesis. After Chapter 6.1 has introduced the general notion of

coupled cell systems, a particular class of D4-symmetric dynamical system net-

works is discussed in Chapter 6.2. So far, the network architectures involved

are temporally fixed and so the systems occuring are classically smooth. The

situation fundamentally changes as soon as in Chapter 6.3 the globally symmet-

ric dynamical systems are subjected to periodic forcing affecting the network

structure and breaking their spatial symmetries to reduced spatio-temporal

symmetries. Thereupon a discretization process lead to the design of a related

hybrid dynamical system which is found to possess hybrid symmetries linked

to the former spatio-temporal symmetries of the forced system. Ultimately,

Chapter 6.4 presents a numerical treatment of this derived hybrid dynamical

system adressing stability and applying the afore developed theory.

6.1 Coupled Cell Systems

In the field of dynamical systems, a coupled cell system is understood as a

dynamical system that is composed of a collection of smaller subsystems that

influence each other dynamically. When speaking of coupled cell systems, one

has to distinguish between two related but fundamentally different concepts

which vary in the way the system’s symmetries are perceived. Both of these

concepts are essentially due to Martin Golubitsky and Ian Stewart who have

published numerous works on this matter in the course of the last decade

and have strongly influenced the structural treatment of networked dynamical

systems.

The primary understanding of the term coupled cell system which will be used

in the framework of this thesis classifies a coupled cell system as an equivariant

dynamical system in the classical sense, i. e. the (global) symmetries form a

group acting on the phase space and the overall vector field is equivariant with

respect to this group which is induced by a special fine structure of the system.

This notion of coupled cell system is introduced in [GS02].
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A further development is brought forth by the experience that global symme-

tries are not the only structural traits to cause certain dynamical phenomena

like the synchrony of subsystems, but a softer kind of symmetry which is of local

nature suffices for the creation of specifically structured dynamics. Generally, a

system that has trivial global symmetry properties may possess immensly rich

local symmetry structure. In addition, global symmetry properties are highly

sensitive with respect to network perturbations (e. g. adding or deleting edges),

while local symmetries are very persistant. The weakening of symmetries from

global to local is realized and incorporated into the conception of coupled cell

systems in a series of publications starting in 2003 by Golubitsky, Stewart and

coworkers. However, as a consequence of this modified notion of symmetry,

severe algebraic difficulties arise: As a matter of fact, the collection of local

symmetries can no longer be algebraically described with the help of groups,

because the restrictions of group theory are broken up by the solely locally

compatible symmetries. Instead, these symmetries are found to give rise to

a groupoid which represents a considerably weaker manifestation of algebraic

structure.1

A coupled cell system is perceived as a network of dynamical systems in both

cases, i. e. a coupled cell system is hybrid in the sense that it combines a

discrete underlying graph structure determining the coupling architecture of

the subsystems with the continuous dynamical systems assigned to the vertices.

Another important similarity lies in the fact that the symmetries stem from

the coupling network which as a graph gathers its symmetry information in

its automorphism group or its symmetry groupoid, respectively. Actually, if

a coupled cell system exhibits symmetries in the global sense, then the vector

field’s classical equivariance is equivalent to its equivariance with respect to a

certain induced groupoid (see [DS04]).

As mentioned before, we stick to the global way of understanding symmetry

and keep in mind the treatment of [GS02] with regard to contents, but formally

proceed in the style of [SGP03]. Concisely speaking, this means that we do

1It is not surprising that the handling of this sort of structure is more complicated and

involves novel technical difficulties and administrative efforts that have not been present

before in the global symmetry setting.
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not start with a dynamical system ẋ = F (x) and formulate properties that

characterize it as a coupled cell system, but define a coupled cell system con-

structively in layers, i. e. beginning with the coupling network as a fundament,

we build the system on top of it.

6.1.1 Definition (Coupled Cell System). Let C = {1, . . . , N} be an index

set, referred to as the collection of cells. A coupled cell system is a dynamical

system ẋ = F (x) whose phase space X ⊂ RM is a Cartesian product

X =
∏
c∈C

Xc (6.1)

equipped with a family Π = {πc}c∈C of canonical projections πc : X → Xc. ♦

This definition is quite dim and conceals the actual structure of a coupled cell

system to a certain extent. The fundamental idea of coupled cell systems which

explicitely distinguishes a coupled cell system from a general dynamical system

is its specific fine structure brought out by the product structure of the phase

space and the according projections. This makes it possible to interpret a

dynamical system as a network of smaller systems – its cells – and understand

it in terms of these cells. For a trajectory x(t), one obtains the cell trajectories

xc(t) = πc (x(t)) for c ∈ C. The cell trajectories then appear as trajectories of

the individual cells and it is this point of view that allows to address synchrony

properties of the dynamics.

With a coupled cell system we can associate a directed graph G = (C, E) whose

vertices correspond to the cells c ∈ C and whose edges E describe the couplings

between the cells. More precisely, the graph G contains an edge e = (i, j) from

cell i to cell j if and only if cell j is influenced by cell i meaning that the

map Fj(x) = πj (F (x)) depends on xi = πi(x), x ∈ X. In order to incorporate

different types of coupling and different types of cells, we use a decorated graph,

practically meaning that we use the same symbol for all vertices of the same

type and the same arrow for all edges of the same type. This is realized

by equivalence relations ∼C and ∼E on C and E , respectively. We cast the

preceding considerations into the following definition (cp. [SGP03] or [GS06]).

