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Die gültige Promotionsordnung der Fakultät für Elektrotechnik, Informatik und
Mathematik der Universität Paderborn (Fassung vom 26.10.2010) ist mir bekannt.

Die Dissertation wurde von mir unter der Betreuung von Prof. Dr. André Brink-
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Abstract

Academia as well as the economy profit from the abilities of today’s computer-
aided design processes and simulations. When the need for compute resources is
not continuous but occurs in peak loads, it is more efficient for a large number
of research groups to share an infrastructure or to rent the compute power on
demand instead of maintaining an own infrastructure.

Compute resource providers cover the resulting demand. They trade compute
power on the basis of automatically negotiable contracts including estimated
resources, fees and penalties, runtime, and deadlines. Statistics show that users
lack the ability to accurately estimate a job’s runtime and tend to overestimate.
This leads to low utilization of the provider’s infrastructure. However, a high
utilization is important to be competitive and profitable.

This thesis introduces two overbooking approaches for the scheduling and ne-
gotiation mechanisms of a compute provider. Overbooking exploits the runtime
overestimations by using statistics on the user estimation quality to calculate
the probability of failure and success when a job is planned with less runtime.
Accepting additional, promising jobs increases the utilization of the underlying
compute infrastructure, increases the provider’s profit, and minimizes the risk of
job failures due to overload.

The potential of the presented overbooking approaches is shown based on sim-
ulations with real-world job traces. The evaluation demonstrates that academic
and commercial resource providers can benefit from overbooking. Careful over-
booking allows to successfully execute more jobs even if a few of the additional
accepted jobs fail. It is possible to double a provider’s utilization and profit by
overbooking.
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Zusammenfassung

Wissenschaft und Wirtschaft profitieren von modernen computergestützten De-
signprozessen und Simulationen. Wenn dabei die maximale Rechenlast nicht
kontinuierlich sondern nur in seltenen Fällen benötigt wird, ist es effizienter Re-
chenleistung zu teilen oder zu mieten, als eine eigene Rechnerinfrastruktur zu
unterhalten.

Die dadurch entstehende Nachfrage wird von Ressourcenanbietern gedeckt. Sie
verkaufen Rechenleistung auf Basis von automatisch verhandelbaren Dienst-
gütevereinbarungen. Diese enthalten die benötigten Ressourcen, Entgelte und
Strafzahlungen, die Laufzeit und den Endtermin. Statistiken zeigen, dass die
Kunden die Laufzeit nicht präzise schätzen können und sie deshalb häufig über-
schätzen. Die Folge sind brachliegende Ressourcen. Eine hohe Auslastung ist
aber wichtig, um konkurrenzfähig und profitabel zu arbeiten.

Diese Dissertation stellt zwei Überbuchungsmechanismen vor, die es erlauben
Laufzeitüberschätzungen auszunutzen. Die beiden Ansätze verwenden Statistiken
über die Nutzerlaufzeitschätzungsgenauigkeit, um die Fehlschlagwahrscheinlich-
keit bei einer Überbuchung zu ermitteln. Die Überbuchung erfolgsversprechender
Aufträge steigert die Auslastung der Ressourcen, den Gewinn des Anbieters und
vermeidet Strafzahlungen wegen Jobausfällen.

Das Leistungsvermögen der Überbuchungsansätze wird auf Basis von realen
Jobabläufen evaluiert. Die Simulationen zeigten, dass Ressourcenanbieter von
Überbuchungsmechanismen profitierten. Auch wenn einige der zusätzlichen Jobs
fehlschlagen, erlaubt ein vorsichtiges Überbuchen mehr Jobs erfolgreich zu Ende
zu führen. Es ist möglich die Auslastung und den Gewinn eines Anbieters durch
Überbuchen zu verdoppeln.
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1 Introduction

Overbooking is an interesting instrument for fostering the utilization of compute
clusters in academia and should also pave the way for a commercial market for
selling computing resources. Workload traces show that users cannot accurately
estimate the runtime of their compute activities [Feit 10]. The resulting overesti-
mation of runtime can be exploited to overbook compute resources. This work
shows that overbooking is a promising method to strengthen a compute provider’s
ability to fully utilize its own compute resources while fulfilling the guarantees
given to the users.

The introduction of this thesis is structured as follows. Beginning with a brief
motivation for overbooking, three scenarios are given, which present possible
applications of overbooking. The first scenario is based on risk assessment in
distributed compute infrastructures, the second one on inter-scheduler negotiation,
and the third scenario is an outlook on overbooking in cloud computing. At last,
a summary of the contents of this dissertation is given.

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Risk Assessment in Distributed Compute Infrastructures 6

1.2.2 Inter Scheduler Negotiation . . . . . . . . . . . . . 8

1.2.3 Cloud Computing . . . . . . . . . . . . . . . . . . . 10

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Motivation

The powerful abilities of today’s computer driven design processes and simula-
tions are aiding modern research and development tasks. These processes allow
to evaluate a broader range of items and mechanisms, which was impossible a few
years ago due to the high manual efforts that the underlying experiments would
have taken. Exemplary limiting factors are,

• the time expenditures (checking a million chemicals for a certain ability
needs time),

• the costs of material (for example, costs of gold or other, very rare, materi-
als),

• the duration of observations (for instance plate tectonics),

1



2 Introduction

• the experiments themselves, which are sometimes very dangerous (due to
highly toxic materials, unknown effects within drug design, or radiation in
high energy physics),

• hardly reachable locations (long term zero gravity experiments need space
laboratories), or

• not reachable locations (e.g. measurements of inner sun processes).

Given sophisticated theorems, all of these experiments can sometimes be replaced
but certainly be supported by computer simulations.

However, the powerful abilities and high precision of actual simulations do not
come for free but need a huge amount of computing power. While large companies
are able to buy and maintain the needed cluster infrastructures, small and medium
enterprises (SMEs) or academic working groups lack the abilities to finance and
maintain their own clusters.

Academia typically finances and maintains its computing resources by gathering
the computing power in university or state wide computing centers. In these
centers, all interested researchers can query for resources to serve their research
task. While this sharing of resources has the positive effect that it allows access to
compute clusters for otherwise underfunded researchers, it has the disadvantage
that there is a competition for the given resources.

For scientists it is important to get the needed resources in time for instance, to
write a paper. However, the academic computing provider typically offers best
effort services. This means, a job is, without guarantees, eventually done.

To overcome this drawback, in the last years several ideas came up to establish
a certain quality of service (QoS) in academia. An important QoS demand
is holding deadlines. A typical deadline is the point in time until when a job
definitely has to be finished.

For negotiating and recording such deadlines, service level agreements (SLAs)
are an important instrument. SLAs define the quality and quantity of services in a
contract. In addition to the deadline, SLAs contain an execution-time window for
the negotiated job and a description of the computing resources.

While SLAs in the industry are static, offline negotiated, and paper bound, research
in computer science focuses on automated negotiation processes. Automated
SLA negotiation is, for example, defined in the WS-Agreement protocol from
the Open Grid Forum OGF [Zieg 08] and already used by several projects, like
AssessGrid [Batt 07b] or DGSI [Birk 11b].

Within automated negotiations of compute activities, the jobs are defined with
a user-estimated execution time, the time from which the job is allowed to start,
and the corresponding deadline. The time from which the job is allowed to start
is user given and in most of the cases as soon as possible. Normally, the users
have no release-time restrictions. However, it is possible that the release (first
possible start time) is in the future because the job cannot start until related tasks
are fulfilled. A release time restriction can be caused by the stage-in of massive
simulation data or because the job has to wait for the finish of related tasks in
workflows. In this work, the notion for the job’s first allowed start time in the
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Figure 1.1 Overbooking example:
How likely is it that the new job fits into the free time-slot?

new Job

Nodes

Time

???

future is release time similar to [Carl 87, Li 97]. In other related work, the term
for a job that is released and ready to start often is eligible [Dean 08].

An exemplary SLA might define the execution of a chemical simulation with the
application Gromacs [Van 05] on 48 nodes with 12 CPUs each and at least 576
GB RAM. The simulation will run for 26 days and has to be finished within the
next month.

To fulfill the SLA, the scheduler creates a plan of all the jobs. The plan defines
when and in which order the jobs will be executed. Based on user-estimated
execution times, the start-points and deadlines for all jobs can be calculated.

To really keep the deadlines and to provide a service that is better than best effort,
jobs have to be killed when their estimated time has elapsed. This allows the
following jobs to start and, thereby, to keep their deadlines.

As a result, users are cautious to not lose jobs and tend to overestimate their job’s
duration and block resources accordingly.

Today’s automated SLA negotiation processes do not consider these overestima-
tions. This leads to underutilized resources because, in practice, jobs finish much
earlier than planned.

In this work, overbooking is proposed to increase the utilization and competitive-
ness of a resource provider in such a situation. The example in Figure 1.1 shows
a new job that does not fit into the schedule without overbooking. Overbooking is
widely used in areas like flight ticket sales or hotel room reservations where more
people buy tickets or reserve rooms than actually use it. To work as profitable as
possible, seats or rooms are assigned more than once. The number of reservations
that will lapse is estimated a priori and used in the planning process. However,
the estimated number is a value that is only correct with a specific probability.

Consequently, if more hotel passengers or guests appear than estimated, not
enough seats in the aircraft or rooms in the hotel are available, and a penalty is
imposed.
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Figure 1.2 Comprehensive Overbooking:
Calculating the probability by using node and other jobs’ information.

Nodes

Time

???
1
2
3
4
5
6

Obviously, the objective of using overbooking is to increase the expected profit.
Instead of selling each seat/room once, profit can be increased by selling them
several times. This opportunity has to be compared to the risk implied by over-
booking, i.e., the compensation/penalty for the buyer if no seat/room is free
combined with the probability of that event. The probabilistic best choice of the
risk and opportunity will provide the most profit.

In this work, overbooking can be applied when the resource provider would
otherwise not be able to accept a job with its required resources and user-estimated
duration in the user defined execution window. With conservative scheduling
strategies, it is impossible to accept jobs where the maximum estimated job
duration is longer than any gap in the schedule. However with overbooking, the
scheduler can assess the probability of failure when placing the job in a gap that
is smaller than the estimated runtime. For such an overbooked job, the probability
of failure (PoF) no longer only depends on machine failures like in conservative
scheduling [Djem 06]. It also depends on the probability of the job’s real runtime
being longer than the gap length.

