
Slicing Integrated Formal
Specifications for Verification

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

vorgelegt von

Dipl.-Inform. Ingo Brückner

Oldenburg, 11. März 2008

2

Mitglieder der Promotionskommission:

• Prof. Dr. Heike Wehrheim (Vorsitzende, Gutachterin)

• Prof. Dr. Ernst-Rüdiger Olderog (Gutachter)

• Prof. Dr. Stefan Böttcher

• Prof. Dr. Wilhelm Schäfer

• Dr. Theodor Lettmann

Eingereicht: 18. Dezember 2007
Tag der mündlichen Prüfung: 11. März 2008

Abstract

Safety-critical electronic systems are becoming increasingly complex and simulta-
neously ubiquitous. As in other engineering disciplines, computer science needs to
offer viable approaches to the correct design of such systems. Especially important
within this design process is the phase of initial specification, since its results have
impact on all subsequent stages of development. The most extensive and reliable
analysis of system specifications is offered by using formal methods that allow us to
obtain mathematical proofs of system correctness by applying automatic verification
techniques.

In the area of formal system specification there is, however, not one single general-
purpose notation, that would be equally well suited for all system aspects. Instead,
integrated formal methods are investigated, which combine different specification
languages, exploiting their individual strengths, while still maintaining a common
semantic foundation for subsequent verification. One such notation is the high-level
specification language CSP-OZ-DC, combining the process algebra Communicating
Sequential Processes (CSP) for expressing behavioural aspects, the state-based
notation Object-Z (OZ) for expressing data aspects, and the real-time logic Duration
Calculus (DC) for expressing real-time aspects of systems.

The main obstacle for successful application of automatic verification, however,
is the problem of state space explosion, i.e., the exponential blow-up in the number
of system states to be analysed. Many techniques have been proposed to tackle this
problem, one of them being the method of slicing that has its origins in the area
of program analysis where it is used to compute those parts of a program that are
relevant with respect to a specific analysis task.

Within this thesis, we develop a slicing approach for integrated formal spec-
ifications that is custom-tailored to the rich syntactical structure of CSP-OZ-DC
specifications and that is applicable in the context of their verification with re-
spect to real-time requirements. The slicing approach essentially consists of three
steps: First, the specification is analysed with respect to dependences between its
syntactical elements with several new types of dependence being defined such as
synchronisation and timing dependence. Second, these dependences as a whole are
used to identify those specification parts that are relevant for the given verification
property. Third, the specification slice is computed, i.e., a reduced version of the
full specification that does not contain any elements without influence on the
verification property.

A correctness proof shows that verification can be carried out on the slice instead
of the full original specification without changing the verification result. The proof
is based on a notion of projection between a specification and its slice. The existence

4

of such a projection relation is shown to be guaranteed by the slicing approach.
The particular logic used to express verification properties is then shown to be
stuttering-invariant, i.e., provided that the projection relation exists, it cannot
distinguish between the slice and the original specification such that the verification
result will in both cases always be the same.

Furthermore, we present tool support that has been implemented for developing,
slicing, and verifying CSP-OZ-DC specifications along with several case studies and
experimental results for evaluating the effectiveness of the slicing approach.

Zusammenfassung

Sicherheitskritische elektronische Systeme werden immer komplexer und gleichzei-
tig immer allgegenwärtiger. Wie andere Ingenieurwissenschaften muss auch die
Informatik gangbare Herangehensweisen anbieten, um den korrekten Entwurf sol-
cher Systeme zu gewährleisten. Besonders wichtig innerhalb des Entwurfsprozesses
ist die Phase der initialen Spezifikation, da ihre Ergebnisse Auswirkungen auf alle
nachfolgenden Entwicklungsschritte haben. Die umfassendste und zuverlässigste
Analyse von Systemspezifikationen kann durch die Verwendung formaler Methoden
erreicht werden, die es durch den Einsatz automatischer Verifikationstechniken
ermöglichen, einen mathematischen Beweis der Systemkorrektheit zu erhalten.

Im Bereich der formalen Spezifikation gibt es jedoch keine einzelne universell ein-
setzbare Notation, die gleichermaßen geeignet für alle Aspekte von Systemen wäre.
Stattdessen werden integrierte formale Methoden erforscht, die unterschiedliche
Spezifikationssprachen kombinieren, um ihre individuellen Stärken auszunutzen
und gleichzeitig eine gemeinsame semantische Basis für die anschließende Ve-
rifikation aufrechtzuerhalten. Eine solche Notation ist die Spezifikationssprache
CSP-OZ-DC, in der die Prozessalgebra Communicating Sequential Processes (CSP)
zur Beschreibung von Verhaltensaspekten, die zustandsbasierte Notation Object-Z
(OZ) zur Beschreibung von Datenaspekten und die Realzeit-Logik Duration Calculus
(DC) zur Beschreibung von Realzeitaspekten von Systemen vereinigt sind.

Das hauptsächliche Hindernis für die erfolgreiche Anwendung automatischer
Verifikationsmethoden ist jedoch das Problem der Explosion des Zustandsraums,
also der exponentiellen Vergrößerung der Anzahl der zu analysierenden System-
zustände. Zahlreiche Techniken zur Bewältigung dieses Problems wurden bereits
vorgeschlagen, unter ihnen die des Slicing, das seinen Ursprung im Gebiet der
Programmanalyse hat, wo es zur Berechnung derjenigen Programmteile verwendet
wird, die im Hinblick auf eine bestimmte Fragestellung relevant sind.

In der vorliegenden Dissertation wird eine Herangehensweise zum Slicing inte-
grierter formaler Spezifikationen entwickelt, die maßgeschneidert für die reichhal-
tige syntaktische Struktur von CSP-OZ-DC-Spezifikationen ist, und die gleichzeitig
im Rahmen ihrer Verifikation bezüglich Realzeitanforderungen einsetzbar ist. Der
Slicing-Ansatz besteht im Wesentlichen aus drei Schritten: Erstens wird die Spezi-
fikation im Hinblick auf verschiedene Typen von Abhängigkeiten zwischen ihren
syntaktischen Elementen analysiert, wobei mehrere neue Abhängigkeitstypen wie
Synchronisations- und Zeitabhängigkeit definiert werden. Zweitens wird die Ge-
samtheit dieser Abhängigkeiten genutzt, um diejenigen Teile der Spezifikation zu
identifizieren, die relevant für die gegebene Verifikationseigenschaft sind. Drittens
wird der Slice der Spezifikation berechnet, also eine reduzierte Version der vollen

6

Spezifikation, in der alle Elemente ohne Einfluss auf die Verifikationseigenschaft
entfernt sind.

Ein Korrektheitsbeweis zeigt, dass anstelle der ursprünglichen Spezifikation nun
der Slice für eine Verifikation verwendet werden kann, ohne das Verifikationsergeb-
nis zu verändern. Der Beweis basiert auf dem Begriff der Projektion zwischen einer
Spezifikation und ihrem Slice. Es wird gezeigt, dass der entwickelte Slicing-Ansatz
die Existenz einer solchen Projektionsbeziehung garantiert. Darauf aufbauend wird
gezeigt, dass die jeweilige Logik zur Beschreibung von Verifikationseigenschaften
stotter-invariant ist, das heißt, unter der Voraussetzung der Existenz einer Pro-
jektionsrelation kann sie nicht zwischen Slice und ursprünglicher Spezifikation
unterscheiden, sodass das Verifikationsergebnis in beiden Fällen das gleiche sein
wird.

Schließlich wird die Werkzeugunterstützung vorgestellt, die zur Entwicklung,
zum Slicing und zur Verifikation von CSP-OZ-DC-Spezifikationen implementiert
wurde, ergänzt durch mehrere Fallstudien und experimentelle Ergebnisse zur
Evaluierung der Effektivität des Slicing-Ansatzes.

Acknowledgements

This research has evolved from my work at the University of Oldenburg within the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (AVACS). My acknowledgement thus goes to the German
Research Council (DFG) for funding AVACS as well as to the AVACS team as a
whole for providing such a stimulating work background.

In addition to that, I want to thank a number of persons individually who have
supported me and my work during the recent years in various ways.

First of all, I am deeply indebted to Heike Wehrheim for introducing me to this
research topic and for supervising it in a very committed and supportive way with
many fruitful discussions and impulses into the right direction.

Furthermore, my acknowledgements go to Ernst-Rüdiger Olderog for the oppor-
tunity of being a member of his group “Correct System Design”, for many helpful
advises at various points, and for simply being a marvellous boss.

The great work atmosphere that I enjoyed during the last years was, of course,
also due to my (former) colleagues whom I want to thank sincerely: Henning
Dierks, Johannes Faber, Sibylle Fröschle, Andrea Göken, Jochen Hoenicke, Roland
Meyer, Michael Möller, Margarethe Muhle, André Platzer, Jan-David Quesel, Holger
Rasch, Henning Rohlfs, Andreas Schäfer, Walter Schulz, and Tim Strazny.

My special acknowledgements also go to the persons who made the experimental
evaluation of my slicing approach possible: the students of the Syspect project
group (Janna Arnold, Dominik Denker, Christian Günther, Niels Hapke, Jürgen
Happe, Patrick Kuballa, Sven Linker, Florian Marwede, Jan-David Quesel, Henning
Rohlfs, Christian Wenzel) together with their supervisors Ernst-Rüdiger Olderog,
Michael Möller and Andreas Schäfer for developing Syspect, the platform for my
slicing experiments; Ulrich Hobelmann for integrating the ARMC-based verification
into Syspect; Klaus Dräger, Bernd Finkbeiner, and Heike Wehrheim for the joint
work on developing SLAB; and, last but not least, Sven Linker, who did an excellent
job in implementing my slicing approach as a Syspect plug-in.

Furthermore, I thank the co-authors of my publications related to this thesis,
which are Klaus Dräger, Bernd Finkbeiner, Björn Metzler, and Heike Wehrheim. Our
joint work was a great pleasure for me.

Finally, I would like to take the opportunity to thank my parents Frauke and Ralf
Brückner as well as my sister Heike Brückner. Your support in all aspects of life is
very important to me.

My deepest thanks go to Imke Fischer. You know why.
Ingo Brückner

March 2008

8

Contents

1 Introduction 13
1.1 Flawless Design of Complex Systems 13
1.2 Formal Specifications and their Verification 14
1.3 Slicing for Verification . 15
1.4 Contributions . 17
1.5 Thesis Structure . 19

2 Background: Program Slicing 21
2.1 Foundations of Program Slicing . 22

2.1.1 Slicing Based on Data Flow Equations 22
2.1.2 Slicing Based on Dependence Graphs 25

2.2 Classification of Slicing Approaches 28
2.2.1 Type of Slicing: Static or Dynamic 28
2.2.2 Direction of Slicing: Forward or Backward 29
2.2.3 Type of Slice: Executable or Non-Executable 30
2.2.4 Type of Slicing Criterion . 31
2.2.5 Target Language . 32
2.2.6 Area of Application . 35

2.3 Further Techniques Aiming at State Space Reduction 41
2.3.1 High-Level Techniques . 41
2.3.2 Low-Level Techniques . 43

3 Integrated Formal Specifications 47
3.1 Object-Z Specifications . 48

3.1.1 Example: Tic-Tac-Toe . 49
3.1.2 Semantics of Object-Z Specifications 52

3.2 CSP-OZ Specifications . 54
3.2.1 Example: Untimed Air Conditioner System 55
3.2.2 Semantics of CSP-OZ Specifications 58

3.3 CSP-OZ-DC Specifications . 60
3.3.1 Example: Timed Air Conditioner System 61
3.3.2 Semantics of CSP-OZ-DC Specifications 65

4 Dependence Analysis 69
4.1 Object-Z Specifications . 70

4.1.1 Control Flow Graph . 71

10 Contents

4.1.2 Dependence Graph . 72
4.1.3 Example: Tic-Tac-Toe Dependence Graph 77

4.2 CSP-OZ Specifications . 79
4.2.1 Control Flow Graph . 79
4.2.2 Dependence Graph . 87
4.2.3 Example: Untimed Air Conditioner Dependence Graph . . . 90

4.3 CSP-OZ-DC Specifications . 92
4.3.1 Control Flow Graph . 92
4.3.2 Dependence Graph . 94
4.3.3 Example: Timed Air Conditioner Dependence Graph 100

5 Specification Slices 103
5.1 Slicing Criterion . 104
5.2 Dependence Graph Backwards Slice 105
5.3 Object-Z Specification Slices . 105

5.3.1 Example: Tic-Tac-Toe Specification 106
5.4 CSP-OZ Specification Slices . 110

5.4.1 Example: Air Conditioner Slice 112
5.5 CSP-OZ-DC Specification Slices . 114

5.5.1 Example: Timed Air Conditioner System Slice 115
5.6 Classification of the Slicing Approach 118

6 Slicing Correctness 121
6.1 Relating Slicing Results with Specification Elements 122

6.1.1 Projection Relation between Interpretations 122
6.1.2 Transitions of CSP Process Projections 124
6.1.3 CSP Transition Sequences 127
6.1.4 Irrelevant Events . 128
6.1.5 Irrelevant DC Formulae . 129

6.2 Projection Relation Established by Slicing 131
6.3 Stuttering Invariance of Test Formulae 137
6.4 Stuttering Invariance of State/Event Interval Logic 142

6.4.1 State/Event Interval Logic 142
6.4.2 Projection of Event-Labelled Kripke Structures 145

7 Tool Support and Experimental Evaluation 151
7.1 Syspect — Modelling Environment for CSP-OZ-DC 152

7.1.1 Class Diagrams . 154
7.1.2 State Machines . 156
7.1.3 Component Diagrams . 157
7.1.4 DC Counterexample Formulae 159
7.1.5 DC Test Formulae and Syspect Verification 160

Contents 11

7.1.6 Specification Export . 162
7.2 Slicing Implementation within Syspect 164

7.2.1 Syspect Slicing Plug-In . 164
7.2.2 Control Flow Graph . 165
7.2.3 Dependence Graph . 168
7.2.4 Slicing Report . 171

7.3 Benchmarks and Case Studies . 173
7.3.1 Tic-Tac-Toe . 173
7.3.2 Cash Register . 175
7.3.3 Untimed Air Conditioner . 177
7.3.4 Timed Air Conditioner System 180
7.3.5 Elevator . 181
7.3.6 ETCS-EM Case Study . 184
7.3.7 Airport Specification . 189

7.4 Summary of Experimental Results 193

8 Conclusion 195
8.1 Summary . 195
8.2 Perspectives . 196

Bibliography 199

List of Figures 219

List of Tables 221

Index 223

12 Contents

1 Introduction

1.1 Flawless Design of Complex Systems

In recent decades or even centuries, all fields of engineering have been confronted
with systems of immense complexity, may they be large building structures as they
are devised in architecture and civil engineering, sophisticated plants as arising
in industrial and mechanical engineering or large scale hardware and software
systems as they are subject of computer science and software engineering. In each
of these fields, the more complex the systems are, the more difficult and error-prone
becomes the task of designing and developing such systems correctly.

However, an important aspect that distinguishes the latter and simultaneously
youngest of the aforementioned engineering disciplines, namely the field of com-
puter science, is that its complexity has not only reached an impressive level already
decades ago, but has kept on growing exponentially since its foundation, proving
Moore’s Law being valid year after year, simultaneously spreading to more and
more areas of application.

This observation clearly underlines the special importance of being able to
manage the error-prone task of designing and developing complex hardware and
software systems in such a way that errors in the resulting systems are avoided as
much as possible. This claim becomes even more important with complex hardware
and software systems being deployed in more and more safety-critical areas such
that system failures not only have economic impact on the companies involved but
also pose a threat to the life of people depending on the correct functioning.

But even without considering this additional aspect, the pure financial impact
that is involved with errors introduced into a system design at an early stage seems
to make any consideration worthwhile that allows to avoid them, since the more
time it needs to identify a problem, the more follow-up decisions might have been
based on the flawed design and might thus need to be revised when the problem is
identified.

Therefore, the most important flaws to find are firstly those which are introduced
very early in the design process and which thus have the maximum possible lifetime;
secondly, they are those which are the least obvious, i.e., which arise only under
very special and unexpected circumstances and which therefore have an increased
probability of remaining undiscovered.

These conclusions firstly suggest that most worthwhile for additional investments
in system correctness will be those stages of system development where the initial

14 1 Introduction

specifications of a system are done, since this is the earliest possible point for
correctness considerations; secondly, the observations suggest that in order to
detect the least obvious problems, it is clearly necessary to analyse the specifications
as completely as possible, thus decreasing the probability of any flaw remaining
hidden in the specification.

1.2 Formal Specifications and their Verification

The usual methods applied at the previously described especially important early
stages of the design process are informal (such as natural-language descriptions) or
semi-formal (such as documents containing structured text) but to no extent formal
and exact in the sense of mathematical objects on which mathematical proofs can
be carried out or which could be completely analysed with mathematical, i.e.,
verification methods.

The key to enable such an analysis is to formalise the specification documents,
i.e., to transform the informal documents into mathematical objects on which
mathematical proofs and automatic mathematical analysis can then be performed.
Such analysis methods (e.g., model checking or theorem proving) comprise the
formulation of requirements, i.e., properties that the specified systems are supposed
to exhibit. The system can then be analysed with respect to these requirements,
be it semi-automatically as it is usually the case in theorem proving or be it fully-
automatically as it is usually the case during model-checking. Both techniques
either give us evidence of the analysed system’s correctness with respect to the
requirements as it does a proof obtained from a theorem prover; or they give us
evidence of the system’s incorrectness as it does a counterexample obtained from a
model checker.

In any case, the rigid mathematical description of the system, the formulation of
its essential properties and the detailed analysis of the system with respect to these
properties altogether decrease the probability of fundamental problems remaining
present in the system design and therefore not only prevent errors from being
detected lately but also increase the trust in the correctness of the system design.

Many of such formal approaches to specification have been proposed and a large
variety of different notations have been developed during the last decades. Some
of these formal methods have even been applied with great success in industrial
projects [TWC01, BA05, Abr06].

However, there has not yet emerged any general-purpose technique that is equally
well suited for all specification purposes. Instead, each of the notations has its
own advantages and disadvantages, mostly due to a focus on some specific aspect
of system specification such as system data or behaviour. Therefore, the obvious
idea is to combine different individual specification notations into one consistent
formalism that exploits the advantages of each of its constituting sub-notations.

1.3 Slicing for Verification 15

These are subject of the recently very active research area of integrated formal
specifications.

One proposal for such a specification formalism is the high-level specification
language CSP-OZ-DC [Hoe06] that allows us to define all essential characteristics of
complex real-time systems on a level high above subsequent implementations, and
thus ideally suited for early system design. Furthermore, CSP-OZ-DC has already
been shown to be appropriate for modelling industrially relevant specifications
such as safety-critical parts of the European Train Control System (ETCS [FM06]),
an industry standard from the railway domain.

CSP-OZ-DC combines three individually well-researched formalisms: Communi-
cating Sequential Processes (CSP [Hoa85]) to specify system behaviour in terms of
the admissible ordering of events and communication between processes; Object-Z
(OZ [Smi00]) to define a system’s state space and modifications associated with the
occurrence of events; Duration Calculus (DC [HZ97]) to define real-time properties
over certain events or states. In CSP-OZ-DC, a common semantic basis is given to
these three formalisms by extending the DC semantics such that it also covers the
CSP and the OZ part. Moreover, CSP-OZ-DC provides a compositional translation
into phase event automata, a variant of timed automata which is suitable for subse-
quent verification by fully automatic model-checking [FM06, PR06, BDFW07].

One of the main obstacles for automated verification, however, is the problem of
state space explosion, i.e., the exponential blow-up in the number of system states
to be analysed. This is for instance induced by additional levels of concurrency of
system components or by additional system variables leading to additional state
space dimensions.

Many techniques have been proposed to tackle this problem and the frontier of
systems being amenable to model checking has been pushed forward again and
again throughout the last years by the—often complementary—application of nu-
merous sophisticated techniques. Among these approaches to state space reduction
are techniques for efficient state space representation of the model generated from
the specifications, techniques for compositional verification dividing the properties
to be verified into sub-properties which might then be verified more easily than the
top level property, or techniques such as partial-order reduction [Pel98], predicate
abstraction [CGJ+00], cone of influence reduction [Kur94, CGP99], or heuristic
search [ELLL04].

1.3 Slicing for Verification

Aiming also in the direction of mitigating the effect of the state space explosion
problem is the method of slicing. It was originally introduced in the late seventies
by Mark Weiser [Wei79] in the context of program analysis in order to determine
those parts of a program which are relevant with respect to a specific debugging

16 1 Introduction

task. Weiser observed this technique to be intuitively applied by programmers
during debugging: When analysing a certain problem inside a program, the focus
is naturally put only upon the currently relevant program parts while other parts
of the source code are mentally hidden. This intuitive analysis can of course be
automated and has become—based on data flow analysis and on dependence
graphs—a well known method in the area of program analysis [HRB90, Tip95]. In
the past decades, slicing has found numerous further areas of application [XQZ+05],
among them the area of software verification where it has successfully been applied
to various targets such as Java [HDZ00], Promela [MT00], or SAL [GSS99]. As
a syntax-based approach that operates at the source code level, slicing can—in
contrast to techniques working at lower levels—exploit additional knowledge
about the system structure. It has hence been shown to be effective in addition to
complementary techniques working on the semantic level of the models generated
from the source code [DHH+06].

Slicing in the context of verification is usually done in two steps. First, a de-
pendence graph is constructed representing control and data dependences present
inside the source code. This first preparatory step is independent from the actual
verification property and therefore only needs to be performed once for a given
verification target. Second, a backwards analysis is performed on the dependence
graph with the verification property as slicing criterion, i.e., a starting point to iden-
tify elements that directly or indirectly affect the property to be verified. Computing
the slice of the specification that is relevant to the verification property allows us
to omit the irrelevant parts in the subsequent verification step such that the state
space to be examined is already reduced before the verification actually starts. An
important requirement in this context is the correctness of the slicing approach, i.e.,
the verification result must remain the same, regardless of whether the verification
is performed on the original verification target or on the slice.

In this thesis we apply slicing to Object-Z, CSP-OZ, and ultimately to CSP-OZ-DC
specifications as a preparatory step for their subsequent verification with respect
to stuttering-invariant logics such as the next-free projection of linear temporal
logic (LTL), LTL−X, the state/event interval-logic SE-IL [BW05b], and test formu-
lae [MFR06], which form a subset of DC that is amenable to model-checking. The
rich syntactical structure of CSP-OZ-DC specifications and their clear separation
in different parts addressing different system aspects makes them an ideal target
for the syntax-oriented technique of slicing. We exploit the special structure of
CSP-OZ-DC specifications by introducing several new types of dependences such
as predicate, synchronisation, and timing dependences into the dependence graph.
In comparison to conventional dependence graphs these dependences yield addi-
tional information about the specification allowing us to construct a more precise
dependence graph and thus a more precise slicing outcome. Integrating previous
work [BW05b, BW05a, Brü07], we show correctness of our approach not only with
respect to test formulae, but, more generally, with respect to any logic which is in-

1.4 Contributions 17

Citation Level Timing
Aspects

Verification

[HW97, Bol04]
Individual Specifications

(HSM, Z)
— —

[HDZ00, MT00] Programs (Java, Promela) — X

[JJ04, BDFW07]
Models (Timed Automata,

Transition Constraint
Systems)

X X

This thesis
([BW05b, BW05a,

Brü07])

Integrated Specifications
(Object-Z, CSP-OZ,

CSP-OZ-DC)
X X

Table 1.1: Contributions compared to related works on slicing

variant under stuttering, i.e., which cannot distinguish between interpretations that
are equivalent up to some stuttering steps (defined by sets of irrelevant variables
and events obtained from slicing).

1.4 Contributions

On the one hand the integration of formal specifications is becoming an essential
instrument in order to combine the specification of several aspects of large systems,
while the verification of such specifications of practically relevant sizes still suffers
from the problem of state space explosion. On the other hand the technique of
conventional program slicing has for long been established as a well-researched
reduction technique in the field of program analysis. Therefore, the main contri-
bution of this thesis becomes self-evident, namely exploiting the benefits that are
achievable by the integration of slicing into the verification process for integrated
formal specifications and the resulting mitigation of the state space explosion in
model checking.

In detail, the contributions of this thesis can thus be seen along the following
three dimensions, as also depicted in Table 1.1:

Slicing target: Although slicing has mainly been applied to conventional programs
such as Java programs [HDZ00] or Promela programs [MT00], there also exist
a few works on slicing of formal specifications such as on slicing of hierarchical
state machines (HSM, [HW97]) or on slicing of Z specifications [Bol04].
These, however, only deal with individual specification notations and do not
consider integrated specification notations such as CSP-OZ-DC, combining

18 1 Introduction

different aspects of systems within one consistent specification formalism.
Furthermore, the existing slicing approaches for formal specification are
not aiming at the context of formal verification but rather at specification
comprehension (as in [Bol04]) or without explicitly mentioning a specific
purpose. Therefore, these works do not consider a proof of correctness of
their approach as we do it within this thesis.

Real-time aspects: There are only very few slicing approaches that consider real-
time aspects such as [JJ04] does. There, however, slicing takes place on a
completely different level than in this thesis, namely with timed automata
as the slicing target, i.e., on the level of models on which the actual verifi-
cation algorithms work. The main motivation of this thesis, however, is the
problem of state space explosion. As stated before, this problem frequently
occurs already during model generation. There it often prevents successful
verification due to the generated models becoming too large to be handled
by the verification infrastructure. Thus, with this motivation in mind, the
application of slicing on the level of generated models might simply be too
late for successful verification. However, both approaches can of course be
applied complementary: In spite of reductions achieved by an initial slicing
on the level of specifications, slicing on the level of timed automata might still
achieve some further reductions, especially, when combined with additional
state space reduction techniques that are applied at an intermediate stage in
between both slicing approaches.

Slicing context: Most slicing approaches have a different application background
than verification, i.e., reductions of programs or specifications are aimed
at with motivations such as facilitating the task of debugging in software
development environments (as usually in conventional program slicing) or
better comprehension of large specification documents (as in [Bol04]). Slicing
approaches which are indeed motivated by the application within a formal
verification process, however, are usually very near to the actual verification
engine, i.e., they work on a relatively low level such as [JJ04], working on
timed automata, or [BDFW07] working on transition constraint systems, or
they work on implementation level such as [HDZ00] on the level of Java
programs. Therefore, these can be seen as complementary to our approach
which applies slicing at the earliest possible point in the development process,
i.e., at the stage of high-level specifications.

In addition to these dimensions, this thesis aims at the experimental assessment of
the effects that can be achieved by the application of slicing, i.e., the presented slic-
ing approach for CSP-OZ-DC specifications has been implemented and experimental
results for a variety of specifications have been achieved.

1.5 Thesis Structure 19

1.5 Thesis Structure

The thesis is structured as follows. The next Chapter 2 “Background: Program
Slicing” gives some background on conventional slicing and variants thereof. It
also gives an overview on other techniques aiming at state space reduction in the
context of formal verification.

Chapter 3 “Integrated Formal Specifications” introduces the specification for-
malisms considered in this thesis, i.e., the specification languages Object-Z, CSP-OZ,
and CSP-OZ-DC, which form the objects of the slicing approach.

The core Chapters 4–5 of this thesis address each of the steps involved in the
slicing approach: Chapter 4 “Dependence Analysis” presents the dependence analy-
sis for each of the specification languages, including the definition of the various
types of dependences assembling the dependence graph, which is the main result of
this first step of the slicing approach; Chapter 5 “Specification Slices” defines how
to use the previously constructed dependence graph such that for a given slicing
criterion directly and indirectly relevant nodes can be computed, leading to the
main result of this second step of slicing, the identification of a remaining set of
irrelevant nodes; moreover, this chapter defines how to use this set of irrelevant
nodes of the dependence graph in order to compute a reduced version of the
original specification, which is then the overall result of the slicing approach.

Chapter 6 “Slicing Correctness” presents the correctness proof of the slicing
algorithm for CSP-OZ-DC which subsumes correctness of slicing approaches for
Object-Z and CSP-OZ.

Chapter 7 “Tool Support and Experimental Evaluation” introduces Syspect, the
graphical modelling environment for CSP-OZ-DC, which serves as the platform to
perform slicing experiments. Furthermore, this chapter gives an account on experi-
mental results obtained from the application of slicing to a variety of specifications,
ranging from the running examples presented in the preceding chapters about
slicing up to a larger case study dealing with an industrially relevant specification.

Chapter 8 concludes the thesis with a discussion of the results, comments on
some additional work conducted in the context of slicing formal specifications and
elaborating on further perspectives.

20 1 Introduction

2 Background: Program Slicing

Contents
2.1 Foundations of Program Slicing 22

2.1.1 Slicing Based on Data Flow Equations 22

2.1.2 Slicing Based on Dependence Graphs 25

2.2 Classification of Slicing Approaches 28

2.2.1 Type of Slicing: Static or Dynamic 28

2.2.2 Direction of Slicing: Forward or Backward 29

2.2.3 Type of Slice: Executable or Non-Executable 30

2.2.4 Type of Slicing Criterion 31

2.2.5 Target Language . 32

2.2.6 Area of Application . 35

2.3 Further Techniques Aiming at State Space Reduction 41

2.3.1 High-Level Techniques . 41

2.3.2 Low-Level Techniques . 43

In the introduction we have motivated the idea of applying program slicing to
integrated formal specifications in the context of verification. In order to explore the
background of program slicing in more detail, this chapter starts with an overview
of its origins in the field of program analysis and debugging.

Several extensive overview papers on program slicing exist [Kam95, Tip95, BG96,
HG98, HH01, Luc01, BH04, XQZ+05, DBG+06, MMK06], as well as several web
sites with collections of resources on program slicing [Lyl95, Upc97, Hie04, HR05,
Har07b, Har07a], so the intention of this section is not to add another complete
overview but rather pick out some essential ideas that will illustrate the evolution
of program slicing.

Thus, the next section begins with addressing foundational work on program slic-
ing, which started in the late seventies with the PhD thesis of Mark Weiser [Wei79]
and saw continuous increase of interest ever since.

The following Section 2.2 introduces some of the numerous variants of slicing
that have been proposed for different purposes, and some of the various fields of
applications that it has found so far.

22 2 Background: Program Slicing

(a) Original program:

1 read(x)
2 read(y)
3 p=0
4 s=0
5 if x<=1 then
6 s=y
7 else
8 read(z)
9 p=x*y

10 fi
11 write(p)
12 write(s)

(b) Slice on z at line 12:

1 read(x)
5 if x<=1 then
6 else
8 read(z)
10 fi

(c) Slice on p at line 12:

1 read(x)
3 p=0
5 if x<=1 then
7 else
9 p=x*y
10 fi

(d) Slice on x at line 9:

1 read(x)

(e) Slice on s at line 12:

1 read(x)
2 read(y)
4 s=0
5 if x<=1 then
6 s=y
7 else

10 fi

Figure 2.1: Weiser’s example program fragment (a) and slices thereof (b-e)

The chapter concludes with Section 2.3 on different techniques serving the same
purpose as the slicing approach presented in this thesis, namely the support of
automatic verification by mitigating the problem of state space explosion.

2.1 Foundations of Program Slicing

The term of program slicing was initially coined by Mark Weiser in his PhD the-
sis [Wei79] and subsequent publications [Wei81, Wei82, Wei84]. Therefore, we
next present Weiser’s initial program slicing approach based on data flow equations,
which are also used within several further slicing approaches [LR87, KL88, GL91].
Afterwards, we give an overview of the nowadays most common slicing approach
based on program dependence graphs, as for example used in [HRB88, HRB90,
AH90, Bin93, BH93a, CF94].

2.1.1 Slicing Based on Data Flow Equations

The example program fragment that Weiser originally used to illustrate his concept
of slicing [Wei81] is depicted in Figure 2.1a. It computes variables s and p,
denoting the result of a sum and a product calculation based on input to variables
x and y. In addition, it contains an input statement that is obviously unrelated
with the remaining statements, potentially modifying variable z.

Weiser’s key observation was the following: When analysing the program frag-
ment for the value of a given variable during execution of the program up to a given
line, a task as it usually occurs during debugging, one does not need to consider all

2.1 Foundations of Program Slicing 23

elements of the program, since not all of its elements contribute to the question at
hand.

Supposed we are interested in the value of variable z at the end of the example
program fragment. Assignments to variable s and p obviously do not contribute to
this question. However, input to variable x is essential, since the value of variable
x determines via the branching condition at line 5 whether control flow reaches
the point at line 8 where input to variable z takes place. For this specific purpose
it is therefore sufficient to examine the slice of the original program depicted in
Figure 2.1b, which contains only statements of the original program that might
influence the value of z at line 12.

An even larger portion of the program code may be ignored when analysing the
program for the value of variable x at line 9. The only statement with influence
to this question is the input statement at line 1 such that all remaining statements
may be removed, resulting in the slice depicted in Figure 2.1d.

Note that even the branching statement surrounding line 9 may be removed,
since it does not contribute to the value of x, regardless of whether control flow
reaches the statement at line 9 or not.

Weiser’s last examples, depicted in Figure 2.1c and 2.1e, show the code relevant
to the question of what value variables p and s have at line 12, i.e., at the end of the
program fragment. Here, only assignments and input statements to the variables z
and s or p, respectively, have been removed in comparison to the original program,
since anything else, i.e., input to x, and branching statements depending on the
value of x have influence on the final values of p and s.

To summarise the examples, each of the given analysis question requires a
thorough analysis of the program code with respect to the contribution of each of
the statements to the question at hand. These contributions might be more or less
obvious, i.e., the relevance of a statement containing a direct assignment to the
variable of interest is easy to recognise, while the indirect contribution of another
variable via a sequence of mutually depending assignment statements or via control
flow structure depending on it might be more difficult to detect, especially when
the programs become longer than the tiny example considered here.

After observing the usefulness of computing program slices, Weiser also con-
ducted experiments with programmers in order to examine whether program
transformations of this kind are done intuitively [Wei82]. Within these exper-
iments, programmers were confronted with the task to analyse some program
with respect to a given debugging question. Upon completion of this task, the
programmers were given several tiny fragments of the analysed program and were
asked whether they encountered them during their previous analysis. Some of
these fragments were related to the debugging task, while others were not.

The answers he obtained from the programmers confirmed Weiser’s hypothe-
sis: programmers do some kind of intuitive slicing during debugging, i.e., they
recognised most of the relevant fragments, while they intuitively ignored irrele-

24 2 Background: Program Slicing

Program Graph DEF REF INFL R0
C S0

C B0
C R1

C S1
C C-Slice

read(x) 1

2

3

4

5

6

7

8

9

10

11

12

x X read(x)
read(y) y X x X read(y)
p=0 p y x,y
s=0 s y X x,y X s=0
if x≤1 then x 6,8,9 s,y X s,x,y X if x≤1 then

s=y s y y X y X s=y
else X X else

read(z) z s s
p=x*y p x,y s s

fi s X s X fi
write(p) p s s
write(s) s s s

Figure 2.2: Example of data flow equation computation with slicing criterion
C = 〈12,s〉

vant fragments such that after completing the debugging task they mostly did not
remember having encountered them before.

Based on these results, Weiser proposed a solution to automate the intuitive
slicing in order to simplify debugging tasks by reducing the code to only its currently
relevant portion, such that programmers might focus their examination to this
without being distracted with irrelevant code fragments.

Firstly, Weiser’s solution formalises the given analysis question. Since he previ-
ously identified slicing to be applicable in the context of debugging, the question
driving the slicing approach is the same as for the usual debugging task: the
value of a given variable at a given point in the program. This pair of parameters
forms the slicing criterion and serves as the starting point for the subsequent slicing
approach.

As a further ingredient for slicing, Weiser defined flow graphs, using nodes to
represent a program’s statements and using edges between these nodes to represent
the flow of control between these statements. Figure 2.2 shows the flow graph for
the previously introduced example program fragment in the second column.

For each flow graph node n, Weiser then defines sets DEF(n) of variables that are
altered by the associated statement and sets REF(n) of variables that are referenced
at the statement. Furthermore, for any branching statement, the set INFL(n)
contains those statements that are influenced by the branching statement by being
control dependent on it. The resulting sets for the example program fragment are
shown in Figure 2.2.

Using these initial sets of variables, Weiser then sets up data flow equations
defined recursively along the previously constructed flow graph. These data flow
equations capture the relation between referenced and modified variables such that
iterative solutions with respect to a given slicing criterion yield for each statement

2.1 Foundations of Program Slicing 25

those variables which are of interest with respect to the slicing criterion.
The calculation starts at the flow graph node as defined by the slicing criterion.

For this node, the associated set R0
C of directly relevant variables is that defined

by the slicing criterion. Thus, the starting point of the example calculation in
Figure 2.2 is line 12, with R0

C(12) containing only variable s, since the slice is
computed with respect to slicing criterion C = 〈12,s〉.

From thereon, the sets R0
C are computed for each flow graph node that precedes

the node of the slicing criterion, following the flow graph backwards up to its
entry node. For a given node n, the set R0

C(n) contains all relevant variables
of its respective successor node m, unless they are defined at n, i.e., contained
within DEF(n). Instead of such modified variables, R0

C(n) will contain all variables
referenced at n, i.e., those from REF(n).

The main result of this first iteration is the set S0
C, containing all statements with

assignments to variables that are relevant at a successor node, i.e., for which DEF(n)
∩ R0

C(m) 6= ∅ holds with m being a successor of n. In the example calculation, the
only such statements are the assignments to variable y and s in lines 2, 4 and 6.

Another result of the first iteration is the set B0
C of relevant branching statements,

i.e., those branching statements that have influence on directly relevant statements
of S0

C. The only such statement in the example calculation is the conditional
construct in lines 5 through 10, since its first branch contains the directly relevant
assignment to variable s of line 6.

The next iteration starts with the computation of another set R1
C(n) of indirectly

relevant variables for each flow graph node. This computation is now based on the
previously calculated sets R0

C. At relevant branching statements, i.e., at those from
B0

C, the set R1
C(n) contains additionally all referenced variables. From R1

C we can
then compute another set of relevant statements S1

C.
Having determined these, the iteration can be repeated as before until a fixed

point is reached, i.e., until the set of relevant statements does not grow anymore.
In the example calculation, this is already the case for S1

C, such that this set of
statements forms the final result of the calculation, namely the slice of the program
with respect to slicing criterion C = 〈12,s〉.

2.1.2 Slicing Based on Dependence Graphs

Only little later than Weiser, the first graph-based approaches to program slicing
came up in the works of Linda and Karl Ottenstein [OO84]. The concept of a pro-
gram dependence graph had already been introduced before that point [KKP+81],
but with a different motivation, namely its use in compiler construction and optimi-
sation.

In fact, in addition to serving as a basis for program slicing, the program depen-
dence graph can be used for a number of purposes within the field of program
analysis such as data-flow analysis problems, shape approximation of heap-allocated

26 2 Background: Program Slicing

structures (“shape analysis”), or flow-insensitive points-to analysis, which can all
be reduced to dependence graph reachability problems [Rep98a, Rep98b].

Ottenstein and Ottenstein [OO84], however, are the first to use the concept of
dependence graphs for slicing and—like Weiser—aim at the application of slicing
in the context of debugging in order to show programmers only relevant code, e.g.,
with respect to a given breakpoint within a software development environment.
However, their work remains restricted to an informal explanation of the procedure
of how to construct a slice. Moreover, they discuss the use of slicing in general
under different execution models, for incrementally updating internal program
representations and for program complexity metrics.

Subsequently, Karl Ottenstein together with Ferrante and Warren further elabo-
rates the program-dependence-graph-based slicing concept in [FOW87], although
in that work slicing is only one of the possible application scenarios of the program
dependence graph they construct, next to conventional applications in compiler
constructions such as parallelism detection, node splitting, code motion, or loop
fusion.

The mentioned works contain already the elements that are still present in current
graph-based approaches to program slicing: Initially, an abstract representation of
a program’s control flow is constructed, similar to Weiser’s flow graphs along the
lines of standard control flow graph construction as in compiler construction and
optimisation [WG84, ASU97, WM97, NNH99, Muc00].

Based on such a control flow graph, however, not data flow equations are set
up, but a program dependence graph is constructed, which re-uses the nodes
of the control flow graph, but contains a revised set of edges of different types:
first, control dependence edges between nodes for which some kind of control
dependence exists, then data dependence edges between nodes for which data
dependence edges exist. Instead of iteratively computing solutions to data flow
equations, as in Weiser’s original approach, the slicing problem is then reduced to a
reachability problem within the program dependence graph.

Since the program dependence graph captures all mutual influences between
elements of a program, everything that might affect a given slicing criterion (rep-
resented by some node in the program dependence graph) can be identified by
tracing back along the graph’s dependence edges. Consequently, elements which
are not reachable in this way are not relevant with respect to the slicing criterion
and can be removed from the program in the given context.

An example of the dependence graph of the previous example program fragment
due to Weiser can be found in Figure 2.3. Each node of the dependence graph
corresponds to one of the statements of the program fragment. Control dependence
edges connect nodes representing branching statements with those nodes repre-
senting the statements within their branches whose execution directly depends
on the branching condition. The start node can be regarded as an artificially in-
troduced branching statement, representing the global condition that control flow

2.1 Foundations of Program Slicing 27

1 read(x)
2 read(y)
3 p=0
4 s=0
5 if x<=1 then
6 s=y
7 else
8 read(z)
9 p=x*y
10 fi
11 write(p)
12 write(s)

Start

1 2 3 4 5,7,10 11 12

6 8 9

Figure 2.3: Program dependence graph for the example program fragment. Thick
edges represent control dependence, thin edges represent data dependence, and
shaded nodes represent statements associated with the slice with respect to
C = 〈12,s〉.

has entered the program fragment. Thus, the start node is directly connected via
control flow edges with any statement that will definitely be executed, i.e., with
any node outside conditional statements.

Note that, apart from the start node, the example contains only one node that
is source of control dependence edges, namely the node representing the only
conditional construct of the program fragment within lines 5–10. Data dependence
edges lead from any node representing an assignment to some variable to any of its
control flow graph successor nodes where a reference to the same variable might
take place.

The slice computation with respect to slicing criterion C = 〈12,s〉 starts at node
12 as defined by the slicing criterion. It then identifies all nodes that are reachable
from this initial node when moving backwards along arbitrary data or control
dependence edges. The nodes identified in this way have indirect influence on the
slicing criterion and therefore need to remain in the slice. Nodes 3, 8, 9, and 11,
on the other hand, are not reachable in this way, and may therefore be removed
from the original program to obtain its slice.

In comparison to the slice computation based on data flow equations as presented
in the previous section, this slice is less precise: it contains the additional statement
of line 12 and is thus larger than necessary, since this output statement does not
actually contribute to the value of s at line 12.

The reason for this different outcome can be found in the different starting points
of each slicing approach: The starting point for dependence-graph-based slicing
is a single program dependence graph node. From thereon, any arriving data

28 2 Background: Program Slicing

dependence is followed backwards, such that essentially all variables referenced at
this node are regarded as being relevant for the slice.

Thus, the presented basic form of dependence-graph-based slicing simply ignores
the second component of the slicing criterion, i.e., the set of variables. Instead, it
only computes a slice with respect to the first component of the slicing criterion,
i.e., with respect to the given statement, represented by its associated dependence
graph node.

However, the program-dependence-graph-based slicing can be easily refined such
that it achieves the same granularity of slicing results as data-flow-equation-based
slicing does: Instead of using the single node fixed by the slicing criterion as a
starting point, one can determine the set of nodes that define variables fixed by
the slicing criterion, such that the definitions might reach the initial node. The
backwards reachability analysis is then carried out with respect to this previously
computed set of nodes, leading to the same slicing result as presented in the
previous section.

In the recent decades, several such variants of dependence-graph-based slicing
along with a lot of variants of the program dependence graph have been developed,
with motivations that range from achieving a more efficient construction of the
graph [HMR93], over the special treatment of additional language features such
as complex control-flow (i.e., unconditional jumps [Bal93]) or special constructs
to support parallelism [SS94] up to generalisations that capture several separate
notions of the program dependence graph into a single consistent concept [Sta00].

2.2 Classification of Slicing Approaches

The previous section introduced both of the most common but fundamentally
different approaches to slice computation, namely data-flow-equation-based and
dependence-graph-based slice computation. In addition to the type of computation
they use, slicing approaches can be classified with respect to a large number of
criteria. This section characterises some of these criteria (partly following [Kam95],
[Tip95], and [XQZ+05]) and gives for each of these criteria an overview of some
representative associated slicing approaches.

2.2.1 Type of Slicing: Static or Dynamic

When executing a program, its operation usually depends on inputs. Thus, most
of the behaviour of a program cannot be predicted at compile-time. Therefore,
we can distinguish between slicing approaches yielding static slices, computed
independently from the actual execution of the program, i.e., at compile-time, as
it was the case in all previous examples, and slicing approaches yielding dynamic
slices, computed under consideration of program input, i.e., with assumptions on
the environment during run-time. Therefore, the latter can also be seen as a variant

2.2 Classification of Slicing Approaches 29

(a) Original program:

begin
1 read(X)
2 if (X < 0) then
3 Y := f1(X);
4 Z := g1(X);

else
5 if (X = 0) then
6 Y := f2(X);
7 Z := g2(X);

else
8 Y := f3(X);
9 Z := g3(X);

end_if;
end_if;

10 WRITE(Y);
11 WRITE(Z);

end.

(b) Static slice on Y at
line 10:

begin
1 read(X)
2 if (X < 0) then
3 Y := f1(X);

else
5 if (X = 0) then
6 Y := f2(X);

else
8 Y := f3(X);
9 end_if;

end_if;
end.

(c) Dynamic slice on
Y at line 10 with input
X=-1:

begin
1 read(X)
2 if (X < 0) then
3 Y := f1(X);

end_if;
end.

Figure 2.4: Comparison between static and dynamic slicing

of slicing with an extended slicing criterion that comprises a series of inputs in
addition to the usual combination of values of variables at certain program points.
In the context of program debugging and testing, the obvious advantage of dynamic
slicing [AH90, BDG+04] is thus to be better adaptable to specific analysis purposes
such as a given execution history of a program.

The example program fragment that Agrawal and Horgan used to illustrate their
concept of dynamic slicing is depicted in Figure 2.4. The additional knowledge
about input to variable X allows us to ignore a complete branch of the conditional
statement of the example. Thus, dynamic slicing yields a subset of the slice obtained
from static slicing. Therefore, dynamic slicing can in many situations achieve more
precise slices than static slicing, provided that the inputs to the program are known.

Related to the presented approach of dynamic slicing are the concept of program
conditioning and the resulting slicing variant of conditioned slicing that will be
subject of Section 2.3.1.

2.2.2 Direction of Slicing: Forward or Backward

The starting point of all previously introduced slicing approaches was the slicing
criterion, from whereon the slicing algorithm performed a backwards-oriented com-
putation, whether via data flow equations or via edges of the program dependence
graph, since the aim was to identify sources of influence on the slicing criterion.
Therefore, all previous approaches fall into the class of backward slicing approaches.

However, the same concepts can be applied in the opposite direction, giving rise
to forward slicing approaches, such as mainly used in conjunction with dynamic

30 2 Background: Program Slicing

slicing [KY94, ABGS+01, ZGZ04] with the motivation of computing slices of the
program that might be affected by the slicing criterion, i.e., an execution chain of
the program starting at the point defined by the slicing criterion. Usually this is
applied on-the-fly, i.e., during program execution with the current point of control
being the slicing criterion, such that the effect of the currently executed statements
can be analysed interactively without recording the execution trace.

Another motivation for the computation of forward slices can be seen in the area
of verification under property inheritance [Weh04, Weh05, OW05]. When existing
classes, for which a range of properties has already been successfully verified, are
subsequently modified, e.g., in the process of refinement or for the purpose of
sub-typing, the obvious question is, to what extent the previously proven properties
remain valid for the modified class, i.e., whether the resulting classes inherit these
properties or not.

In this context, forward slices are useful by yielding answers to the question of
property inheritance between such modified classes. To this end, the dependence
graph is used to compute the effect of the changes introduced in the modified class.
The validity of a given property can then be determined by comparing its atomic
propositions with those influenced by the newly introduced modifications. If the
intersection is empty, the property remains valid for the modified class and the
verification run does not need to be repeated, otherwise the property needs to be
verified again.

2.2.3 Type of Slice: Executable or Non-Executable

So far, the goal of each of the previous slicing approaches was to compute partially
equivalent programs such that the slice is (a) executable and (b) its behaviour with
respect to the slicing criterion is equivalent to that of the full program, i.e., when
executing the slice, the relevant variables at the program point defined by the
slicing criterion have the same values as when executing the original program.

If ignoring condition (a) and thus weakening the slicing approaches to also
allow non-executable slices as a result, i.e., if the goal is only to determine the set
of statements of the full program that might affect the slicing criterion [HRB90,
Ven91, Bin93], the consequence is that also condition (b) will not be satisfied any
more, since it does not make very much sense to reason about the behaviour of
non-executable programs.

Of course, such slices will therefore not be useful under the usual view on
slicing as a technique to compute partially equivalent programs. However, when
considering different purposes, such as incremental program optimisation [FOW87]
or program comprehension [RLG02], only this weaker notion of a slice is needed,
such that the computation of non-executable slices might then make very much
sense, especially, since it allows obtaining reductions that conventional slicing can
not achieve. Examples of such reductions are the removal of syntactical elements

2.2 Classification of Slicing Approaches 31

(a) Original program:

1 i := 0;
2 while i < 10 do
3 if i=0 then h := 10;
4 i := i+1;
5 od;
6 write(h);

(b) Non-executable slice on h at line 6:

1 i := 0;
2 while i < 10 do
3 if i=0 then h := 10;

5 od;
6 write(h);

Figure 2.5: Comparison between executable and non-executable slices

that are needed to obtain well-formed and thus executable programs or reductions
leading to non-termination such as the one illustrated in Figure 2.5, an example of
non-executable slices due to [Ven91].

When applying the usual notion of slicing to the example program with respect
to the given slicing criterion, we obtain no reduction at all. In contrast to that, the
weaker notion of slicing only collects those statements that have a direct influence
on the slicing criterion. This yields the reduction depicted in Figure 2.5. However,
there is a price to pay in order to achieve this reduction: the resulting slice in this
example is a non-executable program, since it will not terminate anymore.

2.2.4 Type of Slicing Criterion

When comparing different slicing approaches with respect to the kind of slicing
criterion that are used as starting points, we can distinguish the following two
main categories of slicing criteria: (1) Slicing criteria that explicitly name a specific
program location as the point of interest with respect to that the slicing procedure
is carried out, and (2) slicing criteria that do not explicitly refer to such a distinct
program location, but rather perform slicing with respect to a whole range of
program points that are implicitly characterised by the slicing criterion.

The former category (1) of slicing criteria can further be divided into the follow-
ing types, which are distinguished according to the additional side conditions that
they impose on the slicing approach:

• Static slicing criterion (v, p) as for instance used by [HRB90] with the side
condition of a direct connection between variables of interest v and program
location p: Here, any variable of interest v must be defined or referenced at
the given program point p of the slicing criterion.

• Static slicing criterion (v, p) as for instance used by [Wei84, GL91] without
the side condition of a connection between variables of interest v and program
location p: In this more general variant of slicing criterion, a variable of
interest v can be an arbitrary variable, without the side condition that it must
be defined or referenced at the given program point p of the slicing criterion.

32 2 Background: Program Slicing

• Dynamic slicing criterion (v, p, x): In addition to some variable of interest
v and a program location p, this variant of slicing criterion also defines a
program input x, giving rise to dynamic slicing approaches.

Common to the latter category (2) of implicitly given slicing criteria is that they
require an additional step in order to compute the set of program locations that
actually serve as the starting point for the slicing algorithm. Examples of this
category of slicing criteria are

• the Bandera Specification Language [CDHR02] that defines observable propo-
sitions used to specify properties of Java programs,

• the predicate-based slicing criteria used by [RLG02] for dynamic slicing of
message passing programs, or

• temporal logics formulae such as state/event interval logic formulae or test
formulae that we will later introduce within Chapter 5 of this thesis to rea-
son about temporal properties and real-time properties of integrated formal
specifications.