6.1.2 Definition (Coupled Cell Network). A coupled cell network G is de-

termined by the quadruple (C,∼C, E ,∼E) where
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• C = {1, . . . , N} is a finite collection of cells,

• ∼C is an equivalence relation on C and the equivalence class [c]C ∈ C/ ∼C
is called the cell type of c,

• E ⊂ C × C is a finite set of edges and

• ∼E is an equivalence relation on E and the equivalence class [e]E ∈ E/ ∼E
is referred to as the edge type of e

such that the following consistency condition is fulfilled:

• Equivalent edges have equivalent sources and targets, i. e. the relation

e1 ∼E e2 implies

se1 ∼C se2 and te1 ∼C te2. (6.2)

Having the notion of a coupled cell network at hand, we have access to the

formal perception as well as the description of coupled cell systems as networks

of dynamical systems. As a matter of course, a coupled cell network solely

describes the discrete part of a coupled cell system and does not give any

account of the cells’ and their couplings’ qualitative meaning. As opposed to

Definition 6.1.1 which focuses upon a system of ODEs whose special structural

characteristics are not immediately obvious, we follow the converse path and

set out from a given coupled cell network and assign the dynamics to the nodes

and provide the edges with meaning. For this purpose, we define vector fields

that are compatible with the considered coupled cell network. Before doing

so, we have to mention the symmetry properties of the coupled cell network

and equip the cells with phase spaces. Addressing symmetries, we point out

that a coupled cell network G as a decorated, directed graph comes along with

its automorphism group Aut (G) ≤ Scard(C); note that the bigger C/ ∼C is, the

less symmetric is G. We now assign a phase space Xc to each cell c ∈ C such

that the relation c ∼C d implies Xc = Xd and define the total phase space

as the product space X =
∏
c∈C Xc. Here, for simplicity, we restrict to finite-

dimensional real vector spaces. For a cell c ∈ C, the input set I(c) of c is

defined as the set

I(c) = {e ∈ E | te = c} ⊂ E . (6.3)
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6 Time-Varying Networks of Dynamical Systems

For a finite ordered set of n cells Cn = {c1, . . . , cn}, set

XCn =
n∏
i=1

Xci and xCn = (xc1 , . . . , xcn) ∈ XCn .

These preparations enable us to define the class of admissible vector fields for

a given coupled cell network G.

6.1.3 Definition (Admissible Vector Fields). Let G = (C,∼C, E ,∼E) be

a coupled cell network with compatible phase space family {Xc}c∈C. A vector

field F : X → X is called G-admissible if it meets the following two conditions:

• For all c ∈ C, there exists a map f̂c : Xc ×Xs(I(c)) → Xc such that

fc(x) = f̂c(xc, xsI(c)) (6.4)

for all x ∈ X, where fc is the component πc ◦ f according to cell c.

• F is equivariant with respect to Aut (G). ♦

The first condition is termed the domain condition and ensures that admissible

vector fields reflect the coupling architecture prescribed by the coupled cell

network and the second one is simply referred to as the equivariance condition.

We study an exemplary coupled cell system in the following section.

6.2 A Particular Class of Coupled Cell

Systems

This section concentrates on the structural composition of a special class of

coupled cell systems examining the according equations in the light of this

structure. It is therefore of illustrative character. We consider the coupled cell

network G determined by the cells

C = {1, 2, 3, 4}

and the edges

E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)}
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1

23

4

C

Figure 6.1: D4-symmetric coupled cell network

such that all cells and edges are of the same type defining the equivalence

relations ∼C and ∼E . This data gives rise to a decorated directed graph G with

dihedral symmetry, i. e. Aut (G) = D4, as shown in Fig. 6.1. We assign phase

spaces to the cells in a consistent manner, i. e. X1 = X2 = X3 = X4 = X since

all cells are equivalent. A general admissible vector field F : X4 → X4 takes

the form

F(x1, x2, x3, x4) =

â
g1(x1, x2, x4)

g2(x2, x3, x1)

g3(x3, x2, x4)

g4(x4, x1, x3)

ì
, (6.5)

where g1 = g2 = g3 = g4 = g holds with g : X3 → X, which is due to identical

cells and couplings. In order to see that, we observe that for the input sets,

we have

I(1) = {(2, 1), (4, 1)} ,
I(2) = {(1, 2), (3, 2)} ,
I(3) = {(2, 3), (4, 3)} ,
I(4) = {(1, 4), (3, 4)} ,

and thus the domain condition (6.4) is easily seen to be fulfilled. Additionally,

we notice D4-equivariance of F . For the phase spaces, we select Xi = Rn.

With the choice of diffusive coupling, the resulting global dynamical system is
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6 Time-Varying Networks of Dynamical Systems

determined by the equations

ẋ1 = f(x1) + ζD ((x2 − x1) + (x4 − x1))

ẋ2 = f(x2) + ζD ((x3 − x2) + (x1 − x2))

ẋ3 = f(x3) + ζD ((x4 − x3) + (x2 − x3))

ẋ4 = f(x4) + ζD ((x1 − x4) + (x3 − x4)) (6.6)

with a parameter ζ ∈ R governing the coupling strength, a diffusion matrix

D ∈ Rn×n and a vector field f : X → X determining the internal dynamics of

the cells. See Fig. 6.2 for an illustration of the considered coupled cell system.