In this dissertation, the SLA negotiation process is extended by the ability to
overbook the underlying resources. This instrument increases system utilization
and allows to estimate the PoF for a job execution. Developed instruments
measure how likely it is that a job is able to finish successfully in a gap that does
not provide the full estimated runtime. They then combine the result with an
estimation of the probability that the underlying resources do not crash during the
execution. Two implemented strategies, a comprehensive approach and a heuristic
one, apply overbooking based on the mentioned calculation.

The comprehensive overbooking algorithm and the resulting investigations have,
at first, been proposed for overbooking with focus on a single resource [Birk 08a,
Birk 09a] and then were extended for parallel resources in [Birk 10]. The com-
prehensive algorithm was designed to map jobs on resources at SLA negotiation
time. The numbered resources in Figure 1.2 show this. It is known a priori on
which resource(s) a job will be executed. First, this allows to apply node specific
failure assumptions. More importantly, placing jobs on resources at negotiation
time allows us to include the probability that a job’s direct predecessor(s) finishes
early giving the following job more or even its full runtime before the start of
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Figure 1.3 Heuristic Overbooking:
Other jobs are not considered, only the free nodes are counted.

Nodes

Time

???

Number of 
occupied nodes 

at time t

the probability of success (PoS) calculation. Consequently, the comprehensive
approach is very accurate in its PoS calculation.

Simulations showed that, in practice, this approach is very time consuming due
to the many convolutions of the underlying statistics. The combined statistics
show how likely it is that a combination of a job and its predecessor(s) ends in
a given gap. A further drawback of the comprehensive approach is that it is not
flexible. Until the planned job-start time, other jobs end and resources in the
system become free that can provide the needed resources much earlier.

Therefore, a heuristic overbooking approach was developed. It no longer decides
where the job should run at SLA negotiation time [Birk 11a]. Figure 1.3 shows
nearly the same schedule. Only the resource numbers are missing as well as the
shape of the single jobs. The heuristic counts the overall resources and calculates
how likely the job will be successful. This approach is more flexible because
a job might run on any node. The drawback is that it does not know which
job(s) will be the predecessor(s). The plan holds all jobs with their estimated
runtime. Therefore, in many cases it is possible to guess which jobs end before a
job. Nevertheless, if other, longer estimated jobs with later deadlines end earlier
it is possible to start a new job on their resources. Therefore, a job does not
necessarily start according to the plan’s order. Thus, only a general assumption
about the resources and their stability can be made. In addition, the application
of the heuristic is only possible if all nodes can execute all jobs with the same
performance.

For both approaches, an acceptance test decides if the system can accept an addi-
tional job and, thus, can help to improve a provider’s utilization by overbooking
resources.

If in addition to the academic case the commercial resource providers are observed,
money comes into play. Actual commercial resource providers like Amazon EC21,
charge fees for their services. However, they only offer best effort and do not pay
penalties to their customers because they do not want to take the risk of violating
an SLA.

1Amazon Elastic Compute Cloud (Amazon EC2) http://aws.amazon.com/de/ec2/

http://aws.amazon.com/de/ec2/
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However, with the proposed algorithms in this thesis, it is possible to calculate
the risk for an SLA violation based on a possible penalty and the job’s PoF.
Additionally, a provider can calculate the opportunity of accepting a job, which is
the probability of success multiplied by the fee.

Thus, the mechanisms of this thesis give the commercial resource providers the
means to calculate whether or not it is profitable to take a job. The customer
would profit from the SLA given QoS guarantees and the penalties paid for a lost
job.

To investigate overbooking approaches’ abilities to support commercial providers,
the simulations applied a second risk-based acceptance test. This test showed that,
given a commercial environment, a resource provider would also profit from an
overbooking process.

1.2 Scenarios

This section presents three scenarios about possible applications of overbooking.
The first scenario bases on a research project on machine stability, risk assessment,
and risk management. The next scenario is inspired by a project that aims to create
interoperability between different distributed compute infrastructures (DCIs).
This allows a broader exchange of jobs and, thus, the application of overbooking.
The last scenario is about overbooking and cloud computing. This scenario was
chosen because state of the art research for compute providers heavily focuses on
virtualization.

While overbooking can be applied to the three described topics, it is not limited
to them.

1.2.1 Risk Assessment in Distributed Compute
Infrastructures

The first scenario is motivated by the AssessGrid project (Advanced Risk Assess-
ment and Management for Trustable Grids). AssessGrid was funded by the EC in
the 6th Framework Program [Asse 08].

Even the best maintained cluster could not avoid crashes of the software or failures
of the underlying hardware. This means that 100% guarantees for a successful
job execution are never possible. SLA bound jobs compensate the violation
of a missed deadline with a penalty paid by the resource provider. However
in most cases, the penalty will not fully compensate the loss caused by the
missed deadline [Mitc 05]. Instead, the risk for a job crash is distributed between
customer and provider.

The risk for a job execution is the probability of a node outage multiplied by the
impact of the job [Birk 07]. If a job is very important, the risk is high even when
the probability of failure of the underlying resources is low [Asse 08].
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Figure 1.4 AssessGrid architecture.
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Consequently, both the provider and the customer want to know the risk of the
job execution in advance [Batt 08c, Birk 06a].

Therefore, AssessGrid developed measures for risk assessment. They allow an
estimation of the probability of resource outages. In addition, AssessGrid devel-
oped risk management instruments. They cope with resource failures and should
prevent SLAs from being violated [Brin 10]. See Figure 1.4 for a visualization of
AssessGrid’s architecture.

For grid customers, the risk estimations are the basis for a provider reliability
measure. This measure is created by a so-called Confidence Service and is used by
the broker, a trader service that procures SLAs between provider and customers.
This allows the customer to choose the most reliable provider when he wants to
be sure to get their results in time.

For a grid provider, the estimations of a Consultant Service are also the starting
point to detect weak points in the infrastructure and accordingly plan risk manage-
ment instruments like checkpointing or migration [HPC4 08, Birk 06b]. These
fault tolerance instruments prevent SLA violations in case of resource failures.
This reduces the penalties and, following, the impact of failures. A result is an
increased reliability of the grid provider [Djem 06].

Given the possibility to estimate and manage the risk for an SLA violation,
providers are eager to increase their profit by selling more SLAs. However, an
SLA contains a guarantee for the job’s deadline, the time a job must definitely
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be finished. To give a guarantee on the deadline, the provider needs to know the
runtime of the job. The runtime has to be guessed by the customer.

Given the guessed runtime, modern resource management systems offer the ability
to plan resources with an advance reservation. It is a reservation for an amount
of r resources for a job n with a duration ω in the time window [trelease, tdeadline].
The advance reservation exactly maps the requirements of SLAs.

If a job exceeds its estimated runtime ω, it will be killed because the resource is
planned for other jobs. Thus, the users do not want to loose their jobs and over-
estimate the runtime. Consequently, the jobs are planned with an overestimated
runtime.

Due to the user’s overestimations, the jobs tend to end earlier than estimated. This
leads to a fragmented schedule and less advance reservations are possible on the
resources. Following, reservation based resource scheduling is not optimal for
utilization.

Overbooking can cope with the overestimated runtime and exploit the fragmented
schedule. A well-done statistical analysis of the ratio of job runtimes to user
estimations allows assessing the PoF of running a job in a gap in the schedule. As
a result, the overbooking approach allows to sell more SLAs.

The PoF estimation process of AssessGrid is the basis for overbooking in this
dissertation. In cooperation with the fee and penalty defined in the SLA, it allows
us to estimate the risk for accepting jobs in an overbooked schedule. Thus, when
only jobs with a low PoF are overbooked, the number of successfully agreed
SLAs will increase as well as the profit of the resource provider [Batt 08d].

1.2.2 Inter Scheduler Negotiation

The second scenario where overbooking is applicable is described by DGSI (D-
Grid Scheduler Interoperability). DGSI connects DCI Meta-Schedulers through
the creation of an interoperability layer [Birk 09b].

Resource providers generally have instruments to efficiently distribute workload
on their resources. This issue is usually described as meta scheduling.

Scheduling is already very complex within one community because the submitted
jobs and the available resources can differ. The scheduler has to apply knowledge
about usage scenarios and the underlying cluster. This leads to very different,
community-specific approaches for the development of cluster scheduling ser-
vices. The resulting incompatibility of the meta-schedulers, however, is a major
drawback for the coordinated cooperation of different DCIs. Nevertheless, if the
overall resources should be utilized better, a coordinated cooperation is necessary.

Therefore, two use cases for including foreign resources into the infrastructure
arise: Firstly, the need to cover peak demand, and secondly, the usage of spe-
cialized resources. These can be vector-based computing systems, astronomical
telescopes, or CAVE2 environments.

2Cave Automatic Virtual Environment
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Figure 1.5 The DGSI delegation scenarios. Grid schedulers from different
domains can cooperate using activity and resource delegation.
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DGSI targets these use cases with the conception and development of an interop-
erability layer for grid level scheduling in DCIs. The aim is to allow the users of
a community to distribute their workload among resources within the manage-
ment domain of another community while keeping their individual, specialized
scheduling. DGSI offers new perspectives for community collaboration, resource
sharing, efficient utilization, and load balancing.

The two scenarios foreseen within the framework of the project are the delegation
of activities and the delegation of resources. The delegation of activities and
resources is depicted in Figure 1.5. In the following, the delegation of activ-
ities is described in more detail. For the delegation of resources, have a look
at [Birk 11b].

Activity delegation means, a meta scheduler hands over a job and the management
of its execution to the domain of the scheduler of another community.

The DGSI interoperability layer allows meta-schedulers to exchange single or
parallel jobs or workflows. To be interoperable, each meta-scheduler first has to
register at the information service. This includes a description of its own resources
and execution capabilities.

If a community has an overload of jobs, it can query the capabilities of other
communities. The other DCIs can directly take activities and execute them on
their resources with their own local resource management system (LRMS).
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The other way is to publish a single set of multiple jobs on the interoperability
layer. In case of underutilization, another meta-scheduler can query for offered
jobs and execute them on its infrastructure.

The activity delegation allows the exchange of workloads for scientific computing
centers. This delegation is used when a scientific DCI is overloaded in such a
way that it cannot execute the jobs of the working scientists with the estimated
runtime before reaching, for example, the deadline of a conference.