Within each of these latter slicing approaches, the slicing criterion is initially used
to identify locations that have direct relevance by modifying variables mentioned
within the slicing criterion or by affecting program/system states described by the
slicing criterion.

2.2.5 Target Language

So far, we only saw examples in which slicing was applied to program fragments
written in pseudo code. However, there is a broad spectrum of real-world pro-
gramming languages for which slicing approaches have been devised such as in the
following examples:

• Java programs [Zha99, HDZ00, Nan01, CX01, RH04], in the case of [HDZ00]
used in the context of model construction for Java programs and their subse-
quent verification with respect to temporal logic properties.

• ANSI C programs [KK95, Kri03], where, in addition to the usual purpose
of debugging and user support, slicing in [Kri03] is also used for clone de-
tection within programs, based on identifying similar subgraphs in program
dependence graphs.

• Promela programs [MT00], written in the input language of the SPIN model
checker, mainly used for specifying communication protocols and their explicit-
state verification.

2.2 Classification of Slicing Approaches 33

• VHDL programs [INIY96, CFR+99, CFR+02, VABT03], addressing issues that
are specific for hardware description languages, such as their implicit con-
currency, their non-halting reactive nature, based on processor cycles, and
further specific language constructs, such as signals and ports, or concurrent
assignment.

In addition to these rather straightforward applications of slicing, several slightly
less obvious slicing targets have been identified, including

• slicing of logic programs [SD96, Vas98, SGM02] usually based on the Prolog
language,

• slicing of functional languages [AH00], using abstract interpretation tech-
niques,

• slicing of class hierarchies in C++ [TCFR96] with focus on slicing hierarchy
declarations instead of executable program statements,

• slicing of general-purpose syntax trees [SH96] instead of programs with a
concrete given syntax, and

• specification-based slicing of programs enriched with assertions on pre and
post conditions of program statements [CLYK01, LCYK01].

A number of slicing approaches have also considered slicing of formal specifications
such as

• the Z specification language [OA93, CR94, Bol04, WY04], where the fo-
cus of [OA93] is on debugging, modification, and re-use of specifications,
while [CR94] and [Bol04] aim at the comprehension of specifications,
and [WY04] develops slicing for Z specifications without naming a specific
application purpose,

• Petri nets in general [LKCK00] and marked Petri nets in the context of their
falsification and verification with respect to LTL formulae [Rak07],

• hierarchical state machines [HW97],

• the Wide Spectrum Language (WSL) [War02], a specification language that
intends to cover several stages of the development process, ranging from high-
level-specifications down to real programming languages and even assembler
code, using WSL transformations [War89] for connecting the stages,

• the algebraic specification notation OBJ [WA98], or

• the software architecture description language WRIGHT [Zha98].

34 2 Background: Program Slicing

For the support of concurrent structures within the target language, as it will also be
needed for CSP-OZ-DC specifications, several approaches have developed suitable
concepts of slicing.

One of the first works that consider concurrency explicitly with respect to slicing
is Cheng [Che93], whose slicing approach is tailored to the analysis of OCCAM
programs. In order to represent the concurrent nature of such programs, the
notion of process dependence net is defined. This dependence net essentially forms
an extension of the program dependence graph that contains additional types of
dependence such as communication dependence representing the relation between
two processes that exchange data. A later extension of the approach [ZCU96] also
includes the coverage of object-oriented concepts under concurrency. A very similar
approach is proposed in [Zha99] that deals with several aspects of concurrency
which are specific to multi-threaded Java programs.

An approach leading to smaller and therefore more precise slices is explored by
Krinke [Kri98, Kri03], who uses threaded ANSI C programs as its target language
and thus needs to deal with implicitly given data interference due to variables
shared between processes. In his slicing approach Krinke introduces expensive
additional computations in order to avoid the introduction of non-transitive inter-
ference data dependence edges. However, this work does not yet cover explicit
thread synchronisation, a shortcoming which is amended within closely related
works [HCD+99, NR00, Nan01, CX01] on slicing concurrent Java programs.

One of the first approaches that explicitly consider slicing of real-time systems
is [GH97], whose slicing approach operates on a relatively low level close to
actual implementation of real-time programs. Therefore, their slicing algorithm
is tailored to the setting of real-time scheduling analysis, working on sets of
periodically executed tasks that share a common processing unit. Furthermore,
their slicing approach is closely integrated into a dedicated scheduling strategy,
allowing transforming previously unschedulable applications into schedulable ones.

More recent approaches have also considered slicing for timed systems on the
comparably more abstract level of real-time automata [BGO02, JJ03, JJ04]. In
the approach of [BGO02], the slicing target consists of a set of timed automata
in parallel composition, which are subject of verification runs with respect to
an observer automaton, also composed in parallel with the remaining automata.
Slicing criteria are the states of the observer automaton. The result of the slicing
approach is not a conventional reduction of the original system but rather an
optimised system where components and clocks are reduced according to their
relevance with respect to the current state of the observer automaton.

The slicing approach developed in [JJ03, JJ04] also aims at the application
to timed automata. However, slicing is actually carried out on the level of an
intermediate language which corresponds to the set of timed automata defining the
system, and their slicing criterion consists of a set of operations which is assumed
to be derived from a given verification property.

2.2 Classification of Slicing Approaches 35

2.2.6 Area of Application

The original area of application of slicing as identified by Weiser [Wei82] can be
found in the support of debugging activities, or, more general, in the support of
measures for quality assurance, which includes—in addition to debugging aids—
approaches of slice-based testing and slice-based differencing. However, slicing has
soon found further possibilities of application, ranging from more general employ-
ments in quality assurance such as for instance, the general problem of program
comprehension, not necessarily aiming at debugging or testing, over additional
tasks in program analysis, such as using slicing approaches to define new program
metrics, up to completely new application areas such as in software maintenance
and re-engineering or in model generation in the context of formal verification. In
the following, we introduce some examples of each of these application areas of
slicing.

Quality Assurance: Debugging, Testing, and Differencing

Since being its original area of application, quality assurance has also received the
most interest in recent years when developing new variants of slicing and therefore
extending its possible applications.

Agrawal, Demillo, and Spafford, for instance, have developed an approach
of semi-automatic debugging by applying dynamic slicing in combination with
backtracking of program executions [Agr91, ADS93] along the possible lines of
control flow defined by the slice and thus allow the interactive analysis of faulty
program behaviour.

The concept of chopping is introduced by Jackson and Rollins [JR94] and further
developed by Reps and Rosay [RR95] as a generalisation of slicing that combines
forward and backward slicing: first, a forward slice is computed with respect
to some source location; then—based on this forward slice—a backward slice is
computed with respect to some target location, yielding the chop of the given
program that contains all relevant information with respect to the question of how
the source location might affect the target location.

For the purpose of testing, slicing has mostly been applied to enhance regression
testing, a subject on which even a dedicated survey paper exists [Bin98]. Some
of the approaches apply Weiser’s original slicing technique based on data flow
equations [GL91, GHS92], while most of them apply dependence-graph-based
slicing [BH93b, RH96, Bin97] in order to identify program parts that might be
affected by a newly introduced change in the program, such that this reduced
version of the program can then be used for the computation of the test cases
forming the regression test.

Moreover, slicing has been used in mutation testing [HFH+99, HHD99, HHD00],
where program changes are purposely introduced in order to use them for the

36 2 Background: Program Slicing

assessment of test cases: the more of such artificially injected mutations are
discovered by a test case, the better it will also be suited for identifying errors. In
this context, program slicing can as well help in identifying equivalent mutants, i.e.,
in avoiding mutations that yield the same results for a given test case, as it can help
in generating suitable test cases that cover a maximum number of mutants and are
therefore expected to also be best suited for discovering further bugs.

Another relatively recent application of slicing within testing has been proposed
for partition-base testing [HH00, HHF+02], where the input domain of a program
is partitioned into disjoint subdomains such that the observable behaviour of
the program remains relatively uniform within each of these subdomains. The
partitions can be characterised by suitable conditions on the input domain, which
can in turn be used by conditioned slicing to compute slices of the program not only
with respect to traditional slicing criteria, but also with respect to the satisfaction
of the premises given in form of conditions on the program input.

An application of slicing closely related to testing is that for program differenc-
ing [Hor90, Bin92, Bin95, BCRS01, Bin02], i.e., for the computation of differences
between two given versions of a program. In these approaches, both forward
and backward slicing are used in order to identify the difference between both
programs, i.e., those program parts that are either directly modified, added, or
removed, or which are affected by these changes.

Comprehension

More or less each of the previously mentioned approaches that employ program
slicing for the support of quality assurance are based on human interaction, i.e.,
their goal is to support the individual software developer at the specific task
at hand such as debugging or testing. Therefore, the common denominator of
all these slicing-based approaches can be seen in supporting human program
comprehension [MBPRR01, KNNI02] in general, without explicitly naming a specific
comprehension purpose.

This is exactly the perspective that has driven the development of a lot of variants
of slicing, i.e., slicing approaches that try to improve human understanding of
programs without focusing on a specific analysis purpose. They achieve this by
computing slices that in some sense are more precise or better adapted to human
comprehension.

Slicing variants that have arisen from this rather general perspective include
quasi-static slicing [Ven91, HDS95a] as well as constrained slicing [FRT95] and
conditioned slicing [dLFM96, HHF+01]. All of these variants of slicing extend
conventional slicing by trying to mimic the intuitive proceeding of programmers in
program comprehension even closer than previous slicing approaches: instead of
simply following mechanical dependences between elements of a given program as
in static slicing, or following one specific execution path as in dynamic slicing, these

2.2 Classification of Slicing Approaches 37

approaches impose additional assumptions on the program environment without
limiting it to one single execution. Consequently, these approaches can achieve a
more focused view on the given analysis task, i.e., the resulting slices obtained are
often smaller and therefore better comprehensible.

Another related approach can be seen in amorphous slicing [HD97, HBD03],
which lifts the relation between a program and its slice from the syntactic to the
semantic level: an amorphous slice does not necessarily need to be a subset of
statements of the original program, but its semantics rather has to be a projection
of the original program’s semantics. This allows additional transformations on
the syntactic level of the program that might facilitate program comprehension in
comparison to traditional slicing. Furthermore, amorphous slicing can be seen as a
further imitation of how human analysts proceed, who intuitively build an abstract
model of program behaviour instead of computing merely syntactical projections
resulting from simple statement deletion [BRSH00].

Of course, the role of slicing within program comprehension is not only restricted
to such general comprehension approaches, but has also been considered in the con-
text of specific comprehension purposes. Concrete examples of such applications are
the analysis of properties of dynamic memory access of programs [HSD98, SHS02],
the identification of duplicated C code fragments [KH01], the understanding of
database architectures [HEH+98], or the general understanding of program execu-
tion [KR97].

Maintenance and Re-Engineering

Many of the tasks that arise during software maintenance or software re-engineering
can be supported by slicing approaches.

Decomposition slicing [GL91, GO01, Ton03] is used to determine slices with
respect to only variables as a slicing criterion, however, without the limitation of
considering only one single location of the given variable. This technique is used to
support software maintenance activities in the assessment of changes proposed for
a given location by identifying what effect such modifications might induce onto
other components at different locations.

Program integration is the task of merging different versions of a common base
program into one new version, sharing the common features of both previous ver-
sions and adding additional features from both, supposed that the newly introduced
modifications do not interfere. The application of conventional tools such as diff
give no guarantee, whether adding the syntactical changes derived from the new
versions into the base program yields a sound result. This can be improved by apply-
ing a program-slicing-based integration technique [HPR89, RY89, HR92, BHR95]
that takes into account the mutual influences of newly introduced modifications
coming from both of the modified program versions. Therefore, the slicing-based
approach produces a sound integration of both versions, provided that an interme-

38 2 Background: Program Slicing

diate analysis ensures that the modifications from both sides do not interfere.
A number of approaches have applied slicing techniques on the level of system

architectures in order to compute reduced versions of the architecture descriptions
with respect to specific analysis purposes [Zha98, KSCH99b, KSCH99a, KSCH00],
aiming at but not necessarily being restricted to the context of software maintenance
and software re-use. The high-level architecture descriptions considered by these
approaches are dedicated to larger scale software systems and constitute an abstract
view onto the system that hides details of the underlying data structures and
algorithms. The main motivation of applying slicing on this level is the process of
impact analysis, which assesses the effect of modifications of a given component
onto different components of the system. Consequently, the slicing criterion in this
context is much coarser grained than in traditional slicing approaches, i.e., instead
of a variable at some program location, a set of system resources or system events
serve as the slicing criterion.

The identification of reusable functions and their extraction from existing code
has been the driving motivation for the approach of transform slicing [LV97] that
basically ignores the control flow defined by a program in order to only collect
those statements of a program that directly or indirectly contribute to a set of
resulting variables defined by the slicing criterion, i.e., especially input statements
and branching conditions are not included in the slice. However, the resulting slices
only serve as possible candidates for the intended functions, i.e., they still have to
be manually evaluated in order to assess, whether they form a sound version of the
expected function that indeed satisfies the overall purpose of code re-use.

A related approach, not aiming at re-use but rather at restructuring programs
has been pursued by [LD98] who devise a three-step “tuck” transformation that
employs slicing only in its first step to compute a desired subset of statements,
which is then, in a second step, split from the remaining program and finally folded
into a new function.

The application of interface slicing for the support of reverse engineering has
first been proposed in [BE93, Bec93] on the level of modules for the purpose of
component re-use. Interface slicing is meant to enhance conventional slicing by
operating on a coarser granularity than on the level of statements. An interface slice
is computed for a component with respect to a subset of the functionality offered by
the component. The resulting slice is then a custom-tailored subset of the original
module with all necessary functionality to provide the selected interface elements.

Measurement

Among the various features of software that can be quantified by some kind of
metrics, such as its complexity or its quality, the attribute of cohesion of software
is the one where program slicing has most frequently been applied. A cohesion
metrics yields a quantification for how closely related the elements of a given

2.2 Classification of Slicing Approaches 39

software unit are, i.e., how many dependences exist between them, an analysis
purpose for which the program dependence graph as used for slicing obviously
contains all ingredients needed to directly obtain suitable answers.

This natural relationship between slicing and module cohesion has soon been
recognised by [OT89, Ott92, OT93, BO94, OB98], who defined a qualitative and
quantitative metric for module cohesion based on slice profiles, which are essentially
a number of slices with respect to each of the output variables of a given module.
The comparison of such slice profiles is then used to define the overall cohesion of
the given module: the more these profiles have in common, i.e., the more similar
they are, the greater is the overall cohesion of the module.

Such slicing-based approaches to measurement of software cohesion have been
extended with respect to several aspects, such as a finer grained analysis of the
relationships between slice profiles [HDS+95b], the extension to object-oriented
software [OBKM95, Gup97], or the application on a higher level of abstraction
instead of program code like in the context of system architecture design [KB96]
or system specifications [Lem94].

Another related attribute of software that is amenable to slice-based measurement
is the coupling between its constituting modules, i.e., a measure for the degree to
which each module relies on other modules by sending or receiving information
from one to another. Coupling can therefore be regarded as being complementary
to cohesion, since a low degree of inter-module dependences often goes along with
a higher degree of cohesion within each involved modules and vice versa.

Probably due to this close relationship between cohesion and coupling, most of
the previous works refer to the potential application of their approaches also to the
measurement of cohesion, but only a few works really focus on this application of
slicing such as [HOSD97], who use basically the same approach as for cohesion
measurement, but introduce a finer grained definition of data dependence for
computing more precise slice profiles and therefore a better suited metrics for
coupling, and [Li01], who develop an object-oriented extension to slicing-based
measurement of coupling.

Compiler Optimisation

In addition to its application on source code level, slicing can—like many other
techniques coming from the area of program analysis—also be applied at the level
below of directly human comprehensible source code, or rather during transfor-
mation between both levels, i.e., for the purpose of compiler optimisation. Possible
application scenarios that have already been proposed by [FOW87] include paral-
lelism detection, node splitting, code motion, loop fusion, branch deletion, loop
peeling, and unrolling.

Elaborate examples of such applications are presented in [BG97], where slicing
is applied for an improved approach to elimination of dead source code, i.e., the

40 2 Background: Program Slicing

identification and removal of unreachable program fragments, and in [PF01],
where slicing is applied to extract garbage collection mechanisms from existing
software in order to move its execution into a separate thread and thus to achieve
higher performance and stability.

Verification

The area of automatic verification is probably the one, where slicing has seen the
largest interest in recent years. With model checking suffering from the problem of
state space explosion, any feasible state space reduction technique is most welcome.
This applies all the more with slicing being a relatively cheap technique in terms
of memory and time requirements. In addition to that, slicing can be applied at
the earliest possible stage, i.e., before verification models have been generated.
Therefore, slicing has the potential to facilitate all subsequent stages of verification.

Among the earliest works in this direction are [MT98, MT00] whose application
of slicing is located on the border between traditional program slicing used for
understanding of protocols and an actual extension of the application of slicing ded-
icated to verification purposes. The slicing targets of their approach are programs
written in Promela, the input language of the model checker SPIN, while their
slicing criteria correspond to the different possibilities of Promela for expressing
properties about the programs. This means that slicing can be carried out with
respect to assertions contained at arbitrary points within Promela programs, as well
as with respect to never claims, i.e., the Promela construct used to define undesired
system behaviour.

On the lower level of models that are generated from actual program code,
the work on slicing associated with the Bandera tool set for verification of Java
programs [HDZ00] has probably had the highest impact. There the slicing targets
are programs written in a flowchart language (FCL) which can actually be regarded
as models of the underlying Java program, from which they have been derived.
Slicing criteria are temporal logic formulae that simultaneously form the verification
properties with respect to which the program is intended to be verified.

Recently, experimental evaluations on the effectiveness of slicing for verification
of Java programs with respect to intermediate assertions and with respect to
freedom of deadlocks have been conducted [DHH+06], confirming that this kind of
software verification indeed benefits very much from the application of slicing, even
in presence of other reduction methods such as partial order and thread symmetry
reductions.

Comparable slicing approaches have also been used for reducing SAL pro-
grams [GSS99, BGL+00, dMOR+04], the input to the explicit-state model checkers
(SAL 1) and symbolic and bounded model checkers (SAL 2) of the same name
with respect to temporal logic formulae. The slicing algorithm of SAL operates on
transition systems computed from SAL programs and uses sets of variables as its

2.3 Further Techniques Aiming at State Space Reduction 41

slicing criteria.
Slicing has also been carried out in the context of formal verification of SDL design

specifications [BFG00, BGM01, JG01, BGO+04]. Within this slicing approach, SDL
design specifications are first translated into an intermediate representation within
the IF environment, an open validation platform for asynchronous timed systems.
There, the actual slicing takes place with respect to verification properties such as
freedom of deadlocks and response properties expressed in temporal logic formulae.

2.3 Further Techniques Aiming at State Space Reduction

In the application of automatic verification techniques, one can usually distinguish
two different phases: a first phase comprising the specification of the system model
in some high-level description notation, which is then, in a second phase, translated
into a lower level system model, on which the actual verification techniques operate,
such as model checking does.

With state space explosion being a fundamental problem of any such automatic
verification technique, a lot of research effort has been invested into the develop-
ment of methods that can limit the impact of building and searching the complete
state space when analysing a given model with respect to the validity of a formula.

This section presents some of these techniques which are mostly applicable
in addition to slicing and might thus complement the achievable reduction. We
distinguish between high-level techniques on the one hand, working on the actual
high-level description of the systems under examination, and low-level techniques on
the other hand, working on the level of the models generated from the previously
designed system specification.

2.3.1 High-Level Techniques

If trying to contain the effect of the state space explosion problem, it seems to be
an obvious advantage if the resulting reduction can be obtained as early as possible,
such that the associated benefit carries over to each of the subsequent stages of
verification. This claim is not only the main motivation for the application of slicing
in the context of verification, but also for a number of other techniques such as the
three methods that will be presented next: program conditioning, aspect-oriented
programming, and compositional verification.

Program Conditioning

The idea of program conditioning was first proposed as an additional pre-processing
step to enhance the outcome of traditional slicing. Therefore, program conditioning
has its origin, as program slicing, in the field of program analysis and was first used
to support program debugging and program understanding [CCL98].

42 2 Background: Program Slicing

The starting point of program conditioning is an initial condition, which is as-
sumed to hold at a particular point of a given program. The act of conditioning
the program with respect to this assumption yields then a reduced version of the
program, containing only statements that will be executed under this assumption.
This allows removing conditional branches from the program, which are unreach-
able under the given assumption. Traditional slicing can then be applied to this
reduced version of the program in order to obtain further reductions with respect
to ordinary slicing criteria.

In different approaches to conditioned program slicing, several ways to obtain
conditioning properties have been proposed, such as weakest preconditions [CH96],
specifications enriched with intermediate assertions [LCYK01], error traces obtained
from model checking [JM05], or antecedents of verification properties following
the pattern of implications [VEA07],

Usually, the application of theorem proving and constraint solving techniques
is necessary for the propagation of the initially injected conditions. Several such
implementations have been developed, such as the close integration of slicing
with constraint solving techniques within the VALSOFT tool for ANSI C pro-
grams [Sne96, KS98, SRK06], the implementation of conditioning based on the
theorem prover SVC, operating on a limited subset of C code within the conditioned
program slicer ConSIT [FDHH04, WZH05], or the symbolic execution algorithm
based on the FermaT simplify decision procedure for the Wide Spectrum Lan-
guage (WSL, [War02]), implemented within the light-weight program conditioner
ConSUS [DDF+05].

Further variants of program conditioning include the approach of pre/post condi-
tioned slicing [HHF+01], where a concept of forward and backward conditioning is
developed and used to reduce programs with respect to pre and post conditions,
respectively; also the approach of abstract slicing [HLS05] can be regarded as an
integration of program conditioning into a slicing approach, since the abstractions
therein are computed with respect to complementary predicates, i.e., each abstrac-
tion corresponds to reduced versions of the given program, as also obtained from
program conditioning.

Aspect-Oriented Programming

The fundamental motivation of aspect-oriented programming [KLM+97] is to allow
the separation of concerns right from the beginning of software development.
The overall goal is to avoid a mixture of code dedicated to different purposes.
Within a given software component, for instance, the aspects of technical infras-
tructure facilities, such as logging or error recovery, should not intermingle with
the core functionality and should, moreover, be consistent within the system as a
whole. Aspect-oriented programming allows for the separation of such cross-cutting
concerns and thus improves maintenance and re-use of the resulting software.

2.3 Further Techniques Aiming at State Space Reduction 43

Another desirable side effect of the aspect-oriented programming paradigm is the
possible benefit obtained for software verification: the clean separation between
different aspects allows easily obtaining models of the software, i.e., abstractions
that are dedicated to a particular aspect, with respect to which the software needs
to be analysed.

Therefore, aspect-oriented programming can be regarded as the anticipatory
counterpart to program slicing: where program slicing intends to compute the part
of a program relevant to a specific analysis purpose after an analysable version of
the program has been finished, the intention of aspect-oriented programming is
to allow this separation right from the start, i.e., the analysis purposes need to be
clear before the actual analysis takes place [KFG04, LKR05].

Furthermore, in addition to the complementary and competing nature of both
techniques, aspect-oriented programming has also been used as a basis for the
enhanced computation of traditional program slices [IKI03].

Compositional Verification

In short, the idea of compositional verification [CLM89, HQR98] is to make the
verification of large systems with respect to a global property feasible by breaking
the system into manageable parts, which can then be verified with respect to
suitable sub-properties, such that the conjunction of the individual sub-properties
implies the desired global property for the full system.

The relation between slicing and compositional verification can be seen in two
directions: on the one hand, slicing techniques are applicable to enhance the
verification of components within a compositional verification framework just as
they are applicable within any general verification approach in order to compute
reduced version of the verification target with respect to the given verification
property, which will be a sub-property of the verification framework.

On the other hand, however, slicing can even be used to enhance a compositional
verification approach by computing decompositions of a larger system with respect
to decompositions of the top-level verification property. Once the global property
has been divided into sub-properties, these can then be used as a slicing criterion,
such that the associated slices correspond to decompositions of the complete system.
Such a decomposition approach using slicing is especially attractive, since only
the decomposition of the verification property needs to be computed manually,
while the computation of the decomposition slice can be carried out completely
automatically [Met07].

2.3.2 Low-Level Techniques

In addition to the previously introduced high-level techniques, working on the
level of human-understandable descriptions of systems, a lot of research effort

44 2 Background: Program Slicing

has also been spent on the improvement of handling the actual models which
are automatically generated from high-level descriptions. Verification algorithms
usually operate on this lower level and thus there is a very direct correlation
between any optimisations introduced on this level and the efficiency of verification
algorithms. While some of these enhancements are quite similar to slicing, such as
cone-of-influence reduction or abstract interpretation, most of them are obviously
orthogonal to the application of slicing, such as efficient model representation,
partial order reduction, and predicate abstraction.

Efficient Model Representation

One of the most important techniques to achieve an efficient representation of the
models, on which automatic verification algorithms operate, is the encoding of
systems based on binary decision diagrams (BDD, [McM92]) and variants thereof
that simultaneously represent a breakthrough for the application of model checking,
since its introduction increased the tractable model sizes by several orders of
magnitude. BDDs achieve this not only by representing the models in a way
that is space-efficient for many practically relevant systems, but by also providing
logical operations on these representations that have advantages with respect to
time-efficiency.

With respect to slicing, the efficient representation of models can be regarded
as being complementary in terms of run-time improvements, as is also confirmed
by experimental evaluation [DHH+06]. The main reason for this complementary
nature is that the removal of any system element by applying slicing before model
generation does of course improve subsequent verification by also removing the
necessity to represent the system element in the model; conversely, for any element
that can not be removed by slicing, its efficient representation is all the more
important.

Partial-Order Reduction

In short, the basic idea of partial order reduction [God95, Pel98, CGP99, Sto00]
is to limit the analysis of concurrently operating system parts to the minimal
necessary number of runs that are representative for all other possible system
runs. To this end, the commutativity of concurrently executed system actions is
exploited by not analysing each of their possible permutations, but only a single
one representative of these, provided that the concurrent system actions can indeed
take place independently from each other.

Therefore, also this low-level optimisation technique can be regarded as being
complementary to slicing, since the analysis of interleaved parts of a system that
remain present in the slice will certainly be improved by the application of partial
order reduction, while the successful removal of such interleavings before model

2.3 Further Techniques Aiming at State Space Reduction 45

generation removes the necessity to apply partial order reduction at this point at
all and will thus further improve the analysis. This mutually useful relationship
between slicing and partial order reduction techniques has also been experimentally
investigated and confirmed [DHH+06].

Moreover, the application of a close integration of basic slicing techniques and a
technique similar to partial order reduction has successfully been explored for the
parallel composition of low level processes [BSV93].

Cone-of-Influence Reduction

A technique very similar to program slicing is the cone-of-influence reduction or
localisation reduction first proposed by Kurshan [Kur94, CGP99]. All of these
techniques are based on the computation of dependences between elements of the
model to be analysed. These dependences are then exploited in order to determine
those parts of the analysed system that are relevant with respect to the analysis
purpose.

As also observed by [CFR+99], the main difference between slicing and cone-of-
influence reduction, however, and therefore the reason for both techniques being
complementary, are again the different stages at which they are applied. While the
application of slicing on source code level allows achieving more complex reduc-
tions, the cone-of-influence reduction working on bit-level allows more localised
and thus finer grained reductions, such that both techniques achieve reductions,
even in addition to the presence of the respective other.

Predicate Abstraction and Abstract Interpretation

The application of predicate abstraction [GS97] within model checking approaches
aims at computing finite versions of infinite state spaces by partitioning the state
space based on suitable predicates over state variables. For the verification of certain
kinds of properties it suffices then to check their validity for upper approximations
obtained from predicate abstractions of the concrete systems. If the properties
hold for the abstract version of the system, this implies then their validity for the
concrete system. If the property does not yet hold for the abstract system, it might
either be the case that the property does not hold for the original system either, or it
might be necessary to refine the abstraction, giving rise to the iterative approach to
counterexample-guided abstraction refinement model checking [CGJ+00, CGJ+03].

Clearly, the kind of reductions achievable by predicate abstraction can not be
obtained from the application of slicing. On the other hand, however, the complete
removal of dimensions of the state space by complete elimination of variables, as it
is achievable by the application of slicing, will also not be possible by using predicate
abstraction. Furthermore, predicate abstraction mainly aims at a reduction of the
data state space of systems, while slicing also allows reducing the state space in

46 2 Background: Program Slicing

terms of the possible control flow.
The same observations hold for the concept of abstract interpretation [CC77,

CC99], which can be regarded as a generalisation of predicate abstraction by
defining a general framework in which firstly abstractions of the domain are
computed, on which the concrete system operates and which additionally provides
resulting abstract versions (interpretations) of the actions available in the concrete
system.

However, integrations of slicing with predicate abstraction have been pro-
posed [HLS05, BDFW07] that combine the advantages of both techniques by
first computing predicate-based abstractions of system models which are then
incrementally refined, following the counterexample-guided abstraction refinement
approach to model checking, enhanced by intermediate slice computations.

3 Integrated Formal Specifications

Contents
3.1 Object-Z Specifications . 48

3.1.1 Example: Tic-Tac-Toe . 49

3.1.2 Semantics of Object-Z Specifications 52

3.2 CSP-OZ Specifications . 54

3.2.1 Example: Untimed Air Conditioner System 55

3.2.2 Semantics of CSP-OZ Specifications 58

3.3 CSP-OZ-DC Specifications . 60

3.3.1 Example: Timed Air Conditioner System 61

3.3.2 Semantics of CSP-OZ-DC Specifications 65

Modelling complex systems as they arise in the area of safety-critical application
domains usually involves the description of different views on the system. In the
UML this is facilitated by providing designers with a large number of different
diagram types, each covering a different of the various possible aspects of a system.

The same situation applies to formal specifications: although one single spec-
ification notation might be well suited for the expression of aspects that it was
originally designed for, the specification of additional aspects might not at all be
possible, or it might only be feasible by using some very unnatural or awkward
constructions. Therefore, a similar approach as in the UML is also widespread in
the area of formal modelling notations, where integrated formal methods allow for
a convenient specification of different views onto a system.

Integrated formalisms combine different existing notations into one new for-
malism, while still giving a consistent semantics to the combination and thus
preserving the formal rigour in a design, which is the key precondition for allowing
a subsequent exact mathematical analysis of the specified system model.

Models of complex systems in integrated specification formalisms usually contain
views describing state-based aspects as well as views describing the dynamic
behaviour of the system, and often also another view, which is especially important
in the area of safety-critical systems, namely their real-time requirements. These
three most important aspects of complex safety-critical systems will be covered by
the specification notations that we introduce in this chapter.

48 3 Integrated Formal Specifications

The presentation of the specification notations proceeds incrementally, following
the chronology of their emergence as well as the degree of integration that they
offer in terms of the number of different system aspects that can be naturally
specified within the respective notation.

The most basic of these languages is Object-Z, which is mainly dedicated to
covering the aspect of specifying the data that a system comprises and the data
manipulations associated with the execution of system events. Object-Z extends the
set-based specification language Z with object-oriented concepts like encapsulation
of methods and attributes within classes and inheritance relations between classes.

Next, we introduce CSP-OZ, an integration of Object-Z (OZ) with the process
algebra Communicating Sequential Processes (CSP), offering the possibility to
define orderings of events by means of process definitions, which yields a much
more intuitive way of specifying the additional aspect of system behaviour than
only using the concepts available within pure Object-Z.

The final extension presented in this chapter is the specification language CSP-
OZ-DC, which expands the vocabulary offered by CSP-OZ by means for expressing
timing aspects of systems in terms of real-time properties that can be defined
within a separate Duration Calculus (DC) part. This DC part contains so-called
counterexample formulae, a subset of DC, allowing us to define exact timing
relations between certain events or states by referring to events and variables that
have been defined in the CSP and OZ part of the given class.

The following sections introduce each of the aforementioned specification lan-
guages by a running example which will appear again in the subsequent chapters
during the further development of the slicing approach. Furthermore, they define
syntax and semantics of the respective specification language and give hints on
related work regarding comparable specification formalisms.

3.1 Object-Z Specifications

When starting to specify a system, the most basic question to answer is what
attributes of the system need to be defined in order to obtain a complete characteri-
sation. As soon as these attributes have been identified, the next obvious question
is that about the facilities that the system offers in order to use it and, moreover,
which effect these operations have on the previously defined attributes.

Several formal notations for the exact specification of such requirements have
been proposed, as for instance the B method developed by Abrial [Abr96] or the
notation of abstract state machines (ASM) proposed by Börger [BS03], Another
such state-based approach is the language Z, a mathematical notation developed
by Abrial and others at the Programming Research Group of the Oxford University
Computing Laboratory (OUCL) since the late 1970s. Important milestones of the
development of Z have been Spivey’s reference manual [Spi89] and the ISO/IEC

3.1 Object-Z Specifications 49

0 1 2

3 4 5

6 7 8

Figure 3.1: Tic-Tac-Toe board with 9 positions in a 3-by-3 array

standardisation [ISO02] of the Z language.
This section introduces an object-oriented extension of Z, namely the notation of

Object-Z [Smi92, DR00], or more precisely, a subset of Object-Z that corresponds
to the Object-Z part of CSP-OZ specifications [Fis97]. In contrast to regular Z
specifications, the Object-Z specifications that we consider here follow the object-
oriented concept of encapsulation of data and methods within classes.

Furthermore, each of the operations offered by these classes is defined by means
of two separate schemas that (1) define an enabling guard that has to be satisfied
before the associated operation may take place and (2) define the effect on the state
space that is associated with the operation upon its occurrence by relating class
variables in their pre and post state, i.e., before and after the operation has taken
place. However, we do not yet consider the object-oriented concept of inheritance
relationships between classes nor phenomena associated with object instantiation
during run-time.

Next, we will show how to specify systems with Object-Z by means of a small
example specification, which we later also use for illustrating our slicing approach.

3.1.1 Example: Tic-Tac-Toe

The example that we use to illustrate the way of specifying systems with Object-Z
is inspired by the specification of a Tic-Tac-Toe game presented by [DR00], but has
been slightly modified to serve later on as a good example for slicing. Tic-Tac-Toe
is a board game involving two players (which will be called black and white) and a
board with nine positions in a three-by-three array as depicted in Figure 3.1.
The players take turns to move. A move consists of choosing a free position and
adding it to the player’s owned positions. The goal (in our modified version) is
to obtain as many diagonal, vertical, or horizontal lines with three positions as
possible. This is the difference to the usual Tic-Tac-Toe, where the player with the
first line of three positions wins. The game ends when all positions are occupied.
Only then the number of lines occupied by each player is evaluated and the final
result of the game is determined.

The type Posn models the nine available fields that can be occupied by the players

50 3 Integrated Formal Specifications

on the Tic-Tac-Toe board,

Posn == 0..8

the function inLine determines, whether a set of positions contains a horizontal,
vertical, or diagonal line with three positions,

inLine : P Posn→ B

∀ ps : P Posn •
inLine(ps)⇔
∃ s : {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {0, 3, 6},

{1, 4, 7}, {2, 5, 8}, {0, 4, 8}, {2, 4, 6}} • s ⊆ ps

the function lines counts the number of currently present three-position lines within
a given set of positions.

lines : P Posn→ N

∀ ps : P Posn •
lines(ps) =
#{x, y, z : Posn | {x, y, z} ⊆ ps ∧ inLine({x, y, z}) • {x, y, z}}

The game has three possible outcomes:

Result ::= black wins | white wins | draw

Depicted in Figure 3.2 is the actual Object-Z specification of the class TicTacToe.
The unnamed state schema defines the specification’s state space by declaring the
involved variables with their associated types. Moreover, it contains predicates

free = Posn \ (bposn ∪ wposn)

and

over⇔ (moves = 9)

which define state invariants, i.e., these predicate have to be satisfied initially as
well as by any subsequent modification of the state space that might be associated
with execution of the methods.

The initial configuration of the state space is defined in the Init schema by a
set of predicates. These only need to hold initially, but may be falsified by any
subsequent state space modification due to the execution of methods during further
operations of the system.

As already mentioned, the notation that we use is not exactly Object-Z, but rather
the Object-Z part of a CSP-OZ [Fis97] specification. The difference can be found

3.1 Object-Z Specifications 51

TicTacToe

bposn,wposn, free : P Posn
over, turn : B
moves : N

free = Posn \ (bposn ∪ wposn)
over⇔ (moves = 9)

Init
bposn = ∅
wposn = ∅
¬over
turn
free = Posn
moves = 0

enable white

turn
¬over

enable black

¬turn
¬over

effect white
∆(wposn,moves, free,

over, turn)
p! : Posn

p! ∈ free
wposn′ = wposn ∪ {p!}
¬turn′

moves′ = moves + 1

effect black
∆(bposn,moves, free,

over, turn)
p! : Posn

p! ∈ free
bposn′ = bposn ∪ {p!}
turn′

moves′ = moves + 1

enable result

over

effect result
r! : Result

lines(bposn) > lines(wposn)⇒ r! = black wins
lines(wposn) > lines(bposn)⇒ r! = white wins
lines(wposn) = lines(bposn)⇒ r! = draw

Figure 3.2: Tic-Tac-Toe specification

52 3 Integrated Formal Specifications

in the schemas for methods: a method m in CSP-OZ classes can be specified by
giving an enable schema defining a guard to the execution of the method plus an
effect schema defining the actual method execution.

Note in particular that no object references are present due to the communica-
tions that are used in CSP-OZ. Therefore, the aliasing problem does not occur.

Within each effect schema, a ∆-list can be given, which declares the set of
variables, whose valuation might be modified by the associated method. Restrictions
for such modifications can be given within the schema’s predicates that relate the
modified variables in their pre and post state by referring to them in primed (post
state) and unprimed (pre state) versions. Furthermore, each effect schema might
declare input variables (those decorated with a ?) and output variables (decorated
with a !) which can then be used within the schema’s predicates, either by referring
to them or by imposing restrictions on the valuation of output variables.

For the rich vocabulary of mathematical symbols that the Z notation and thus
also its object-oriented extension Object-Z offer, we refer to the Z reference man-
ual [Spi89] and the ISO/IEC standard document for Z [ISO02].

3.1.2 Semantics of Object-Z Specifications

The usual semantics of Object-Z specifications is their history semantics [Smi95,
Smi00], which defines the possible evolutions of the specified system in terms of its
initial state space valuation along with a sequence of events taking place and the
associated state space modifications induced by the events. This history semantics
can then for instance be used as the basis for formal verification such as model
checking Object-Z specifications with respect to temporal logic formulae [KS01].

With respect to slicing and the ultimate goal of extending the slicing approach to
full CSP-OZ-DC, we now use a notion of labelled Kripke structures as the specifica-
tions’ semantics that are defined according to the history semantics associated with
an Object-Z class, similar to the approach that has been used in several works of
Winter and Smith [WS03, WS02, SW03]. Labelled Kripke structures fit nicely into
the framework of interpretations that will define the semantics of full CSP-OZ-DC
specifications, since—as we will see later—untimed projections of such interpreta-
tions correspond directly to runs of the labelled Kripke structures that will now be
defined as the semantics for Object-Z classes.

Labelled Kripke Structures

The temporal logic used to express verification properties, i.e., the formulae that we
use later on as our slicing criterion for Object-Z specifications, will be interpreted
on Kripke structures. Therefore, we will next define a Kripke structure semantics for
Object-Z classes. The temporal logic will talk about both states and the execution
of events (viz. methods). In contrast to ordinary Kripke structures, transitions of

3.1 Object-Z Specifications 53

labelled Kripke structures are thus labelled with events:

Definition 3.1.1 (Labelled Kripke structure). Let AP be a nonempty set of atomic
propositions, E an alphabet of events (or method names).

An (event-)labelled Kripke structure K = (S, S0,→, L) over AP and E consists of

• a finite set of states S,

• a set of initial states S0 ⊆ S,

• a transition relation→⊆ S× E× S, and

• a labelling function L : S→ 2AP.

An infinite sequence of events and states s0e1s2e3s4 . . . is a path of the Kripke structure
K iff s0 ∈ S0 and (si, ei+1, si+2) ∈→ holds for all i ≥ 0, i even.

A path π = s0e1s2e3s4 . . . is fair with respect to a set of events E′ ⊆ E (or E′-fair) iff
inf(π) ∩ E′ 6= ∅, where

inf(π) = {e ∈ E | ∃ infinitely many i ∈ N : ei = e}

denotes the set of events that occur infinitely often within π.

By convention we assume that paths are always infinite. This can be achieved
by augmenting states s with no outgoing transitions by an extra transition s −τ→ s,
where τ is an internal event (e.g., as in the process algebras CSP and CCS).

Moreover, we will in the following only consider paths that are fair [CGP99]
with respect to some set of events E′. This fairness requirement can be seen as
an assumption on an environment, which infinitely often has to call methods (viz.
events) from E′. Since an Object-Z class is not executing methods without a client
calling them anyway, such fairness requirements are reasonable assumptions.

The Kripke structure semantics for an Object-Z class is obtained by taking all
possible valuations of variables as states and state changes via execution of methods
as transitions. The set of atomic propositions AP are the predicates over the class’
variables, e.g., for class TicTacToe predicates moves = 3 and free 6= ∅ are possible
atomic propositions. The set of events E are those which can be built from the
methods by filling in values for inputs and outputs, e.g., the method white gives
rise to events white.3, white.4, etc.

For convenience we will not make an explicit distinction between methods and
events here and will not treat inputs and outputs. Therefore, we say that each class
has a set of events E and for every such event there might be an enable and an effect
schema.

54 3 Integrated Formal Specifications

Definition 3.1.2 (Object-Z class Kripke structure semantics). The Kripke structure
semantics of an Object-Z class

C = (State, Init, (enable e)e∈E, (effect e)e∈E)

is the labelled Kripke structure K = (S, S0,→, L) over AP and E with

• S = State,

• S0 = {s ∈ S | Init(s)} a set of initial states,

• the transition relation→=→′ ∪{(s, τ, s) |6 ∃ s′ 6 ∃ e : s e→
′
s′}, where

→′= {(s, e, s′) | enable e(s) ∧ effect e(s, s′)}, and

• L(s) = {p | p ∈ AP ∧ s⇒ p}.

In the further development of the slicing approach, we only consider Object-Z
classes that satisfy the following two further assumptions: First, we assume the
set of initial states to be nonempty (∃ State • Init) and second, we assume for any
enable schema to imply the pre-condition of its effect schema (∀ e ∈ E : enable e⇒
preeffect e).

3.2 CSP-OZ Specifications

The notation of Object-Z that was introduced in the previous section does already
offer a rich specification language that allows us to conveniently describe data
aspects of systems based on a system’s state space and its modifications that are
associated with the possible events occurring within a system.

However, another important view on a complex system will be difficult to describe
within Object-Z, which is the system evolution in terms of the admissible ordering
of events, i.e., the system’s dynamic behaviour. Although it might be feasible to
express such requirements within Object-Z, as for instance by introducing auxiliary
variables (similar to program counters) and associated predicates that enforce the
intended system evolution, such an approach seems to be more of a workaround and
would not offer the most natural way of specifying the intended system behaviour.
Furthermore, the resulting specification would contain a mixture of specifying data
aspects and behavioural aspects instead of maintaining a clean separation between
both.

Therefore, an extension of the state-based notation of Object-Z is desirable
that addresses the additional aspect of system behaviour in a natural way and
simultaneously allows the separation of concerns, while it still provides a consistent
semantics for the full formalisms.

3.2 CSP-OZ Specifications 55

A similar motivation has driven the emergence of a number of approaches that
have been proposed in recent years. Mostly they are integrations that combine
state-based notations like Z or B for describing data-oriented views on systems
with process algebras like CCS or CSP for describing behavioural views on systems.
Here we only mention some of the numerous examples of such combinations:
Taguchi and Araki proposed the extension of CCS with Z expressions [TA97],
Grieskamp, Heisel, and Dörr proposed the extension of state charts with Z expres-
sions [GHD98], Schneider and Treharne employed CSP processes for controlling
operations of specifications in the B notation [TS99, TS00, ST02, ST03], the In-
ternational Organization for Standardization (ISO) fixed the enhancement of the
LOTOS specification language by algebraic data types into E-LOTOS [ISO01], and,
last but not least, Smith and Derrick [Smi97, SD01] as well as Woodcock and Caval-
canti [WC02] proposed combinations of Object-Z and CSP which are heading in the
very same direction as the notation of CSP-OZ developed by Fischer [Fis97, Fis00]
that we will consider here.

The integrated specification language CSP-OZ is the result of equipping Object-Z
specifications with an additional CSP part that makes it—compared to pure Object-
Z—much easier to also express behavioural properties of systems by defining the
intended ordering of events within CSP process equations as will next be illustrated
by means of a small introductory example specification.

3.2.1 Example: Untimed Air Conditioner System

For illustrating the approach of specifying systems using the notation of CSP-OZ we
use the specification of a simple air conditioner system, or, to be more precise, the
controller of such a system that will later on also serve as an example for slicing
CSP-OZ specifications.

The air conditioner can operate in two modes, either heating or cooling. Initially
the air conditioner is turned off. When it is switched on during the execution of
event workswitch, it starts to run. While running, the air conditioner either heats
or cools its environment and simultaneously allows the user to switch the mode
with event modeswitch, to refill fuel with event refill or to switch it off again with
event workswitch. Cooling or heating is modelled by a consumption of one unit of
fuel during event consume and an emission of hot or cold air associated with event
dtemp.

For the specification we first define the possible modes of operating of the air
conditioner

Mode ::= heat | cool

and a type for specifying amounts of fuel:

Fuel == 0..100

56 3 Integrated Formal Specifications

The actual CSP-OZ specification of the air conditioner class is then depicted in
Figure 3.3. The first part of the class defines its interface towards the environment
in terms of a number of typed channels, over which the system may communicate
with its environment via input parameters (those decorated with a ?) and output
parameters (those decorated with a !).

The next part of the class specifies its dynamic behaviour, i.e., the allowed
ordering of method execution. It is defined via a set of CSP process equations
describing the cyclic workflow of the air conditioner. Its work cycle starts with
an initial activation (main), followed by a process representing the activated air
conditioner (On). This process in turn contains two interleaved processes modelling
how the air conditioner can be controlled (Operate) and modelling the effect of its
operation (Work). Only when both of these interleaved processes have terminated,
the air conditioner can start with another iteration of its work cycle.

The CSP operators appearing in the example specification are

• prefixing→ (denoting a process that communicates the prefixed event and
then behaves like the attached process),

• sequential composition # (denoting a process that initially behaves like the
first process and after its termination behaves like the second process),

• interleaving ||| (denoting the special case of parallel composition with an
empty synchronisation alphabet), and

• external choice 2 (denoting the choice according to an external environment
event that determines which of the processes is activated).

Further operators available in the CSP part but not appearing in the example
include

• internal choice u, which represents that non-deterministic internal choice
determines, which of the processes is activated,

• generalised parallel composition ‖
A
, which represents synchronisation of the

involved processes on events from alphabet A, and

• alphabetised parallel composition A‖B, which represents synchronisation of
the involved processes on events from the intersection of A and B, i.e., syn-
chronisation on A ∩ B.

The general syntax of CSP processes follows the grammar that is depicted in
Figure 3.4.

The third and concluding part of a CSP-OZ class describes the attributes and the
methods of the class. As for Object-Z specifications, attributes are defined within

3.2 CSP-OZ Specifications 57

AirConditioner
chan workswitch, consume, off
chan modeswitch : [m? : Mode] chan refill : [f? : Fuel]
chan dtemp : [t! : Mode] chan level : [f ! : Fuel]
main = workswitch→ On
On = (Operate ||| Work) # main
Operate = modeswitch→ Operate

2 refill→ Operate
2 workswitch→ SKIP

Work = consume→ dtemp→ level→ Work
2 off → SKIP

work : B
mode : Mode; fuel : Fuel

Init
¬work
mode = heat

effect workswitch
∆(work)

work′ = ¬work

effect modeswitch
∆(mode); m? : Mode

mode′ = m?

enable consume

work ∧ fuel > 5

effect consume
∆(fuel)

fuel′ = fuel− 1

effect dtemp
t! : Mode

t! = mode

effect level
f ! : Fuel

f ! = fuel

enable refill

fuel < 100

effect refill
∆(fuel); f? : Fuel

fuel′ = min(fuel + f?, 100)

enable off

¬work

Figure 3.3: Untimed air conditioner specification

58 3 Integrated Formal Specifications

P ::= Stop deadlock
| Skip termination
| a→ P prefix operator
| P1 u P2 internal choice
| P1 2 P2 external choice
| P1 # P2 sequential composition
| P1 ‖

A
P2 parallel composition

| P \ A hiding
| X process call

Figure 3.4: Syntax of CSP processes with a ∈ Events being an event and
A ⊆ Events being an alphabet, i.e., a set of events.

the unnamed state schema; in addition to that, the state schema may also define
invariants that must hold throughout the execution of the class.

For every method appearing in the class interface and in the CSP part we might
then have an enable schema fixing a guard for the method execution (enabling
schemas equivalent to true are left out) and an effect schema describing the
effect of a method upon execution. The valuations of input and output parameters
that are declared within the class interface can be referenced or restricted by
predicates within the associated method’s effect schema.

For instance, for method consume the enabling schema tells us that the air
conditioner has to be turned on and a minimal amount of fuel is necessary for
consume to take place, while its effect schema expresses that upon execution
of consume one unit of fuel is consumed. The method level on the other hand is
always enabled; it just displays the level of fuel by setting the output parameter f !
to the current value of variable fuel. This output is then sent to the environment
along the channel level that has been declared in the class interface.

Methods that are not referenced within the CSP part may occur at any arbitrary
point of execution, supposed that the guard defined by predicates within their
associated enable schema is satisfied.

3.2.2 Semantics of CSP-OZ Specifications

We define the operational semantics of CSP-OZ specifications in terms of labelled
Kripke structures that result from a parallel composition of the labelled Kripke
structures defined as the semantics for Object-Z specifications in the previous
section and labelled Kripke structures that we will define next according to the
operational semantics of the CSP part. The latter are comparable to the labelled
transition systems defined by Fischer [Fis00] for CSPZ, an extension of CSP that
Fischer as well as Hoenicke [Hoe06] used to embed Z expressions into CSP when

3.2 CSP-OZ Specifications 59

developing their approaches of CSP-OZ and CSP-OZ-DC specifications, respectively.
The reason for using labelled Kripke structures rather than the definition used

by Fischer is our ultimate goal of CSP-OZ-DC specifications. The semantics of
CSP-OZ-DC will be defined in terms of sets of interpretations that satisfy the specifi-
cation. Untimed projections of these interpretations, as they are appropriate for the
untimed CSP and Object-Z parts of CSP-OZ-DC specifications, correspond directly
to runs of labelled Kripke structures. The notion of labelled Kripke structures is the
same as in the previous section on Object-Z specifications (cf. Definition 3.1.1).

The Kripke structure for a CSP-OZ class is derived in two steps: first, we separately
compute the semantics of the CSP and the Object-Z part. In a second step, we
combine the Kripke structure of the components by parallel composition.

In the following we assume a global set of atomic propositions AP and events
E which are built over method names m ∈ M, i.e., an event e has the form m.i.o
where m is the name of a method and i and o are (potential) values for input and
output parameters. The transition relation for the CSP part is computed via the
operational semantics of CSP [Ros97].

Definition 3.2.1 (CSP part Kripke structure semantics). The Kripke structure se-
mantics of the CSP part main of a CSP-OZ class is the labelled Kripke structure
KCSP = (LCSP, {main},→CSP, LCSP) with LCSP being the set of all CSP terms,→CSP the
transition relation derived via the operational semantics of CSP and LCSP(P) = AP for
all P ∈ LCSP.