In a more compact way, the system may also be written as

ẋi = f(xi) + ζD ((xi+1 − xi) + (xi−1 − xi))
= f(xi) + ζD (xi+1 − 2xi + xi−1) , i = 1, . . . , 4

where the boundary conditions x5 = x1 and x0 = x4 have to be noted carefully.

Using the Laplacian L = diag(d)−C of the underlying coupling network, where

the connection or adjacency matrix C = {Cij}i,j=1,...,4 ∈ R4×4 is given by

Cij =

1 if cell j is coupled to cell i

0 otherwise
(6.7)

and d ∈ N4 is the vector of degrees with components di = deg(i) =
∑
j 6=iCij,

we can write

ẋ = F(x) = F (x)− (L⊗ In)H(x) (6.8)

with global vector field

F : R4n → R4n, F (x1, x2, x3, x4) = (f(x1), f(x2), f(x3), f(x4))T

and coupling function

H(x; ζ,D) = (h(x1), h(x2), h(x3), h(x4))T with h(xi) = h(xi; ζ,D) = ζDxi.

Here, ⊗ denotes the Kronecker product of matrices and in this case of dihedral

network symmetries, the adjacency and the Laplacian matrix take the form

C =

â
0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

ì
(6.9)
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g g

g g

1

23

4

D4

F

Figure 6.2: Dynamical system network consisting of four iden-

tical subsystems (cells) and identical coupling: The

global system exhibits D4-symmetry (apart from fur-

ther symmetries featured by the cells) owing to the

dihedral symmetry of the coupling graph.

and

L =

â
2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

ì
, (6.10)

respectively. With Eq. (6.8), we now have a formulation for the system at

hand which allows for the direct access of the system’s internal coupling. This

will be of decisive advantage for the subsequent considerations.
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6 Time-Varying Networks of Dynamical Systems

6.3 From Periodically Driven Coupled Cell

Systems to Orbitally Switched Systems

This section is designed to shed light on a specific procedure that gives rise

to orbitally switched systems on the grounds of coupled cell systems that are

subject to external periodic forcing. It builds on the example of Chapter 6.2.

The approach is as follows: A smooth periodic network perturbation is in-

troduced to the original system yielding a non-autonomous vector field that

exhibits periodicity in time and reveals spatio-temporal symmetry properties.

The external forcing due to the network perturbation may be interpreted as

an instance of forced symmetry breaking. Thereupon, the resulting vector field

family is discretized in an adequate way and the resulting vector fields are

connected on the basis of a natural transition graph structure giving rise to a

switched system with non-trivial hybrid symmetries.

We consider the coupled cell system (6.8) with architecture as illustrated in

Fig. 6.2. Let ψ : R≥0 → R≥0 be a sufficiently smooth, periodic function with

minimal period T > 0 such that

ψ

Ç
5T

8

å
= 0 and ψ

Ç
T

8

å
= ψ

Ç
3T

8

å
= ψ

Ç
7T

8

å
= 1. (6.11)

See Fig. 6.3 for a plot of an exemplary function ψ.

We modify the system

ẋ = F(x) = F (x)− (L⊗ In)H(x)

by forcing the adjacency matrix C in the following manner:

C(t) =

â
0 ψ

Ä
t+ 3T

4

ä
0 ψ(t)

ψ
Ä
t+ 3T

4

ä
0 ψ

Ä
t+ T

2

ä
0

0 ψ
Ä
t+ T

2

ä
0 ψ

Ä
t+ T

4

ä
ψ(t) 0 ψ

Ä
t+ T

4

ä
0

ì
. (6.12)

As a consequence, both the degree map deg : C → Z and the Laplacian matrix
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Figure 6.3: Smoothly time-variant coupling: The time-varying

coupling of a dynamical system network is realized

by phase shifts of a smooth periodic function ψ; this

corresponds to smoothly switching on and off links of

the network.

L, adopt explicit time-dependence and T -periodicity. We obtain

L(t) =

â
deg(1)(t) −ψ

Ä
t+ 3T

4

ä
0 −ψ(t)

−ψ
Ä
t+ 3T

4

ä
deg(2)(t) −ψ

Ä
t+ T

2

ä
0

0 −ψ
Ä
t+ T

2

ä
deg(3)(t) −ψ

Ä
t+ T

4

ä
−ψ(t) 0 −ψ

Ä
t+ T

4

ä
deg(4)(t)

ì
(6.13)

for the graph Laplacian which leads to the non-autonomous periodically forced

dynamical system

ẋ = F(t, x) = F (x) + P (t)H(x) (6.14)

with time-dependent, T -periodic perturbation

P (t) = −L(t)⊗ In.

Note that the system loses its D4-symmetry due to the introduction of this

kind of periodic forcing, but, notably, a different type of symmetry arises:
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6 Time-Varying Networks of Dynamical Systems

spatio-temporal symmetry. Let Σ be the matrix

Σ =

â
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

ì
∈ O(4), (6.15)

representing the rotation (1234) ∈ Z4. For the adjacency matrix we find

C

Ç
t− T

4

å
= Σ−1C(t)Σ for all t ∈ R.

Similarly, we observe that

diag(d)

Ç
t− T

4

å
= Σ−1diag(d)(t)Σ

holds for the degree matrix and, consequently, we obtain the Laplacian relation

L

Ç
t− T

4

å
= Σ−1L(t)Σ for all t ∈ R.