The application of overbooking either allows the local meta scheduler to decide
that the jobs can, due to the users statistical runtime-overestimation, be finished in
time. Alternatively, this meta-scheduler can find another meta scheduler to accept
the jobs. With overbooking, the foreign meta scheduler can decide that it is able to
accept jobs from other communities, most likely without violating deadlines of the
own community members even when the job schedule is overloaded [Birk 11b].

1.2.3 Cloud Computing

The third scenario describes the application of overbooking to cloud comput-
ing. Before the emergence of compute clouds, the field of managed distributed
heterogeneous resources was lead by the grid.

The idea behind the grids was very interesting, but the decentralized organization
and heterogeneity of the cluster infrastructures often had drawbacks to its usability.
Further, the organization of the users in several decentralized communities, called
virtual organizations (VOs), complicates the rollout and maintenance of the
different applications. Some programs had to be licensed and some license
models did not allow the usage of resources. Some codes are, of course, open
source but even in this case the maintenance is complicated. The codes had to be
installed on the different heterogeneous cluster systems. When the codes were
installed, the underlying libraries could vary or the installed codes had different
versions. While maintenance of the codes even within a project infrastructure is
complicated, using other infrastructures further increases the complexity of the
mission to know which simulation can be assigned to which resource(s).

Compared to compute grids, clouds have various advantages. Compute clouds
add the idea of additionally applying virtualization to the resource management.
Clouds are centralized; a single institution is responsible for the underling software
and ensures interoperability [Vaqu 08]. Clouds can deliver different levels of
services to customers outside the cloud and cloud services can be dynamically
configured and delivered on demand [Fost 08, Nurm 09, Soto 08b].

The use of virtualization hides the heterogeneity of the cluster hardware. Fol-
lowing, virtual machines run independently of underlying hardware. As a result,
virtual machines are compatible with standard x86 computers. The use of vir-
tualization isolates virtual machines from each other as if they were physically
separated. Virtualization encapsulates a complete computing environment in one
virtual machine [Barh 03].
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There are, of course, several different virtualization technologies available, but in-
teroperability layers, like libvirt [Bolt 10], allow a transparent use of the different
virtualization stacks. The system virtualization allows installing software stacks,
libraries, and applications encapsulated in virtual machine (VM) images. The
user can configure simple images according to his needs and distribute them on
every node in the cloud he uses. As a consequence, compute clouds can scale in
the number of users, because everyone distributes his or her own software within
their own images.

This extension has fostered the usability of clouds so far that the economical
impact is enormous. There are IT business providers that offer own clouds, cloud
software, or cloud services in between Software as a Service (SaaS), Platform as
a Service (PaaS), or Infrastructure as a Service (IaaS) [Nieh 09]. Consequently,
the ability to overbook cloud resources is an interesting scenario. Providers like
Amazon already applied an overloading of the virtualized resources. Overloading,
however, is no challenge for Amazon because no quality agreements are given3.

Applications in clouds do not always fully utilize their host systems; therefore,
overloading on clouds is beneficial. However, applying overbooking to clouds has
other constraints as overbooking for not virtualized clusters. Cloud jobs are quite
frequently not short running single activities but long running applications (like
web services). SLAs are not always bound to a deadline but to requests answered
per second [Batt 08a].

Virtual machines are malleable, which means that physical resources can be added
or removed. Depending on the kind of the virtualization technology the virtual
machine has to be restarted after changing its resources or change of the vm’s can
be done online. This allows a speedup or slowdown of the single jobs [Wang 10].

In addition, horizontal and vertical scaling of the VMs is possible. Here, vertical
scaling means that a collection of independent virtual machines can run parallel
on the same host and the number of VMs can vary. Horizontal scaling means that
a job can run across several VMs on multiple physical hosts [Rima 09].

In DCIs or high performance computing (HPC) clusters without the possibility
to use malleable machines, the overbooking decision is done at occurrence time
because a started job will run on this machine. The ability of application check-
pointing is not always possible. In clouds, the overbooking can be monitored
online and when a deadline is in danger to be violated, the virtual machines can be
provisioned with more resources. With virtualization, the overbooking algorithm
can intercept the execution to guarantee the success of a specific SLA and assign
more resources to this VM or migrate it to a free host [Birk 08b].

1.3 Summary

The remainder of this chapter contains the summary of this thesis. The introduc-
tion already motivated the thesis and provided three scenarios for the possible
application of overbooking.

3Amazon EC2 Cloud Pricing: http://aws.amazon.com/en/ec2/#pricing

http://aws.amazon.com/en/ec2/#pricing
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In the related work in Chapter 2, the commercial fundaments for overbooking are
discussed. This includes the construction of service level agreements and a possi-
ble electronic market design. Following, related work on machine failures and
risk assessment is summarized. Thereafter, theoretical approaches for planning
and scheduling are shown and resource management systems and meta schedulers
are listed. At last, related work on overbooking and its impact on planning and
scheduling is examined.

Chapter 3 defines the overbooking algorithms. The chapter firstly presents placing
strategies for new jobs. A conservative, a first fit, a best fit, and a last fit approach
are discussed. Following, the overbooking chapter introduces the PoF, a risk
based acceptance test, and the two overbooking algorithms.

Then, Probability Density Functions (PDFs) and Cumulative Distribution Func-
tions (CDFs) are introduced because accurate predictions about the runtime
estimations are key factors to be profitable. A PDF describes the probability that
a job ends after exactly x% of its estimated runtime. A CDF describes the proba-
bility that the real runtime of a job with an assigned PDF will be less or equal to
x% of its estimated runtime. A joint probability density function combines the
PDFs of several jobs. It is defined how the joint PDF is calculated and how it can
be used to estimate the probability of failure for overbooked jobs.

The comprehensive overbooking was designed to support a very accurate PoF
calculation. It is able to calculate a job’s PoF based on node specific failure
predictions and the previously scheduled jobs. Three failure models based on
a Weibull Failure model, a Hyper-Exponential Failure model, and a Poisson
process are discussed. They allow a very accurate failure prediction. Resulting, a
reliable overbooking process is supported. The disadvantage of the comprehensive
overbooking is that the algorithm has to map the jobs on resources at SLA
negotiation time. Until the start time, a better choice of resources is often possible.
Additionally, the calculations are very complex and require a long runtime.

The heuristic overbooking should overcome this disadvantage. It does not decide
where the job should run at SLA negotiation time. Instead, the heuristic can start
jobs on any free resources. Additionally due to the shorter runtime, replanning
is possible after a job ended. The heuristic overbooking uses an overall resource
count to calculate the probability of a job’s success. This approach is designed to
be more flexible because a job can run on every node, but this strategy does not
remember the jobs that ran before. Therefore, the heuristic cannot include this
possibility into the PoF calculation and its PoF estimations are not as accurate as
those of the comprehensive approach.

Following to the definition of the probability of success calculation for over-
booking, the applied planning strategies are described. The four strategies are
the heuristic planning approach, the heuristic overbooking approach, the com-
prehensive backfilling approach, and the comprehensive overbooking approach.
The conservative backfilling plans jobs on their resources with the full estimated
runtime. The comprehensive overbooking works on the same basis but the proba-
bility of an earlier job end can be included and jobs can be overbooked. Heuristic
planning counts resources and checks whether or not a job can be executed with its
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requested resources and full estimated runtime. The heuristic overbooking works
similar but can assign less runtime to a job according to the heuristic overbooking
calculation.

Finally, market mechanisms are described where overbooking could be applied.
The considered market mechanisms are auctions, bidding or tendering, bartering
models, and commodity markets.

In Chapter 4, the statistical analyses about the runtime estimations are shown.
They provide the basis for estimating the probability of a successful overbooking
approach. An exemplary statistical analysis of user estimations of traces is shown.
At first, a runtime analysis can be used to reflect that users often submit the
same application with similar input again and again. Secondly, the analysis
of correlations between the resource consumption of jobs and the estimation
accuracy is the basis of another statistic that can be beneficial for overbooking.
Thirdly, a runtime analysis is done on a user basis. At last, an application-oriented
statistical analysis is shown.

The chapter is completed by a user survey revealing how the users of the Paderborn
Center for Parallel Computing (PC2) estimate their job runtimes.

The implementation of the simulation environment is shown in Chapter 5. First,
the used parameters are discussed. Basis for the simulation is the job information
that was retrieved from the job-traces. Most attributes and parameters were
directly extracted and used. However, some attributes had to be adjusted because
the simulations need an overload of jobs. In addition, some attributes had to be
created because they are missing in academic environments. This is information
about the fee and penalty for a job, and the job’s deadline.

Then, the architecture of the simulation environment is shown. The description
includes the used data structures and the event system. It covers tasks to handle
the job occurrence, job start, and job end, resource outages, and repair. The last
discussed aspects are the implemented placing routines first fit and best fit.

Chapter 6 contains the results of the evaluation. It analyzes the abilities of the
overbooking strategies based on job traces from the Parallel Workload Archive.
Six traces of the archive were selected for the evaluation. To reveal the benefit
of the overbooking approach, the four scheduling strategies heuristic planning,
heuristic planning with overbooking, comprehensive backfilling, and comprehen-
sive backfilling with overbooking were applied.

To get hints about the abilities of the underlying statistics, two different statistical
sources were defined for the simulation. One source is a statistical analysis about
the ratio of the estimated to real duration of a job. The other source is a statistical
analysis about the quality of the runtime estimation for different groups of jobs.
The jobs are assembled according to their amount of requested resources.

To evaluate whether the overbooking would be profitable for computational
markets and/or just resource exchange, two different acceptance tests were applied.
The first acceptance test uses the PoF threshold directly. This allows having
an acceptance test for academic environments. In academic environments, the
researchers do not have to pay of using a cluster. The second acceptance test bases
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on a risk assessment and simulates the impact of overbooking to computational
markets.

In Chapter 7, the simulation is extended to two further kinds of statistical input
functions based on the used applications and individual users. This allows getting
a clue about applicability of a broader area of statistical analyses. The simulations
show that the comprehensive overbooking is more trustworthy and reliable. The
additional gain of this overbooking mechanism compared to the underlying, not
overbooking, strategy is higher. However, the simulations also show a very time
consuming runtime for the comprehensive overbooking. The heuristic overbook-
ing has a higher utilization and profit than the comprehensive overbooking and is
much faster to calculate. The higher profit is a result of the better performance
of the underlying not overbooking heuristic scheduling strategy that results in a
higher utilization than the comprehensive backfilling.

