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Abstract

With growing interest in mobile ad-hoc networks and increasing capabilities re-
garding processing power and connectivity, an interesting and important challenge
is to combine database technology with mobile devices. However, a transfer of tra-
ditional research results to mobile devices is hindered by problems like message loss,
unpredictable disconnections of mobile devices, and network partitioning. When
applying database technology that was designed for traditional fixed-wired networks
in such mobile environments, the problem of long or even infinitely long blocking
times for commonly accessed resources arises. For instance, a message that releases
blocked resources may never reach its destination and leads to blocking of resources
longer than intended. To handle this kind of resource blocking, numerous synchro-
nization strategies that reduce the overall goals “atomicity” and “full serializability”
have been developed. However, reducing “atomicity” and “full serializability” can
lead to data inconsistencies.

In this thesis, we strike a new path to reduce protocol blocking and transaction
blocking for distributed transactions in mobile ad-hoc networks without abandoning
the goals “atomicity” and “full serializability”. We propose three main contributions
in combination with a Web service transaction model that is especially targeted on
dynamic service invocation in mobile ad-hoc networks.

Firstly, we present a technique that uses a special non-blocking state, the “Ad-
journ state”, to eliminate the need of setting up predefined participant time-outs
for aborting a transaction before the atomic commit protocol starts. This Adjourn
state allows a flexible reaction to network failures and makes renewed invocations
of sub-transactions superfluous in many cases. Our experimental evaluation proves
the Adjourn state’s reduction of transaction blocking and the increasing transaction
throughput in unreliable ad-hoc networks.

Secondly, we develop an atomic commit protocol called the “Cross Layer Com-
mit Protocol” (CLCP), to eliminate a single source of failure for atomic commit
protocols. CLCP employs all transaction participants as multiple coordinators and
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thus increases the protocol availability. In contrast to existing solutions, CLCP is a
decentralized protocol that lets participants determine the transaction’s decision by
their own knowledge, making messages that inform participants of the transaction’s
decision superfluous. While traditional atomic commit protocols operate solely on
the application layer, the cross-layer design of CLCP allows CLCP to operate very
energy efficient. We prove the correctness of CLCP, including the liveness and
safety property that are crucial for atomic commit protocols, and experimentally
compare CLCP with other atomic commit protocols in a mobile ad-hoc environ-
ment. We show that CLCP significantly reduces the average blocking duration and
that CLCP’s energy consumption is remarkably small.

Thirdly, we present a new technique for treating blocked data of transaction
participants that wait for a coordinator’s commit decision. Our technique, Bi-
State-Termination, gives participants that have moved during transaction execu-
tion the possibility to continue transaction processing before they know the co-
ordinator’s decision on transaction commit. The key idea of our technique is to
consider both possible outcomes (commit and abort) of unknown transaction de-
cisions. In contrast, traditional transaction processing would prevent participants
that have moved during the atomic commit protocol execution and therefore have
not received the transaction’s commit decision from using parts of their own data
in concurrent transactions. In mobile networks, there is no guarantee that these
moved participants will ever receive the transaction’s decision. Therefore, tradi-
tional transaction processing would cause resources to be unusable for an infinitely
long period of time. In contrast, Bi-State-Termination even allows further transac-
tions to use these blocked resources. We present three implementations for Bi-State-
Termination and compare them experimentally. Furthermore, we use the TPC-C
benchmark that captures a real world scenario with a high transaction load to
prove that Bi-State-Termination-enabled transaction processing allows committing
significantly more transactions than traditional transaction processing.

Due to the harmful effects that long transaction blocking has on concurrent trans-
actions, the use of transaction processing in mobile networks was considered un-
feasible, and research was targeting concepts that weaken atomicity, serializability,
and data consistency. However, combining our three main contributions, the Ad-
journ State, the Cross Layer Commit Protocol, and the Bi-State-Termination, we
can significantly reduce transaction blocking such that the duration and risk of infi-
nite transaction blocking is, in many cases, not harmful to concurrent transactions
any longer. Therefore, our contributions make the use of transaction processing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV Database Transaction Management in Mobile Ad-Hoc Networks



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

feasible even in unreliable mobile ad-hoc networks. This means, that we can give
transactional guarantees as atomicity, serializability, and data consistency, which,
in consequence, means that there is no longer the need to weaken these important
transactional guarantees in mobile ad-hoc networks.
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Chapter 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction

Mobile devices are becoming more capable regarding processing power and con-
nectivity, thus, such devices are used more and more to access and modify data on
the go. The advance of ad-hoc network technologies make wireless infrastructures
superfluous, which greatly augments flexibility and motivates the ubiquitous use
of mobile devices. However, it also gives way to a number of new problems, espe-
cially when transaction support is required in order to maintain data consistency
and integrity. The handling of unpredictable disconnections of mobile clients and
their movement, which may result in network partitioning, requires atomic commit
protocols that exhibit short blocking times and are robust against node failures.
Furthermore, clients underlie a finite source of energy, which limits the ability to
send and receive an arbitrary number of messages.

While traditional transaction models have been designed for a flat transaction in-
vocation, current trends to use service oriented architectures motivate hierarchical
transaction invocation models that support additional web service requirements as,
for example, dynamic web service orchestration. Thus, mobile nodes can provide
and make use of web services, whose mobile database accesses should be encapsu-
lated by spawning database transactions.

Characteristic for our assumed environment is the absence of both a stable data-
base server and a reliable fixed-wired network that the mobile clients can communi-
cate with. Therefore, all communication relies on an unstable radio network using
multi-hop wireless routing to maintain communication between at least some of the
mobile clients some of the time.

1.1 Mobile Databases

We assume that each device of our mobile ad-hoc network runs a local database
that performs the transaction and data management functions. Each client may
offer its mobile database content to other participants through a web service. Al-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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though a mobile database continues working even when the wireless connection
breaks up, it cannot communicate with other nodes, thus it cannot receive service
requests or send service results.

1.1.1 Examples of Mobile Database Applications

The following examples, which are also described in [7], give an overview of mobile
applications and challenges regarding transaction processing.

M-Commerce scenarios like mobile auction applications assist sellers and buyers,
for example of a flea market. Sellers may use their mobile devices to de-
scribe their offered goods, while buyers search for and and locate desired
items. In addition, the amount of mobile devices allows multi-hop ad-hoc
communication. Contracts between several buyers can be signed to gain vol-
ume discounts. In this context, transaction support is necessary in order to
achieve consistency for contracts and buying/selling actions across all involved
databases.

A more detailed description of the design of a mobile flea market application
regarding data caching has been published in [11,54].

Rescue applications use mobile networks to communicate with different machines
and human beings. A rescue application for fire fighters can be used to develop
rescue plans and form virtual teams of different fire brigades. Furthermore,
the mobile networks can be used to locate fire trucks and give moving instruc-
tions to them. In such a scenario, there is the need for transaction support in
the sense that fire trucks and fire fighters are considered as resources that re-
ceive instructions. Since resources cannot perform contradictory instructions
at the same time and most plans require that more than one unit processes
the instructions, properties like atomicity and isolation must be supported.

Autonomous Rover Vehicles, e.g. Mars rovers, explore new terrains, collect mea-
surements, and take rock samples. In order to analyze the surface of the
planet, the Mars rovers must further combine their locally measured data
with data that is already present in the network. Thus, the network serves as
a large database. While some types of Mars rovers move fast, some of them
move at a moderate speed. As the application of well tried and tested stan-
dard distributed database technology in such a scenario is desirable, trans-
action processing must be modified in order to stabilizes the coordination
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process, and to reduce the blocking of participating databases, especially if
the databases are suspected to frequently disconnect from the network.

Homecare Applications assist nurses with mobile devices like PDAs to get infor-
mation about patients. Transaction support is required whenever patient
data, medical data, or subscriptions get updates. However, the amount of
transactions is usually very low. Therefore, the concurrency control mecha-
nisms used do not need to be efficient regarding the transaction throughput,
but they must be efficient regarding data blocking.

1.2 Differences between Mobile Ad-Hoc Network and
Fixed-Wired Network Transaction Processing

If we compare traditional transaction processing in fixed-wired environments with
transaction processing in mobile environments, we can identify the following new
challenges that are induced by the mobile character of a network and its underlying
applications.

1.2.1 Enhanced Failure Model

Compared to fixed-wired networks, mobile environments suffer from a variety of
failures:

Message loss occurs in fixed-wired networks due to rare problems like buffer over-
flows or data packet collisions. In mobile networks, however, message loss
occurs more frequently. For example, if the sender or receiver moves out of
scope, if the channel suffers from interference, if obstacles hamper the trans-
mission, or if the sender’s or receiver’s battery drains suddenly during message
transmission.

Network partitioning due to the movement of participants occurs in mobile envi-
ronments more frequently than in fixed-wired networks, in which this event
is very seldom.

Device failure due to low energy may occur frequently in mobile networks.
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1.2.2 Message Reception Model

In mobile ad-hoc networks, a message that is sent is not only received by the
destined recipient. Each participant that is close to the sender can hear the message.
When a routing strategy is used, participants that are located close to the path that
the message takes will get the message. We will see in Chapter 5 how our Cross
Layer Commit Protocol utilizes this characteristic.

1.2.3 Device Controllability

Distributed databases in fixed-wired networks are usually used for performance
and availability reasons. Thus, there is often a single database owner that controls
all of its databases. In mobile networks, however, each user owns and controls
only a single device. Thus, whenever distributed transactions must access multiple
devices, we cannot guarantee that all individual users cooperate and do not move
away, since there is no central instance that controls the devices.

1.2.4 Compensation Applicability

Transaction processing models that apply the concept of compensation, e.g. [23,
56, 57], explicitly allow databases to run into a possibly inconsistent state that is
compensated later. However, the models using compensation assume that databases
are somehow connected to a single site that controls the compensation. Thus, par-
ticipants having inconsistent states will not participate in proceeding transactions
with different participants as long as their inconsistent states have not been com-
pensated.

However, if a network contains independent mobile participants that are suscep-
tible to network partitioning, there is no guarantee that a compensating transaction
will be received by the destined database. This means, that a database may con-
tain inconsistent data, but has no knowledge of this inconsistency. Furthermore,
the database may participate in transactions that are based upon this inconsistent
data with different participants. As a result, the state of inconsistency is passed on
to other participants. Since this “chain of inconsistency” may be arbitrarily long
and compensation is not possible if participants cannot be reached, e.g. if the net-
work is partitioned, protocols relying on compensation cannot guarantee atomicity
in mobile ad-hoc environments where participants are autonomous.
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1.3 Problem Description

In this thesis, we focus on the following major problems:

1. During the execution of a web service on multiple participant nodes, the nodes
wait for the atomic commit protocol to start and block the used resources for
a predefined time. When the time limit has exceeded before a vote message
has arrived at the client, the transaction is aborted. The problem is that
setting up a timeout that enhances the number of committed transactions
and reduces the overall blocking time is extremely difficult since it depends
on the network quality that is not necessarily constant over time.

2. During the atomic commit protocol, a sequence of failures may lead to a
situation where the atomic commit protocol instance cannot terminate with
a unique commit or abort decision. As traditional atomic commit protocols
consist of only a single commit coordinator and rely on a stable network,
atomic commit protocol blocking occurs more frequently when the coordinator
fails or the network is partitioned. The problem of other contributions using
multiple commit coordinators is the higher energy consumption that occurs
due to a massive increase of messages.

3. After a database proposed to execute a transaction T by sending a voteCommit
message, the database may not receive the final commit decision. In this
situation, transaction blocking, which summarizes the unilateral impossibility
to abort or commit a transaction, occurs. Transaction blocking can lead to
situations in which resources are not useable by other transactions for an
infinitely long time.

1.4 Roadmap and Bibliographic Notes

We start by explaining fundamental transaction concepts in Chapter 2, including
a new web service oriented transaction model (Chapter 3). Parts of this transaction
model, which has been especially designed for mobile environments, are published
in [8, 10,13].

During the execution of the web service, the participating nodes wait for the
atomic commit protocol to start. During this wait, the Adjourn state allows to
reduce the blocking and increases the transaction throughput. In Chapter 4, we
describe this Adjourn state, which has been published in [51,52]. The Adjourn state
is based on the Suspend state that has been published in [8, 13].
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During the execution of the atomic commit protocol within a mobile ad-hoc envi-
ronment, several failures can occur that lead to atomic commit protocol blocking. In
Chapter 5, we describe the Cross Layer Commit Protocol, a failure tolerant atomic
commit protocol that makes use of mobile network characteristics and reduces the
required energy consumption. This atomic commit protocol is described in [53]. It
is based on the Multiple Coordinator Protocol (MCP) of [9, 12].

Even though our atomic commit protocol tolerates network problems, some nodes
may not receive the transaction decision when the nodes have moved. The concept
of Bi-State-Termination, first published in [50], allows participants to unblock re-
sources, which means that participants can even execute conflicting transactions.
We explain this concept in Chapter 6.

Finally, Chapter 7 summarizes and concludes this thesis.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fundamentals

This chapter gives definitions for fundamental transaction processing terms.

2.1 Database

A database consists of a set of data tuples. Each of these data tuples has a value.
A database system describes a collection of modules that access the database. We
call each module that performs such an access a database operation. The simplest
operations are read and write operations. The read-operation returns the value of
a data tuple, while the write operation allows to change the data tuple’s value.

2.2 Transaction

A database transaction is a sequence of (read- and write-) operations that is
treated as a single operation. Thus, a database transaction must be executed in
an atomic fashion, which means that all of its operations must be either entirely
committed, or all of them must be aborted. The effects of a committed transaction
become permanent, while an aborted transaction must not have any effect on the
database.

There are several reasons why a database must abort a transaction, e.g. if the
transaction violates consistency constraints, if the transaction conflicts with con-
current transactions, if required locks are not available for a certain time, or if the
database is running out of main memory or hard disk space.

2.3 Distributed Transaction

A distributed transaction is a transaction in which two or more network hosts are
involved. The set of operations processed at a single host is called a sub-transaction.
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Compared to non-distributed transaction processing, the processing of distributed
transactions requires consideration of an enhanced failure model. For example,
message loss and node failure must be handled when processing distributed trans-
actions.

2.4 Local Transaction Model

During the execution of a sub-transaction, a database enters the following phases:
the read-phase, the commit decision phase, and, in case of successful commit, the
write-phase. While executing the read-phase, each sub-transaction invokes neces-
sary sub-transactions and carries out write operations on its private transaction
storage only. During the commit decision phase, the participating databases use
an atomic commit protocol to decide on the transaction’s commit decision, which
can be either commit or abort. If the transaction’s commit decision is abort, each
database discards all changes made by the corresponding sub-transaction. If the
transaction’s outcome commit decision is commit, the database executes the sub-
transaction’s write phase. During this phase, the private transaction storage is
transferred to the durable database storage, such that the changes done through-
out the read-phase become visible to other transactions after completion of the
write-phase.

2.5 Atomicity

Atomicity in the field of transaction processing means that a transaction Ti in-
cluding all of its operations, either runs successfully to completion, or, if Ti does
not complete, that Ti has no effect at all and leaves the database in a state as if
the transaction had never been started.

Guaranteeing atomicity for non-distributed transactions is a task that is fulfilled
by the database itself.

However, if atomicity must be guaranteed for a distributed transaction Ti, it is
required that all sub-transactions belonging to Ti commit or all sub-transactions
belonging to Ti abort. Thus, a single sub-transaction cannot immediately commit
at a host after is has been executed, since other sub-transactions belonging to the
same transaction might abort and an abort of a single sub-transaction requires all
other sub-transactions to abort as well. Thus, to achieve atomicity for distributed
transactions, communication between the participants is necessary. We call the
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Coordinator Participant

voteRequest

voteCommit

commit

acknowledgement

voting
phase

phase
decision

= forced log write
= non-forced (lazy) log write

Figure 2.1: 2-Phase Commit Protocol

protocol that leads all participating databases to an atomic decision an atomic
commit protocol.

2.6 Atomic Commit Protocols

We discuss two traditional atomic commit protocols, Two-Phase Commit (2PC)
and Three-Phase Commit (3PC), which are mainly used within fixed-wired envi-
ronments. Furthermore, we describe the recently proposed Paxos Commit Protocol
that derives a commit decision based on the Paxos Consensus algorithm.

2.6.1 Two-Phase Commit Protocol

The basic Two-Phase Commit Protocol (2PC), first described by [28] and [46], is
the first protocol that was proposed to guarantee atomicity for distributed trans-
actions. As the name implies, 2PC consists of two phases. During the first phase,
called voting phase, the coordinator demands a vote on the transaction’s commit
decision in terms of “voteAbort” or “voteCommit” from each participant. When all
participants have voted, the coordinator proceeds to the second phase, called deci-
sion phase, in which the coordinator decides for “commit” of the transaction if all
votes are “voteCommit”, otherwise the coordinator decides for “abort”. Figure 2.1
illustrates the protocol.

A participant that voted for “commit” is not allowed to abort or commit the
transaction on its own until it has received the coordinator’s commit decision. A
participant that voted for “abort” can immediately abort the transaction, which
means, the database must restore a state that is equal to a situation in which
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the transaction has never been executed, i.e. all changes caused by the aborted
transaction must be rolled back.

If a database has voted for “commit” and the decision on the transaction is “com-
mit” as well, the transaction’s changes become durable, i.e. the write phase is exe-
cuted, and thus the transaction’s changes are visible to other transactions. Further-
more, when the write phase is completed, locks held by the completed transaction
can be released. After the transaction has successfully committed, each participant
sends an acknowledgement to the coordinator. If the decision on the transaction
has been “abort”, the database aborts the transaction as described above.

2PC involves several logging activities in order to deal with communication and
system failures. The coordinator force-writes an initialization record before it re-
quests the votes, which is a log entry that is forced to be written immediately to the
stable storage. Then, each participant force-writes a “voteCommit” entry before it
sends the “voteCommit” message to the coordinator, or, when the transaction must
be aborted, the participant force-writes an abort record. Before the coordinator
sends the final commit decision, it force-writes a log entry about the “commit” or
“abort” decision. When the decision is received by a participant, an additional
log entry that the transaction is going to be committed or aborted respectively
is required before an acknowledgement is sent to the coordinator. The coordina-
tor forgets about the transaction after all acknowledgements have been received,
since the coordinator is sure that each participant has written the commit or abort
decision into its log, and thus no participant will any more inquire about the trans-
action’s commit decision. Therefore, the coordinator issues a non-forced (lazy) log
write that logically eliminates the transaction from the log. For n participants, the
basic 2PC requires 2n+ 2 forced log writes and 4n messages.

In the next section, we discuss two further logging strategies for 2PC, namely the
Presumed Abort Protocol and the Presumed Commit Protocol optimization that
are used depending on the volume of the transactional system and the assumed
frequency of failures.

2.6.2 2PC Optimizations

As atomic commit protocols are traditionally used for guaranteeing the integrity
of distributed databases within environments where physically different databases
are connected by high-speed networks, overall database performance is an impor-
tant criterion for high-volume transactional systems. As [64] has evaluated, the
transaction performance decreases when using 2PC due to the increased costs of
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Figure 2.2: Presumed Abort 2PC, Abort Case

forced log writes. Thus, one goal of 2PC optimizations is to reduce the number
of forced log writes by designing more clever algorithms that restore the state of
the atomic commit protocol in case a participant suddenly reboots or looses main
memory information.

The Presumed Commit Protocol and the Presumed Abort Protocol have been
proposed in [47,48]. Both protocols are optimizations of 2PC and presume that the
transaction will commit (abort), thus reducing the number of forced log writes.

The idea of Presumed Abort is illustrated in Figure 2.2, which shows the abort
case. In case the coordinator decides for abort, it does not write any log record for
the following reason: Whenever the coordinator suddenly looses its main memory
information and must reboot, it does not know anything about the transaction. If
a participant inquires about the transaction’s commit decision, the coordinator will
not find a log entry; thus, the coordinator answers with “abort”. Therefore, the first
log entry of a coordinator can also be skipped, since in case of failure, the decision
for the transaction would be abort.

The commit case, illustrated in Figure 2.3, requires the coordinator to force-
write a commit record before the commit command is sent to the first participant
in order to ensure that the coordinator will not mistakenly presume abort after the
coordinator has failed and restarted.

The commit case of Presumed Commit is illustrated in Figure 2.4. In contrast
to Presumed Abort, the idea of Presumed Commit is that a coordinator decides
for commit whenever no information about a transaction can be found within the
log. In contrast to Presumed Abort, this requires the coordinator to force-write an
initialization record before the votes are requested to indicate that the transaction
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Figure 2.3: Presumed Abort 2PC, Commit Case
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Figure 2.4: Presumed Commit 2PC, Commit Case
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Figure 2.5: Presumed Commit 2PC, Abort Case

coordination is still in progress and has not been committed. However, when the
decision for commit can be made, the coordinator must forget about the transaction
before it sends the commit command, since an inquiring participant will always re-
ceive the answer “commit” when no log entry on the transaction is found. Thus, the
coordinator force-writes an entry that logically eliminates the initialization record
before sending the commit command. The benefit of Presumed Commit is that in
case of commit, an acknowledgement message from each participant is not necessary
anymore.

The abort case of Presumed Commit is illustrated in Figure 2.5. In this case, an
acknowledgement message of each participant is necessary. After each participant
has acknowledged, the coordinator can be sure that each participant has written
the decision into its log and thus, no participant will inquire about the transaction
in the future anymore.

In comparison with standard 2PC, the Presumed Abort optimization saves in
total n messages (the acknowledgement messages) and n + 2 forced log writes for
an aborted transaction that involves n participants, but saves only one forced log
write for committed transactions. In contrast, Presumed Commit saves n messages
and n forced log writes in case of commit (the participant’s commit entries), but
saves only one forced write in case of abort. A detailed description of both protocols
can also be found in [37,71].