In the states of the Kripke structure for the CSP part all atomic propositions hold,
since the CSP part makes no restrictions on values of attributes of the class.

Definition 3.2.2 (Object-Z part Kripke structure semantics). The Kripke structure
semantics of the Object-Z part

C = (State, Init, (enable m)m∈M, (effect m)m∈M)

of a CSP-OZ class is the labelled Kripke structure KOZ = (State, Init,→OZ, LOZ) with
the transition relation

→OZ= {(s,m.i.o, s′) | enable m(s, i) ∧ effect m(s, i, o, s′)},

and the labelling function LOZ(s) = {p ∈ AP | s |= p}.

The states of the Kripke structure are simply the set of bindings of the state schema.
These two Kripke structures are then combined via parallel composition. In the
following we assume the alphabet of the CSP part and the set of methods in the
Object-Z part to be equal, thus synchronisation takes places on all methods. Only
one event remains which is executed by the CSP part alone, the invisible event τ
which might arise out of internal choices in CSP processes.

60 3 Integrated Formal Specifications

Definition 3.2.3 (Parallel composition of labelled Kripke structures). The parallel
composition of two labelled Kripke structures Ki = (Si, S0,i,→i, Li), i ∈ {1, 2} over the
same set of atomic propositions AP and events E, denoted by K1 || K2, is the Kripke
structure K = (S, S0,→, L) with

• S = S1 × S2, S0 = S0,1 × S0,2,

• → =

((s1, s2), e, (s′1, s
′
2))

∣∣∣∣∣∣
(s1 −e→1 s′1 ∧ s2 −e→2 s′2)
∨ (s1 −τ→1 s′1 ∧ s′2 = s2)
∨ (s2 −τ→2 s′2 ∧ s′1 = s1)


• L(s) = L(s1) ∩ L(s2), where s = (s1, s2).

Note that our definition is symmetric in general, while for the special case of
parallel composition of CSP and Object-Z Kripke structures we assume that only
the CSP side has τ transitions.

3.3 CSP-OZ-DC Specifications

The specification notations introduced so far allow us to specify data aspects of
systems in terms of Object-Z data state space, invariants and methods operating
on the data space as well as to specify behavioural aspects of systems in terms
of CSP process definitions that define the admissible ordering of system events.
One important aspect, however, is still missing, which is the specification of real-
time properties that the specified system should obey, i.e., central requirements
especially in the area of safety-critical systems. This concluding dimension is
addressed in this section by adding another extension to CSP-OZ specifications,
namely a Duration Calculus (DC) part, giving rise to the combined specification
notation CSP-OZ-DC that was proposed by Ernst-Rüdiger Olderog and Jochen
Hoenicke [Hoe01, HO02a, HO02b] and fully developed within the PhD thesis of
Jochen Hoenicke [Hoe06].

Duration Calculus (DC) is a logic defined over real-time intervals that was
developed within the ProCoS project [BHL+96] for mathematically describing
the behaviour of real-time systems. The DC part of CSP-OZ-DC specifications is
restricted to a subset of the full DC because the full language is too powerful to be
checked automatically and thus would impede our goal of carrying out automatic
verification of required properties for CSP-OZ-DC specifications [HM05a, HM05b].
In particular, the integration operator, a central element of Duration Calculus,
is excluded from the DC formulae appearing in CSP-OZ-DC specifications, but
also further restrictions apply in order to stay in the range of model-checkable
specifications.

A number of comparable approaches to specifying real-time properties have
been proposed, such as the extension of CSP with real-time operators, leading to

3.3 CSP-OZ-DC Specifications 61

Timed CSP [Sch90, Dav93, DS94, Sch99], the extension of Object-Z with facilities
to express real-time properties in terms of durations of operations, resulting in
Real-Time Object-Z [SH02], an integration of Timed CSP with Object-Z [MD98,
MD99, MD00], an integration of Timed CSP and Z [Sü02], or the extension of
Circus ([WC02], a combination of Object-Z and CSP) with real-time operators
similar to those of Timed CSP, resulting in Timed Circus [SJCS05, She06].

3.3.1 Example: Timed Air Conditioner System

For illustrating how to specify real-time systems with the notation of CSP-OZ-DC,
we use a CSP-OZ-DC specification of an air conditioner system, which extends
the air conditioner presented in the previous section by the following aspects:
First, this extended specification does not consist of only one single class, but
parallel composition of classes is now taken into account by combining the air
conditioner class with a corresponding environment class. Second, both involved
classes comprise the specification of real-time properties of the system.

Therefore, the main part of the AirConditioner class of the timed air conditioner
system depicted in Figure 3.5 is identical to that of the untimed air conditioner
system that we have seen in the previous section.

The only difference to pure CSP-OZ specifications emerges in the concluding
Duration Calculus (DC) part of CSP-OZ-DC specification. This DC part defines
real-time properties of the system within a number of DC counterexample formu-
lae, i.e., formulae of a subset of DC which is amenable for later verification. A
counterexample formula describes a single behaviour of the system that must not
occur. Therefore, it not only defines the system’s real-time properties, but it may
also impose further restrictions on the admissible ordering of events.

Within the DC part of the AirConditioner specification, the only counterexample
formula

¬3(dwork = 1ea lworkswitcha� off ∧ ` > 1)

specifies a kind of reaction property by negating an undesired behaviour. Positively,
the formula expresses the following: whenever the air conditioner has been turned
on for some non-zero time interval (dwork = 1e), which is followed by the occur-
rence of an event workswitch, an event off must follow within at most one time
unit (¬(. . . ` > 1)).

Note that the actually intended behaviour is specified by defining the opposite,
namely an undesired trace of the system. Therefore, its negation allows only system
behaviour that does not include the forbidden trace.

The expression dwork = 1e denotes a non-empty time interval throughout which
the predicate work = 1 holds. With lworkswitch we refer to a point interval at
which event workswitch occurs, while � off represents a non-empty time interval

62 3 Integrated Formal Specifications

AirConditioner
chan workswitch, consume, off
chan modeswitch : [m? : TMode] chan refill : [f? : Fuel]
chan dtemp : [t! : TMode] chan level : [f ! : Fuel]

main
c
= workswitch→ On

On c
= (Work ||| Ctrl) # main

Work c
= consume→ dtemp→ level→ Work
2 off → SKIP

Ctrl c
= modeswitch→ Ctrl
2 refill→ Ctrl
2 workswitch→ SKIP

work : B
mode : TMode; fuel : Fuel

Init
¬work
mode = heat

effect workswitch
∆(work)

work′ = ¬work

effect modeswitch
∆(mode); m? : TMode

mode′ = m?

enable consume

work ∧ fuel > 5

effect consume
∆(fuel)

fuel′ = fuel− 1

effect dtemp
t! : TMode

t! = mode

effect level
f ! : Fuel

f ! = fuel

enable refill

fuel < 100

effect refill
∆(fuel); f? : Fuel

fuel′ = min(fuel + f?, 100)

enable off

¬work

¬3(dwork = 1ea lworkswitcha� off ∧ ` > 1)

Figure 3.5: Timed air conditioner specification

3.3 CSP-OZ-DC Specifications 63

CE ::= ¬(Ph a (Ph | Ev) a

. . .a (Ph | Ev)a true)

counterexample traces, consisting of phase
expressions Ph and event expressions Ev

Ph ::= (true | dpe) phase invariant, optionally with. . .
[∧ ` ∼ t] . . . time bound (∧ ` ∼ t) and . . .
(∧ � ev)∗ . . . definition of forbidden events (� ev)

∼ ::= ≤|<|>|≥ time bound operator

Ev ::= l ev required event: a zero-time (point) interval
where event ev takes place

| 6 l ev forbidden event: event ev must not take place
at the given point interval

| Ev ∨ Ev disjunction of required/forbidden events
| Ev ∧ Ev conjunction of required/forbidden events

Figure 3.6: Syntax of counterexample formulae CE with ev ∈ Events being an
event and p being a predicate over a set of state variables V.

without any occurrence of event off . The symbol ` abbreviates the length of the
current interval.

The chop operator a connects all three intervals, i.e., for each chop operator
there must be some point in time such that prior to this point, the formula on the
chop operator’s left-hand side holds, while after this point, the formulae on the
chop operator’s right-hand side holds.

The diamond operator (3, “eventually”) is an abbreviation for embracing the
counterexample trace with true phases

3(. . .) ≡ (true; . . . ; true)

and thus allows the trace to be located at an arbitrary point in time.
In general, DC counterexample formulae consist of a finite sequence of phase

expressions and event expressions, which are embraced by an outer negation,
following the grammar depicted in Figure 3.6.

An important restriction of counterexample formulae is to avoid exact time
bounds of the form ` = t. Without this restriction, the initiation of a measuring
procedure would be required at any point in time that might be the beginning of
a suitable interval of exact length. Since there might be infinitely many of such
points in time, this would render the application of automatic verification methods
infeasible.

The environment of the air conditioner is specified within a second class as depicted
in Figure 3.7.

64 3 Integrated Formal Specifications

LMode ::= brighten | darken

Environment
chan tchange, lchange
chan dtemp : [t? : TMode]
chan dlight : [l? : LMode]

main = Temp ||| Light
Temp = dtemp→ tchange→ Temp
Light = dlight→ lchange→ Light

temp, light, dt, dl : Z
Init
temp = 0 ∧ light = 0

effect dtemp
t? : TMode; ∆(dt)

t? = cool ⇒ dt′ = −1
t? = heat ⇒ dt′ = 1

effect dlight
l? : LMode; ∆(dl)

l? = darken ⇒ dl′ = −1
l? = brighten ⇒ dl′ = 1

effect tchange
∆(temp)

temp′ = temp + dt

effect lchange
∆(light)

light′ = light + dl

¬3(l dlighta� lchange ∧ ` > 1)

Figure 3.7: Timed air conditioner environment specification

This class communicates with the AirConditioner class via the channel dtemp, on
which it receives information about the temperature difference that is induced by
the air conditioner. According to this signal it then computes a new temperature
value. In addition to the modelling of the actual physical temperature of the
environment, this class simultaneously models the lighting situation via type LMode,
which is possibly determined by some further components beyond the scope of our
small example. Furthermore, the environment class also contains a DC part with
again only one single counterexample formula. This formula specifies a requirement
on the maximum time it should take for the environment to react with an event
lchange to a preceding event dlight.

Finally, parallel composition of the air conditioner class and the environment

3.3 CSP-OZ-DC Specifications 65

class with synchronisation on the set of common events (i.e., event dtemp, which
transmits the temperature difference that is induced by the air conditioner) defines
our complete example system:

System = AirConditioner ‖
{dtemp}

Environment

Intuitively, it is already quite obvious that the additional aspect of lighting in this
specification is completely independent from the temperature. In Chapter 5 we will
see how to automatically exploit this observation as part of the slicing result.

3.3.2 Semantics of CSP-OZ-DC Specifications

The compositional semantics of CSP-OZ-DC specifications has been defined by
Hoenicke [Hoe06] in such a way that it consistently integrates the trace semantics
for CSP [Hoa85], the history semantics for Object-Z [Smi00], and the semantics of
Duration Calculus formulae [HZ97] by embedding the semantics for Object-Z and
for CSP into the Duration Calculus semantics.

The standard semantics of Duration Calculus formulae is based on the defi-
nition of state variables (or observables) P,Q ,R, . . ., which are associated with
interpretations that devise for each state variable a mapping from the time do-
main (Time == R+) to the values of {0, 1}, denoting the current valuation of the
respective state variable.

For defining the semantics of CSP-OZ-DC specifications, the extended notion of
interpretations defined by Hoenicke [Hoe06] is useful, such that the evolution of
Z expressions and predicates over time becomes more directly expressible. The
definition of these CSP-OZ-DC-interpretations is based on the following sets as
defined in the ISO/IEC standard for Z [ISO02]:

• NAME denotes the set of all valid Z identifiers including generic Z symbols.

• U denotes the universe, i.e., the set of all possible semantic values, including
values for generic Z symbols.

• W denotes the world, i.e., the set of all values from U that are not values of
generic symbols.

• Model denotes the set of models with Model == NAME 7 7→ U.

Using these sets we can then define CSP-OZ-DC-interpretations as follows:

Definition 3.3.1 (CSP-OZ-DC-interpretation). A CSP-OZ-DC-interpretation is a
function I : Time → Model mapping the time domain Time == R+ to the set of Z
models. We require for such interpretations to have only a finite variability, i.e., on
every finite interval [0, t], the Z model obtained from I may change only a finite
number of times.

66 3 Integrated Formal Specifications

This notion of interpretation can be represented within usual Duration Calculus
semantics by defining an additional state variable S for each Object-Z state expres-
sion S, such that the newly introduced state variable only has a value of 1 at those
points in time, where our extended interpretation yields a model that satisfies the
given state expression (with IDC being the usual DC notion of interpretation):

IDC[[S]](t) =

{
1 I(t) |= S
0 otherwise

Consequently, we extend the notion of observables in a similar way as the notion of
interpretation: As mentioned, ordinary Duration Calculus observables are Boolean-
valued, while we are interested in the valuations of Z expressions and predicates.
Therefore, the notion of CSP-OZ-DC-observables is useful, which are associated with
elements of CSP-OZ-DC specifications, mapping the time domain to the current
valuation of the respective elements.

Thus, the values of CSP-OZ-DC-observables depend on the point in time and may
not only include Boolean values (as for example needed for channel variables,
indicating the occurrence of events) but also include the domains of valuation of
any element involved in CSP-OZ-DC specifications (as for instance valuations of
arbitrary Object-Z variables), which is necessary to support complex data types that
are used in the Object-Z part. We assume each CSP-OZ-DC-observable to have the
same name as the specification element that it defines.

In the following, when using the terms “interpretation” and “observable”, we will
not refer to the standard DC notions of interpretation and observable but rather to
their extended versions that we have defined here.

The operational semantics of the CSP part requires us to be able to reason about
CSP events which take place instantaneously. The straightforward translation into
the setting of DC would be to define a DC state variable for each CSP channel that
has a value of 1 only at points in time, where the associated event occurs and 0
otherwise.

The problem with such a definition, however, is that DC state variables can only
be used for stable variables that keep their value for non-empty intervals. Thus, a
different approach is necessary: In spite of this restriction, each CSP channel can
indeed be represented by an associated DC state variable. However, the occurrence
of an event needs to be defined in a different way, namely not via the actual value
of the associated state variable, but via a change of its value at exactly that instant
at which the event takes place.

An interpretation of a CSP-OZ-DC class then defines a set of CSP-OZ-DC-
observables, i.e., time-dependent functions yielding valuations for

• all variables and constants that are used in the CSP-OZ-DC class, including
variables declared in the state schema of the class and in axiomatic definitions
in the CSP-OZ-DC class,

3.3 CSP-OZ-DC Specifications 67

• the model of the environment, in which the class is declared,

• Boolean channel variables for all channels of the CSP-OZ-DC class, changing
its value at each point in time when the associated event occurs,

• parameter variables for all channels equipped with parameters containing the
parameter values at the point in time when the associated event occurs.

For satisfaction of the Object-Z part and the CSP part, the timing information
included in interpretations is not relevant. Only information about the ordering
of events and the sequence of the associated state space modifications is needed.
Therefore, the following definition yields an abstract view of interpretations where
time is not taken into account.

Definition 3.3.2 (Untimed projection of an interpretation). Let I be an interpreta-
tion, changing its valuation at points in time

0 = t0 < t1 < t2 < . . .

from model Mi−1 ∈ Model to Mi ∈ Model due to events ei occurring at ti , i ≥ 1. Then
the corresponding sequence of alternating states and events

Untime(I) = 〈M0, e1,M1, e2,M2, . . .〉

is the untimed projection of I.
An interpretation is fair with respect to a set of events E′ ⊆ Events (or E′-fair) iff

inf(Untime(I)) ∩ E′ 6= ∅ where

inf(Untime(I)) = {e ∈ Events | ∃ infinitely many i ∈ N : ei = e}.

Note that this untimed sequence of alternating states and events corresponds
directly to runs of labelled Kripke structures as defined in the previous sections on
the semantics of Object-Z and CSP-OZ specifications.

The semantics of a CSP-OZ-DC class C, composed of its three parts CCSP, COZ, and
CDC, is then provided by the set of interpretations that satisfy the given class, i.e.,
by interpretations I that simultaneously satisfy all three parts comprising the class
as follows:

CSP part: I |= CCSP iff Untime(I) corresponds to a run of the labelled transition
system that is defined by the operational semantics of the CSP part [Hoa85].

Object-Z part: I |= COZ iff Untime(I) is in the history semantics of the Object-Z
part [Smi00], i.e., its first valuation satisfies the Init schema of the Object-Z
part, all its valuations satisfy the State schema of the Object-Z part, and all
its events together with their pre- and post-states satisfy the enable and
effect schemas of the associated method.

68 3 Integrated Formal Specifications

DC part: I |= CDC iff I satisfies each of the DC formulae according to the semantics
of DC [HZ97].

Parallel composition of two CSP-OZ-DC classes C1 and C2 is defined by conjunction
of both classes C1 ∧ C2. To determine the semantics of such a parallel composition,
we therefore first compute interpretations I1 and I2 that are in the semantics of
the individual classes. If these individual interpretations agree on their common
domain (such as the alphabet on which they have to synchronise, i.e., the valuation
of channel variables and associated parameter variables), i.e., if I1(t) ∪ I2(t) yields
a valid model, the interpretation I(t) = I1(t) ∪ I2(t) is within the semantics of the
parallel composition of both classes.

To argue about the events taking place at a given point in time within a given
interpretation, we use the following function.

Definition 3.3.3 (Events taking place at a point in time). Let I : Time→ Model be
an interpretation and t a point in time. TakesPlace(I, t) is the set of events that take
place in I at the point in time t:

TakesPlace(I, t) =
{e ∈ Events | ∃ ε > 0: ∀ tl ∈ [t− ε, t), tr ∈ [t, t + ε] : I(tl)(e) 6= I(tr)(e)}

Note that the definition of this function exploits the finite variability that we
required for the interpretations of CSP-OZ-DC specifications: since an interpretation
only changes finitely often within a finite interval, a suitable ε-interval around the
point in time of an event’s occurrence can always be found.

The next definition allows us to refer to a CSP process term that remains in a
given interpretation at a given point in time.

Definition 3.3.4 (Residual CSP process term). Let main be the CSP part of a
CSP-OZ-DC specification C and I an interpretation satisfying C with

0 = t0 < t1 < t2 < . . .

being the points in time where I changes and ei ∈ TakesPlace(I, ti) for i > 0. Then a
residual CSP process term associated with a point in time, denoted by CSPC(I, ti), is
defined as a CSP process Pi with

main ≡ P0
e1−→ P1

e2−→ . . .
ei−→ Pi

being a valid transition sequence according to the operational semantics of the CSP
part of C.

Note that CSPC(I, t) does not necessarily have to be unique. This, however, is no
problem, since we will consider each possible result obtained from CSPC(I, t) at
the points where we will use this definition for referring to residual CSP process
terms.

4 Dependence Analysis

Contents
4.1 Object-Z Specifications . 70

4.1.1 Control Flow Graph . 71

4.1.2 Dependence Graph . 72

4.1.3 Example: Tic-Tac-Toe Dependence Graph 77

4.2 CSP-OZ Specifications . 79

4.2.1 Control Flow Graph . 79

4.2.2 Dependence Graph . 87

4.2.3 Example: Untimed Air Conditioner Dependence Graph . . 90

4.3 CSP-OZ-DC Specifications . 92

4.3.1 Control Flow Graph . 92

4.3.2 Dependence Graph . 94

4.3.3 Example: Timed Air Conditioner Dependence Graph . . . 100

This chapter presents the analysis of the previously introduced notations with
respect to the different types of dependences between the various elements involved
in the respective specification formalism. The main result of this dependence
analysis is the dependence graph, which contains all of the identified dependences
and which is the foundation for the further steps of the slicing approach.

Each of the dependences defined in this chapter represents some kind of relation
between specification elements, mostly following the principle of cause and effect,
i.e., the source of a dependence edge represents the point, where the cause of the
underlying incident is located, while the target of the same edge represents the
point, where the associated effect will become evident. The simplest examples of
this kind of relationship are data dependence edges: such an edge’s source node
represents the modification of some variable, while its target node references the
same variable, such that the effect of the modification will then be visible.

Therefore, the dependences as a whole guarantee that, when tracing all depen-
dence edges that leave from a certain specification element in a forward-oriented
direction, we will find all specification elements, which are directly affected by the
initial element. Conversely, they guarantee that, when tracing the edges that arrive

70 4 Dependence Analysis

at the given element in a backward-oriented direction, we will find all specification
elements that have some kind of influence on the initial element.

The conventional program dependence graph (PDG) usually represents data
and control dependences that are present inside a program. For the dependence
graph of our specification languages we derive several additional types of depen-
dence from the rich syntactical structure of the Object-Z, CSP-OZ, and CSP-OZ-DC
specifications, among them predicate dependence representing connections between
schemas and associated predicates, synchronisation dependence representing mutual
communication relations between processes or classes in parallel composition, and
timing dependence representing timing relations between events or variables, which
are derived from counterexample formulae within the DC part. Furthermore, the
conventional data and control dependences are supplemented by several addi-
tional subtypes that are caused, for instance, by synchronisation relations or timing
restrictions.

We proceed with the dependence analysis in an incremental way, dealing sepa-
rately with each of the specification notations, each time taking previous definitions
into account. We start again with Object-Z specifications, where control depen-
dences will have a fixed structure, while data dependences are most important.

For CSP-OZ specifications, the control flow structure changes, since in addition
to the fixed structure as defined for Object-Z specifications, the CSP part will
be reflected within the control flow structure, resulting in new types of control
dependences, but also leading to additional types of data dependences that were
not needed previously.

Finally, for CSP-OZ-DC specifications we also have to consider the real-time part
of specifications which will be represented by associated timing dependences. Here
we also deal with parallel composition of classes that not only applies to CSP-OZ-DC
specifications but also holds for both of the previous formalisms.

4.1 Object-Z Specifications

The dependence analysis for Object-Z specifications is based on a fixed control flow
structure, since any method of an Object-Z class may take place at any arbitrary
point of execution, provided its preconditions are satisfied. Therefore, as we will see
in the next sections, control dependences are important for Object-Z specifications,
but only need to be defined once in their general structure. Afterwards, this
structure can be assumed for any Object-Z specification and no further individual
analysis will be necessary, while the main object of the dependence analysis for
Object-Z specifications will be the presence of data dependences.

Note that the general aspect of parallel composition of several classes will be
covered within this chapter’s concluding Section 4.3 on dependence analysis for
CSP-OZ-DC classes, since it applies in the same way to all notations presented in

4.1 Object-Z Specifications 71

start

interleave

enable e1
. . . enable en

effect e1 effect en

Figure 4.1: Control flow graph of a class

this chapter.

4.1.1 Control Flow Graph

The construction of the program dependence graph starts with the construction of
the control flow graph (CFG). Each Object-Z class has a CFG structured as depicted
in Figure 4.1.
Assuming E to be the set of methods (or events) of the class, the CFG then contains
the following nodes:

• one dedicated entry node nstart labelled start, representing the initialisation of
the class according to its Init schema,

• one node ninterleave labelled interleave, representing the interleaving between
any of the methods offered by the class that precedes every execution step
(note that the interleaving takes place at the level of method execution,
not at the level of schema evaluation, i.e., associated schemas enable e and
effect e will always be simultaneously evaluated without interference of any
further method f or any of its associated schemas enable f or effect f),

• for each method/event e ∈ E two schema nodes nen e and neff e labelled
enable e and effect e, representing the method’s associated enable and
effect schemas.

These nodes are connected by the following control flow edges as illustrated in
Figure 4.1:

• one edge leads from the unique start node to the interleave node

72 4 Dependence Analysis

• for each method/event e ∈ E three edges are introduced that lead from
the interleave node via the enable e and the effect e nodes back to the
interleave node.

Since Object-Z specifications do not impose further restrictions on the control flow,
the CFG for each arbitrary Object-Z specification can be constructed according to
this pattern. The nodes contained within the CFG also appear in the dependence
graph that will be defined in the next section, while the control flow edges are not
directly transferred, but their existence will be used to determine certain types of
dependence.

4.1.2 Dependence Graph

In addition to the nodes of the CFG (NCFG), the (program) dependence graph (PDG)
contains nodes for each predicate p ∈ Pred (where Pred is the set of predicates over
V) inside a specification schema:

Npred = {px | p ∈ Pred is a predicate of schema node x}

Therefore, the set of nodes of the dependence graph is

NPDG = NCFG ∪ Npred.

Another important difference between both graphs is the set of edges they have.
An edge connects two dependence graph nodes, if predicate, control, or data
dependences exist between these nodes according to the definitions given below.

Before continuing with the construction of the dependence graph we first intro-
duce some further abbreviations. When reasoning about paths inside the CFG, we
let pathCFG(n,n′) denote the set of sequences of CFG nodes that are visited when
walking along CFG edges from node n to node n′. When we refer to schemas or
predicates associated with a dependence graph node n, we let

• V denote the set of all variables of the class,

• out(n) ⊆ V denote all output variables of n (those decorated with a !),

• in(n) ⊆ V denote all input variables of n (those decorated with a ?),

• mod(n) ⊆ V denote out(n) plus all variables of n being modified (those
appearing in the ∆-list of the schema or in primed form in a predicate) plus—
only for nodes n associated with the Init schema—all variables referenced by
the Init schema,

• ref(n) ⊆ V denote in(n) plus all variables referenced by n (those appearing in
unprimed form), and

4.1 Object-Z Specifications 73

• vars(n) ⊆ V with vars(n) = mod(n) ∪ ref(n) denote all variables of n.

Next, we proceed with definitions of the further kinds of dependence types that
establish the program dependence graph for Object-Z specifications.

Predicate Dependence

Each predicate that occurs within a CSP-OZ specification is located inside some
schema. More precisely, each schema only contains exactly one predicate. This
top-level schema predicate can in turn consist of the logical conjunction of several
sub-predicates. This logical conjunction can either be given explicitly by combining
the sub-predicates with the logical and-operator such as

enable a
a = b ∧ c = d

or it can be given implicitly by enumerating the involved sub-predicates within
several individual lines of the schema, each containing one of the sub-predicates
such as

enable a
a = b
c = d

In the following, we exploit this explicit or implicit decomposition of top-level
schema predicates into sub-predicates. Consequently, when referring to the pred-
icates of a schema, we do actually not refer to the top-level predicate such as
a = b ∧ c = d, but rather to its sub-predicates such as a = b and c = d, whose logi-
cal conjunction yields the top-level schema predicate. In particular, the previously
introduced set of predicate nodes Npred does only contain nodes representing such
sub-predicates.

The idea of predicate dependence edges

pred−→ ⊆ (NCFG × Npred ∪ Npred × NCFG)

is to transfer this relation between schemas and the (sub-)predicates they contain
by connecting the associated schema nodes with the (sub-)predicate nodes they
contain.

For predicates of enable schemas, these edges lead from the enable node to
its predicates and vice versa, while for predicates of effect schemas there are
only edges in the direction from the effect schema to its predicates, i.e., two

74 4 Dependence Analysis

enable e

penable e

qenable e

· · ·

effect e

reffect e

seffect e

· · ·edge

predicate nodes ∈ Npred

predicate dependence edges

predicate dependence edges

control dependence

schema nodes
∈ NCFG

Figure 4.2: Predicate nodes and predicate dependence edges

nodes n and n′ are connected by a predicate dependence edge n
pred−→ n′ iff

(n = x ∧ n′ = px) [enable and effect schema predicates]
∨ (n = px ∧ n′ = x ∧ ∃ e ∈ E : x ≡ enable e).

[enable schema predicates only]

The different treatment of enable and effect schema predicates, as illustrated
in Figure 4.2, provides a way to represent the tighter connection between enable
schemas and its predicates: enable predicates do not only depend on the event
they are associated with, but also serve as the event’s guard, i.e., a mutual depen-
dence exists, while this is not the case for events of an effect schema.

Predicate nodes belonging to the Init schema are attached to the associated
Init node in the way like predicate nodes belonging to an effect schema are
attached to the associated effect node. This reflects the initial restriction of the
state space according to the Init schema.

Predicate nodes associated with the state invariant are replicated and attached
to each effect node. This represents a kind of normalisation and reflects the
invariant restriction of the state space according to the state invariant that must
hold at each occurrence of an event.

If a variable appears in the ∆-list of an effect schema, but is not referred
to inside the remainder of the schema, a fresh predicate node is introduced for
this variable and attached to the corresponding effect schema. This reflects the
unrestricted modification of the corresponding variable by the associated event.

4.1 Object-Z Specifications 75

Control Dependence

The further construction of the dependence graph starts with the introduction of
control dependence edges:

cd−→ ⊆ NCFG × NCFG

The idea behind these edges is to represent the fact that an edge’s source node
controls whether its target node will be executed. In particular, a node cannot be
control dependent on itself. The main type of control dependence is the following:

• A control dependence edge due to nontrivial precondition exists between an
enable node and its associated effect node iff its associated enable
schema is non-empty (i.e., not equivalent to true), i.e., for two nodes n and n′

a control dependence edge due to nontrivial precondition n cd−→ n′ exists iff

∃ e ∈ E : n ≡ enable e ∧ n′ ≡ effect e

∧ ∃ pe : n
pd←→ pe.

Therefore, only nodes representing events with non-trivial guards are source of this
kind of control dependence edges.

In addition to this main type of control dependence, one further type of control
dependence edge is introduced in order to achieve a well-formed graph:

• A control dependence edge due to start exists between the start node and its
immediate CFG successor, i.e., the interleave node.

Finally, all previously defined (direct) control dependence edges are extended to
CFG successor nodes as long as they do not bypass existing control dependence
edges:

• An indirect control dependence edge exists between two nodes n and n′ iff

∃π ∈ pathCFG(n,n′) : ∀m,m′ ∈ ran π : m cd−→ m′ ⇒ m = n.

The idea of this latter definition is to integrate indirectly dependent nodes into the
dependence graph that would otherwise remain isolated. The effect of indirect
control dependence edges is illustrated in Figure 4.3 that also contains examples of
the previous types of control dependence.
The graphs in Figure 4.3 are supposed to be derived from a specification that
contains only two methods a and b. Moreover, we suppose that the specification’s
enable a schema contains some predicate, while the specification’s enable b
schema is supposed to be an empty schema. This leads to the control dependence
edges as shown in Figure 4.3b:

76 4 Dependence Analysis

(a) Control flow graph

start

interleave

enable a enable b

effect a effect b

(b) Control dependence edges

start

interleave

enable a enable b

effect a effect b

cds

cdi cdi

cdp

cdi

cdi

Figure 4.3: Example of different types of control dependence: control depen-
dence edge due to start (cds), control dependence edge due to nontrivial precon-
dition (cdp), indirect control dependence (cdi).

• One control dependence edge due to start (cds), leading from start to interleave .

• One control dependence edge due to nontrivial precondition (cdp), leading from
enable a to effect a .

• Three indirect control dependence edges (cdi), leading from start to enable a ,
enable b , and effect b . These edges result from extending the direct
control dependence edge between start and interleave to its indirectly depen-
dent CFG successors enable a , enable b , and effect b .

• One indirect control dependence edge (cdi), leading from enable a to
interleave . This edge results from extending the direct control dependence
edge between enable a and effect a to its indirectly dependent CFG
successor interleave .

The motivation for this relatively complicated definition of indirect control depen-
dence will become clearer when dealing with CSP-OZ specifications in the next
section. For now, this definition affects all enable nodes and effect nodes of
events with empty enable schemas. The definition causes that these nodes are
attached to the start node by means of a control dependence edge.

Data Dependence

The idea of data dependence edges

dd−→ ⊆ Npred × Npred

4.1 Object-Z Specifications 77

is to represent the influence that one predicate might have on a different predicate
by modifying some variable that the second predicate references. Therefore, the
source node always represents a predicate located inside an effect schema, while
the target node may also represent a predicate located inside an enable schema.
We distinguish the following types of data dependence edges:

• Direct data dependence exists between two predicate nodes px and q y (appear-
ing in schemas x and y, respectively) iff there is a relevant variable that is
modified by predicate px and referenced by predicate qy and there is a CFG
path between both associated schema nodes without any further modification
of the relevant variable, i.e., iff

∃ v ∈ (mod(px) ∩ ref(q y)) ,∃π ∈ pathCFG(x, y) :
∀m ∈ ran π : v ∈ mod(m)⇒ (m = x ∨ m = y)

Note that the CFG path needs only to be considered in order to avoid data depen-
dence edges leading from effect schema predicates back to predicates of the
Init schema.

• Symmetric data dependence exists between two nodes px and qy iff they are
associated with the same schema and share modified variables, i.e., iff

mod(px) ∩mod(q y) 6= ∅ ∧ x = y

4.1.3 Example: Tic-Tac-Toe Dependence Graph

The program dependence graph of the class TicTacToe can be found in Figure 4.4.
For better readability, predicate dependence edges are abbreviated by the intro-

duction of super nodes: schema edges form the title of these super nodes, and all
predicate nodes belonging to the respective schema are contained within the super
node. The different types of predicate dependence edges (bidirectional for enable
schemas and unidirectional for effect schemas) and their associated predicate
nodes are not represented explicitly, but are only implicitly present according to
the type of schema a super node represents.

Control dependence edges between two super nodes stand for control depen-
dence edges between the respective schema nodes. It can be seen that due to
normalisation the effect schemas have two extra predicates which appeared in the
original specification as the state invariant.

The example contains all previously defined types of dependences except for
indirect control dependence edges between enable nodes and the start node which
have been left out for better readability:

• Control dependence due to nontrivial precondition exists between all enable
nodes and their associated effect nodes, since the example does not contain
any empty enable schema.

78 4 Dependence Analysis

turn ¬over

wposn = ∅ turn free = Posn

¬turn ¬over

p! ∈ free

turn′

over

over′ ⇔ (moves′ = 9)

free′ = Posn \ (bposn′ ∪ wposn′)

¬turn′ moves′ = moves + 1

wposn′ = wposn ∪ {p!}

¬over

bposn′ = bposn ∪ {p!}

lines(bposn) > lines(wposn)⇒ result! = black wins

lines(wposn) > lines(bposn)⇒ result! = white wins

lines(bposn) = lines(wposn)⇒ result! = draw

free′ = Posn \ (bposn′ ∪ wposn′)

over′ ⇔ (moves′ = 9)

moves′ = moves + 1

= control dependence

enable black

enable result

effect black

= data dependence

effect result

free′ = Posn \ (bposn′ ∪ wposn′)

over′ ⇔ (moves′ = 9)

p! ∈ free

bposn = ∅ moves = 0

enable white

effect white

start

interleave

Figure 4.4: Dependence graph of the Object-Z class TicTacToe

• Indirect control dependence edges appear between the start node and each of
the enable nodes.

• Direct data dependence exists between various predicate nodes, connecting
nodes of the Init schema with subsequent references as well as connecting
nodes of all effect schemas with nodes of other enable and effect
schemas.

• Symmetric data dependence exists between predicate nodes within the
effect schemas of the white and the black method.

The example dependence graph illustrates the tight connection between the various
specification elements. In spite of this seemingly completeness of mutual connec-
tions, not all specification elements are in touch with each other, such that we
nevertheless achieve a result by applying slicing to this example, as we will see in
the next chapters.

4.2 CSP-OZ Specifications 79

4.2 CSP-OZ Specifications

In comparison to pure Object-Z specifications, the main difference that we need
to consider within CSP-OZ specifications is the variable control flow structure that
results from the CSP part. The control flow structure of Object-Z specifications
was fixed, such that the same pattern of control flow graph was applicable to any
arbitrary Object-Z specification. In contrast to that, the control flow graph for a CSP-
OZ specification does not follow a fixed pattern, but needs to be newly computed for
each CSP-OZ specification, such that it correctly represents the execution order of
the specification’s schemas according to the specification’s CSP process definitions.

The subsequent dependence analysis for CSP-OZ specifications then relies on this
control flow graph in order to compute the actual control and data dependences. In
comparison to Object-Z specifications, the new and variable structure of the control
flow graph of CSP-OZ specifications also leads to further types of dependences that
arise in the dependence analysis.

Note that the general aspect of parallel composition of several classes will be
covered within this chapter’s concluding Section 4.3 on dependence analysis for
CSP-OZ-DC classes, since it applies in the same way to all notations presented in
this chapter.

4.2.1 Control Flow Graph

The control flow graph (CFG) for CSP-OZ specifications is derived inductively from
the specification’s CSP part. The only exceptions, where the Object-Z part is taken
into account, are pure Object-Z methods that are only defined in the Object-Z part
but not referenced within the CSP part.

The CFG nodes n ∈ NCFG and edges −→CFG ⊆ NCFG×NCFG forming the CFG GCFG =
(NCFG,−→CFG) are thus mainly derived from the syntactical elements occurring in
the CSP part. As we will see in this section, CFG nodes either correspond

• to CSP events (which, of course, correspond to schemas of the Object-Z part
like enable e and effect e),

• to operators in the CSP part (like nodes interleave and uninterleave for operator
|||, nodes extch and unextch for operator 2, or nodes parS and unparS for
operator ‖

S
), or

• to the structuring of the CSP process definitions (like start.P and term.P for
entry and exit points of a CSP process P, or call.P and ret.P for call and return
points of references to a process P).

For multiple occurrences of Object-Z methods or CSP operators inside the CSP
process definitions unique CFG nodes are introduced. This is achieved by a suitable

80 4 Dependence Analysis

Stop i

start

term

stop i

Figure 4.5: Control flow graph for
the CSP deadlock operator Stop

Skip i

start

term

skip i

Figure 4.6: Control flow graph for
the CSP termination operator Skip

naming convention of the associated enable and effect nodes, where the
methods’ names are extended by an ordinal, referring to their syntactical occurrence
inside the CSP process definitions.

The i ’th occurrence of event a in the CSP part is for instance associated with CFG
nodes enable a i and effect a i. Analogously, the i ’th occurrence of operator
Stop in the CSP part is associated with a CFG node stop i.

Next, we define the inductive construction of the CFG by devising individual
graph transformations for each of the elements of the CSP part. The starting point
of the construction is the definition of the main process.

A roughly comparable construction has been developed by Goltz [Gol88] for
the representation of CCS terms by suitable Petri nets. However, the similarity is
restricted only to the structure of the resulting graphs, while both structures serve
completely different purposes.

Deadlock

The CSP Stop operator represents a non-terminating process. In the associated
control flow graph depicted in Figure 4.5 this is reflected by the non-existence of
an edge between the stop node and the term node:

GCFG(Stop i) :=

({
start, stop i, term

}
,{

(start, stop i)
})

Termination

The CSP Skip operator represents the termination of a process. In the associated
control flow graph depicted in Figure 4.6 this is represented by two edges leading
from the start node via the skip node to the term node:

GCFG(Skip i) :=

({
start, skip i, term

}
,{

(start, skip i), (skip i, term)
})

4.2 CSP-OZ Specifications 81

GCFG(a i → P)

start

term

s

.

enable a i

effect a i

GCFG(P)

Figure 4.7: Control flow graph for the prefix operator a i → P

Prefix Operator

The control flow graph of a CSP process that starts with a prefix operator of the
form a i → P is obtained from the control flow graph of the subsequent process P
by replacing its edge originating from the start node of P with an edge to the same
target node, but originating from a newly introduced node effect a i which in
turn has an arriving edge coming from another newly introduced node enable a i.
This pair of nodes represents the prefixed communication. Furthermore, an edge
from the start node of P to the new node enable a i is added.

Since there is no new node introduced for the prefix operator, it is—in contrast to
other operators—not necessary to distinguish it from its other textual occurrences,
i.e., here it is not necessary to append an exponent to it. Nevertheless, the exponent
is needed for the newly introduced pair of prefixed communication nodes in order to
distinguish them from different occurrences of the same associated communication
in the specification.

Given the previously computed control flow graph GCFG(P) of the involved process
P, the control flow graph associated with the prefix operation a i → P is depicted
in Figure 4.7 and is defined as follows:

GCFG(a i → P) :=


NP ∪

{
enable a i,effect a i

}
, EP ∪

{
(start,enable a i)

}
∪
{

(enable a i,effect a i)
}

∪
{

(effect a i, s) | ∃(start, s) ∈ EP
}


\ {(start, s) ∈ EP}



82 4 Dependence Analysis

GCFG(P1 # i P2)

start

seq i

term

s1 s2

t11
. . .

t1n

t21
. . .

t2n

GCFG(P1) GCFG(P2)

Figure 4.8: Control flow graph for the sequential composition operator P1 # i P2

Sequential Composition of Processes

Sequential composition of processes in the specification of the form

P1 # i P2

is represented in the resulting control flow graph by adding a newly introduced seq
node to the control flow graphs of the associated subprocesses. Both subprocesses
are connected via this node by replacing all edges that lead from nodes of the first
process’ control flow graph to its term node by edges that lead to the seq node.
Additionally, any edge leading from the start node to a node of the second process’
control flow graph is replaced by an edge with the same target, but originating in
the seq node.

Given the control flow graphs of the involved processes P1 and P2, i.e., graphs
GCFG(P1) and GCFG(P2), the control flow graph associated with their sequential
composition P1 # i P2 is depicted in Figure 4.8 and is defined as follows:

GCFG(P1 # i P2) :=


N1 ∪ N2 ∪

{
seq i

}
, E1 ∪ E2

∪
{

(t, seq i) | ∃(t, term) ∈ E1

}
∪
{

(seq i, s) | ∃(start, s) ∈ E2

}


\({(t, term) ∈ E1} ∪ {(start, s) ∈ E2})



4.2 CSP-OZ Specifications 83

Parallel Composition of Processes

From a control flow point of view, parallel compositions of processes of the form

P1 | i P2 with the symbol | representing an operator out of the set{
‖
A
, A‖B, ‖|, u, 2

}
can all be translated into the same operation on the associated subprocesses’ control
flow graphs. This operation consists in

• adding a new pair of op and unop nodes to the control flow graphs of the
composed processes,

• replacing the edges originating from the start node by edges originating from
the new op node that lead to the same target node as before,

• replacing the edges leading to the term node by edges leading to the new unop
node that leave from the same source node as before, and

• finally adding edges from the start node to the new op node and from the new
unop node to the term node.

In order to preserve the semantics of the specific operator in the control flow graph
the original operator can be appended as an index to the op node, e.g., paru or par‖

A

.

Given the control flow graphs of the involved processes P1 and P2, i.e., graphs
GCFG(P1) and GCFG(P2), the control flow graph associated with their parallel compo-
sition P1 | i P2 is depicted in Figure 4.9 and is defined as follows:

GCFG(P1 | i P2) :=



N1 ∪ N2 ∪
{

par i, unpar i
}
,

E1 ∪ E2

∪
{

(par i, s) | ∃(start, s) ∈ (E1 ∪ E2)
}

∪
{

(t, unpar i) | ∃(t, term) ∈ (E1 ∪ E2)
}

∪
{

(start, par i)
}
∪
{

(unpar i, term)
}


\
{

(start, s) ∈ (E1 ∪ E2)
}

\
{

(t, term) ∈ (E1 ∪ E2)
}



Process Definition

A process definition in the CSP part of CSP-OZ specifications is a unique line of the
form

X = P

84 4 Dependence Analysis

GCFG(P1 | i P2)

start

op i

unop i

term

s1 s2

t11
. . .

t1n

t21
. . .

t2n

GCFG(P1) GCFG(P2)

Figure 4.9: Control flow graph for parallel composition P1 | i P2 with operator
nodes op ∈ {parA, parA∩B, interleave, intch, extch} representing the involved CSP

operator |∈
{
‖
A
, A‖B, ‖|,u,2

}

which defines the process associated with the process identifier. The control flow
graph for such a process definition is obtained from the control flow graph of the
associated process by simply replacing the generic start and term nodes with nodes
that are specific for the given process identifier. Additionally, edges are introduced
that lead from recursive process calls to the newly created process start node. Edges
from the newly created process term node to the process call return ret node can be
omitted since it is obvious that they won’t be reachable.

Given the control flow graph of process P, i.e., graph GCFG(P), the control flow
graph associated with the process definition X = P is depicted in Figure 4.10 and
is defined as follows:

GCFG(X = P) :=



(
VP ∪ {start.X, term.X}

)
\ {start, term} , EP ∪

{
(start.X, s) | ∃(start, s) ∈ EP

}
∪
{

(t, term.X) | ∃(t, term) ∈ EP
}

∪
{

(call.X i, start.X) | ∃ call.X i ∈ NP
}


\ {(start, s) ∈ EP} ∪ {(t, term) ∈ EP}



4.2 CSP-OZ Specifications 85

GCFG(X = P)

GCFG(P)

//////start

s

call.X i ret.X i

t1 . . . tn

term//////

start.X

term.X

Figure 4.10: Control flow graph for a process definition X = P

Process Call

A process call via a process identifier of the form X i is modelled in the control flow
graph by introducing two new nodes, one (call.X i) indicating the process call and
the other (ret.X i) indicating the return from the called process. Initially the control
flow graph only contains edges from the start node to the call node and from the
ret node to the term node, i.e., the termination of the represented process depends
on the process definition: if this leads to a non-terminating loop, then the ret node
and the term node of the process call won’t be connected to the resulting control
flow graph and since they won’t be reachable, they will be removed from the final
control flow graph together with the associated edge.

The control flow graph associated with a process call X i is depicted in Figure 4.11
and is defined as follows:

GCFG(X i) :=

({
start, call.X i, ret.X i, term

}
,{

(start, call.X i), (ret.X i, term)
})

Composition of Separate Sections of the CSP Part

The CSP part of CSP-OZ specifications can be regarded as being composed out of
several sections, each containing a number of lines with process definitions:

P1 , P2

86 4 Dependence Analysis

GCFG(X i)

start

call.X i

ret.X i

term

Figure 4.11: Control flow graph for process calls X i

Here, the comma represents a line break separating such sections of the specifi-
cation. The control flow graph of the composed specification is obtained from
the control flow graphs of the individual sections by joining the set of nodes and
edges and adding edges between process calls and process definitions resp. process
termination and process call return points.

Given the individual control flow graphs GCFG(P1) and GCFG(P2), the control flow
graph associated with their composition is depicted in Figure 4.12 and is defined
as follows:

GCFG(P1 , P2) :=



N1 ∪ N2,
E1 ∪ E2

∪

(call.X i, start.X)

∣∣∣∣∣∣
call.X i ∈ Nj

∧ start.X ∈ Nk

∧ j 6= k


∪

(term.X, ret.X i)

∣∣∣∣∣∣
term.X ∈ Nj

∧ ret.X i ∈ Nk

∧ j 6= k





Pure Object-Z methods

For pure Object-Z methods, i.e., methods that do not occur inside the CSP process
definitions, the control flow graph needs to be extended in the following way. Since
such events can take place at any time without being restricted by the CSP part,
they can be regarded as being interleaved with the CSP main process. Therefore,
a fresh interleave node is inserted into the CFG between the start.main node and
its immediate successor. This newly introduced interleave node is then connected
with each enable node belonging to a pure Object-Z method. Finally, each of
these enable nodes is connected to its associated effect node, analogously to
the construction that we have defined in the previous section for the control flow
graph for Object-Z classes.

4.2 CSP-OZ Specifications 87

GCFG(P1, P2)

GCFG(P1) GCFG(P2)

start.X1n start.X2m

call.X i
2m call.X j

1n

ret.X i
2m ret.X j

1n

term.X1n term.X2m

.

Figure 4.12: Control flow graph for the composition of separate sections of the
CSP part P1 , P2

4.2.2 Dependence Graph

As for Object-Z specifications, the (program) dependence graph (PDG) for CSP-
OZ specifications contains all nodes that have already been present within the
control flow graph (CFG), supplemented by predicate nodes representing predicates
from the specification’s Object-Z schemas that have not been considered for the
construction of the CFG.

Dependences between elements of CSP-OZ specifications are again defined in
terms of suitable edges of the resulting dependence graph. The types of dependence
edges include those of the dependence graph for Object-Z specifications as defined
in the previous section, i.e., predicate dependence, control dependence, and data
dependence. Some of these dependence definitions remain unchanged, while
others need to be extended for CSP-OZ specifications.

Therefore, in the following we do not repeat those dependence definitions that
remain unchanged in comparison to those given already for Object-Z specifications,
but only refer to the previous section. However, we define several extensions
of these definitions, resulting in additional subtypes of the previously defined
dependences.

Moreover, one completely new type of dependence is introduced, i.e., synchro-
nisation dependence, which represents mutual communication relations between

88 4 Dependence Analysis

processes according to CSP’s parallel composition operator with synchronisation.

Predicate Dependence

Predicate dependence for CSP-OZ specifications is defined exactly as for Object-Z
specifications. No modifications or extensions are needed.

Control Dependence

In comparison to the definition of control dependence for Object-Z specifications,
we need a slightly stronger definition of control dependence due to nontrivial precon-
dition:

• Control dependence due to nontrivial precondition exists between an enable
node and its effect node iff its enable schema is non-empty (i.e., not
equivalent to true): for two nodes n and n′ a control dependence edge due to
nontrivial precondition n cd−→ n′ exists iff

∃ e ∈ E : n ≡ enable e ∧ n′ ≡ effect e
∧ 〈n,n′〉 ∈ pathCFG(n,n′)

∧ ∃ pe : n
pd←→ pe.

Therefore, only nodes representing events with non-trivial guards are sources of
this kind of control dependence edges.

Note that the additional condition 〈n,n′〉 ∈ pathCFG(n,n′) is trivially satisfied
for any Object-Z specification, since for each method of an Object-Z there is only
exactly one enable and one effect node present within the associated CFG, with
the effect node being successor to the enable node. Thus, this requirement
is only added due to the CFG of CSP-OZ specifications, which might contain
several occurrences of the enable and effect nodes for each method, namely
for representing each of the method’s occurrence within the CSP part.

Furthermore, we define additional types of control dependence due to external and
internal choice:

• Control dependence due to external (resp. internal) choice or parallel composition
with synchronisation exists between an extch (resp. intch) or parS node and its
immediate CFG successors.

Moreover, the following new subtype of control dependence needs to be defined:

• Control dependence due to synchronisation exists between an enable node
and its associated effect node iff both nodes are located inside a branch
attached to a parallel composition node and their associated event belongs to
the synchronisation alphabet of this parallel composition node.

4.2 CSP-OZ Specifications 89

Note that even an event with an empty enable schema can be source of a control
dependence edge, since synchronisation determines whether control flow continues.

The concluding definitions of control dependence edges that have already been
introduced for Object-Z specifications in order to achieve a well-formed graph are
extended as follows in order to reflect the control flow structure resulting from the
process definitions and process calls within the CSP part:

• Call edges exist between a call node and its associated start node.

• Termination edges exist between a term node and its associated ret node.

• Start edges exist between a start node and its immediate CFG successor.

• Return edges exist between a ret node and its immediate CFG successor.

Finally, indirect control dependence edges are defined in the very same way as for
Object-Z specifications. In particular, these are again defined as extensions of all
previously introduced direct control dependence edges. The only difference at
this point is that direct control dependence edges of CSP-OZ specifications now
also comprise all additional subtypes of control dependence that have been newly
introduced within this section.

Data Dependence

The definitions of direct data dependence and symmetric data dependence as they
were given for Object-Z specifications remain unchanged for CSP-OZ specifications.