The minimum additional gain with overbooking in the simulations was 10%, and
the maximum additional gain was up to 94% in the simulations with the PoF
acceptance test and up to 234% with the risk acceptance test.

The quality of the underlying statistics is dependent on the quality of the selec-
tion of the jobs that are gathered as source. However, due to the different PoF
thresholds that were applied by the simulations, a similar peak performance was
achieved with many different statistics.

The last part of this thesis considers future work. Its subjects are improved moni-
toring of jobs, the use of commercial job traces for more appropriate statistical
inputs, the application of advanced reservations, the search for correlations be-
tween user estimation accuracy and other job parameters, the application of system
generated runtime predictions, the introduction of checkpointing and migration,
and the extension of overbooking to virtualization and cloud computing.



2 Related Work

The related work presents the technical basics in the research field of negotiation,
risk assessment, scheduling, and overbooking. First, it discusses the commer-
cial fundaments for overbooking. This includes the construction of contracts,
called service level agreements for a possible electronic market. Second, related
work on machine failures and risk assessment for compute clusters and resource
providers is introduced. Third, theoretical approaches for planning, followed by
scheduling strategies, and scheduling systems are described. At last, related work
on overbooking and its impact on planning and scheduling is discussed.
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2.1 Negotiation and Market Mechanisms

The related work begins with a summary of related work on the construction and
negotiation of SLAs and market mechanisms.
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2.1.1 Service Level Agreements

A key requirement for applying overbooking are contracts that contain the ne-
gotiated service quantity and quality in combination with agreed guarantees.
Commonly, such contracts are known as service level agreements (SLA)s. The
additional requirement for SLAs is the ability to be electronically negotiable.

Jobs without guaranteed deadlines and without negotiated minimal service quality
are operated in a best effort manner. Here, overbooking can be applied without
any risk for the provider. The provider will do its best to execute the job if no
other more important task has to be done. Eventually and probably in the far
future, the jobs will be completed. Therefore, this related work focuses on the
interesting part, SLAs with assigned deadlines and QoS demands.

Typically contents of SLAs are defined as Purpose, Parties, Validity Period,
Scope, Service Level Objectives SLOs, Service Level Indicators, Penalties and
Operational Services in [Saha 03].

SLAs are well-established means in the industry. Industry standards like the
IT Infrastructure Library (ITIL) define SLAs and the handling for commercial
contracts [Bock 08]. However, the SLAs used by the industry are often based
on paper contracts. For on demand SLA negotiation, the assumed scenario for
this dissertation, standards like ITIL are not sufficient. Instead, automatically
negotiable electronic contract standards, like the WS-Agreement specification
from the Open Grid Forum (OGF), have to be used [Andr 04b].

The WS-Agreement defines how an SLA is structured. A WS-Agreement based
SLA consists of the agreement context describing the agreement terms, the
agreement template, and the creation constraints. The agreement context describes
the handling actors and who the service provider or customer is. The QoS
guarantees are defined by two kinds of agreement terms. First, the service
description terms (SDT) describe the guaranteed contents, like provided resources,
start time, or deadline. Secondly, the guarantee terms (GT) are connected to
the service description terms and define the fee for a contract conform service
provision and the penalty for violating an SDT.

The agreement template and creation constraints describe the constraints that have
to be redeemed during negotiation.

While the WS-Agreement standard describes how an SLA is structured, the
WS-Agreement extension called WS-Negotiation defines the negotiation proce-
dures [Zieg 08].

Other related work on SLAs for distributed computing concerns, for instance,
the SNAP protocol for negotiating service level agreements and coordinating re-
source management [Czaj 02], or the IBM defined Web Service Level Agreement
(WSLA) specification [Ludw 03].

For the WS-Agreement specification, several implementations, like WSAG4J,
exist [Wael 11]. Two surveys located SLA implementations in the following
projects [Park 08, Wied 08].
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Table 2.1: SLA implementations by different projects

Project Description
AgentScape AgentScape provided mobile agents to access Internet based

heterogeneous compute resources. The WS-Agreement based
SLA negotiation layer allowed QoS definition for virtual do-
mains [Moba 06].

Akrogrimo Akrogrimo defined a mobile grid architecture for connecting
businesses with costumers. WS-Agreement was used to define
the QoS aspects in the SLAs [D An 06].

ASKALON ASKALON was designed to simplify the development and
optimization of grid applications, based on SOA concepts.
ASKALON used the GridARM package for SLA negotia-
tion [Fahr 07].

AssessGrid AssessGrid implemented a risk assessment and management
layer for grids and added PoF estimated values to SLAs (based
on WS-Agreement) [Batt 07b].

Bazaar Bazaar created a tool for transparent SLA-based resource allo-
cation. The SLA layer was able to filter appropriate resources
and identified missing resources [Baza 10].

BEinGRID BEinGRID was an EC founded IP project that included several
sub-projects with individual SLA implementations [Dimi 07].

BREIN BREIN integrated multi-agent and semantic web concepts for
eBusiness. The project developed a framework to provide and
sell services with different resource types [Park 08].

CATNETS CATNETS allowed a decentralized, self-organized mechanism
for resource allocation. The project developed an own bidding
language for the SLA negotiation [Eyma 07].

DGSI The D-Grid project DGSI used the WS-Agreement to imple-
ment an interoperability layer in between grid meta sched-
ulers [Birk 09b].

JSS The Job Submission Service (JSS) is a grid broker that min-
imized the total time of delivery for an individual job sub-
mission. The WS-Agreement based SLA negotiation could
directly be connected to Maui [Elmr 05].

NextGRID NextGRID aims to enable new businesses in a grid. Therefore,
SLAs in between the actors were a key-concept [Hass 07].

PHOSPHORUS PHOSPHORUS implemented co-allocation for computational
resources and network resources with a required QoS on Ser-
vice Level Agreements [PHOS 10].

SLA4DGrid SLA4DGrid used the WS-Agreement to realize a Service
Level Agreement layer for the German grid infrastruc-
ture [SLA4 11].
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Table 2.1: SLA implementations by different projects (con.)

Project Description
SLA@SOI SLA@SOI developed a framework for SLAs in Service Ori-

ented Infrastructures (SOI). Focus lay on research and devel-
opment for entire SLA architectures for SOIs. This included a
technical framework [SLAS 11].

SmartLM SmartLM focused on negotiation and co-allocation of software
licenses and grid resources with respect to job submission and
execution for license-protected applications [smartlm 10].

SORMA SORMA investigated the application of computational and
related resources for a market infrastructure. Aim was to bring
potential consumers to fitting resource providers. In addition,
SORMA allows asynchronous auctions [sorma 10].

TrustCoM TrustCoM developed a framework for trust, security, and con-
tract management in between the dynamic evolvement of vir-
tual organizations (VOs). The WS-Agreement based SLAs
allowed negotiation, monitoring, and application of different
performance levels [Wils 07].

VIOLA The VIOLA Meta Scheduling Service (MSS) was designed
as testbed for multiple partners. It included an own WS-
Agreement based SLA framework for job negation [Barz 07].

2.1.2 Market Mechanisms

Pricing in DCI environments is a topic of many research papers. The paper
The Grid economy provides a good summary [Buyy 05]. It shows the use of
different economic models for trading resources in different application domains.
Other interesting approaches define general strategies for the service market
place [McKe 07] or create a prediction-based enforcement of performance con-
tracts [Sand 07]. Typical trade goods are CPU cycles, storage space, database
queries, or distributed computing.

The pricing strategies for computational markets follow several different strate-
gies. Some approaches offer fixed prices for the services, other approaches have
different prices for resources, based on environmental attributes such as the avail-
ability of larger main memory or higher CPU speed, and again other approaches
adapt the prices depending on the specific demands [Buyy 05].

The most applied models are:

• Auctions,

• Bidding and Tendering,

• (Cooperative) Bartering Models, and

• Commodity Models (Markets).

The most frequently investigated topics of research in the field of DCI commer-
cialization are auctions, biddings, and commodity models. Auctions, like on
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eBay1, are the most frequently used instruments. They fit best to the needs of
supply and demand. There are different approaches: English-, Dutch-, Double-,
or Vickrey auctions. The customers can offer money for a job execution, and the
highest money or first offer wins the auction.
English auctions are open auctions where the participants have to raise bids to
outbid other parties. After each round, the highest bid is shown, and then a new
round is started. End of the auction is when no higher bid is given [Nisa 98].
In Dutch auctions, the auctioneer starts with a high price for the item and lowers
it continually until the first bidder accepts the price [Comm 91].
Double auction is a system of asks and bids. Sellers ask a price for their resources
and buyers make bids for the same. The auctioneer matches up corresponding
asks and bids [Pada 03].
In the above-explained normal auctions, every participant knows the value of a
resource and tries to maximize the income for himself. This means he might bid
lower than the estimated value. Thus, lying about the estimated value of an item
is profitable.
In Vickrey auctions, the winner of the auction pays the value of the second highest
bid. Thus, everybody can bid the price he or she estimates for the item and can
still hope to get an advantage. Lying is not profitable [Wald 92].
Bidding or Tendering are reverse auctions. Buyers are defining the kind of service
they want to have and the price they want to pay. A price offer is called a bid
and the providers may accept the bids [Ston 94]. Bidding often is a competitive
process of setting a price one is willing to pay for something. The term is used in
context of auctions, stock exchange or card games. The approaches have to seek
for prices and terms for a particular job in common, which are carried out under a
contract [Lali 00, Reed 99, Bred 98, Eyma 07].
In (Cooperative) Bartering Models, resources are traded; for example, storage
space is exchanged for CPU time [Buyy 05].
Commodity Markets are markets where the prices for goods traded are given by
a formula. Factors like production of goods, consumption, and transfer costs
influence the price. The formula is a function over f(j, t) where the resource
owner receives f(j, t) award for completing job j in time t [Amir 98].
Brooke et al. describe standardized functions where the cost for a job or service
is based on the quality or quantity of the service [Broo 00]. For instance, a fast
resource might have a high price, and a slow resource has a low price. The
function then increases the price when the resources are running low or decreases
the prize when the resources are unused.
Commodity markets are used in several grid projects, like:

• Mungi [Heis 98]

• Enhanced MOSIX [Amir 00]

• Nimrod/G [Buyy 00]

• Grid Sim [Buyy 02]

• G-Commerce [Wols 01]

• Gridbus [Buyy 04]

1eBay: http://www.ebay.de/

http://www.ebay.de/
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Overbooking might be used in every market mechanism. In auctions, more
resources could be offered than available, bidding could be exploited with over-
booking, or the functions of commodity markets could include overbooking.