By the properties of the Kronecker product ⊗ of matrices – especially by the

identity (A ⊗ B)(C ⊗ D) = AC ⊗ BD, which is true whenever the products

AC and BD are defined – we find

P

Ç
t− T

4

å
= Σ−1

(n)P (t)Σ(n) for all t ∈ R (6.16)

with Σ(n) = Σ⊗ In ∈ O(4n) and perceive (Σ(n),
T
4
) as an element of O(4n)×S1

identifying S1 and R/TZ. The spatio-temporal symmetry group ΞP of P is

given by

ΞP =
{

(Σ, θ) ∈ O(4n)× S1
∣∣∣ (Σ, θ)P (t) = ΣP (t− θ)Σ−1 = P (t) ∀ t ∈ R

}
,

and we figure out that

ΞP =

ÆÇ
Σ(n),

T

4

å∏
∼= Z4.

Analogeously, the spatio-temporal symmetry group of F is defined as

ΞF =
{

(Σ, θ) ∈ O(4n)× S1
∣∣∣ (Σ, θ)P (t) = ΣF(t− θ)Σ−1 = F ∀ t ∈ R

}
(6.17)
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Moreover, we find ΞF = ΞP , since for (Σ, θ) ∈ ΞF one has

F(t, x) = (Σ, θ)F(t, x)

= Σ−1F(t+ θ,Σx)

= Σ−1F (Σx) + Σ−1P (t+ θ)H(Σx)

= Σ−1ΣF (x) + Σ−1P (t+ θ)ΣH(x)

= F (x) + (Σ, θ)P (t)H(x).

To be true, this identity requires (Σ, θ)P (t) = P (t), or, equivalently, (Σ, θ) ∈
ΞP . Thus, the symmetries of the network perturbation P (t) determine the

symmetries of the whole system, while the periodic forcing of the Laplacian is

responsible for the breaking of dihedral symmetries. Therefore, the relation

F(t,Σx) = ΣF
Ç
t− T

4
, x

å
(6.18)

holds for all t ∈ R and x ∈ R4n.

So, for a given D4-symmetric autonomous coupled cell system we have intro-

duced an external forcing making the system non-autonomous and breaking its

symmetries to spatio-temporal symmetries Z4. In the following, we will design

a switched system out of the time-dependent F : T×R4n → R4n and trace the

original spatio-temporal symmetries.

The spatio-temporal symmetries ΞF of the system (6.14) project onto the finite

subgroup G = 〈T/4〉 ∼= Z4 of S1 = R/TZ. We write n = n(F) = 4 and

discretize the interval [0, T ] ⊂ R into nF subintervals

Ik =

ñ
(k − 1)

T

nF
, k

T

nF

ô
of length σ = T

nF
. Approximating the adjacency map C : T → R|C|×|C| by a

piecewise constant map “C with“C∣∣∣
Ik
≡ C

Ç
2k − 1

2

T

nF

å
,

we may perceive it as a map “C : Z → R|C|×|C|. By T -periodicity of C(t), “C
remains periodic in a discrete sense, more precisely“C(k + nF) = “C(k) for all k ∈ Z.

133
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With this construction, “C possesses exactly nF values and we consider “C as a

matrix family
¶“C(k)

©
k∈{1,...,nF}

. For k = 1, . . . , 4, with (6.11), (6.12) and the

T -periodicty of ψ we obtain the adjacency matrices

“C(1) = C

Ç
T

8

å
=

â
0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

ì
,

“C(2) = C

Ç
3T

8

å
=

â
0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0

ì
,

“C(3) = C

Ç
5T

8

å
=

â
0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

ì
,

“C(4) = C

Ç
7T

8

å
=

â
0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0

ì
,

which correspond to the graphs illustrated in Fig. 6.4. Naturally, “C induces the

matrix families ◊�deg(d), “L and “P corresponding to the degree matrix deg(d)(t),

the Laplacian L(t) and the network perturbation P (t) and nF -periodicity is

passed on to those. In this way, we end up with a discretized vector field family“F =
¶ “F(k)

©
k∈{1,...,nF}

;

indeed, more specifically, “F is a family of coupled cell systems in the sense of

Section 6.1. Notably, none of the systems ẋ = “F(k)(x) still has symmetry D4,

but each of them keeps Z2-symmetry with varying axes of symmetry (see Fig.

6.5). We aim to design a hybrid dynamical system out of “F that is related to

the original coupled cell systems F(x) and F(t, x) and use Λ = {1, . . . , nF} as

the vertex set of a cyclic directed graph T = (Λ, E) with edges

E = {(1, 2), . . . , (nF − 1, nF), (nF , 1)} .
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Figure 6.4: Graphs corresponding to the adjacency matrices C

and “C =
¶“C(k)

©
k=1,...,nF
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Figure 6.5: (a) Original D4-symmetric coupled cell system F and

(b)-(e) induced family “F of coupled cell systems with

symmetry Z2 and changing axis of symmetry
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This choice is based on the temporal order determined by F(t, x). Thus

the cyclic graph structure emulates a period of the non-autonomous system

ẋ = F(t, x) in correctly directed time. The resulting switched system S =

(T ,R4n, “F ,Ω) is sketched in Fig. 6.6. Clearly, Aut (T ) ∼= ZnF and there is

an isomorphism ι : G ∼= Aut(T ) mapping the generator θ = T
nF

of G < S1 to

the generator

(nF 1 2 3 . . . (nF − 1)) ∈ Aut(T ) ≤ SnF .