However, two additional types of data dependence need to be defined that
reflect two different kinds of parallel composition according to the CSP interleaving
operator and the CSP operator of parallel composition with synchronisation:

• Interference data dependence exists between two nodes px and q y iff the nodes
of both associated schemas x and y are located in different CFG branches
attached to the same interleaving or parallel composition operator, i.e., iff

mod(px) ∩ ref(q y) 6= ∅
∧ ∃m : (m ≡ interleave ∨ m ≡ parS)

∧ ∃πx ∈ pathCFG(m, x) ∧ ∃πy ∈ pathCFG(m, y) :
ran πx ∩ ran πy = {m}

• Synchronisation data dependence exists between two predicate nodes px and
q y iff both are located inside effect schemas whose respective enable
schemas are connected by a synchronisation dependence edge as defined
below and one predicate has an output that the other predicate expects as
input, i.e., iff

x = effect e ∧ y = effect e ∧ out(px) ∩ in(q y) 6= ∅

90 4 Dependence Analysis

Synchronisation Dependence

The idea of synchronisation dependence edges

sd←→ ⊆ NCFG × NCFG

is to represent the influence that two enable schema nodes of the same event
have on each other by being located inside two different branches of a parallel
composition operator that has the schemas’ associated event in its synchronisation
alphabet. Synchronisation dependence exists between two nodes n and n′ with
n ≡ n′ ≡ enable e iff ∃m ≡ parS with e ∈ S :

∃π ∈ pathCFG(m,n) ∧ ∃π′ ∈ pathCFG(m,n′) : ran π ∩ ran π′ = {m}

This already concludes the definition of the program dependence graph for CSP-OZ
specifications. Next, we will see the application to our example specification with
several examples of the dependences that we have defined in this section.

4.2.3 Example: Untimed Air Conditioner Dependence Graph

The program dependence graph of the class AirConditioner that was introduced in
the previous chapter can be found in Figure 4.13.

Note that we introduced several abbreviations in order to achieve better read-
ability of the dependence graph:

• Predicate nodes are hidden within schema nodes, such that data dependence
edges starting at or leading to one of those nodes actually represent an edge
starting at or leading to one of these hidden predicate nodes.

• There are no separate schema nodes for enable and for effect schemas,
but both are represented by a single node labelled with the associated method
name. Therefore, a control dependence edge starting from such a node actu-
ally represents two control dependence edges: one starting at the associated
enable node and leading to its effect node and another one starting at
the associated enable node leading to its depicted target.

• Control dependence edges leading to the shaded boxes around groups of
nodes actually represent a number of control dependence edges that all start
at the same depicted source node and lead to each of the nodes contained
within the box.

Except for synchronisation dependence and synchronisation data dependence, each
previously defined type of dependence can be seen in this example dependence
graph:

4.2 CSP-OZ Specifications 91

modeswitch

start.Operate

interleave

call.Operate call.Work

start.Work

start.On

ret.Operate ret.Work

call.main

uninterleave

seq

call.Operate

workswitch

term.Operate

extch

refill

call.Operate

consume off

dtemp

level

call.Work

unextch

term.Work

skip

start.main

workswitch

call.On

extch

skip

unextch

= control dependency

= data dependency

Figure 4.13: Dependence graph for the AirConditioner class of the untimed air
conditioner specification

• Control dependence due to external choice appears within the Operate and
the Work branch of the dependence graph, where extch and unextch nodes
represent the CSP external choice operators.

• Indirect control dependence appears at each of the boxes around groups of
nodes. Control dependence leading to the first node within the box is extended
to all further nodes within the box, since they are not yet target of any other
control dependence.

• Interference data dependence appears between nodes located in the Operate
and the Work branch of the CSP interleaving operator, since each of the
variables fuel, work, and mode is modified by a node in one branch and
referenced by a corresponding node in the other branch.

92 4 Dependence Analysis

Examples of synchronisation dependence and synchronisation data dependence
will be appear in the next section, where they arise on the level of synchronisa-
tion between classes This, however, follows the same concept as synchronisation
between processes within a single class.

4.3 CSP-OZ-DC Specifications

In this section on dependence analysis for CSP-OZ-DC specifications we essentially
treat two extensions of the previous approaches: first, we define how to deal with
specifications that comprise several classes; second, we extend the dependence
analysis to cover the DC part of CSP-OZ-DC classes.

As previously defined for CSP-OZ specifications, the first step of the dependence
analysis for CSP-OZ-DC specifications consists of the construction of the specifica-
tion’s CFG. The only new aspect that we add in this concluding section to the CFG
construction is to cover parallel composition of several classes.

Note that this aspect is not specific to CSP-OZ-DC specifications, but applies in
the same way to Object-Z and CSP-OZ specifications. However, since CSP-OZ-DC
is the final stage of extension of our specification notation and represents thus a
generalisation of the previous specifications, we deem this concluding section on
dependence analysis as best suited for covering the general concern of parallel
composition of classes.

The subsequent dependence analysis is then again based on the control flow
graph and proceeds essentially according to the previous dependence definitions for
CSP-OZ specifications. However, several further extensions of dependence defini-
tions will be defined that mainly reflect the only aspect of CSP-OZ-DC specifications,
which has not been present in Object-Z and CSP-OZ specifications, namely the
real-time requirements formulated within the DC part.

4.3.1 Control Flow Graph

The construction of the CFG for CSP-OZ-DC specifications follows exactly the
definition given in the previous section on CSP-OZ specifications. However, since
we have previously not yet considered the parallel composition of several classes,
we add this aspect here to the construction of the CFG. As stated before, the same
approach applies to parallel composition of Object-Z and CSP-OZ classes.

Parallel Composition of Several Classes

When computing the dependence graph for the parallel composition of several
classes, we start by constructing the CFGs for each individual class as usual. These
individual CFGs are then combined into one single global CFG for the entire parallel
composition according to the following steps:

4.3 CSP-OZ-DC Specifications 93

GCFG(A ‖
SAB

B)

start.main

parSAB

start.A start.B

term.A term.B

unparSAB

term.main

GCFG(A)

////////////////start.main

sA

tA1 . . . tAn

////////////////term.main

GCFG(B)

/////////////////start.main

sB

tB1 . . . tBm

/////////////////term.main

Figure 4.14: Control flow graph for the parallel composition of classes A and
B with synchronisation on the set of common events SAB, represented by CSP
process A ‖

SAB

B

1. The generic CFG entry and exit nodes start.main and term.main of each class
C are renamed into class-specific nodes start.C and term.C, such that these
nodes are unique in the final CFG.

2. For each pair of classes (C1,C2) that should run in parallel composition, parallel
synchronisation nodes parS and unparS are created and linked via control flow
edges to the respective start and term nodes of each CFG. The synchronisation
alphabet S contains all events over which both classes need to synchronise.

3. Finally, a new pair of top level entry and exit nodes, start.main and term.main,
is created. These nodes are connected via control flow edges to each of the
newly created parallel synchronisation nodes.

For the parallel composition of two classes A and B, the parallel composition of
their individual CFGs is illustrated in Figure 4.14. Instead of constructing one
dependence graph for each individual class as it was defined in the previous
sections and as it will also be explained in the following section, the construction

94 4 Dependence Analysis

of the dependence graph for the parallel composition of all involved classes is then
based on this previously constructed global CFG. Apart from this, the construction
for parallel composition of classes proceeds as usual.

When computing the CFG for the air conditioner specification comprising the
AirConditioner class and its Environment class as introduced in Section 3.3 of the
previous chapter, we obtain the result depicted in Figure 4.15.

4.3.2 Dependence Graph

As for Object-Z and CSP-OZ specifications, the (program) dependence graph for
CSP-OZ-DC specifications contains all nodes that have already been present within
the control flow graph, supplemented by predicate nodes representing predicates
from the specification’s Object-Z schemas that have not been considered for the
construction of the CFG.

The various types of dependence edges in the dependence graph for CSP-OZ-
DC specifications are again based on the previous definitions for Object-Z and
CSP-OZ specifications. The main extension that we introduce in this concluding
section address the real-time requirements specified in the DC part of CSP-OZ-DC
specifications, represented by a new type of dependence, i.e., timing dependence
that also requires some modifications and extensions of the other previously defined
types of dependence.

Predicate Dependence

Predicate dependence for CSP-OZ-DC specifications is defined exactly as for Object-
Z and CSP-OZ specifications with the following extension that addresses the timing
requirements coming from the DC part.

This extension applies to predicate nodes n ≡ px of effect schemas that imply
modifications of variables, which are mentioned in a counterexample formula CE
within the DC part CDC of the given class. Their so far unidirectional connection
via the predicate dependence edge coming from their associated effect schema
node n′ ≡ effect x needs to be complemented by another predicate dependence
edge in the opposite direction. Therefore, in extension of the previous definition
of predicate dependence, for two nodes n and n′ a predicate dependence edge

n
pred−→ n′ exists between them iff

(n = x ∧ n′ = px) [enable and effect schema predicates]
∨ (n = px ∧ n′ = x

∧ ∃ e ∈ E : x ≡ enable e)
[enable schema predicates only]

∨ (n = px ∧ n′ = x ∧ ∃ e ∈ E : x ≡ effect e
∧ ∃CE ∈ CDC : mod(px) ∩ vars(CE) 6= ∅).

[effect schema predicates influenced by CE]

4.3 CSP-OZ-DC Specifications 95

start

par_AC.Env.{dtemp}

start_AC start_Env

en_workswitch_6 par_|||_2

eff_workswitch_6

par_|||_1

call_AC.Ctrl_7 call_AC.Work_4

start_AC.Ctrl start_AC.Work

ret_AC.Work_4

unpar_|||_1

seq_1

skip_1

unpar_[]_1

term_AC.Ctrl

en_consume_7

eff_consume_7

en_dtemp_5

eff_dtemp_5

en_off_8

eff_off_8

skip_2

unpar_[]_3

par_[]_3

term_AC.Work

en_modeswitch_1

eff_modeswitch_1

call_AC.Ctrl_1

en_workswitch_2

eff_workswitch_2

par_[]_1

en_refill_3

eff_refill_3

call_AC.Ctrl_3

ret_AC.Ctrl_7

call_AC.On_12

start_AC.On

call_AC_10

en_level_4

eff_level_4

call_AC.Work_5

call_Light_23 call_Temp_18

start_Light start_Temp

en_lchange_9

eff_lchange_9

call_Light_15

en_dtemp_10

eff_dtemp_10

en_tchange_12

eff_tchange_12

en_dlight_11

eff_dlight_11

call_Temp_22

Figure 4.15: Control flow graph for the air conditioner specification comprising
the AirConditioner class (AC) and its Environment class (Env).

96 4 Dependence Analysis

This extension treats such predicate nodes in a similar way as predicate nodes of
enable schemas, since they play—in conjunction with the DC formula—a similar
role: They can be regarded as a guard for the associated event, since this event can
only take place if the predicates in its effect schema comply with the restrictions
given in the DC counterexample formula CE. Therefore, the DC part can inhibit the
execution of events although their enable schema is satisfied. This extended form
of precondition is reflected by introducing the additional predicate dependence
edge for any involved effect schema predicate.

Control Dependence

The real-time requirements from the DC part also lead to an additional subtype of
control dependence:

• Control dependence due to timing exists between an enable node and its
associated effect node iff there exists a DC counterexample formula CE in
the DC part CDC of the given class that mentions the given event or variables
that are modified by it, i.e., for two nodes n and n′ a control dependence edge
due to timing n cd−→ n′ exists iff

∃ e ∈ E : n ≡ enable e ∧ n′ ≡ effect e
∧ ∃CE ∈ CDC : e ∈ events(CE) ∨ vars(CE) ∩mod(e) 6= ∅.

Again, even events with an empty enable schema can be source of a control
dependence edge, since the DC part may restrict, whether control flow continues
with a given event, in spite of the enable schema of the event being satisfied.

Apart from this extension, control dependence for CSP-OZ-DC specifications is
defined exactly as for CSP-OZ specifications.

Data and Synchronisation Dependence

The definitions of data dependence and synchronisation dependence for CSP-OZ
specifications are directly applicable also to CSP-OZ-DC specifications, since the DC
part does not require any modifications or extensions of these types of dependence.

Timing Dependence

Intuitively, a timing dependence exists between two nodes in the PDG if their
associated events or variables are constrained by one of the formulae of the DC
part. Since DC formulae of CSP-OZ-DC specifications define real-time requirements
in terms of counterexamples of arbitrary length, the number of events and variables
referenced by a single DC formula can be arbitrarily large. Therefore, the same
holds for the number of associated PDG nodes.

4.3 CSP-OZ-DC Specifications 97

CE ::= ¬(Ph a (Ph | Ev) a

. . . a (Ph | Ev) a

true)

counterexample traces, consisting of phase ex-
pressions Ph and event expressions Ev

Ph ::= (true | dpe) phase invariant, optionally with. . .
[∧ ` ∼ t] . . . time bound (∧ ` ∼ t) and . . .
(∧ � ev)∗ . . . definition of forbidden events (� ev)

∼ ::= ≤|<|>|≥ time bound operator

Ev ::= l ev required event: a zero-time (point) interval
where event ev takes place

| 6 l ev forbidden event: event ev must not take place
at the given point interval

| Ev ∨ Ev disjunction of required/forbidden events
| Ev ∧ Ev conjunction of required/forbidden events

Figure 4.16: Syntax of counterexample formulae CE with ev ∈ Events being an
event and p being a predicate over a set of state variables V.

The number of PDG edges required for representing all of the mutual influences
between these nodes even grows with the factorial of the number of involved nodes.
In order to limit the number of necessary edges, we will in the following define an
ordering of the involved PDG nodes according to the syntactical ordering of the
associated elements of the given DC formula.

Thus, the basic idea of timing dependence edges

td←→ ⊆ NPDG × NPDG

is to represent the mutual influence between PDG nodes that are associated to
neighbouring elements of a DC counterexample formula.

The representation of dependences arising from the DC part needs some addi-
tional preparation. In Figure 4.16 we first remind the syntax of DC counterexample
formulae used within the DC part that has already been introduced in the previous
Chapter 3.

Next, we introduce a data structure that will be useful for easily referencing
variables and events that are constrained by counterexample formulae of the DC
part. As defined by its syntax, any counterexample formula CE consists of a finite
series of phase expressions Ph and event expressions Ev with the initial element of
the series being a phase expression. According to [Hoe06], we can represent each
phase expression Ph together with all its preceding event expressions Ev by using a

98 4 Dependence Analysis

data structure PhaseSpec of the following form, where V is the set of state variables
of the underlying formula:

TimeOp ::= none | less | lessequal | greater | greaterequal

PhaseSpec
inv : L(V)
allowEmpty : B
timeop : TimeOp
bound : Time
forbidden : FEvents
entryEvents : L(Events)

allowEmpty⇒ (inv = true ∧ timeop 6∈ {greater, greaterequal})
timeop = none⇔ bound = 0

In order to represent all information of a given phase Ph together with all its
preceding events Ev, the following conditions must be satisfied by PhaseSpec:

• a phase invariant of the form dpe (where p is a predicate, referencing only
variables in V) is represented by inv ≡ p,

• a phase true is represented by inv ≡ true, together with allowEmpty ≡ true, in
order to distinguish true phases from dtruee phases, since the latter require
non-empty time-intervals,

• time bounds of the form ` ∼ t are represented by a value of timeop according
to the time bound operator ∼ and a value of bound according to the time
bound t,

• the absence of time bounds is represented by timeop ≡ none and bound ≡ 0,

• forbidden events of the form � ev are represented by the set forbidden con-
taining the mentioned event, i.e., ev ∈ forbidden, and

• preceding entry event formulae containing expressions of the form l ev and
6 l ev are captured as a whole within entryEvents, which either is the conjunction
of all such formulae, or which has the value true if there are no such formulae.

With events(PhaseSpec) we refer to the set of events being mentioned within
PhaseSpec.forbidden and PhaseSpec.entryEvents. Similarly, we let vars(PhaseSpec)
denote the set of variables being mentioned within PhaseSpec.inv.

4.3 CSP-OZ-DC Specifications 99

A complete counterexample formula CE can then be represented as a finite
sequence of suitable PhaseSpec data structures:

CE =̂ PhaseSpecCE
0 ; PhaseSpecCE

1 ; PhaseSpecCE
2 ; . . .

Based on this representation of DC counterexample formulae CE, we now define an
associated timing node sequence

TNSCE : seq n

consisting of dependence graph nodes n with relevance to the given formula which
are defined as follows:

n ∈ ran TNSCE ⇔
n ≡ start.main ∧ PhaseSpecCE

0 .timeop 6= none
∨ ∃ PhaseSpecCE

i : mod(n) ∩ vars(PhaseSpecCE
i) 6= ∅

∨ n ≡ enable ev ∧ ev ∈ events(PhaseSpecCE
i)

Therefore, the relevant nodes that are gathered within a timing node sequence
include

• the start.main node of the given class, if the initial phase of CE has a time
bound different from 0, i.e.,

PhaseSpecCE
0 .timeop 6= none,

• predicate nodes n implying modifications of variables being mentioned in
some phase of CE, i.e.,

∃ PhaseSpecCE
i : mod(n) ∩ vars(PhaseSpecCE

i) 6= ∅,

and

• nodes n ≡ enable ev representing the enable schema of some event ev that
is mentioned in some phase of CE, i.e.,

∃ PhaseSpecCE
i : ev ∈ events(PhaseSpecCE

i).

Note that the start.main node is never mentioned explicitly inside a DC formula,
but is rather indirectly used as a reference point for the length of the first phase: If
CE restricts the length of the initial phase in some way, i.e., if PhaseSpecCE

0 .timeop 6=
none, the start.main node will be relevant, since CE can then be regarded as being
anchored to the point of initialisation, which is represented by the start.main node.

The nodes inside each TNSCE are ordered according to the syntactical occurrence
of their associated specification elements within CE. The only exceptions are the
following:

100 4 Dependence Analysis

• the start.main node: this node lacks an associated specification element and
will thus—presumed it is included at all—appear as the first element of the
timing node sequence, since it is associated with the point of initialisation.

• nodes that modify the same variable referenced by CE are ordered alphabeti-
cally according to their names.

• nodes that correspond to different occurrences of an event in the CSP part are
ordered according to their syntactical occurrence in the CSP part.

Based on these timing node sequences, a bidirectional timing dependence edge
n td←→ n′ is defined to exist between any two dependence graph nodes n and n′ iff
there is a counterexample formula CE with an associated timing node sequence
TNSCE that contains two neighbouring timing nodes n and n′, i.e., iff

∃TNSCE : {n,n′} ⊆ ran TNSCE ∧ dom n + 1 = dom n′.

Therefore, all dependence graph nodes related to elements that appear in a given
DC counterexample formula are connected via a chain of bidirectional timing
dependence edges in the order of their syntactical occurrence within the DC
formula.

4.3.3 Example: Timed Air Conditioner Dependence Graph

An example of each type of the previously defined types of dependence can be found
in the dependence graph of our example specification of the timed air conditioner
system, depicted in Figure 4.17:

• Control dependence due to synchronisation appears at the edge between nodes
en dtemp 10 and eff dtemp 10 . Without event dtemp being in the syn-
chronisation alphabet of class AirConditioner and class Environment, the
enable dtemp schema would not be source of a control dependence edge,
since it does not contain any predicate, such that the guard of event dtemp is
equivalent to true and thus always trivially satisfied.

• Indirect control dependence appears at the edge between nodes start Light
and en lchange 9 . Supposed, the predecessor of event lchange in the CSP
part of class Environment, i.e., event dlight, would have had a non-empty
enable schema, then the associated node would have been source of a
control dependence leading to node enable lchange. Since this is not the
case, such an edge does not exist, but instead both nodes enable dlight and
enable lchange are directly attached to the start node of process Light, the
latter one only due to the definition of indirect control dependence.

4.3 CSP-OZ-DC Specifications 101

start_AC

...

cd

en_dtemp_5

cd

...

cd

start_Env

temp’=0

pred

light’=0

pred

par_|||_2

cd

call_Temp_18

cd

call_Light_23

cd

start_Temp

cd

start_Light

cd

en_dtemp_10

cd

en_tchange_12

cd

eff_tchange_12

cd

call_Temp_22

cd

sd

eff_dtemp_10

cd

temp’ = temp+dt

pred

cd

en_dlight_11

cd

eff_dlight_11

cd

en_lchange_9

cd

eff_lchange_9

cd

call_Light_15

cd

tdl?=darken => dl’ = -1

pred

l?=brighten => dl’ = 1

pred

light’ = light+dl

pred

cd

t?=cool => dt’=-1

pred

t?=heat => dt’=1

pred

dd

dd

dd

dd

dd

dd

dd

dd

par_AC.Env.{dtemp}

cd

cd

start

cd

Figure 4.17: Program dependence graph for the air conditioner system. Nodes
inside bold bounding rectangles belong to the same class, nodes inside dashed
bounding rectangles to the same event. Note that most of the AirConditioner part
is hidden, indicated by “. . .” nodes.

• Direct data dependence appears at the edge between nodes t?=cool => dt’=1
and temp’=temp+dt , where the modification of variable dt at the source node
may directly reach the reference of this variable at the target node.

• Synchronisation data dependence is not visible within the example, but ap-
pears in the full dependence graph between nodes associated with the
effect dtemp schemas within class Environment and class AirConditioner,
since AirConditioner communicates a change in temperature on channel
dtemp via variable t! (that is restricted within the AirConditioner schema
effect dtemp) to the receiving variable t? (that is referenced within the
Environment schema effect dtemp).

• Synchronisation dependence appears at the edge between node en dtemp 5
and node en dtemp 10 , which both belong to the synchronisation alphabet
of AirConditioner and Environment. If one of both events is relevant, this also
applies to the other one, since both need to agree in order to occur.

102 4 Dependence Analysis

• Timing dependence appears at the edge between nodes en dlight 11 and
en lchange 9 . This timing dependence is derived from the DC formula

CE ≡ ¬(truea l dlighta� lchange ∧ ` > 1a true)

which appears in the DC part of the environment specification, and which
relates both involved events dlight and lchange as follows.

The resulting sequence of PhaseSpec data structures

CE =̂ 〈PhaseSpecCE
0 , PhaseSpecCE

1 , PhaseSpecCE
2 〉

consists of three PhaseSpec elements, representing each of the three phases
that CE contains. The initial and concluding phases of CE refer to intervals of
arbitrary length (true), represented by

PhaseSpecCE
i .inv = true,

PhaseSpecCE
i .allowEmpty = true, and

PhaseSpecCE
i .timeop = none

with i ∈ {0, 2}.
In between, the formula contains the phase � lchange ∧ ` > 1 that refers to
a non-empty interval, preceded by the event expression l dlight that refers
to a point interval. Both of these intervals are represented by the single data
structure PhaseSpecCE

1 , which contains information about the required initial
events, namely l dlight, represented by

PhaseSpecCE
1 .entryEvents = l dlight,

information about events that are forbidden throughout the particular interval,
namely � lchange, represented by

PhaseSpecCE
1 .forbidden = {lchange},

and information about a required minimal bound over the length of the
particular interval, namely ` > 1, represented by

PhaseSpecCE
1 .allowEmpty = false,

PhaseSpecCE
1 .timeop = greater, and

PhaseSpecCE
1 .bound = 1.

Therefore, the resulting timing node sequence contains only the nodes as-
sociated with the enable schemas of events dlight and lchange, which are
ordered according to their references within CE:

TNSCE = 〈en dlight 11, en lchange 9〉.

Finally, these nodes are connected via a bidirectional timing edge.

5 Specification Slices

Contents
5.1 Slicing Criterion . 104

5.2 Dependence Graph Backwards Slice 105

5.3 Object-Z Specification Slices 105

5.3.1 Example: Tic-Tac-Toe Specification 106

5.4 CSP-OZ Specification Slices . 110

5.4.1 Example: Air Conditioner Slice 112

5.5 CSP-OZ-DC Specification Slices 114

5.5.1 Example: Timed Air Conditioner System Slice 115

5.6 Classification of the Slicing Approach 118

The construction of the program dependence graph for formal specifications as
defined in the previous chapter has been completely independent of the actual
verification property, given as a formula of a stuttering invariant logic. The formula
comes only now into play when the slicing is carried out.

In ordinary program slicing, the slicing criterion is the value of a variable at a
certain program statement. In order to construct the slice of a program with respect
to this criterion, the dependence graph node representing the statement of interest
is first determined. Afterwards, all dependence graph nodes are included in the
slice, which are backwards reachable (via dependence edges) from the initially
determined node. In this way, that part of the program is obtained, which might
influence the slicing criterion. Conversely, this implies that all remaining parts of
the program are irrelevant with respect to the slicing criterion. Thus, they may
finally be removed from the program in order to obtain the desired slice.

When slicing formal specifications with respect to logical formulae it is less easy
to determine the actual slicing criterion. We first have to find out what the “start
nodes” for slicing are, i.e., which nodes represent the slicing criterion. This question
will be addressed in the next section.

Afterwards, we define how to compute the backwards slice on the program
dependence graph and how to obtain the actual result of slicing the program
dependence graph, i.e., a set of nodes that is not reachable for the given slicing
criterion and can thus be safely removed from the specification without changing
the verification result.

104 5 Specification Slices

Finally, we will define how to obtain slices of specifications, given the outcome
of the backwards slice on the program dependence graph.

A concluding section discusses the classification of the presented slicing approach
with respect to the possible criteria that have been introduced in Chapter 2.

5.1 Slicing Criterion

The slicing criterion that we use for slicing formal specifications in the context of
verification will be formulae in the notation of some stuttering-invariant logic. Our
goal is then to show that a given specification satisfies such formulae. In the case of
Object-Z and CSP-OZ the employed logic might be some temporal logics such as the
next-free projection of LTL, LTL−X , or the untimed projection of Duration Calculus
formulae, SE-IL, that we consider in this thesis, while in the case of CSP-OZ-DC
specifications the logic should also be able to express real-time properties as it is
the case for test formulae, the subclass of DC, which we will consider in this thesis.

However, regardless of which concrete logic we actually use to formulate the
verification property, the basic building blocks of any formula will be references
to events and variables defined in the specification. Thus, from a given formula
ϕ it is straightforward to derive a set of relevant events Eϕ and a set of relevant
variables Vϕ, namely those appearing directly in the formula. From these sets we
can determine the set of dependence graph nodes Nϕ, which directly manipulate
these variables or influence the execution of these events:

Nϕ = {px ∈ Npred | mod(px) ∩ Vϕ 6= ∅}

∪ {enable e ∈ NCFG | e ∈ Eϕ}

Thus, this set of nodes represents all dependence graph nodes that have direct
relevance for the verification property. Altogether we have now obtained three
different characterisations of the slicing criterion on three different levels, with
each characterisation being derived from the previous level:

1. On the level of logical formulae the primary slicing criterion is given as a
formula ϕ in some stuttering-invariant logic.

2. On the abstract level of events and variables that are referred to within the
specification, the intermediate slicing criterion is given as the pair (Eϕ, Vϕ)
of sets of events and variables, which are derived from the primary slicing
criterion on the level of logical formulae, i.e., directly from formula ϕ which
mentions the events Eϕ and variables Vϕ.

3. On the level of the dependence graph, the final slicing criterion is given as the
set Nϕ of nodes with direct relevance for the secondary and thus also for the
primary slicing criterion.

5.2 Dependence Graph Backwards Slice 105

Next, we will use the slicing criterion on the dependence graph level to deter-
mine further nodes that might affect our primary slicing criterion, the verification
property ϕ.

5.2 Dependence Graph Backwards Slice

Starting from the initial set of nodes that we obtained in the previous section as
the final representation of the slicing criterion, we compute the backward slice by
a reachability analysis of the dependence graph. The resulting set of backwards
reachable nodes contains all nodes that lead via an arbitrary number and arbitrary
combination of predicate, control, data, synchronisation or timing dependence
edges to one of the nodes that already are in Nϕ.

In addition to all nodes from Nϕ, the backward slice contains therefore also all
dependence graph nodes with indirect influence on the given property, i.e., it is the
set of all relevant nodes for the specification slice:

N′ = {n′ ∈ NPDG | ∃n ∈ Nϕ : n′ (
pred−→ ∪ cd−→ ∪ dd−→ ∪ sd−→ ∪ td−→)∗ n}

Thus, the backward slice contains the set of all nodes which have some kind of
influence on the truth value of our primary slicing criterion ϕ according to the
dependences comprising the dependence graph. Simultaneously, these relevant
dependence graph nodes give us the events, predicates and variables which have
to remain in the reduced specification, namely those associated with one or more
of the relevant nodes as follows.

Relevant events are those associated with nodes from N′ that represent relevant
enable or effect schemas

E′ = {e | ∃n ∈ N′ : n ≡ enable e ∨ n ≡ effect e}

and relevant variables are those associated with nodes from N′ that represent
relevant predicates:

V ′ =
⋃

px∈N′
vars(px).

5.3 Object-Z Specification Slices

Given the set of relevant variables V ′ and the set of relevant events E′ from the
previous backwards slice computation on the program dependence graph, it is then
straightforward to construct a reduced version of a given specification class C with
respect to the primary slicing criterion, verification property ϕ. The reduced class
C′ contains

106 5 Specification Slices

• a state schema with variables from V ′ only (with the same type as in the
original class C),

• an Init schema restricting only variables in V ′,

• enable and effect schemas only for events in E′, and

• within these schemas only predicates that refer to (primed or unprimed)
variables from V ′.

We refer to the resulting reduced schemas that belong to this sliced class specifica-
tion as

State′, Init′,enable e′, effect e′

in order to properly distinguish them from their unprimed counterparts in the
original specification C.

5.3.1 Example: Tic-Tac-Toe Specification

We will now use the previously introduced Tic-Tac-Toe specification as an example
to demonstrate the effect that can be achieved by slicing Object-Z specifications
with respect to two different temporal logic verification properties.

Example Slicing Criterion: Number of Moves and Free Positions

The first verification property and slicing criterion that we use for slicing the class
TicTacToe is the state/event interval logic formula

ϕ1 := 2L dmoves = 9−#freee,

expressing an invariant of the Tic-Tac-Toe specification that requires a linear relation
between the number of moves and the number of free fields on the board. We
restrict the explanation of this formula at this point to its informal description,
since this contains already everything that matters for the illustration of the slicing
approach, namely, the events and variables that the formula mentions. A formal
definition of state/event interval logic formulae will follow in Chapter 6 on slicing
correctness.

The sets of relevant events and variables derived from the formula are thus

Eϕ1 = {} and Vϕ1 = {moves, free},

leading to the following set of relevant nodes that we obtain initially:

Nϕ1 = {(moves′ = moves + 1)effect white,
(moves′ = moves + 1)effect black,
(free′ = Posn \ (bposn′ ∪ wposn′))effect white,
(free′ = Posn \ (bposn′ ∪ wposn′))effect black}

5.3 Object-Z Specification Slices 107

Note that both of the latter predicates are actually part of the state invariant which
became part of the effect schemas due to our normalisation. The final results of
the subsequent backwards slice computation on the dependence graph are the
following sets of relevant nodes

N′ϕ1
= N \



effect result,(
lines(bposn) > lines(wposn)
⇒ result! = black wins

)
effect result

,(
lines(wposn) > lines(bposn)
⇒ result! = white wins

)
effect result

,(
lines(wposn) = lines(bposn)
⇒ result! = draw

)
effect result


and the following sets of relevant variables and events:

V ′ϕ1
= V

E′ϕ1
= E

Thus, no variables and no complete methods can be removed from the specification;
however, a number of predicates are irrelevant and can indeed be removed. Based
on this result we compute the specification slice with respect to ϕ2 that is depicted
in Figure 5.1.

To summarise, the slice with respect to ϕ1 exhibits only one difference in compari-
son to the original specification, namely only the effect result schema is removed
along with its contained predicates. This schema determines the final result that
is communicated by event result to the environment. This outcome is sensible, of
course, since the communicated result does not have any influence on the given
property.

Example Slicing Criterion: Alternation of Moves

Our second example of slicing the Tic-Tac-Toe specification uses the following
state/event interval logic formula as the verification property and slicing criterion:

ϕ2 := ¬3L (blacka (dtruee ∧ ¬(dtrueea whitea dtruee))a black)

∧ ¬3L (whitea (dtruee ∧ ¬(dtrueea blacka dtruee))a white)

This formula describes the way of how both Tic-Tac-Toe players are expected to
perform their moves, namely in an alternating fashion. The formula specifies this
requirement by negating two suitable counterexamples: it should never happen
that between two moves of one player, no move of its opponent takes place.

When slicing the class TicTacToe with respect to the formula, we first determine
the sets of relevant events and variables appearing directly within the slicing

108 5 Specification Slices

TicTacToe′ϕ1

bposn,wposn, free : P Posn
over, turn : B
moves : N

free = Posn \ (bposn ∪ wposn)
over⇔ (moves = 9)

Init
bposn = ∅
wposn = ∅
¬over
turn
free = Posn
moves = 0

enable white

turn
¬over

enable black

¬turn
¬over

effect white
∆(wposn,moves, free, over, turn)
p! : Posn

p! ∈ free
wposn′ = wposn ∪ {p!}
¬turn′

moves′ = moves + 1

effect black
∆(bposn,moves, free, over, turn)
p! : Posn

p! ∈ free
bposn′ = bposn ∪ {p!}
turn′

moves′ = moves + 1

enable result

over

Figure 5.1: Slice of the Tic-Tac-Toe specification with respect to ϕ1

criterion formula, namely Eϕ2 = {black,white} and Vϕ2 = {}. From these we obtain
the following initial set of relevant nodes

Nϕ2 = {enable white,enable black}.

When starting at these nodes and subsequently computing the backwards slice
on the dependence graph, the final results are the following sets of relevant
dependence graph nodes

N′ϕ2
= N \ {(bposn = ∅)Init, (wposn = ∅)Init, (free = Posn)Init,

(p! ∈ free)effect white, (wposn′ = wposn ∪ {p!})effect white,
(free′ = Posn \ (bposn′ ∪ wposn′)effect white,
(p! ∈ free)effect black, (bposn′ = bposn ∪ {p!})effect black,

5.3 Object-Z Specification Slices 109

(free′ = Posn \ (bposn′ ∪ wposn′)effect black,
effect result,
(lines(bposn) > lines(wposn)⇒ r! = black wins)effect result,
(lines(wposn) > lines(bposn)⇒ r! = white wins)effect result,
(lines(wposn) = lines(bposn)⇒ r! = draw)effect result,
(free′ = Posn \ (bposn′ ∪ wposn′)effect result}

and the following sets of relevant variables and events:

V ′ϕ2
= V \ {bposn,wposn, free}

E′ϕ2
= E

Based on this result we compute the specification slice with respect to ϕ2 that is
depicted in Figure 5.2.

Thus, in addition to the difference that we saw in the previous example, this
slice yields an additional reduction in comparison to the original specification: All
predicates have been removed that determine the sets of free and occupied fields,
along with the variables that record the occupation of fields.

TicTacToe′ϕ2

over, turn : B
moves : N

over⇔ (moves = 9)

Init
¬over
turn
moves = 0

enable white

turn
¬over

enable black

¬turn
¬over

effect white
∆(moves, over, turn)

¬turn′

moves′ = moves + 1

effect black
∆(moves, over, turn)

turn′

moves′ = moves + 1

enable result

over

Figure 5.2: Slice of the Tic-Tac-Toe specification with respect to ϕ2

110 5 Specification Slices

This difference is sensible, since the given property expresses only that there
is a strict alternation between the moves of the players. In order to analyse the
sequence of moves the players can perform, the exact occupation of fields during
the course of the game is irrelevant and all related predicates can safely be removed
together with the variables that store the associated information about free and
occupied fields.

All in all, the examples of slicing Object-Z specification with respect to verification
properties that we presented in this section clearly suggest that slicing can substan-
tially reduce the size of the specification and hence the underlying state space, such
that verification of temporal logic properties will be facilitated.

5.4 CSP-OZ Specification Slices

For CSP-OZ specifications, we can compute a reduced specification in a similar way
as for Object-Z specifications in that we use the same starting point, namely the
result from the previously performed backwards slice computation on the program
dependence graph, which are essentially the set of relevant nodes N′, the set of
relevant variables V ′ and the set of relevant events E′.

However, in addition to computing reduced versions of state space, Init,
enable, and effect schemas, we now also have to compute a reduced ver-
sion of the CSP part in order to obtain a reduced CSP-OZ specification. To this end
we define the following notion of projection of CSP process definitions onto a given
set of relevant events:

Definition 5.4.1 (Projection of CSP processes). Let P be the right-hand side of a
process definition from the CSP part of a specification and E be the set of events that
appear in the specification. The projection of P with respect to a set of events E′ ⊆ E,
denoted by P|E′, is inductively defined:

1. Skip|E′ := Skip and Stop|E′ := Stop

2. (e→ P)|E′ :=

{
P|E′ if e 6∈ E′

e→ P|E′ else

3. (P ◦ Q)|E′ := P|E′ ◦ Q|E′ with ◦ ∈ {#, ‖|,u,2}

4. (P ‖
S

Q)|E′ := P|E′ ‖
S∩E′

Q|E′

The projection of the complete CSP part is then defined by applying the above
definition to the right side of each process definition.

The application of this notion of projection can lead to CSP process definitions of
the form P = P which mean that a call of a process P introduces divergence at the

5.4 CSP-OZ Specification Slices 111

point of the process call, i.e., the process call P can then be regarded as equivalent
to the divergence process Div which does nothing but diverge [Ros97].

From an operational semantics point of view, the divergence can in turn be re-
garded as being equivalent to process Stop, since a process’ operational semantics
is defined in terms of the sequence of events that the process communicates, and
both Div and Stop never communicate. This gives rise to further simplifications
of the CSP part that remove void process definitions of the form P = P and suitably
replace references to process P:

Definition 5.4.2 (Pruning of void process definitions). Let CCSP be the CSP part of
a CSP-OZ specification. A version of the CSP part that is pruned from void process
definitions of the form P = P, denoted by PruneVoid(CCSP), is then obtained by
applying the following transformation, until a fix point is reached, i.e., until the CSP
part does not contain any more process definitions of the form P = P. For any process
definition of the form P = P the transformation steps are the following:

1. The process definition P = P is removed from CCSP.

2. Any reference to process P is replaced with a reference to the divergence process
Div.

3. The following simplifications are applied to the right-hand side of each process
definition of CCSP:

a) e→ Div := e→ Stop

b) Q # Div := Q # Stop

c) Div # Q := Stop

d) Q‖|Div := Q

e) Q ‖
A
Div := Q ‖

A
Stop

f) Q 2 Div := Q

g) Q u Div := Q u Stop

Having previously identified the sets of relevant events E′ and relevant variables V ′,
which might influence the property (formula) under interest, the slice of a CSP-OZ
specification can next be determined. In contrast to the original specification, the
sliced specification class contains

• only channels associated with the set of relevant events E′,

• only CSP process definitions that are projections of CSP process definitions
from the original specification onto the set of relevant events E′,

112 5 Specification Slices

• inside the state schema only variables from V ′ (same type as in C),

• inside the Init schema only predicates restricting variables from V ′,

• only Object-Z schemas associated with events from E′, and

• inside these schemas only predicates associated with nodes in N′.

Furthermore, the CSP part is pruned from void process definitions according to
definition 5.4.2.

Thus, the only additional point in comparison to the previous slice computation
for pure Object-Z specifications addresses the specification’s CSP part and the
computation of projections of CSP process definitions with respect to relevant
events.

5.4.1 Example: Air Conditioner Slice

For illustrating the slicing approach for CSP-OZ specifications we now use the
untimed air conditioner specification consisting of only the AirConditioner class
that we have introduced in the previous chapters. Our verification property and
slicing criterion will be the following state/event interval logic formula:

ϕ ≡2L (work⇒ fuel > 5),

This formula expresses an invariant of the air conditioner requiring that, whenever
the system is activated (work), the remaining fuel supply must stay above a certain
critical level (fuel > 5).

Note that for the time being we only give this informal explanation of the
meaning of this formula, since for the purpose of illustrating the slice computation
it only matters, which variables and events are mentioned by the formula. For a
formal definition of state/event interval logic formulae we refer again to the next
Chapter 6 on slicing correctness.

For slicing the air conditioner with respect to ϕ we obtain the set of relevant
events Eϕ = {} and the set of relevant variables Vϕ = {work, fuel}. This, in turn,
leads to the following initial set of relevant nodes:

Nϕ = {(work′ = ¬work)effect workswitch,
(fuel′ = fuel− 1)effect consume,
(fuel′ = min(fuel + f?, 100))effect refill}.

The result of the backwards slice on the dependence graph is the following:

N′ = N \ {effect modeswitch, (mode′ = m?)effect modeswitch,
effect dtemp, (t! = mode)effect dtemp,
effect level, (f ! = fuel)effect level},

E′ = E \ {modeswitch, dtemp, level},
V ′ = V \ {mode}

5.4 CSP-OZ Specification Slices 113

AirConditioner′

chan workswitch, consume, off chan refill : [f? : Fuel]
main = workswitch→ On
On = (Operate‖|Work) # main
Work = consume→ Work

2 off → Skip
Operate = Operate

2 refill→ Operate
2 workswitch→ Skip

work : B; fuel : Fuel
Init
¬work

effect workswitch
∆(work)

work′ = ¬work

enable off

¬work

enable consume

work ∧ fuel > 5

effect consume
∆(fuel)

fuel′ = fuel− 1

enable refill

fuel < 100

effect refill
∆(fuel); f? : Fuel

fuel′ = min(fuel + f?, 100)

Figure 5.3: Slice of the untimed air conditioner class with respect to ϕ

Thus, the only irrelevant variable with respect to our given formula is variable mode,
while three events are completely irrelevant for our formula and can therefore be
removed from the specification. This leads to the specification slice depicted in
Figure 5.3. All in all, the reductions achieved by applying our slicing algorithm to
this example are:

1. Event modeswitch and thus a complete branch of the interleaving operator
in the CSP Operate process has been removed together with variable mode,
which is sensible, since the mode of operating of the air conditioner (heating
or cooling) does not have any influence on the slicing criterion, property
2L (work⇒ fuel > 5), since the mode does neither have any kind of influence

114 5 Specification Slices

on the activation status (work) nor on the remaining fuel supply (fuel > 5) of
the air conditioner.

2. Events dtemp and level have been removed, which is also sensible, since neither
modelling the effect that the air conditioner induces on the environment
(dtemp) nor communicating the current amount of fuel to the environment
(level) have any influence on the given property.

To summarise, the specification’s state space has not only been reduced with respect
to its control flow space (events dtemp, modeswitch and level), but also with respect
to its data state space (variable mode).

Note that neither the original nor the sliced AirConditioner specification satisfies
the given property, so the verification result will be negative in both cases. Never-
theless, this is exactly what we wanted to achieve: A specification slice must satisfy
a slicing criterion if and only if the original specification does so which will be
shown in the next Chapter 6 on slicing correctness.

5.5 CSP-OZ-DC Specification Slices

Also for the slicing approach for CSP-OZ-DC specifications, the final step consists in
the computation of a reduced version of the original specification, i.e., a reduced
specification without all details which are not relevant for the property that served
as the primary slicing criterion. Verification with respect to this property can
afterwards be performed on this reduced specification while the verification result
will be the same.
Given the previously computed sets N′, V ′ and E′, it is then straightforward to
construct the reduced specification. For each class C its sliced version C′ contains

• only channels from the set of relevant events E′,

• the projection of the original specification’s CSP part onto E′,

• a state schema with variables from V ′ only (same type as in C),

• an Init schema with only predicates restricting variables from V ′,

• only Object-Z schemas associated with events from E′,

• inside these schemas only predicates associated with nodes in N′, and

• a DC part with only counterexample formulae that mention variables from V ′

and events from E′.

5.5 CSP-OZ-DC Specification Slices 115

Thus, the only additional point in comparison to the slice computation for CSP-OZ
specifications addresses the specification’s DC part and the possible exclusion of
irrelevant counterexample formulae.

Note that due to the construction of timing dependence edges, either all or none
of the variables and events of any given counterexample formula will be part of the
slice.

5.5.1 Example: Timed Air Conditioner System Slice

For illustrating the slicing approach for CSP-OZ-DC specifications we now use
the timed air conditioner system introduced in the previous chapters, i.e., the
class AirConditioner in parallel composition with the class Environment. As our
verification property and slicing criterion consider the following test formula:

ϕ ≡ ¬(truea dwork ∧ fuel < 5ea true).

This formula uses the pattern of a counterexample specification to express the
following requirement: the air conditioner system must never reach a state where
it is activated and where simultaneously its fuel supply has dropped below some
critical value.

Note that for the time being we only give this informal explanation of this test
formula’s meaning, since for the purpose of illustrating the slice computation it
only matters, which variables and events are mentioned by the formula. The formal
definition of test formulae will be given in the next Chapter 6 on slicing correctness.

The sets of relevant events and variables that we obtain for ϕ are Eϕ = {} and
Vϕ = {work, fuel}. For slicing the air conditioner with respect to ϕ we then first
compute the following initial set of relevant nodes:

Nϕ = {(work′ = ¬work)effect workswitch,
(fuel′ = fuel− 1)effect consume,
(fuel′ = min(fuel + f?, 100))effect refill}.

The result of the backwards slice on the dependence graph is the set of relevant
nodes

N′ = N \ {effect level, (f ! = fuel)effect level,
effect tchange, (temp′ = temp + dt)effect tchange,
effect dlight,

(l? = darken ⇒ dl′ = −1)effect dlight,
(l? = brighten ⇒ dl′ = 1)effect dlight,

effect lchange, (light′ = light + dl)effect lchange}.

116 5 Specification Slices

This set of relevant dependence graph nodes leads to the following sets of relevant
events for the AirConditioner class:

E′AirConditioner = EAirConditioner \ {level},
V ′AirConditioner = VAirConditioner

And these are the results for the Environment class:

E′Environment = EEnvironment \ {tchange, dlight, lchange},
V ′Environment = VEnvironment \ {light, temp, dl}.

The resulting slices of class AirConditioner and class Environment are depicted in
Figures 5.4 and 5.5. Altogether we have thus achieved the following reductions:

AirConditioner: Method level has been removed, which is sensible, since all this
method does is to communicate the current amount of fuel to the environment
(not the class Environment), which does not influence the verification property
ϕ.

Note that methods modeswitch, dtemp as well as variable mode have not
been removed. The reason is that method dtemp belongs to the synchronisa-
tion alphabet and might therefore block, depending on the behaviour of its
synchronisation partner. Therefore, both need to remain in the slice.

Environment: Methods tchange, dlight and lchange have been removed as well as
variables light, temp, and dl and DC formula

¬3(l dlighta� lchange ∧ ` > 1).

This result is also sensible, since the actual effect imposed on the environment’s
temperature (tchange and temp) does not influence the verification property
and the modelling of the environment’s lighting behaviour (dlight, lchange,
light and dl) is not related to the verification property ϕ at all.

To summarise, the specification’s state space has not only been reduced with
respect to its control flow space (events level, tchange, dlight, and lchange), but also
with respect to its data state space (variables light, temp, and dl) and its timing
requirements (the DC part of Environment).

Note that in both cases neither the original nor the sliced specification satisfies the
given property, so the verification result will be negative in both cases. Nevertheless,
this is exactly what we wanted to achieve: A specification slice must satisfy a slicing
criterion if and only if the original specification does so.

In the next Chapter 6 on slicing correctness we will show that our slicing al-
gorithm guarantees this outcome for any specification and any slicing criterion
formulated in a stuttering invariant logic.

5.5 CSP-OZ-DC Specification Slices 117

AirConditioner′

chan workswitch, consume, off
chan modeswitch : [m? : TMode] chan refill : [f? : Fuel]
chan dtemp : [t! : TMode]

main = workswitch→ On
On = (Work ||| Ctrl) # main
Work = consume→ dtemp→ Work

2 off → SKIP
Ctrl = modeswitch→ Ctrl

2 refill→ Ctrl
2 workswitch→ SKIP

work : B
mode : TMode; fuel : Fuel

Init
¬work
mode = heat

effect workswitch
∆(work)

work′ = ¬work

enable consume

work ∧ fuel > 5

effect consume
∆(fuel)

fuel′ = fuel− 1

effect modeswitch
∆(mode); m? : TMode

mode′ = m?

effect dtemp
t! : TMode

t! = mode

enable refill

fuel < 100

effect refill
∆(fuel); f? : Fuel

fuel′ = min(fuel + f?, 100)

enable off

¬work

¬3(dwork = 1ea lworkswitcha� off ∧ ` > 1)

Figure 5.4: Slice of the timed air conditioner class with respect to ϕ

118 5 Specification Slices

Environment′

chan dtemp : [t? : TMode], tchange
main = Temp ||| Light
Temp = dtemp→ tchange→ Temp
Light = Light

temp, dt : Z
Init
temp = 0

effect dtemp
t? : TMode; ∆(dt)

t? = cool ⇒ dt′ = −1
t? = heat ⇒ dt′ = 1

effect tchange
∆(temp)

temp′ = temp + dt

Figure 5.5: Slice of the environment class with respect to ϕ

5.6 Classification of the Slicing Approach

With respect to the possible classifications of slicing approaches presented in
Chapter 2, the slicing approach developed in this thesis belongs to the following
categories:

• The slice computation is obviously based on dependence graphs instead of data
flow equations.

• The slices are computed statically, since no assumptions are imposed on the
input during run-time of the specified systems.

• The direction of slicing is backward, since we use slicing to identify influences
on a given slicing criterion instead of computing what specification elements
are influenced by the slicing criterion.

• Of course, the attribute of executability does not really make sense with
respect to formal specifications. However, the specifications obtained from our
slicing approach share the following concepts with conventionally computed
executable slices: they are syntactically valid and they have a well-defined
semantics that can be related with the semantics of the original slicing target.
In this sense, the slices computed by our slicing approach can be regarded as
being executable.

5.6 Classification of the Slicing Approach 119

• The slicing criterion used is static, since no assumption on the environment is
made. However, it does not name a particular location of the specification.
Instead, these are given implicitly by the verification property and have to be
determined in a previous analysis of the slicing criterion.

• The target language of the slicing approach obviously is a formal specification
notation that comprises concepts of concurrency and real-time aspects.

• The primary application area of our slicing approach is verification, since our
main motivation is to develop a method for mitigating the problem of state
space explosion in model checking. However, additional applications are of
course possible, such as those for comprehension or measurement purposes
that have been introduced in Chapter 2.

120 5 Specification Slices

6 Slicing Correctness

Contents
6.1 Relating Slicing Results with Specification Elements 122

6.1.1 Projection Relation between Interpretations 122

6.1.2 Transitions of CSP Process Projections 124

6.1.3 CSP Transition Sequences 127

6.1.4 Irrelevant Events . 128

6.1.5 Irrelevant DC Formulae 129

6.2 Projection Relation Established by Slicing 131

6.3 Stuttering Invariance of Test Formulae 137

6.4 Stuttering Invariance of State/Event Interval Logic 142

6.4.1 State/Event Interval Logic 142

6.4.2 Projection of Event-Labelled Kripke Structures 145

The task of the slicing approach presented in the previous chapters is to compute a
reduced specification with respect to a verification property, such that the given
property can be verified on the reduced instead of the full specification. To this end,
the reduction obtained by slicing needs to be exact in the sense that with respect
to the verification property, both the full and the reduced system are equivalent.
This is the notion of correctness of the slicing algorithm that we will show in this
chapter, i.e., we show that the property (and slicing criterion) ϕ holds for the full
specification if and only if it holds for the reduced specification.

In Section 6.1 we first define the notion of a projection relationship between
interpretations that will be the basis of the subsequent correctness proof. Moreover,
Section 6.1 contains several lemmas that establish the relation between specification
elements of the full and the reduced specification with artefacts of the slicing
algorithm such as associated control flow graph elements and according types of
dependences. These lemmas will be needed in the actual correctness proof.

Next, we show in Section 6.2 that an interpretation of the reduced specification
is within the projection of an interpretation of the full specification onto some
relevant subset of the variables and events (obtained from the slicing algorithm),
i.e., both specifications only differ on variables and events that are not relevant
with respect to the given formula.

122 6 Slicing Correctness

Having established such a projection relationship and having shown that this
relationship is guaranteed by our slicing approach is the main result of the correct-
ness proof. However, to complete the proof, we still have to show that the particular
logics we use are stuttering invariant with respect to the projection relation, i.e.,
they cannot distinguish between interpretations of the full and the reduced version
of the specification. We show this in Section 6.3 for the logic that we use for
expressing real-time properties of CSP-OZ-DC specifications, i.e., for test formulae,
and in Section 6.4 for the logic that we use for expressing temporal logic properties
of Object-Z and CSP-OZ specifications, i.e., for state/event interval logic formulae.