2.2 Risk Assessment and Management

Here, related work on risk assessment and risk management is presented. A risk
assessment process bases on high-quality knowledge of the underlying failure
vulnerabilities. This section starts with an explanation how risk can be defined
and transfers this knowledge to be used as input for the related work on risk
assessment and management.

2.2.1 Failure Data Analysis and Modeling

Failures of job-executions have many different possible causes. Jobs die due
to bugs in their source code, because the input is missing or does not fit to
the program/version specifications, because of wrong parameters, or because of
crashes of the underlying hardware.

Therefore, many research papers have focused on failure data analysis and meth-
ods to model resource stability estimations. Related work stated that many
problems that lead to a job failure are not detectable from logs (36% - 58 %).
The detected problems that lead to outages are often software related or hard-
ware failures (6% - 16%) [Kaly 99]. In addition, rebooting a machine does
not always help, and failures are propagated and correlated [Xu 99]. For large
cluster systems Schroeder and Sahoo claimed that crashes are correlated and
bursty [Schr 06, Saho 04]. Amrit et al. developed a methodology to describe
software reliability [Goel 85].

Several papers worked on modeling failure curves. Iosup et al. and Nurmi et
al. stated that failure-rates of large clusters follow Weibull-distributions [Iosu 07,
Nurm 05]. The same result was shown for Windows NT clusters [Xu 99] and
Internet services [Heat 01]. In contrast to the papers mentioned before, evaluations
on other kinds of computing infrastructures found hyperexponential distributions
to model failure-rates best. For example, hyperexponential distributions were
best for grid or wide area computing environments [Nurm 05], for an evaluation
of workstations [Mutk 87], and operating systems [Lee 93]. Lee also found that
Markov chains are a good description of the failure nature [Lee 93].

2.2.2 Risk Calculation

The risk for computing providers consists of hazardous events that potentially
adversely affect a provider’s ability to ensure that an SLA is fulfilled. Risk can
be characterized using two key parameters: the probability of occurrence and the
impact of occurrence [Birk 07].



Chapter 2 • Risk Assessment and Management 21

Consider a node outage affecting a compute resource on which a job is running.
In order to evaluate the PoF, the provider must take the possible causes and their
probability into account. A node outage, for example, could be caused by a
power cut, a system crash, or a hardware failure. Each of these events must be
taken into consideration in order to enable a calculation of the probability of
occurrence [Djem 06]. The resulting PoF is a real number between 0 and 1. This
PoF has to be multiplied with the SLA’s penalty to know the risk. However, risk
can also be a positive force. The opposite of risk is opportunity; a chance of
winning at an event. It is defined as the probability of success multiplied by the
value of the event. The PoS is always 1 - PoF.

2.2.3 Risk Assessment

AssessGrid [Asse 08] introduced the main instruments for assessing the prob-
ability of a job failure. It addresses the issue of risk assessment and risk man-
agement [Hove 05] at all DCI layers. This includes risk awareness and con-
sideration in SLA negotiation [Batt 07b] and self-organization of fault-tolerant
actions [Djem 08].

Risk assessment is usually defined as the process of finding possible vulnera-
bilities. When vulnerabilities are found, the probability that they occur and the
associated risk is calculated [Benn 96, Stew 04]. Lichtenstein has identified rele-
vant requirements and factors for risk assessment methods like costs, influences,
structures, and levels of risk [Lich 96].

Very important sources of vulnerabilities are machine failures. For instance,
Schroeder [Schr 06] and Sahoo [Saho 04] showed that machine crashes in cluster
systems are typically busted and correlated.

Risk assessment can be either quantitative (i.e., producing a numerical assess-
ment) or qualitative [Majl 06] (i.e., producing a verbal assessment or showing
traffic lights). Some quantitative risk assessment techniques are Monte-Carlo sim-
ulations, fault and event tree analysis, sensitivity analysis [Whit 95], annual loss
expectancy [Rain 91], risk exposure [Boeh 89], and effects analysis [Whit 95].
Qualitative techniques are scenario analysis [Rain 91] and the fuzzy set theory
(FST) [Rain 91].

In the area of software development, research on risk assessment methods has
been introduced [Benn 96]. Used methods are probabilistic risk analysis, Fault
Tree Analysis (FTA), and Failure Mode and Effect Analysis (FMEA). They are
used in design and testing of software products as well as in the identification of
unsafe states [Leve 86]. Känsälä [Kans 02] presents a quantitative method for risk
assessment in software project development. The method supplements traditional
software cost models with risk contingency capabilities. Ngai and Wat [Ngai 05]
used FST and developed a fuzzy decision support system for risk assessment in
eBusiness development [Voss 08, Carl 08].

The results allow resource providers to assess risk and end-users to know the
probability of an SLA violation in order to accurately compare provider’s SLA
offers. With such knowledge, end-users can make appropriate decisions in relation
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to acceptable costs and penalty fees since these also have a potential impact on
their own business. The provider can plan jobs on its resources and assess the PoF
of these jobs. To reduce this basic PoF, appropriate fault tolerance mechanisms
can be used or the provider can decide to not accept an SLA that is too risky.

In this dissertation, a risk assessment process close to the probabilistic or risk
exposure is chosen [Boeh 89]. Here the risk can be assessed as PoF of the job
multiplied by the penalty of the failed SLA.

2.2.4 Risk Management

The last point, following to the risk estimation is the application of measures
to reduce the risk calculated by the risk assessment. This is the task of the risk
management. It plans fault tolerance (FT) mechanisms [Birk 06b].

Risk management in this scope means that for a job with a high risk, a simple FT
mechanism might be to execute the job twice on different machines. When one
execution fails, the other execution can still be successful and provide the results
in time. Both executions have to fail to violate the SLA. Following, a double
execution reduces the probability of failure of the job. However, this procedure is
resource intensive.

Therefore, an improved FT mechanism is the use of checkpointing. This allows
restarting a job, after a node failure, not from the beginning but from the last
checkpoint. Therefore, provider internal checkpointing reduces the risk. However,
when complete cluster systems fail, local checkpoints do not help, at least until
the resources within the provider are available again.

Further, checkpointing and migration of jobs to other foreign providers is a sophis-
ticated means to reduce the risk of a resource provider. This requires a fee that has
to be paid to the foreign scheduler for the execution of the migrated job, but the
migration costs may be lower than the penalty for the SLA violation [HPC4 08].

To summarize, a risk management layer reduces the probabilities of failure for a
job or the penalties for an SLA and, following, the impact of failures [Djem 06].

2.3 Scheduling and Planning

This dissertation distinguishes two scheduling approaches, queuing and planning.
When a resource becomes free, a queuing system selects a fitting job from its
queues according to a given strategy. There can be several queues for short,
medium, or long running jobs. They have different priorities and wall times. A
wall time describes the maximal duration a job can run. Planning means that
the waiting jobs are not held in a queue but in a plan of the cluster system. The
plan of the cluster holds all jobs with requested resources and assigned start- and
end-times [Hove 03].

Queuing based strategies are well examined and established. However, planning
strategies are better suited when deadlines are supported because the planned jobs
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are connected to a specific estimated runtime. In queuing systems, there is no
job bound runtime estimation, only the queue related wall time. Thus, queuing
systems allow to calculate the latest start of a job, but the results are calculated
based on the more general wall times. This usually leads to more imprecise job
start estimations of queuing compared to planning.

In scheduling, the makespan is the time difference between the start and finish of
a sequence of jobs or tasks. A minimal makespan is a typical aim of scheduling
strategies.

Scheduling distinguishes between online and offline strategies. In offline strate-
gies, all jobs are known before the calculation. In the online case, the jobs occur
during the job execution and have to be included into the schedule. Online schedul-
ing is called x-competitive if for any sequence of jobs, it produces a schedule with
a makespan of at most x times the makespan of the optimal schedule [Huri 08b].

2.3.1 Packing Theories

Overbooking of cluster resources focuses on cluster systems with several nodes.
Therefore, two-dimensional (resources × time) planning algorithms were further
investigated. The theoretical approaches for planning jobs base on the evaluation
of two-dimensional packing. Exemplary strategies for planning jobs on a single
resource are for example First-Fit (FF) or Next-Fit (NF) [John 73, John 74a].
They will not be considered further. Instead, this section will begin with a
short overview of bin packing and proceed with strip packing approaches that
correspond to cluster planning.

2.3.1.1 Bin Packing

In bin packing, a number of rectangles have to be placed in an unlimited number
of identical rectangular k bins with a given width and height [Lodi 02a]. Goal
is the minimization of the used number of bins. Packing of bins (k ≥ 2) is NP
complete and optimal packing is NP-hard [Gare 79, Jans 10]. However, simple
Bottom Left (BL) algorithms approximate the results in O(n2) [Chaz 06].

The performance of the algorithms can be given as an asymptotic performance or
as an absolute performance. The asymptotic performance ratio is defined as:

inf{r ≥ 1| for some N > 0,
CA(L)

C∗(L)
≤ r for all lists L with C∗(L) ≥ N},

where CA(L) is the number of bins the packing of algorithm A used, and C∗(L)
is an optimum number of bins for a packing of L. The absolute performance ratio
for A is defined as [Xia 10]:

inf{r ≥ 1|C
A(L)

C∗(L)
≤ r for all lists L}.
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For one-dimensional bin packing with best-fit (BF), Simchi-Levi shows that
the best possible polynomial time approximation is 3

2
[Simc 94]. Xia and Tan

showed that the absolute performance ratio of the first fit (FF) is 12
7

[Xia 10].
Further, Minyi showed an asymptotic performance ratio for FF of 11

9
[Yue 91].

Johnson et al. show that best fit will not use more than 17
10

times the optimum +2
bins. If the input is sorted, 11

9
times the optimum +4 bins are sufficient for FF

and BF [John 74b]. When restrictions to the dimension of rectangles are given,
approximation algorithms were able to reduce the performance ratio to (1 + ε).
Exemplary restrictions are for instance that the number of bins has to be larger
than a minimum or the rectangles have bounded dimensions [Karm 08, Vega 81].
However, as long as no restrictions are given it has been shown that for all ε > 0,
bin packing is without restrictions NP-hard to approximate within 3

2
− ε [Vega 81].