Based on the Presumed Commit Protocol, [42] proposed the new Presumed Com-
mit Protocol, which eliminates the forced write of the initialization record in the
beginning of transaction coordination. Since this omission leaves the coordinator
unclear about all active transactions in case of a failure, an additional set of poten-
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tially initiated transactions is required, which is calculated by means of increasing
transaction IDs. Whenever the transaction having the lowest transaction ID has
been committed or aborted, a lower boundary of open transactions is calculated
and written to the log. However, in contrast to Presumed Commit, crash related
information must be kept even in case of commit.

[65] proposes the unsolicited-vote optimization, which is based on the assump-
tion that each participant knows when it has finished all operations belonging to a
transaction. Thus, a participant can immediately send a vote in conjunction with
the transaction’s result. Although this optimization makes the “voteRequest” mes-
sage superfluous, each participant looses the right to abort a transaction due to a
timeout, since a participant is doomed to wait until it has received the coordinator’s
commit decision. In contrast to standard 2PC, the unsolicited-vote optimization is
more susceptible to participant and coordinator failures, since the blocking time of
participants increases with varying transaction execution times.

2.6.3 Three-Phase Commit Protocol

A major problem of 2PC and its optimizations is that 2PC involves a waiting
state, which participants enter after they have sent the vote on the transaction to
the transaction initiator and are waiting to receive the decision from the coordi-
nator. For 2PC, the set of possible successor states that follow the waiting state
contains both, the abort state and the commit state. A coordinator failure includ-
ing a participant failure can lead to a blocking situation in which the remaining
participants cannot decide for abort or commit, since the failed participant may
have advanced to either the abort or commit state. Even a new coordinator cannot
terminate the transaction when at least one participant’s state is unknown.

The Three-Phase Commit Protocol (3PC) was designed by [62] to overcome this
problem in environments in which site failures can occur but not network partition-
ing. The main idea of 3PC is to use an additional dissemination phase before a
transaction is finally committed. Figure 2.6 illustrates a successful commit coordi-
nation for 3PC. The state chart for 3PC showing the coordinator can be found in
Figure 2.7, while the state transitions for a participant are illustrated in Figure 2.8.

In the first phase of the 3PC, the coordinator demands the votes of the partic-
ipants and proceeds to the state wi. A participant that has received the message
“voteRequest” answers with either commit or abort, depending on the transaction’s
read-phase outcome, and also proceeds to the state wi. If, and only if all vote mes-
sages were commit, the coordinator sends a “prepareToCommit” message to each
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Figure 2.6: 3-Phase Commit Protocol
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participant and proceeds to the state pi. A participant that has received the “pre-
pareToCommit” message acknowledges by sending “prepared” and proceeds to the
state pi. Again, the coordinator needs the “prepared” messages of all participants
to instruct them to commit the transaction and proceed to the state ci.

Note that a participant that has sent a “voteCommit” message is no longer allowed
to abort the transaction on its own. Therefore, the message pair (“prepareToCom-
mit”, “prepared”) is previously fixed. Although, at first, these messages seem to be
superfluous, 3PC guarantees that for any two participants, which may differ in at
most one state, the set of possible successor states does not contain an abort and
commit simultaneously. In case of coordinator failure, this allows the participants
to elect a new coordinator that terminates the transaction. This newly elected
coordinator first queries all available participants about their last state within the
protocol execution. Whenever at least one participant has received a “prepareTo-
Commit” message, i.e. it is in the state pi, the new coordinator decides for commit.
In this situation, all participants have voted for commit, and no participant may
have aborted the transaction since a participant can be at most in the waiting state
wi. If, in contrast, all participants are within the waiting state and none in the
prepared state pi, no participant can have committed the transaction, i.e. is in the
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state ci, but some participants may be in the state ai. Thus, the new coordinator
will decide for abort.

The termination phase for 3PC is only correct if no network partitioning has
occurred. Otherwise, two new coordinators of two different network partitions may
come to different decisions on the transaction. Thus, whenever mobile networks are
susceptible to network partitioning, the termination mechanism of 3PC can lead to
wrong results.

2.6.4 Paxos Commit Protocol

The Paxos Commit Protocol [30] is based on the Paxos Consensus approach de-
scribed in [40,41], which was originally designed to let participants agree on a single
decision among several options. The main idea of this approach is that whenever a
majority of participants have accepted a decision D, this decision becomes implic-
itly anchored among all participants. This anchorage guarantees that any further
proposal will be the same as the anchored decision D.

Paxos Commit uses multiple coordinators by assigning them different roles. One
of them has a special role, it is called the leader, the other coordinators are called
acceptors. Each participating database forwards its commit vote to each of the
Paxos acceptors. Each acceptor then forwards its collected database votes to the
leader, which determines whether the transaction must be committed or aborted,
or, if some acceptors have not received some of the database votes, whether some
acceptors must be additionally notified. When the leader’s proposal has been made,
it is forwarded to the acceptors and to the databases.

To ensure that the protocol progresses even if the leader fails, each acceptor may
decide for itself if and when it becomes a leader. To handle conflicts when more
than one leader is present, Paxos uses increasing version numbers to identify the
highest leader and the corresponding leader’s proposal. An acceptor accepts a new
proposal only if the new proposal has a higher version number than the old proposal.
A new leader must build a proposal by adopting the previous proposal having the
highest version number.

In contrast to the termination phase of 3PC, Paxos Consensus works correctly
even when network partitioning occurs.

The termination phase of our CLCP protocol, which is based on Paxos Commit,
gives a more detailed explanation of the use of version numbers and majorities in
Chapter 5.
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Chapter 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transactions for Web Services

3.1 System Model

We consider mobile devices, each equipped with a local database. The mobile
devices form a mobile ad-hoc network and offer their data by providing (web-)
services. When a device uses an offered Web service of a participant Pi, one or
more sub-transactions are invoked at the local database of Pi, which may invoke
other sub-transactions on mobile devices Pk.

Due to the distributed character of our system model, one challenge when guar-
anteeing the atomicity property is to block resources as shortly as possible.

3.2 Web Service Transaction Model

In contrast to traditional flat transaction models [6], in which a transaction is
split a-priori into several sub-transaction’s, our service oriented approach is based
on the “Web Services Transactions Specification” [14]. However, due to our focus
on the blocking problem when guaranteeing atomicity, we can use a much simpler
transaction model in this paper, i.e., we do not need a certain Web service modeling
or composition language like BPEL4WS [20]. Thus, our transaction model consists
only of the objects “application”, “transaction procedure”, “Web service”, and “sub-
transaction”. These terms are related to each other as explained in the following.

An application AP may consist of one or more transaction procedures. A transac-
tion procedure is a Web service that must be executed in an atomic fashion. Trans-
action procedures and Web services are implemented using local code, database
instructions, and (zero or more) calls to other remote Web services. Since the invo-
cation of a Web service depends on conditions and parameters, different executions
of the same Web service may call different Web services and execute different local
code.
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time

time

wait for resultTi

Tj

Figure 3.1: Synchronous Calls for Web Services

When AP executes a transaction procedure, we call AP the Initiator, and we
call the execution of the transaction procedure a transaction Ti. The application
AP is interested in the result of Ti, i.e. whether the execution of the transaction
Ti has been committed or aborted. In case of commit, AP is also interested in the
return values of the parameters of Ti.

The relationship between transactions, Web services, and sub-transactions is re-
cursively defined as follows: We allow each transaction or sub-transaction to dynam-
ically invoke additional Web services offered by physically different nodes. We call
the execution of such Web services invoked by a transaction or sub-transaction Ti

the sub-transactions Tj . . . Tn of Ti, respectively. This invocation hierarchy can be
arbitrarily deep. Thus, the sub-transaction Tj can invoke another sub-transaction
Tk, as well. However, if we do not need to refer to the relationship between Tj and
Tk, we call both of them transactions.

Whenever Tj . . . Tn denote all the sub-transactions called by either Ti directly
or by any child or descendant sub-transaction Tk of Ti during the execution of
the transaction Ti, atomicity of Ti requires that either all transactions of the set
{Ti, Tj , . . . , Tn} commit, or all of these transactions abort.

We assume that each Web service only knows the Web services that it calls
directly, but does not know whether or not the called Web services call other Web
services. Therefore, at the end of its execution, each transaction Ti knows which
sub-transactions Tj . . . Tn it has called, but Ti, in general, will not know which sub-
transactions have been called by Tj . . . Tn. Furthermore, we assume that usually a
transaction Ti does not know how long its sub-transactions Tj . . . Tn are going to
run.

In the mobile architecture for which our protocol is designed, Web services are
invoked by asynchronous messages instead of invoking them by synchronous calls for
the following reason. We want to avoid dependencies that occur if the completion
of the read-phase of a (sub-) transaction Ti depends on the execution of another
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Figure 3.2: Modelling Synchronous Web Service Calls by Asynchronous
Invocations

sub-transaction Tj . Figure 3.1 illustrates this situation: The Web service Ti must
wait for the result of Tj before it can finish its execution.

In contrast, we want each sub-transaction to be able to autonomously complete
its read phase. Thus, we allow sub-transactions only to return values indirectly
by asynchronously invoking corresponding receiving Web services, and not syn-
chronously by return statements. However, our model also supports a synchronous
Web service call of Ti to Tj by modeling the call as Figure 3.2 illustrates: we split
Ti into Ti1 and Ti2 as follows. Ti1 includes Ti’s code up to and including an asyn-
chronous invocation of its sub-transaction Tj ; and Ti2 contains the remaining code
of Ti. Tj additionally contains an asynchronous call to Ti2 that contains the return
values computed by Tj that shall be further processed by Ti2.

Since (sub-)transactions describe general services, the nodes that execute these
(sub-) transactions may be arbitrary nodes and are not necessarily databases. Thus,
we also call these nodes resource managers (RM).

One feature of our Web service transactional model is that the Initiator and
the Web services do not need to know in advance every sub-transaction that is
generated during transaction processing.

Figure 3.3 shows an example execution of our Web service transaction model. The
Initiator of the transaction invokes a Web service Ti that is offered by participant Pi.
During the completion of the read-phase, an additional transaction Tj that is offered
by participant Pj is necessary to fulfill Ti. Furthermore, the Initiator is notified
whenever a sub-transaction’s read-phase is completed, as the dotted arrows indicate.
We will see the benefit of this notification regarding a fast determination of all
involved participants in Section 4.4. Figure 3.3 additionally shows how call-by-value
invocations are implemented: When Participant Pi invokes the sub-transaction Tj

at Pj , it additionally adds the parameter [Tk] to specify that Tk must be invoked
with the corresponding return value when Tj has finished. Thus, Pj invokes Tk with
the requested return value after Pj has finished Tj ’s read-phase. The Initiator starts
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Figure 3.3: Web Service Transaction Execution Sequence

the commit protocol when all sub-transactions have finished, which is explained in
Section 4.4. The commit protocol then needs several message exchanges in order
to decide on the transaction’s commit status.

3.2.1 Related Transactional Models

Our model differs from other models that use nested transactions (e.g. [14,23,45,
55–57]) in some aspects including but not limited to the following:

Since network partitioning makes it difficult or even impossible to compensate
all sub-transactions, we consider each sub-transaction running on an individual
resource manager to be non-compensatable for the following reason. Committed
transactions can trigger other operations, thus, we cannot assume that compensa-
tion for committed transactions in mobile networks is always possible, since network
partitioning makes nodes unreachable but still operational. When the compensa-
tion transaction does not reach the node, however, a model relying on compensation
cannot give hard global atomicity guarantees as defined in [35]. Thus, we focus on
a transaction model, within which atomicity is guaranteed for distributed, non-
compensatable transactions. Therefore, no sub-transaction is allowed to commit
independently of the others or before the commit Coordinator guarantees that all
sub-transactions can be committed.

[23] is another contribution that relies on compensation and sets up a transaction
model called “The Kangaroo Model”. Common with this model, we have a global
transaction as well as sub-transactions that are created during transaction execution
and cannot be foreseen.

Models like [56] or [57] allow a transaction to define the level of consistency
which the transactions leave behind. In contrast, our solution does not need to
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adjust the level of consistency. We can guarantee atomicity without leaving states
of inconsistency, even within mobile environments without base stations, where
nodes that have consistent data may crash or permanently remain in a separated
network partition.

Different from CORBA OTS [45, 55], we assume that we cannot identify a hier-
archy of commit decisions, where aborted sub-transactions can be compensated by
executing other sub-transactions. Although we assume that Web services invoke
other Web services and the coordinator uses a tree structure to maintain informa-
tion about commit votes, we do not propose hierarchical commit decisions, since
this implies that the upper nodes of the execution hierarchy must wait for the com-
mit decision of all descendant nodes. In a mobile environment, where node failures
are likely, our solution allows to spread the commit decision as fast as possible by
flattening the invocation tree even before the atomic commit protocol starts.

Web services and their description languages (e.g. BPEL4WS [20] or XLANG
[67]) are used more and more to implement nested Web service transactions, which
are called Web services orchestration. However, these languages do not provide a
coordination framework to implement atomic commit protocols.

Different from the Web service transaction model [14], the Initiator of a transac-
tion in our model does not need to know all the transaction’s sub-transactions in ad-
vance. We assume that each sub-transaction notifies the Initiator after completion
of the read-phase by including a list of asynchronously invoked sub-transactions
into its “read phase completed” notification message to the Initiator. Thus, our
Web services may consist of control structures, e.g. if <Condition> then <T1>

else <T2>. This means that an execution of a sub-transaction may create other
sub-transactions dynamically. These dynamically created sub-transactions belong
to the global transaction and must be guided to the atomic commit decision as well.
Furthermore, we assume message-oriented communication, i.e., a Web service does
not explicitly return a result, but may invoke a receiving Web service that performs
further operations based on the Web service result.

The approaches [21] and [22] suggest the suspend state, which unblocks resources
as well. However, these approaches are intended for the use within an environment
with a fixed network and several mobile cells, where disconnections are detectable
and therefore transactions can be compensated. In contrast, our assumed envi-
ronment, which allows ad-hoc communication, demands a more complex failure
model that takes network partitioning into consideration. This means, our model
assumes that a coordinator cannot distinguish whether another node has failed or is
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still operational in another partition, and therefore compensation cannot be used.
In addition, our transactional model is more powerful since it allows dynamically
invoking Web service transactions, which need not to be known in advance.

3.3 Concurrency Control

We describe two common concurrency control methods, namely Two-Phase Lock-
ing (2PL) and Validation, which can be used in our Web service transaction model.

For each transaction Ti, let RS(Ti) denote the local data read by Ti, and let
WS(Ti) denote the local data written by Ti.

Definition 3.3.1 Two operations Oi and Oj conflict ⇐⇒ ∃ tuple t ∃ attribute a :
(Oi accesses t.a ∧Oj accesses t.a ∧ ((Oi writes t.a) ∨ (Oj writes t.a)))

Definition 3.3.2 A transaction Tj depends on Ti if and only if on a database D at
least one operation Oi of Ti conflicts with an operation Oj of Tj , and Oi precedes
Oj .

Definition 3.3.3 The serialization graph of a set of transactions contains the trans-
actions as nodes and a directed edge Ti → Tj for each pair (Ti, Tj) of transactions
for which Tj depends on Ti.

Definition 3.3.4 Serializability requires the serialization graph of all committed
transactions to be acyclic.

3.3.1 Two-Phase Locking

The Two Phase Locking Protocol [24] consists of two consecutive phases for han-
dling transaction locks:

• In Phase 1, necessary locks are acquired, no lock is released.

• In Phase 2, no lock can be acquired anymore, but locks may be released.

For transactions that obey 2PL, the serializability property is guaranteed ac-
cording to [68]. However, in order to avoid cascading aborts and to guarantee
recoverable histories, we require transactions to be strict [6], i.e. Phase 2 can only
be entered when the resource manager has received the transaction’s commit or
abort command. In other words: Unless the transaction’s commit decision is not
known by a resource manager, the resource manager is not allowed to use the trans-
action’s resources for other purposes. We assume for the remainder of the thesis
that the strictness property holds when 2PL is used.
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3.3.2 Local Concurrency Control by Backward Validation

Optimistic concurrency control [32, 39], more precisely backward oriented opti-
mistic concurrency control with parallel validation, does not use locking and allows
parallel access to conflicting data tuples. However, after the read-phase has been
finished, an additional validation phase follows in which concurrency conflicts are
discovered, and only those transactions that are validated correctly may, after a suc-
cessful distributed commit decision, enter a write phase, within which they write
their changes back to the database.

A local sub-transaction To is called older than a local sub-transaction Tv running
on the same database, if To starts its validation phase before Tv does.

A transaction Tv validates to true, if one of the following conditions holds for
each older transaction To:

1. To has completed its write phase before Tv has started.

2. To has completed its write phase after Tv has started but before Tv has started
its validation phase, and (RS(Tv) ∩WS(To)) = ∅.

3. To has not finished its write phase before Tv has started the validation, and

(a) (RS(Tv) ∪WS(Tv)) ∩WS(To) = ∅, and

(b) (RS(To) ∩WS(Tv)) = ∅

Compared to [39], we additionally require condition 3(b) to be fulfilled in order
to guarantee serializability for distributed transactions. While the concurrency con-
trol proposed by [39] correctly guarantees serializability for non-distributed transac-
tions, it cannot guarantee serializability when distributed transactions are executed
concurrently.

read(x) ...
A

T1A
validate

T2A validate write(x) ...

read(y) ...
B

T2B
validate

T1B validate write(y) ...

Figure 3.4: Serializability for Distributed Transactions

Figure 3.4 shows a schedule for the participants A and B, each of them running
two sub-transactions concurrently. On participant A, a dependency T1A before
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T2A exists, while on participant B, a dependency T2B before T1B exists. If a global
transaction T1 consists of the sub-transactions T1A and T1B and a global transaction
T2 consists of the sub-transactions T2A and T2B, the serialization graph would
contain a cycle, which violates serializability. The request for checking condition
3(b) prevents this cycle, since our proposed concurrency control protocol would
abort both sub-transactions T2A and T1B.

3.4 Blocking Behavior of Locking and Validation

Traditional validation [39] is usually considered a scheduling technique for syn-
chronization of concurrent transactions that avoids blocking.

However, although validation does not directly block any resources, we argue
that even the validation-based concurrency control shows a blocking behavior when
used in combination with an atomic commit protocol. More precisely, in case of
link failures or node failures, locking and validation are equivalent regarding their
blocking behavior in the following sense. Assume that a sub-transaction Ti, reading
the tuples RS(Ti) and writing the tuples WS(Ti), is waiting for the Coordinator to
demand a vote on the transaction.

Two-phase locking would not allow any sub-transaction Tk withWS(Ti)∩(WS(Tk)
∪RS(Tk)) 6= ∅ to get the required locks and would therefore block Tk and prevent
the completion of Tk’s read-phase.

Traditional validation (e.g. [39]) would allow any younger sub-transaction Tk

with WS(Ti) ∩ (WS(Tk) ∪ RS(Tk)) 6= ∅ to enter the read-phase. However, since
the tuple sets WS(Ti) and (WS(Tk) ∪ RS(Tk)) are not disjoint, the validation of
Tk fails, resulting in an abort of Tk. Thus, validation prevents Tk to enter its write
phase as well. Note that even a repetition of Tk would result in an abort as long as
Ti waits for the Coordinator’s decision.

This means that both techniques, locking and validation, show a similar behavior
when dealing with atomic commit decisions for mobile networks: A transaction Ti

that waits for the commit decision and that has accessed the tuplesWS(Ti)∪RS(Ti)
during its read-phase, is not allowed to unilaterally commit or abort the transaction.
Thus, Ti prevents other sub-transactions Tk that write on the data Ti accessed or
that read data Ti has written from being committed.
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3.5 Summary
In this chapter, we have introduced a new Web service transactional model suit-

able for mobile networks, which allows a Web service to dynamically invoke other
Web services to fulfil its own service. We have discussed two concurrency con-
trol mechanisms for this Web service model, locking and validation, and we have
demonstrated the blocking effect that both concurrency control schemes involve.
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Chapter 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adjourn State

In this chapter, we present a technique that reduces the blocking problem before
the atomic commit protocol starts. Our technique does not rely on the difficult
setup of reasonable timeouts. In addition, we propose a technique that discovers
all dynamically invoked sub-transactions of a Web service.

4.1 Pre-Atomic Commit Protocol Blocking Problem

Regardless of whether validation or locking is used, the following problem oc-
curs when the database is still able to abort a sub-transaction Ti, but the commit
coordinator is not reachable anymore: The concurrency control prevents conflict-
ing transactions Tc from being successfully executed. In other words, any delay in
the commit phase of Ti has a blocking effect on concurrent conflicting transactions
Tc. To solve this problem, [62] has introduced time-outs after which the database
aborts the transaction Ti if it is still allowed to do so, i.e. if it has not sent its vote
message.

However, especially in mobile networks, the question arises: “What is a reason-
able time-out after which the database should abort the transaction Ti if it has
not sent a vote message yet?”. If the time-out is too large, it prevents concurrent
and conflicting transactions Tc from a successful validation, since Tc will not pass
the validation phase successfully due to the pending transaction Ti. If the time-out
is too short, Tc may be unnecessarily aborted, e.g. when the delay is caused by
the network or when the duration of the validation phase differs for the databases
participating in the global transaction. Determining a reasonable time-out is diffi-
cult since it involves not only knowledge about the network conditions, e.g. device
movement, message delivery times, message loss rates, etc., it must also consider
the device’s computing power and CPU utilization, and the varying duration of
the validation phase for each mobile device. Therefore, our solution, which does
not rely on such a participant time-out, is much easier to setup, and we will even
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see that it increases the overall transaction throughput and reduces the amount of
blocking.