6.1 Relating Slicing Results with Specification Elements

This section first defines the central concept of the correctness proof, namely the
notion of projection relation between interpretations. This kind of projection rela-
tionship will later be shown to exist between interpretations of the full specification
and those of the reduced specification, provided that we apply the slicing approach
developed in the previous chapters.

Furthermore, this section prepares the actual correctness proof with several
lemmas showing the relationships between objects of the slicing approach on the
one hand such as paths in the control flow graph or events and variables identified
by slicing as being relevant and specification elements on the other hand such as
CSP process definitions of the full and the reduced specifications or relevant and
irrelevant DC counterexample formulae. Each of the lemmas will be needed in
the next section that contains the actual correctness theorem, i.e., the claimed
existence of a projection relation between specifications and their associated slices.

In the following, we assume E′ to be the set of relevant events and V ′ to be the set
of relevant variables obtained from applying the slicing algorithm to a specification
C with respect to a slicing criterion ϕ, resulting in a specification slice C′.

6.1.1 Projection Relation between Interpretations

Intuitively, when computing the projection of a given interpretation onto a set of
relevant variables and a set of relevant events, one divides the interpretation into
blocks formed by time intervals beginning at one relevant event and ending at the
next relevant event. The corresponding block of an interpretation in the projection
refers to the same time interval, but does not contain any of the irrelevant events
that may appear inside the block of the original interpretation. Moreover, the
interpretation and its projection coincide throughout both blocks on the valuation
of all relevant variables.

Definition 6.1.1 (Projection of interpretation). Let O′ be a set of CSP-OZ-DC-
observables, E′ = O′ ∩ Events the set of events within O′ and I, I ′ be two E′-fair

6.1 Relating Slicing Results with Specification Elements 123

0 = t0 t1 t2 t4 Time

Block 0 Block 1 Block 2 . . .

I = M0 e0 M1︸ ︷︷ ︸ e1 M2︸︷︷︸ e2 M3 e3 M4︸ ︷︷ ︸ e4 . . .

I ′ = M′0 e1 M′1 e2 M′2 e4 . . .︷ ︸︸ ︷
= M0|V′ = M1|V′

︷ ︸︸ ︷
= M2|V′

︷ ︸︸ ︷
= M3|V′ = M4|V′

Figure 6.1: Exemplary interpretation I and a corresponding interpretation
I ′ ∈ ProjectionO′(I), within its projection with respect to a set of CSP-OZ-DC-
observables O′, with O′ ⊇ (E′ ∪ V ′) and E′ ⊇ {e1, e2, e4}, but e0, e3 6∈ E′.

interpretations with 0 = t0 < t1 < t2 < . . . and 0 = t′0 < t′1 < t′2 < . . . being the points
in time where I and I ′ change, respectively. I ′ is in the projection of I with respect
to O’, denoted by I ′ ∈ ProjectionO′(I), iff

1. ∀ t : I(t)|O′\E′ = I ′(t)|O′\E′

2. ∀ i ≥ 0: ∃ j : (ti = t′j ∧ TakesPlace(I, ti) = TakesPlace(I ′, t′j))
∨ (t′j < ti < t′j+1 ∧ TakesPlace(I, ti) ∩ E′ = ∅)

A graphical illustration of the effect of the projection definition is depicted in
Figure 6.1 where also the intuitive notion of projection blocks is illustrated. All
states inside a block are projection-equivalent (i.e., they coincide on the given set of
variable valuations) and all events inside a block are irrelevant events (i.e., events
not from the given set of events) except for the last event in a block which is a
relevant event (i.e., an event from the given set of events).

The projection of the original interpretation contains then any interpretation such
that for each of the blocks of the original interpretation all states and irrelevant
events are mapped onto one single state of the new interpretation, while the
relevant event remains in the new interpretation without changing the point in
time of its occurrence.

Given a logic which is invariant under projections, such a projection relationship
between any two interpretations then guarantees that formulae which only mention
observables from O′, i.e., variables from V ′ and events from E′ as obtained from
slicing, hold for either both or none of the interpretations.

Lamport [Lam02] introduced the following notion of stuttering invariance for the
setting of discrete, non-continuous systems:

“[...] A stuttering step represents a change only to some part of the
system not described by the formula; adding it to the behavior should
not affect the truth of the formula. We say that a formula F is invariant

124 6 Slicing Correctness

under stuttering iff adding or deleting a stuttering step to a behavior σ
does not affect whether σ satisfies F.”

Another related notion of stuttering is introduced by Apt and Olderog [AO97] in
the context of verification of parallel programs. There, discrete stuttering steps
arise from replacing assignments to auxiliary variables with skip statements. These
stuttering steps are then shown to be safely removable without changing the
semantics of the given programs.

Note that projection can be regarded as a particular form of stuttering, since each
of the intermediate irrelevant events that are present in the original interpretation
resembles a stuttering step that does not have any relevant effect on the state space.

In the following, we will therefore also apply a very similar notion of stuttering
invariance in the continuous setting of interpretations. We will characterise formu-
lae as being stuttering invariant iff they cannot distinguish between interpretations
and their projections.

6.1.2 Transitions of CSP Process Projections

Our first lemma considers the case of a single CSP transition: Either this transition
is associated with a relevant event e ∈ E′ or with an irrelevant event e 6∈ E′. In
the former case it is easy to see that the associated projection also can perform
this relevant event e, while in the latter case some further considerations lead to
the conclusion that there is some subsequent relevant event f that the original
process will eventually perform (after e and possibly further irrelevant events have
occurred), which is the same event that will immediately take place within the
associated projection.

Lemma 6.1.2 (Single transitions of CSP process projections). Let P and Q be CSP
processes with P e−→ Q , and E′ a set of relevant events. Projections of P and Q with
respect to E′ are related in one of the following ways:

1. e ∈ E′ ⇒ P|E′
e−→ Q|E′

2. e 6∈ E′ ⇒ ∀ f ∈ E′, ∀R :
(

Q |E′
f−→ R|E′ ⇒ P |E′

f−→ R|E′
)

Proof: We show both cases by induction over the structure of P. Since we know
that P can perform event e, we only have to consider a limited set of CSP constructs.

1. e is a relevant event:

a) P ≡ e −→ Q. X

b) P ≡ P1 2 P2 with Pi
e−→ Q for i ∈ {1, 2}.

Then P|E′ ≡ P1|E′ 2 P2|E′ and, since Pi
e−→ Q, the induction assumption

leads us to P|E′
e−→ Q|E′. X

6.1 Relating Slicing Results with Specification Elements 125

c) P ≡ P1‖|P2 with Pi
e−→ P′i for i ∈ {1, 2} and Q ≡

{
P′1‖|P2 if i = 1
P1‖|P′2 else .

Then P|E′ ≡ P1|E′‖|P2|E′ and, since Pi
e−→ P′i, we have P|E′

e−→ Q|E′ with

Q|E′ ≡
{

P′1|E′‖|P2|E′ if i = 1
P1|E′‖|P′2|E′ else . X

d) P ≡ P1 ‖
S

P2 with two cases for e:

i. e ∈ S, i.e., P1
e−→ P′1, P2

e−→ P′2 and Q ≡ P′1 ‖
S

P′2.

Then P|E′ ≡ P1|E′ ‖
S∩E′

P2|E′ and, since Pi
e−→ P′i, the induction assump-

tion yields Pi|E′
e−→ P′i|E′

and thus also Q|E′ ≡ P′1|E′ ‖
S∩E′

P′2|E′. X

ii. e 6∈ S, i.e., Pi
e−→ P′i for i ∈ {1, 2} and Q ≡

{
P′1‖|P2 if i = 1
P1‖|P′2 else

which is analogous to case (c). X

2. e is no relevant event:

a) P ≡ e −→ Q.
Then P|E′ ≡ Q|E′. X

b) P ≡ P1 2 P2 with Pi
e−→ Q for i ∈ {1, 2}.

Then P|E′ ≡ P1|E′ 2 P2|E′ and, since Pi
e−→ Q, it follows from the induction

assumption that

∀ f ∈ E′ : Q|E′
f−→ R|E′ ⇒ Pi|E′

f−→ R|E′

and thus the further implication P|E′
f−→ R|E′. X

c) P ≡ P1‖|P2 with Pi
e−→ P′i for i ∈ {1, 2} and Q ≡

{
P′1‖|P2 if i = 1
P1‖|P′2 else .

From the induction assumption it follows that

∀ f ∈ E′ : P′i|E′
f−→ R|E′ ⇒ Pi|E′

f−→ R|E′

and, since the other component of P remains unchanged during the
transition from P to Q, it is obvious that

∀ f ∈ E′ : Q|E′
f−→ R|E′ ⇒ P|E′

f−→ R|E′

holds. X.

d) P ≡ P1 ‖
S

P2 with two cases for e:

126 6 Slicing Correctness

i. e ∈ S, i.e., P1
e−→ P′1, P2

e−→ P′2 and Q ≡ P′1 ‖
S

P′2.

Then P|E′ ≡ P1|E′ ‖
S∩E′

P2|E′ and Q|E′ ≡ P′1|E′ ‖
S∩E′

P′2|E′. The induction

assumption yields

∀ fi ∈ E′,∀Ri : P′i|E′
fi−→ Ri|E′ ⇒ Pi|E′

fi−→ Ri|E′ .

Therefore, also Q|E′
f−→ R|E′ implies P|E′

f−→ R|E′ with either (1)

f = f1 = f2 ∈ S ∩ E′ : P′1|E′
f−→ R1|E′ ∧ P′2|E′

f−→ R2|E′ or otherwise (2)

∃ i ∈ {1, 2} : f = fi ∈ S ∩ E′ : P′i|E′
f−→ Ri|E′. X

ii. e 6∈ S, i.e., Pi
e−→ P′i, and Q ≡


P′1 ‖

S
P2 if i = 1

P1 ‖
S

P′2 else

which is analogous to case (c). X 2

The next lemma extends the previous one from single transitions to transition
sequences associated with complete projection blocks. It states that the projection
of each residual CSP process associated with a projection interval without relevant
events, as defined in Definition 6.1.1, can mimic the behaviour of the residual
CSP process associated with the last state of the projection block, i.e., the relevant
event at the end of the block is enabled at any previous step inside the block when
computing the CSP projection.

Lemma 6.1.3 (Transitions of CSP process projections). Let Pj, . . . , Pj+k+1 be CSP
processes, E′ a set of relevant events, ej+1, . . . , ej+k−2 6∈ E′ irrelevant events, and
ej+k ∈ E′ a relevant event, such that

Pj
ej+1−→ Pj+2

ej+3−→ . . .
ej+k−2−→ Pj+k−1

ej+k−→ Pj+k+1

is a valid transition sequence. Then the following holds:

P
ej+k−→ Pj+k+1|E′ with P ∈ {Pj|E′ , . . . , Pj+k−1|E′}

Note that Pj|E′ = . . . = Pj+k−1|E′ does not necessarily hold.

Proof: To prove this we apply the two clauses of Lemma 6.1.2 backwards, starting
with the last step of the transition sequence:

1. For P ≡ Pj+k−1|E′ this is obvious due to clause 1 of Lemma 6.1.2.

2. For the projections of the remaining processes

P ≡ Pj+k−3|E′ , . . . , P ≡ Pj|E′

we can repeatedly apply clause 2 of Lemma 6.1.2 to the respective previous
case. 2

6.1 Relating Slicing Results with Specification Elements 127

6.1.3 CSP Transition Sequences

Next, we bridge the gap between transition sequences that we can observe for CSP
processes and paths that are present in the associated control flow graph.

Lemma 6.1.4 (CSP transition sequences and CFG paths). Let C be a class specifica-
tion, CFG its control flow graph, I an interpretation satisfying C with 0 = t0 < t1 <
t2 < . . . being the points in time where I changes, ti with i > 0 one of these points with
e ∈ TakesPlace(I, ti) and f ∈ TakesPlace(I, ti+1). Then the two corresponding nodes
enable e and enable f of CFG are related in either one of the following ways:

1. There exists a path in CFG which leads from enable e to enable f :

pathCFG(enable e,enable f) 6= ∅

2. There exists a CFG node interleavei or pari
S with S ∩ {e, f} = ∅ which has

enable e and enable f as successors in different branches:

∃n ∈ CFG : n ≡ interleavei ∨ (n ≡ pari
S ∧ S ∩ {e, f} = ∅) :

∃ πe ∈ pathCFG(n,enable e) ∧ ∃πf ∈ pathCFG(n,enable f) :
πe ∩ πf = {n}

Proof: Let P ≡ CSPC(I, ti) and Q ≡ CSPC(I, ti+1) such that P e−→ Q is a valid CSP
transition. We show both cases by considering the structure of P and Q , respectively.
Since we know that P can perform event e, and Q can perform event f , we again
only have to consider a limited set of CSP constructs for the structure of P and Q.
For the structure of P we can distinguish the following cases:

1. P ≡ e −→ Q.
Then the following cases apply for the structure of Q:

a) Q ≡ f −→ R. X (Path exists)

b) Q ≡ Q1 2 Q2 with Qi
f−→ R for i ∈ {1, 2}. X (Path exists)

c) Q ≡ Q1 u Q2: analogous. X (Path exists)

d) Q ≡ Q1‖|Q2 with Qi
f−→ Q′i for i ∈ {1, 2}

and R ≡
{

Q′1‖|Q2 if i = 1
Q1‖|Q′2 else . X (Path exists)

e) Q ≡ Q1 ‖
S

Q2 with two cases for f :

i. Either f ∈ S : Q1
f−→ Q′1, Q2

f−→ Q′2
and R ≡ Q′1‖|Q′2. X (Path exists)

128 6 Slicing Correctness

ii. Otherwise f 6∈ S : analogous to 1.(d). X (Path exists)

f) Q ≡ X with X as in one of the previous cases for Q:
analogous to the applicable case. X (Path exists)

2. P ≡ P1 2 P2 with Pi
e−→ Q for i ∈ {1, 2}.

Structure of Q: as in the previous case for P. X (Path exists)

3. P ≡ P1 u P2 with Pi
e−→ Q for i ∈ {1, 2}.

Structure of Q: as in the previous cases for P. X (Path exists)

4. P ≡ P1‖|P2 with Pi
e−→ P′i for i ∈ {1, 2} and Q ≡

{
P′1‖|P2 if i = 1
P1‖|P′2 else .

Then the following cases apply for the structure of Q:

a) Either it has the same structure as in one of the previous cases for P. X
(Path exists)

b) Or the other branch of the interleaving operator comes into play, such
that we have e and f in different branches of the interleaving operator of
P. X (Different Branches)

5. P ≡ P1 ‖
S

P2 with two cases for e:

a) Either e ∈ S : P1
f−→ P′1, P2

f−→ P′2 and Q ≡ P′1 ‖
S

P′2 which leads to another

case distinction with respect to the structure of Q, analogous to case 1.

b) Otherwise e 6∈ S : which is analogous to 4. X

6. P ≡ X with X as in one of the previous cases.
Then one of the respective previous cases applies, according to the structure
of Q. X (Either path exists or different branches.) 2

6.1.4 Irrelevant Events

The following lemma states that the set of irrelevant events appearing inside a
projection block does not have any influence on the relevant variables associated
with the states inside the block.

Lemma 6.1.5 (No influence of irrelevant events on relevant variables). Let C be a
class specification, I an interpretation satisfying C with

0 = t0 < t1 < t2 < . . .

being the points in time where I changes, each of these ti associated with an event
ei ∈ TakesPlace(I, ti) for i > 0 such that ej+1, . . . , ej+k−1 6∈ E′ are irrelevant events and

6.1 Relating Slicing Results with Specification Elements 129

ej, ej+k ∈ E′ are relevant events with E′ being the set of relevant events obtained from
the slicing algorithm for slicing C with respect to some formula ϕ (with an associated
set of variables Vϕ).
Then the following holds:

I(tj)|Vj
= . . . = I(tj+k−1)|Vj

with V j = Vϕ ∪
⋃

e∈{ei∈E′|i≥j}
ref(e).

Proof: Suppose, the equality does not hold. Then there is some irrelevant event
el (j + 1 ≤ l ≤ j + k− 1) that modifies some variable v ∈ V j. One of the following
cases applies:

• v ∈ Vϕ: According to the definition of the slice (which gathers all nodes
modifying a relevant variable within the initial set of directly relevant nodes)
this leads to el ∈ E′, which is a contradiction.

• v 6∈ Vϕ: According to the definition of V j, there is a subsequent relevant event
ei ∈ E′ (i ≥ j + k) that refers to v. According to Lemma 6.1.4 the control flow
graph nodes associated with el and ei are related in either one of the following
ways:

1. There is a path in the control flow graph that connects both nodes directly.

2. Both nodes are located in separate branches of an interleaving operator
or parallel composition node.

Both cases imply the existence of a data dependence (either a direct or an
interference data dependence) between el and ei. Therefore, according to the
construction of the slice (which follows the dependence edges in a backwards-
oriented direction), ei ∈ E′ implies that also el ∈ E′, which is a contradiction
to our initial assumption. 2

6.1.5 Irrelevant DC Formulae

Our last preparatory lemma states that DC formulae which the slicing algorithm
identified to be irrelevant with respect to a property to be verified do not impose
restrictions on any relevant event.

Lemma 6.1.6 (No influence of irrelevant DC formulae on relevant events). Let C be
a class specification, E′ the set of relevant events obtained from slicing C with respect
to some slicing criterion ϕ, and CE a counterexample formula from the DC part of C
which is irrelevant with respect to ϕ. Let

ECE = events(CE) ∪ {e ∈ Events | mod(e) ∩ vars(CE) 6= ∅}

be the set of events that CE refers to either directly or indirectly by referring to some
variable that is modified by the respective event. Then the following holds:

130 6 Slicing Correctness

1. There exists no CFG path connecting events from ECE with events from E′.

2. The points in time where events from ECE take place do not depend on the points
in time where events from E′ take place.

Proof:

1. Suppose, there exists a CFG path from some node enable e ∈ ECE to an event
enable f ∈ E′. We have to consider two cases for e:

a) Either this event is directly mentioned inside CE. Then its enable
schema node is source of a control dependence edge in the dependence
graph (control dependence due to timing) and therefore backwards
reachable from the enable f node via control dependence edges which
is a contradiction to e being irrelevant.

b) The other case is that e ∈ ECE, since CE mentions some variable that is
modified by e. Nevertheless, enable e will then be source of a control
dependence edge in the dependence graph (again control dependence
due to timing), such that the same argument holds, which contradicts e
being irrelevant.

2. Suppose, there is an event e ∈ ECE that needs to occur at some point in time
before another event f ∈ E′. This can only be the case if e and f are related in
one of the following ways:

a) There exists a CFG path from enable e to enable f . Since there will
also be a control dependence edge due to timing leaving from enable e,
this leads to a contradiction according to the first part of this lemma.

b) Both events are directly related by being mentioned in (or by modifying
variables mentioned in) one and the same DC formula. This gives rise to
an associated timing dependence edge and thus is a contradiction to e
being irrelevant.

c) Both events are indirectly related by being mentioned in (or by modifying
variables mentioned in) two different DC formulae, which are anchored
to the same point in time, i.e., which either both refer to the same anchor
event, common to both DC formulae, or which are both anchored to the
point of initialisation by imposing a time bound on their initial phase. In
both cases we obtain a timing dependence edge connecting both events
and thus a contradiction to e being irrelevant. 2

6.2 Projection Relation Established by Slicing 131

6.2 Projection Relation Established by Slicing

Now we come to the main result of the correctness proof, namely the following
theorem that states the existence of a projection relationship between any two
interpretations associated with the original specification on the one hand and with
the reduced specification that we obtained from our slicing approach on the other
hand.

Theorem 6.2.1 (Slicing guarantees projection relation). Let C be a class specification
and C′ the class obtained when slicing C with respect to a formula ϕ with Eϕ being the
set of events and Vϕ being the set of variables that ϕ contains. Let E′ and V ′ be the set
of events and variables, respectively, which the slicing algorithm delivers as those of
interest (in particular, Eϕ ⊆ E′ and Vϕ ⊆ V ′). Then for any E′-fair interpretation I
satisfying C there is a corresponding E′-fair interpretation I ′ satisfying C′ (and vice
versa) such that the following holds:

I ′ ∈ ProjectionV′∪E′(I)

Proof:
We need to consider two directions: (1) We have to show that for any interpretation
of C we can construct a corresponding interpretation of C′ such that the projection
relation holds and (2) vice versa.

Direction (1): C ; C′

Let I be an interpretation satisfying C with 0 = t0 < t1 < t2 < . . . being the points
in time where I changes and let V i be the set of variables that are associated with
the slicing criterion and for each point in time ti all relevant variables that are
referenced by relevant events e ∈ E′ taking place at ti or later points in time:

V i = Vϕ ∪ {ref(e) ∩ V ′ | ∃ tj ≥ ti : e ∈ TakesPlace(I, tj)}

In comparison to V ′, the set V i contains only those variables of V ′ whose values
can indeed influence the holding of the formula, since they are referenced at ti or
later, i.e., they occur in unprimed form in predicates of subsequent relevant events.
Variables out of V ′ \ V i are still present and needed in the reduced specification,
since there might be predicates referring to their primed versions.

As an example, consider an effect schema with predicates u′ = v′ and v′ = 5
where u ∈ V(ϕ). Since the value of u in the post-state is constrained by that of v,
both predicates and variables are needed in the reduced specification. Consequently,
v′ is in the set of relevant variables due to a symmetric data dependence between
predicate u′ = v′ and v′ = 5. However, the value of v in some state is only used

132 6 Slicing Correctness

at points in time, where the associated event takes place. In particular, it is never
referenced anywhere else and it thus cannot influence any different variable or
event. Thus v would be in V ′, but not in any of the V i.

Using these sets of referenced variables, we then inductively construct an inter-
pretation I ′ such that for all i > 0

TakesPlace(I, ti) ∩ E′ = ∅
⇒ TakesPlace(I ′, ti) ∩ E′ = ∅
∧ I ′([ti−1, ti+1))|Vi

= I([ti−1, ti+1))|Vi

and

TakesPlace(I, ti) ∩ E′ = {e}
⇒ TakesPlace(I ′, ti) ∩ E′ = {e}
∧ Vmod = V i ∩mod(e)
⇒ I ′([ti−1, ti))|Vmod = I([ti−1, ti))|Vmod

∧ I ′([ti, ti+1))|Vmod = I([ti, ti+1))|Vmod

∧ Vconst = V i \mod(e)
⇒ I ′([ti−1, ti+1))|Vconst = I([ti−1, ti+1))|Vconst .

I ′ satisfies both conditions (1) and (2) of the projection definition. We now have
to show that I ′ satisfies C′. This is done by induction over the length of the
corresponding interpretations with the initial interval serving as induction base.

Induction base: Interval [0, t1)
I satisfies C on the interval [0, t1), i.e., I satisfies the CSP part of C, CCSP, on this
interval, as well as its OZ part, COZ, and its DC part, CDC.

• CSP part: I([0, t1)) |= CCSP implies I ′([0, t1)) |= C′CSP, since no event takes
place on this interval.

• OZ part: I([0, t1)) |= COZ implies I ′([0, t1)) |= C′OZ, since I ′ satisfies the Init
schema of COZ and the Init schema of C′OZ contains the same or fewer
predicates than that of COZ and thus has less restrictions for the state space.

• DC part: I([0, t1)) |= CDC implies I ′([0, t1)) |= C′DC, since I ′ satisfies all formu-
lae of CDC and C′DC contains the same or fewer formulae than CDC.

Induction step: Interval [0, ti) ; Interval [0, ti+1)
Since ti is a point in time where I changes, there must be exactly one associated
event e ∈ TakesPlace(I, ti). We distinguish the following two cases for this event,
depending on whether it belongs to the set E′ of relevant events, or not:

6.2 Projection Relation Established by Slicing 133

• e 6∈ E′: In this case TakesPlace(I ′, ti) = ∅ holds, i.e., no event takes place in
I ′ at time ti. This is in accordance with each part of C′:

– CSP part: Since e 6∈ E′, and C′CSP is computed as the projection of CCSP

onto the set E′ of relevant events, e does not appear in C′CSP. Therefore,
the omission of e in I ′ fits to C′CSP.

– OZ part: Since I ′ is in accordance with C′OZ up to ti and no event occurs
at ti, I ′ does not change at ti and remains in accordance with C′OZ on the
subsequent interval.

– DC part: Since e 6∈ E′, its occurrence and the modifications it imposes
on the state space can not be constrained by any formula of CDC and
consequently not by any formula of C′DC. Thus, the absence of e does not
contradict C′DC.

• e ∈ E′: In this case, the same event e takes place in I ′ at time ti, i.e.,
TakesPlace(I ′, ti) = {e}. This is in accordance with each part of C′:

– CSP part: Since CCSP allows event e, and e ∈ E′ holds, also C′CSP allows
event e according to Lemma 6.1.4.

– OZ part: We have to show that (1) e is enabled in I ′ at time ti and that
(2) the change of I ′ at time ti fits to the modification that is induced by e
on the state space.

1. I ′([ti−1, ti)) |= enable e′: This follows directly from

I([ti−1, ti)) |= enable e,

since enable e′ only mentions variables from V i and I ′([ti−1, ti))
coincides with I([ti−1, ti)) on variables from V i.

2. I ′([ti−1, ti)), I ′([ti, ti+1)) |= effect e′: This follows from

I([ti−1, ti)), I([ti, ti+1)) |= effect e,

since effect e′ has the same or fewer predicates than effect e,
i.e., it imposes the same or less restrictions on variables from V i, and
I ′([ti−1, ti)) coincides with I([ti−1, ti)) on variables from V i.

– DC part: From I([0, ti+1)) |= CDC we can infer that I ′([0, ti+1)) |= C′DC
holds, since C′DC contains the same or fewer restrictions than CDC and
I([0, ti+1)) coincides with I ′([0, ti+1)) on all variables and events from V i

and E′.

134 6 Slicing Correctness

Direction (2): C′ ; C

Let I ′ be an interpretation satisfying C′ with 0 = t0 < t1 < t2 < . . . being the points
in time where I ′ changes with TakesPlace(I ′, ti) ∩ E′ 6= ∅. Associated with these
points in time, we let again

V i = Vϕ ∪ {ref(e) ∩ V ′ | ∃ tj ≥ ti : e ∈ TakesPlace(I ′, tj)}

be the set of relevant variables referenced by a relevant event occurring within I ′
at ti or later. Furthermore, we let P′i ≡ CSPC′(I ′, ti) represent the remaining CSP
processes according to the operational semantics of the CSP part of C′.

We then inductively construct an interpretation I satisfying the original specifica-
tion class C with

0 = t0 < t10 < t20 < . . . < t n0
0 < t1 < t11 < t21 < . . . < t n1

1 < t2 < t12 < . . .

being the points in time where I changes,

TakesPlace(I, ti) ∩ E′ = TakesPlace(I ′, ti) ∩ E′ for all i ≥ 0,

and

TakesPlace(I, t ji
i) ∩ E′ = ∅ for all i ≥ 0 and for all 1 ≤ ji ≤ ni.

Associated with these points in time, we construct a sequence of CSP processes,
consisting of Pi ≡ CSPC(I, ti) and P j

i ≡ CSPC(I, t j
i), representing the remaining

CSP processes according to the operational semantics of the CSP part of C.
As in the previous direction, the induction is carried out over the length of the

corresponding interpretations with the initial point interval being the induction
base:

Induction base: Point interval [0, t0]
I ′ satisfies C′ on the interval [0, 0], i.e., I ′ satisfies the CSP part of C′, C′CSP, on this
interval, as well as its OZ part, C′OZ, and its DC part, C′DC.

The same must hold for our newly constructed I with respect to C.

• CSP part: I ′([0, t0]) |= C′CSP.
Out of the main process main = P of C the slicing algorithm computes a
reduced main process main = P|E′ of C′. Since P|E′ exists, we know that an
associated process P exists, which can be constructed by applying the CSP
process projection rules backwards.

• OZ and DC part: I ′([0, t0]) |= C′OZ and I ′([0, t0]) |= C′DC.
We know that I ′([0, t0]) satisfies Init′ and all DC formulae from C′. Init has

6.2 Projection Relation Established by Slicing 135

at least all predicates that Init′ has, possibly plus some additional predicates
that restrict some further variables which are not present in C′. Moreover,
C contains the same DC formulae, possibly plus some additional ones that
restrict some further variables or events which are not present in C′. Since no
events occur at the initial point interval, only the initial variable valuations
are of interest here. Therefore, we can choose I such that it coincides
with I ′([0, t0]) on all valuations of variables from C′ and is modified in the
remaining variables in order to satisfy the additional predicates from Init and
the additional DC formulae from C.

Induction step: Interval [0, ti] ; Interval [0, ti+1]
Assume, we have constructed I up to some point in time ti with I(t)|Vi

= I ′(t)|Vi

and an associated Pi|E′ = P′i.
From TakesPlace(I, ti+1) ∩ E′ = TakesPlace(I ′, ti+1) ∩ E′ 6= ∅ we can derive that

there is some event ei+1 ∈ TakesPlace(I ′, ti+1). Therefore, we know that ei is
enabled in I([ti, ti+1)) and its execution leads to a valuation I(ti+1). Furthermore,
we know that effect e in C has at least all predicates that effect e in C′ has. In
consequence we have I(ti)|Vi

= I ′(ti)|Vi
.

Nevertheless, ei+1 might not yet be enabled in Pi, but some intermediate irrelevant
events e j

i 6∈ E′ might be necessary to reach a P j
i such that the relevant event ei+1

is enabled in P j
i and leads to Pi+1 with Pi+1|E′ = P′i+1. We now have to show that

these intermediate irrelevant events e j
i are possible, that they do not change I on

V i, such that the relevant event ei+1 is enabled in I over [ti, ti+1), that they lead to
some P j

i with P j
i

ei+1−→ Pi+1 and Pi+1|E′ = P′i+1, and that the additional DC formulae of
C are satisfied.

We show this inductively by considering the structure of Pi from which the slicing
algorithm computed P′i.

1. Pi ≡ e→ P:

• e ∈ E′ : P′i ≡ e→ P|E′ (no intermediate steps are necessary)

• e 6∈ E′ : P′i ≡ P|E′
In this case, intermediate steps are necessary to get from I(ti) and Pi to
I(ti+1) and Pi+1. We now have to show that

a) these steps are possible, i.e., the associated events are enabled in
I(ti) and Pi. Suppose, one of the intermediate steps e j

i is not enabled
in I(ti). This would be due to an unsatisfied predicate in its enable
schema. According to Lemma 6.1.4 (first case) we would therefore
have either a control dependence between e j

i and ei+1 that leads us
(according to the construction of the slice) to e j

i ∈ E′ which is a
contradiction.

136 6 Slicing Correctness

The other possibility according to Lemma 6.1.4 (second case) is that
e j

i and ei+1 are located in different branches of the same interleaving
node. In this case we do not need to make a transition in this blocked
branch of the interleaving operator, but can safely proceed with a
transition on the other branch.

b) these steps do not change variables in V i. This is a direct consequence
of Lemma 6.1.5. Supposed, there would be some e j

i 6∈ E′ that changes
some v ∈ V i. Since V i ⊆ V ′, there would again exist a data depen-
dence between that e j

i 6∈ E′ and some subsequent e ∈ E′ such that, due
to the construction of the slice, e j

i had to be in E′. (contradiction!)

c) these steps lead to some I(t j
i) and P j

i with P j
i

ei+1−→ Pi+1 and I(t j
i) |=

enable ei+1 and I(t j
i), I(ti+1) |= effect ei+1.

– I(t j
i) |= enable ei+1: Since ei+1 is already enabled in I(ti) and

none of the e j
i changes any v ∈ V ′, ei+1 is still enabled in I(t j

i). The
effect schema is satisfied, since I(ti), I(ti+1) |= effect ei+1

holds and I(ti)|Vi
= I(t j

i)|Vi
.

– P j
i : Since e j

i are the steps that are removed from Pi in order to get
P′i ≡ Pi|E′ and ei+1 is enabled in P′i, the execution of e j

i will lead to
some P j

i such that ei+1 is enabled as well.

2. Pi ≡ Pi,1 2 Pi,2:

• Either ∃ j ∈ {1, 2} : Pi,j
e−→ Q with e ∈ E′. Then ei+1 ≡ e and P′i+1 ≡ Q|E′.

X

• Otherwise ∃ j ∈ {1, 2} : Pi,j
e−→ Q with e 6∈ E′. Then e is one of the

intermediate events and we have to start another case analysis for the
intermediate process Q.

3. Pi ≡ Pi,1 u Pi,2: analogous to the previous case. X

4. Pi ≡ Pi,1‖|Pi,2:

• Either ∃ j ∈ {1, 2} : Pi,j
e−→ Q with e ∈ E′. Then ei+1 ≡ e and P′i+1 ≡{

Q|E′ ‖| Pi,2|E′ if j = 1
Pi,1|E′ ‖| Q|E′ else X

• Otherwise ∃ j ∈ {1, 2} : Pi,j
e−→ Q with e 6∈ E′. Then e is one of the

intermediate events and we have to start another case analysis for the

intermediate process
{

Q‖|Pi,2 if j = 1
Pi,1‖|Q else

5. Pi ≡ Pi,1 ‖
S

Pi,2

6.3 Stuttering Invariance of Test Formulae 137

• Asynchronous case, i.e., ∃ e 6∈ S : ∃ j ∈ {1, 2} : Pi,j
e−→ Q

This is analogous to the previous case (interleaving). X

• Synchronous case, i.e., ∃ e ∈ S : Pi,1
e−→ Q1 ∧ Pi,2

e−→ Q2

– Either e ∈ E′: Then ei+1 ≡ e and P′i+1 ≡ Q1|E′ ‖
S

Q2|E′ X

– Otherwise e 6∈ E′: Then e is one of the intermediate events and
we have to start another case analysis for the intermediate process
Q1 ‖

S
Q2.

Finally, we have to show that the insertion of e j
i complies with the additional DC

formulae of C. This, however, is a direct consequence of Lemma 6.1.6. Since,
according to its first clause, there is no CFG path between irrelevant and relevant
events, the additional DC formulae do not affect any relevant events ei ∈ E′ or
variables v ∈ V i, but only irrelevant events e j

i 6∈ E′ or variables v ∈ V i. According
to the second clause of Lemma 6.1.6, we are therefore free to choose the points
in time t j

i for the occurrence of each irrelevant event e j
i in I, such that the timing

restrictions of the additional DC formulae are satisfied by I.
Similarly, we are free to choose the valuations of irrelevant variables v 6∈ V i in I,

such that the restrictions given in the additional DC formulae are satisfied by the
full interpretation I. 2

6.3 Stuttering Invariance of Test Formulae

For describing real-time properties of CSP-OZ-DC classes we use the DC fragment
of test formulae [Mey05, MFR06], which is a superset of counterexample formulae
as they are used in the DC part of CSP-OZ-DC specifications. Satisfaction of test
formulae can be evaluated on the set of interpretations defined by the semantics of
a given CSP-OZ-DC class. Thus, a CSP-OZ-DC class satisfies a given test formula iff
all interpretations within the semantics of the class satisfy the test formula.

The full syntax of test formulae is depicted in Figure 6.2, where ev ∈ Events is an
event and p a predicate over a set of variables V. As an example of test formulae
consider again the following property of the air conditioner specification that we
already introduced informally in Chapter 5 on slicing CSP-OZ-DC specifications:

ϕ ≡ ¬(truea dwork ∧ fuel < 5ea true)

Property ϕ states an invariant over two variables of the air conditioner system,
formulated as a counterexample: there should not be an interval in which the
Boolean variable work is true, while simultaneously the fuel supply drops below
some critical value. The counterexample is defined in terms of a single negated
trace that starts and ends with a true phase, allowing the middle interval containing

138 6 Slicing Correctness

TF ::= F basic formula
| TF1

a TF2 chop operator on the level of test formulae: di-
vides the given interval into two parts where TF1

holds on the first and TF2 holds on the second part
| TF1 ∧ TF2 conjunction of test formulae
| TF1 ∨ TF2 disjunction of test formulae

F ::= Tr trace
| ¬F negation
| F1 ∧ F2 conjunction of basic formulae

Tr ::= Ph phase
| l ev event: ev occurs at the given point interval
| 6 l ev not-event: ev does not occur within the given

point interval
| Tr1

a Tr2 chop operator on the level of traces: divides the
given interval into two parts where Tr1 holds on
the first and Tr2 holds on the second part

Ph ::= ` > 0 ∧ ` ∼ k time bound: the given interval has a length ac-
cording to time bound ` ∼ k with k ∈ R>0 and
∼∈ {<,≤,≥, >}

| Ph ∧ dpe phase with state invariant: predicate p holds al-
most everywhere on the given interval

| Ph ∧ � ev forbidden event: the given interval contains no
occurrence of event ev

Figure 6.2: Syntax of test formulae TF with ev ∈ Events being an event and p
being a predicate over a set of variables V. Additionally, a test formula must satisfy
the side condition that its first element is a phase.

the invariant predicate to be located at an arbitrary point in time at or after system
initialisation.

Whether a test formula holds for a given specification is evaluated with respect to
interpretations defined over dense real-time. An interpretation satisfies a formula
iff the formula holds on all intervals [0, e], e ∈ R>0, or more formally:

Definition 6.3.1 (Satisfaction of Test Formulae). Let I be an interpretation with
0 = t0 < t1 < t2 < . . . being the points in time where I changes, and [b, e] an interval
over Time. The satisfaction of test formulae on intervals of I is then defined inductively
as follows:

6.3 Stuttering Invariance of Test Formulae 139

I, [b, e] |= TF1
a TF2 iff ∃m, b ≤ m ≤ e : I, [b,m] |= TF1 ∧ I, [m, e] |= TF2

I, [b, e] |= TF1 ∧ TF2 iff I, [b, e] |= TF1 and I, [b, e] |= TF2

I, [b, e] |= TF1 ∨ TF2 iff I, [b, e] |= TF1 or I, [b, e] |= TF2

I, [b, e] |= ¬F iff not I, [b, e] |= F
I, [b, e] |= F1 ∧ F2 iff I, [b, e] |= F1 and I, [b, e] |= F2

I, [b, e] |= l ev iff b = e ∧ ∃ i ∈ N : ti = b ∧ ev ∈ TakesPlace(I, ti)
I, [b, e] |= 6 l ev iff b = e ∧ ∀ i ∈ N : ti 6= b ∨ ev 6∈ TakesPlace(I, ti)

I, [b, e] |= Tr1
a Tr2 iff ∃m, b ≤ m ≤ e : [b,m] |= Tr1 ∧ [m, e] |= Tr2

I, [b, e] |= ` > 0 ∧ ` ∼ k iff e− b > 0 ∧ e− b ∼ k

I, [b, e] |= Ph ∧ dpe iff e− b > 0 ∧ I, [b, e] |= Ph, and
∫ e

b
PI(t) dt = e− b

with PI(t) :=

{
1 I(t) |= p
0 otherwise

I, [b, e] |= Ph ∧ � ev iff I, [b, e] |= Ph
and ∀ i ∈ N : ti ∈ [b, e]⇒ ev 6∈ TakesPlace(I, ti)

An interpretation I satisfies a test formula ϕ iff for all intervals [0, t] starting at time
zero, I, [0, t] |= ϕ holds.

Based on this definition, we proceed next by showing stuttering invariance of test
formulae via induction over their structure. To this end, we show that a given
test formula can not distinguish between two interpretations, provided that one of
them is in the projection of the other with respect to a set of events and variables
that are mentioned within the test formula.

This notion of projection is the one that we introduced in the previous Section 6.2
and that our slicing approach guarantees to exist between interpretations of CSP-
OZ-DC specifications and slices thereof with respect to a set of relevant events and
variables, i.e., those that potentially affect the given test formula.

Theorem 6.3.2 (Stuttering invariance of test formulae). Let ϕ be a test formula
over O′ ⊇ (V ′ ∪ E′), with V ′ variables and E′ events of interest, let I and I ′ be E′-fair
interpretations defining valuations for a set of variables V ⊇ V ′ and a set of events
E ⊇ E′. If I ′ ∈ ProjectionO′(I) then the following holds:

I |= ϕ iff I ′ |= ϕ .

Proof: A test formula is satisfied by an interpretation iff the formula holds on all
intervals [0, e] with e ∈ R>0. We proof more general that for all test formulae ϕ and
all intervals [b, e]

I, [b, e] |= ϕ iff I ′, [b, e] |= ϕ

holds according to Definition 6.3.1.

140 6 Slicing Correctness

We do this by induction over the structure of ϕ. According to clause (2) of
Definition 6.1.1 of the projection relation between interpretations, both interpreta-
tions I and I ′ need to agree on the occurrence of relevant events. Let therefore
0 = t0 < t1 < t2 < . . . be the points in time where both I and I ′ change, i.e., the
points in time where relevant events ev ∈ E′ take place. Note that there might
be further points in time where any of the involved interpretations change, but
according to the definition of projection not with relevant events taking place.

Induction Base:
The induction starts with the most basic building blocks of test formulae, which are
the following:

Phases with time bound: ϕ ⇔ ` > 0 ∧ l ∼ k
Starting with the definition of satisfaction of phase expressions, we obtain

I, [b, e] |= ` > 0 ∧ ` ∼ k
iff b < e ∧ e− b ∼ k
iff I ′, [b, e] |= ` > 0 ∧ ` ∼ k. X

The equivalence is obvious, since the definition is not based on the interpreta-
tion, but only on the actual interval lengths.

Events: ϕ ⇔ l ev with ev ∈ E′

Starting with the definition of satisfaction of event expressions, we obtain

I, [b, e] |= l ev
iff b = e ∧ ∃ i ∈ N : ti = b ∧ ev ∈ TakesPlace(I, ti)

iff b = e ∧ ∃ i ∈ N : ti = b ∧ ev ∈ TakesPlace(I ′, ti)

iff I ′, [b, e] |= l ev. X

The intermediate equivalence holds due to the second clause of Defini-
tion 6.1.1 of the projection relation between I and I ′: Since ev is mentioned
in ϕ, it is element of E′ ⊆ O′ and thus

ev ∈ TakesPlace(I, ti) ⇔ ev ∈ TakesPlace(I ′, ti).

Not-Events: ϕ ⇔ 6 l ev with ev ∈ E′

Starting with the definition of satisfaction of not-event expressions, we obtain

I, [b, e] |= 6 l ev
iff b = e ∧ ∀ i ∈ N : ti 6= b ∨ ev 6∈ TakesPlace(I, ti)

iff b = e ∧ ∀ i ∈ N : ti 6= b ∨ ev 6∈ TakesPlace(I ′, ti)

iff I, [b, e] |= 6 l ev. X

6.3 Stuttering Invariance of Test Formulae 141

The argument for the validity of the intermediate equivalence is analogous
to the previous case: The projection relation between I and I ′ with respect
to O′ and ev ∈ E′ ⊆ O′ (due to ev being mentioned within the formula) leads
us to the conclusion that either ev takes place in both interpretations at the
same given point in time or it does not take place at this point in time in any
of both interpretations.

Induction Step:
Suppose, the lemma is proven for phases Ph, for traces Tr1 and Tr2, for basic
formulae F, F1, and F2, and for test formulae TF1, TF2. The remaining proofs for
chop (TF1

a TF2 and Tr1
a Tr2), for negation (¬F), for conjunction (TF1 ∧ TF2

and F1 ∧ F2), for disjunction (TF1 ∨ TF2), and for phases with forbidden events
(Ph ∧ � ev) are straightforward and follow the same pattern, relying on both parts
of Definition 6.3.1 and the existence of the projection relation between the involved
interpretations; therefore, we only cover the following example of these cases:

Phase with state invariant: ϕ ⇔ Ph ∧ dpe with p being a predicate over a set V ′

of variables with V ′ ⊆ O′ and V ′ ∩ E′ = ∅.
Starting with the definition of satisfaction of phases with state invariants, we
obtain

I, [b, e] |= Ph ∧ dpe

iff e− b > 0 ∧ I, [b, e] |= Ph and
∫ e

b
PI(t) dt = `

with PI(t) :=

{
1 I(t) |= p
0 otherwise

iff e− b > 0 ∧ I ′, [b, e] |= Ph and
∫ e

b
PI′(t) dt = `

with PI′(t) :=

{
1 I ′(t) |= p
0 otherwise

iff I ′, [b, e] |= Ph ∧ dpe. X

For the validity of the intermediate equivalence, we apply again the defi-
nition of the projection relation between I and I ′: Its first clause requires
∀ t : I(t)|O′\E′ = I ′(t)|O′\E′. Since all variables that appear within predicate p
are part of O′, but not part of E′, both interpretations need to agree on them,
such that p either holds almost everywhere within the given interval on both
interpretations or on none of them. 2

In conjunction with the result of the previous Section 6.2, namely the existence
of the projection relation between a specification and its slice, the stuttering (viz.

142 6 Slicing Correctness

projection) invariance of test formulae then directly yields the intended result
of slicing correctness: Our slicing approach for the verification of CSP-OZ-DC
specifications with respect to test formulae is correct, i.e., a test formula holds on a
specification if and only if it holds on the slice of the specification with respect to
the given test formula.

6.4 Stuttering Invariance of State/Event Interval Logic

This section examines formulae of the state/event interval logic (SE-IL), the logic
that we use to specify temporal properties for Object-Z and CSP-OZ specifications.
In Chapter 3 we defined the semantics of Object-Z and CSP-OZ specifications in
terms of event-labelled Kripke structures (LKS), thus SE-IL formulae are interpreted
over paths of alternating states and events of LKS.

Untimed projections of interpretations, which we defined for evaluating the CSP
and the Object-Z part of CSP-OZ-DC specifications, can be regarded as such paths.
Therefore, the results of the previous Section 6.2 carry over to the discrete setting
of alternating paths of state and events defined over labelled Kripke structures.

Thus we obtain the existence of the projection relation between Object-Z or
CSP-OZ specifications and slices thereof along the same lines as for CSP-OZ-DC
specifications and only need to show stuttering invariance for the temporal logic
that we use in the untimed setting, namely SE-IL.

6.4.1 State/Event Interval Logic

The state/event interval logic SE-IL that we use for expressing temporal properties
of Object-Z and CSP-OZ specifications is inspired by the Duration Calculus (DC),
and allows us to reason about events and states but (for suiting our purposes) not
about time. It can therefore be regarded as an untimed projection of DC.

There are two reasons for considering this logic as a notation for properties of
Object-Z and CSP-OZ specifications: first of all, our ultimate goal has been to apply
slicing to integrated specifications, which in addition to Object-Z contain parts
specifying the dynamic behaviour (in CSP) and timing constraints (in DC). The
logic for expressing properties of this type of specifications is a subset of the full
DC, namely test formulae, so SE-IL seems to be an adequate solution when staying
in the untimed setting but still remaining compatible to the logic used in the timed
setting.

As a second reason, we are interested in a logic which can precisely express
orderings between events and state propositions (e.g., like “when event e happens
then immediately afterwards variable x has the value 5”). However, since we are
interested in reducing the specification, it should, on the other hand, not be able
to precisely speak about steps of the system (e.g., like “the 10th operation of the
system is event e”). The paths of the reduced specification will be projections of

6.4 Stuttering Invariance of State/Event Interval Logic 143

ϕ ::= dpe – phase (p holds in all states of the given interval)
| ev – event (ev occurs in the given interval)
| ¬ϕ – negation
| ϕ ∧ ψ – conjunction
| 3L ϕ – eventually operator with liveness

(ϕ holds inside or beyond the given interval)
| ϕa ψ – chop operator (divides the given interval into two

parts where ϕ holds on the first and ψ holds on the
second part)

Figure 6.3: Syntax of state/event interval logic (SE-IL) formulae

the paths of the full specification (omitting some irrelevant events), and thus a
preservation of properties under slicing does only make sense for logics which do
not talk about particular steps.

When using (state-based) LTL for expressing properties, this phenomenon is
taken into account by restricting formulae to the next-free part of the logic (e.g.,
[HDZ00]). The bottom line of this observation is that any logic used for slicing has
to be invariant under stuttering, where the notion of projection that we use is a
particular kind of stuttering.

The grammar depicted in Figure 6.3 describes formulae of the state/event interval
logic SE-IL (where ev ∈ E is an event and p ∈ AP an atomic proposition).

We use the abbreviation 2L ϕ to stand for ¬3L ¬ϕ. For a formula ϕ we let Eϕ denote
the set of events occurring in it and Vϕ the set of variables of atomic propositions
in it. The chop operator requires that there is some position in the underlying path
(or a section of a path) such that before this position the formula on its left hand
side holds and after it the formulae on its right hand side.

In order to define when a Kripke structure satisfies an interval logic formula,
we first define satisfaction on paths. Duration Calculus is used to reason about
continuous time models, and the validity of formulae is defined via quantification
over all time intervals: a formula holds iff it is true in all intervals (starting at time
0). This definition is now transferred to the discrete setting of paths:

Definition 6.4.1 (Satisfaction of SE-IL formulae). A path satisfies a formula iff the
formula holds on all intervals [0, e], e ∈ N. Let π = s0e1s2e3s4 . . . be a path and π[i]
the i-th component of π: π[i] can either be an event or a state.

1. π, [b, e] |= dpe iff ∃m, b ≤ m ≤ e : π[m] ∈ S
and ∀m, b ≤ m ≤ e : π[m] ∈ S⇒ p ∈ L(π[m]),

2. π, [b, e] |= ev iff b = e and π[b] = ev,

144 6 Slicing Correctness

3. π, [b, e] |= ¬ϕ iff not π, [b, e] |= ϕ,

4. π, [b, e] |= ϕ ∧ ψ iff π, [b, e] |= ϕ and π, [b, e] |= ψ,

5. π, [b, e] |= 3L ϕ iff ∃m1,m2 ≥ b : π, [m1,m2] |= ϕ,

6. π, [b, e] |= ϕa ψ iff (∃m, b ≤ m ≤ e : π, [b,m] |= ϕ and π, [m, e] |= ψ)

∨ (π[b] ∈ S and π[b, b− 1] |= ϕ and π, [b, e] |= ψ)

∨ (π[e] ∈ S and π[e, e− 1] |= ψ and π, [b, e] |= ϕ)

Some explanations for this unusual definition are at place.

• Item 1: the decision taken here is that during execution of an event we do
not know what atomic propositions hold, thus the formula dpe evaluates to
false on an interval with an event only. This reflects the fact that events may
invalidate atomic propositions, which hold in the state before their execution
and make others become true in the state after their execution. In order to be
able to say that an event causes a state change, we can neither assume that
atomic propositions in pre-states still hold while the event takes place nor that
those of post-states already hold.

• Item 2, 3 and 4 should be as expected.

• Item 5: The eventually operator has to reason about positions outside the
current interval, since we want to achieve real liveness, not just bounded
liveness. This operator is taken from the DC with liveness [Ska94]; the
standard DC does not allow to reason about unbounded liveness.

• Item 6: The first part of the disjunction captures the case where the interval is
divided into two parts, such that ϕ holds on the first part and ψ on the second.
The second and third part of the disjunction mimic the phenomenon that in
continuous time one can chop off an empty interval from every interval. The
empty interval is denoted by [b, b − 1] (or [e, e − 1]). In an empty interval
neither dpe nor ev holds.

Note that for instance eva ev ≡ ev but ¬dpe 6≡ d¬pe. In the former case the formula
ev only holds on a zero interval [b, e] with b = e and the chop operator can divide
this interval into two zero intervals that both satisfy ev. In the latter case, from the
fact that dpe does not hold on an interval one cannot conclude that d¬pe holds on
this interval.

A Kripke structure then satisfies a formula if all of its paths do so. Likewise, an
Object-Z or a CSP-OZ class satisfies a property when its Kripke structure does.