With π = ι(θ) Equation (6.18) transforms into“F(k) ◦ Σ = Σ ◦ “F(π−1(k)) for all k ∈ Z . (6.19)

Hence, the switched system S inherits the T -symmetries

S = 〈(π,Σ)〉 ∼=
ÆÇ

Σ,
T

nF

å∏
= ΞF ∼= ZnF . (6.20)

Now, let σ be a uniformly β-slow π−1-orbital switching signal of S . Then

σ̂ : Z → Λ is nF -periodic and by Proposition 5.3.7, ((π,Σ), 1) is a hybrid

spatio-temporal symmetry of the σ-switched system Sσ. Thus, the hybrid

time-Θ(nFβ) map turns out to be of the form

Φσ
nFβ

=
Ä
(π,Σ)−1 ◦ Φσ

β

änF
by Corollary 5.3.9.

6.4 Numerical Treatment of Orbitally

Switched Systems

This section is devoted to the numerical examination of switched systems under

the influence of orbital switching. To this end, we reconsider the switched

system S = (T ,R4n, “F ,Ω) based on the cyclic switching graph T = (Λ, E)

with Λ = {1, . . . , nF} as already discussed in the preceding section and shown

in Fig. 6.6. Choosing linear dynamics we end up with a family of four matrices

A = {A1, A2, A3, A4} that are of the form

Aλ(B, ζ,D) = diag(B) + PλH(x; ζ,D)

= diag(B)− ζ(Lλ ⊗D) ∈ R8×8, λ ∈ Λ, (6.21)
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Figure 6.6: Switched system S = (T ,R4n, “F ,Ω) based on the

family of coupled cell systems induced by the vector

field family “F
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where B ∈ R2×2 corresponds to two-dimensional linear internal dynamics and

diag(B) = I4 ⊗ B ∈ R8×8 is the induced diagonal block matrix. Based on the

adjacency matrices Cλ = “C(λ), the corresponding Laplacian matrices Lλ =“L(λ) are determined by

L1 =

â
2 −1 0 −1

−1 1 0 0

0 0 1 −1

−1 0 −1 2

ì
and Lλ = Σ−λ+1L1Σλ−1 (6.22)

with Σ as defined in (6.15). For our numerical investigations, we fix

B =

Ñ
−0.39 −0.4

0.04 −0.39

é
, D = I2 and ζ = −0.111 . (6.23)

Additionally, for reasons of comparison, we consider the unforced system (6.8)

with complete D4-symmetry yielding the matrix

A0 = diag(B)− ζL⊗ I2

with

A0 =



−0.168 −0.4 −0.111 0 0 0 −0.111 0

0.04 −0.168 0 −0.111 0 0 0 −0.111

−0.111 0 −0.168 −0.4 −0.111 0 0 0

0 −0.111 0.04 −0.168 0 −0.111 0 0

0 0 −0.111 0 −0.168 −0.4 −0.111 0

0 0 0 −0.111 0.04 −0.168 0 −0.111

−0.111 0 0 0 −0.111 0 −0.168 −0.4

0 −0.111 0 0 0 −0.111 0.04 −0.168


.

Now, we detect instability of A0 caused by a conjugated pair 0.054 ± 0.1265i

of eigenvalues. By (6.20), the switched linear system A = {A1, A2, A3, A4}
has a cyclic hybrid symmetry group ΞS = 〈(Σ, π)〉 and we consider π-orbital

switching σπ generated by π = (1432) = (1234)−1 ∈ Z4. Note that ord(π) = 4

and that Γ = Γπ acts transitively on Λ.

Contrary to A0, the matrices of A turn out to be stable throughout, since

Re(ξ) < 0 for every eigenvalue ξ of Aλ, λ ∈ Λ. The numerical simulation

is organized as follows: We start out from the slightly perturbed equilibrium

in the origin 0 ∈ R8, driven by the unstable dynamics of the unforced com-

pletely D4-symmetric system represented by A0, before we introduce π-orbital
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switching as described above and, finally, return to the unswitched system to

observe the system’s unperturbed behavior again putting a stress on the effects

of orbital switching. Figure 6.7 demonstrates the stabilizing effect of orbital

switching with speed ς = 24; after stopping the switching process, the unstable

dynamics force the system to drift away from the origin again.

Figure 6.7: Stabilization by π-orbital switching with ς = 24. The

first coordinate of each cell is plotted separately. The

bold line segments document the switching history

of the system: On the time intervals [0, 210] and

[594, 804], there is no switching, and the dynamics

are ruled by A0. In between, π-orbital switching takes

place which guides the system back to the origin.

In order to simplify the numerical treatment of the switched system in ques-

tion, we consider its discrete time version x(k + 1) = ‹Aσπ(k)x(k) with orbital

switching signal σπ : Z → Λ. Let ‖ · ‖ denote the spectral norm of matrices

which is given by

‖A‖ =
»
%(ATA) = σmax(A), (6.24)

where σmax(A) denotes the largest singular value of A. Since exp (At) =

exp (A)t for a matrix A ∈ Rn×n and t ∈ Z, along the lines of the proof of
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Theorem 5.4.3, we obtain the following similar result for discrete time which

is published in the article [HPD11] by Hage-Packhäuser and Dellnitz.