2.3.1.2 Strip packing

Planning-based resource management systems (RMS) are special applications
of packing. Contrary to bin packing, it is not the aim to reduce the number
of bins. Strip packing does not have any bins but one strip. The width of the
strip is often defined as the number of nodes generally available, and its height
equals the time. The total usage time for an arbitrary number of jobs does not
end. Thus, the strip has an, in principle, infinite height. Jobs are considered as
rectangles having a width equal to the number of required resources and a height
equal to the execution time determined by the user. The rectangles have to be
positioned on the strip in such a way that the distances between rectangles are
minimal, and jobs must not overlap each other. Since strip packing is an NP-hard
problem [Bake 80], several algorithms have been developed that work with heuris-
tics and are applicable in practice. Ntene and Lodi et al. give a good overview
of strip packing algorithms [Nten 07, Lodi 02a]. Strip packing algorithms are
either online or offline algorithms. An offline algorithm has information about all
jobs to be scheduled a priori, whereas online algorithms cannot estimate which
jobs arrive in the future. The approaches could be divided into several main
areas: bottom-left algorithms, which try to put a new job as far to the bottom
of the strip and as far left as possible, level-oriented algorithms [Coff 80], split
algorithms [Coff 80], shelf algorithms [Bake 83], and hybrid algorithms that are
combinations of different placing strategies.

Bottom-left algorithms
The Bottom-left algorithms place each rectangle as close to the bottom of the
strip and as far to the left as possible [Jako 96]. Such algorithms do not need a
sorted list of rectangles and can be used in an online manner. Baker et al. proved
that bottom-left algorithms pack in a ratio of three to the optimum [Bake 80] and
require O(n2) time [Asik 09].

Level-oriented algorithms
Level-oriented algorithms sort rectangles in order of decreasing height; accord-
ingly, all jobs have to be known a priori, and such algorithms are offline mecha-
nisms [Coff 80]. The packing is performed in a series of levels. The bottom of the
first level is the bottom of the strip, and the bottom of the level n+ 1 is the top of
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the highest rectangle in the level n. Next fit decreasing height (NFDH) [Coff 80]
means that the next-fit approach is used to pack the sorted list of rectangles. The
rectangles are packed left-justified on a level until the next rectangle does not
fit. This rectangle is used to define the next level where the packing is continued.
First fit decreasing height (FFDH) [Coff 80] means that each rectangle is placed
on the first (lowest) level it fits on. If no level is available, a new one is introduced
on the top. Best fit decreasing height (BFDH) puts a rectangle on the level that
minimizes the unused horizontal space [Lodi 02b].

Coffman, et al. proved that NFDH packs ≤ 2 times the optimum and FFDH is
≤ 1,7 times the optimum +1 [Coff 80]. FFDH and NFDH have a runtime in
O(n log(n)) [John 74a].

Shelf algorithms
Shelf algorithms are similar to the level oriented approach but do not require a
sorted list of rectangles [Bake 83]. Consequently, these are qualified as online
algorithms. Online algorithms deal with jobs that are not known in advance but
occur with a delay called release time [Feit 05]. The height h of the levels does
not depend on the highest rectangle but on a fixed parameter r ∈ [0, . . . , 1]. The
shelf size grows in the form of rk+1 ≤ h ≤ rk, i.e., for small r the range between
heights is large. This would be sufficient for small sets of rectangles. If r is close
to one, the difference between the heights is very small. This is sufficient for huge
amounts of jobs where the jobs in one shelf have similar heights. Next fit shelf
(NFS) is an approach in which a job is packed on the highest fitting shelf that
has the required height. If no shelf is available, a new one of the given height is
introduced into the system; the job will be placed there. First fit shelf (FFS) is
an approach that places a job in the lowest shelf of the fitting height. Csirik and
Woeginger showed that the shelf algorithm has an asymptotic competitive ratio
close to 1.691 [Csir 97].

Han et al. compared strip packing to bin packing and showed that any offline
packing algorithm can be applied to strip packing with an asymptotic worst-case
ratio. The upper bound of online strip packing was improved to an asymptotic
competitive ratio of 1.58889 [Ye 07]. Csirik and Woeginger show a summary of
online packing algorithms [Csir 98] .

Split algorithms
For split algorithms, the rectangles are sorted by the width and the strip is split
vertically into smaller open ended strips depending on the width of the rectan-
gle [Coff 80]. This approach could be used with shelf or level-oriented algorithms.

Hybrid algorithms
Combinations are known as hybrid algorithms when two or more types of the
above mentioned algorithms are used. Hybrid first fit (HFF) combines a strip
packing FFDH strategy with a following finite bin packing algorithm. HFF packs
in 17

8
times the optimum +5 [Chun 82]. Finite Best-Strip (FBS) [Berk 87] is a

variation of HFF using BFDH.

Sleator [Slea 80] presents an approximation algorithm that packs rectangles in
2.5 times the optimum. Brown shows that the lower bound of the bottom-left
algorithm is 5

4
for even a sorted list [Brow 80]. Breaker et al. show an up-down
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(UD) algorithm that packs rectangles to the height of 5
4

to the optimum [Bake 81].
Hoyland provides an algorithm with 4

3
performance ratio with an algorithm

that is allowed to cut rectangles horizontally [Hoyl 88]. Steinberg [Stei 97] and
Schiermeier [Schi 94] show algorithms that decrease the lower bound by up to 2
times the optimum height. Kenyon and Rémila invented an algorithm that reduces
the lower bound to (1 + ε) to the optimum solution and runs in polynomial
time [Keny 00, Keny 02]. Their work is based on Fernandez and Zissimopoulos
who also show an approximation algorithm for problems where the size of the
rectangles is bound to an absolute maximum size. This algorithm also gets
a result of (1 + ε) compared to the optimum [La V 98]. Johannes analyzes a
deterministic list-scheduling algorithm. He proves a lower competitive ratio of
2.25 compared to the optimal makespan for online algorithms [Joha 06]. Hurink
and Paulus [Huri 08a] improved the result to an absolute competitive ratio of
7
2

+
√

10 ≈ 6.6623 if the job length is limited. Ye et al. showed that the border
also holds without restriction to the job length [Ye 09]. Further, Hurink and Paulus
showed that the competitive ratio has a tight lower bound of 2 for any number
of machines [Huri 08b]. Chan et al. showed that the competitive ratio can be

improved to 1 +
√

2
3

for two machines [Chan 08]. Naroska and Schwiegelshohn
proved that parallel jobs can be scheduled online with a competitive factor of
2− 1

m
, where m is the number of machines [Naro 02]. For further background on

online scheduling see [Pruh 03].

In this dissertation, a placing strategy similar to bottom left first is applied.

2.3.2 Cluster Scheduling Strategies

In practice, compute jobs are connected with deadlines or have machine dependent
constraints. Therefore, cluster scheduling has been a separate research area.

Feitelson et al. have written a survey on theory and practice of parallel job
scheduling [Feit 97a]. In contrast to packing algorithms, not only the absolute
or asymptotic performance ratio counts but also, depending on the tasks, the
minimization of the makespan, the maximization of throughput, the minimization
of the waiting time, or the minimum average response time. The makespan
describes the time that elapses from the start of the first job to the finish of the last
job [Joha 06]. Maximization of throughput means that as many jobs as possible
should be finished in a given time [Bar 09]. The waiting time is the time the jobs
are waiting from submit to start [Tsaf 07]. The average response time is the time
from job submit to finish [Ture 94].

Many scheduling strategies for cluster systems are still based on first-come first-
serve (FCFS) [Hams 00]. FCFS guarantees fairness but leads to a poor system
utilization as it might create gaps in the schedule.

Backfilling, in contrast, was developed to increase system utilization and through-
put [Feit 97b]. It does not have to schedule a new job at the end of a queue but is
able to fill gaps in case a job fits in. The additional requirement for the ability to
use backfilling is an estimation of the runtime of each job. The EASY (Extensible
Argonne Scheduling sYstem) backfilling approach can be used to further improve
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system utilization. Within EASY, putting a job in a gap is acceptable if the next
job in the queue is not delayed [Feit 97b]. However, EASY backfilling has to be
used with caution in systems guaranteeing QoS aspects since other jobs in the
queue might be delayed.

Therefore, Feitelson and Weil introduced the conservative backfilling approach,
which only uses free gaps if no previously accepted job is delayed [Feit 98].
Simulations show that both backfilling strategies help to increase overall system
utilization and reduce the slowdown and waiting time of the scheduling sys-
tem [Mual 01]. The work also shows that the effect of the described backfilling
approaches is limited due to inaccurate runtime estimations.

Several papers analyze the effect of bad runtime estimations on scheduling per-
formance. An interesting effect is that bad estimations can lead to a better
performance [Zotk 99]. Tsafrir shows an approach to improve scheduling results
by multiplying a fixed badness factor to the user-estimated runtimes [Tsaf 06].

Effort has been made to develop methods to cope with bad runtime estimations.
Several approaches tried to automatically predict the application runtimes based
on the history of similar jobs [Gibb 97, Smit 98, Tsaf 05]. Tsafrir et al. present a
scheduling algorithm similar to the EASY approach (called EASY++) that uses
system-generated execution time predictions and shows an improved scheduling
performance for job waiting times [Tsaf 07]. The approach shows that automatic
runtime prediction can improve backfilling strategies.

Scheduling strategies for parallel processes also need special placing strategies for
parallel jobs. Placing strategies for parallel jobs are useful if network topologies
provide connections with lower latency for nearer nodes. In this case, the node
allocations have to be considered within scheduling. Krueger et al. [Krue 94] and
Mohapatra et al. [Moha 93] developed scheduling schemes for hypercube clusters.
Lo et al. show a strategy for mesh-connected clusters [Lo 97]. Subramani et al.
developed a buddy algorithm [Subr 02].