4.2 Adjourn State Blocking Reduction

Our solution consists of two parts, namely the Adjourn state and the Commit
tree. The Adjourn state avoids setting up participant time-outs for aborting a
transaction by distinguishing between two states in which a database can wait
for the coordinator’s voteRequest message: the blocking state (defined in Section
4.2.1) and the non-blocking Adjourn state (introduced in Section 4.2.2). We will
describe the database’s reaction regarding concurrent conflicting transactions for
both, locking and validation-based concurrency control.

The second part of our solution – the Commit tree – deals with the identification
of invoked sub-transactions. Furthermore, the Commit tree handles partial restarts
of a sub-transaction instead of repeating the whole global transactions.

4.2.1 The Blocking State

The database is allowed to switch unilaterally from the blocking state to the
non-blocking Adjourn state as long as the vote has not been sent.

Both states, the blocking state and the non-blocking Adjourn state differ in the
way how the validation phase for a concurrent transaction is executed, and therefore
show a different blocking behavior.

Blocking State for Locking

If a locking-based concurrency control scheme is used and a sub-transaction Ti

that is in the blocking state has acquired the set of read locks RL(Ti) and the set
of write locks WL(Ti), another transaction Tk is not allowed to acquire a write lock
wl with wl ∈ RL(Ti), and Tk is not allowed to acquire any lock l with l ∈WL(Ti).
Thus, a concurrent transaction Tk must wait until Ti is committed or aborted, or
until Ti has proceeded to the Adjourn state, and thus has unlocked RL(Ti) and
WL(Ti).

Blocking State for Validation

While a successfully validated transaction Tv is in the blocking state, the vali-
dation of a newer transaction Tn against the older transaction Tv is done by Tn as
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described in Section 3.3.2. This means, transaction Tn is validated against Tv with
the effect that whenever transaction Tn is in conflict with Tv, Tn is aborted.

4.2.2 The Non-Blocking Adjourn State

A transaction Tv that has successfully finished its read-phase may enter the non-
blocking Adjourn state at any time after Tv has sent the result message to the
Initiator and before Tv has sent the vote message. However, Tv must migrate
from Adjourn state to blocking state before it may send its vote message to the
coordinator.

If validation is used, the database must further perform a second adjourn-specific
validation phase before a transaction is allowed to leave the Adjourn state.

Definition 4.2.1 The Adjourn state of Tv is a state in which the resource manager
RM executing Tv waits for the commit coordinator’s demand to vote on Tv, but
RM does not block the tuples in WS(Tv) ∪RS(Tv), i.e. the tuples written or read
by Tv.

In the following, we describe what happens when a concurrent transaction tries
perform conflicting accesses to the data contained in WS(Tv) ∪RS(Tv).

Adjourn State for Locking

If locking is used and a transaction Tv, which has acquired the set of read locks
RL(Tv) and the set of write locks WL(Tv), enters the Adjourn state, the locks
RL(Tv) and WL(Tv) are released. However, when the resource manager grants one
or more locks from the set RL(Tv)∪WL(Tv) to another transaction Tk while Tv is
in the Adjourn state, the RM checks whether or not

WL(Tv) ∩ (RL(Tk) ∪WL(Tk)) = ∅

∧ RL(Tv) ∩WL(Tk) = ∅

If this check evaluates to false, there is a conflict between Tv and Tk. Therefore,
the RM locally aborts Tv and the RM can either abort all other corresponding (sub-)
transactions that belong to Tv, or try a repeated execution of the sub-transaction
Tv if Tv is still repeatable.
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Adjourn State for Validation

While Tv is in the non-blocking Adjourn state, the validation of a concurrent
transaction Tn is done as follows: Tn is validated against all older transactions
except those being in the Adjourn state when Tn started its validation phase. This
means, Tv, which is in the Adjourn state, has no blocking effect on concurrent
transactions Tn.

When Tv must leave the Adjourn state, i.e. when the commit coordinator de-
mands a binding vote on the transaction, Tv must be validated again in a second
adjourn-specific validation phase. However, the scope of this second validation is
different from the first validation phase:

This second validation of a transaction Tv is successful, if and only if the following
condition holds for each transaction Tn that has started its validation while Tv has
been in the Adjourn state:

(RS(Tn) ∪WS(Tn)) ∩WS(Tv) = ∅

∧ RS(Tv) ∩WS(Tk) = ∅

When this validation fails, Tv must either be aborted or can be locally restarted.
The reason for this concurrency check is the following: Although Tv entered its

validation phase before Tn, i.e. Tv is older, Tn has not been validated against Tv.
Since Tn may have already been committed, the validation of Tv against Tn must
be either successful, or Tv must be aborted or locally restarted.

Note that the Adjourn state only delays the validation of Tn against Tv and lets
Tv validate against Tn instead of Tn against Tv. However, the number of validation
tests is exactly the same as with other commit protocols that use backward oriented
concurrent validation.

4.2.3 Local Restarts and Re-Use of Sub-Transactions

Whenever a local sub-transaction Ti executing a Web Service Wi is in Adjourn
state and must be aborted due to a conflicting access of a concurrent transaction, the
database can try to re-execute the Web serviceWi as a sub-transaction T ′

i . However,
as sub-transactions are dynamically generated, T ′

i may invoke different Web services
than Ti. Since in our transactional model Wi does not return any values but may
invoke other Web services Wk with possible result values, a repetition of Wi only
results in a repetition of those Web servicesWk thatWi has invoked, but a repetition
of Wi will not result in a repetition of the Web service that has invoked Wi.
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Furthermore, we can optimize the repetition of the Web service Wi that has
spawned a sub-transaction Ti that is repeated as T ′

i as follows: T ′
i does not need to

execute a call to Web service Ws with parameters Ps when the same call has also
been issued by Ti with exactly the same parameters. In this case, we can re-use
the call of Ti to Ws in the repetition of Wi, since Ws itself is responsible for local
restarts in case of concurrency conflicts. Since the effects of the execution of Ws

will become permanent after the completion of the atomic commit protocol andWs

never returns any value to an ancestor in the invocation tree, Ws only depends on
the invocation parameter of Wi. The concrete execution of Wi, however, does not
depend on the execution ofWs at all. Thus, wheneverWs is repeated with the same
invocation parameters, this repetition does not have any effect on Wi. Therefore,
the call of Ti to Ws can be re-used.

To summarize, if Wi must be repeated and the corresponding sub-transaction
Ti has invoked Ws with parameter Ps, the repetition of Wi as T ′

i can lead to the
following possibilities for the calls to other Web services:

1. T ′
i must issue a call to Ws with the same parameters Ps as Ti has done. This

call does not need to be executed, T ′
i can re-use the invocation done by Ti.

2. T ′
i must issue a call to Ws with different parameters P ′

s. This call must be
executed.

3. T ′
i does not need to call Ws anymore. Then, Ws can be aborted.

4. T ′
i must issue a call to a new Web Service Wt that has not been invoked by Ti.

Then, Wt must be treated as every other Web service that belongs to the global
transaction.

If the repetition T ′
i of a Web service Wi previously executed as Ti calls exactly

the same Web services Wk with the same parameters that were used when Ti called
Wk, Wi can be locally repeated without having an effect on other Web services.

4.2.4 Entering the Adjourn State

Each database may decide for itself when it enters the Adjourn state. However,
we propose to wait for a short delay in order to avoid unnecessary aborts. Our
experiments have shown that waiting for the duration of a typical message delay
gives the best results.

Figure 4.1 shows an example application of the Adjourn state when validation
based concurrency control is used. It shows two resource managers Pi and Pj that
try to commit the sub-transactions Ti and Tj , respectively. Both, Ti and Tj , belong
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Figure 4.2: Single Resource Manager Running Concurrent and Conflicting
Transactions

to the same global transaction T . As the execution time of the read phase and the
validation phase takes longer for Pj than for Pi, Pi has to wait for a longer period
of time for the voteRequest message to arrive. However, Pi does not know about
the delay of Pj . In order to avoid blocking of concurrent transactions after the
validation phase, Pi migrates Ti into the Adjourn state and unblocks the occupied
resources. After Pj has successfully sent the result, the coordinator demands the
vote of Pi and Pj . Since Ti has entered the Adjourn state, Pi must perform the
second validation phase as stated in Section 4.2.2, before Ti can leave the Adjourn
state and can send the vote to the coordinator.
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Figure 4.2 shows a single resource manager P executing the two independent
sub-transactions To and Tn. While the older transaction, To, waits for the coordi-
nator’s voteRequest message, the newer concurrent local transaction, Tn, performs
conflicting accesses to data tuples accessed by To. Therefore, after To received the
voteRequest, the second adjourn-specific validation phase of To against Tn fails,
which requires the repetition of To’s read-phase. However, the delay within the co-
ordination process of To has not led to a chain reaction of blocking of the concurrent
transactions, e.g. Tn could be still committed.

4.3 Number of Messages

The Adjourn state is entered after the read-phase and the first validation phase
have been successfully finished. After the coordinator has sent the voteRequest
message, the database performs a second validation, and either immediately replies
by sending the vote message, or it locally restarts the sub-transaction. In the
failure-free case, each protocol with Adjourn state does not require additional mes-
sages compared to the corresponding protocol without Adjourn state. Of course,
if a transaction must be locally restarted, additional messages for invoking sub-
transactions may be necessary. However, this involves at most the same work and
at most the same number of messages as restarting the global transaction as re-
quired by protocols without the Adjourn state.

4.4 Commit Tree

As described in Section 4.2.3, a sub-transaction Ti might be restarted as T ′
i in case

of concurrency conflicts. In this case, Ti and other sub-transactions Tj that have
been invoked by Ti and are either invoked by T ′

i with different parameters, or are not
at all invoked by T ′

i , can be aborted. In order to abort those sub-transactions, the
coordinator must learn about the invocation hierarchy. For this purpose, the invoca-
tion hierarchy and the commit status of the involved sub-transactions is stored in a
data structure called “Commit tree”. To generate the Commit tree, each participant
that sends a result to the Initiator attaches the IDs of all invoked sub-transactions.
The Initiator then creates the Commit tree for a transaction and passes it to the
coordinator, which is responsible to maintain the tree in case of restarts.

Each Commit tree belongs to exactly one global transaction and stores the fol-
lowing variables:
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1. the global transaction ID,

2. a tree structure containing Commit tree nodes

3. a list unassignedN of unassigned nodes that correspond to sub-transactions
Tc that have sent a result before their parent sub-transactions, i.e. the sub-
transactions calling those transactions Tc, have sent the result, and

4. a list openSubTransactions of known transaction IDs, for which the result has
not yet been received by the Initiator.

Furthermore, each Commit tree node stores

1. the sub-transaction ID of the sub-transactions Tc represented by this node,

2. the ID of the resource manager running the sub-transaction,

3. the transactionID of the parent sub-transaction, and

4. 0 or more IDs of invoked sub-transactions.

When the Initiator has ascertained that the Commit tree is complete, i.e. the
Commit tree has an empty list openSubTransactions, it passes the Commit tree
to the commit coordinator. Based on the current status of the Commit tree and
based on a timer, the coordinator sends the following messages to the participating
resource managers:

1. sendVote: when the Commit tree has been received from the Initiator, i.e.
all results have arrived at the Initiator and the list openSubTransactions is
empty,

2. doCommit when all participants have voted for commit,

3. doAbort: when at least one participant has voted for abort, and

4. doAdjourn: when after a timeout some votes are still missing.

4.4.1 An Example of the Coordinator’s Commit Tree

To ensure that all sub-transactions T1, . . . , Tn invoked by a sub-transaction Ti

are known to the coordinator, the initiator must process the result messages sent
by each participant.

Figure 4.3 shows an example Commit tree. Each result message of a sub-transac-
tion Ti includes the result data, the ID of Ti, the ID of the parent sub-transaction
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Figure 4.3: Commit Tree Example

that has invoked Ti, a list of sub-transactions that have been invoked by Ti, the
global transaction ID TID to which Ti belongs, and a sequence number. When the
initiator receives the result of T1, the node T1 is created. Since the sub-transaction
T1 has invoked the sub-transactions T2 and T3, the vote for commit of the sub-
transactions T2 and T3 is also required to commit the whole transaction. Therefore,
these nodes are added to the commit tree as well. The initiator builds this Commit
tree dynamically and determines when all sub-transactions needed for starting the
atomic commit protocol execution are finished. Since the information about invoked
sub-transactions is sent along with a result message of the parent transaction and
the parent’s result can be received later than the child’s result, it may be the case
that a sub-transaction’s result cannot be immediately assigned to a node connected
in the Commit tree. In this case, the result is stored in a list of unassigned nodes
and this node is connected in the Commit tree after the corresponding parent sub-
transaction’s result has arrived.

4.4.2 Commit Tree Modification by the Result Operation

Whenever a participant has successfully finished its read-phase of a sub-transac-
tion Ti, the following result message is sent to the Initiator in order to invoke the
initiator’s resultReceived method, which is described in Algorithm 1:

resultReceived(Object resultData,

ID subtransactionID, ID callerID,

ListOf(ID) invokedSubT,

ID globalTID, int sequenceNr)
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The optional parameter “resultData” contains Ti’s result, while the “subtransac-
tionID” indicates the ID of Ti. The callerID is the ID of the participant that has
invoked Ti. The list “invokedSubT” contains all the sub-transactions invoked by
Ti, while the “globalTID” is the ID of the global transaction to which Ti belongs.
Furthermore, the result message contains a sequence number, which is increased if
the sub-transaction is restarted and a second result message must be sent.

If the sub-transaction was not successful and has been aborted, the participant
does not send a “resultReceived” message. Instead, it notifies the Initiator about
this abort. Depending on the transaction’s implementation, the Initiator might
choose a different Web service to fulfill the global transaction.

Algorithm 1 Implementation of resultReceived
1: procedure resultReceived(Object resultData, ID subtransactionID, ID callerID,

ListOf(ID) invokedSubT, ID globalTID, int sequenceNr)
2: if isPreVoteValid(sequenceNr) then
3: markOutdatedAndAbortUnusedST(subtransactionID, callerID,

invokedSubT, globalTID);
4: N :=createNode(subtransactionID, callerID, globalTID, invokedSubT)
5: openSubTransactions.del(subtransactionID)
6: if (ParentNode:=getNode(callerID)) == null then
7: unassignedNodes.add(N). If parent’s result has not arrived yet, put back node
8: else
9: ParentNode.addChild(N)

10: assignNodes(invokedSubT, N) . Try to assign nodes from unassignedNodes
11: end if
12: openSubTransactions.add(invokedSubT)
13: end if
14: end procedure

Algorithm 1 outlines the implementation of the Initiator’s resultReceived oper-
ation, which is executed on the Commit tree whenever a resultReceived message
is received. First, the Initiator uses the sequence number to check that no newer
message was processed earlier (line 2). This may be the case when sub-transactions
are repeated and certain invocations must be repeated due to different invocation
parameters (cf. Section 4.2.3). Therefore, a node Nold that represents the sub-
transaction subtransactionID may already exist within the Commit tree, but is no
longer valid. Thus, the procedure markOutdatedAndAbortUnusedST(...) marks Nold

as outdated (line 3).
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When a sub-transaction is repeated, its invoked sub-transactions may change.
To identify sub-transactions that are no longer needed for the commit decision, the
IDs of the sub-transactions invoked by Nold are compared with the actual invoked
sub-transaction parameters invokedSubT of the new result message. Those sub-
transactions that are invoked by Nold but not needed for commit anymore are
aborted and deleted from the Commit tree (line 3).

After this, a new node N is created (line 4) and the parent-child relationships
between N and the nodes representing other sub-transactions are managed (line
4-11). In addition, a list openSubTransactions is updated where transactions are
stored the votes of which have not yet arrived (line 12).

If all results are present, the list openSubTransactions is empty and the atomic
commit protocol, which requires votes for commit of all nodes in the Commit tree,
can be started. After the resource managers sent their binding votes, the objects
accessed by the transaction are blocked. To ensure that in case of a resource
manager failure no infinite blocking of the other resource managers occurs, the
coordinator starts a timer. If the time is over and some votes are missing, the
coordinator sets the commit status stored in each node of the Commit tree to
the Adjourn state, proposes the Adjourn state to Ti and to all sub-transactions
belonging to Ti, and demands the votes for the sub-transaction once more.

4.4.3 Commit Tree Modification by Repetition

In case a sub-transaction Tr must be repeated as T ′
r, the result message with

updated parameters must be sent to the Initiator and to the Commit coordinator,
and the parameter “sequenceNr” must be increased.

The coordinator replaces the node for Tr with the updated parameters of T ′
r, and

notifies sub-transactions that are not needed anymore, i.e. sub-transactions that
were invoked by Tr, but have not been invoked by T ′

r. Furthermore, the coordinator
demands the votes of those sub-transactions that are additionally invoked by T ′

r.
Whenever a sub-transaction can be re-used instead of being repeated, the Commit
tree does not need to be changed for the re-used sub-transaction.

4.4.4 Benefits of Combining Commit Tree and Adjourn State

The use of the Commit tree in combination with the Adjourn state shows several
advantages for transaction processing. As the Commit tree allows to identify all
sub-transactions that are invoked during transaction execution, it can be combined
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with dynamic transactional models like our Web service transactional model, which
allows to invoke sub-transactions even during transaction execution.

In combination with the Adjourn state, the Commit tree allows participants
to save energy and to speed up transaction processing for the following reason.
Assume, for example, a concurrency conflict has occurred for a sub-transaction Ti.
In this case, a repetition of Ti as T ′

i including all of its invoked sub-transactions is
necessary. However, if during the execution of T ′

i some sub-transaction invocations
are equal to those performed by Ti, we can re-use the invocations done by Ti and
do not need to re-invoke them. This results in time and energy savings.

Furthermore, the Commit tree allows the transaction coordinator to identify and
abort sub-transactions that are not needed anymore, for example if sub-transactions
have been invoked by Ti but not by T ′

i .

4.5 Experimental Evaluation

We evaluated transaction processing in an unreliable mobile environment, which
means, participants often disconnect for a short time and come back or, equivalent
to this, a lot of messages are lost. Within such a scenario, the longer the blocking of
a transaction is (blocking in terms of preventing other transactions from being com-
mitted) the greater the risk that another participant will disconnect and does not
receive the voteRequest message. Therefore, it is more frequent that the coordina-
tor cannot decide for commit, and that the coordinator must abort the transaction
after a time-out than in traditional protocols. In our experiments, we especially
focus on two parameters that influence transaction execution and that are charac-
teristic for a mobile network: disconnections and message delay. The adjustment of
other parameters such as transmitting power or movement models will finally affect
these two parameters. Therefore, we identified “disconnection time and length” and
“message delay" as the key parameters that influence the transaction execution. In
other words, the more unreliable the network is, the more disconnections, message
delays, and message losses occur.

For the simulation, we define a set of scenarios, which differ in both the network
events such as disconnections and message delays and the spawned transactions.
For each scenario, we start simulating transaction processing at the time when the
global transaction is started, and observe the transaction execution until the time
when the atomic commit protocol is invoked, i.e. when the coordinator demands
the vote. In order to be able to compare the blocking state (which requires a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 Database Transaction Management in Mobile Ad-Hoc Networks



4.5 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transaction Throughput

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000

Number of Disconnections (Ressource Managers)

C
o

m
it

te
d

 T
ra

n
s

a
c

ti
o

n
s

Adjourn State Block 25 Block 50 Block 100

Block 250 Block 500 Block 750

Figure 4.4: Transaction Throughput (Adjourn State and Blocking State)
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time-out) and the Adjourn state (which does not require a time-out), we simulate
the blocking state with various time-outs. We measure the number of successful
transaction executions and the overall blocking time of both the Adjourn state and
the blocking state. The concrete parameters of the generated scenario are described
in the following subsection.

4.5.1 Scenario

To simulate a varying reliability of our environment, we executed 7 simulations
runs, which started when the sub-transaction was sent to each resource manager.
The used message delivery is assumed to be fast, i.e. between 0.2 and 2 time units.
Each of these 7 runs are stopped after 1000 time units plus additional 60 time units
in order to let the time-out based protocols finish the last sub-transactions.

In each of these runs, we let 200 resources execute the same 135 global transac-
tions. Each of these global transactions consists of 4 to 8 sub-transactions, result-
ing in 830 sub-transactions in total, where each sub-transaction uses exactly one
resource.

Most of the sub-transactions have short read phases (randomly selected between
1 and 5 time units), but some transactions contain long read phases (randomly
selected between 4 and 25 time units) that delay the transaction’s commit.

The 7 runs differ in the number of disconnections of participants. A disconnected
participant cannot communicate with other participants as long as the disconnec-
tion lasts. In the first run, we let no participant disconnect. In the second run, we
randomly add 1000 disconnections to the participants (exponentially distributed).
Each of these disconnections has a length of 25 to 50 time units. After 1000 time
units, we stop the experiment and count the number of successfully committed
transactions.

Predicting an optimal transaction time-out is difficult for the blocking state, thus,
we simulated the blocking state using different transaction-time-outs (25, 50, 100,
250, 500, and 750 time units). Each participant starts its time-out after it has sent
the result to the coordinator. When the time-out has expired and a participant
has not received a voteRequest from the coordinator, the participant aborts the
transaction in order to unblock the occupied resources. Furthermore, we measure
the total blocking times of all participants.
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4.5.2 Results

Figure 4.4 shows the transaction throughput for the Adjourn state and for the
blocking state when validation is used. On the x−axis, the different simulation runs,
which vary in the number of resource manager disconnections, are shown. Besides
the Adjourn state, Figure 4.4 shows different curves for the blocking state, each
of which represents the used transaction time-out. For example, the curve “Block
100” describes a simulation run in which each participant aborts a transaction if
the participant has not received the coordinator’s voteRequest message for 100 time
units after the first validation succeeded. Our experiments confirm that setting up
a time-out that maximizes the throughput is difficult and depends on the concrete
network reliability. In contrast, the Adjourn state, which does not require such a
time-out, shows an average throughput in reliable networks, but is superior to each
time-out of the blocking state in unreliable networks.