6.4.1 Theorem. Let S = (T ,D,A,Ω) be a discrete-time switched linear

system with T -symmetry group S. Let (π,Σ) ∈ S be a T -symmetry and

λ0 ∈ Λ such that eπ0 and eπ
−1

0 are edges of T . Assume that there exist λ ∈ Γπλ0,

β ∈ N and ρλ < 1 such that
∥∥∥exp(Aλ)

β
∥∥∥ ≤ ρλ. Then, if Γπ is normal in Γ, the

switched system S is asymptotically stable under uniformly β-slow πν-orbital

switching for all ν ∈ Γ.

Figure 6.8: Asymptotic stability via 24-slow π-orbital switching

of the discrete-time switched linear system x(k+1) =

Ãσπ(k)x(k).

We thus turn to the induced discrete-time orbitally switched system x(k+1) =‹Aσπ(k)x(k), where we recall the notation ‹Aλ = exp(Aλ). For A1, we find that

β = 24 is the minimal non-negative integer satisfying∥∥∥‹Aβ1∥∥∥ ≤ η1 < 1 with η1 = 0.8915.

Thus, by means of Theorem 6.4.1, the discrete-time switched system in ques-

tion is asymptotically stable for 24-slow π-orbital switching. In Figures 6.8
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and 6.9, we visualize stabilizing 24-slow orbital switching of the discrete-

time system. Since Γ = Γπ holds, Γπ is normal in Γ and Theorem 6.4.1

Figure 6.9: Phase plots of the subsystems visualizing asymptotic

stability via 24-slow π-orbital switching.

predicts asymptotic stability under 24-slow γ−1πγ-orbital switching for all

γ ∈ Γ = 〈(1234)〉 = Z4. In this case, we solely have γ−1πγ = π, due to

commutativity of Γ.

Finally, after having laid the foundations for the treatment of temporally

varying dynamical system networks, we discuss a more interesting example

building on the preceding one (see Figure 6.6). Again based on the D4-

symmetric network displayed in Figure 6.2, we consider the more intricate

class of switched systems illustrated in Figure 6.10 which is determined by the

matrices Aλ = Aλ(B, ζ,D) as in (6.21) with Laplacians Lλ as in (6.22) for

λ = 1, 2, 3, 4 and

L5 =

â
1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

ì
and L6 = Σ−1L5Σ.
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6.4 Numerical Treatment of Orbitally Switched Systems
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Figure 6.10: Structure of a switched system S admitting the hy-

brid symmetry group ΞS
∼= Z4 generated by (Σ, π)

with π = (1234)(56). The intransitive action of ΞS

on Λ = {1, 2, 3, 4, 5, 6} causes two fundamentally dis-

tinct orbital switching strategies which may lead to

different stability results.

Let π denote the permutation (1234)(56) ∈ S6. Again, the switched system

exhibits cyclic symmetry given by the hybrid symmetry group ΞS = 〈(Σ, π)〉 ∼=
Z4 with Σ as in (6.15). Note that – in this case – the discrete part Γ = Γπ = 〈π〉
does not act transitively on the discrete states Λ since we detect the existence

of two orbits {1, 2, 3, 4} and {5, 6}. For our computations, we let B and D

be as above (cf. (6.23)), but use ζ = −0.408. At first, we consider π-orbital

switching σλ0π with initial state λ0 = 5 which is admissible since eπ0 = (5, 6) ∈ E .

For the system matrix A5, we find

∥∥∥‹A5

∥∥∥ ≤ η5 with η5 = 0.6596 < 1.
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6 Time-Varying Networks of Dynamical Systems

Thus, by Theorem 6.4.1, the discrete-time system is asymptotically stable

under (1-slow) orbital switching σ5
π. However, when we consider π-orbital

switching with λ0 ∈ {1, 2, 3, 4} which is admissible as well, then we observe

that the system does not stabilize: It turns out that the corresponding system

matrices have eigenvalues outside the unit disc keeping them away from Schur

stability.
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Chapter 7

Conclusion

This final chapter encompasses a rough summary of the thesis’ findings as

well as an outlook on possible future research directions concerning hybrid

symmetries.

The Essence of This Thesis

The general aim of this thesis has been the analysis of time-varying equiv-

ariant dynamical systems with changing symmetry properties from a hybrid

point of view with a particular consideration of symmetries. As a prominent

prototypical example which the world is laced with when trying to grasp it

mathematically, the class of time-varying dynamical system networks (or cou-

pled cell systems) is permanently present. Its symmetries naturally stem from

the underlying coupling architecture and its explicit time-dependence is as-

sumed to originate from a temporal evolution of the coupling topology. Such

systems are relevant for modelling and analyzing mobile communication net-

works or multi-agent systems, for instance. From a more abstract point of

view, coupled cell systems with temporally varying coupling network may be

interpreted in terms of network perturbations or link failures.

First of all, hybrid automata and switched systems – which intuitively seem to

be close to each other at first sight, but turn out to be distinguished by concep-

tual dissimilarities – have been discussed in a non-standard unifying manner

fathoming their tense relationship. The latter is resolved by the incorpora-

tion of a distinguished subclass of switched systems into the hybrid automata

framework.
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7 Conclusion

Motivated by the question for the overall symmetry information of a non-

autonomous dynamical system with time-dependent symmetry properties, a

global symmetry concept for hybrid dynamical systems is unfolded broad in

scope. More precisely, this symmetry framework is developed for hybrid au-

tomata composed of classically equivariant dynamical systems. The detailed

accomplishment of this construction which is designed to act as a hybrid analog

to classical dynamical system symmetries leads to the notion of hybrid sym-

metries translating to a weak form of equivariance for structured vector field

families opposed to the classical equivariance of a single vector field. This weak

equivariance may be interpreted as a kind of spatio-spatial symmetry when

compared to traditional spatio-temporal symmetries. Algebraic properties as

well as the immediate consequences of hybrid symmetries for the dynamics of

hybrid automata are studied uncovering a great structural similarity between

hybrid and classical symmetries. However, in the face of fixed-point spaces

the two concepts drift apart and unveil their diversity since hybrid fixed-point

spaces are shown to be not naturally invariant.