This thesis focuses on scheduling approaches that try to overcome best effort and
plan jobs to hold their deadlines on distributed compute infrastructures. Deadline
scheduling for client server systems in computational grids was introduced by
Takefusa et al. [Take 01]. The scheduler estimates the runtime and data transfer
time based on traces and the current background load of the servers. Aim of
the scheduler is to minimize the overall occurrences of deadline misses and
the magnitude of the misses [Take 01]. Load balancing based on the current
background load and fallback mechanisms for wrong decisions should further
increase the performance of the system. Caron et al. improved the previous
mentioned approach for the multi-client multi-server case [Caro 04].

2.3.3 Scheduling and Planning Systems

There is a number of well-developed scheduling systems available. They prove
the general applicability of scheduling in practice. The next two sections describe
different groups of scheduling systems. The first topic are resource management
systems (RMSs) and schedulers that distribute jobs in between clusters and
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the second topic are cluster management systems for virtualization and cloud
software.

2.3.3.1 Resource Management Systems

The tasks of a Resource Management System (RMS) comprise the planning
and distribution of the users’ jobs on the resources. The ability of the local
RMS (LRMS) to utilize its cluster as far as possible is a very important factor of
efficiency. Consequently, there have been many projects that developed special
LRMSs and many resource management systems are available. While some have
specialized abilities, all have the ability to schedule jobs on a system and decide
where the job should be placed. In the following, the most important RMSs are
summarized.

The portable batch system (PBS) or openPBS is a frequently used resource
management system [Bayu 99]. PBS Pro [Nitz 03] is the commercial version.
OpenPBS is also the basis for the Torque [Ress 11] RMS. The Load Sharing
Facility (LSF) is a commercial scheduling product from Platform computing, an
IBM company [Zhou 92]. The computing center software (CCS) or (openCCS) is
an invention of the PC2 [Kell 01, Hove 03]. The LoadLeveler is an IBM product
to manage serial and parallel jobs over server clusters [Kann 01]. SLURM is
an open-source, highly scalable resource manager designed for Linux clusters
of all sizes [Yoo 03]. The GridEngine, formally known as Sun Grid Engine
(SGE), is another frequently used cluster management system [Sloa 03]. Maui
is a scheduler extension that can be used by many different RMSs [Jack 01],
for example PBS, PBS pro, Torque, SLURM, or the Grid Engine. Condor is a
resource management system that has been developed to be able to schedule jobs
on workstations while not disturbing the activities of people who interactively use
the systems [Litz 02].

2.3.3.2 Meta Scheduler

Meta schedulers do not manage the resources of a single cluster but distribute
the jobs between several clusters where each cluster can be managed by an own
(independent) RMS. Some resource management systems see themselves as meta
schedulers. Examples of such schedulers are LSF, Moab/Maui, SGE, or Condor.
However in this section, systems are listed that were originally developed to be
meta schedulers.

The Grid Workflow Execution Service (GWES) is a workflow engine with Meta
scheduling capabilities [Hohe 06, Tayl 07]. The GridWay meta scheduler is part
of the Globus Toolkit and provides a single point of access to all resources
of a community [Mont 06]. The Meta Scheduling Service (MSS) is designed
for co-allocation of computing and networking resources and supports advance
reservations [Barz 07]. The Workflow Scheduling Service (WSS) is a workflow
management and scheduling component, which was developed for the Climate
Community in the Data and Processing Grid (C3Grid) project [Grim 09, Grim 07].
The UNICORE 6 integrated workflow engine is an environment for managing



Chapter 2 • Scheduling and Planning 29

workflow-oriented scientific and industrial applications in UNICORE infras-
tructures [Schu 07]. A well accepted standard for service management and or-
chestration in the business domain is BPEL. There are several commercial and
open source workflow orchestrator implementations for BPEL [Hoin 09]. The P-
GRADE or WS-PGRADE workflow engine is embedded in a workflow-oriented
grid portal[Kacs 05, Kacs 07, Kacs 08]. The Grid Service Broker was developed
to handle data-oriented applications [Venu 04]. The Nimrod/G is a meta sched-
uler based on Globus Toolkit and handles dynamic resources in geographically
distributed grids [Buyy 00]. The community scheduler framework (CSF) is a
meta scheduling framework from Platform computing [Smit 03]. Freefluo is the
workflow enactment engine of Taverna, a workflow language for the semantic
grid [Oinn 06]. At last, jBPM is the workflow engine from JBoss, a business
process management solution [Koen 04].

2.3.3.3 Virtualization Solutions

Virtualization in the scope of this work means that it is possible to take one
or several virtual machines (VMs) that act like an own resource with an own
operating system and put them on one host resource. The management software
executes these virtual machines separated from each other and the underlying
hardware [Barh 03]. The advantage of virtualization in cluster computing is that
several virtual machines can be packed on one resource. This allows an improved
utilization of the underlying hardware and a higher throughput of jobs [Bolt 10].

Several virtualization solutions are available for cluster management. These
are the LXC Linux container system [Laad 10], the OpenVZ Linux container
system [Solt 07], the User Mode Linux paravirtualized kernel [Hosk 06], or the
VirtualBox hypervisor [Wats 08]. They allow to handle thousands of virtual
machines and their images, and users. The commercial cloud solutions typi-
cally only support their own hypervisor, while Open Source solutions try to be
as general as possible. With the used of libvirt, oVirt or the Common Infor-
mation Model (CIM) different technologies can be managed through a defined
interface [Joha 08, Bolt 10].

2.3.3.4 Cloud Management Systems

The term Cloud computing means the delivery of computing resources as a
service. A cloud abstracts from technology, resources and their location. The
Cloud computing relies on sharing of resources through virtualization to achieve
a high utilization and be able to scale in case of high demand [Mell 09].

In the field of Cloud computing, several software solutions are available. Some
of them base on former grid projects. The Xen Based Execution Environment
(XBEE) allows a user to get an advanced reservation; the VMs have to be started
by hand [Petr 07]. The Xen Grid Engine (XGE) is based on the Sun Grid Engine.
It allows the execution of jobs in corresponding VMs [Fall 06, Smit 09]. Another
Xen-based solution with similar functionality is Maestro-VC [Kiya 06]. Nim-
bus [Keah 05] can query the Amazon cloud or a local resource manager (like PBS)
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for resource provisioning. Assunção et al. [Assu 09] demonstrated that clouds
could be used as an extension to private clusters. The Heizea [Soto 08a, Soto 09b]
scheduler is integrated in the OpenNebula [Soto 09a] project and can also be used
to study scheduling of virtual machines. JAWS [Grit 06] and UBIS [Walt 08]
provide extensions of batch schedulers that allow the use of virtual machines.
OpenStack [Open 11] is an open source cloud project by Nasa et al. that pro-
vides components for compute and object storage with the support of Cloud-
Stack. CloudStack hat two components: the management server and the compute
nodes. The supported virtualization technologies are the Xen Hypervisor [Crit 08],
KVM [Kivi 07], and VMware vSphere [Lowe 09, VMwa 09]. Eucalyptus (Elas-
tic Utility Computing Architecture for Linking Your Programs To Useful Systems)
in an open source cloud system that supports the Amazon EC2, S3, and EBS
interfaces [Nurm 09].

Conclusion The approaches found in literature are not directly applicable to
this work. The scheduling approaches target queuing based systems and work
on best effort basis. The aim of these scheduling strategies is to improve the
system utilization and to decrease the slowdown of single jobs. Instead, this
approach bases on a planning based scheduling scenario with strict deadlines
given by SLAs. An acceptance test decides if an additional job can successfully
be accepted, and thus, improve the provider’s profit by overbooking resources.

2.4 Overbooking

Here, the related work in the field of overbooking is listed. It begins with a brief
introduction of fields where overbooking was applied and then looks at related
work in the field of overbooking compute clusters or IT services.

2.4.1 Overbooking in General

The examples of hotels [Libe 78] and aeronautical companies [Subr 99, Roth 85]
show the overbooking-idea for the provisioning of compute resources this work
pursues as well. However, overbooking in the context of compute resources
differs from those fields of application since the assumption is made that fewer
customers use their reservations than booked. Comparing the usage of a compute
resource and a seat in an aircraft is, in this scope, not meaningful. Generally, no
fixed intervals for the resource utilization of cluster nodes exist, while a seat in an
aircraft will not be occupied after the aircraft has taken off. As a consequence,
results and observations from overbooking in the classical fields of application
cannot be reused. A job can start on a cluster system any time if enough resources
are free.
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2.4.2 Overbooking of IT Systems

Overbooking for Web and Internet service platforms is presented by Urgaonkar et
al. [Urga 02]. It is assumed that different web applications are running concur-
rently on a limited set of nodes. The difference between Urgaonkar and this thesis
is that the overbooking procedure in this dissertation assigns nodes exclusively.
Therefore, it is impossible to share resources between different applications,
while it is possible to use execution time length overestimations, which are not
applicable to web hosting.

Overbooking for high-performance computing (HPC), Cloud, and Grid computing
has been proposed in [Andr 04a, Hove 03]. However, the authors mention the
possibility of overbooking but do not propose solutions or strategies. In the
grid context, overbooking has been integrated in a three-layered negotiation
protocol [Sidd 06]. The approach includes the restriction that overbooking is only
used for multiple reservations for workflow sub-jobs. Chen et al. [Chen 04] use
time-sharing mechanisms to provide high resource utilization for average system
and application loads. At high load, they use priority-based queues to ensure
the responsiveness of the applications. Sulisto et al. [Suli 08] try to compensate
no-shows of jobs with the use of revenue management and overbooking. However,
they do not deal with the fact that jobs can start later and run shorter than estimated.

Nissimov and Feitelson introduced a probabilistic backfilling approach. It applies
user runtime estimations and a probabilistic assumption about the real end time
of the job to allow to use a gap that is smaller than the estimated execution
time [Niss 07]. When estimating the PoS of putting a job in a gap, the probabilistic
backfilling and the overbooking scenario are similar. The difference is that
Nissimov’s acceptance test is applied to an already scheduled job and aims at
reducing its slowdown, while the approach of this dissertation is used during the
acceptance test at arrival time [Niss 07].

Overbooking in Cloud computing can be applied dynamically. Nodes can host
many VMs, and if a host is currently underutilized, a new VM can be assigned
to it. In the case a job needs more resources, the assignment can be adapted and
VMs can be migrated or suspended. Verboven [Verb 10] analyzed the benefit
of overbooking in a virtual environment with different workloads, either being
best effort (Low-QoS) or combined with a defined High-QoS. The aim of the
scheduling algorithm is to increase the cluster utilization while supporting QoS
guarantees. High-QoS jobs get reservations for full CPU slots, while the Low-
QoS jobs are used to increase cluster utilization and are suspended when the
High-QoS jobs need more resources. The decisions are done online depending on
the CPU load and do not require any statistical background.