Besides the transaction throughput, the blocking time is an important criterion
for the concurrency control. Figure 4.5 shows the sum of the blocking times of
all resources for the Adjourn state and for the blocking state. We can see that
the Adjourn state blocks the resources significantly less than each time-out of the
blocking state. Again, the overall blocking time of using the blocking state highly
depends on the concrete time-out value.

We have conducted similar experiments that use locking-based concurrency con-
trol instead of validation. We have relinquished diagrams because these experiments
lead to almost identical results. The reason for the similarity of the results is that
both concurrency control schemes have the same blocking effect on concurrent con-
flicting transactions, as explained in Section 3.4.

4.5.3 Evaluation Summary

To summarize, our experimental results have shown that the Adjourn state con-
currency control enhancement blocks remarkably less than using the traditional
blocking state. Additionally, the Adjourn state achieves a significantly higher trans-
action throughput in unreliable networks with a lot of disconnections.

Furthermore, our tests have confirmed the difficulty in setting up a database time-
out that increases the transaction throughput and reduces the amount of blocking.
This justifies the use of the Adjourn state even in mobile networks with moderate
reliability, since Adjourn state protocols do not expose the user to the risk of setting
up a “wrong” time-out that leads to a performance degradation.
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4.6 Related Work

To avoid locking, concurrency control mechanisms like multiversion concurrency
control [5,71], timestamp-based concurrency control [44], or optimistic concurrency
control [32, 39] have been proposed. However, these approaches do not solve the
problem of setting up time-outs when the database has to abort a transaction. Our
proposed Adjourn state does not rely on such time-outs, and merges nicely with
these concurrency control mechanisms since it is an “on demand” strategy for giving
concurrent transactions access to resources that have been used by transactions
which are still waiting for the commit protocol to be invoked.

Compared to the “WS-Atomic-Transaction” proposal [14] our contribution differs
in several aspects. For example, [14] has a “completion protocol” for registering at
the coordinator, but does not propose a non-blocking state – like our Adjourn state
– to unblock transaction participants while waiting for other participants’ votes. In
addition, our Adjourn state may even be entered repeatedly during the protocol’s
execution.

[60] proposes 2PC optimizations, e.g. heuristics for committing transactions
when messages are lost. However, inconsistencies may occur in case of network
partitioning, for example, when some databases do not immediately receive the
compensation decision or when the coordination process fails. Furthermore, the
approach involves the difficulty of setting up time-outs as well.

Distributed transactions may also occur in the context of mobile agents (e.g.
[19, 72]). In this context, the execution code is shipped to the resource managers.
Our Adjourn State can be adapted to this context as well.

Since the Adjourn state is used in combination with a dynamic transaction model,
the commit coordinator must know the participating sub-transactions. An approach
that allows the coordinator to keep track of all dynamically invoked sub-transactions
is described in [10].

Our approach is based on the same optimistic principle as [2]. However, the
Adjourn state differs from [2] as the Adjourn state does not block resources after
the read phase’s result has been sent.

4.7 Summary and Conclusion

To summarize, Adjourn state transaction processing does not rely on database
timeouts and allows to repeat Web services in case of concurrency failures. Fur-
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thermore, we have developed an optimization for Web service repetition that, under
certain conditions, can re-use Web service calls instead of repeating them.

We have described the Commit tree, which allows the transaction’s commit co-
ordinator to keep track of the commit-status of all participating sub-transactions.
Furthermore, we have shown how the Commit tree can be used to unblock par-
ticipants by migrating them back to the Adjourn state if some participants must
repeat their Web service.

We have evaluated our proposed scheme experimentally using simulation. Our ex-
periments have proven the difficulty that traditional protocols involve when setting
up time-outs for mobile networks with unpredictable reliability. Our experiments
have also demonstrated that using the Adjourn state in unreliable environments
can lead to an increased transaction throughput of committed transactions of up
to 2.5 times compared to the use of traditional database timeouts. Furthermore,
the Adjourn state significantly reduces the amount of data blocking.
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Cross Layer Commit Protocol

5.1 Problem Description

Atomic commit protocols (ACPs) as described in Chapter 2 are used to guar-
antee the atomic execution of distributed transactions. ACPs are invoked by the
transaction Initiator after each participating database has finished the transaction’s
read-phase. During the execution of an ACP, the following kind of blocking can
occur to the atomic commit protocol:

Definition 5.1.1 Atomic commit protocol blocking occurs, if an arbitrary sequence
of failures leads to a situation where the atomic commit protocol instance cannot
terminate with a unique commit or abort decision d during the execution of an
atomic commit protocol for a transaction T .

Example 5.1.2 Assume that the coordinator and one database fail in 2PC after all
databases have voted for commit, but before a commit decision was sent out by the
coordinator. In this situation, the protocol blocks as it cannot give a decision on
the transaction’s fate, since the remaining databases do not know the vote of the
disconnected database.

If the coordinator is still alive and only databases disconnect, the protocol is not
blocked since the coordinator can immediately decide on the transaction (but may
wait a certain time first for the failed database to reconnect).

In this chapter, we focus on atomic commit protocol blocking, while we explain
and discuss the problem of transaction blocking in Chapter 6.

Atomic commit protocols that are used in mobile environments should not block,
even when events like device disconnection, message loss, or network partitioning
occur. Thus, failure tolerant ACPs, which have been recently proposed, e.g. by
[30,40,58], are preferable for mobile ad-hoc networks in contrast to older approaches
designed for performance in fixed-wired environments, e.g. 1PC [29], 2PC [28, 46],
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or several 2PC optimizations [3,42,66]. One of the best protocols regarding failure
tolerance is Paxos Commit, which uses multiple coordinators and allows even half
of them to fail during protocol execution. This failure tolerance is optimal as
described in [63]. However, Paxos Consensus involves several problems when it is
used in mobile ad-hoc networks:
• Although it uses multiple coordinators, it is a centralized protocol, i.e. a

special leader is still necessary. Each participant may decide for itself during
protocol execution if and when it becomes a leader. Even though [30] proposed
an additional decentralized variant for a faster commit, this variant does not
allow the protocol to terminate decentralizedly if a database’s vote message
is lost or delayed.

• The number of messages increases with the number of leaders, since each
message is routed to the special leader.

• As our experiments have shown, its performance is highly dependent on the
use of acknowledgement messages (ACKs). Without ACKs, the performance
drains significantly.

• It is an application layer protocol: When ACKs are used, which our experi-
ments have motivated, the protocol is not designed to make any use of these
ACKs, i.e., it does not use them for gaining global knowledge.

In this chapter, we present the distributed Cross Layer Commit Protocol (CLCP),
which uses multiple coordinators and makes use of acknowledgement messages to
piggyback information.

Our CLCP consists of two phases. In the first phase, the decentralized commit
phase, the participants vote and concurrently try to come to a decentralized commit
decision. If a database does not vote for commit at all, CLCP can also abort the
transaction within the decentralized commit phase without requiring a centralized
leader – in contrast to [30], which needs one or more of such leaders.

However, in the seldom case that the protocol cannot progress due to network
partitioning, a termination phase will follow. As in [30], one participant becomes
a special participant called leader that organizes the commit decision and ensures
that a majority of participants, i.e. more than 50% of all transaction participants,
accept this decision. If the leader fails or the commit decision cannot be made after
a timeout, a different participant becomes a new leader having an increased version
number that identifies it as the new leader.

We will later see in our experiments that in most cases, the commit decision on the
transaction is made within the decentralized commit phase. Due to a decentralized
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time-out mechanism, CLCP allows even more transactions to terminate within this
phase than [30], which results in a better performance and lower energy requirement
of CLCP.

As shown in the last chapter, the Initiator can identify all sub-transactions that
belong to a global transaction at the end of the read phase. We assume that before
the atomic commit protocol starts, this knowledge is sent to each participant Pi in
addition to a request to vote on the transaction.

5.2 Decentralized Commit Phase

5.2.1 Design Goals

The decentralized commit phase was designed to achieve the following goals:

• When knowledge about commit votes is missing for a long time and therefore
no commit decision is possible, an agreement to come to an abort decision
may be preferable over waiting longer and being blocked.

• Commit coordination is done in a decentralized manner, i.e. without a cen-
tral leader. Instead, each participant comes to a transaction decision au-
tonomously.

• Avoid blocking the majority of participants when a minority becomes non-
reachable by the majority due to sudden network separation during the exe-
cution of the commit protocol. Instead, the majority that can communicate
shall be conducted to a transaction decision.

5.2.2 Key Design Concepts

The decentralized commit phase is based on the following key design concepts:

• Individual knowledge of a participant Pi ∈ P1 . . . Pn that all participants
P1 . . . Pn have voted for commit is not sufficient for Pi to commit the trans-
action for the following reason: The disconnection of Pi can lead to the loss
of Pi’s vote. When the remaining participants do not have knowledge about
Pi’s vote, they want to abort the transaction instead of waiting. However, as
they do not know whether Pi has committed the transaction, they are forced
to wait, which violates the first and the third design goal.
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• For this reason, CLCP is not only based on votes, but above all on the knowl-
edge that participants have about other participant’s votes. Thus, a key
aspect of CLCP is that the knowledge of commit votes is exchanged by using
a data structure called commit matrix. These commit matrices are used for
learning the knowledge that other participants have.

• Lost messages or network partitioning may lead to a situation where a partic-
ipant Pk does not receive the vote of another participant Pv for a long time.
This triggers participant Pk to set its knowledge of Pv’s transaction decision
to the value voteTimeOut, which may, after some messages exchanges, lead to
the value timeOutAck and to an abort decision.

• To handle situations where some participants Pk have set their knowledge on
Pv’s decision to voteTimeOut and other participants Pi have the knowledge
that Pv’ decision is voteCommit, we use an algorithm that considers the knowl-
edge that all reachable participants have about the votes of other participants.
As a commit decision requires majorities, it prevents that another majority
exists for abort and vice versa. More precisely, the following is required for a
commit decision and for an abort decision.

1. A commit decision of Pi requires that Pi can be sure that for every
participant Pv a majority of participants knows that Pv votes for commit.

2. An abort decision of Pi due to timeout requires that Pi can be sure that
for at least one participant Pv a majority has the knowledge timeOutAck.

Both, 1. and 2. can never be true at the same time because both rely on
majorities.

5.2.3 Commit Matrix

Before we give the decision rules for the first decentralized commit phase, we
will explain the commit matrix, which plays a major role. The commit matrix is
structured as follows:

Each column k of the commit matrix stores the knowledge of one participant Pk

regarding the commit votes of all participants. Each row v represents the vote of
a participant Pv. An entry (Pv, Pk) describes the entry in row v and column k.
For example, an entry ((P2, P3) = voteCommit) in the commit matrix means that
participant P2 voted for commit, and participant P3 knows this vote. The entry
(P2, P2) = voteCommit represents P2’s knowledge of its own voteCommit.
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known by P1 P2 P3 . . . Pn

vote of

P1

P2 voteCommit voteCommit
P3

. . .
Pn

Table 5.1: Example commit matrix

The following entries, ordered with ascending priority, are possible within a cell
of the commit matrix: empty < voteCommit < voteTimeOut < timeOutAck < Abort.

An entry (Pv, Pk)=voteTimeOut means that Pk did not receive Pv’s vote and
thus tries to abort the transaction by timeout. The entry (Pv, Pk)=timeOutAck
means that Pk has observed that a majorityM of participants Pi ∈M has set their
knowledge of participant Pv’s vote to voteTimeOut or higher, i.e. timeOutAck or
Abort. Note, that an abort due to timeout requires two-stages, first, a majority for
at least voteTimeOut and thereafter, a majority for at least timeOutAck.

5.2.4 Merging Commit Matrices

During the first phase, participants exchange their own votes and their knowledge
of the votes of other participants in terms of their commit matrix. Merging commit
matrices is used to learn from other participants and to make sure that the own
vote on the transaction is received by a majority of participants. Thus, whenever
a participant Pi receives a commit matrix CMr from participant Pr, the commit
matrix CMr represents the knowledge of Pr. The merge algorithm will adapt these
parts of the knowledge of Pr that is not known by Pi or has a higher priority. Thus,
whenever participant Pi receives a commit matrix CMr of Pr, Pi adds all non-empty
entries of CMr to its own commit matrix CMi, as stated in Algorithm 2.

For all commit matrix entries, Pi checks whether the entry in its own matrix CMi

is equal to voteCommit. If this is not the case and the received commit matrix CMr

contains an entry at the same position with higher priority1, Pi copies this value
into CMi (lines 4 to 6).

Furthermore, Pi itself can learn new values, thus Pi stores these values in the
cells representing the knowledge of Pi, i.e. CMi(x, i). For this purpose, Pi checks
whether an entry CMr(x, y) with higher priority exists within the corresponding

1empty < voteCommit < voteTimeOut < timeOutAck < Abort
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Algorithm 2 Merge Commit Matrix (for Pi)
1: local variable: Pi’s commit matrix CMi of size n× n
2: procedure mergeMatrix(CMr) . CMr is received from Pr

3: for x, y = 1 . . . n do
4: if (CMi(x, y) 6= voteCommit) ∧ (CMi(x, y) < CMr(x, y)) then
5: CMi(x, y) := CMr(x, y)
6: end if
7: if (CMi(x, i) 6= voteCommit) ∧ (CMi(x, i) < CMr(x, y)) then
8: CMi(x, i) := CMr(x, y) . learn proposal
9: end if

10: end for
11: end procedure

row x of CMr(line 7 to 8). If this is the case, Pi learns this newly received value of
Px’s commit status by assigning it to CMi(x, i).

Note that during the first phase, an existing voteCommit entry in the matrix CMi

cannot be changed anymore.

Example 5.2.1 Assume P1 has stored the following commit matrix CM1:

CM1 1 2

1 voteCommit empty

2 empty empty

Then, P1 receives the matrix CM2 of P2, whose timeout for P1 has already been
triggered, e.g. because P2 has not received P1’s commit matrix within a certain
time.

CM2 1 2

1 empty voteTimeOut

2 empty voteCommit

P1 merges the matrices as follows: Since CM1(1, 2) is empty and the received
entry voteTimeOut of CM2(1, 2) has a higher priority, the received value is copied
(Algorithm 2, line 4 to 6). However, CM1(1, 1) is not changed. CM1(2, 2) is directly
copied from CM2(2, 2), and CM1(2, 1) is learned from CM2(2, 2) (Algorithm 2, line
7 - 8). Thus, the resulting matrix is:

CM1 1 2

1 voteCommit voteTimeOut

2 voteCommit voteCommit
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In this case, the decentralized commit phase described in the following section
cannot come to a decision, and thus the termination phase will be started and come
to the decision Commit.

5.2.5 Decentralized Commit Phase Algorithm

Both phases of our commit protocol, the decentralized commit phase and the
termination phase, which is described in the next section, are based on majorities
for the commit votes: Whenever a majority has knowledge of a commit vote of a
participant Pi, this vote of Pi becomes valid and is anchored within the network.
Whenever the votes of all participants are voteCommit and all of these votes are
anchored within the network, i.e. each commit vote is known by a majority of
participants, the decision to commit the transaction is implicitly made and cannot
change anymore, e.g. due to a timeout.

We start by explaining the failure-free case called “decentralized commit phase”,
which Algorithm 3 summarizes for each participant Pi.

First, the own commit decision knowledge including the vote of participant Pi is
broadcasted in terms of the commit matrix CMi (line 3). Pi then calls a method that
waits for and returns the next event, which is either the reception of another commit
matrix CMr, the reception of the transaction’s decision from another participant,
the reception of a termination vector, or an event timedOut that occurs if the
transaction’s decision cannot be derived after a predefined amount of time. If
another commit matrix CMr has been received, this matrix is merged with CMi

(line 8) by Algorithm 2. If CMi has been changed during the merge operation (line
9), the decision rules of Algorithm 4 to Algorithm 7 are executed (line 10 - 15).
Then, the matrix CMi, which was changed by the merge operation and probably by
the decision rules, is broadcasted (line 16) as an acknowledgement for the reception
of the matrix CMr. The steps in line 4 to 19 are repeated until a decision (Commit
or Abort) is made, a termination vector has been received, or a timedOut event has
occurred (line 19). Note that within the same execution of the repeat-until loop,
CMi is broadcasted as an acknowledgement for the reception of CMr (line 16).

When the decision Commit or Abort has been made, the commit matrix is broad-
casted again (line 21) and the thread replyOnRequest is started (line 22), which
replies the transaction’s decision (including the commit matrix) whenever further
commit matrices or termination vectors are received. The thread terminates when-
ever all participants know the transaction decision. If a termination vector has
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Algorithm 3 Decentralized Commit Phase (for Pi)
1: procedure decentralizedCommit(CMi)
2: Decision := unkown
3: broadcast(CMi)
4: repeat
5: (CMr, terminationVector, timedOut, Decision):= waitForNextEvent()
6: if CMr 6= null and Decision = unknown then
7: CM ′

i := CMi

8: CMi:= MergeMatrix(CMr)
9: if CMi 6= CM ′

i then
10: CommitDecisionRule(CMi, Decision)
11: if Decision = unknown then
12: TimeoutAttemptDecisionRule(CMi)
13: AbortAttemptDecisionRule(CMi)
14: AbortDecisionRule(CMi, Decision)
15: end if
16: broadcast(CMi)
17: end if
18: end if
19: until Decision 6= unknown or terminationVector 6= null or timedOut 6= null
20: if Decision 6= unknown then
21: broadcast(CMi, Decision)
22: replyOnRequest.startThread(CMi, Decision) . Reply if matrix is requested
23: else
24: terminationAlgorithm(terminationVector, CMi) . Algorithm 8
25: end if
26: end procedure
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been received instead of a commit matrix or a timeout has occurred (line 5), the
termination algorithm is executed (line 24).

The following decision rules are checked each time a commit matrix has been
received and merged with changes:

Commit

Algorithm 4 shows Pi’s decision rule for committing the transaction T involving
n participants. It checks whether each row in Pi’s commit matrix has a majority
of commit votes.

Algorithm 4 Commit Decision Rule (for Pi)
1: procedure CommitDecisionRule(CMi, Decision)
2: if ∀v=1 . . . n:

∑
k=1..n (CMi(Pv, Pk) = voteCommit)> 1

2n then

3: Decision := Commit

4: end if
5: end procedure

This commit rule expresses that a participant Pi commits T , if its commit matrix
contains the information that each participant Pv voted for commit, and that for
each participant Pv, a majority of participants Pk know the vote of Pv.

Timeout Attempt

Algorithm 5 shows Pi’s decision rule for assigning the value voteTimeOut to its
own Commit Matrix entry CMi(Pv, Pi) for participants Pv.

Algorithm 5 Timeout Attempt Decision Rule (for Pi)
1: procedure TimeoutAttemptDecisionRule(CMi)
2: if ParticipantVoteTimeout triggered then
3: for v := 1 . . . n do
4: if CMi(Pv, Pi) = empty then
5: CMi(Pv, Pi) := voteTimeOut
6: end if
7: end for
8: end if
9: end procedure
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This rule expresses that whenever a participant Pi has no knowledge about a
decision of a participant Pv after a timeout, Pi sets its own knowledge for Pv to
voteTimeOut.

Abort Attempt Due to Timeout

Pi’s decision rule for assigning its own Commit Matrix entry CMi(Pv, Pi) the
value timeOutAck is shown by the following Algorithm 6.

Algorithm 6 Abort Attempt Due to Timeout Decision Rule
1: procedure AbortAttemptDecisionRule(CMi)
2: for v := 1 . . . n do
3: if

∑
k=1..n (CMi(Pv, Pk) ≥ voteTimeOut) > 1

2n then

4: CMi(Pv, Pi) := timeOutAck
5: end if
6: end for
7: end procedure

This abort attempt rule expresses that whenever a majority of voteTimeOut en-
tries or entries with a higher priority, i.e. timeOutAck, exists for a participant Pv,
each participant Pi that observes this majority in its commit matrix sets its own
entry to timeOutAck.

Abort

Algorithm 7 shows Pi’s decision rule for aborting the transaction T involving
n participants. This abort rule expresses that whenever either a participant Pv

has initially voted for Abort, i.e. the matrix CMi contains an entry Abort (line 3),
or whenever the participant Pi observes that for a participant Pv a majority of
timeOutAck entries exist in Pi’s commit matrix, Pi aborts the transaction.

Algorithm 7 Abort Decision Rule
1: procedure AbortDecisionRule(CMi, Decision)
2: for v := 1 . . . n do
3: if (CMi (Pv, Pv) = abort) ∨
4:

∑
k=1..n (CMi(Pv, Pk) = timeOutAck) > 1

2n then

5: Decision := Abort
6: end if
7: end for
8: end procedure
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Example 5.2.2 Assume P1 has gained the following commit matrix CM1:
CM1 1 2 3

1 voteCommit voteCommit empty

2 voteCommit voteCommit voteTimeOut

3 voteTimeOut voteCommit voteCommit

Then, the commit decision rule triggers and P1 commits the transaction imme-
diately, since a majority of voteCommit entries exists in each row.

Assume the following commit matrix for a different transaction:

CM1 1 2 3

1 voteCommit empty voteCommit

2 voteTimeOut empty voteTimeOut

3 voteCommit voteCommit voteCommit

In this case, the “Abort Attempt Due to Timeout” rule triggers for row 2. Thus,
P1 sets its entry CM1(2, 1), which is voteTimeOut, to timeOutAck and broadcasts the
matrix. When P3 receives this matrix, it also sets its entry CM3(2, 3) to timeOutAck,
resulting in a majority of timeOutAck entries in line 2. Thus, P3 can immediately
abort the transaction and broadcast its commit matrix CM3.