Built on the notion of hybrid symmetries, the concept of hybrid spatio-temporal

symmetries is developed for periodic executions. These are utilized to decom-

pose certain return maps of hybrid automata with prescribed switching strate-

gies giving a fixed-point formulation of spatio-temporally symmetric executions

with respect to specific symmetry-related maps.

Against this theoretical background, switching signals are spotlighted and a

distinguished class of switching signals – orbital switching signals – is put into

the center of interest. This way of switching is generated by hybrid symme-

tries and it is proven to give rise to hybrid spatio-temporal symmetries with

respect to the induced switched system. In this context, the temporal aspect

of switching is discussed and figured out to essentially shape the symmetry

properties of the induced system.

After examining the influence of conjugation on orbital switching signals,

we succeed in providing sufficient conditions concerning the stabilization of

switched linear systems for conjugacy classes of orbital switching signals as

a consequence of the symmetry-based return map decomposition – all with a

view to the temporal composition of the signals.
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While the considerations and results reported so far are general in the sense

that they hold for any hybrid dynamical system composed of arbitrary equiv-

ariant dynamical systems or switched system, respectively, the final part of

the thesis is taken up by the treatment of time-varying dynamical system net-

works in the light of the afore developed theory. Having approached the issue

of dynamical system networks broadly in terms of coupled cell systems, we

restrict the attention to a special class of globally symmetric coupled systems

and derive a switched system from the discretization of an external periodic

forcing of the coupling network. We succeed in detecting non-trivial hybrid

symmetries and both analytically and numerically consider orbital switching

strategies.

This brings us full circle insofar as the varying dynamical system networks

considered at the beginning are identified as orbitally switched systems induced

by hybrid symmetries and are thus embedded into the theory of symmetric

hybrid automata set up by means of this thesis.

From this retrospect, we expose the following findings and conclusions to be

drawn from this work:

• Coupled cell systems whose underlying coupling network is subject to

instantaneous temporal changes fall into the category of hybrid systems

and may be described in terms of hybrid automata or switched systems.

• Hybrid automata may be considered to be switched systems together

with a special class of switching signals. Contrariwise, if restricted to

switching signals which exhibit a special structure, switched systems give

rise to structurally similar hybrid automata.

• There is a structurally similar generalization of the classical dynamical

system symmetry concept for hybrid dynamical systems: The classical

equivariance of a vector field is replaced by a weak equivariance property

for a structured vector field family and the collection of hybrid sym-

metries exhibits the algebraic structure of a group acting on the set of

executions, i. e. hybrid symmetries preserve the dynamics.

• The hybrid analog of fixed-point spaces reveals considerably weaker in-

variance properties than expected from the classical theory.
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7 Conclusion

• Hybrid spatio-temporal symmetries of periodic executions and of switched

systems themselves are a natural generalization of hybrid symmetries and

can be utilized to decompose the return maps with respect to periodic

switching signals giving an approach to stabilization issues.

• Orbital switching signals adequately describe cyclically moving network

perturbations in certain time-varying coupled cell systems. From a su-

perior point of view, orbital switching can be considered as an imple-

mentation of a hybrid system’s genetical information and may thus be

classified as an instance of self-organized switching opposed to externally

computed signals.

• In general, given a switched system possessing non-trivial hybrid symme-

tries and an arbitrary switching signal, symmetries hardly survive in the

induced switched system. Orbital switching constitutes a prime exam-

ple for keeping symmetries, since orbital switching gives rise to hybrid

spatio-temporal symmetries of the induced system and thus clears the

way for stability analysis.

Outlook and Directions of Further Research

Undoubtedly, in a work like this where an established concept trailing a mature

theory is implanted into another field, there are lots of directions which could

be of interest for future research projects. However, I feel obliged to make

a reasonable choice to present here and restrict myself to three broad and

differently directed, but important visions of possible future work.

Weaker Forms of Orbital Switching

The specific switching strategies developed and analyzed in this thesis are

based on symmetry properties of the hybrid system under examination. More

precisely, an orbital switching signal is characterized by iteratively running

through a cyclic group orbit. Appearingly, this is the strictest and most regular

way of switching on the grounds of symmetry. Its advantage clearly lies in its
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compact formulation as a map σ̂ : Z→ Λ with σ̂(k) = π−k(λ0) and its iterative

character.

Certainly, there are various different possibilities of switching making use of

hybrid symmetry information. Figure 7.1 provides a numerical glimpse of

hybrid dynamics driven by symmetry-related switching which is not orbital.

While it is natural in some sense to stay in a fixed group orbit while switching,

it appears to be of immense interest to switch between group orbits. However,

it remains unclear how to organize and algebraically arrange the switching in

this far more general case.
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Figure 7.1: (a) Switched System with non-trivial symmetries and

a related periodic switching signal described by its

induced discrete trace; (b) Sample execution with re-

spect to the above switching signal.
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Local Hybrid Symmetries

The following direction aims at a refinement of the hybrid symmetry concept

and thus at a deeper structural understanding of hybrid dynamical systems in

terms of symmetries.