6.4 Stuttering Invariance of State/Event Interval Logic 145

p, q p, r

e

ff f

Figure 6.4: Exemplary labelled Kripke structure K

Definition 6.4.2 (Satisfaction of formulae on labelled Kripke structures). Let K =
(S, S0,→, L) be a Kripke structure and ϕ an SE-IL formula. A path π satisfies ϕ if
π, [0, e] |= ϕ holds for all e ∈ N. K satisfies ϕ (K |= ϕ) iff π |= ϕ holds for all paths of
K. K fairly satisfies ϕ with respect to a set of events E′ ⊆ E (K |=E′ ϕ) iff π |= ϕ holds
for all E′-fair paths of K.

As an example consider the Kripke structure K depicted in Figure 6.4. For K we
for instance have K |= 2L p (p always holds), K |= ¬3L (e a d¬re) (r holds after e,
formulated as a counterexample: there is no interval in which ¬r holds immediately
after e) but K 6|= 3L e (event e will eventually happen is not true, since there are
paths with event f only) and K 6|= 2L dqe.

As a further example of SE-IL formulae we consider again the following two
properties of class TicTacToe that we already introduced informally in Chapter 5 on
slicing Object-Z specifications:

ϕ1 ≡2L dmoves = 9−#freee
ϕ2 ≡ ¬3L (blacka (dtruee ∧ ¬(dtrueea whitea dtruee))a black)

∧ ¬3L (whitea (dtruee ∧ ¬(dtrueea blacka dtruee))a white)

Property ϕ1 states an invariant between two variables of the class and ϕ2 states
that moves are taken in turn. The second property is again formulated as a
counterexample: there should not be an interval in which an event black is followed
by a nonempty interval in which no white happens, which is then followed by
another black (and similar for white). Non-emptiness of the middle interval is
achieved by conjunction with dtruee.

6.4.2 Projection of Event-Labelled Kripke Structures

For the discrete setting of SE-IL formulae, defined over paths of event-labelled
Kripke structures, the notion of projection of interpretations that we introduced in
the beginning of this chapter can be reduced to an untimed notion of projection.

Therefore, the projection relation is now redefined on paths instead of interpre-
tations. The intuition remains the same as for projections of interpretations: When

146 6 Slicing Correctness

Block 0 Block 1 Block 2

π = s0 e0 s1︸ ︷︷ ︸ e1 s2︸︷︷︸ e2 s3 e3 s4︸ ︷︷ ︸ e4 . . .

π′ = r0 e1 r1 e2 r2 e4 . . .︷ ︸︸ ︷
= s0|AP′ = s1|AP′

︷ ︸︸ ︷
= s2|AP′

︷ ︸︸ ︷
= s3|AP′ = s4|AP′

Figure 6.5: Exemplary path π and a corresponding path π′ ∈ PrAP′,E′(π) in its
projection with respect to a set of relevant atomic propositions AP′ and events
E′ ⊇ {e1, e2, e4}.

computing the projection of a given path onto a set of atomic propositions and a
set of events, one divides the path into blocks, such that all states inside a block are
“projection-equivalent” (i.e., they coincide on the given set of atomic propositions)
and all events inside a block are “irrelevant” events (i.e., events not from the given
set of events), except for the last event in the block, which is a “relevant” event
(i.e., an event from the given set of events). The projection of the original path
contains then any path such that for each of the blocks of the original path all states
and irrelevant events are mapped onto one single state of the new path, while the
“relevant” event remains in the new path as illustrated in the sketch of a projection
of a path depicted in Figure 6.5.

More formally, the notion of projection of labelled Kripke structure paths is
defined as follows:

Definition 6.4.3 (Projection of labelled Kripke structure paths). Let the sequence
π = s0e0s1e1s2e2s3 . . . be an E′-fair path over a set of atomic propositions AP and a set
of events E ⊇ E′. The projection of π onto a set of atomic propositions AP′ and a
set of events E′ (PrAP′,E′(π)) contains any E′-fair path ρ = r0f0r1f1r2f2r3 . . . such that
there is a sequence of indices 0 = i0 < i1 < i2 < . . . (that divides π into blocks) with

• ∀ k ≥ 0: L(sik) ∩ AP′ = L(sik+1) ∩ AP′ = · · · = L(sik+1−1) ∩ AP′ = L(rk) ∩ AP′

(relevant atomic propositions do not change within a block and are the same in
the corresponding state of ρ),

• ∀ l ∈ N,∀ k : il ≤ k < il+1 − 1 : ek ∈ E \ E′

(no relevant events occur inside a block),

• ∀ l ≥ 1 : eil−1 = fl−1 ∈ E′

(transitions between blocks are labelled with the same relevant event as the
corresponding transition of ρ).

For comparing the Kripke structures we restrict the definition to fair paths, since
we are only considering satisfaction of formulae on fair paths.

6.4 Stuttering Invariance of State/Event Interval Logic 147

Definition 6.4.4. Let Ki = (Si, S0,i,→i, Li), i ∈ {1, 2}, be labelled Kripke structures
over a set of atomic propositions AP and a set of events E, AP′ ⊆ AP a subset of the
atomic propositions and E′ ⊆ E a subset of the events.

K2 is in the projection of K1 onto AP′ and E′ (K2 ∈ PrAP′,E′(K1)) iff the following
holds:

1. For each E′-fair path π in K1 there exists an E′-fair path π′ in K2 such that
π′ ∈ PrAP′,E′(π),

2. and vice versa, for each E′-fair path π′ in K2 there exists an E′-fair path π in K1

such that π′ ∈ PrAP′,E′(π).

Such a projection relation between two Kripke structures guarantees that formulae
which only mention propositions from AP′ and events from E′ hold for either both
or none of the Kripke structures.

Theorem 6.4.5 (Stuttering invariance of state/event interval logic formulae). Let
ϕ be an SE-IL formula over AP′ and E′, and K1, K2 labelled Kripke structures over
a set of atomic propositions AP and a set of events E with AP′ ⊆ AP and E′ ⊆ E. If
K2 ∈ PrAP′,E′(K1) then the following holds:

K1 |=E′ ϕ iff K2 |=E′ ϕ .

The notion of projection implies a correspondence between elements of a path and
elements of paths from its projection that we define as follows.

Definition 6.4.6. Let π1 = s0e0s1e1 . . . and π2 = r0f0r1f1 . . . be E′-fair paths with
π2 ∈ PrAP′,E′(π1) and 0 = i0 < i1 < i2 < . . . the associated sequence of indices as in
Definition 6.4.3.

Then any path component si or ei of π1 is projected onto exactly one path component
of π2 and any path component ri or fi of π2 is back-projected onto a set of path
components of π1 as follows.

Any state sm with ik ≤ m < ik+1 and any event en with ik ≤ n < ik+1 − 1 are
projected onto the state rk.

Any event em with m = ik+1 − 1 is projected onto the event fk.
Any state rm is back-projected onto the set of states {sn | im ≤ n < im+1}.
Any event fm is back-projected onto the event en with n = im+1 − 1.

Note that sub-paths consisting of projection-equivalent states and projection-
irrelevant events are projected onto one single state of the projection, while
projection-relevant events remain in the path.

To prove Theorem 6.4.5 we will apply the following lemma.

148 6 Slicing Correctness

Lemma 6.4.7 (Corresponding sections of projection paths). Let ϕ be a state/event
interval logic formula over AP′ and E′ and let π1 = s0e0s1e1 . . . and π2 = r0f0r1f1 . . . be
E′-fair paths with π2 ∈ PrAP′,E′(π1). Then the following holds:

∀ b1, e1 ∃ b2, e2 : (π1, [b1, e1] |= ϕ⇔ π2, [b2, e2] |= ϕ)

Proof: For every b1, e1 with π1, [b1, e1] |= ϕ we choose some corresponding b2, e2

such that π2, [b2, e2] |= ϕ and vice versa. We do this inductively over the structure
of ϕ.

Induction Base: The most basic elements of SE-IL formulae are phases (ϕ ≡ dpe)
and events (ϕ ≡ ev), which form the induction base.

Direction π1, [b1, e1] |= ϕ⇒ π2, [b2, e2] |= ϕ:
According to Definition 6.4.6 there are indices m and n such that π1[b1] is projected
onto π2[m] and π1[e1] is projected onto π2[n]. Choose b2 = m and

e2 =


b2 − 1 if e1 = b1 − 1 (empty interval)

or e1 = b1 ∧ π1[b1] ∈ E \ E′ (zero interval with one
event)

n otherwise

and hence π2, [b2, e2] |= ϕ holds.

Direction π1, [b1, e1] |= ϕ⇐ π2, [b2, e2] |= ϕ:
According to Definition 6.4.6 there are sets of indices A = {m1, . . . ,mp} and
B = {n1, . . . ,nq} such that π2[b2] is back-projected onto {π1[m] | m ∈ A} and π2[e2]
is back-projected onto {π1[n] | n ∈ B}. Note that A and B might overlap if b2 and e2

both belong to the same projection-block. Choose b1 ∈ A and

e1 =

{
b1 − 1 if e2 = b2 − 1 (empty interval)
n ∈ B ∧ n ≥ b1 otherwise

and hence π1, [b1, e1] |= ϕ holds.

Induction Step: Suppose, the lemma is proven for ϕ ≡ ψ and ϕ ≡ χ. Since for
negation (ϕ ≡ ¬ψ), conjunction (ϕ ≡ ψ ∧ χ) and eventually operator (ϕ ≡ 3L ψ)
the proof is straightforward, we omit these cases and show only how to deal with
the chop operator (ϕ ≡ ψ a χ):
Due to the induction hypothesis the following holds:

∀ b1,m1
1 ∃ b2,m1

2 : (π1, [b1,m1
1] |= ψ ⇔ π2, [b2,m1

2] |= ψ)

6.4 Stuttering Invariance of State/Event Interval Logic 149

and

∀m2
1, e1 ∃m2

2, e2 : (π1, [m2
1, e1] |= χ⇔ π2, [m2

2, e2] |= χ) .

Direction π1, [b1, e1] |= ϕ⇒ π2, [b2, e2] |= ϕ:
In order to show the lemma for ϕ ≡ ψ a χ we assume that π1, [b1, e1] |= ψ a χ
holds and show that there is a corresponding interval [b2, e2] on π2, such that
π2, [b2, e2] |= ψ a χ holds. According to the definition of the chop operator we have
to distinguish the following three cases:

1. ∃m1, b1 ≤ m1 ≤ e1 :
(1) π1, [b1,m1

1] |= ψ and (2) π1, [m2
1, e1] |= χ and (3) m1

1 = m2
1 = m1:

From clauses (1) and (2) and the induction hypothesis we can directly derive
that there are m1

2 and m2
2 such that π2, [b2,m1

2] |= ψ and π2, [m2
2, e2] |= χ. So

we only have to show that there is an m2, such that m1
2 = m2

2 = m2 holds.
Since m1

1 = m2
1 holds, the only potential for a conflict between m1

2 and m2
2

is caused by the choice of m1
2 in the induction base when m1

1 = b1 − 1 or if
m1

1 = b1 ∧ π1[b1] ∈ E \ E′. In these cases we map the original pair of intervals
onto a pair of one empty and another interval such that π2, [b2, e2] |= ψ a χ
holds again according to the second clause of the definition of the chop
operator.

2. π1[b1] ∈ S and π1, [b1, b1 − 1] |= ψ and π1, [b1, e1] |= χ:
π1[b1] ∈ S implies that also π2[b2] ∈ S holds, since states are projected onto
states. From the second and third clause we can—based on the induction
hypothesis—directly derive that π2, [b2, b2 − 1] |= ψ and π2, [b2, e2] |= χ hold,
i.e., the second clause of the definition of the chop operator.

3. π1[e1] ∈ S and π1, [b1, e1] |= ψ and π1, [e1, e1 − 1] |= χ:
This case is completely symmetric to the previous one.

Direction π1, [b1, e1] |= ϕ⇐ π2, [b2, e2] |= ϕ:
We omit the proof of the reverse implication, since it is mostly symmetric to the
opposite direction, except for the slightly different choice of the right interval limit
in the induction base (which even has the positive effect to slightly facilitate the
argumentation in this direction) and the application of the back-projection instead
of the projection. 2

The stuttering invariance of SE-IL formulae that we have claimed in Theorem 6.4.5
is then a direct consequence of the Definition 6.4.4 of the presumed projection
relation between labelled Kripke structures in conjunction with Lemma 6.4.7.

Together with the result of the previous Section 6.2, namely the existence of the
projection relation between a specification and its slice (that carries over to the

150 6 Slicing Correctness

untimed version of projection that we defined in this section), the stuttering (viz.
projection) invariance of SE-IL formulae then yields the concluding correctness
result: our slicing approach for the verification of Object-Z and CSP-OZ specifica-
tions with respect to SE-IL formulae is correct, i.e., an SE-IL formula holds on a
specification if and only if it holds on the slice of the specification with respect to
the given SE-IL formula.

7 Tool Support and Experimental
Evaluation

Contents
7.1 Syspect — Modelling Environment for CSP-OZ-DC 152

7.1.1 Class Diagrams . 154

7.1.2 State Machines . 156

7.1.3 Component Diagrams . 157

7.1.4 DC Counterexample Formulae 159

7.1.5 DC Test Formulae and Syspect Verification 160

7.1.6 Specification Export . 162

7.2 Slicing Implementation within Syspect 164

7.2.1 Syspect Slicing Plug-In . 164

7.2.2 Control Flow Graph . 165

7.2.3 Dependence Graph . 168

7.2.4 Slicing Report . 171

7.3 Benchmarks and Case Studies 173

7.3.1 Tic-Tac-Toe . 173

7.3.2 Cash Register . 175

7.3.3 Untimed Air Conditioner 177

7.3.4 Timed Air Conditioner System 180

7.3.5 Elevator . 181

7.3.6 ETCS-EM Case Study . 184

7.3.7 Airport Specification . 189

7.4 Summary of Experimental Results 193

In the previous chapters we have developed a slicing approach for CSP-OZ-DC
specifications. Our main motivation for computing slices of such integrated formal
specifications has been to mitigate the problem of state space explosion during
their automatic verification. In order to evaluate the effectiveness of slicing with
respect to this purpose, the slicing approach has been implemented and several
experiments with suitable case studies have been carried out.

152 7 Tool Support and Experimental Evaluation

Basis for our slicing implementation and all slicing experiments is Syspect, the
graphical modelling environment for CSP-OZ-DC specifications. The first Section 7.1
of this chapter introduces Syspect with details of the types of diagrams and some
of its further features, in particular those with respect to automatic verification.

The following Section 7.2 introduces the actual slicing plug-in of Syspect, which
is the straightforward realisation of the slicing approach that has been devised in
the previous chapters of this thesis.

This slicing plug-in is the key for carrying out experiments in order to evaluate
the effectiveness of slicing. Such experiments have been conducted with a number
of specifications that have been modelled within Syspect, ranging from the running
examples presented in previous chapters up to a larger specification motivated by
an industrially relevant context.

The concluding Section 7.3 documents these specifications together with the
verification properties that have been used as slicing criteria; furthermore it gives
an account on the experimental results that have been achieved by applying the
slicing plug-in during specification export and automatic verification.

7.1 Syspect — Modelling Environment for CSP-OZ-DC

The platform at the heart of all slicing experiments is Syspect, the graphical
modelling environment for CSP-OZ-DC specifications. The diagram depicted in
Figure 7.1 shows Syspect together with the associated chain of verification tools
that have been developed in the context of subproject R1 “Beyond Timed Automata”
of the DFG SFB/TR 14 AVACS [AVA07].

Syspect is the result of a student project of the same name [Sys06]. The project
has been carried out at the Correct System Design Group [Cor07a] of the University
of Oldenburg during a period of two semesters from October 2005 through Septem-
ber 2006. A team of eleven students participated in the Syspect project group,
which was supervised by Ernst-Rüdiger Olderog, Michael Möller and Andreas
Schäfer. The overall goal of the project was to assemble a graphical specification
environment for CSP-OZ-DC specifications. This goal has successfully been achieved
by implementing Syspect as a rich client platform (RCP) based on the integrated
development environment (IDE) Eclipse [Ecl07].

The resulting software application allows us to generate CSP-OZ-DC specifications
by using a suitable UML profile for CSP-OZ [MORW07] that has previously been
researched within the DFG project ForMooS [Cor07b]. For developing models that
correspond to CSP-OZ-DC specifications, the CSP-OZ UML profile is extended with
suitable annotations for representing DC counterexample formulae.

The CSP-OZ-DC UML profile utilises a number of UML diagrams that will be
introduced in the following sections. These diagrams are augmented by several ded-
icated annotations in order to allow the graphical definition of system specifications

7.1 Syspect — Modelling Environment for CSP-OZ-DC 153

Syspect (System Specification Tool)

Component
Diagrams /

State Charts

Class
Diagrams

DC
Annotations

Verification
Property:
DC Test
Formulas

CSP(-Slice) OZ(-Slice) DC(-Slice)

Slicing
Plug-In

peatoolkit

TF PEA

TF-XML

Product PEA

MobyPEA

CSP PEA OZ PEA DC PEA

Transition Constraint System

ARMC / SLAB LoRe

Error
Trace

Correct
System

Invariant checking / BMC
Visualisation

Figure 7.1: The Syspect modelling environment for CSP-OZ-DC and the asso-
ciated tool chain, developed in DFG SFB/TR 14 AVACS, subproject R1 “Beyond
Timed Automata”.

154 7 Tool Support and Experimental Evaluation

corresponding to a consistent subclass of CSP-OZ-DC.
Once a specification has been modelled within Syspect, several export facilities

are offered, as also sketched within Figure 7.1. The associated export plug-ins
allow the fully automatic export of specifications into CSP-OZ-DC LATEX mark-up
as well as into its semantical representation of phase event automata (PEA). To
a large extent, the PEA representation generated by Syspect can be imported by
Moby/PEA [Cor07c], a graphical modelling tool for PEA, which has been developed
by Johannes Faber within the AVACS R1. A small but important limitation of this
import facility are Object-Z expressions, which cannot be imported into Moby/PEA
at the moment due to an incompatibility with the CZT XML format.

Furthermore, Syspect also allows for the direct translation of models together
with associated verification properties represented by test formulae into the format
of transition constraint systems (TCS), as defined by Hoenicke and Maier [HM05a].
For automatic verification, the resulting TCS can finally be fed into the model
checkers ARMC [Ryb07] and SLAB [BDFW07], which have both been developed
within AVACS R1. Internally, this translation is carried out via an intermediate rep-
resentation of the model and its associated verification properties as corresponding
PEA. Subsequently, the product automaton defined by parallel composition of all
these comprised PEAs is computed. Finally, the resulting product automaton is
translated into one single flat TCS.

Within his diploma thesis [Hob07], Ulrich Hobelmann pushed the integration of
ARMC into Syspect so far that property-violating traces discovered by ARMC can
automatically be translated back to the level of Syspect. Within Syspect such error
traces are presented to the user in a tabular form, such that the low-level format
of TCS and associated TCS traces remain completely hidden. Thus, problematic
system behaviour can be analysed directly on the level of UML diagrams, where the
specification has been constructed. This visualisation allows easier understanding
of system behaviour and is a much more user-friendly way than having to cope
with low level error traces.

Additional tool support for Syspect specifications comes with “LoRe”, a verifica-
tion tool that is developed in Saarbrücken by Swen Jacobs and Viorica Sofronie-
Stokkermanns within the AVACS subproject R1; currently, this tool is being linked
to the format of transition control systems. LoRe employs methods of local and
hierarchical reasoning to allow invariant checking and bounded model checking
for classes of systems with unbounded parameters, which have previously not been
amenable to automatic analysis.

7.1.1 Class Diagrams

The basic idea of the class diagrams of Syspect is to model the overall structure of
the system specification by defining its constituting components in terms of class
definitions. According to the UML profile for CSP-OZ [MORW07], these classes can

7.1 Syspect — Modelling Environment for CSP-OZ-DC 155

Figure 7.2: Syspect class diagram editor, containing a class diagram of the timed
air conditioner system.

either be

• capsules, corresponding to CSP-OZ-DC classes on the specification level,

• interfaces, corresponding to interfaces of CSP-OZ-DC classes, or

• pure data classes, corresponding to complex data types, i.e., CSP-OZ-DC classes
that serve as data containers and thus neither contain a CSP, nor an Object-Z
part, nor have any methods defined within the class.

An example of a class diagram as it can be modelled with Syspect is depicted
in Figure 7.2. The classes correspond to the CSP-OZ-DC classes of the timed air
conditioner system that has been introduced in the previous chapters.

Methods defined within a capsule are always local to the respective capsule. If
a method should be offered to the environment, it needs to be defined within an
interface class, which is either implemented by the capsule (Realisation association)
or which the capsule depends on (Dependency association). In addition to such Real-
isation/Dependency associations between capsules and interfaces, several further

156 7 Tool Support and Experimental Evaluation

types of association between classes can be defined, ranging from simple associa-
tion over aggregation and composition up to generalisation defining inheritance
relationships between classes.

According to the UML profile for CSP-OZ [MORW07], attributes can only be
defined within capsules and data classes, but not within interfaces. The types of
attributes can be freely chosen from several standard Z types (like integer Z or
Boolean B) up to arbitrary custom-defined types. However, at the time of writing,
the verification back-ends consider any variable within a CSP-OZ-DC specification
as being of type real. Therefore, the definition of types within the Syspect model is
currently ignored completely during verification export.

The property tab associated with capsules allows for the definition of further
details of the associated classes, ranging from the predicates contained within
the CSP-OZ-DC Init schema over invariants defined within the CSP-OZ-DC state
schema up to type definitions local to the respective capsule and the DC part of the
capsule in terms of a list of counterexample formulae.

7.1.2 State Machines

The behaviour of Syspect capsules can be defined by simple UML state machines,
which are subsequently translated into a subset of CSP, forming the CSP part of the
respective CSP-OZ-DC classes.

An example of a state machine as modelled within Syspect is depicted in Fig-
ure 7.3. The state machine corresponds to the CSP part of the AirConditioner class
that has been introduced in the previous chapters.

The ingredients of the state machines of Syspect are basically states and transi-
tions between states, possibly labelled with events defined within the associated
capsule. Next to ordinary states, there are three special types of states:

• initial states, denoting the position within the state machine at initialisation,
corresponding to the CSP main process,

• final states, denoting termination of the state machine, corresponding to a
concluding CSP Skip operator, and

• hierarchical states, containing a number of regions with further state machines
running in parallel, corresponding to CSP interleaving operators with each of
the interleaved processes defined within a separate region.

Except for transitions starting at initial states, each transition edge can be decorated
with a trigger event that takes place, when the associated transition edge is taken,
supposed the event’s precondition is satisfied. Furthermore, it is also possible
to explicitly omit a trigger. Omission corresponds to a nondeterministic decision
of whether the transition is taken or not, whenever the state machine visits the
transition’s source state.

7.1 Syspect — Modelling Environment for CSP-OZ-DC 157

Figure 7.3: Syspect state machine editor, containing a state machine of the air
conditioner class.

7.1.3 Component Diagrams

The role of component diagrams with respect to CSP-OZ and CSP-OZ-DC speci-
fications [FOW01, MORW04] and thus also within Syspect is complementary to
those of class diagrams. Where class diagrams only contain the static view onto the
classes comprised by the specified system and their mutual associations, compo-
nent diagrams define the dynamic view onto associations between instantiations
of classes. In particular, component diagrams allow us to define multiplicities of
instances of classes that assemble the system.

Another aspect modelled within component diagrams is the communication
between associated components. Suppose, a previously constructed class diagram
defines that one class A realizes an interface I that a different class B depends on.
When dragged into a component diagram, class A then obtains a base port, denoted
by a circle annotated with the interface class I, representing the fact that class A
provides methods as defined within interface I. Class B, on the other hand, obtains
a conjugated port, denoted by a semi-circle annotated with the interface class I,
representing the fact that class B depends on the methods defined within interface I.
Both ports can then be connected in order to define that the interface I provided by
class A is used by class B who, in turn, depends on exactly that interface I.

158 7 Tool Support and Experimental Evaluation

Figure 7.4: Syspect component diagram editor, containing a component diagram
of the timed air conditioner system.

An example of a component diagram as modelled within Syspect is depicted in
Figure 7.4. This example represents the air conditioner specification of the previous
chapters where parallel composition of class AC with class Env yields the system
class System. Communication between both involved classes is defined by the
interface ISyncACEnv that is implemented by class AC and that class Env depends
on.

Thus, the main purpose of component diagrams with respect to system speci-
fications within Syspect is the top-level assembly of the system out of previously
defined smaller components. Furthermore, component diagrams also add the
aspect of expressing multiplicities during dynamic instantiation and the aspect of
relations between system components in terms of inter-component communication.

During the CSP-OZ-DC export, each component diagram is translated into a
separate CSP-OZ-DC class containing only a CSP part. The resulting CSP equa-
tions define the parallel composition of the classes that are composed within the
component diagram. Furthermore, this class contains an interface defining the
channels that are left unbound within the component diagram, such that the asso-
ciated ports are delegated to the environment and thus allow outbound or inbound
communication.

Communication between components is modelled by the CSP parallel operator
with synchronisation on the alphabet of the methods contained within the linking
interface, while components that do not directly communicate with each other are

7.1 Syspect — Modelling Environment for CSP-OZ-DC 159

Figure 7.5: Syspect counterexample formula editor, containing a counterexample
formula of the timed air conditioner class.

connected by an interleaving operator, i.e., without the obligation to synchronise.

7.1.4 DC Counterexample Formulae

The DC part of CSP-OZ-DC classes in Syspect is defined in terms of a list of the
counterexample formulae as they have been introduced in Section 3.3 on CSP-OZ-
DC specifications of this thesis. These counterexample formulae can be defined
within the according Syspect editor that is depicted within Figure 7.5.

For handling the constituting elements of counterexample formulae, namely Z
expressions, augmented by several symbols dedicated to DC formulae, the Com-
munity Z Tools (CZT, [MU05]) have been integrated into Syspect. The resulting
formula editor offers a convenient way of designing and editing counterexample
formulae, including all of the special symbols that they may contain. Moreover,
each counterexample formula can be given a name to facilitate references to them
during subsequent verification, especially when an error trace needs to be traced
back to a certain DC formula.

Counterexample formulae defined within the Syspect counterexample editor can
be translated directly into corresponding LATEX mark-up. However, with respect to
the export via the verification backend, some restrictions exist currently. Due to
the power set construction involved in the translation of counterexample formulae
into corresponding phase event automata and current limitations of the underlying

160 7 Tool Support and Experimental Evaluation

Figure 7.6: Syspect test formula editor, containing a test formula that serves as
a verification property for the timed air conditioner system.

constraint decision diagrams (CDDs) (see [Hoe06] and [Cor07d]), it is not possible
to define symbolic constraints on the lengths of intervals, i.e., only concrete numeric
bounds such as ` < 3 can be given.

7.1.5 DC Test Formulae and Syspect Verification

Once a specification has been constructed within Syspect, another essential feature
of the modelling environment is its verification back-end. In order to perform
verification runs, we first of all need facilities for formulating and managing
requirements, i.e., verification properties that the specification should satisfy.

To this end, Syspect allows us to enter test formulae as defined in Section 6.3 of
this thesis. Test formulae can be designed and manipulated within the according
Syspect editor, which is designed very similar to the Syspect counterexample
formulae editor as shown in Figure 7.6.

These test formulae define the properties which are expected to hold for the
specified system. Consequently, they are used as the verification properties during
model checking runs. As stated for counterexample formulae, also test formulae are
managed within lists associated with specification classes. Furthermore, they can
also be given names for more convenient reference during subsequent verification.

7.1 Syspect — Modelling Environment for CSP-OZ-DC 161

Figure 7.7: Syspect error trace visualisation, containing an error trace of the timed
air conditioner system violating the verification property depicted in Figure 7.6.

During each verification export of Syspect, one of the previously defined test
formulae can be exported along with the actual specification, such that the subse-
quently operating model checking tools can then be used for analysing whether the
required property is indeed satisfied.

When such a model checking run discovers system behaviour that violates the
given property, an appropriate error trace is generated which can—in the case
of ARMC-based verification—be transformed back into the Syspect modelling
environment, where it is displayed to the user as depicted within Figure 7.7.

The error trace is presented in a tabular format with each step of the trace
contained within a separate line, to be read from the top line (defining the initial
step of the trace) to the bottom line (defining the last step of the trace where the
undesired behaviour has taken place).

Within each line, there are several columns, containing detailed information
about the associated step of the error trace, such as

• the transition number associated with the trace step (originating from the
low-level transition constraint system),

• the current state of the test formula (the verification property),

• the Object-Z method associated with the trace step, together with the effect
schema predicate of the method,

• the CSP event associated with the trace step in terms of the associated state
machine transition, and

• the current states of the involved DC formulae.

162 7 Tool Support and Experimental Evaluation

The current states of test and counterexample formulae are represented in terms of
the prefixes of phases that have been observed so far. When phases have not yet
been observed in a given step, they are not displayed in the associated line of the
error trace.

The design and implementation of this back-transformation and visualisation has
been subject of the diploma thesis of Ulrich Hobelmann [Hob07], who, moreover,
completed the ARMC verification export of Syspect, since this feature had not been
fully finished during the work of the Syspect project group.

7.1.6 Specification Export

The specifications that have been constructed within Syspect can—as well as
individual CSP-OZ-DC classes or combinations thereof—subsequently be exported
into various formats:

CSP-OZ-DC LATEX mark-up: This export format corresponds to the LATEX mark-up
as it has been used within this thesis, including line breaks for overlong lines
of LATEX code and page breaks for specifications comprising several CSP-OZ-DC
classes that possibly run over several pages. The LATEX mark-up needs to be
processed by latex or pdflatex in order to produce DVI or PDF files as
output. For certain commands, the czt.sty style file might be necessary in
addition to the generated LATEX file.

CSP-OZ-DC XML representation: This export format allows the integration of
further tools by offering a clean interface for subsequent import of CSP-OZ-DC
specifications. Tools that are capable of importing these XML files must of
course implement the same CSP-OZ-DC XML schema. Currently, there exist
no such tools.

Phase Event Automata (PEA) XML: This export format corresponds to the XML
representation of the automata-theoretic semantic model of CSP-OZ-DC in
terms of phase event automata (PEA) that can be generated for each part of
each class of a Syspect model, i.e., for all CSP parts of classes (corresponding
to the state machines and component diagrams of Syspect), all Object-Z parts
(corresponding to the class diagrams, component diagrams and associated
Object-Z annotations of Syspect), and all DC formulae (corresponding to
a formula out of the lists of DC counterexamples within a Syspect class).
The XML format of the Community Z Tools (CZT, [UTS+03]) is used for the
representation of Z expressions contained within the exported files.

Transition Constraint Systems (TCS): This export format also results from the
generation of the specification’s PEA semantics, which is used to compute
a large parallel product representing the complete system in conjunction

7.1 Syspect — Modelling Environment for CSP-OZ-DC 163

Syspect UML Representation of CSP-OZ-DC

Syspect Internal Java Representation of CSP-OZ-DC

CSP-OZ-DC Class

Component
Diagram

Class
Diagram

State
Machine

Object-Z
Annotation

DC
Annotation

Class
Interface

CSP Part
Object-Z

Part
DC Part

Figure 7.8: Syspect translation from UML to CSP-OZ-DC.

with the verification property represented by a special PEA. The verification
property is the requirement that the specification should meet, which is
derived from one of the test formulae described in the previous section.

The resulting product automaton of all involved PEAs together with the special
test formula PEA is then translated into the format of transition constraint
systems (TCS), which can finally be fed into model checkers such as ARMC or
SLAB.

Diagram exports: The various types of diagrams offered by Syspect such as com-
ponent diagrams, class diagrams, and state machines can be exported into a
number of graphic formats such as pixel-oriented formats like JPEG and BMP
or vector-oriented formats like EPS and PDF.

Each of the above mentioned types of export—except for the diagram exports into
graphic formats—proceeds initially as depicted in Figure 7.8.

The CSP-OZ-DC UML representation of Syspect as defined according to the UML
profile for CSP-OZ [MORW07] is translated into an internal Java representation of
the defined specification:

CSP-OZ-DC classes are generated according to their definition within component
diagrams and class diagrams as CSP-OZ-DC capsules or CSP-OZ-DC data
classes.

164 7 Tool Support and Experimental Evaluation

Interfaces of CSP-OZ-DC classes are generated according to their definition within
component diagrams, class diagrams and Object-Z annotations (the latter,
e.g., for the definition of channel types).

CSP parts of CSP-OZ-DC classes are generated according to their definition within
component diagrams and state machines.

OZ parts of CSP-OZ-DC classes are generated according to their definition within
class diagrams (defining attributes and methods) and Object-Z annotations
(defining predicates that form invariants, guards and transformations on the
state space).

DC parts of CSP-OZ-DC classes are directly generated from a class’ DC annotations,
i.e., the list of DC counterexample formulae.

After this initial step, each type of export is then based on the same internal Java
representation of CSP-OZ-DC classes. Consequently, this representation also serves
as the starting point for the slicing plug-in of Syspect, as we will see in the next
section.

7.2 Slicing Implementation within Syspect

The component of Syspect with the highest relevance to this thesis is the slicing
plug-in within Syspect. This plug-in has been developed by Sven Linker during his
work as a student assistant within subproject R1 of AVACS. It is the straightforward
implementation of the slicing algorithms defined in the previous chapters of this
thesis, such that the previously introduced modelling and verification facilities of
Syspect are enhanced by a completely automatic slice computation.

This section introduces the slicing plug-in with respect to its positioning within
the architecture of Syspect and its role in the workflow associated with the mod-
elling and analysis process that comes along with Syspect. To this end, this section
presents the general functionality offered by the slicing plug-in as well as each
of the output documents resulting from its application. These documents include
graphical representations of the associated data structures like the control flow
graph and the program dependence graph, on which the slicing algorithm is based,
and, furthermore, the slicing report, which summarises the reduction achieved by
slicing, and, last but not least, the actual slicing result, namely a reduced version of
the respective Syspect export.

7.2.1 Syspect Slicing Plug-In

Slicing for Syspect is implemented as a plug-in that can optionally be added to
the functionality of Syspect. If included, it offers additional slicing variants of

7.2 Slicing Implementation within Syspect 165

each of the export and verification facilities of Syspect models. This is achieved
by an on-the-fly computation of slices when performing the respective exports
into CSP-OZ-DC LATEX mark-up, into phase event automata, or into ARMC/SLAB
transition constraint systems as well as when performing ARMC-based verification.

Each of these additional export and verification variants work in a similar way by
extending the ordinary form of export: the first step always consists of converting
the given Syspect model from the level of its UML representation into an internal
representation within a resulting CSP-OZ-DC Java model as depicted in Figure 7.8.

However, while the ordinary lines of export and verification immediately use
this internal representation for further computations, their slicing variants first
transform this CSP-OZ-DC Java model into a reduced version of it, i.e., its slice with
respect to a user-specified test formula as the slicing criterion.

Once this reduced CSP-OZ-DC Java model has been computed, the slicing variants
of export and verification proceed exactly as their ordinary counterparts, except for
the fact that they then work on the slice instead of the original model.

Thus, the slicing variants of the export and verification facilities of Syspect
essentially add only one additional step into the export and verification chain as
depicted within Figure 7.9.

In addition to the actual slice of the internal Java representation of the specifica-
tion, the slicing plug-in also generates output files containing representations of
the main data structures of the slicing algorithm, i.e., the control flow graph and
the dependence graph for the specification that will next be presented.

7.2.2 Control Flow Graph

The control flow graphs generated by the Syspect slicing plug-in correspond directly
to the control flow graph as defined in Chapter 4 of this thesis. Their main purpose
within the development of the slicing plug-in has been to facilitate debugging of
the slicing implementation, since the subsequent construction of the dependence
graph depends on the correct construction of the control flow graph. The definition
of many of the dependence types that comprise the dependence graph rely on a
previous analysis of the control flow graph. For instance, a necessary condition for
the existence of a direct data dependence edge between two nodes is the existence
of a direct control flow graph path between both nodes.

The Syspect slicing plug-in does not directly produce graphical files containing
the control flow graph, but rather generates a textual file describing the control flow
graph structure in terms of nodes and edges, defined in the simple input language
of the dot tool from the Graph Visualization Software (Graphviz, [Gra07]).

Therefore, another step is necessary to obtain the actual graphical representation
of the graph structure, i.e., a run of the Graphviz dot tool that automatically
computes a layout for the graph structure and renders an associated graphical
representation.

166 7 Tool Support and Experimental Evaluation

(a) Ordinary export and verification:

CSP-OZ-DC UML Test Formula

CSP-OZ-DC

Java

CSP-OZ-DC

LaTeX-Markup

CSP-OZ-DC

XML

CSP-OZ-DC Phase

Event Automata

CSP-OZ-DC Transition

Constraint System

UML2Java Converter

Export Verification

(b) Slicing export and verification:

CSP-OZ-DC UML Test Formula

CSP-OZ-DC

Java

Slice of CSP-OZ-DC

Java wrt. Test Formulae

CSP-OZ-DC

LaTeX-Markup

CSP-OZ-DC

XML

CSP-OZ-DC Phase

Event Automata

CSP-OZ-DC Transition

Constraint System

UML2Java Converter

Syspect Slicing Implementation

Export Verification

Figure 7.9: Comparison of the ordinary line of export and verification (a) with
its slicing line of export and verification (b), where the slicing implementation is
embedded as one additional intermediate step.

An example of a control flow graph as generated by the Syspect slicing plug-in
(after fully automatic layout by the dot tool) is depicted in Figure 7.10.

Each node of the control flow graph is labelled with a description that identifies
its source, i.e., the associated specification element following the definition of the
control flow graph in Chapter 4. In addition to these basic annotations, the dot
input language offers several further possibilities for defining specific layouts for
different types of nodes and edges, which are heavily used by the slicing plug-in
in order to enhance the readability of the resulting graph layout. The following
control flow graph nodes can be distinguished according to their shape and their
colour:

Structural nodes are displayed as rectangles with white background. They repre-
sent CSP operators such as sequential composition, Skip, or Stop operators.

Class parallel and class unparallel nodes are displayed as house shapes with
white background. They represent regions in the graph that belong to classes
put in parallel composition. The synchronisation alphabet is given as an

7.2 Slicing Implementation within Syspect 167

Class Env

Class AC

en_dtemp_2

eff_dtemp_2

en_tchange_4

start_InitialState1_3

par_|||_1

call_InitialState2_1call_InitialState1_2

start_InitialState2_2

start_Env_1

en_lchange_3

eff_lchange_3

call_InitialState2_5

en_dlight_1

eff_dlight_1

eff_tchange_4

call_InitialState1_6

par_|||_2

call_I.Operate_8 call_I.Work_9

start_I.Operate_8 start_I.Work_9

ret_I.Operate_8

unpar_|||_2

seq_2

ret_I.Work_9

call_main_10

start_AC_6

en_workswitch_6

eff_workswitch_6

skip_1

en_modeswitch_7

eff_modeswitch_7

call_I.Operate_12

en_refill_8

eff_refill_8

call_I.Operate_13

par_[]_1

ret_I.Operate_12

unpar_[]_1

term_I.Operate

ret_I.Operate_13

en_off_9

eff_off_9

skip_2

en_consume_10

eff_consume_10

en_dtemp_11

par_[]_2

unpar_[]_2

term_I.Work

ret_I.Work_17

en_workswitch_5

eff_workswitch_5

en_level_12

eff_level_12

call_I.Work_17

eff_dtemp_11

par_AC.Env_{dtemp}

start_main

Figure 7.10: Control flow graph as automatically generated by the Syspect slicing
plug-in for the specification of the timed air conditioner system after automatic
layout by the dot tool.

168 7 Tool Support and Experimental Evaluation

extension of the node label within curly braces.

Ordinary parallel and unparallel nodes are displayed as house shapes with grey
background. They represent regions in the graph that belong to branches of
CSP parallel composition operators. The synchronisation alphabet is again
given as an extension of the node label within curly braces.

Schema nodes are displayed as octagons with green and red backgrounds. Green
versions represent enable schemas and red versions represent effect
schemas.

Process start/term nodes are displayed as ovals with black background. They
represent unique entry and optional exit points of control flow into/out of
processes.

Process call/return nodes are displayed as ovals with blue background. They
represent process calls and return points for control flow when a CSP process
is referenced or when a referenced CSP process terminates and control flow
returns to the point of its previous reference.

For a legend summarising these different types of nodes see Figure 7.12a in the
following Section 7.2.3 on dependence graphs generated by the slicing plug-in.

Another feature of the dot input language is the definition of clusters, i.e., groups
of nodes that are combined within rectangular areas and laid out separately. In
the dot description of the control flow graph this feature is used to distinguish
different classes of the underlying specification: for each involved class, a cluster is
defined that comprises all control flow graph nodes related to the respective class.
Furthermore, the cluster is labelled with the name of the associated class.

Finally, all edges of the control flow graph are represented by the same type of
directed line, since all of them have the same type and thus do not need to be
further distinguished.

7.2.3 Dependence Graph

As stated for the control flow graphs, the Syspect slicing plug-in generates depen-
dence graphs that correspond directly to the dependence definitions of Chapter 4 of
this thesis. Moreover, the main motivation for implementing a facility for rendering
graphical representations of the resulting graph structures has been the same as for
control flow graphs, namely to facilitate debugging of the slicing implementation.

Furthermore, it turned out that dependence graphs can be used as a nice visual
instrument for analysing a given specification with respect to the identification
of relations between specification components. They were especially useful for
finding out, between which components the strongest mutual dependences exist,

7.2 Slicing Implementation within Syspect 169

and which components are less closely coupled and might thus have less relevance
to certain analysis properties during compositional verification.

Like control flow graphs, the slicing plug-in does not directly render dependence
graphs, but rather generates descriptions of their graph structure in terms of dot
input files. These are laid out and rendered by the graph layout tool dot of the
Graph Visualization Software Graphviz [Gra07].

An example of a dependence graph as automatically generated by the Syspect
slicing plug-in (after fully automatic layout by the dot tool) is depicted in Fig-
ure 7.11.

Again, several facilities of the dot input language are used in order to distinguish
different types of nodes and edges of the dependence graph. A legend for all these
types of graphical elements of the fully rendered program dependence graph is
depicted in Figure 7.12.

Except for predicate nodes, all types of dependence graph nodes have already
been present in the control flow graph and are displayed in the same way in both
graphs. The newly introduced predicate nodes are displayed in the same way as
structural nodes, namely as rectangles with white background. They represent
predicates or conjuncts of predicates as they appear within Object-Z schemas.

The different types of dependence edges are distinguished according to their
colour as follows.

• Control dependence is represented by black edges, without any further differ-
entiation between the different types of control dependence.

• The different types of data dependence are represented by

– brown edges for direct data dependence between predicate nodes of dif-
ferent schemas,

– orange edges for interference data dependence between predicate nodes of
schemas within different branches of a parallel node, and

– yellow edges for symmetric data dependence between predicate nodes of
the same schema.

• Synchronisation dependence is represented by blue edges for synchronisation
dependence between nodes of two different classes over which both classes
synchronise; furthermore, violet edges represent the associated synchroni-
sation data dependence, resulting from transmission of data via an output
variable on the sending side and an input variable on the receiving side.

• Timing dependence is represented by green edges, connecting all nodes that are
directly or indirectly referred to by one of the DC counterexample formulae of
the underlying specification.

170 7 Tool Support and Experimental Evaluation

C
la

ss
 E

nv

C
la

ss
 A

C

en
_d

te
m

p_
2 ef

f_
dt

em
p_

2
en

_t
ch

an
ge

_4

ef
f_

tc
ha

ng
e_

4

ca
ll_

In
iti

al
S

ta
te

1_
6

en
_d

te
m

p_
11

pr
ed

_{
t?

=
0=

>
dt

’=
(-

1)
}_

2

pr
ed

_{
t?

=
1=

>
dt

’=
1}

_2

pr
ed

_{
te

m
p’

=
te

m
p+

dt
}_

4

ef
f_

dl
ig

ht
_1

pr
ed

_{
l?

=
0=

>
dl

’=
(-

1)
}_

1

pr
ed

_{
l?

=
1=

>
dl

’=
1}

_1

pr
ed

_{
lig

ht
’=

lig
ht

+
dl

}_
3

en
_d

lig
ht

_1

en
_l

ch
an

ge
_3

ef
f_

lc
ha

ng
e_

3

ca
ll_

In
iti

al
S

ta
te

2_
5

st
ar

t_
E

nv
_1

in
itp

re
d_

{t
em

p<
=

0}
_1

in
itp

re
d_

{li
gh

t<
=

0}
_2

pa
r_

|||
_1

ca
ll_

In
iti

al
S

ta
te

2_
1

ca
ll_

In
iti

al
S

ta
te

1_
2

st
ar

t_
In

iti
al

S
ta

te
2_

2
st

ar
t_

In
iti

al
S

ta
te

1_
3

en
_o

ff_
9

ef
f_

of
f_

9

en
_w

or
ks

w
itc

h_
6

te
rm

_I
.W

or
k

un
pa

r_
[]_

2
sk

ip
_2

pr
ed

_{
w

or
k=

0}
_9

en
_r

ef
ill

_8

ef
f_

re
fil

l_
8

pr
ed

_{
fu

el
’>

fu
el

}_
8

pr
ed

_{
fu

el
’=

fu
el

-1
}_

10

pr
ed

_{
fu

el
>

5}
_1

0
pr

ed
_{

f!=
fu

el
}_

12

in
itp

re
d_

{f
ue

l>
5}

_5

ef
f_

dt
em

p_
11

pr
ed

_{
t!=

m
od

e}
_1

1

en
_l

ev
el

_1
2

ef
f_

le
ve

l_
12

ca
ll_

I.W
or

k_
17

ef
f_

w
or

ks
w

itc
h_

6
pr

ed
_{

w
or

k’
=

1-
w

or
k}

_6

pr
ed

_{
w

or
k=

1}
_1

0

pr
ed

_{
w

or
k’

=
1-

w
or

k}
_5

in
itp

re
d_

{w
or

k=
0}

_3

en
_w

or
ks

w
itc

h_
5

un
pa

r_
[]_

1

te
rm

_I
.O

pe
ra

te
sk

ip
_1

en
_m

od
es

w
itc

h_
7

ef
f_

m
od

es
w

itc
h_

7
pr

ed
_{

m
od

e’
=

1-
m

od
e}

_7

in
itp

re
d_

{m
od

e=
1}

_4

ef
f_

co
ns

um
e_

10

en
_c

on
su

m
e_

10

ef
f_

w
or

ks
w

itc
h_

5

pa
r_

|||
_2

st
ar

t_
A

C
_6

ca
ll_

I.O
pe

ra
te

_8
ca

ll_
I.W

or
k_

9

st
ar

t_
I.O

pe
ra

te
_8

st
ar

t_
I.W

or
k_

9

pa
r_

[]_
1

ca
ll_

I.O
pe

ra
te

_1
2

ca
ll_

I.O
pe

ra
te

_1
3

pa
r_

[]_
2

re
t_

I.O
pe

ra
te

_8

un
pa

r_
|||

_2
ca

ll_
m

ai
n_

10
se

q_
2

re
t_

I.W
or

k_
9

re
t_

I.O
pe

ra
te

_1
2

re
t_

I.O
pe

ra
te

_1
3

re
t_

I.W
or

k_
17

pa
r_

A
C

.E
nv

_{
dt

em
p}

st
ar

t_
m

ai
n

Figure 7.11: Dependence graph as automatically generated by the Syspect
slicing plug-in for the specification of the air conditioner system after automatic
layout by the dot tool.

7.2 Slicing Implementation within Syspect 171

(a) Dependence graph nodes:

structural
and

predicate
node

class parallel
node

class unparallel
node

parallel node

enable
node

unparallel
node

effect
node

call/return
node

start/term
node

(b) Dependence graph edges:

timing dependence

synchronisation data dependence

synchronisation dependence

symmetric data dependence

interference data dependence

data dependence

control dependence

Figure 7.12: Legend for the graphical elements comprised by dependence
graphs generated by the Syspect slicing plug-in.

7.2.4 Slicing Report

Once a slice computation has been successfully completed, the slicing plug-in
presents a concluding slicing report dialog window as depicted in Figure 7.13a.
The slicing report summarises the reductions that have been achieved by the slice
computation, such that the effect of the slice computation can easily be assessed by
the user.

To this end, the report is organised according to the specification structure into
sections for each of the involved classes of the specification. Each section lists
all of the elements that have been removed from the original specification in
order to obtain the slice of the respective class. The specification elements, which
are possibly contained in the slicing report, range from variables and invariants
contained within the state schema, over predicates of the Init, enable and
effect schemas up to counterexample formulae of the DC part of each class.

In addition to the tree-like organised summary presented in the concluding dialog
of the slicing plug-in, the slicing report can also be exported as LATEX mark-up as
depicted in Figure 7.13b, containing a list of all specification elements that have

172 7 Tool Support and Experimental Evaluation

(a) Slicing report window: (b) Slicing report LATEX mark-up:

• Env

• Variables and Invariants

• temp : Z
• dl : Z
• dt : Z
• light : Z

• Init

• temp ≤ 0
• light ≤ 0

• dlight

• effect

• l? = 0⇒ dl′ = (−1)
• l? = 1⇒ dl′ = 1

• tchange

• effect

• temp′ = temp + dt

• lchange

• effect

• light′ = light + dl
• [. . .]

Figure 7.13: Slicing report window (a) and LATEX mark-up (b), both listing all
specification elements of the timed air conditioner system that are irrelevant with
respect to the verification property depicted in Figure 7.6.

been removed by slicing.

7.3 Benchmarks and Case Studies 173

7.3 Benchmarks and Case Studies

This section gives an account on the results that have been achieved by applying
slicing to a selection of several specifications. The specifications range from simple
toy examples as presented in the previous chapter to illustrate the slicing approach
up to two larger case studies that have been developed within AVACS R1 and within
a student project, respectively.

All specifications have been constructed within the Syspect modelling environ-
ment for CSP-OZ-DC and all of these Syspect models are available within the
public subversion repository of Syspect [Cor07e], where they reside in the directory
src/SyspectExample/projects.

The following versions of software tools have been used:

• Syspect 1.2.2 in subversion revision r5569.

• Syspect slicing plug-in in subversion revision r256.

• Syspect PEA-Tool in subversion revision r302.

• dot (Graph Visualization Software) version 2.6 (Tue May 2 07:58:05 UTC
2006) [Gra07].

• ZGRViewer v0.7.2 (“A Visualization Tool for Graphviz based on ZVTM”)
[Pie07].

• ARMC in version 3.20.03 (12-Apr-2007) [Ryb07].

• SLAB in subversion revision r147.

• Java 2 Runtime Environment, Standard Edition (build 1.5.0 13-b05).

• CLP-prover in version 0.2 (Mar-29-2007) [Ryb06].

All of the experiments have been carried out on an AMD Sempron 2600+ with 1
GB of memory under SuSE Linux 10.1.

7.3.1 Tic-Tac-Toe

When using Syspect to model the Tic-Tac-Toe specification presented in Chapter 3, a
CSP-OZ-DC export produces exactly the intended form of CSP-OZ-DC LATEX mark-up
as previously depicted in a manually generated version.

Furthermore, when using the slicing plug-in of Syspect to compute reduced
versions of this specification, we obtain exactly the same results as from the
previous manual computations presented in Chapter 5. Slices have been computed
with respect to both of the following previously introduced verification properties:

174 7 Tool Support and Experimental Evaluation

• ϕ1 ≡ 2dmoves = 9−#freee
This formula defines the number of moves in terms of free fields on the
Tic-Tac-Toe board.

• ϕ2 ≡ ¬3(blacka (dtruee ∧ ¬(dtrueea whitea dtruee))a black)

∧ ¬3(whitea (dtruee ∧ ¬(dtrueea blacka dtruee))a white)
This formula characterises the alternations of moves between the black and
the white player.

The obtained reductions are summarised in Table 7.1 that lists the numbers of
specification elements that have been manually counted for the full specification
and for the slices. Additionally, percentage figures are given for the slices relative
to the full specification.