5.3 Termination Phase

Due to network partitioning, there may be two cases in which the rule set does not
come to a commit or abort/ timeout decision: (a) when no majority of participants
exists in one partition or (b) when no majority for commit or abort can be found
in the commit matrix after a certain time. Situation (a) is proven to be blocking,
according to [63]. For situation (b), i.e. where a majority of participants still can
communicate, we employ a solution that, after a timeout, guides this majority to a
unique decision although no majority for commit and no majority for timeOutAck
can be found in any of the participants’ commit matrices. Our solution is based
on version numbers and uses an extension of the Paxos Commit algorithm [30] to
identify a participant as a leader that is allowed to form a proposal. However, in
contrast to [30], we use a distributed termination algorithm that contains only one
centralized step: the determination of a new proposal.
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5.3.1 Informal Description of the Termination Phase

For each point in time of the termination phase, a participant Pi can have one
of two roles: leader or acceptor. When the termination phase is started for Pi by
receiving a termination vector instead of a commit matrix, Pi becomes an acceptor.
When the termination phase is started due to a timeout while Pi waits for the
protocol’s decentralized commit phase to progress, Pi becomes a leader.

An acceptor informs all participants including the newest leader of its actual
commit matrix status. The leader then determines a new termination proposal by
means of all available acceptor states. This new proposal becomes immediately
valid when a majority of acceptors know this proposal. However, each acceptor will
only accept proposals from a leader having the highest version number known by
this acceptor. Furthermore, whenever an acceptor times out, it can become a new
leader, assigning itself a higher version number than the maximum version number
known by this acceptor. However, in order to guarantee that each new leader will
come to the same proposal once a majority knows this proposal, a new leader must
adapt the proposal of the previous leader with the highest version number.

5.3.2 Termination Algorithm

In the termination phase, our commit matrix is replaced by a single termination
vector TVi, which is a single row consisting of n entries of the type TVi(x) = 〈bind,
version, (proposal, proposalVersion)〉. An entry TVi(x) represents the transaction
state of participant Px that is known to participant Pi. Algorithm 8 shows an
overview of the termination phase.

At the beginning of the termination phase, the termination vector TVi has either
been received, or is created containing n entries that are initialized with the value
0 in each field (line 2).

A participant Pi identifies the leader Px having the highest version number v
within the termination vector (line 16 - 25) and starts the Acceptor Algorithm for
that leader Px and that corresponding version number v (line 7).

If such a leader Px cannot be found and the participant’s timeout has run up
(line 8), the participant itself becomes a leader and starts the Leader Algorithm
(line 9).

There are three cases in which the Acceptor Algorithm (Algorithm 9) and Leader
Algorithm (Algorithm 10), called in line 7 and 9 respectively, terminate:
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Algorithm 8 Termination Algorithm (Overview) for Pi

1: procedure terminationAlgorithm(TVi, CMi)
2: if TVi = null then TVi:= new(TerminationVector(n)) end if . n = #participants
3: Decision := unknown
4: repeat
5: (x,v):=findNewLeader(TVi) . x is new leader ID, v leader version
6: if x 6= null then
7: Decision := acceptorAlgorithm(x, v, TVi)
8: else if (currentTime > (startTime + timeout(Pi)))and(Decision = unknown) then
9: Decision := leaderAlgorithm(TVi, CMi)

10: timeout.increase(Pi) . Multiplied with a participant specific factor
11: end if
12: until Decision 6=unknown
13: broadcast(TVi)
14: replyOnRequest.startThread(TVi, Decision) . Reply if decision is requested
15: end procedure

16: procedure findNewLeader(TVi) . Checks, if Pi is bound to the highest leader
17: max := i

18: for x := 1 . . . n do
19: if TVi(x).version > TVi(max).version then
20: max := x

21: end if
22: end for
23: if max 6= i then return (max, TVi(max).version)
24: else return(null, null) end if
25: end procedure
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1. The protocol has come to a transaction decision in terms of commit or abort.
Then, the decision is broadcasted (line 13) and re-sent on request (line 14, cf.
the explanation of line 22 of Algorithm 3 on page 54).

2. Another participant Px has become a leader and has a higher version number
than the current leader.

3. The algorithm is stuck, i.e. the transaction decision has not been made after
a certain timeout and Pi does not know about a new leader.

In case 2, Pi has noticed a new leader Px with a higher version number than
currently assigned to Pi. Thus, the Acceptor Algorithm for binding Pi to Px is
started immediately (line 7).

In case 3, if Pi has been an acceptor, it re-executes the repeat-until-loop and
becomes a new leader due to timeout (line 8-9). Furthermore, it increments its
timeout by multiplying it with a participant specific factor in order to give other
participants enough time to become a leader before Pi is allowed to restart its
Leader Algorithm. To prevent race conditions where two participants restart at
almost the same time, the timeout is multiplied with a participant specific factor.

Algorithm 9, the Acceptor Algorithm, is started for a participant Pi if the ter-
mination vector TVi contains an entry indicating a new leader Px. Pi binds to
the new leader by setting its own termination vector entry TVi(i) to the value
〈bind := Px, version := v, (proposal := p, proposalVersion := pv〉 (Algorithm 9, line
3), where proposal p and proposal version pv are derived as follows (Procedure
acceptorStatus(TVi, CMi), Algorithm 9, line 16 - 22):
• Whenever a previous leader has made a proposal (line 17), this proposal and

the proposed version number are returned.

• Otherwise, whenever the commit matrix CMi contains an entry for time-
OutAck (line 18), p is set to timeOutAck, and since no proposal of a previous
leader has been received, the proposal version is set to 0.

• Otherwise, if each column of CMi contains at least one voteCommit (line 19),
proposal p is set to voteCommit and pv = 0.

• Otherwise, at least one column of CMi does not contain a voteCommit, thus
p is set to voteTimeOut and pv = 0 (line 20).

After this, Pi broadcasts the updated termination vector (line 5) and waits (line 6
and 30) until either a timeout occurs, it recognizes a new leader, it receives a decision
on the transaction, or it receives a termination vector entry TVi(x) = 〈Px, v, (pn, v)〉
(line 6). The termination vector entry indicates a proposal of the new leader Px.
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Algorithm 9 Acceptor Algorithm for Pi

1: procedure acceptorAlgorithm(x, v, TVi)
2: (p, pv):= acceptorStatus(TVi, CMi)
3: TVi(i) := 〈Px, v, (p, pv)〉 . Note, that pv < v

4: Decision = unknown
5: broadcast(TVi)
6: if waitFor( TVi(x) = 〈Px, v, (pn, v)〉, TVi, Decision) = false then
7: return Decision
8: end if
9: TVi(i) := TVi(x) . Accept proposal

10: broadcast(TVi)
11: if waitFor((

∑
k=1..n (TVi (k)=〈Px, v, (pn, v)〉))>1

2n, TVi, Decision) = false then
12: return Decision
13: end if
14: return TVi(i).proposal . Decision equals proposal
15: end procedure

16: procedure acceptorStatus(TVi, CMi)
17: if TVi(i).proposal 6= empty then return (TVi(i).proposal, TVi(i).version)
18: else if ∃a, b : (CMi(Pa, Pb) = timeOutAck) then return (timeOutAck, 0)
19: else if ∀a : (∃b : CMi(Pa, Pb) = voteCommit) then return (voteCommit, 0)
20: else return (voteTimeOut, 0)
21: endif
22: end procedure

. Common parts of Acceptor and Leader Algorithm

23: procedure waitFor(condition, TVi, Decision)
24: repeat
25: (CMr, TVr, timedOut, Decision) := waitForNextEvent()
26: if Decision 6= unknown then return false end if
27: if TVr 6= null then
28: MergeVectors(TVr, TVID)
29: end if
30: until timedOut or condition or findNewLeader(TVi)6= null
31: return(evaluate(condition))
32: end procedure

33: procedure MergeVectors(TVr, TVi) . TVr was received
34: for x := 1 . . . n do . Merge TVr into TVi

35: if TVr(x).version > TVi(x).version or (TVr(x).version = TVi(x).version and
TVr(x).proposalVersion > TVi(x).proposalVersion) then

36: TVi(x) := TVr(x)
37: end if
38: end for
39: end procedure
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Pi then copies this proposal of Px into its own termination vector entry TVi(i) (line
9), and broadcasts the updated termination vector (line 10).

When during the procedure waitFor( ) a decision on the transaction is received
(line 26), the Acceptor Algorithm is immediately terminated and the transaction’s
decision is returned (line 7 and line 12).

A participant Pi that receives a termination vector TVr (line 25) merges it with
its own termination vector TVi as follows (line 33 - 39). Pi learns about a new
proposal, i.e., it sets TVi(x) := TVr(x), whenever the received termination vector
TVr(x) contains an entry associated with a version number higher than the version
number of the own termination vector entry TVi(x), or when the version attributes
are equal, but the received termination vector contains a higher proposalVersion.

As in the decentralized commit phase, a proposal pn becomes valid after a ma-
jority of participants has accepted and stored the proposal pn, i.e., waiting for
this majority was successful (line 11). At this time, each future leader must adopt
the proposal with the highest version number and will come to exactly the same
proposal. A participant that notices that a majority has accepted a proposal can
immediately adopt this proposal as the decision (line 14) and either commit or
abort the transaction, depending on the proposal.

Furthermore, the Acceptor Algorithm terminates when a participant recognizes
that a new leader with a higher version number has started, or when the condition
for which the participant waits (line 6 or 11) does not evaluate to true after a
specified amount of time. In this case, the Acceptor Algorithm is immediately
stopped and Algorithm 8 continues. If a new leader with a higher version number
has appeared (Algorithm 8, line 5), the Acceptor Algorithm is restarted. Otherwise,
when the timeout has been triggered, the participant Pi itself becomes a leader
(Algorithm 8, line 9) and starts the Leader Algorithm (Algorithm 10).

In Algorithm 10, Px becomes a leader by assigning itself a version number v :=
v′ + 1 that is higher than the highest version number v′ of which Px has knowledge
(line 2). Px then sets its own termination vector entry to TVx(x) := 〈bind := Px,
version := v, (0, 0)〉 (line 3) and broadcasts TVx as a request to the participants to
bind to Px (line 4).

As different Px may assign themselves the same value v, the protocol additionally
requires that the leader Px needs the acceptor states of a majority of participants
that have been bound to Px in order to come up with a proposal. Thus, the leader Px

waits until a majority of 〈Px, v, . . .〉 entries exist in its own termination vector TVx

(line 5, note that the asterisk is used as a wildcard). If Px does not get a majority,
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Algorithm 10 Leader Algorithm for Px

1: procedure leaderAlgorithm(TVx, CMx)
2: v := v′ + 1 . v′ = highest number ∈ TVx

3: TVx(x) := 〈Px, v, (0, 0)〉
4: broadcast (TVx)
5: if waitFor((

∑
k=1..n (TVx (k) = 〈Px, v, ∗, ∗〉)) > 1

2n, TVx, Decision) = false then
6: return Decision
7: end if
8: pn =makeProposal(TVx, CMx)
9: TVx(x) := 〈Px, v, (pn, v)〉

10: broadcast (TVx)
11: if waitFor((

∑
k=1..n (TVx(k)=〈Px, v, (pn, v)〉))>1

2n, TVx, Decision) = false then
12: return Decision
13: end if
14: return pn . Decision := pn

15: end procedure

16: procedure makeProposal(TVx, CMx)
17: if ∃〈Px, v, (p, v′)〉∈TVx : (p 6= 0)∧ (v′ 6= 0)∧ (∀v′′∈TVx.propVersion: (v′ ≥ v′′)) then
18: return p
19: else if ∃a : (TVx(a) = timeOutAck) then
20: return Abort
21: else if ∃a : (TVx(a) = voteCommit) then
22: return Commit
23: else
24: return Abort
25: end if
26: end procedure
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the execution of the procedure waitFor( ), which is described in Algorithm 9, and
the Leader Algorithm itself terminate when another leader with a higher version
number appears, a timeout has occurred, or a decision on the transaction has been
received (Algorithm 10, line 6 and 12).

When a majority exists, the leader Px, and only Px, is allowed to come up with
a new proposal pn (Algorithm 10, line 8) that is determined by the procedure
makeProposal(TVx, CMx) (lines 16 - 26) according to the following rules.
• When at least one entry of the termination vector TVx contains a proposal p

of a previous leader (line 17-18), the proposal p having the highest proposal
version number v′ among all proposal version numbers is chosen.

• Otherwise (line 19-20), when at least one timeOutAck is found within the ter-
mination vector, there cannot be a majority for voteCommit, since voteTime-
Out can only be changed to timeOutAck when there has been a majority for
voteTimeOut. Thus, no participant can have committed the transaction, but
some may have aborted it by observing a majority for timeOutAck. Therefore,
the new proposal is abort.

• Otherwise (line 21-22), no participant has an entry for timeOutAck. Since
a majority has replied to Px and no entry for timeOutAck was found, there
cannot have been a majority for timeOutAck. Thus, the transaction cannot
have been aborted because a majority of timeOutAck must be present before a
transaction can be aborted. If at least one voteCommit is present, the proposal
is commit.

• Otherwise (line 24), no voteCommit is found and the transaction will be
aborted.

The new proposal pn of the leader Px is broadcasted as a termination vector
entry TVx(x) with TVx(x) := 〈bind := Px, version := v , (proposal := pn, propos-
alVersion := v)〉 (line 9 - 10). When sufficiently many participants Pk have accepted
this proposal, have stored it into their own termination vector entry TVk(k), have
broadcasted their termination vector TVk, and Px has received and merged termi-
nation vectors into its own termination vector TVx such that TVx shows that a
majority of participants accepted Px’s proposal pn, then waiting for this majority
(line 11) was successful. Thus, the proposal pn becomes valid and is returned as
the transaction’s decision (line 14).

To ensure that the protocol continues even when Px disconnects, another partic-
ipant Pk may become a new leader and assign itself the version number v + 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64 Database Transaction Management in Mobile Ad-Hoc Networks



5.3 Termination Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that two leaders can come to two different proposals depending on their
termination vectors. However, only the one having the highest version number will
succeed, since both leaders must bind a majority of participants before they are
allowed to make a proposal. Thus, a majority of participants will reject the proposal
of the leader with the smaller version number when they are already bound to the
higher version number (cf. Algorithm 9).

Example 5.3.1 Assume four participants P1 to P4, each of which has its commit
matrix CMi filled with 2 entries voteCommit and 2 entries voteTimeOut in each row.
Thus, the decentralized commit phase is stuck, and after a timeout, the termination
algorithm starts. Let P1 be the first participant whose timeout occurred. Then, P1

becomes the leader and sets:

TV1 1 2 3 4

〈P1, 1, (0, 0)〉

After P2 has received TV1, P2 binds to the leader P1 by copying the leader’s termi-
nation vector entry TV1(1) to TV2(1) and derives its own acceptor status (voteCom-
mit) and acceptor version (0) (Algorithm 9, line 19). Therefore, P2 adds the entry
〈P1, 1, (voteCommit, 0)〉 to its own termination vector and broadcasts the vector.

TV2 1 2 3 4

〈P1, 1, (0, 0)〉 〈P1, 1, (voteCommit, 0)〉

P3 and P4 do the same as P2. When sufficiently many termination vectors have
been exchanged such that P1 has noticed that a majority of entries 〈P1, 1, (∗, ∗)〉
exists in the termination vector of P1, P1 knows that a majority of participants
has bound to the leader P1. Then, P1 creates a new proposal. In our example,
this proposal is commit since the acceptor status of P3 and P4 is voteCommit. P1’s
proposal is stored in TV1(1) as the entry 〈P1, 1, (Commit, 1)〉. The participants
recognize that this is a proposal by means of the proposal and proposal version
number (Commit,1).

TV1 1 2 . . .

〈P1, 1, (Commit, 1)〉 〈P1, 1, (voteCommit, 0)〉 . . .

When P2 receives TV1, it copies the entry TV1(1) to TV2(1) and accepts the proposal
by changing its own entry TV2(2) to 〈P1, 1, (Commit, 1)〉:
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TV2 1 2 . . .

〈P1, 1, (Commit, 1)〉 〈P1, 1, (Commit, 1)〉 . . .

When P3 has received the termination vector of P2 and has also accepted the
proposal, i.e. P3 has set its entry TV3(3) := 〈P1, 1, (Commit, 1)〉, it can commit the
proposal immediately since it knows that a majority has accepted the proposal of
the leader P1.

5.4 Correctness and Liveness

5.4.1 Correctness

In order to prove correctness, we prove that all participants that come to a trans-
action decision will come to the same transaction decision and we prove that each
participant’s transaction decision is stable, i.e. it is not changed by the protocol.

Definition 5.4.1 A participant comes to a transaction decision, when its local vari-
able Decision takes a value different from unknown, i.e. commit or abort.

Lemma 5.4.2 A participant that has come to a transaction decision will never come
to a different decision.

Proof (Sketch) When the local variable Decision is set to a value different from
unknown in Algorithm 3 or Algorithm 8, the protocol will never write on the variable
Decision again.

Lemma 5.4.3 All participants of CLCP that come to a commit or abort decision
come to the same decision.

Proof (Sketch) Since the protocol is based on majorities, we first show that when-
ever a participant has come to a valid Commit decision in the decentralized commit
phase (Case C1) or in the termination phase (Case C2), no participant can come
to an Abort decision anymore.

Case C1 At least one participant comes to a commit decision in the first phase. A
participant can only come to a commit decision whenever, for each participant,
a majority of participants Pi has stored the voteCommit in the rows/columns
of its commit matrices CMi. In this case, no commit matrix CMk can have a
majority for voteTimeOut due to the commit rule of Algorithm 4. Thus, due
to the abort attempt rule of Algorithm 6, no entry for timeOutAck can exist.
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Therefore, due to the abort decision rule of Algorithm 7, no participant can
abort the transaction in the first decentralized commit phase.

In order to come to a transaction decision when one or more participants
have started the second termination phase, a majority of all participants must
reply to a leader with its acceptor states (Algorithm 9, line 16 - 22). Since
at least one participant has come to the commit decision by assumption,
for each participant a majority of participants Pi has stored voteCommit in
the rows/columns of its commit matrices. Thus, no participant can have a
timeOutAck in its commit matrix, and there cannot be an acceptor status
timeOutAck. Thus, the acceptor status for all Pi is voteCommit (Algorithm
9, line 19). Since each new leader Pl must receive the acceptor states of a
majority of participants, Pl will receive at least one voteCommit from one of
the participants Pi, but Pl will not receive timeOutAck. Thus, the proposal
built by Pl in the termination phase will always be Commit (Algorithm 10,
line 16 - 26).

Case C2 A participant Pi has come to a commit decision in the termination phase.
In this case, there must have been a majority of entries for commit in the
termination vector of Pi associated with a version number v. This is possible
after a leader Px with version number v has succeeded. Any future leader must
first bind a majority of participants and then adopt the previous proposal with
the highest version number. Let Pk be the first leader after Px. As Pk requires
support of a majority of acceptors, Pk will receive at least one entry in the
termination matrix with version number v. Since Pk is the first leader after
Px, v is the highest version number. Thus, Pk must adopt the proposal for
commit and cannot come to an abort decision.

In the second part of the proof, we show that whenever a participant has come
to an Abort decision, no participant can come to a Commit decision anymore. We
distinguish two cases:

Case A1 A participant Pj is not able to commit a transaction, e.g. due to database
constraints. Then, Pj immediately aborts the transaction. Since Pj will not
have sent a voteCommit, any decision process will lead to abort due to the
missing vote of Pj .

Case A2 Whenever a participant has come to a valid abort decision in the first or
second phase, the same argumentation as for Case C1 and Case C2 holds: An
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abort due to timeout requires a preceding majority for timeOutAck, thus no
majority for voteCommit can exist.

5.4.2 Liveness

In the remainder of this section, we consider liveness, i.e. we prove that the
protocol will lead a majority of participants that can communicate with each other
to a transaction decision, and that this decision is the same for all participants of
the majority.

However, if the network is partitioned in such a way that no majority of par-
ticipants can communicate anymore, there is no way to decide on the transaction
without violating the requirements for a unique transaction decision [63].

The following definitions are used for proving liveness of CLCP’s termination
phase.

Definition 5.4.4 We call a leader Px with version number v dead, if a majority
of participants has bound to a leader Pj with version number w and w > v, i.e.
a majority of participants has set its termination vector entry TVj to the version
number w (Algorithm 9, line 2 - 3).

Definition 5.4.5 We call a proposal p of a leader Px with version number v an-
chored, if each following leader Pj with version number w, w > v that does not
become a dead leader but makes a proposal, will propose p as well.

Note that a proposal p becomes anchored if a majority of participants has accepted
and stored p.

Lemma 5.4.6 CLCP will come to an anchored proposal whenever a majority of
participants is in the termination phase and the participants of the majority can
communicate with each other for a sufficiently long period of time.

Proof (Sketch) During the termination phase, a participant Pi that executes Algo-
rithm 9 or Algorithm 10 only waits during the execution of the procedure waitFor

(described in Algorithm 9, line 23 - line 32) for the following events to occur:

1. A leader condition is fulfilled (Algorithm 10), which is either

(a) a majority of participants has bound to the leader, i.e. the participants
have set their termination vector entry to the version number associated
with the leader (Algorithm 10, line 5), or
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(b) a majority of participants has accepted the leader’s proposal (Algorithm
10, line 11).

2. An acceptor condition is fulfilled (Algorithm 9), which is either

(a) the leader has made a proposal (Algorithm 9, line 6), or

(b) a majority of participants has accepted the leader’s proposal (Algorithm
9, line 11).