In this thesis, global symmetry properties of hybrid dynamical systems have

been treated. As indicated in connection with coupled cell systems, global sym-

metries are of a highly restrictive nature and extremely sensitive with respect

to structural perturbations – in contrast to local symmetries. However, the

drawback of such local objects principally lies in the fact that in general they

cannot manage to give rise to global structures such as groups, for instance, if

algebraic properties are considered.

If one shifts the view from coupled cell systems to hybrid systems, it stands to

reason to establish the notion of local hybrid symmetries for hybrid automata

by combining local symmetry information of the transition graph with local

symmetries of the single dynamical systems the hybrid system is composed

of. This is of particular interest for the study of symmetry-induced synchrony

patterns and their temporal development. Figures 7.2 and 7.3 visualize first

computational experiments and hint at the form of hybrid dynamics occuring

in the setting of coupled cell systems without global symmetries.
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Figure 7.2: (a) Switched system composed of two coupled cell sys-

tems without global symmetries. (b) Hybrid dynam-

ics showing a series of synchrony patterns among the

cells.
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(a)

(b)

Figure 7.3: (a) Projections of the execution displayed in Fig. 7.2

(b) to the single cell phase spaces emphasizing syn-

chrony relations. (b) Detail enlargement of Fig. 7.2

(b).
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7 Conclusion

Bifurcation Theory in Presence of Hybrid

Symmetries

This direction of further research is qualitatively different from the ones before;

it is concerned with the understanding of deeper effects of present symmetries.

Typically, dynamical systems derived from real world phenomena and analyzed

for the sake of comprehending such aspects of the real world depend on many

different types of parameters besides time. What is more, these parameters are

usually not temporally constant themselves. Since it is a common observation

that dynamics may change qualitatively under varying parameters, parameter

variation is an integral part of understanding various phenomena occuring in

many kinds of dynamics. The prediction of possible changes in the dynamics

under parameter variation is the task of bifurcation theory.

In the case of time-varying dynamical system networks modelled as switched

systems, there are at least two natural parameters that deserve special atten-

tion: the first one is the coupling strength occuring in coupled systems which

controls the manner systems are coupled to each other; the second parameter

of interest is the switching time or more generally the temporal composition

of switching signals. With regard to hybrid symmetries, an equivariant bi-

furcation theory for hybrid systems needs to be developed. The contents of

this thesis lay the foundations for a theory like that by providing a symmetry

notion for hybrid automata and a general treatment of their consequences on

the dynamics.

In the context of bifurcations, the notion of stability is of major importance

since stabiliy may be lost or gained via bifurcation. This directly leads to

the necessity of understanding well the relation of switching in hybrid systems

and the connected stability properties. As exemplarily discussed in Chapter 6,

the stability properties of a system can change due to the forced breaking of

symmetries; in the example, classical (and trivially also hybrid) D4-symmetry

of an unstable system is broken to hybrid cyclic Z4-symmetry accompanied

by the effect of stability in combination with an appropriate way of switching.

In a way, this can be interpreted as the starting point of an extensive treat-

ment of stabilization by symmetry-breaking in the context of hybrid systems.

154



What gives this example a special taste of its own, is the fact that the alge-

braic structure of the original system and the spatial average of the switched

system practically coincide, i. e. while stability properties shift, the algebraic

information carried by symmetries remains on average –

155





Bibliography

[AL01] A. A. Agrachev and D. Liberzon. Lie-algebraic stability criteria

for switched systems. SIAM Journal on Control and Optimization,

40(1):253 – 269, 2001.

[BK08] M.L. Bujorianu and J.-P. Katoen. Symmetry reduction for

stochastic hybrid systems. In CDC 2008, 47th IEEE Conference

on Decision and Control, pages 233–238, 2008.

[CGA05] P. Colaneri, J. C. Geromel, and A. Astolfi. Stabilization of

continuous-time nonlinear switched systems. In Proceedings of the

44th IEEE Conference on Decision and Control and the European

Control Conference 2005, pages 3309 – 3314, 2005.

[DGS96a] B. Dionne, M. Golubitsky, and I. Stewart. Coupled cells with

internal symmetry: I. wreath products. Nonlinearity, 9:559–574,

1996.

[DGS96b] B. Dionne, M. Golubitsky, and I. Stewart. Coupled cells with

internal symmetry: Ii. direct products. Nonlinearity, 9:575–599,

1996.

[DK01] G. Davrazos and N. T. Koussoulas. A Review of Stability Results

for Switched and Hybrid Systems. In Mediterranean Conference

on Control and Automation, 2001.

[DS04] A. P. Dias and I. Stewart. Symmetry Groupoids and Admissible

Vector Fields for Coupled Cell Networks. Journal of the London

Mathematical Society, 69:707 – 736, 2004.

157



Bibliography

[Fie88] B. Fiedler. Global Bifurcation of Periodic Solutions with Sym-

metry, volume 1309 of Lecture Notes in Mathematics. Springer,

Berlin Heidelberg, 1988.

[GS02] Martin Golubitsky and Ian Stewart. The Symmetry Perspective.

From Equilibrium to Chaos in Phase Space and Physical Space,

volume 200 of Progress in Mathematics. Birkhäuser, 2002.
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