Specification Elements Full ϕ1-Slice % ϕ2-Slice %
Interface 3 3 100 3 100
Variables 6 6 100 3 50
State invariants 2 2 100 1 50
Init predicates 6 6 100 3 50
enable schemas 3 3 100 3 100
effect schemas 3 3 100 3 100
Total # predicates 24 21 88 13 54
Total # spec. elements 47 44 94 29 62

Table 7.1: Slicing results for the Tic-Tac-Toe specification. The size of the slice for
each property is given in terms of the absolute number of remaining specification
elements and as percentage figures relative to the full specification.

These results confirm the observation that the reduction that can be achieved by
slicing depends very much on the kind of property used as a slicing criterion: With
respect to property ϕ1 only the communication of the final outcome of the game
can be removed from the specification, since all remaining information is relevant
to the property, such that the slice still contains 94% of all elements of the full
specification, i.e., only 6% have been removable.

For property ϕ2, on the other hand, only the aspect of alternation of moves
between both players is important, while the actual result of the game including
the markings on the board fields are not relevant. Thus, a lot more specification

7.3 Benchmarks and Case Studies 175

elements of the original specification can be removed and only 62% of them remain
in the slice.

Note that although the specification’s CSP-OZ-DC LATEX mark-up can be exported
without a problem and thus the merely syntax-based computation of its slice is
completely unproblematic, we can unfortunately not obtain any verification results
for this specification, since it involves set calculations such as wposn′ = wposn∪{p!},
which are not yet covered by the Syspect translation into phase event automata
and can hence currently not be handled by the verification back-end of Syspect.

Next, we will introduce another Object-Z specification for which we can in fact
successfully carry out verification runs.

7.3.2 Cash Register

In order to complement our collection of slicing examples with an Object-Z specifi-
cation that is indeed amenable to verification, we now introduce a completely new
specification of a cash register.

This CashRegister specification defines a very simplistic version of a supermarket
cash register containing only two storage entities: one representing the current
amount of money inside the cash register (variable cash) and the other one counting
the number of items sold so far (variable item). Initially, both variables have a value
of zero. Furthermore, there are two events that this cash register can perform. The
pay event represents the process of an item being sold. A payment is received and
the cash variable and the item counter are updated accordingly.

The motivation of the other event inform could be thought of as a means of the
supermarket manager to be informed from time to time about the current amount
of money inside the cash register. Since he doesn’t want to be distracted from his
other important work, he only wants to receive this information when, for instance,
at least ten items have been sold since the last information was sent. Therefore, the
inform event is only enabled, when the item counter is greater than or equal to ten.
In this case, the current amount of cash can be communicated to the supermarket
manager and the item counter is reset.

A specification of such a cash register has been constructed within Syspect,
leading to the following export as CSP-OZ-DC LATEX mark-up:

CashRegister
chan inform : [output! : N]
chan pay : [payment? : N]

cash : N
item : N

176 7 Tool Support and Experimental Evaluation

Init
cash = 0
item = 0

effect pay
∆(item, cash)
payment? : N

cash′ = cash + payment?
item′ = item + 1

enable inform

item ≥ 10

effect inform
∆(item)
output! : N

output! = cash
item′ = 0

As the slicing criterion we consider the verification property

ϕ ≡ 3dcash = 42e,

defining that the cash register can eventually reach a state where its variable cash
has a value of 42.

When computing the slice of the CashRegister specification with respect to this
property using the Syspect slicing plug-in, we obtain the following specification
slice:

CashRegister Slice Cash42
chan pay : [payment? : N]

cash : N
Init
cash = 0

effect pay
∆(cash)
payment? : N

cash′ = cash + payment?

In comparison to the original specification, the inform event has been removed
from the interface along with its associated enable and effect schema as well as
the associated variable item. This result is sensible, since the property of reaching a
state with a certain valuation of variable cash is only influenced by the pay event,
but not at all by event inform that only has the role of sending information on the
current state of the cash register to the environment of the class.

When comparing the verification runs of ARMC and SLAB as depicted in Table 7.2,
we can observe that slicing leads to a reduction in terms of model size down to 80%

7.3 Benchmarks and Case Studies 177

of that of the original system, resulting in an even stronger reduction of verification
runtime down to 53% in the case of ARMC and down to 33% in the case of SLAB,
each time relative to the verification runtime needed for the full system.

Dimension Full Slice %
model size [TCS transitions] 58 47 81
ARMC runtime [s] 0.15 0.08 53
SLAB runtime [s] 31.58 10.50 33

Table 7.2: Model sizes and verification runtimes for the CashRegister specification
and its slice with respect to ϕ. Additionally, percentage figures relative to the full
system are given for its slice.

As expected, both model checkers identify a run of the model violating the property
ϕ in the case of the full specification as well as in the case of the specification slice.

7.3.3 Untimed Air Conditioner

In Chapter 3 of this thesis we have introduced the CSP-OZ specification of an
untimed air conditioner system as our running example of CSP-OZ specifications.
This specification has been modelled within Syspect as a project containing only
one single capsule. The class corresponds to the capsule AC of the class diagram
that has been shown in Figure 7.2 in the beginning of this chapter.

The remaining capsules and interfaces of that class diagram have not been
included in the Syspect model, since the untimed air conditioner only consists of
the class AC. The state machine of the AC class is the same as previously shown in
Figure 7.3.

With respect to verification, one main difference between the specification and
the resulting Syspect model are the data types of the involved variables. As
mentioned, Syspect allows us to define variables of arbitrary non-real types, but the
verification export plug-ins currently ignore any such types. Instead, any variable is
regarded as being of type real. This difference needs to be kept in mind already
during modelling, if subsequent verification is planned.

The ARMC verification export plug-in of Syspect has then been used to perform
verification runs for the full specification with respect to verification properties

ϕ1 ≡ ¬3dfuel < 5e and ϕ2 ≡ ¬3dfuel < 5 ∧ work = 1e.

As expected, the verification result is in each case an error trace like that depicted
in the screenshot of Figure 7.14a.

178 7 Tool Support and Experimental Evaluation

(a) Full specification error trace:

(b) Sliced specification error trace:

Figure 7.14: Error traces obtained when verifying the full (7.14a) and the sliced
(7.14b) untimed air conditioner specification with respect to property ϕ1.

7.3 Benchmarks and Case Studies 179

The error trace shows that the specification violates the verification properties due
to the too weak precondition of method consume. The associated enable schema
allows the method to take place even if the remaining fuel supply has dropped
down to a value just over five fuel units (fuel > 5). Schema effect consume in
turn decreases the fuel supply by one unit, such that afterwards it might be below
the safety critical limit of five fuel units required by the verification properties.

The number of transitions contained within the resulting TCS models, along with
the runtimes needed to complete the verification tasks with the model checkers
ARMC and SLAB are depicted within the column “Full” of Table 7.3.

Property Dimension Full Slice %
ϕ1 model size [TCS transitions] 317 197 62

ARMC runtime [s] 0.28 0.16 57
SLAB runtime [s] 540.57 247.94 46

ϕ2 model size [TCS transitions] 571 355 62
ARMC runtime [s] 0.52 0.30 58
SLAB runtime [s] 1483.62 675.85 46

Table 7.3: Model sizes and verification runtimes for the untimed air conditioner
system specification and its slices with respect to verification properties ϕ1 and
ϕ2. Additionally, percentage figures relative to the full system are given for each of
the slices.

When comparing the sizes of the TCS models generated for properties ϕ1 and ϕ2,
we see that the additional restriction work = 1, imposed by verification property
ϕ2, leads to an additional overhead of the resulting model size. This enlargement
is sensible, since due to the additional restriction the test formula is translated
into a resulting larger phase event automaton, such that also the final transition
constraint system must have additional transitions.

The same verification runs have then been carried out after computing the slices
of the specification with respect to ϕ1 and ϕ2. Apart from the partially different
transition numbers, the only difference in the error trace depicted in Figure 7.14b
is the additional restriction mode = 1 of the Init predicate of the full specification
that is not present in its slice, since variable mode has been removed from the
specification.

The resulting model sizes and runtimes for ARMC and SLAB verification are
given in column “Slice” of Table 7.3. Additionally, column “%” lists percentage
figures relative to the model sizes and runtimes obtained for the full version of the

180 7 Tool Support and Experimental Evaluation

specification.
When comparing the figures of the full specification with those of their slices,

we see that, regardless of the verification property, slicing leads to a considerable
reduction down to about 60% in terms of model size and down to around 50% in
terms of required verification time.

7.3.4 Timed Air Conditioner System

The CSP-OZ-DC specification of the timed air conditioner system that we have
introduced in Chapter 3 of this thesis as a running example of CSP-OZ-DC specifica-
tions has been modelled within Syspect. Parts of the resulting Syspect model have
already been presented in illustrating screenshots contained within the previous
sections of this chapter: Figure 7.2 shows its class diagram, Figure 7.3 shows the
state machine of the air conditioner class AC, Figure 7.5 shows the DC part of AC,
Figure 7.4 shows the component diagram of the system, and Figure 7.7 shows the
error trace of a verification run of the full specification with respect to verification
property ϕ2 ≡ ¬3dfuel < 5 ∧ work = 1e.

Table 7.4 lists the results of verification runs on the transition constraint systems
resulting from verification exports of only the air conditioner class as well as the
complete air conditioner system and slices thereof with respect to the verification
properties

ϕ1 ≡ ¬3dfuel < 5e and ϕ2 ≡ ¬3dfuel < 5 ∧ work = 1e.

For comparison, the figures for the untimed air conditioner class (“Unt. AC”) of the
previous section are included in the table. All verification runs lead to essentially
the same error trace that violates the verification property with an occurrence
of method consume leading to a decrement of variable fuel below the required
minimum level due to the too weak precondition of the enable consume schema.

When comparing the model sizes generated for verification of the timed and
the untimed air conditioner class with respect to verification properties ϕ1 and ϕ2,
the following anomaly stands out: For the untimed class, the stronger property ϕ2

leads to a considerably larger model, while for the timed class, using the stronger
property for verification leads to a transition constraint system with less transitions.
Obviously, the larger test automaton resulting from the additional requirement
within ϕ2 causes a considerable reduction in conjunction with the phase event
automaton resulting from the DC part of the timed air conditioner class when
computing the global product automaton of all involved classes.

The effect of slicing, however, is consistent for all instances of the single air
conditioner class: in each case, the model size as well as the ARMC verification
runtime is reduced down to little more than half of that of the full class. The benefit
achieved for the SLAB verification runtime is even slightly larger with a reduction
down to little less than half of that of the full class.

7.3 Benchmarks and Case Studies 181

Specification Prop. Model Size ARMC Runtime SLAB Runtime
trans. % sec % sec %

Unt. AC ϕ1 317 100 0.28 100 541 100
Unt. AC-Slice ϕ1 197 62 0.16 57 248 46
Unt. AC ϕ2 571 100 0.52 100 1484 100
Unt. AC-Slice ϕ2 355 62 0.30 58 676 46
Timed AC ϕ1 3198 100 4.10 100 7219 100
Timed AC-Slice ϕ1 1854 58 2.30 56 3237 45
Timed AC ϕ2 1600 100 2.08 100 3195 100
Timed AC-Slice ϕ2 928 58 1.18 57 1501 47
System ϕ1 228206 100 699.19 100 oom n/a
System-Slice ϕ1 22686 10 27.51 4 oom n/a
System ϕ2 114104 100 304.79 100 oom n/a
System-Slice ϕ2 11344 10 12.28 4 oom n/a

Table 7.4: Experimental results for the untimed and the timed air conditioner
class (AC), the full timed air conditioner system (System), and their slices with
respect to verification properties ϕ1 and ϕ2. For each model, the size is given in
terms of transitions of the transition constraint system. For each verification task,
the verification runtime is given in seconds needed to discover an error trace. The
effect achieved by slicing is given in terms of percentage relative to the model size
and verification runtime of the full models. The notation “oom” indicates that the
model checker ran out of memory. In these cases no reduction factor can be given
(n/a).

An even more impressive effect is achieved for the complete timed air conditioner
system, comprising the air conditioner class AC and its environment class Env: there
slicing reduces the model size down to only 10% of the original specification. As
expected, this reduction is mainly achieved by the removal of large parts of the
environment class such as the aspect of modelling the lighting situation that is not
relevant with respect to the given properties.

This reduction in model size results in an even larger acceleration in ARMC
verification where the error trace is found 25 times faster than before. For the
model checker SLAB, however, all of the resulting transition constraint systems of
the complete timed model, including the sliced versions, are too large, such that no
successful verification can be carried out.

7.3.5 Elevator

As another example of a CSP-OZ-DC specification, an elevator has been modelled
within Syspect. We use the associated state machine that is depicted in Figure 7.15
to introduce the functionality of the underlying system.

The elevator’s state machine corresponds to the CSP part of the elevator class

182 7 Tool Support and Experimental Evaluation

Figure 7.15: State machine of the elevator class.

and thus defines the elevator’s behaviour in terms of the admissible ordering of
events.

Upon its activation with event start, the elevator closes its door (closeDoor) and
decides afterwards, whether it starts moving upwards (up) or downwards (down).
Whenever the elevator passes a floor (passed), the elevator’s display shows the
current floor number (showFloor) by turning on an associated light. When the
elevator has finally reached its goal, it stops (stop), opens its door (openDoor), and
starts again with a new working cycle.

Interleaved with the main working cycle is another cyclic process, which models
the non-deterministic choice of a destination floor (request). Such a request can
happen at any time, whereupon the desired floor number is added to the sequence
of requests that the elevator processes in the order of their insertion.

Initially, the elevator is at the lowest floor (which is simultaneously the initial
target floor), there are not yet any requests, and the doors are open.

Furthermore, the elevator contains the following two real-time requirements:

• DoorOpen ≡ ¬3(l openDoora ` ≤ 30a l start)
requires that the door must not remain open for less than 30 time units.

• Restart ≡ ¬3(l stopa drequest 6= ∅e ∧ � up)
requires that, after stopping, the elevator must not move upwards while there
are no pending requests.

With respect to verification of the elevator model, a similar problem as for the
previously introduced Tic-Tac-Toe specification arises: the elevator specification

7.3 Benchmarks and Case Studies 183

contains operations on sequences such as the predicate requests′ = requests a f?
that models the extension of the requests queue by a new request f? within schema
effect requests. Due to these operations that are not yet supported by the
verification back-end of Syspect, we can currently not carry out any verification
tasks for the elevator specification.

The computation of slices, however, is no problem, such that slices have been
computed for the following verification properties:

• NoReach ≡ ¬3(dstatus = closede ∧ ` > 42)
This formula describes that the elevator must not keep its door closed for
more than 42 time units, i.e., reach its target within at most 42 time units.

• NoStart ≡ ¬3(l requesta dpos = tare ∧ ` > 42)
This formulae describes that, upon the occurrence of a request, the elevator
must not stay at the current floor for more than 42 time units.

Note that the constant 42 is used as a workaround for a parametric value, which
is not implemented in the test formula parser of Syspect. With respect to slicing,
however, it does not matter, whether the time bound is given as a numeric constant
or as a symbolic variable.

The results obtained from the slice computations are summarised in Table 7.5.

Specification Full NoReach- NoStart-
Elements Slice % Slice %
Interface 9 8 89 6 67
Variables 5 4 80 3 60
Init predicates 6 4 67 3 50
enable schemas 5 5 100 5 100
effect schemas 7 6 86 4 57
Method predicates 16 14 88 12 75
DC formulae 2 2 100 2 100
Total # spec. elements 50 43 86 35 70

Table 7.5: Slicing results for the elevator specification. The absolute numbers
of specification elements have been manually counted. For each of the slices,
percentage figures relative to the numbers of the full specification are given.

For both properties, slicing is able to remove all specification elements that are
related to displaying the current floor. This result is sensible, since the removed

184 7 Tool Support and Experimental Evaluation

specification parts purely address output functionality and thus do not have any
impact on the given properties.

In addition to this base reduction, slicing with respect to property NoStart reduces
the specification in another aspect, namely by eliminating all components that
model opening and closing of the elevator door. Also this outcome is sensible, since
the handling of the door is a feature of the elevator that is actually independent
from its main functionality. This holds in particular with respect to the verification
property NoStart, which relates the occurrence of requests with the subsequent
states of the current and the destination floor.

When slicing with respect to property NoMove, the situation is different, since this
property contains an explicit reference to the status of the door. Consequently, the
concerned specification elements then need to remain in the resulting specification
slice.

To summarise the results obtained from the elevator specification, slicing achieves
a considerable reduction of the specification. However, both DC formulae as well
as all enable schemas need to remain in the slice due to the close coupling of all
involved parts of the specification.

7.3.6 ETCS-EM Case Study

The European Train Control System (ETCS) is an international standard [ERT02],
which has been jointly developed by national European rail services in order to
replace national train control systems by one harmonised framework. Thus, one of
the primary aims of the ETCS standard is to enable trains to move between different
European countries without the need to provide different versions of train-borne
equipment for communication with country-specific infrastructure.

Currently, train localisation, speed detection, and integrity checks still mainly
rely on sensors installed along railway tracks. These are not required anymore
in the final ETCS implementation level. Instead, radio block centres (RBC) are
associated to dedicated railway segments, on which they have to supervise trains
via wireless communication.

One of the most safety-critical aspects of the communication between an RBC
and its supervised trains is the treatment of emergency messages. If a leading train
detects an emergency situation and needs to perform an emergency brake, it is
essential that its following trains receive emergency information in time, such that
collisions are impossible to occur.

This aspect of the ETCS standard has been modelled as a CSP-OZ-DC specifi-
cation by Johannes Faber within AVACS R1 [Fab07]. The primary intention of
this development was to conduct a realistic case study of an industrially relevant
system, which could be used on the one hand for the evaluation of CSP-OZ-DC as
a specification notation. On the other hand, the case study was the basis for the
assessment and further development of automatic verification techniques within

7.3 Benchmarks and Case Studies 185

 System

CN 1

LT 1

RBC 1

RT 1

RTDrv 1
Trck 1

1

I_CN_RBC

I_CN_T

I_LT_Trck

I_CN_T

I_CN_RBC

I_RT_Trck

I_CN_T

I_RT_RTDrv

I_RT_RTDrv

I_RT_Trck
I_LT_Trck

Figure 7.16: The ETCS-EM system composition as defined within Syspect in
the main component diagram of this specification.

AVACS R1.
The resulting CSP-OZ-DC specification ETCS-EM has successfully been verified

with respect to the top-level property of collision freedom between trains [FM06,
MFR06]. However, the CSP-OZ-DC specification has not been fully automatically
translated into transition constraint systems. Instead, the phase event automata
semantics of the specification has first been manually constructed within Moby-
PEA [Cor07c], the graphical development environment for phase event automata.
Afterwards, the resulting phase event automata have been automatically translated
into transition constraint systems.

Furthermore, the complete specification was not tractable by direct automatic
verification. Instead, a compositional approach has been applied: several sub-
properties were verified for suitably decomposed parts of the system. Additional
arguments then lead to the conclusion that also the global property of collision
freedom is satisfied.

In order to assess the application of slicing to the ETCS-EM specification, it has
been modelled within Syspect, such that the slicing plug-in can be used to compute
slices with respect to some of the sub-properties.

Figure 7.16 shows the global system composition as defined by the component

186 7 Tool Support and Experimental Evaluation

CN
+ CNrecFRwrn()

+ CNrecFT()
+ CNsndTRack()
+ CNsndTRalrt()

+ CNsndTT()

I_CN_RBC
+ CNrecFRwrn()
+ CNsndTRack()
+ CNsndTRalrt()

I_CN_T
+ CNrecFT()
+ CNsndTT()

I_LT_Trck
+ LTgetLOA()
+ LTupPos()

I_RT_RTDrv
+ RTdrvAck()
+ RTdrvEB()

+ RTind()

I_RT_Trck
+ RTgetLOA()
+ RTupPos()

LT
+ CNrecFT()
+ CNsndTT()
LTappEB()
LTdetEM()

+ LTgetLOA()
LTselSpd()
+ LTupPos()

RBC
+ CNrecFRwrn()
+ CNsndTRack()
+ CNsndTRalrt()

RT
+ CNrecFT()
+ CNsndTT()
RTappEB()
RTappSB()
+ RTdrvAck()
+ RTdrvEB()

+ RTgetLOA()
RTgetPos()

+ RTind()
RTrelSB()

RTselSpd()
+ RTupPos()

RTDrv
+ RTdrvAck()
+ RTdrvEB()

+ RTind()

System

Trck
+ LTgetLOA()
+ LTupPos()

+ RTgetLOA()
+ RTupPos()

1

1
SystemCN

1
1SystemLT

1

1

SystemRBC

1
1

SystemRT

1

SystemRTDrv

1

1

SystemTrck

1

Figure 7.17: The classes and their mutual associations comprised by the ETCS-
EM specification as defined within Syspect.

diagram of the ETCS-EM specification. In the centre of the specification are both
involved trains, the leading train (class LT) and the following rear train (class
RT). Both of these communicate with the railway track (class Trck) and the
communication network (class CN) that models the wireless communication with
the RBC (class RBC). Only the rear train has a driver (class RTDrv), since the leading
train is only of interest with respect to its detection of an emergency situation,
which is independent from its driver.

All classes involved in the component diagram are also shown in the specifica-
tion’s class diagram depicted in Figure 7.17. Moreover, the class diagram contains
details of the interface of each of the classes, including the methods they offer or
require, respectively.

The original CSP-OZ-DC specification of the ETCS-EM system as developed by
Johannes Faber contains several sophisticated constructs of CSP-OZ-DC that are not
directly expressible within Syspect. However, workarounds have been found for
representing all of the intended features of the specification. In detail, the following
problems occurred, when modelling the ETCS-EM specification within Syspect:

7.3 Benchmarks and Case Studies 187

• Within the CSP part of the classes of the original CSP-OZ-DC specification
communication between CSP events is modelled via parameter variables such
as variable id in the following process definition within class RBC:

HandleEM c
= send.Warning.id→ receive.Ack.id

The state machines that are employed within Syspect for modelling the CSP
part do not offer a direct possibility to express the link between both references
to id. Therefore, auxiliary class variables are introduced in order to express
this local form of communication between CSP events.

• Another feature of CSP-OZ-DC that is used by the ETCS-EM specification are
conditional statements within the CSP part such as in the following process
definition that appears in class RT:

Running c
= updatePosition.ID?pos→ getLOA.ID?loa
→ computeSBI!loa?sbi→
if sbi ≤ pos
then applySB→ selectSpeed→ Running
else releaseSB→ selectSpeed→ Running

Again, the state machines of Syspect do not contain any equivalent con-
struct. As a workaround, the initial CSP events applySB and releaseSB of
both branches are enriched with suitable enable schemas containing the
branching condition and its negation, respectively, as a predicate. Instead
of the conditional construct, the branching is then modelled as an external
choice between both processes.

• Variables used within a Syspect project have global scope. Therefore, vari-
ables of different classes that have the same name, such as for instance
currentPosition within classes LT and RT need to be renamed such that no
interference is possible. The extension consists of a prefix according to the
parent class, i.e., instead of currentPosition, the variables LTcurrentPosition and
RTcurrentPosition are used.

• As already mentioned, the DC formula editor of Syspect does currently not
allow symbolic variables as time bounds, such as the time bound updateBound
that appears in the following DC counterexample formula of class LT:

¬(truea l updatePositiona ` > updateBounda updatePosition)

Therefore, instead of updateBound, an arbitrary but unique numerical value is
used within the concerned DC formula in the Syspect model.

188 7 Tool Support and Experimental Evaluation

Slices have been computed with respect to the six test formulae that were used by
Faber [Fab07] to establish local properties of the complete specification. The results
of these slice computations are summarised in Table 7.6 that shows the absolute
numbers of syntactical specification elements such as interface elements (channels,
methods), state variables, predicates of the Init schema, enable and effect
schemas, predicates (or rather conjuncts) within the latter, and DC formulae. These
numbers have been obtained by counting the particular specification elements
and summarising them over all involved classes of the specifications. Additionally,
percentage figures relative to the full specification are given for each of its slices.

Specification Full TF1- TF2- TF3- TF4- TF5- TF6-
Elements Slice % Slice % Slice % Slice % Slice % Slice %
Interface 50 36 72 36 72 27 54 36 72 37 74 37 74
CSP lines 35 29 83 29 83 23 66 29 83 30 86 30 86
Variables 29 18 62 13 45 2 7 14 48 13 45 15 52
State Invariants 5 5 100 5 100 0 0 5 100 5 100 5 100
Init predicates 15 12 80 10 67 0 0 9 60 10 67 10 67
enable schemas 3 1 33 1 33 0 0 1 33 1 33 1 33
effect schemas 26 10 38 7 27 9 35 8 31 7 27 8 31
Method predicates 55 21 38 17 31 10 18 18 33 17 31 19 35
DC formulae 9 9 100 9 100 7 78 9 100 9 100 9 100
Total # elements 227 141 62 127 56 78 34 129 57 129 57 134 59

Table 7.6: Slicing results for the ETCS-EM specification. The size of the slice
for each test formula is given in terms of the absolute number of remaining
specification elements and as percentage figures relative to the numbers of the
full specification.

In most of the cases, slicing with respect to the sub-properties achieves a reduction
down to about 60% of all considered specification elements, i.e., about 40% of
the original specification is removable. This result is impressive, but still con-
siderably larger than the decomposed models that Faber successfully used for
verification. However, the same decomposition can of course also be applied for
the specifications generated by Syspect.

Unfortunately, direct automatic verification of the ETCS-EM specification from
within Syspect is currently not feasible, since even for decomposed versions of the
sliced specification the generated transition constraint systems all have a size of
several Gigabytes, containing millions of TCS transitions which is simply too large

7.3 Benchmarks and Case Studies 189

to be tractable by the model checkers. Therefore, we currently cannot comment on
verification runtimes for this specification and its slices.

7.3.7 Airport Specification

Modelling of CSP-OZ specifications with an early version of Syspect has been
evaluated within a minor thesis at the University of Paderborn [Jak07]. Within his
thesis, the author, Marcel Jakoblew, developed a very detailed specification of the
flight control of a fictitious airport flight control system.

The resulting Syspect model and the generated CSP-OZ specification consists of
14 classes, ranging from airport infrastructure such as runway and control tower
over involved personnel such as control tower operators, customs and police officers
up to airport and aircraft equipment such as instrument landing systems and fuel
hydrant dispenser.

The top-level structure of the complete airport flight control system is depicted in
the component diagram in Figure 7.18. The resulting LATEX mark-up of the CSP-OZ
specification generated from the Syspect model comprises 25 pages.

Before slicing could be applied to the specification, the following modifications
of the original specification were necessary:

• Due to the global scope of variable names within Syspect projects, variables
of the same name that were present in different classes had to be renamed in
order to be unique within the Syspect airport project. A renaming convention
was used that attached an abbreviated name of the containing class as a prefix
to the existing variable names.

• Several state machines of the original model contained transitions leaving hier-
archical states that were labelled with trigger events. Due to the implemented
UML profile, such transitions are translated into sequential composition of the
process representing the hierarchical state with a CSP Stop operator. Since
this was certainly not intended, these transitions were replaced by unlabelled
transitions leading to an additional simple state, from where transition edges
with the previously removed triggers then leave to the targets of the original
transitions.

The original specification as well as its modified version are available within the
Syspect repository [Cor07e].

Slices of the airport specification have been computed with respect to the follow-
ing properties:

RunwayCollision:

TFRC ≡ ¬3(lRunwaySperrena�RunwayFreigebena lRunwaySperren)

190 7 Tool Support and Experimental Evaluation

Umwelt

Center 1

Flughafen

Bodenpersonal 1

FollowMeCar 1

FuelHydrantDispe...1 Instrumentenland...1

PolizeiZoll 1Runway 1

Tower

TowerLotse 1 VorfeldLotse 1

1

1

Flugzeug 1 Pasagier 1

1

CenterTower

TowerCenter

CenterFlugzeug

BodenFlugzeug

BodenFuelHydrantDispensor

VorfeldFollow

FollowFlugzeug

BodenFuelHydrantDispensor

FuelHydrantDispenserFlugzeug ILSFlugzeug

PolizeiPassagier

RunwaySperrenInterface

RunwayAkquirierenInterface
RunwayFreigebenInterface

RunwayAkquirierenInterface

VorfeldTower
RunwaySperrenInterface

TowerCenter

CenterTower TowerVorfeld

TowerFlugzeug

VorfeldFollow

TowerVorfeld

VorfeldFlugzeug

VorfeldTower

RunwayAkquirierenInterface

TowerCenter

TowerFlugzeug

RunwayAkquirierenInterface

VorfeldFollow

CenterTower

RunwaySperrenInterface

VorfeldFlugzeug

ILSFlugzeug

BodenFlugzeug

FollowFlugzeug

RunwayFreigebenInterface TowerFlugzeug

VorfeldFlugzeug CenterFlugzeug
PassagierFlugzeug

FuelHydrantDispenserFlugzeug

PassagierFlugzeug

PolizeiPassagier

TowerCenter

TowerFlugzeug

VorfeldFlugzeug

PolizeiPassagierRunwayFreigebenInterface

FuelHydrantDispenserFlugzeugBodenFlugzeug

CenterTower

FollowFlugzeug

ILSFlugzeug

Figure 7.18: The airport flight control system composition as defined within
Syspect in the main component diagram of this specification.

7.3 Benchmarks and Case Studies 191

This property describes an undesired situation where the runway is blocked
(RunwaySperren) at two consecutive points in time without an intermediate
clearance (RunwayFreigeben). Since blocking of the runway is required before
it may be used by an aircraft, this scenario possibly leads to the dangerous
scenario of two aircrafts simultaneously using the same runway, giving rise to
the risk of collision between them.

OverFull:

TFOF ≡ ¬3(dTankinhalt = Tankkapazitaetea lBetankungAnfordern)

This property describes an undesired situation where the fuel tank of
the aircraft is already filled up to its maximum capacity (dTankinhalt =
Tankkapazitaete) and, in spite of that, an additional fuelling is initiated
(lBetankungAnfordern).

UnsafeBoarding:

TFUB ≡ ¬3(dPersonSicher = falseea lBoarding)

This property describes an undesired situation where a person that has not yet
passed the security checks and that is thus possibly dangerous (PersonSicher =
false) is allowed to board the aircraft (lBoarding).

The results of these slice computations are summarised in Table 7.7 that contains
the numbers of specification elements of the full specification and each of its slices,
given as absolute figures and, for the slices, also as percentage figures relative
to the full specification. The specification elements that have been counted are
interface elements (channels and methods), lines of CSP process definitions, state
variables, predicates (or rather conjuncts) of Init schemas, enable and effect
schemas, and predicates of these. In each case, these specification elements have
been summarised for all of the 14 involved classes of the specification.

Slicing with respect to each of the considered test formulae achieves a reduction
of the specification down to about 75% of the size of the original specification
in terms of the number of counted specification elements. In comparison to the
previously presented case study, this is a relatively high number, obviously due to the
close coupling between the involved classes that becomes obvious when inspecting
the generated dependence graph of the specification: most of the methods offered
by the classes need to synchronise with other classes, leading to synchronisation
control dependence between them that prevents the concerned methods from being
removable.

192 7 Tool Support and Experimental Evaluation

Specification Full TFRC- TFOF- TFUB-
Elements Slice % Slice % Slice %
Interface 188 138 73 141 75 146 78
CSP lines 133 123 92 125 94 129 97
Variables 39 19 49 21 54 21 54
Init predicates 7 5 71 5 71 6 86
enable schemas 47 42 89 44 94 43 91
effect schemas 51 21 41 26 51 23 45
Method predicates 131 84 64 91 69 88 67
Total # elements 596 432 72 453 76 456 77

Table 7.7: Slicing results for the airport specification. The size of the slice for each
test formula is given in terms of the absolute number of remaining specification
elements and as percentage figures relative to the numbers of the full specification.

The greatest reduction is obtained by slicing with respect to property “Runway-
Collision”. The resulting slice contains only 72% of the specification elements of
the full specification, i.e., nearly 30% of the specification were removable. In con-
trast to the other test formulae, this property allows reductions within the classes
modelling ground personal (Bodenpersonal), passenger (Passagier), fuel hydrant
dispenser (FuelHydrantDispenser), and environment (Umwelt), since these contain
elements such as the details of the different required checks of the aircraft that do
not affect the verification property.

Property “OverFull”, on the other hand, is affected by the class FuelHydrant-
Dispenser that, in turn, needs to synchronise with class Bodenpersonal, resulting
in additional specification elements remaining in the slice. Similarly, property
“UnsafeBoarding” is affected by the class Passagier, which again leads to additional
specification elements remaining in the slice. Both of these slices are supersets of
the slice with respect to property “RunwayCollision”. This can again be explained
with the close coupling of the involved classes. Everything that affects property
“RunwayCollision” will probably be part of any arbitrary slice due to the tight
synchronisation between all involved specification elements.

Further reductions might be achieved by additional arguments showing that
some of the involved synchronisations are always possible such that the resulting
dependences might be removed. Similar research with respect to the removal of
control dependences has been carried out [BMW06]. This approach, however, has
currently not yet been automated, such that we leave it open as future work, as
also discussed in the concluding Chapter 8.

As stated for the previous case study of the ETCS-EM system, verification runs for

7.4 Summary of Experimental Results 193

the airport specification with respect to the presented properties were not possible,
mainly due to the massive size of the project. Even the smallest slice still comprises
22 pages of LATEX mark-up, such that Syspect even fails to generate the specification’s
semantics in terms of their phase event automata product, not to mention the re-
sulting transition constraint system. Another important problem is the hierarchical
structure of the airport specification that employs several component diagrams
with several hierarchy levels of nesting (Umwelt→ Flughafen→ Tower), which is
not yet supported by the PEA and ARMC export of Syspect. This latter problem can
be circumvented by exporting only base classes, leaving out all component diagram
classes (Umwelt, Flughafen, Tower). However, even this “flattened” export fails
with insufficient memory due to the massive size of the specification.

7.4 Summary of Experimental Results

The presented experiments document the validity of the initial hypothesis of this
thesis, claiming that slicing can be used as a valuable tool in mitigating the problem
of state space explosion in the context of automatic verification of integrated formal
specifications. This observation becomes most obvious at the examples where
verification runs are indeed possible, i.e., for the cash register specification and for
the untimed and timed air conditioner specifications that contain several system
aspects which are partly independent from each other and which are, furthermore,
not all relevant with respect to the considered verification properties. This situation
can obviously not yet be recognised and exploited by the model checkers, such
that slicing as a pre-processing step achieves indeed a considerable reduction as
well in verification runtime as in the space required for representing the resulting
verification models on the level of transition control systems.

The case studies of the ETCS-EM system and the airport specification, however,
clearly illustrate that slicing alone will not be sufficient to tackle larger specifications,
but must be complemented by additional approaches, for instance those offered by
compositional verification.

However, the experiments also illustrate that, even if specifications are currently
too large for successful automatic verification, the slicing approach along with
the artefacts produced during slicing, such as the program dependence graph, are
nevertheless useful with respect to different purposes, such as human analysis and
comprehension of the specification.

194 7 Tool Support and Experimental Evaluation

8 Conclusion

This chapter summarises the results of this thesis and discusses possible perspectives
of future work.

8.1 Summary

Within this thesis we have developed an approach of computing slices of integrated
formal specifications. Our slicing approach is dedicated to the context of automatic
verification. The main motivation of applying slicing in this context is the problem
of state space explosion that frequently arises during model checking. Slicing is
used as one of several possible countermeasures against this problem, allowing us to
obtain reduced versions of specifications that are custom-tailored to the verification
property at hand. This reduction allows verification methods to focus on the part
of the specification that is essential for the given property and to simultaneously
ignore any specification element without influence on the verification result.

Since the technique of slicing has its origin in the field of program analysis, we
started in Chapter 2 with providing some background on the extensive related
work on slicing. Furthermore, we discussed alternative techniques for lessening the
problem of state space explosion along with their relation to slicing.

In Chapter 3, we then incrementally introduced the specification notations Object-
Z, CSP-OZ, and CSP-OZ-DC that form our slicing targets. At the core of the
slicing approach is the analysis of such specifications with respect to various types
of dependences that can be identified between specification elements, such as
predicate, control, data, synchronisation, and timing dependence. All of these along
with several sub-types have been defined in Chapter 4.

The resulting dependence graph is the basis for the actual slice computation, based
on a graph reachability analysis that uses the verification property as its starting
point. From the obtained sets of reachable and unreachable dependence graph
nodes we can then compute specification slices as we showed in Chapter 5.

In our application context of verification, the correctness of the presented slicing
approach is essential. Therefore, we showed correctness of slicing in Chapter 6 in
the sense that we obtain the same verification result, regardless whether verification
is carried out on the original specification or on its slice with respect to the given
verification property.

The correctness proof consists of two main steps: First, we showed slicing to
guarantee the existence of a projection relation between specifications and its slices.

196 8 Conclusion

Second, we showed the particular logic that is used to express verification properties
to be stuttering invariant, i.e., to be unable to distinguish between specifications
and their slices. We showed the latter for two different logics, namely on the one
hand for test formulae for expressing real-time properties of specifications, and on
the other hand for state/event interval logic formulae for expressing properties in
the discrete setting of Object-Z and CSP-OZ specifications.

Finally, we presented in Chapter 7 the graphical modelling environment for
CSP-OZ-DC specifications, Syspect, as the platform for experimental evaluation of
our slicing approach by means of its implementation as the Syspect slicing plug-in.
Furthermore, we gave an account on the application of slicing to several case
studies and the results obtained from slicing. These experiments show that in most
cases slicing yields a considerable reduction of the target specification. Where
verification runs are not prevented by unsupported data types or the massive size
of the specifications and even its slices, the application of slicing also leads to
remarkable speed-ups in verification runs. With respect to verification of the larger
case studies, however, we had to conclude that slicing alone is not sufficient for
successfully carrying out automatic verification, but additional methods will be
necessary such as compositional approaches to verification.

8.2 Perspectives

Although the slicing approach presented in this thesis is already applicable to a
large set of specifications, there are several topics offering themselves as starting
points for future work.

Enhanced Dependence Analysis As proposed by [BMW06], additional calculations
during dependence analysis allow us to remove certain control dependence edges
from the dependence graph, possibly leading to smaller and thus more precise
slices. These enhancements can be further improved by automation of the required
auxiliary calculations by using theorem proving techniques. Furthermore, it might
be possible to remove additional types of dependences in a similar way, for instance
synchronisation dependence edges, provided it can be shown that the involved
methods always successfully synchronise.

Weakening Slicing Exactness The main constraint for the development of the slic-
ing approach presented in this thesis is its exactness in the sense that a specification
satisfies a verification property if and only if its slice with respect to the verification
property satisfies it.

The approach of [Weh06] proposes a slicing variant for the verification of CSP-
OZ specifications that drops this requirement of exactness. Instead, it allows the
computation of imprecise slices, which are incrementally refined in a similar way as

8.2 Perspectives 197

in the framework of counterexample guided abstraction refinement. The iteration
proceeds until a slice has been obtained that either satisfies the verification property
or leads to a valid error trace. It is certainly worthwhile to extend this approach to
CSP-OZ-DC specifications. Furthermore, suitable tool support would be needed for
evaluating the efficiency.

Additional Application Contexts The application of slicing within this thesis has
mainly been dedicated to lessening the problem of state space explosion within
automatic verification. However, different application contexts are, of course, also
possible.

One such example is to apply slicing for verification re-use [Weh05, OW05]. This
application is still situated in the context of automatic verification. However, instead
of directly aiming at the state space explosion problem, its goal is to omit complete
verification runs for modified specifications, provided that slicing techniques lead
to the conclusion that the result of a previous verification run still holds for the
modified specification.

The application of slicing for compositional verification has already been men-
tioned within Chapter 7 of this thesis at the example of verification of the ETCS-EM
case study, where slicing was used to compute decompositions of the original
specification with respect to a set of sub-properties, derived from the top-level
verification property. However, modifications of the slicing approach, such as
the imprecise slicing proposed by [Met07] or the integration with methods of
program conditioning, might further improve the results, when using slicing as a
decomposition technique.

Another completely different example of the application of slicing formal spec-
ifications is proposed by Bollin [Bol04], who uses slicing for supporting human
comprehension of complex specifications, which certain also applies to CSP-OZ-DC
specifications.

Slicing at Different Stages The application of slicing at the lower level of transition
constraint systems has been shown to be extremely useful in combination with
techniques of automatic deductive verification [BDFW07, Bri07].

The experiments documented within this thesis show that this result even holds
when slicing has previously been applied at a higher level of the verification work
flow. Thus, an interesting direction of research is that into the application of slicing
at some intermediate level. For instance, an additional slice computation at the
semantic level of phase event automata before computation of their product au-
tomaton might result in further reductions on the way down to transition constraint
systems.

198 8 Conclusion

Slicing Implementation The experiments presented in this thesis have been ob-
tained from applying the slicing approach in its implementation as a Syspect plug-in.
Although being very usable, the plug-in is of course a prototype and thus some
limitations apply, which offer several very straightforward possibilities for future
extensions:

• Variable Scope: Although this problem is mainly due to the current implemen-
tation of Syspect, it can also be solved by an extension of its slicing plug-in.
Any variable used within a Syspect specification has a scope that is global to
the specification. Thus, variables with class scope need to be made unique by
applying a suitable naming convention. A more comfortable solution would
require the slicing plug-in to automatically identify the correct variable scope
and to reflect this correctly within the dependence graph.

• Dependence Graphs: Currently, control flow and dependence graphs are stati-
cally computed without offering any automated connection to their source
specification elements. A desirable feature for easier analysis of specifications
would be to establish a link between nodes of the graphs and their associated
specification elements. To this end, the currently external graph visualisation
would need to be implemented within Syspect.

• Slicing Report: The figures presented as experimental results within Chapter 7
of this thesis have been manually extracted from specifications by counting
the specification elements of interest. An obvious enhancement to the slicing
report would be to not only list the removable specification elements, but
also to summarise and compare such absolute and relative figures for the
specification and its slice.

• Re-Import of Slices: Currently, reduced versions of specifications can only be
computed during specification exports. A desirable extension of the slicing
plug-in or rather of Syspect itself would be the possibility to re-import sliced
specifications into the graphical modelling environment of Syspect. To this
end, an extension of Syspect with suitable import facilities would be required.

• Slices of Syspect Projects: Another possibility to reach the same goal would
be to compute slices directly on the Syspect model without the need to carry
out an intermediate export. To this end, however, slicing techniques for the
involved UML profile need to be developed.

Finally, the current version of the CSP-OZ-DC specification language is planned
to be extended by further DC operators such as the integration operator. Thus it
will be necessary to adapt the presented slicing approach by carefully extending
the current dependence analysis and the correctness proof in order to cover such
additional specification elements of future extensions.

Bibliography

[ABGS+01] Árpád Beszedes, T. Gergely, Z. M. Szabó, J. Csirik, and T. Gyimothy. Dynamic
Slicing Method for Maintenance of Large C Programs. In CSMR ’01, pages
105–113. IEEE, 2001.

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, 1996.

[Abr06] J.-R. Abrial. Formal methods in industry: achievements, problems, future. In
ICSE ’06, pages 761–768. ACM, 2006.

[ADS93] H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with dynamic
slicing and backtracking. Softw. Pract. Exper., 23(6):589–616, 1993.

[Agr91] H. Agrawal. Towards automatic debugging of computer programs. PhD thesis,
Purdue University, 1991.

[AH90] H. Agrawal and J. R. Horgan. Dynamic program slicing. In PLDI ’90, pages
246–256. ACM, 1990.

[AH00] J. Ahn and T. Han. Static Slicing of a First-Order Functional Language based
on Operational Semantics. Technical Report CS/TR-99-144, Korea Advanced
Institute of Science and Technology (KAIST), 2000.

[AO97] K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer, 1997.

[ASU97] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1997.

[AVA07] AVACS. Transregional Collaborative Research Center SFB TR 14 ”Auto-
matic Verification and Analysis of Complex Systems” (AVACS). http:
//www.avacs.org/, 2007.

[BA05] F. Badeau and A. Amelot. Using B as a High Level Programming Language
in an Industrial Project: Roissy VAL. In ZB ’05, volume 3455 of LNCS, pages
334–354. Springer, 2005.

[Bal93] T. J. Ball. The use of control-flow and control dependence in software tools. PhD
thesis, University of Wisconsin-Madison, 1993.

[BCRS01] D. Binkley, R. Capellini, L. R. Raszewski, and C. Smith. An Implementation of
and Experiment with Semantic Differencing. In ICSM ’01, pages 82–91, 2001.

http://www.avacs.org/
http://www.avacs.org/

200 Bibliography

[BDFW07] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing Abstractions.
In International Symposium on Fundamentals of Software Engineering, volume
4767 of LNCS, pages 17–32. Springer, 2007.

[BDG+04] D. Binkley, S. Danicic, T. Gyimothy, M. Harman, A. Kiss, and L. Ouarbya.
Formalizing Executable Dynamic and Forward Slicing. In SCAM ’04, pages
43–52. IEEE, 2004.

[BE93] J. Beck and D. Eichmann. Program and interface slicing for reverse engineer-
ing. In ICSE ’93, pages 509–518. IEEE, 1993.

[Bec93] J. A. Beck. Interface slicing: a static program analysis tool for software engi-
neering. PhD thesis, West Virginia University, 1993.

[BFG00] M. Bozga, J.-C. Fernandez, and L. Ghirvu. Using Static Analysis to Improve
Automatic Test Generation. In TACAS ’00, number 1785 in LNCS, pages
235–250. Springer, 2000.

[BG96] D. Binkley and K. B. Gallagher. Program Slicing. Advances in Computers,
43:1–50, 1996.

[BG97] R. Bod́ık and R. Gupta. Partial Dead Code Elimination using Slicing Transfor-
mations. In PLDI ’97, pages 159–170. ACM, 1997.

[BGL+00] S. Bensalem, V. Ganesh, Y. Lakhnech, C. M. noz, S. Owre, H. Rueß, J. Rushby,
V. Rusu, H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An Overview
of SAL. In LFM 2000: Fifth NASA Langley Formal Methods Workshop, pages
187–196. NASA Langley Research Center, 2000.

[BGM01] M. Bozga, S. Graf, and L. Mounier. Automated validation of distributed
software using the IF environment. In NCA ’01: IEEE International Symposium
on Network Computing and Applications, pages 268–274. IEEE, 2001.

[BGO02] V. A. Braberman, D. Garbervetsky, and A. Olivero. Improving the Verification
of Timed Systems Using Influence Information. In TACAS ’02, pages 21–36.
Springer, 2002.

[BGO+04] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. Tools and Applications: the
IF toolset. In SFM-04:RT: 4th International School on Formal Methods for the
Design of Computer, Communication and Software Systems: Real Time, volume
3185 of LNCS, pages 237–267. Springer, 2004.

[BH93a] T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow. In
AADEBUG ’93, pages 206–222. Springer, 1993.

[BH93b] S. Bates and S. Horwitz. Incremental Program Testing Using Program Depen-
dence Graphs. In POPL ’93, pages 384–396. ACM, 1993.

[BH04] D. Binkley and M. Harman. A Survey of Empirical Results on Program Slicing.
Advances in Computers, 62:105–178, 2004.

Bibliography 201

[BHL+96] J. P. Bowen, C. A. R. Hoare, H. Langmaack, E.-R. Olderog, and A. P. Ravn. A
ProCoS II Project Final Report: ESPRIT Basic Research Project 7071. Bulletin
of the European Association for Theoretical Computer Science, 59:76–99, 1996.

[BHR95] D. Binkley, S. Horwitz, and T. Reps. Program integration for languages with
procedure calls. ACM Trans. Softw. Eng. Methodol., 4(1):3–35, 1995.

[Bin92] D. Binkley. Using Semantic Differencing to Reduce the Cost of Regression
Testing. In ICSM ’92, pages 41–50, 1992.

[Bin93] D. Binkley. Precise executable interprocedural slices. ACM Lett. Program. Lang.
Syst., 2(1-4):31–45, 1993.

[Bin95] D. Binkley. Reducing the Cost of Regression Testing by Semantics Guided Test
Case Selection. In ICSM ’95, pages 251–260. IEEE, 1995.

[Bin97] D. Binkley. Semantics Guided Regression Test Cost Reduction. IEEE Trans.
Softw. Eng., 23(8):498–516, 1997.

[Bin98] D. Binkley. The Application of Program Slicing to Regression Testing. Journal
of Information and Software Technology, 40(11 and 12):583–594, 1998.

[Bin02] D. Binkley. An Empirical Study of the Effect of Semantic Differences on
Programmer Comprehension. In IWPC ’02, pages 97–106. IEEE, 2002.

[BMW06] I. Brückner, B. Metzler, and H. Wehrheim. Optimizing Slicing of Formal
Specifications by Deductive Verification. Nordic Journal of Computing, 13(1–
2):22–45, 2006.

[BO94] J. M. Bieman and L. M. Ott. Measuring Functional Cohesion. IEEE Trans.
Softw. Eng., 20(8):644–657, 1994.

[Bol04] A. Bollin. Specification Comprehension — Reducing the Complexity of Specifica-
tions. PhD thesis, University of Klagenfurt, 2004.

[Bri07] D. Brill. Deductive Model Checking with Transition Constraint Systems.
Master’s thesis, Saarland University, 2007.

[BRSH00] D. Binkley, L. R. Raszewski, C. Smith, and M. Harman. An Empirical Study of
Amorphous Slicing as a Program Comprehension Support Tool. In IWPC ’00,
pages 161–170. IEEE, 2000.

[Brü07] I. Brückner. Slicing Concurrent Real-Time System Specifications for Verifica-
tion. In IFM ’07, volume 4591 of LNCS, pages 54–74. Springer, 2007.

[BS03] E. Börger and R. Stärk. Abstract State Machines—A Method for High-Level
System Design and Analysis. Springer, 2003.

[BSV93] F. Balarin and A. L. Sangiovanni-Vincentelli. An Iterative Approach to Lan-
guage Containment. In CAV ’93, pages 29–40. Springer, 1993.

202 Bibliography

[BW05a] I. Brückner and H. Wehrheim. Slicing an Integrated Formal Method for
Verification. In ICFEM 2005, volume 3785 of LNCS, pages 360–374. Springer,
2005.

[BW05b] I. Brückner and H. Wehrheim. Slicing Object-Z Specifications for Verification.
In ZB ’05, volume 3455 of LNCS, pages 414–433. Springer, 2005.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In POPL ’77, pages 238–252. ACM, 1977.

[CC99] P. Cousot and R. Cousot. Refining Model Checking by Abstract Interpretation.
Automated Software Engineering, 6(1):69–95, 1999.

[CCL98] G. Canfora, A. Cimitile, and A. D. Lucia. Conditioned program slicing. Infor-
mation and Software Technology, 40(11–12):595–607, 1998.

[CDHR02] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Expressing checkable
properties of dynamic systems: the Bandera Specification Language. STTT,
4(1):34–56, 2002.

[CF94] J.-D. Choi and J. Ferrante. Static slicing in the presence of goto statements.
ACM Trans. Program. Lang. Syst., 16(4):1097–1113, 1994.

[CFR+99] E. M. Clarke, M. Fujita, S. P. Rajan, T. W. Reps, S. Shankar, and T. Teitelbaum.
Program Slicing of Hardware Description Languages. In Conference on Correct
Hardware Design and Verification Methods, pages 298–312, 1999.

[CFR+02] E. M. Clarke, M. Fujita, S. P. Rajan, T. W. Reps, S. Shankar, and T. Teitelbaum.
Program slicing for VHDL. STTT, 4(1):125–137, 2002.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In CAV ’00, pages 154–169. Springer, 2000.

[CGJ+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the
ACM, 50(5):752–794, 2003.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[CH96] J. J. Comuzzi and J. M. Hart. Program Slicing Using Weakest Preconditions.
In FME ’96, pages 557–575. Springer, 1996.

[Che93] J. Cheng. Slicing Concurrent Programs – A Graph-Theoretical Approach. In
Automated and Algorithmic Debugging, pages 223–240. ACM, 1993.