3. A timeout has occurred.

4. A new leader with a higher version number has appeared.

The appearance of a new leader with higher version number (event 4), can only
occur if a participant’s timeout has triggered. Thus, we can reduce event 4) to
event 3), since both events result in a restart of the leader and acceptor algorithms.
In the following, we argue that the time between two occurrences of the events 3)
and 4) will grow larger due to the increment of the timeout value after a restart of
a new leader, which gives a leader enough time to succeed:

Assume a participant Pi becomes a leader before a previous leader Px had time
to anchor its proposal. The protocol ensures that each leader that has died must in-
crease its participant specific timeout after the termination of the leader algorithm
(Algorithm 8, line 10). Thus, the timeouts after which participant Px decides to
become a leader again will grow larger with an increasing length of time. Further-
more, the timeouts are different for each leader since the timeouts are increased
by being multiplied with a participant specific factor. At some point in time, the
timeout has grown to an extent at which the amount of exchanged messages will
ensure that a leader’s proposal is anchored before a new leader will become present,
more precisely, there is a point in time at which the events 1b) and 2b) will occur
before one of the events 3) and 4) triggers.

When none of the events 3) or 4) occur for a sufficiently long period of time, the
events 1) and 2) let the protocol progress: Each acceptor broadcasts its status; the
leader receives the acceptor states of a majority of acceptors, builds a proposal,
and broadcasts the proposal; each acceptor will accept the proposal. Thus, after
sufficiently many exchanged messages, the protocol will anchor a proposal.

Thus, after a sufficiently long period of time, a leader exists that has been able
to anchor its proposal.
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Theorem 5.4.7 Whenever a majority M of participants can communicate with
each other for a sufficiently long period of time, each participant Pi ∈M will come
to the same transaction decision in terms of commit or abort.

Proof In the decentralized commit phase, each participant Pi exchanges commit
matrices and changes its commit matrix until either the decision rules return a
decision on the transaction, or until a previously defined timeout occurs. When a
decision on the transaction is made, this decision is broadcasted as an acknowledge-
ment to each participant that does not know about this decision. Each participant
that learns about the new decision terminates the protocol and returns the decision
to other participants as well. Thus, whenever a single participant of the majority
M has derived a decision, this decision will be sent to all other participants of M
and the protocol terminates.

When the predefined timeout occurs and no decision could be derived, each par-
ticipant Pi starts its termination phase. Lemma 5.4.6 states that after a sufficiently
long period of time, a proposal becomes anchored and thus becomes the transac-
tion’s decision. Lemma 5.4.2 states that a known decision is not changed anymore,
while Lemma 5.4.3 states that all participants come to the same decision.

5.5 Experimental Evaluation

We have evaluated our protocol in an environment generated by the BonnMo-
tion mobility scenario generator [70]. We simulated various mobility models, i.e.
Random Waypoint, Attraction Point, and Manhattan Geometry. Transactions are
issued to participants that are close together initially, but each of the participants
may move or disconnect during the commit protocol execution. Furthermore, we
assumed a message reception model that covers the real-world reception behavior
better than the standard unit-disc-model.

5.5.1 Quasi-Unit-Disc Reception Model

In contrast to the unit-disc-model, we use the quasi-unit-disc-model [26] as re-
ception model, which uses multiple probabilities for message reception as follows.
Whenever a mobile device T transmits data, a participant Ri that has the distance
∆i to T receives this data with the probability

p = min
(

1, 1− max (0, ∆i − GuaranteedRange)
MaxRange-GuaranteedRange

)
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where MaxRange is the maximum sending range, and GuaranteedRange>0 denotes
the range with guaranteed message reception in our model.

Whenever GuaranteedRange < ∆i < MaxRange holds, we say that the receiver
is located within the Possible Reception Range (PRR). For receivers that are lo-
cated within the PRR of a sender, our model assumes linear reception probability
depending on the actual distance to the sender.

5.5.2 Consequences for Atomic Commit Protocols

As [26] has shown, the results for routing when using the quasi-unit-disc-model
differ from when using the unit-disc-model. In mobile networks, a message sender
cannot be sure of the delivery of the message, but the successful delivery is crucial
for the ACP to progress and to commit the transaction. Thus, acknowledgements
(ACKs) are widely used, and the message transfer is repeated when the ACK has
not been received by the sender after a certain time. Unfortunately, each acknowl-
edgement requires the intended receiver to additionally transmit data and spend
energy. Furthermore, ACKs may get lost, causing the transmission to be unnec-
essarily repeated. As our experiments show, the use of standard atomic commit
protocols without ACKs leads to a low transaction throughput and a high abort
rate, especially when devices are often within the PRR. However, having ACKs
enabled, the message costs of the used protocols increase significantly, depending
on the number of hops for each message. This motivates the development of our
cross-layer protocol CLCP that makes use of the ACKs to piggyback information.

5.5.3 Setup

For each of these mobility models, we created N distributed transactions for
devices that are close together. We have assumed that during one time unit, there
is no limit to the number of sending actions, but the data that is sent is received
within the next time unit. Although our experiments include some parameters that
are based on chance, we used the random seed of the random number generator to
produce repeatable experiments.

Table 5.2 shows the parameters that we used in our evaluation.
These parameters and the following parameters for the mobility model are moti-

vated by the BonnMotion mobility generator [70] and proposed as standard param-
eters. However, our experiments have shown that there is no significant influence
on the overall comparison of the protocols when varying concrete parameters.
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Common Parameters for Each Experiment

Guaranteed transmission range 10

Max transmission range 60

Network timeout 20

Random seed 1001

Table 5.2: Experimental Evaluation Parameters

5.5.4 Mobility Models

We simulated multiple ad-hoc networks based on the following mobility models:
Random Waypoint Model assigns a random destination to each node within a

predefined area, towards which the node moves on the shortest route without
leaving the predefined area.

Attraction Point Model is based on the Random Waypoint Model, but has pre-
defined destinations towards which the nodes move.

Manhattan Model assigns a random destination to each node at a predefined grid.
Thus, the nodes move only on the grid.

We used the parameters shown in Table 5.3 for creating the three different mo-
bility models. For further information regarding the models, we refer to the litera-
ture, [15], for example, gives an overview of several mobility models.

5.5.5 Transaction Generation

We generated transactions on sets of participants that are connected by a span-
ning tree with a maximum edge length of distance d. Thus, we analyzed the gen-
erated mobility models and whenever we could identify a predefined number n of
participants that form a spanning tree with predefined maximum edge length d,
we generated a transaction among these closely connected participants. When the
number of generated transactions is greater than the predefined number of transac-
tions, we delete transactions randomly but equally distributed until we have exactly
as many transactions as defined. Table 5.4 shows the transaction generation pa-
rameters that we used during our experiments.

Our experiments have shown that a variation of the transaction’s read-phase du-
ration results in a similar behavior as varying the maximum edge length d of the
minimum spanning tree. The reason is that when the ACP starts after the comple-
tion of a long lasting read-phase, some nodes have already moved, which results in
the same behavior as specifying a greater maximum edge length d with a shorter
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Common Mobility Model Parameters

Number of nodes 100

Simulation duration (in time units) 15,000 TU

Initial cut-off (in time units) 3,600 TU

Number of nodes 100

Field width (in field units) 500 FU

Field height (in field units) 500 FU

Random seed 1,000

Random Waypoint Model

Min node movement speed per TU 0.5 FU

Max node movement speed per TU 1.5 FU

Attraction Point Model

Attraction points (x, y, weight-
ing, std. deviation of x/y coor-
dinates)

(467, 463, 7.3, 2), (244, 154, 7.8, 1), (472,

444, 8.6, 14), (205, 239, 6.8, 14), (246, 426,

3.4, 4), (169, 490, 7.0, 25), (340, 322, 1.8,

43), (57, 305, 3.7, 19), (235, 239, 2.6, 5), (28,

315, 6.2, 37)

Random waypoint parameters apply as well.

Manhattan Model

Grid layout 5x5

Table 5.3: Parameters of our Mobility Models

Transaction Generation

Number of Transactions 1000

Maximum spanning tree edge length d 50 FU

Table 5.4: Transaction Spawning Parameters

read phase execution time. Thus, to reduce the number of varying parameters, we
assume that the transaction’s read-phase is equal for all (sub-) transactions and
consists of one time unit, but we varied the number of involved participants during
our experiments.
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5.5.6 Routing Protocols

In order to be able to compare 2PC, Paxos Commit, and CLCP and to cope
with our reception model that allows a message to be simultaneously received by
multiple participants, we have implemented a Relay Routing protocol for CLCP
that involves all transaction participants and additionally some nodes that are not
participating within the transaction. Relay Routing uses a kind of bounded flooding
with a maximum number of non-transactional participant relays. Thus, we do not
rely on pro-active routing components, and we do not require any knowledge of the
network at any time.

Whenever a transaction participant Ps must send a message to a transaction
participant Pr, each transaction participant Pk that has received this message, i.e.
Pk is either within the PRR or within the guaranteedRange, re-sends the message
once. Whenever a non-transaction participant Ni receives a message, Ni increases
the message counter relay and then also re-sends the message until the counter relay
is greater than or equal to a pre-defined maximum relay value maxRelay. Whenever
a participant receives the same message a second time, the message is discarded.

Furthermore, we compared CLCP using Relay Routing with 2PC and Paxos
Commit using the “Nearest Forward Progress Routing Protocol” (NFR) [33], which
lets each sender forward a message to the nearest node that reduces the distance
to the message receiver. For these experiments, we assumed a global knowledge of
all other node positions. Further details on these routing protocols can be found
in [27]. The parameters that we used in our evaluation are shown in Table 5.5.

Ps

Pr

Pa

Pb

Na

1, 3

2

2

2

3

Figure 5.1: Relay Routing Example

Example 5.5.1 Figure 5.1 shows a routing from Ps to Pr. The numbers above the
nodes indicate the logical time at which the message is received. After Ps has sent
the message at time 0, Pa receives the message at time 1, but Pb does not. Pa then
re-sends the message, which is received at time 2 by Pb, Ps, and the non-transaction
participant Na. Since Ps has already sent the message, Ps discards it. Pb as well
as the non-transaction participant Na, re-send the message, assuming a maximum
relay value maxRelay greater than 0. At time 3, Pa and Pr receive the message and
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Relay Routing without ACK

Simulated ACPs CLCP, 2PC, Paxos Commit

maxRelay (non transaction par-
ticipants)

1

Positioning information None

Max hop count 1

Use message ACK Yes, no

Nearest Forward Progress Routing

Simulated ACPs 2PC, Paxos Commit

Positioning information Global knowledge

Max hops 8

Max message retry 1

Max hop count 10

Use message ACK Yes

Table 5.5: Routing Protocol Parameters

the routing terminates. If a broadcast among the transaction participants must be
issued, no recipient for the message would be given. Then, Pr must re-send the
message at time 4.

With each routing protocol, there is no guarantee that the message will arrive at
its destination. Thus, a participant Ps could require Pr to send an acknowledgement
ACK when Pr has received the message. Whenever Ps does not receive ACK after
a certain time, Ps must re-send the whole message again. As 2PC and Paxos
Commit require messages to be sent to a specified destination, we have simulated
both atomic commit protocols twice, i.e. each with ACKs toggled on and off. CLCP,
in contrast, only requires “broadcasts” and does not need special ACKs since each
participant acknowledges a received Commit Matrix/Termination Vector by sending
the updated matrix/vector in the next broadcast message.

5.5.7 Energy Consumption

In our experiments, we measured the totally used energy that was needed for
sending and receiving packets using the following terms, which were given by [25]
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due to measurements for a Lucent IEEE 802.11 2 Mbps Wavelan PC-Card. For
broadcasts, the following energy computation was used:

send packet of n bytes: 1.9µW·sec · n+ 266µW·sec

receive packet of n bytes: 0.5µW·sec · n+ 56µW·sec

For point-to-point routing, the following energy computation, whose higher fixed
cost is associated with the IEEE 802.11 control protocol, was used, corresponding
to the measurements of [25].

send packet of n bytes: 1.9µW·sec · n+ 454µW·sec

receive packet of n bytes: 0.5µW·sec · n+ 356µW·sec

5.5.8 Results
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Transaction Overview
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Figure 5.2: Manhattan Mobility Model, 5 Participants

Figure 5.2, 5.3, and 5.4 show the percentage of committed transactions, the per-
centage of transactions that have been aborted due to timeout, and the percentage
of pending transactions for each protocol involving 5 transaction participants. We
defined a pending transaction as a transaction, for which at least one participant has
not received the transaction decision, i.e. Commit or Abort. A low amount of pend-
ing transactions is one of the main criteria for actually using a particular commit
protocol in practice, since pending transactions block resources and thus prevent
the database from executing concurrent transactions that conflict with these pend-
ing transactions. However, as the number of pending transactions could be reduced
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Figure 5.4: Attraction Point Mobility Model, 5 Participants

by a protocol that aborts each transaction, the reduction of pending transactions
and the increase of committed transactions will indicate a protocol’s quality.

"2PC NFR" and "Paxos NFR" both use the "Nearest Forward Progress" routing,
while all other protocol implementations use Relay Routing as described in Section
5.5.6. Both, "2PC noAck" and "Paxos noAck" omit acknowledgement messages.
Thus, participants using a noAck protocol send each message only once, regardless
of whether it is received or not.

As we can see, CLCP is able to commit more transactions than all other protocols,
and CLCP reduces the number of pending transactions in each mobility model. The
protocols using NFR show a significantly worse behavior regarding the number of
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committed transactions, motivating the use of Relay Routing for the atomic commit
protocol.

The same applies to protocols that do not use acknowledgement messages. As
expected, the number of pending transactions is significantly larger for 2PC and
for Paxos Commit when not using acknowledgements.

Figure 5.5, 5.6, and 5.7 show the total network energy consumption in kW ∗ sec
depending on the number of transaction participants, but regardless of the number
of committed transactions. Note that we scaled the y-axis logarithmically and
measured the required energy for all protocols including the energy that is required
for the exchange of CLCP’s commit matrices.
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Figure 5.5: Manhattan Mobility Model

As expected, protocols that do not use acknowledgement messages need signif-
icantly less energy than similar protocols using them. In contrast, CLCP needs
almost the same low amount of energy as “2PC noAck”, but – as we have seen in
Figures 5.2, 5.3, and 5.4 – shows the highest number of committed transactions.
“Paxos NFR” and “Paxos” turned out to be very expensive in terms of energy,
while the “Paxos noAck” needs remarkably less energy (but shows a poor number
of commits).
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The energy consumption for the NFR routing protocols does not differ signifi-
cantly from Relay Routing using acknowledgement messages. Thus, NFR routing
is not preferable compared to Relay Routing for the atomic commit protocol.

Although the mobility models differ in the total energy consumption required for
the atomic commit protocols, we can see that the differences between the protocols
used correlate for each mobility model. This is due to our transaction spawning
model, since transactions are spawned among a set of participants, each participant
of which is at most d field units away from at least one transaction participant. In
each mobility model, the participants move during the atomic commit protocol
execution such that they will likely separate.

Another important criterion is the time which each commit protocol takes to
come to a commit decision. We measure the average blocking time of each partici-
pant, i.e. the time between sending the first voteCommit message and receiving the
transaction decision. Figure 5.8, 5.9, and 5.10 show the results for each mobility
model depending on the number of transaction participants.
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Figure 5.8: Manhattan Mobility Model

Again, the protocols omitting acknowledgements, i.e. “2PC noAck” and “Paxos
noAck”, show the worst behavior. When using these protocols, the average block-
ing time per participant is significantly higher than when using the corresponding
protocols having acknowledgement messages.
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Similarly, protocols using NFR routing show worse blocking times than those
using Relay Routing and acknowledgements. Especially for the Manhattan Mobility
Model, “Paxos NFR” shows the highest blocking times for 5 and more participants.

CLCP has the lowest blocking times for 3 and more participants, which is not
only caused by the higher number of committed transactions, but also by the fast
decentralized commit phase, which lets participants determine individually when a
transaction has to be comitted, in contrast to the centralized protocols that rely on
a coordinator.

5.5.9 Conclusion from the Experiments

Our experiments have confirmed that the use of acknowledgement messages is
crucial for the overall number of committed transactions. However, when using
ACKs, energy consumption grows. In contrast to 2PC and Paxos Commit, the en-
ergy consumption of CLCP is competetive with protocols that do not use ACKs, but
CLCP allows to commit even more transactions than the 2PC and Paxos Commit
protocols using ACKs.

When we compare Relay Routing with NFR, we see that Relay Routing shows a
significantly higher number of committed transactions than NFR by using the same
amount of energy. Thus, Relay Routing is generally preferable over NFR routing
for atomic commit protocols.

Although the mobility model used has an influence regarding absolute energy
consumption, the mobility model does not significantly influence the comparison
between the atomic commit protocols.

Furthermore, we can see that CLCP has very short blocking times for 3 or more
transaction participants, caused by both the number of committed transactions and
the fast decentralized commit phase of CLCP.

5.6 Related Work

A lot of contributions aim for mobile environments that consist of both mobile
devices and fixed infrastructure, some of them are [23,38,49,56,57,72]. In contrast
to all these approaches, our atomic commit protocol is designed with the assump-
tion of a completely mobile ad-hoc environment without any fixed parts. As a
consequence, we can neither rely on compensation transactions (they may never
reach their destinations), nor shift work that is crucial for the protocol correctness
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to fixed-wired, stable parts of the network. Thus, we consider our protocol being
applied to completely mobile application scenarios.

Atomic commit protocol blocking that occurs during the atomic commit proto-
col execution is inevitable in asynchronous networks. This follows from contribu-
tion [63], which has proven that blocking during atomic commit protocol execution
cannot be avoided if it cannot be determined whether a node has failed or is still
working in another network partition. To enhance the Coordinator’s availability of
the atomic commit protocol, some contributions propose the use of protocols with
more than one Coordinator. [58], for example, suggests the use of backup Coordi-
nators in 2PC, [30] uses Paxos Consensus [40] to get a consensus on the commit
decision, and [9, 12] allow “controlled failures” by proposing a combination of the
different protocols 2PC, 3PC [62], and Paxos Consensus. The Chandra-Toueg Al-
gorithm [17] also uses consensus to reach an agreement. Different from the version
numbers used by Paxos Consensus, the Chandra-Toueg Algorithm uses rotating
leaders that are determined by the number of the current round. However, [69]
experimentally evaluated the Paxos Consensus and the Changra-Toueg Algorithm
with the result that both algorithms have the same performance if neither crashes
nor message loss occurs. The algorithms differ when failures must be handled. In
such situations, Paxos Consensus has better performance since a participant takes
over the leader role immediately after it has detected a leader failure, while the
Chandra-Toueg Algorithm has a predefined order of leaders. The difference be-
tween both algorithms grows when failures occur simultaneously. Thus, CLCP uses
a termination phase concept, whose version number approach is related to Paxos
Consensus.

However, as our experiments have shown, consensus protocols operating on the
application layer are expensive in terms of energy and need a special centralized
main coordinator that coordinates the protocol.

Other contributions focusing on agents, e.g. [49], propose to shift the coordi-
nation workload to fixed parts of the network by using participant-agents, which
are executed on base stations and responsible for sending the votes and accepting
the commit decision. However, our extension is also usable for completely mobile
networks without having a fixed infrastructure.

Another important problem of approaches operating on the ISO-OSI application
layer (e.g. [43,61]) involves the guarantee of message delivery. In mobile networks, a
single transmission of a message is not necessarily received by the next participant
on the routing path, but this is assumed by the reception models of current atomic
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commit protocols for mobile networks, e.g. [22, 38, 49, 72]. These protocols assume
environment models using the unit-disc-model which implies that whenever a node
sends a message, any node within its specified communication range receives the
message, while any other node outside the disk does not. However, [26] has shown
that a non-binary reception probability – the quasi unit-disc model – leads to very
different results compared to the use of the unit-disc-model. In practice, additional
acknowledgement messages are required in order to guarantee message delivery at
least at the network layer. However, these additional acknowledgements consume
energy.

In contrast, CLCP is able to use acknowledgements to piggyback additional in-
formation, which not only ensures correct message delivery but also causes the
consensus algorithm to be competitive in terms of number of messages and en-
ergy used. Furthermore, CLCP does not rely on a special coordinator since it is a
distributed protocol.

5.7 Summary and Conclusion

We have presented CLCP, a distributed cross layer commit protocol for mobile
ad-hoc networks that uses consensus among all participants to come to a commit
decision. We have shown how CLCP uses the Commit Matrix to decentralizedly
come to a commit decision, and how the protocol terminates when network parti-
tioning occurs. Furthermore, we have proven the correctness of CLCP, i.e. that
all participants deciding on commit come to the same commit decision, and that
CLCP terminates when a majority of participants is able to communicate with each
other for a sufficiently long period of time.

Our experimental results show that CLCP, like 2PC without ACKs, consumes
very little energy compared to the other protocols, but is superior to all the other
protocols regarding the number of committed transactions. Therefore, we regard
CLCP being a significant contribution to atomic commit protocols for mobile ad-hoc
networks.
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Bi-State-Termination

6.1 Problem Description

In consequence of the protocol blocking definition 5.1.1 given in the last chapter,
another serious problem arises, which has an effect on concurrent transactions:

Definition 6.1.1 A transaction T is blocked after a database proposed to execute
T (e.g. by sending a voteCommit message) and waits for the final commit decision
but is not allowed to abort or commit T unilaterally on its own.

Transaction blocking summarizes the unilateral impossibility to abort or commit
a transaction, but does not mean that a transaction U waits to obtain locks from a
concurrent transaction, since in this case U can be aborted by the database itself.

Example 6.1.2 Assume 2PC is used and no problems occur. In this situation,
transaction blocking occurs at all participating databases for a short period of
time, namely within the time interval between the sending of the vote message and
the receiving of the commit or abort message.

While protocol blocking does not necessarily prevent the possibility of a unilateral
abort by some of the databases, transaction blocking has an effect on concurrent
transactions: They cannot be processed until the final commit decision is received.
This can be explained as follows. A database that proposed to execute a transaction
Ti has sent a result and a “vote for commit” message. Therefore, it must guaran-
tee that the result is still valid when the coordination instance sends the commit
instruction for Ti. However, since the coordinator may also send an abort message,
the database cannot commit the transaction unless the transaction decision has
been received. This, however, requires that any other concurrent transaction Tc

that accesses in a conflicting way some or all tuples of Ti, cannot be executed and
must wait until Ti is either committed or aborted. However, since the transaction
is in a blocking situation, the database cannot terminate this situation on its own,
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Figure 6.1: 2PC Transaction Execution

it must wait until it receives a commit/abort message for Ti. If this commit/abort
message never reaches the database, Ti will never finish and thus Tc cannot com-
mit. Furthermore, the blocking effect is independent of the used concurrency control
mechanism since the database cannot let a transaction Tc that is in conflict with
Ti commit without knowledge of the commit decision of Ti.

The problem of infinite transaction blocking for a transaction Ti occurs, if a
database has sent a voteCommit message on Ti, but never receives the final commit
decision, e.g. due to disconnection, movement, or network partitioning.

One might think that time-out based approaches solve this problem. However,
if we add a time-limit for the commit decision, then the scenario fulfills the re-
quirements of the coordinated attack scenario [28], in which the commit decision is
that two generals use an unreliable communication channel to agree on a time for a
common attack. For this scenario, [28] proves that a commit decision is not possible
under the assumption that message loss may occur. The conclusion of this coordi-
nated attack scenario is that the use of time-out votes (e.g. “my commit vote is valid
until 3:23:34”) does not allow the databases to unilaterally abort the transaction
and therefore does not solve the problem of infinite transaction blocking.

6.2 Transaction Model Analysis

Definition 6.2.1 Assume a database in state S0 executes a transaction Ti. Then,
we call ResultTi(S0) the result value that the databases returns to the initiator after
finishing the read phase of Ti.

Above the time line, Figure 6.1 shows the standard application of 2PC for a
distributed transaction Ti when a locking mechanism like 2-Phase-Locking [24] is
used. Below the time line, Figure 6.1 illustrates the possible database reactions in
case the database does not receive expected messages after a timeout. As long as
the database has not voted for commit, it can still abort Ti and release the locks.
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Different from traditional 2PC, our protocol allows Bi-State-Termination (BST) to
terminate a transaction even after the commit vote has been sent.

The transaction execution shown in Figure 6.1 involves two messages showing
that the locked point was reached: Both the voteRequest message and the doCommit
message indicate that all databases have obtained all necessary locks. However, for
the purpose of ensuring serializability, it is only necessary to reach this locked point
once, as protocol optimizations like “unsolicited vote optimization” [66] show.

As the transaction sequence is fixed after the voteRequest message has been re-
ceived by each database, serializability is guaranteed. However, for ensuring strict-
ness, i.e. to guarantee recoverability and to avoid cascading aborts, each database
must hold all locks until the doCommit message is received and the write phase has
been finished. Unfortunately, if the doCommit message is lost or cannot reach a
database, the database must hold the locks and cannot abort the transaction on its
own, which however, is possible before the vote for commit message has been sent.

In the remainder of this section, we develop a solution that not only unblocks and
processes concurrent and depending transactions if the commit decision cannot be
received by a database for a longer period of time. Our solution, which is called Bi-
State-Termination (BST) of a transaction Ti, also guarantees atomicity. The main
idea of BST is that if the coordinator’s decision for a transaction Ti is delayed,
a concurrent transaction Tc depending on Ti can be processed by transferring the
required locks from Ti to Tc, and then by executing Tc on two database states: one
state having Ti committed, the other state having Ti aborted. However, it is the
database’s choice whether or not and after which timeout it applies BST.

We want to achieve that all transactions belonging to a distributed global trans-
action are executed in an atomic fashion, and that each concurrent execution of
different distributed global transactions is serializable, i.e. the execution produces
the same output and has the same effect on the databases as some serial execution
of the same distributed global transactions.

Definition 6.2.2 Assume that a database is in a state S0 that has been created
by some previous transactions before the write phase of Ti is executed. Assuming
no concurrent transaction has changed the database state while Ti is executed, we
call the database state that is caused by the write phase of Ti the state STi . Let
Ti consist of the sequence of operations Oi1 ,Oi2 , . . . ,Oin . When this sequence of
operations is applied to the database, we call the changes that have been made by
the operations the delta of the transaction Ti. We write ∆Ti(S0) if the sequence
of operations Oi1 , . . . ,Oin is applied on the database state S0. When Ti has been
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committed, the result of applying ∆Ti to the database state S0 becomes visible
for other transactions, thus we get the new database state STi , for which we write
STi = S0 ⊕∆Ti(S0).

Note, that when a transaction Ti, which, for example, increments integer values,
is executed on two different database states S0 and S1, the transaction execution
can lead to different deltas ∆Ti(S0) and ∆Ti(S1). However, when Ti does not include
branches or loops, the sequence of operations remains the same for all executions.

Lemma 6.2.3 Assume a database is in state S0, a transaction Ti is executed, and
a concurrent transaction Tj is started, but Ti does not depend on Tj and vice
versa. Therefore, the changes of transaction Tj do not affect the execution of the
transaction Ti. The equations

∆Tj (S0) = ∆Tj (STi) and ∆Ti(S0) = ∆Ti(STj )

hold, which means that the modifications of a transaction Tj are independent of
any previous modification of a non-dependent transaction Ti and vice versa.

Proof Assume the database state before the execution of Ti and Tj is S0.

Tj does not depend on Ti and
Ti does not depend on Tj

⇐⇒ ∀ tuple t ∀ attribute a (¬Oi accesses t.a ∨ ¬Oj accesses t.a
∨ (Oi reads t.a ∧Oj reads t.a)) (follows from Def. 3.3.1 and 3.3.2)

=⇒ S0 ⊕∆Ti(S0)⊕∆Tj (STi)
= Ojn(. . . Oj2(Oj1(Oin(. . . Oi1(S0)))))
= Oin(. . . Oi2(Oi1(Ojn(. . . Oj1(S0))))) (since operations do not conflict)
= S0 ⊕∆Tj (S0)⊕∆Ti(STj )

=⇒
(
∆Tj (S0) = ∆Tj (STi)

)
∧ (∆Ti(S0) = ∆T (STj ))

Therefore, whenever a set BT of transactions is blocked, the result of a trans-
action T may only be influenced by those transactions DBT ⊆ BT on which T is
dependent.

6.3 Solution

In the following, we focus on the question:
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What can a database D executing a transaction Ti do, when Ti is
blocked, and a concurrent transaction Tc requests access to data tu-
ples accessed by Ti in a conflicting way.

A proposed solution to answer this question can be found in standard literature
for databases, and is quite simple: wait. However, during the wait, the number of
transactions that wait concurrently may increase if the blocking continues. Another
possibility is to abort the concurrent transaction Tc. Although correct, this behavior
is not satisfying.

S0

Ti aborts
gggggggggggggggggggg

Ti commits
WWWWWWWWWWWWWWWWWWWW
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Tc aborts
ooooooooooo

Tc commits
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S0 S0 ⊕∆Tc(S0) S0 ⊕∆Ti(S0) S0 ⊕∆Ti(S0)⊕∆Tc(STi)

Figure 6.2: Possible database states if Ti and Tc conflict and block

Our solution called Bi-State-Termination is based on the following observation:
Whenever transaction blocking occurs, the database does not know whether a trans-
action Ti waiting for the commit decision will be aborted or committed. However,
only if the transaction is committed, the database state changes. Let S0 denote
the database state before Ti was executed. Although the database does not know
the commit decision for Ti, it knows for sure that either S0 or S0 ⊕ ∆Ti(S0) is
the correct database state, depending on the commitment of Ti. Figure 6.2 shows
these two possible states in the tree. With this knowledge, the database can try to
execute a concurrent conflicting transaction Tc on both states S0 and S0⊕∆Ti(S0).
Whenever the two executions of Tc on S0 and on S0 ⊕ ∆Ti(S0) return the same
results to the Initiator, i.e. ResultTc(S0) = ResultTc(STi), Tc can be committed re-
gardless of Ti, even though they are conflicting. Otherwise it is the application’s
choice whether it handles two possible transaction results. However, since Tc de-
pends on Ti, we might have ∆Tc(S0) 6= ∆Tc(STi). Therefore, the database must
store both deltas ∆Tc(S0) and ∆Tc(STi), and if Tc commits before Ti is committed
or aborted, the database knows that either the state S0 ⊕∆Tc(S0) is valid, or the
state S0 ⊕ ∆Ti(S0) ⊕ ∆Tc(STi) is valid. Figure 6.2 shows the execution tree with
both Ti and Tc being blocked. The leaves represent the database states that may
be valid depending on the decisions for the blocked transactions Ti and Tc.
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6.3.1 Bi-State-Termination

Let Σ = {S0, . . . , Sk} be the set of all legal possible database states for a database
D. A traditional transaction Ti is a function Ti : Σ 7→ Σ, Sa → Sb, which means
the resulting state Sb of Ti depends only on the state Sa on which Ti is executed.

A Bi-State-Terminated transaction Ti is a function BST : 2Σ 7→ 2Σ,

{Si, . . . , Sj}︸ ︷︷ ︸
Initial States

→ {Si, . . . , Sj}︸ ︷︷ ︸
Ti aborts

∪{Ti(Si), . . . , Ti(Sj)}︸ ︷︷ ︸
Ti commits

that maps a set ΣInitial ⊆ Σ of Initial States to a super set ΣInitial ∪{Ti(Sx)|Sx ∈
ΣInitial} of new states, where Ti(Sx) is the state that is reached when Ti is applied
to Sx.

This concept of Bi-State-Termination leads to the following commit decision rules
for the transaction execution of a transaction Ti on a database DB:

DB checks Ti’s dependency on concurrent blocking transactions. The following
situations may occur: Ti is independent of all currently blocked transactions. Then,
Ti can be executed immediately.

Otherwise, Ti depends on a set {Tj . . . Tn} of blocked transactions. As Ti de-
pends on each of the transactions {Tj . . . Tn}, each of them has reached its lock
point before Ti. Thus, for any concurrent execution of {Tj . . . Tn}, there is an
equivalent serial execution ESE of {Tj . . . Tn}. As ESE only has to reflect the or-
der in which transactions leave the lock point, ESE can always be constructed,
as described below. Thus, serializability is guaranteed for {Tj . . . Tn}. Then, DB
can Bi-State-Terminate the transactions {Tj . . . Tn}, and executes the transaction
Ti on all possible combinations of abort and commit decisions of the transactions
{Tj . . . Tn} in ESE.

The serializable sequence ESE of the transactions {Tj . . . Tn}, on which Ti is exe-
cuted, must obey the following conditions. For each pair (Tj , Tn) of the transactions
for which a dependency Tj → Tn exists, Tj left its lock point before Tn left its lock
point. However, in order to execute the transaction Tn that depends on the blocked
transaction Tj , the transaction Tj must have been Bi-State-Terminated. In this
case, the order (Tj < Tn) is fixed.

Note that if there is no dependency Tj → Tn, and no dependency Tn → Tj , the
execution sequence of the blocked transactions (Tj , Tn) does not matter since the
transactions are independent of each other, cf. Lemma 6.2.3.
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This means, the transaction Ti must only be executed on all combinations of
commit and abort decisions for the blocked transactions Tj . . . Tn, but not on all
possible sequences (permutations) of the transactions Tj . . . Tn.

If Ti must be executed on multiple database states, this might yield different re-
sults. Let S1 . . . S2n be the states that can be reached by any combination of com-
mit/abort decisions on the n transactions {Ti . . . Tn} that are Bi-State-Terminated.
If ResultTi(S0) = . . . = ResultTi(S2n) holds, transaction Ti can be committed since it
has a unique result. Otherwise, the application that initiated Ti can choose whether

• it aborts Ti completely,

• it commits Ti and deals with multiple possible results,

• it aborts or commits only some transaction execution branches that are based
on certain depending transactions. For example, the application may spec-
ify that Ti should only commit when Tk aborts, and that Ti should abort
otherwise,

• it waits.

When Ti or a single execution branch of Ti commits, the database merges the
corresponding delta of Ti with the possible branch state.

Example 6.3.1 Assume Tc depends on Ti, but, different from Figure 6.2, Tc should
only commit when Ti commits and otherwise abort. As illustrated in Figure 6.3,
this would only affect the leftmost and rightmost branches of Figure 6.2. Therefore,
∆Ti(S0) in Level 1 is replaced with (∆Ti (S0)⊕∆Tc(STi)) since, in this case, a
commit of Ti automatically means a commit of Tc. Note that in this example, the
commit decision for Tc is made before the decision of Ti, but the execution sequence
is the other way round, namely Ti < Tc. Furthermore, the tree is flattened one level
since only Ti is yet blocked.

S0

Ti aborts
lllllllllllll

Ti commits
RRRRRRRRRRRRR

S0 S0 ⊕∆Ti(S0)⊕∆Tc(STi)

Figure 6.3: Tc should commit only if Ti commits

6.3.2 Complexity

lt can be seen that the complexity of the Bi-State-Termination of Ti depends
on the number of blocked transactions b, and that BST has a complexity of O(2b)
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database states. However, our implemented solution uses a compact data structure
and optimizes read and write operations in such a way that each transaction opera-
tion must only be executed once, regardless of the number of blocked transactions.
Although, in the worst case, the number of tuples may grow exponentially, standard
database query optimization techniques can be fully applied.

6.3.3 Correctness

Theorem 6.3.2 Bi-State-Termination in combination with 2-Phase-Locking guar-
antees serializability.

Proof As our solution uses Two-Phase Locking (2PL) and 2PL is proven to guar-
antee serializability according to [6], we show that Bi-State-Termination does not
change the order of pairs of conflicting operations of transactions given by 2PL:
Our transaction execution involves one point, namely the lock point, where each
transaction that belongs to a global transaction must hold all locks. This means
the request to vote on a transaction’s commit status can only be sent by the co-
ordinator when all databases acquired the necessary transaction locks, which the
databases indicate by sending the transaction result. The sequence of transactions
is fixed at that time when each transaction enters its lock point. Although Bi-
State-Termination may release locks after this lock point, the release of locks does
not change the order of transactions for the following reason. A transaction Tc that
gets locks from a Bi-State-Terminated transaction Ti is either executed after Ti has
been committed (Ti < Tc) or Ti is aborted.

Note that although the commit command for Tc may be issued before the commit
command of Ti, the order of applying the transactions on the database is still
Ti < Tc.

6.4 BST Rewrite Rules

Our BST rewrite rule system modifies each database relation in such a way that
it gets an extra column “Conditions” that describes for each database tuple the
condition under which it is regarded as being true. Furthermore, the database
contains a single table “Rules’ ’ storing rules that relate these conditions to each
other.

Whenever currently active transactions insert, delete or update tuples in a rela-
tion R, whether or not a tuple t will finally belong to R depends on the commit or
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abort decision of these transactions. We use a condition in order to express which
of the active transactions must commit and which must abort, such that a tuple t
finally belongs to a relation R. In our implementation, each relation R is augmented
by an extra column “Conditions” that, for each tuple t, stores the condition under
which it finally belongs to R.

This can be implemented by the following rewrite rule that modifies the create
table command for database relations:

create table R ( <column definitions> )
⇒ create table R’( <column definitions, string conditions>)

6.4.1 Status Without Active Transactions

When all transactions are completed either by commit or by abort, the column
“Conditions” contains the truth value “true” for each tuple in each relation of the
database.

6.4.2 Write Operations on the BST Model

Insertion

Whenever a tuple t = (value1, . . . , valueN ) is inserted into a relation R by a
transaction with transaction identifier Ti, we implement this by inserting t′ =
(value1, . . . , valueN , Ti) into the relation R′, i.e. the database system implemen-
tation applies a rewrite rule:

insert into R values (value1,. . .,valueN )
⇒ insert into R’ values (value1,. . .,valueN , Ti ).

The idea behind the condition Ti is to show that the tuple t belongs to the
database relation R if and only if transaction Ti will be committed.

Deletion

Whenever a tuple t = (value1, . . . , valueN ) is deleted from a relation R by a trans-
action with transaction identifier Ti, we look up the tuple t′ = (value1, . . . , valueN , C)
representing the tuple t, where C is the condition under which t belongs to the
database relation R.

We implement the deletion of t from R by the transaction Ti by replacing the
condition C found in t′ with a condition C2 and by adding a logical rule to the
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table rules stating that C2 is true if and only if C is true and Ti is aborted. For this
purpose, the database system applies the following rewrite rule, where A1, . . . , AN

denote the attributes of R for the values (value1, . . . , valueN ):

delete t from R where t.A1=value1, . . .,t.AN=valueN

⇒ update t’ in R’ where t.A1=value1, . . .,t.AN=valueN set condition=C2;
insert into rules values ( C2 , C1 and not Ti )

The idea behind this rewriting is the following. (not Ti) represents the condition
that transaction Ti will be aborted. The inserted rule states that C2 is true if
C1 is true and Ti will be aborted. After the update operation, we have a tuple
t′ = (value1, . . . , valueN , C2) in R′ which represents that fact that t belongs to R if
and only if C2 is true, i.e. if C is true and Ti is aborted.

Update

An update of a single tuple is simply executed as a delete operation followed by
an insert operation.

Set-Oriented Write Operations

When a transaction inserts, updates, or deletes multiple tuples within a single
operation, this can be implemented by a collection of individual insert, update, or
delete operations.

Completion of a Transaction

When transaction Ti is completed with commit, the condition Ti is replaced
with true in each rule in the rules table and in each value found in the column
“Conditions” of a relation R′. However, when Ti is completed with abort, Ti is
replaced with false in each rule found in the rules table, and each tuple of R′

containing the value Ti in the column “Conditions” is deleted.
Furthermore, rules that contain the truth value true or false are simplified.

Whenever this results in a rule (C, true) or in a rule (C, false), then C itself
is replaced with the value “true” or “false” respectively. Other rules that contain C
are simplified as well. Furthermore, all tuples t′ in which C occurs are treated as
follows. If the rule is (C, true), the value C is replaced with true in each tuple t′ in
which C occurs in the column “Conditions”. However, if the rule is (C, false), each
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tuple t′ in which C occurs in the column “Conditions” is deleted. Finally, rules (C,
true) or (C, false) are deleted from the relation “Rules”.

Example

Consider the following transactions:
T1: insert "Miller"
T2: delete "Mitch"
T3: change "M" to "R"

Line ID Name Condition Comment

1 (1) Mitch Initial

2 (1) Mitch
{

Content after BST

of T13 (2) Miller C1

4 (1) Mitch C2

{
Content after BST

of T1, T25 (2) Miller C1

6 (1) Mitch C3


Content after BST

of T1, T2, T3

7 (2) Miller C4

8 (3) Ritch C5

9 (4) Riller C6

Table 6.1: Content after Bi-State-Terminating T1, T2, and T3

Line 1 of Table 6.1 represents the Initial database, lines 2-3 show the whole table
content after BST of T1, lines 4-5 represent the table content after BST of T1 and
T2, while lines 6-9 show the table after BST of T1, T2, and T3. The conditions are
linked to the Rules Table 6.2, which shows the concrete conditions for which each
data tuple referenced by Condition Cj is valid. The condition C4, for example, is
fulfilled when T1 commits and T3 aborts. In this case, line 7 of Table 6.1 becomes
valid.

6.4.3 Read Operations on the BST Model

Whenever a read operation on R is implemented by a read operation on R′, the
conditions are kept as part of the result. The relational algebra operations are
implemented as follows.
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ID Condition Comment

– – Initial

C1 T1 Content after BST of T1

C1 T1

{
Content after BST

of T1, T2C2 T2

C3 T2T3


Content after BST

of T1, T2, T3

C4 T1T3

C5 T2T3

C6 T1T3

Table 6.2: Rules Table after Bi-State-Terminating T1, T2, and T3

Selection

Each selection with selection condition SC that a query applies to a relation R,
will be applied to R′, i.e. the database system applies the following rewrite rule to
each selection:

SC(R) ⇒ SC(R’)

Duplicate Elimination

Duplicate elimination is an operation that is used to implement projection and
union. When duplicates occur, their conditions are combined with the logical OR
operator. That is, given the relationR′ contains two tuples t′1 = (value1, . . . , valueN ,

C1) and t′2 = (value1, . . . , valueN , C2) these two tuples are deleted and a single tu-
ple t′ = (value1, . . . , valueN , CC12) is inserted into R, and a rule (CC12, C1 or C2) is
inserted into the rules relation.

Set Union

Set union of two relations R1 and R2 is implemented by applying duplicate elim-
ination to the set union of R′

1 and R′
2. The database system applies the following

rewrite rule:

R1 ∪ R2 ⇒ removeDuplicates(R1’ ∪ R2’)
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Projection

Projection of a relation R1 on its attributes A1, . . . , AN is implemented by ap-
plying duplicate elimination to the result of applying the projection to R′

1 including
the column “Conditions”. The database system applies the following rewrite rule:

P(A1, . . .,An) (R1) ⇒ removeDuplicates(P(A1, . . .,An, conditions) (R′
1))

Cartesian Product

Whenever the cartesian product R1 × R2 of two relations R1 and R2 must be
computed, this is implemented using R′

1 and R′
2 as follows. For each pair (t′1, t

′
2)

of tuples t′1 = (value1, . . . , valueN , C1) of R′
1 and t′1 = (value21, . . . , value2N , C2)

of R′
2, a tuple t′12 = (value1, . . . , valueN , value21, . . . , value2N , CC12) is constructed

and stored in (R1 ×R2)′. The database system applies the following rewrite rule:

R1× R2 ⇒ (R1 × R2)’
where (R1× R2)’ can be derived by computing the set
{ (t1,t2,CC12) | (t1,C1) ∈ R1’ and (t2,C2) ∈ R2’ }
and by adding a rule ( CC12, C1 and C2 ) for each pair of C1 and C2 to the rules relation.