[CLM89] E. Clarke, D. Long, and K. McMillan. Compositional Model Checking. In
Fourth Annual Symposium on Logic in computer science, pages 353–362. IEEE,
1989.

Bibliography 203

[CLYK01] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon. Program slicing based on
specification. In SAC ’01, pages 605–609. ACM, 2001.

[Cor07a] Correct System Design Group. Correct System Design Group. http://csd.
informatik.uni-oldenburg.de/, 2007.

[Cor07b] Correct System Design Group. ForMooS. http://csd.informatik.
uni-oldenburg.de/projects/formoos.en.html, 2007.

[Cor07c] Correct System Design Group. Moby/PEA. http://csd.informatik.
uni-oldenburg.de/˜moby/, 2007.

[Cor07d] Correct System Design Group. PEA Toolkit. http://csd.informatik.
uni-oldenburg.de/projects/epea.html, 2007.

[Cor07e] Correct System Design Group. Syspect Subversion Repository. http://
homer.informatik.uni-oldenburg.de/svn/syspect, 2007.

[CR94] J. Chang and D. Richardson. Static and Dynamic Specification Slicing. In
Fourth Irvine Software Symposium, pages 25–37, 1994.

[CX01] Z. Chen and B. Xu. Slicing Concurrent Java Programs. ACM SIGPLAN Notices,
36(4):41–47, 2001.

[Dav93] J. Davies. Specification and Proof in Real-Time CSP. Cambridge University
Press, 1993.

[DBG+06] S. Danicic, D. Binkley, T. Gyimothy, M. Harman, A. Kiss, and B. Korel. A
Formalisation of the Relationship between Forms of Program Slicing. Science
of Computer Programming, 62(3):228–252, 2006.

[DDF+05] S. Danicic, D. Daoudi, C. Fox, M. Harman, R. Hierons, J. Howroyd, L. Ouarbya,
and M. Ward. ConSUS: A Light-Weight Program Conditioner. Journal of
Systems and Software, 77(3):241–262, 2005.

[DHH+06] M. B. Dwyer, J. Hatcliff, M. Hoosier, V. Ranganath, R. Wallentine, and T. Wal-
lentine. Evaluating the Effectiveness of Slicing for Model Reduction of Concur-
rent Object-Oriented Programs. In TACAS ’06, volume 3920 of LNCS, pages
73–89. Springer, 2006.

[dLFM96] A. de Lucia, A. R. Fasolino, and M. Munro. Understanding Function Behaviors
through Program Slicing. In IWPC ’96, pages 9–18. IEEE, 1996.

[dMOR+04] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari.
SAL 2. In CAV ’04, volume 3114 of LNCS, pages 496–500. Springer, 2004.

[DR00] R. Duke and G. Rose. Formal object-oriented specification using Object-Z.
Macmillan, 2000.

http://csd.informatik.uni-oldenburg.de/
http://csd.informatik.uni-oldenburg.de/
http://csd.informatik.uni-oldenburg.de/projects/formoos.en.html
http://csd.informatik.uni-oldenburg.de/projects/formoos.en.html
http://csd.informatik.uni-oldenburg.de/~moby/
http://csd.informatik.uni-oldenburg.de/~moby/
http://csd.informatik.uni-oldenburg.de/projects/epea.html
http://csd.informatik.uni-oldenburg.de/projects/epea.html
http://homer.informatik.uni-oldenburg.de/svn/syspect
http://homer.informatik.uni-oldenburg.de/svn/syspect

204 Bibliography

[DS94] J. Davies and S. Schneider. Theories and experiences for real-time system
development, chapter Real-time CSP, pages 31–82. World Scientific Publishing,
1994.

[Ecl07] Eclipse Foundation. Eclipse. http://www.eclipse.org/, 2007.

[ELLL04] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed Explicit-State Model-
Checking in the Validation of Communication Protocols. STTT, 5(2–3):247–
267, 2004.

[ERT02] ERTMS User Group, UNISIG. ERTMS/ETCS System requirements specification.
http://www.aeif.org/ccm/default.asp/, 2002.

[Fab07] J. Faber. R1 Benchmark: Emergency Messages in ETCS. http://www.
avacs.org/, 2007.

[FDHH04] C. Fox, S. Danicic, M. Harman, and R. M. Hierons. ConSIT: a fully automated
conditioned program slicer. Softw., Pract. Exper., 34(1):15–46, 2004.

[Fis97] C. Fischer. CSP-OZ: A Combination of Object-Z and CSP. In FMOODS ’97,
pages 423–438. Chapman & Hall, 1997.

[Fis00] C. Fischer. Combination and Implementation of Processes and Data: from
CSP-OZ to Java. PhD thesis, Carl von Ossietzky University of Oldenburg, 2000.

[FM06] J. Faber and R. Meyer. Model Checking Data-Dependent Real-Time Properties
of the European Train Control System. In FMCAD ’06, pages 76–77. IEEE,
2006.

[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM TOPLAS, 9(3):319–349, 1987.

[FOW01] C. Fischer, E.-R. Olderog, and H. Wehrheim. A CSP view on UML-RT structure
diagrams. In FASE ’01, volume 2029 of LNCS, pages 91–108. Springer, 2001.

[FRT95] J. Field, G. Ramalingam, and F. Tip. Parametric Program Slicing. In POPL ’95,
pages 379–392. ACM, 1995.

[GH97] R. Gerber and S. Hong. Slicing real-time programs for enhanced schedulability.
ACM TOPLAS, 19(3):525–555, 1997.

[GHD98] W. Grieskamp, M. Heisel, and H. Dörr. Specifying Embedded Systems with
Statecharts and Z: An Agenda for Cyclic Software Components. In FASE ’98,
volume 1382 of LNCS, pages 88–106. Springer, 1998.

[GHS92] R. Gupta, M. Harrold, and M. Soffa. An Approach to Regression Testing using
Slicing. In ICSE ’92, pages 299–308. IEEE, 1992.

[GL91] K. B. Gallagher and J. R. Lyle. Using Program Slicing in Software Maintenance.
IEEE TSE, 17(8):751–761, 1991.

http://www.eclipse.org/
http://www.aeif.org/ccm/default.asp/
http://www.avacs.org/
http://www.avacs.org/

Bibliography 205

[GO01] K. B. Gallagher and L. O’Brien. Analyzing Programs via Decomposition Slicing:
Initial Data and Observations. In WESS ’01: 7th International Workshop on
Empirical Studies of Software Maintenance, 2001.

[God95] P. Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. PhD thesis, Universite de Liege,
1995.

[Gol88] U. Goltz. On Representing CCS Programs by Finite Petri Nets. In MFCS ’88,
pages 339–350. Springer, 1988.

[Gra07] Graphviz. Graphviz — Graph Visualization Software. http://www.
graphviz.org/, 2007.

[GS97] S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS. In CAV
’97, pages 72–83. Springer, 1997.

[GSS99] V. Ganesh, H. Saidi, and N. Shankar. Slicing SAL. Technical report, SRI
International, Menlo Park, 1999.

[Gup97] B. S. Gupta. A Critique of Cohesion Measures in the Object-Oriented Paradigm.
Master’s thesis, Michigan Technological University, 1997.

[Har07a] M. Harman. List of Program Slicing References. http://www.brunel.ac.
uk/˜csstmmh2/slice.html, 2007.

[Har07b] M. Harman. List of Program Slicing Researchers. http://www.brunel.ac.
uk/˜csstmmh2/slicing.html, 2007.

[HBD03] M. Harman, D. Binkley, and S. Danicic. Amorphous program slicing. J. Syst.
Softw., 68(1):45–64, 2003.

[HCD+99] J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng. A
Formal Study of Slicing for Multi-threaded Programs with JVM Concurrency
Primitives. In SAS ’99, volume 1694 of LNCS, pages 1–18. Springer, 1999.

[HD97] M. Harman and S. Danicic. Amorphous Program Slicing. In IWPC ’97, pages
70–79. IEEE, 1997.

[HDS95a] M. Harman, S. Danicic, and Y. Sivagurunathan. Program Comprehension
Assisted by Slicing and Transformation. In WPC ’95: First UK workshop on
program comprehension, 1995.

[HDS+95b] M. Harman, S. Danicic, Y. Sivagurunathan, B. Sivagurunathan, and B. Jones.
Cohesion metrics. In 8th International Software Quality Week, 1995.

[HDZ00] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing Software for Model Construc-
tion. Higher-Order and Symbolic Computation, 13(4):315–353, 2000.

http://www.graphviz.org/
http://www.graphviz.org/
http://www.brunel.ac.uk/~csstmmh2 /slice.html
http://www.brunel.ac.uk/~csstmmh2 /slice.html
http://www.brunel.ac.uk/~csstmmh2 /slicing.html
http://www.brunel.ac.uk/~csstmmh2 /slicing.html

206 Bibliography

[HEH+98] J. Henrard, V. Englebert, J.-M. Hick, D. Roland, and J.-L. Hainaut. Program
Understanding in Databases Reverse Engineering. In DEXA ’98: 9th Interna-
tional Conference on Database and Expert Systems Applications, pages 70–79.
Springer, 1998.

[HFH+99] M. Harman, C. Fox, R. Hierons, D. Binkley, and S. Danicic. Program Simplifi-
cation as a Means of Approximating Undecidable Propositions. In IWPC ’99,
pages 208–217. IEEE, 1999.

[HG98] M. Harman and K. B. Gallagher. Program slicing. Journal of Information and
Software Technology, 40(11 and 12):557–581, 1998.

[HH00] R. M. Hierons and M. Harman. Program Analysis and Test Hypotheses Com-
plement. In ICSE International Workshop on Automated Program Analysis,
Testing and Verification, pages 32–39. IEEE, 2000.

[HH01] M. Harman and R. M. Hierons. An overview of program slicing. Software
Focus, 2(3):85–92, 2001.

[HHD99] R. M. Hierons, M. Harman, and S. Danicic. Using Program Slicing to Assist in
the Detection of Equivalent Mutants. Software Testing, Verification & Reliability,
9(4):233–262, 1999.

[HHD00] M. Harman, R. Hierons, and S. Danicic. The Relationship Between Program
Dependence and Mutation Analysis. In Mutation 2000, pages 15–23. Kluwer,
2000.

[HHF+01] M. Harman, R. M. Hierons, C. Fox, S. Danicic, and J. Howroyd. Pre/Post
Conditioned Slicing. In ICSM ’01, pages 138–147. IEEE, 2001.

[HHF+02] R. M. Hierons, M. Harman, C. Fox, M. Daoudi, and L. Ouarbya. Conditioned
Slicing Supports Partition Testing. Softw. Test., Verif. Reliab., 12(1):23–28,
2002.

[Hie04] R. Hierons. Program Slicing References Collection. http://people.
brunel.ac.uk/˜csstrmh/research/slicing.html, 2004.

[HLS05] H. S. Hong, I. Lee, and O. Sokolsky. Abstract Slicing: A New Approach to
Program Slicing Based on Abstract Interpretation and Model Checking. In
SCAM ’05, pages 25–34. IEEE, 2005.

[HM05a] J. Hoenicke and P. Maier. Model-checking specifications integrating processes,
data and time. In FM ’05, volume 3582 of LNCS, pages 465–480. Springer,
2005.

[HM05b] J. Hoenicke and P. Maier. Model-checking specifications integrating processes,
data and time. Technical Report 5, SFB/TR 14 AVACS, http://www.avacs.
org/, 2005.

http://people.brunel.ac.uk/~csstrmh/research/slicing.html
http://people.brunel.ac.uk/~csstrmh/research/slicing.html
http://www.avacs.org/
http://www.avacs.org/

Bibliography 207

[HMR93] M. J. Harrold, B. Malloy, and G. Rothermel. Efficient construction of program
dependence graphs. In ISSTA ’93, pages 160–170. ACM, 1993.

[HO02a] J. Hoenicke and E.-R. Olderog. Combining Specification Techniques for
Processes Data and Time. In IFM ’02, volume 2335 of LNCS, pages 245–266.
Springer, 2002.

[HO02b] J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A Combination of Specification
Techniques for Processes, Data and Time. Nordic Journal of Computing,
9(4):301–334, 2002.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Hob07] U. Hobelmann. Verifying Properties of Processes, Data, and Time: Linking
Counterexamples to High-Level Specifications. Master’s thesis, Carl von
Ossietzky University of Oldenburg, 2007.

[Hoe01] J. Hoenicke. Specification of Radio Based Railway Crossings with the Combi-
nation of CSP, OZ, and DC. FBT 2001, 2001.

[Hoe06] J. Hoenicke. Combination of Processes, Data, and Time. PhD thesis, Carl von
Ossietzky University of Oldenburg, 2006.

[Hor90] S. Horwitz. Identifying the Semantic and Textual Differences Between Two
Versions of a Program. In PLDI ’90, pages 234–245. ACM, 1990.

[HOSD97] M. Harman, M. Okulawon, B. Sivagurunathan, and S. Danicic. Slice-Based
Measurement of Function Coupling. In PMESSE ’97: IEEE/ACM ICSE workshop
on Process Modelling and Empirical Studies of Software Evolution, pages 26–32,
1997.

[HPR89] S. Horwitz, J. Prins, and T. Reps. Integrating Noninterfering Versions of
Programs. ACM Trans. Program. Lang. Syst., 11(3):345–387, 1989.

[HQR98] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You Assume, We Guarantee:
Methodology and Case Studies. In CAV ’98, volume 1427 of LNCS, pages
440–451. Springer, 1998.

[HR92] S. Horwitz and T. Reps. The Use of Program Dependence Graphs in Software
Engineering. In ICSE ’92, pages 392–411. ACM, 1992.

[HR05] S. Horwitz and T. Reps. Wisconsin Program-Slicing Project. http://www.
cs.wisc.edu/wpis/html/, 2005.

[HRB88] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using Dependence
Graphs. ACM SIGPLAN Notices, 23(7):35–46, 1988.

[HRB90] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using Dependence
Graphs. ACM TOPLAS, 12(1):26–60, 1990.

http://www.cs.wisc.edu/wpis/html/
http://www.cs.wisc.edu/wpis/html/

208 Bibliography

[HSD98] M. Harman, Y. Sivagurunathan, and S. Danicic. Analysis of Dynamic Memory
Access using Amorphous Slicing. In ICSM ’98, pages 336–345. IEEE, 1998.

[HW97] M. P. E. Heimdahl and M. W. Whalen. Reduction and Slicing of Hierarchical
State Machines. In ESEC ’97/FSE-5: 6th European Software Engineering
Conference held jointly with the 5th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 450–467. Springer, 1997.

[HZ97] M. R. Hansen and Zhou Chaochen. Duration Calculus: Logical Foundations.
Formal Aspects of Computing, 9:283–330, 1997.

[IKI03] T. Ishio, S. Kusumoto, and K. Inoue. Application of Aspect-Oriented Program-
ming to Calculation of Program Slice. Technical Report 392, Osaka University,
2003.

[INIY96] M. Iwaihara, M. Nomura, S. Ichinose, and H. Yasuura. Program Slicing
on VHDL Descriptions and Its Applications. In Asian Pacific Conference on
Hardware Description Languages (APCHDL), pages 132–139, 1996.

[ISO01] ISO – International Standard Organization. (ISO/IEC 15437) Standard for
Information Technology—Enhancements to LOTOS (E-LOTOS), 2001.

[ISO02] ISO – International Standard Organization. (ISO/IEC 13568) Standard for
Information Technology—Z formal specification notation — Syntax, type system
and semantics, 2002.

[Jak07] M. Jakoblew. Studienarbeit “Erstellung einer CSP-OZ Spezifikation der
Flugkontrolle eines Flughafens mittels Syspect”. Universität Paderborn, 2007.

[JG01] G. Jia and S. Graf. Verification Experiments on the MASCARA Protocol. In
SPIN ’01, volume 2057 of LNCS, pages 123–142. Springer, 2001.

[JJ03] A. Janowska and P. Janowski. Slicing Timed Systems. In CS&P ’03: Proc. of
the Int. Workshop on Concurrency, Specification and Programming, volume 1,
pages 235–250. Warsaw University, 2003.

[JJ04] A. Janowska and P. Janowski. Slicing Timed Systems. Fundamenta Informati-
cae, 60(1–4):187–210, 2004.

[JM05] R. Jhala and R. Majumdar. Path Slicing. In PLDI ’05, pages 38–47. ACM,
2005.

[JR94] D. Jackson and E. J. Rollins. Chopping: A Generalization of Slicing. Technical
Report CMU-CS-94-169, Carnegie Mellon University, 1994.

[Kam95] M. Kamkar. An overview and comparative classification of program slicing
techniques. Journal of Systems and Software, 31(3):197–214, 1995.

[KB96] B.-K. Kang and J. M. Bieman. Design-Level Cohesion Measures: Derivation,
Comparison, and Applications. In COMPSAC ’96, pages 92–97. IEEE, 1996.

Bibliography 209

[KFG04] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying Aspect Advice Modu-
larly. SIGSOFT Softw. Eng. Notes, 29(6):137–146, 2004.

[KH01] R. Komondoor and S. Horwitz. Using Slicing to Identify Duplication in Source
Code. In SAS ’01, pages 40–56. Springer, 2001.

[KK95] M. Kamkar and P. Krajina. Dynamic slicing of distributed programs. In ICSM
’95, pages 222–231. IEEE, 1995.

[KKP+81] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence
graphs and compiler optimizations. In POPL ’81, pages 207–218. ACM, 1981.

[KL88] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–
163, 1988.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In ECOOP ’97, pages 220–242,
1997.

[KNNI02] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue. Experimental Evaluation
of Program Slicing for Fault Localization. Empirical Softw. Engg., 7(1):49–76,
2002.

[KR97] B. Korel and J. Rilling. Application of Dynamic Slicing in Program Debugging.
In Automated and Algorithmic Debugging, pages 43–58, 1997.

[Kri98] J. Krinke. Static Slicing of Threaded Programs. In Proc. ACM SIG-
PLAN/SIGFSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE ’98), pages 35–42. ACM, 1998. ACM SIGPLAN Notices
33(7).

[Kri03] J. Krinke. Advanced Slicing of Sequential and Concurrent Programs. PhD thesis,
Fakultät für Mathematik und Informatik, Universität Passau, 2003.

[KS98] J. Krinke and G. Snelting. Validation of Measurement Software as an Applica-
tion of Slicing and Constraint Solving. Information and Software Technology,
40(11–12):661–675, 1998.

[KS01] G. Kassel and G. P. Smith. Model Checking Object-Z Classes: Some Experi-
ments with FDR. In APSEC ’01: Eighth Asia-Pacific on Software Engineering
Conference, pages 445–452. IEEE, 2001.

[KSCH99a] T. Kim, Y.-T. Song, L. Chung, and D. T. Huynh. Dynamic Software Architecture
Slicing. In COMPSAC ’99, pages 61–66. IEEE, 1999.

[KSCH99b] T. Kim, Y.-T. Song, L. Chung, and D. T. Huynh. Software Architecture Anal-
ysis Using Dynamic Slicing. In AoM/IAoM 17th International Conference on
Computer Science, pages 242–247, 1999.

[KSCH00] T. Kim, Y.-T. Song, L. Chung, and D. T. Huynh. Software Architecture Analysis:
A Dynamic Slicing Approach. ACIS Int. J Comp. Inf. Sci., 1(2):91–103, 2000.

210 Bibliography

[Kur94] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1994.

[KY94] B. Korel and S. Yalamanchili. Forward computation of dynamic program slices.
In ISSTA ’94, pages 66–79. ACM, 1994.

[Lam02] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman, 2002.

[LCYK01] W. K. Lee, I. S. Chung, G. S. Yoon, and Y. R. Kwon. Specification-based pro-
gram slicing and its applications. Journal of Systems Architecture, 47(5):427–
443, 2001.

[LD98] A. Lakhotia and J.-C. Deprez. Restructuring Programs by Tucking Statements
into Functions. Information and Software Technology, 40(11–12):677–690,
1998.

[Lem94] J. A. Leminen. Slicing and slice based measures for the assessment of func-
tional cohesion of Z operation schemas. Master’s thesis, Michigan Technologi-
cal University, 1994.

[Li01] B. Li. A Hierarchical Slice-Based Framework for Object-Oriented Coupling
Measurement. Technical Report 415, Turku Centre for Computer Science
(TUCS), 2001.

[LKCK00] W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon. A slicing-based approach
to enhance Petri net reachability analysis. Journal of Research Practices and
Information Technology, 32(2):131–143, 2000.

[LKR05] P. Lam, V. Kuncak, and M. Rinard. Crosscutting Techniques in Program
Specification and Analysis. In AOSD ’05, pages 169–180. ACM, 2005.

[LR87] H. K. N. Leung and H. K. Reghbati. Comments on program slicing. IEEE Trans.
Softw. Eng., 13(12):1370–1371, 1987.

[Luc01] A. D. Lucia. Program slicing: Methods and applications. In SCAM ’01, pages
142–149. IEEE, 2001.

[LV97] F. Lanubile and G. Visaggio. Extracting Reusable Functions by Flow Graph-
Based Program Slicing. IEEE Trans. Softw. Eng., 23(4):246–259, 1997.

[Lyl95] J. R. Lyle. Program Slicing References Collection. http://hissa.nist.
gov/˜jimmy/refs.html, 1995.

[MBPRR01] R. T. Mittermeir, A. Bollin, H. Pozewaunig, and D. Rauner-Reithmayer. Goal-
driven combination of software comprehension approaches for component
based development. In SSR ’01: Symposium on Software reusability, pages
95–102. ACM, 2001.

[McM92] K. L. McMillan. Symbolic Model Checking — An approach to the state explosion
problem. PhD thesis, Carnegy Mellon University, 1992.

http://hissa.nist.gov/~jimmy/refs.html
http://hissa.nist.gov/~jimmy/refs.html

Bibliography 211

[MD98] B. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: an introduction
to TCOZ. In ICSE ’98, pages 95–104. IEEE, 1998.

[MD99] B. P. Mahony and J. S. Dong. Sensors and Actuators in TCOZ. In FM ’99,
pages 1166–1185. Springer, 1999.

[MD00] B. Mahony and J. S. Dong. Timed communicating Object-Z. IEEE TSE,
26(2):150–177, 2000.

[Met07] B. Metzler. Decomposing Integrated Specifications for Verification. In IFM ’07,
volume 4591 of LNCS, pages 459–479. Springer, 2007.

[Mey05] R. Meyer. Model-Checking von Phasen-Event-Automaten bezüglich Duration
Calculus Formeln mittels Testautomaten. Master’s thesis, Carl von Ossietzky
University of Oldenburg, 2005.

[MFR06] R. Meyer, J. Faber, and A. Rybalchenko. Model Checking Duration Calculus:
A Practical Approach. In ICTAC ’06, volume 4281 of LNCS, pages 332–346.
Springer, 2006.

[MMK06] D. P. Mohapatra, R. Mall, and R. Kumar. An Overview of Slicing Techniques
for Object-Oriented Programs. Informatica, 30(2):253–278, 2006.

[MORW04] M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim. Linking CSP-OZ with
UML and Java: A Case Study. In IFM ’04, number 2999 in LNCS, pages
267–286. Springer, 2004.

[MORW07] M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim. Integrating a Formal
Method into a Software Engineering Process with UML and Java. Formal
Aspects of Computing, 2007. To appear.

[MT98] L. I. Millett and T. Teitelbaum. Slicing Promela and its applications to model
checking, simulation, and protocol understanding. In SPIN ’98, pages 75–83,
1998.

[MT00] L. I. Millett and T. Teitelbaum. Issues in Slicing PROMELA and Its Applications
to Model Checking, Protocol Understanding, and Simulation. STTT, 2(4):343–
349, 2000.

[MU05] P. Malik and M. Utting. CZT: A Framework for Z Tools. In ZB ’05, volume
3455 of LNCS, pages 65–84. Springer, 2005.

[Muc00] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 2000.

[Nan01] M. G. Nanda. Slicing Concurrent Java Programs: Issues and Solutions. PhD
thesis, Indian Institute of Technology, Bombay, 2001.

[NNH99] H. R. Nielson, F. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

212 Bibliography

[NR00] M. G. Nanda and S. Ramesh. Slicing Concurrent Programs. In ISSTA ’00,
pages 180–190. ACM, 2000.

[OA93] T. Oda and K. Araki. Specification Slicing in Formal Methods of Software
Development. In COMPSAC ’93, pages 313–319. IEEE, 1993.

[OB98] L. M. Ott and J. M. Bieman. Program Slices as an Abstraction for Cohesion
Measurement. Information and Software Technology, 40(11–12):691–700,
1998.

[OBKM95] L. M. Ott, J. M. Bieman, B.-K. Kang, and B. Mehra. Developing Measures of
Class Cohesion for Object-Oriented Software. In AOWSM ’95: Annual Oregon
Workshop on Software Metrics, 1995.

[OO84] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a
software development environment. In First ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software development environments, pages
177–184. ACM, 1984.

[OT89] L. M. Ott and J. J. Thuss. The relationship between slices and module cohesion.
In ICSE ’89, pages 198–204. ACM, 1989.

[OT93] L. M. Ott and J. Thuss. Slice Based Metrics for Estimating Cohesion. In
IEEE-CS International Metrics Symposium, pages 78–81, 1993.

[Ott92] L. M. Ott. Using Slice Profiles and Metrics during Software Maintenance. In
10th Annual Software Reliability Symp., pages 16–23, 1992.

[OW05] E.-R. Olderog and H. Wehrheim. Specification and (property) inheritance in
CSP-OZ. Science of Computer Programming, 55:227–257, 2005.

[Pel98] D. Peled. Ten Years of Partial Order Reduction. In CAV ’98, pages 17–28.
Springer, 1998.

[PF01] M. Plakal and C. N. Fischer. Concurrent garbage collection using program
slices on multithreaded processors. ACM SIGPLAN Notices, 36(1):94–100,
2001.

[Pie07] E. Pietriga. ZGRViewer. http://zvtm.sourceforge.net/zgrviewer.
html, 2007.

[PR06] A. Podelski and A. Rybalchenko. ARMC: the logical choice for software model
checking with abstraction refinement. In PADL ’07, volume 4354 of LNCS,
pages 245–259. Springer, 2006.

[Rak07] A. Rakow. Slicing Petri Nets. Technical report, Carl von Ossietzky University
of Oldenburg, 2007.

[Rep98a] T. Reps. Program analysis via graph reachability. Technical Report TR-1386,
University of Wisconsin, Madison, 1998.

http://zvtm.sourceforge.net/zgrviewer.html
http://zvtm.sourceforge.net/zgrviewer.html

Bibliography 213

[Rep98b] T. Reps. Program Analysis via Graph Reachability. Information and Software
Technology, 40(11–12):701–726, 1998.

[RH96] G. Rothermel and M. J. Harrold. Analyzing Regression Test Selection Tech-
niques. IEEE Trans. Softw. Eng., 22(8):529–551, 1996.

[RH04] V. P. Ranganath and J. Hatcliff. Pruning interference and ready dependences
for slicing concurrent Java programs. In CC ’04: Compiler Construction,
volume 2985 of LNCS, pages 39–56. Springer, 2004.

[RLG02] J. Rilling, H. F. Li, and D. Goswami. Predicate-Based Dynamic Slicing of
Message Passing Programs. In SCAM ’02, pages 133–144. IEEE, 2002.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[RR95] T. Reps and G. Rosay. Precise interprocedural chopping. In SIGSOFT ’95,
pages 41–52. ACM, 1995.

[RY89] T. W. Reps and W. Yang. The Semantics of Program Slicing and Program
Integration. In TAPSOFT ’89, pages 360–374. Springer, 1989.

[Ryb06] A. Rybalchenko. CLP-Prover. http://www.mpi-sws.mpg.de/˜rybal/
clp-prover/, 2006.

[Ryb07] A. Rybalchenko. ARMC. http://www.mpi-sws.mpg.de/˜rybal/
armc/, 2007.

[Sü02] C. Sühl. An Integration of Z and Timed CSP for Specifying Real-Time Embedded
Systems. PhD thesis, Technische Universität Berlin, 2002.

[Sch90] S. Schneider. Correctness and Communication in Real-time Systems. PhD thesis,
Oxford University, 1990.

[Sch99] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley,
1999.

[SD96] S. Schoenig and M. Ducassé. A Backward Slicing Algorithm for Prolog. In
SAS ’96, pages 317–331. Springer, 1996.

[SD01] G. P. Smith and J. Derrick. Specification, Refinement and Verification of
Concurrent Systems — An Integration of Object-Z and CSP. Formal Methods
in System Design, 18(3):249–284, 2001.

[SGM02] G. Szilágyi, T. Gyimóthy, and J. Małuszyński. Static and Dynamic Slicing of
Constraint Logic Programs. Automated Software Engg., 9(1):41–65, 2002.

[SH96] A. M. Sloane and J. Holdsworth. Beyond Traditional Program Slicing. In
ISSTA ’96, pages 180–186. ACM, 1996.

[SH02] G. P. Smith and I. Hayes. An introduction to Real-Time Object-Z. Formal
Aspects of Computing, 13(2):128–141, 2002.

http://www.mpi-sws.mpg.de/~rybal/clp-prover/
http://www.mpi-sws.mpg.de/~rybal/clp-prover/
http://www.mpi-sws.mpg.de/~rybal/armc/
http://www.mpi-sws.mpg.de/~rybal/armc/

214 Bibliography

[She06] A. Sherif. A Framework for Specification and Validation of Real Time Systems
Using Circus Action. PhD thesis, Universidade Federal de Pernambuco, 2006.

[SHS02] Y. Sivagurunathan, M. Harman, and B. Sivagurunathan. Slice-Based Dynamic
Memory Modelling — A Case Study. In COMPSAC ’02, pages 351–356. IEEE,
2002.

[SJCS05] A. Sherif, H. Jifeng, A. Cavalcanti, and A. Sampaio. A Framework for Specifi-
cation and Validation of Real Time Systems Using Circus Action. In ICTAC ’04,
number 3407 in LNCS, pages 478–493. Springer, 2005.

[Ska94] J. U. Skakkebæk. Liveness and Fairness in Duration Calculus. In CONCUR ’94,
volume 836 of LNCS, pages 283–298. Springer, 1994.

[Smi92] G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
University of Queensland, 1992.

[Smi95] G. P. Smith. A Fully Abstract Semantics of Classes for Object-Z. Formal Asp.
Comput., 7(3):289–313, 1995.

[Smi97] G. P. Smith. A Semantic Integration of Object-Z and CSP for the Specification
of Concurrent Systems. In FME ’97, volume 1313 of LNCS, pages 62–81.
Springer, 1997.

[Smi00] G. P. Smith. The Object-Z Specification Language. Kluwer, 2000.

[Sne96] G. Snelting. Combining Slicing and Constraint Solving for Validation of
Measurement Software. In SAS ’96, pages 332–348, 1996.

[Spi89] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, 1989.

[SRK06] G. Snelting, T. Robschink, and J. Krinke. Efficient Path Conditions in Depen-
dence Graphs for Software Safety Analysis. ACM TOSEM, 15(4):410–457,
2006.

[SS94] V. Sarkar and B. Simons. Parallel Program Graphs and their Classification. In
6th International Workshop on Languages and Compilers for Parallel Computing,
pages 633–655. Springer, 1994.

[ST02] S. Schneider and H. Treharne. Communicating B Machines. In ZB ’02, pages
416–435. Springer, 2002.

[ST03] S. Schneider and H. Treharne. CSP Theorems for Communicating B Machines.
Technical Report CSD-TR-02-12, Royal Holloway University of London, 2003.

[Sta00] J. Stafford. A Formal, Language-Independent, and Compositional Approach to
Control Dependence Analysis. PhD thesis, University of Colorado, 2000.

[Sto00] S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In
SPIN ’00, volume 1885 of LNCS, pages 224–244. Springer, 2000.

Bibliography 215

[SW03] G. P. Smith and K. Winter. Proving temporal properties of Z specifications
using abstraction. In ZB ’03, volume 2561 of LNCS, pages 280–299. Springer,
2003.

[Sys06] Syspect. Endbericht der Projektgruppe Syspect. Technical report, Carl von
Ossietzky University of Oldenburg, 2006.

[TA97] K. Taguchi and K. Araki. Specifying Concurrent Systems by Z + CCS. In
International Symposium on Future Software Technology, pages 101–108, 1997.

[TCFR96] F. Tip, J.-D. Choi, J. Field, and G. Ramalingam. Slicing class hierarchies in
C++. In OOPSLA ’96, pages 179–197. ACM, 1996.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121–189, 1995.

[Ton03] P. Tonella. Using a Concept Lattice of Decomposition Slices for Program
Understanding and Impact Analysis. IEEE Trans. Software Eng., 29(6):495–
509, 2003.

[TS99] H. Treharne and S. Schneider. Using a Process Algebra to control B OP-
ERATIONS. Technical Report CSD-TR-99-01, Royal Holloway University of
London, 1999.

[TS00] H. Treharne and S. Schneider. How to Drive a B Machine. In ZB ’00, pages
188–208. Springer, 2000.

[TWC01] J. Tretmans, K. Wijbrans, and M. R. V. Chaudron. Software Engineering with
Formal Methods: The Development of a Storm Surge Barrier Control System —
Revisiting Seven Myths of Formal Methods. Formal Methods in System Design,
19(2):195–215, 2001.

[Upc97] R. Upchurch. Program Slicing References Collection of the University of Mas-
sachusetts in Dartmouth. http://www2.umassd.edu/SWPI/slicing/
slicing.html, 1997.

[UTS+03] M. Utting, I. Toyn, J. Sun, A. Martin, J. S. Dong, N. Daley, and D. W. Currie.
ZML: XML Support for Standard Z. In ZB ’03, volume 2651 of LNCS, pages
437–456. Springer, 2003.

[VABT03] V. M. Vedula, J. A. Abraham, J. Bhadra, and R. Tupuri. A Hierarchical
Test Generation Approach Using Program Slicing Techniques on Hardware
Description Languages. Journal of Electronic Testing, 19(2):149–160, 2003.

[Vas98] W. W. Vasconcelos. A Flexible Framework for Dynamic and Static Slicing of
Logic Programs. In PADL ’99, pages 259–274. Springer, 1998.

[VEA07] S. Vasudevan, E. A. Emerson, and J. A. Abraham. Improved Verification of
Hardware Designs through Antecedent Conditioned Slicing. STTT, 9(1):89–
101, 2007.

http://www2.umassd.edu/SWPI/slicing/slicing.html
http://www2.umassd.edu/SWPI/slicing/slicing.html

216 Bibliography

[Ven91] G. A. Venkatesh. The Semantic Approach to Program Slicing. In PLDI ’91,
pages 107–119. ACM, 1991.

[WA98] M. Woodward and S. Allen. Slicing Algebraic Specifications. Information and
Software Technology, 40(2):105–118, 1998.

[War89] M. P. Ward. Proving Program Refinements and Transformations. PhD thesis, St.
Annes College Oxford, 1989.

[War02] M. P. Ward. Program Slicing via FermaT Transformations. In COMPSAC ’02,
pages 357–362. IEEE, 2002.

[WC02] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In ZB ’02,
volume 2272 of LNCS, pages 184–203. Springer, 2002.

[Weh04] H. Wehrheim. Preserving properties under change. In FMCO ’03, volume
3188 of LNCS, pages 330–343. Springer, 2004.

[Weh05] H. Wehrheim. Slicing techniques for verification re-use. Theor. Comput. Sci.,
343(3):509–528, 2005.

[Weh06] H. Wehrheim. Incremental Slicing. In ICFEM ’06, volume 4260 of LNCS, pages
514–528. Springer, 2006.

[Wei79] M. Weiser. Program slices: formal psychological, and practical investigations of
an automatic program abstraction method. PhD thesis, University of Michigan,
Ann Arbor, 1979.

[Wei81] M. Weiser. Program Slicing. In ICSE ’81, pages 439–449. IEEE, 1981.

[Wei82] M. Weiser. Programmers use slices when debugging. Communications of the
ACM, 25(7):446–452, 1982.

[Wei84] M. Weiser. Program Slicing. IEEE TSE, 10(4):352–357, 1984.

[WG84] W. M. Waite and G. Goos. Compiler Construction. Springer, 1984.

[WM97] R. Wilhelm and D. Maurer. Übersetzerbau. Theorie, Konstruktion, Generierung.
Springer, 1997.

[WS02] K. Winter and G. P. Smith. Compositional Verification for Object-Z. Technical
Report 02–42, University of Queensland, 2002.

[WS03] K. Winter and G. P. Smith. Compositional Verification for Object-Z. In ZB ’03,
volume 2651 of LNCS, pages 280–299. Springer, 2003.

[WY04] F. Wu and T. Yi. Slicing Z specifications. ACM SIGPLAN Notices, 39(8):39–48,
2004.

[WZH05] M. P. Ward, H. Zedan, and T. Hardcastle. Conditioned Semantic Slicing via
Abstraction and Refinement in FermaT. In CSMR ’05, pages 178–187. IEEE,
2005.

Bibliography 217

[XQZ+05] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program
slicing. SIGSOFT Software Engineering Notes, 30(2):1–36, 2005.

[ZCU96] J. Zhao, J. Cheng, and K. Ushijim. Static Slicing of Concurrent Object-Oriented
Programs. In COMPSAC ’96, pages 312–320. IEEE, 1996.

[ZGZ04] X. Zhang, R. Gupta, and Y. Zhang. Efficient Forward Computation of Dynamic
Slices Using Reduced Ordered Binary Decision Diagrams. In ICSE ’04, pages
502–511. IEEE, 2004.

[Zha98] J. Zhao. Applying Slicing Technique to Software Architectures. In 4th IEEE
International Conference on Engineering of Complex Computer Systems, pages
87–98, 1998.

[Zha99] J. Zhao. Slicing Concurrent Java Programs. In International Workshop on
Program Comprehension, pages 126–133. IEEE, 1999.

218 Bibliography

List of Figures

2.1 Weiser’s example program fragment and slices thereof 22
2.2 Example of data flow equation computation 24
2.3 Program dependence graph for the example program fragment . . 27
2.4 Comparison between static and dynamic slicing 29
2.5 Comparison between executable and non-executable slices 31

3.1 Tic-Tac-Toe board . 49
3.2 Tic-Tac-Toe specification . 51
3.3 Untimed air conditioner specification 57
3.4 Syntax of CSP processes . 58
3.5 Timed air conditioner specification 62
3.6 Syntax of counterexample formulae 63
3.7 Timed air conditioner environment specification 64

4.1 Control flow graph of a class . 71
4.2 Predicate nodes and predicate dependence edges 74
4.3 Types of control dependence . 76
4.4 Dependence graph of the Object-Z class TicTacToe 78
4.5 Control flow graph for the deadlock operator 80
4.6 Control flow graph for the termination operator 80
4.7 Control flow graph for the prefix operator 81
4.8 Control flow graph for the sequential composition operator 82
4.9 Control flow graph for parallel composition 84
4.10 Control flow graph for a process definition 85
4.11 Control flow graph for process calls 86
4.12 Control flow graph for the composition of separate CSP sections . . 87
4.13 Dependence graph for the AirConditioner class 91
4.14 Control flow graph for the parallel composition of classes 93
4.15 Control flow graph for the air conditioner specification 95
4.16 Syntax of counterexample formulae 97
4.17 Program dependence graph for the air conditioner system 101

5.1 ϕ1-Slice of the Tic-Tac-Toe specification 108
5.2 ϕ2-Slice of the Tic-Tac-Toe specification 109
5.3 Slice of the untimed air conditioner 113
5.4 Slice of the timed air conditioner class 117
5.5 Slice of the environment class . 118

220 List of Figures

6.1 Exemplary interpretation and its projection 123
6.2 Syntax of test formulae . 138
6.3 Syntax of SE-IL formulae . 143
6.4 Exemplary labelled Kripke structure 145
6.5 Exemplary path and its projection 146

7.1 Syspect and verification tool chain 153
7.2 Syspect class diagram editor . 155
7.3 Syspect state machine editor . 157
7.4 Syspect component diagram editor 158
7.5 Syspect counterexample formula editor 159
7.6 Syspect test formula editor . 160
7.7 Syspect error trace visualisation . 161
7.8 Syspect translation from UML to CSP-OZ-DC. 163
7.9 Embedding of slicing plug-in within Syspect 166
7.10 Syspect slicing plug-in: control flow graph 167
7.11 Syspect slicing plug-in: dependence graph 170
7.12 Legend for Syspect dependence graph nodes and edges 171
7.13 Slicing report . 172
7.14 Untimed air conditioner error trace 178
7.15 State machine of the elevator class 182
7.16 ETCS-EM system composition . 185
7.17 ETCS-EM classes and mutual associations 186
7.18 Airport component diagram . 190

List of Tables

1.1 Contributions of this thesis . 17

7.1 Slicing results for the Tic-Tac-Toe specification 174
7.2 Experimental results for the CashRegister specification 177
7.3 Experimental results for the untimed air conditioner 179
7.4 Experimental results for the timed air conditioner 181
7.5 Slicing results for the elevator specification 183
7.6 Slicing results for the ETCS-EM specification 188
7.7 Slicing results for the airport specification 192

222 List of Tables

Index

Symbols
Skip .80
Stop .80
2 . 83
. 82
u .83
‖| . 83
‖
A

. 83

A‖B . 83
→ . 81

A
abstract interpretation 33, 45
abstract slicing 42
abstract state machines (ASM) 48
abstraction . 45
abstraction refinement model checker

(ARMC) 154
abstraction-refinement.45
airport specification 189
algebraic specification notation . . . 33
amorphous slicing 37
ANSI C . 32
antecedent . 42
architecture description language . 33
ARMC. .154
aspect-oriented programming 42
assertion . 42
assume-guarantee reasoning 43
automatic verification 40
AVACS . 152

B
backward slice 105
backward slicing.29
base port . 157
binary decision diagrams (BDD) . . 44
bounded model checking 154

C
C . 32
capsule . 154
CFG. see control flow graph
chopping . 35
class diagram 154
class hierarchy 33
cohesion . 38
COI . 45
compiler optimisation 39
component diagram 157
compositional verification 43
comprehension 36
conditioned slicing 36
conditioning . 41
cone-of-influence reduction 45
conjugated port 157
ConSIT . 42
constrained slicing.36
ConSUS . 42
control dependence

CSP-OZ . 88
CSP-OZ-DC 96
external choice 88
indirect .75
internal choice.88
nontrivial precondition. . . .75, 88
Object-Z . 75
parallel composition 88
structural . 89
synchronisation88
timing . 96

control flow graph
Skip . 80
Stop . 80
2 .83
.82

224 Index

u . 83
‖| .83
‖
A

. 83

A‖B . 83
→ . 81
CSP composition.85
CSP-OZ . 79
CSP-OZ-DC 92
deadlock . 80
external choice 83
interleaving 83
internal choice.83
Object-Z . 71
parallel composition 83
prefix operator81
process call 85
process definition 83
pure Object-Z methods.86
sequential composition.82
termination.80

counterexample formulae 159
syntax . 63, 97

coupling. .39
criterion . 104
cross-cutting concerns 42
CSP process

projection 110
syntax . 58

CSP-OZ. .54
control dependence 88
control flow graph 79
data dependence 89
dependence analysis 79
dependence graph 87
predicate dependence.88
semantics. .58
slice . 110
synchronisation dependence . . 90
untimed air conditioner 55

CSP-OZ UML profile 152
CSP-OZ-DC . 60

CSP . 68
TakesPlace .68
Untime . 67
control dependence 96
control flow graph 92
data dependence 96
dependence analysis 92
dependence graph 94
interpretation.65
parallel composition of classes 92
predicate dependence.94
semantics. .65
slice . 114
synchronisation dependence . . 96
timed air conditioner 61
timing dependence 96
timing node sequence99

CSP-OZ-DC LATEX.162
CSP-OZ-DC XML.162

D
data class . 154
data dependence

CSP-OZ . 89
CSP-OZ-DC 96
direct . 77
interference 89
Object-Z . 76
symmetric . 77
synchronisation 89

data flow equation 22, 24
DC timing node sequence 99
dead code elimination 39
deadlock . 80
debugging. .35

semi-automatic 35
decomposition.43
decomposition slicing 37
DEF . 24
dependence

control75, 88, 96
data 76, 89, 96

Index 225

predicate.73, 88, 94
synchronisation 90, 96
timing . 96

dependence analysis 69
CSP-OZ . 79
CSP-OZ-DC 92
Object-Z . 70

dependence graph
CSP-OZ . 87
CSP-OZ-DC 94
Object-Z . 72
timed air conditioner 100
untimed air conditioner 90

dependency association 155
differencing 35, 36
dynamic slicing 28, 30

E
elimination of dead code.39
error trace .42
ETCS-EM . 184
executable slice.30
external choice 83

F
FermaT. .42
ForMooS . 152
forward slicing 29
functional language 33

G
garbage collection 40

H
hierarchical state machine 33

I
impact analysis 38
INFL . 24
integrated formal specifications . . . 47
integration . 37
interface . 154
interface slicing 38

interleaving . 83
internal choice 83
interpretation

Projection . 122
projection 122

invariant checking.154

J
Java . 32

L
labelled Kripke structure 52
labelled Kripke structure path

Projection . 146
projection 146

LKS . 52
localisation reduction45
logic programs 33
LoRe . 154

M
maintenance . 37
measurement. .38
metric . 38
model checking.40
model representation 44
mutation testing 35

O
Object-Z . 48

control dependence 75
control flow graph 71
data dependence 76
dependence analysis 70
dependence graph 72
predicate dependence.73
semantics .52
slice . 105
Tic-Tac-Toe 49

P
parallel composition 83
parallel composition of classes 92

226 Index

partial-order reduction 44
partition-base testing 36
PDG . see program dependence graph
Petri net . 33
phase event automata 162
PhaseSpec . 98
port

base . 157
conjugated 157

predicate abstraction 45
predicate dependence

CSP-OZ . 88
CSP-OZ-DC 94
Object-Z . 73
timing . 94

prefix operator 81
process call . 85
process definition.83
program comprehension 36
program conditioning41
program dependence graph 25
program differencing 36
program integration 37
program slicing 21
projection

CSP process 110
interpretation 122
labelled Kripke structure path146

projection blocks 123
Prolog .33
Promela . 32, 40

Q
quality assurance 35
quasi-static slicing 36

R
re-engineering . 37
re-use . 37
realisation association 155
REF . 24
regression testing35

restructuring . 38
reusable functions 38
reverse engineering.38

S
SAL . 40
SDL . 41
SE-IL .142
separation of concerns 42
sequential composition 82
SLAB. .154
slice . 103

CSP-OZ. .110
CSP-OZ-DC 114
executable . 30
Object-Z. .105
partially equivalent 30

slice profile . 39
slicing . 21

abstract. .42
amorphous 37
backward . 29
concurrent programs.34
conditioned 36, 41
constrained 36, 41
correctness 121
data-flow-equation-based 22
decomposition 37
dependence-graph-based.25
dynamic 28, 30
forward . 29
interface. .38
quasi-static 36
real-time systems 34
specification-based.33
static . 28
transform. .38

slicing abstractions (SLAB) 154
slicing classification 28
slicing criterion.104

Bandera specification 31
dynamic . 31

Index 227

implicit . 31
predicate-based 31
static . 31
temporal logics 31

software comprehension 36
software debugging.35
software differencing 35
software maintenance 37
software metric38
software quality assurance 35
software re-engineering.37
software re-use 37
software testing 35
specification slice.103

CSP-OZ. .110
CSP-OZ-DC 114
Object-Z. .105

specification-based slicing 33
SPIN . 32, 40
state machine 156
state space reduction 41

high-level techniques 41
low-level techniques 43

state/event interval logic 142
static slicing . 28
stuttering invariance

test formulae 137
synchronisation dependence

CSP-OZ . 90
CSP-OZ-DC 96

syntax of counterexample formulae63,
97

syntax of CSP processes.58
syntax of test formulae 138
syntax tree . 33
Syspect . 152

Init schema.156
CSP-OZ-DC XML.162
CSP-OZ-DC LATEX 162
class diagram.154
component diagram 157
control flow graph165

counterexample formulae. . . .159
CSP-OZ UML profile 152
dependence graph 168
diagram export 163
error trace 161
export . 162
PEA XML . 162
phase event automata 162
slicing plug-in 164
slicing report 172
software versions 173
state machine 156
state schema 156
TCS . 162
test formulae 160
transition constraint systems .162
verification 160

Syspect specification
airport . 189
cash register.175
elevator . 181
ETCS-EM case study 184
Tic-Tac-Toe 173
timed air conditioner 180
untimed air conditioner.177

T
TCS . 162
termination . 80
test formulae

satisfaction 138
stuttering invariance. . . .137, 139
syntax. .138
Syspect. .160

testing . 35
mutation . 35
partition-base.36
regression . 35

timing dependence
CSP-OZ-DC 96

timing node sequence 99
transform slicing 38

228 Index

transition constraint systems.162

U
UML profile . 152

V
VALSOFT . 42
verification . 40
VHDL . 33

W
weakest precondition 42
Wide Spectrum Language (WSL) . .33
WSL. .42

Z
Z notation . 33

	Introduction
	Flawless Design of Complex Systems
	Formal Specifications and their Verification
	Slicing for Verification
	Contributions
	Thesis Structure

	Background: Program Slicing
	Foundations of Program Slicing
	Slicing Based on Data Flow Equations
	Slicing Based on Dependence Graphs

	Classification of Slicing Approaches
	Type of Slicing: Static or Dynamic
	Direction of Slicing: Forward or Backward
	Type of Slice: Executable or Non-Executable
	Type of Slicing Criterion
	Target Language
	Area of Application

	Further Techniques Aiming at State Space Reduction
	High-Level Techniques
	Low-Level Techniques

	Integrated Formal Specifications
	Object-Z Specifications
	Example: Tic-Tac-Toe
	Semantics of Object-Z Specifications

	CSP-OZ Specifications
	Example: Untimed Air Conditioner System
	Semantics of CSP-OZ Specifications

	CSP-OZ-DC Specifications
	Example: Timed Air Conditioner System
	Semantics of CSP-OZ-DC Specifications

	Dependence Analysis
	Object-Z Specifications
	Control Flow Graph
	Dependence Graph
	Example: Tic-Tac-Toe Dependence Graph

	CSP-OZ Specifications
	Control Flow Graph
	Dependence Graph
	Example: Untimed Air Conditioner Dependence Graph

	CSP-OZ-DC Specifications
	Control Flow Graph
	Dependence Graph
	Example: Timed Air Conditioner Dependence Graph

	Specification Slices
	Slicing Criterion
	Dependence Graph Backwards Slice
	Object-Z Specification Slices
	Example: Tic-Tac-Toe Specification

	CSP-OZ Specification Slices
	Example: Air Conditioner Slice

	CSP-OZ-DC Specification Slices
	Example: Timed Air Conditioner System Slice

	Classification of the Slicing Approach

	Slicing Correctness
	Relating Slicing Results with Specification Elements
	Projection Relation between Interpretations
	Transitions of CSP Process Projections
	CSP Transition Sequences
	Irrelevant Events
	Irrelevant DC Formulae

	Projection Relation Established by Slicing
	Stuttering Invariance of Test Formulae
	Stuttering Invariance of State/Event Interval Logic
	State/Event Interval Logic
	Projection of Event-Labelled Kripke Structures

	Tool Support and Experimental Evaluation
	Syspect --- Modelling Environment for CSP-OZ-DC
	Class Diagrams
	State Machines
	Component Diagrams
	DC Counterexample Formulae
	DC Test Formulae and Syspect Verification
	Specification Export

	Slicing Implementation within Syspect
	Syspect Slicing Plug-In
	Control Flow Graph
	Dependence Graph
	Slicing Report

	Benchmarks and Case Studies
	Tic-Tac-Toe
	Cash Register
	Untimed Air Conditioner
	Timed Air Conditioner System
	Elevator
	ETCS-EM Case Study
	Airport Specification

	Summary of Experimental Results

	Conclusion
	Summary
	Perspectives

	Bibliography
	List of Figures
	List of Tables
	Index