Set Difference

Whenever the set differenceR1−R2 of two relationsR1 andR2 must be computed,
this is implemented using R′

1 and R′
2 as follows. The set difference contains all tuples

t′1 = (value1, . . . , valueN , C1) ofR′
1 for which no tuple t′2 =(value21, . . . , value2N , C2)

of R′
2 exists, and furthermore, it contains a tuple t′12 = (value1, . . . , valueN , CC12)

for each tuple t′1 =(value1, . . . , valueN , C1) of R′
1 for which a tuple t′2 =(value21,. . . ,

value2N , C2), C2 6= C1, of R′
2 exists. The condition CC12 is true if and only if (C1

and not C2) is true. The database system applies the following rewrite rule:

R1 - R2 ⇒ R1’ - R2’
where ( R1’ - R2’ ) can be derived by computing the union of the following sets S1 and S2:

S1 = { (t1,C1) | (t1,C1) ∈ R1’ and not exists C2 such that (t1,C2)∈ R2’ }
S2 = { (t1,CC34) | (t1,C3)∈ R1’ and exists C4 such that (t1, C4)∈ R2’ and C3 6= C4}

and by adding a rule (CC34, C3 and not C4 ) for each pair of C3 and C4 used in S2 to the
rules relation.
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Other Algebra Operations

Other operations of the relational algebra like join, intersection, etc. can be
constructed by combining the implementation of the basic operations. Of course,
query optimization of operations like join etc. is possible.

6.5 Implementation

We have implemented BST in three versions and have compared their perfor-
mance using a stress test. The first implementation, called BST-Disk, uses the
rule table and rewrite rules as stated in Section 6.4, and stores the rule table as a
separate database table on disk.

A modification of this concept, the BST-RAM implementation, stores the rule
table completely within main memory. This makes the rule table management
faster but also susceptible to failures like power failure.

The third implementation, called Fast-BST, does not use a separate rule table
anymore. Instead, Fast-BST adds an additional column “Condition” of type string
to each table, which stores the conditions under which the corresponding data
row becomes valid. Thus, conditions need not be derived from the rules table;
each tuple contains its conditions within the “Condition” column. Thus, Fast-BST
makes rule table lookups to derive the conditions under which a tuple becomes valid
superfluous and Fast-BST speeds up write operations that operate on many tuples
for the following reason: The database does not need to generate and associate
unique IDs to replaced conditions, it can update the “Condition” column in one
pass by concatenating its value with the transaction ID. Furthermore, Fast-BST is
not susceptible to power failures as BST-RAM.

In the following, we describe the Fast-BST implementation that is used in the
evaluation.

6.5.1 Fast-BST – Write Operations

Fast-BST implements the concept of BST as follows. Fast-BST stores the before
image and the after image of tuples that have been modified by BST transactions.
For this purpose, the Fast-BST adds the column “Conditions” to each table that it
uses, cf. Table 6.3.

The following step is executed for each insert statement INSERT <data> INTO ...

of a transaction Ti:
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ID Attributes Conditions

(1) 1 α1

(2) 2 α2

Table 6.3: Original table containing the additional column “Conditions”

Algorithm 11 Implementing Inserts

1. Insert <data> into the corresponding table, and add Ti to the column “Con-
ditions” of the newly inserted data

For each delete statement DELETE ... WHERE <X> of a transaction Ti, the fol-
lowing rewriting is necessary:

Algorithm 12 Implementing Deletes

1. Add the substring Ti to each entry in the column “Conditions” of each row
where <X> evaluates to true. Simplify, if Ti wants to delete a tuple that Ti

has just inserted before.

Algorithm 13 describes the update operation for the update statement UPDATE

... WHERE <X>.

Algorithm 13 Implementing Updates
1. Copy the tuples for which <X> evaluates to true into new data tuples, and

concatenate Ti to the existing entries of the “Conditions” attribute of the new
tuples. Update the newly copied tuples according to the update statement.

2. Add Ti to each entry in the column “Conditions” of each row where the cor-
responding entry in “Conditions” does not contain Ti and <X> evaluates to
true.

Example 6.5.1 Assume we execute the following sequence of three transactions
T1, T2, and T3, each containing one update statement, on Table 6.3.
T1: UPDATE Table1 SET Attributes=α3 WHERE ID=1

T2: UPDATE Table1 SET Attributes=α4 WHERE ID=2

T3: UPDATE Table1 SET Attributes=α2

WHERE (Attributes=α3 ∨ Attributes=α4)

Table 6.4 shows the result when all of the distributed transactions T1 . . . T3 block
and Bi-State-Terminate.
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ID Attributes Conditions

(1) 1 α1 T1

(2) 2 α2 T2

(3) 1 α3 T1, T3

(4) 2 α4 T2, T3

(5) 1 α2 T1, T3

(6) 2 α2 T2, T3

Table 6.4: Content of Table 1 after Bi-State-Terminating T1, T2, and T3

Fast-BST marks all tuples changed by transaction T1 as before image (line (1)),
copies them to line (3), and executes the update (on line (3)). Note that Table 6.4
shows the result when all transactions block, therefore it already contains the entry
for T3 in line (3). The same algorithm is applied for T2. When T3 is executed and
both transactions T1 and T2 block, T3 depends on T1 and T2. However, FAST-BST
does not explicitly check for this dependency. In our example, T3 only modifies
data when either T1 or T2 commit. This dependency is maintained automatically
by Step 1 of Algorithm 13 since the <condition> of the update statement of T3 is
only true in lines (3) and (4). Then, these two rows are copied to the rows in line
(5) and line (6), and T3 is added to the “Conditions” column of each of these rows.

6.5.2 Fast-BST – Read-Operations

Read operations are modified in the following way: Each value of the returned
result additionally contains the corresponding values of the “Conditions” column.
Then, the read operation must be processed by the database only a single time, re-
gardless of the number of depending blocked transactions. However, the result R is
not directly returned to the application, Fast-BST first checks whether R contains
any entries in the “Conditions” column. If this is the case, it is the application’s
choice whether it handles these multiple uncertain results, or whether the appli-
cation delays the read operations until the transactions listed in the “Conditions”
column of R have been committed. If the application can handle multiple results,
we can reduce the amount of transferred data by returning an object that creates
the different possible valid database states directly within the application by means
of the “Conditions” column.
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6.5.3 Commit and Abort

The following rules apply when a blocked transaction Ti commits or aborts:
Ti commits: Delete all rows that contain Ti in the column ”Conditions”. Delete

the string Ti from all entries within the “Conditions” column of the table.
Ti aborts: Is treated as Ti commits.

Example 6.5.2 Assume T3 commits. In this case, lines (3) and (4) are deleted
from Table 6.4. Furthermore, the string T3 must be deleted in Lines (5) and (6)
from the attribute values for the column “Conditions”, since a commit of T1 or T2

automatically implies that the changes of T3 become valid.
Note that the data set increases only temporarily and collapses to the original

size when the commit decision for the Bi-State-Terminated transactions is known.
For example, when the database receives the commit decisions for T1 and T3, the
database knows the exact unique value for the data tuple with ID 1, which corre-
sponds to Line (5) in case T3 and T1 commit, and to Line (1) in case T3 commits
and T1 aborts.

6.6 Experimental Evaluation

We choose the TPC-C benchmark [36] for generating the test data and transac-
tions. The following questions motivate our experimental evaluation: Which BST
implementation is faster? How many transactions can be Bi-State-Terminated un-
til the execution time and database size for following transactions is unacceptable?
How does BST affect the overall transaction throughput and transaction execution
time, when a certain percentage of transactions block?

6.6.1 BST Stress Test

To compare the three BST implementations and to determine how many blocked
transactions per tuple each BST implementation can handle, we have executed a
stress test. For this stress test, we have generated a database table consisting of a
single data tuple. We have sequentially executed a number of database transactions
on this table that do not finish, i.e. the transactions do not get a commit decision
and thus block. Each of these blocked transactions has incremented or decremented
the same data that is initially present. In order to be able to process further trans-
actions, we have used our three BST implementations to terminate each blocked
transaction. For this reason, each blocked transaction has doubled the number of
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possible database states, and thus the number of possible values for the initial tuple
grows exponentially for the number of blocked transactions. We have measured the
time for processing the (n+ 1)th transaction when n transactions are blocked and
terminated by BST for each BST implementation.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12

Time (s)

No. of blocking transactions

Time for processing a single transaction 
when x depending transactions block

BST- Disk

BST- RAM

Fast-BST

Figure 6.4: BST Stress Test – Performance

The y-axis of Figure 6.4 indicates the required time to process a single update
transaction when the number of transactions indicated on the x-axis is terminated
by BST. As all of these blocked transactions depend on each other, and all of them
are coded to modify the initial tuple, the resulting growth in time and space is
exponential. However, as the test indicates, the processing of a transaction when
10 blocked transactions have been terminated by BST does not take a large overhead
for the Fast-BST implementation.

Both implementations that use a separate “Rules” table, i.e. BST-Disk and BST-
RAM, are significantly slower than the Fast-BST implementation. The reason is
that when transactions update a lot of data tuples, the corresponding condition
must be derived from the rule table for each updated data tuple, and a new condition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
102 Database Transaction Management in Mobile Ad-Hoc Networks



6.6 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ID must be generated and assigned separately to each data tuple. In comparison,
Fast-BST only adds the transaction’s ID to the “Conditions” column of all updated
tuples, which can be done much faster.
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Figure 6.5: BST Stress Test – Space

On the y-axis, Figure 6.5 shows the number of tuples that are generated by BST
for a single update operation, while the number of transactions indicated on the x-
axis has been terminated by BST. Note that our BST implementations do not differ
in the number of resulting tuples. Although the database’s size grows exponentially
each time a blocked transaction is terminated by BST, it is the database’s decision
to use BST for a transaction Ti or to wait until the decision for transactions on
which Ti depends is known.

As we have seen, using the Fast-BST implementation allows the database to ter-
minate more blocked transactions without a significant loss of performance. For this
reason, we use the Fast-BST implementation in the following TPC-C benchmark
test.
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6.6.2 BST TPC-C Test

The TPC-C benchmark [36], an online transaction processing benchmark test,
simulates an online-shop-like environment in which users execute order transac-
tions against a database. The transactions additionally include recording payments,
checking the status of orders, and monitoring the level of stock at the warehouses.

We used a TPC-C “scaling factor” of 2, which results in 139 MB of data and a
total amount of 294 transactions, 41,8% of them being update operations. Char-
acteristic for our implementation of the TPC-C benchmark is that the involved
update transactions operate on a set of data tuples whose cardinality is low (i.e. 2
tuples), so we can expect a lot of conflicting write transactions. In order to simulate
transaction blocking, a separate coordinator instance coordinates each transaction
and delays the commit command based on different parameters in order to simulate
blocked distributed transactions. For example, to simulate a transaction blocking of
1% of all transactions, we delayed the commit command of each 100th transaction.

Figure 6.6 shows the sum of all successfully committed transactions on the y-axis.
On the x-axis, the overall time is shown. The different curves indicate whether BST
was enabled, and they vary in the percentage of blocked transactions. Note that
due to our simulated hotspot, a huge amount of transactions depend on each other.
We can see that BST-enabled transaction processing is able to commit a lot more
transactions than BST disabled transaction processing.

Note that the additional space used by BST is rather low, i.e., in our TPC-C
experiments, BST requires only about 2% more space.

6.6.3 Evaluation Summary

We have run a stress test to compare three implementations for BST. While
the BST-Disk and BST-RAM implementation use a separate rule table in order to
manage the dependencies of the before- and after-images of the transactions, the
Fast-BST implementation directly annotates the rule under which each data tuple
becomes valid to the data row. The Fast-BST implementation is able to cope with
10 blocked transactions that all write on the same tuple without causing a loss of
performance, while the BST-Disk and BST-RAM implementations can only handle
5 to 7 blocked transactions within reasonable time.

When setting up a transaction scenario, two extreme scenarios are possible that
influence the outcome of BST: In the first scenario, each transaction operates on
different tuples that are not accessed by any other transaction. In the second
scenario, each transaction operates on the same tuples. As transaction blocking in
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the first scenario does not have any influence on other transactions, enabling BST
does not commit more transactions than disabling BST. In the second scenario,
a blocked transaction would immediately prevent all following transactions from
being processed. In this scenario, BST would allow the commitment of almost all
transactions, while disabling BST would result in a total blocking situation. Due
to these two possible scenarios, we used the TPC-C benchmark, which simulates
a typical environment, for further experiments. We have preferred the Fast-BST
implementation, which is able to enhance the amount of committed transactions
in our TPC-C benchmark by 40 to 70%, depending on the number of blocked
transactions.
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Finally, note that if no more space is available or the required processing time
grows, the database can decide for each individual transaction whether to use BST
or to wait for the commit decision as in 2PC. In other words, our solution does not
force the database to accept long execution times, and BST-enabled transaction
processing never blocks more transactions than traditional transaction processing.

6.7 Related Work

Our solution relates to three ideas that are used in different contexts: Escrow
locks [31], speculative locking [59], and multiversion databases [16,18,34].

Escrow locks are a refinement of field calls, which are used in environments where
data hotspots are frequently accessed. The escrow lock calculates an interval [i, k]
for an attribute a by means of the currently processed updates. The interval indi-
cates the actual upper and lower boundary that the attribute a may take. When
a further transaction relies on a precondition for a, the database checks whether
the precondition evaluates to true for each value of a that is contained in the in-
terval [i, k]. In contrast to the escrow locking technique, Bi-State-Termination, is
a transaction termination mechanism. BST neither relies on numerical values, nor
assumes that an attribute value must lie in a given interval. BST always knows the
exact values that an attribute can actually have and even allows an application to
decide that a transaction Ti may only be committed in a certain constellation of
commit and abort decisions of transactions on which Ti depends.

Another related locking mechanism is Speculative Locking (SL) [59]. SL was
proposed to speed up transaction processing by spawning multiple parallel execu-
tions of a transaction that waits for the acquisition of required locks. SL has in
common with Bi-Sate-Termination that SL also allows a transaction Tc to access
the after-image of a transaction Ti while Ti is waiting for its commit decision. How-
ever, unlike Bi-State-Termination, SL does not allow committing Tc before the final
commit decision for Ti has been received. This means, SL cannot successfully ter-
minate Tc while the commit vote for Ti is missing. For this reason, SL cannot be
used to solve the infinite transaction blocking problem that may occur in mobile
networks. Furthermore, our Fast-BST implementation can execute read-operations
in one pass even if they return multiple result values due to transactions that wait
for the commit decision.

Multiversion database systems [16, 18, 34] are used to support different expres-
sions of a data object. They are used for CAD modelling and versioning systems.
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However, compared to BST, multiversion database systems allow multiple versions
to be concurrently valid, while BST allows only one valid version, but lacks the
knowledge which of the multiple versions is valid due to the atomic commit pro-
tocol. Whenever BST requires multiple transaction executions that all return the
same result, BST is even transparent to the application. Furthermore, multiversion
database systems are mostly central embedded databases that are not designed to
deal with distributed transactions. Instead, the user explicitly specifies on which
version he wants to work.

Non-locking concurrency control like multiversion concurrency control [5, 71],
timestamp-based concurrency control [44], or optimistic concurrency control [32,39]
omit the use of locks. However, this does not solve the infinite transaction blocking
problem on concurrent transactions, since the database proposes that it will commit
the transaction by sending the voteCommit message, regardless of the used concur-
rency control mechanism. Therefore, without Bi-State-Termination, the database
cannot process a transaction Tc that is dependent on a transaction Ti, while Ti

waits for the final commit decision, even if the database uses locking-free concur-
rency control. This motivates the use of BST, which is a termination mechanism
that supports the actually used concurrency control mechanism.

Even 1PC [1, 4], which does not require a vote message but acknowledges each
operation, encounters the problem of transaction blocking since each acknowledged
operation that accesses a data tuple must block this data tuple until the transaction
is successfully completed.

6.8 Summary and Conclusion

We have shown that whenever an atomic commitment is necessary and an atomic
commit protocol is used, transaction blocking occurs. Although the risk of protocol
blocking can be minimized by using atomic commit protocols with multiple coor-
dinators, the risk of infinite transaction blocking, which can occur if the database
moves or disconnects, is not appropriately solved by current approaches. We have
explained the concept of Bi-State-Termination, which is useful to terminate blocked
transactions even without knowing the explicit coordinator decision and have de-
scribed three implementations.

Our experimental results have shown that Bi-State-Termination enhances the
number of committed transactions and that BST is able to deal with a large num-
ber of depending blocked transactions without experiencing significant performance
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loss. This justifies using BST in mobile ad-hoc networks that are exposed to the
risk of transaction blocking.

To summarize, we consider Bi-State-Termination as a useful option that is usable
for mobile networks in order to terminate a transaction instead of just waiting for
the commit decision for a long time.
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Summary and Conclusion

In this thesis, we have examined transaction processing in mobile ad-hoc networks
and have mainly focussed on the reduction of blocking.

We have developed a Web service transaction model that is especially targeted on
dynamic service invocation in mobile ad-hoc networks since the combination with
the proposed Commit tree implicitly flattens the invocation hierarchy at commit
time in order to speed up atomic commit protocol execution time. Furthermore,
our Web service transaction model benefits from asynchronous service invocation
as participants can invoke multiple services in parallel.

We have presented a technique that uses a special non-blocking state – the “Ad-
journ state” – to eliminate the need of setting up participant time-outs for aborting
a transaction. This allows the Adjourn state to balance resource allocation on
demand, since locks for resources that are frequently accessed are released and
transferred to other transactions at an early stage – in contrast to resources that
are only required by a single transaction. In combination with our Web service
transaction model, the Adjourn state allows a flexible reaction to network failures
to make renewed invocations of sub-transactions in many cases superfluous, for in-
stance when a sub-transaction must be re-invoked with the same parameters and
has been aborted due to concurrency issues.

We have shown that the Adjourn state reduces transaction blocking even before
the atomic commit protocol starts and that the Adjourn state enhances the transac-
tion throughput in networks where communication links between two participants
often break. Furthermore, our experiments have shown that the more unreliable a
mobile network is, the greater the benefit that transaction throughput and transac-
tion blocking undergo by using the Adjourn state concurrency control enhancement
compared to traditional approaches. This motivates the use of the Adjourn state
in mobile ad-hoc networks in combination with locking and validation-based con-
currency control mechanisms.
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Blocking also occurs during the execution of the atomic commit protocol which
may become critical when voteCommit messages or doCommit messages are de-
layed or lost. Therefore, we have developed the atomic commit protocol CLCP,
which employs multiple coordinators and thus enhances the protocol availability.
In contrast to existing atomic commit protocols, CLCP is a decentralized protocol
that lets participants determine the transaction’s decision by their own knowledge,
making messages that inform participants of the transaction’s decision superflu-
ous. Furthermore, CLCP uses a timeout mechanism that allows each participant
to speculate on another participant’s failure by sharing its own knowledge about
participants which might have disappeared. While traditional atomic commit pro-
tocols solely operate on the application layer, the cross-layer design of CLCP makes
the use of acknowledgement messages superfluous and allows CLCP to save energy.

We have proven the correctness of the two phases of CLCP including the liveness
and correctness properties that are crucial for atomic commit protocols.

Our experiments have demonstrated that CLCP significantly reduces the average
blocking duration and that CLCP’s energy consumption is remarkably less than that
of other consensus-based protocols and even comparable to the energy consumption
of protocols that do not use acknowledgements. As our experiments have shown,
CLCP is superior to all the other protocols regarding the number of committed
transactions.

We have explained that in the seldom event that no majority of transaction par-
ticipants exists within one partition, no atomic commit protocol is free of blocking.
To handle this case and to handle the case that a participant does not receive the
coordinator’s commit decision for a long period of time, we have proposed the use of
Bi-State-Termination. This technique allows continuing the processing of transac-
tions Ti, even in the case that transactions To are blocked, by obeying both possible
outcomes of the blocked transactions To. This allows the transactions Ti to commit
even if they conflict with pending transactions To.

In our experiments, we have compared three implementations of Bi-State-Termi-
nation. The Fast-BST implementation, which adds the conditions under which
each data tuple becomes valid directly to each tuple, has proven to be the fastest
implementation. The experimental evaluation of the Fast-BST implementation in
the TPC-C benchmark, which captures a real world scenario with a high transaction
load, has proven that Bi-State-Termination-enabled transaction processing allows
to commit significantly more transactions than traditional transaction processing.
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This highly motivates the use of Bi-State-Termination in mobile networks, where
network failures due to participant movement are likely.

A challenging topic for further research in transaction processing in mobile net-
works beyond this thesis is the investigation of persistence. For fixed-wired net-
works, a lot of research has been contributed. Today, only hardware failures or
physical disasters can violate persistency in fixed-wired networks. In mobile ad-hoc
networks, however, the movement of participants with the resulting loss of com-
munication and the limitations of battery power add a new dimension to research
on persistence. Furthermore, participants can dynamically cooperate to guarantee
persistence within a predefined geographical area.

Transaction processing would highly benefit from solid persistence layers in order
to archive the transaction’s commit decision within the network. Thus, participants
that have moved during the atomic commit protocol execution and could not be
informed about the transaction decision could use the persistence layer to lookup
the transaction decision. Thus, an interesting orthogonal extension of research in
mobile networks is to focus on distributed persistence strategies for commit decisions
that involve additional mobile nodes.

To summarize, atomicity, serializability, and data consistency are highly desired
transactional guarantees not only in fixed-wired networks, but also in mobile ad-hoc
networks. Transaction blocking has been the major reason why many contributions
for mobile ad-hoc networks have relaxed their transactional guarantees. In order
to reduce blocking while still guaranteeing atomicity, serializability, and data con-
sistency, we have introduced the Adjourn state and have presented two Adjourn
state implementations for both concurrency control schemes, locking and valida-
tion. Furthermore, in order to reduce blocking caused by atomic commit protocols,
we have presented CLCP and Bi-State-Termination, both of which are orthogonal
to the concurrency control schema. Therefore, using our techniques, blocking can
be considered significantly less harmful to transactions in mobile ad-hoc networks.
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