Another way of load balancing is the live migration of VMs to another host.
An estimation of the concrete utilization enables to determine the percentage of
the cluster that could be overbooked. This approach requires the ability of job
migration and an improved estimation process.
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3 Overbooking

The developed overbooking algorithms are described in this chapter. It starts
with a description of the acceptance tests and the placing strategies. Then, the
used statistical distributions are introduced. Following, the two mechanisms
for calculating the Probability of Success (PoS) of overbooking are explained.
Further, the complexity of the created algorithms is discussed. The chapter is
completed by a description of market mechanisms, to which overbooking could
be applied to and a description of the four evaluated strategies.

Contents
3.1 Accepting and Placing Jobs . . . . . . . . . . . . . . . . . 34

3.1.1 Placing Algorithm for Overbooking . . . . . . . . . 34

3.1.2 Placing Strategy . . . . . . . . . . . . . . . . . . . 35

3.1.3 Acceptance Test . . . . . . . . . . . . . . . . . . . 35

3.2 Introduction of Statistics . . . . . . . . . . . . . . . . . . 38

3.2.1 Selecting Attributes for PDF Creation . . . . . . . . 39

3.2.2 Building a Joint PDF . . . . . . . . . . . . . . . . . 40

3.2.3 Resulting Combined PDF for PoF Calculation . . . . 41

3.3 Overbooking Approaches . . . . . . . . . . . . . . . . . . 42

3.3.1 Comprehensive Approach . . . . . . . . . . . . . . 42

3.3.2 Heuristic Overbooking . . . . . . . . . . . . . . . . 48

3.4 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Comprehensive Approach . . . . . . . . . . . . . . 51

3.4.2 Heuristic Approach . . . . . . . . . . . . . . . . . . 52

3.4.3 Practical Issues . . . . . . . . . . . . . . . . . . . . 52

3.5 Market Mechanisms and Overbooking . . . . . . . . . . 53

3.6 Evaluated Strategies . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Conservative Backfilling . . . . . . . . . . . . . . . 55

3.6.2 Comprehensive Overbooking . . . . . . . . . . . . . 55

3.6.3 Heuristic Planning . . . . . . . . . . . . . . . . . . 55

3.6.4 Heuristic Overbooking . . . . . . . . . . . . . . . . 55

In this work, the comprehensive overbooking was developed first. It covers the
most important measurable parameters and allows a very accurate estimation of
the PoS. This comprehensive overbooking yield promising results. However, due
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to its long runtime a second overbooking strategy was developed. The idea was
to create a more practical approach, based on a heuristic.

For the following work, a job j is defined as the tuple:
[o, e, x, ω, d, n,R, λr, µr, l]. Table 3.1 details the attributes.

Table 3.1: Job attributes

Attribute Description

o the occurrence time

e the release time, determines the earliest possible start

x the user-estimated runtime

ω the real runtime

d the deadline of the job

n the number of requested nodes

R the set of resources that is supposed to be assigned to the job

λr the machine failure rate of one resource r ∈ R

µr the corresponding repair rate of the resource r ∈ R

l the length of the time slot

3.1 Accepting and Placing Jobs

This section defines a possible scheduling algorithm for backfilling and the
acceptance tests. Generally, the scheduler keeps a list of all the gaps in its plan.
The gaps have a start-point, when resources become available and an end-point.
For each new job arriving in the system, the scheduler calculates the probability
of success PoS for the execution of this job in its gaps. Based on this information
and a given acceptance test, the scheduler can decide whether it accepts the job.
The acceptance test depends on the calculated PoS of the job and the negotiated
charge and penalty.

3.1.1 Placing Algorithm for Overbooking

When a new job occurs, the algorithm selects the possible gaps, and computes the
corresponding risks and opportunities. Based on this information, the job is either
accepted or rejected. The pseudo code for an example overbooking algorithm is
shown in Listing 3.1. First, the algorithm selects all possible time slots in between
the job’s first possible start and its deadline.

For each gap, it is determined whether the length of the time-slot equals or exceeds
the user-estimated runtime. In this case, the job can run without overbooking, the
time-slot is set to the user-estimated runtime, and the probability of failure PoF
for the job execution is calculated based on assumptions about resource outages.
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If the time-slot is shorter than the user-estimated runtime, the PoF is calculated
with the additional probability of failure caused by overbooking. In case the
resulting PoF is lower than a maximum threshold, the job can be accepted for this
time-slot; otherwise, the time-slot is deleted.

Different placing strategies can determine where a job should be placed best, and
the scheduler has to apply an acceptance test to decide if it takes the job. Possible
acceptance tests and placing strategies are discussed in the following.

At the end of any job execution, the resource plan can be updated. This allows
following jobs to start earlier.

3.1.2 Placing Strategy

If one or more time-slots are available, the scheduler has to choose one time slot
suggested by a given strategy. For the concrete implementation of the acceptance
test, several policies can be applied.

• A conservative approach chooses the gap with the highest PoS.

• A best fit approach chooses the gap providing the biggest opportunity.

• A first fit approach chooses the first gap with an acceptable high PoS/op-
portunity.

• A last fit approach can choose the last gap with an acceptable high PoS/op-
portunity.

On the one hand, first fit is the fastest algorithm because it terminates after the
first possible match. On the other hand, best fit might provide a higher profit.
Choosing the conservative approach might prevent some SLA violations and, thus,
not damage the provider’s reputation. Last fit aims to distribute the utilization
and to be able to accept suddenly incoming short jobs with near deadlines. The
last gap denotes here a gap which offers the latest possible job-start time. As
a consequence, different placing strategies might be chosen depending on the
market mechanism and the market situation.

3.1.3 Acceptance Test

When the PoF is calculated, the scheduler has to decide whether accepting the job
for the corresponding gap is worth it or not. If the job is accepted, the requested
amount of resources is reserved for the selected time-slot and the resource plan
is updated. If no acceptable time-slot was found, the job has to be rejected.
Depending on the kind of SLAs, two different mechanisms can be used. If an
SLA contains charges and penalties for a job, the risk can be computed with
the calculated PoS and PoF. If the SLA does not contain money exchange, PoF
thresholds can be applied.

Acceptance Based on Risk and Opportunity When the SLA for the
job contains a charge and a penalty, it is possible to use this information in
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combination with the calculated PoS and PoF to calculate risk and opportunity
for the acceptance decision. The following acceptance test uses this information.

Algorithm 3.1 Simple acceptance test based on risk and opportunity.
if PoS × Charge > PoF × Penalty then

accept the SLA.
else

reject the SLA.
end if

This term of Algorithm 3.1 simply says: Do not accept jobs if the risk (PoF of
the job multiplied with the penalty) is higher than the opportunity (PoS of the job
multiplied with the charge). This also means that the expected profit is positive.

Acceptance Based on Probabilities If the underlying SLA is not based on
money exchange, for example, in case of a bartering market, the risk acceptance
test cannot be applied. In this case, the acceptance test simply uses a given
PoFmax threshold like it is shown in Algorithm 3.2. If the calculated PoF is
below the threshold, the probability of failure is considered low enough and the
job can be placed in the gap. As a consequence, this approach is beneficial if the
utilization of the system is supposed to increase.

Algorithm 3.2 Simple acceptance test based on PoF threshold.
if PoF < PoFmax then

accept the SLA.
else

reject the SLA.
end if

The following Listing 3.1 summarizes the previously described procedures as
pseudo code for an exemplary overbooking algorithm.
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p u b l i c c l a s s Overbook ingAlgor i t hm{
s t a t i c P l an p l a n n e d J o b s ;

b o o l e a n p l a c e J o b ( Job newJob ) {
L i s t p o s s i b l e G a p s = g e t P o s s i b l e G a p s ( newJob ) ;
/ / a c c o r d i n g t o implemented d e c i s i o n s t r a t e g y ( f i r s t f i t , b e s t f i t . . . )
R e s e r v a t i o n r = s e l e c t F i r s t R e s e r v a t i o n ( p o s s i b l e G a p s ) ;
i f ( e x i s t s ( r ) ) {

/ / r e s e r v a t i o n found
p l a n n e d J o b s . add ( r )
r e t u r n t r u e ;

} e l s e {
/ / p l a c i n g j o b n o t p o s s i b l e
r e t u r n f a l s e ;

}
}

L i s t g e t P o s s i b l e G a p s ( Job j o b ) {
L i s t p o s s i b l e R e s e r v a t i o n s = new L i s t ( ) ;
R e s e r v a t i o n p o s s i b l e R e s e r v a t i o n ;
L i s t t i m e S l o t s = g e t L i s t O f T i m e S l o t s ( j o b . r e l e a s e , j o b . d e a d l i n e , j o b . r e s ) ;
f o r ( T imeSlo t t s i n t i m e S l o t s ) {

i f ( t s . l e n g t h >= j o b . e s t i m a t e d R u n t i m e ) {
/ / no o v e r b o o k i n g needed
long [ r i s k , o p p o r t u n i t y ] = c a l u l a t e R e s s o u c e R i s k ( job , t s . l e n g t h ) ;
p o s s i b l e R e s e r v a t i o n = new R e s e r v a t i o n ( t s , job , r i s k , o p p o r t u n i t y ) ;
p o s s i b l e R e s e r v a t i o n s . add ( p o s s i b l e R e s e r v a t i o n ) ;
} e l s e {

/ / o v e r b o o k i n g needed
long [ r i s k , o p p o r t u n i t y ] = c a l u l a t e O v e r b o o k i n g R i s k ( job , t s . l e n g t h ) ;
i f ( r i s k < o p p o r t u n i t y ) {

p o s s i b l e R e s e r v a t i o n = new R e s e r v a t i o n ( t s , job , r i s k , o p p o r t u n i t y ) ;
p o s s i b l e R e s e r v a t i o n s . add ( p o s s i b l e R e s e r v a t i o n ) ;
}

}
}
r e t u r n p o s s i b l e R e s e r v a t i o n s ;
}

L i s t g e t L i s t O f T i m e S l o t s ( Time r e l e a s e , Time d e a d l i n e , R e s o u r c e s r e s ) {
L i s t t i m e S l o t s = new L i s t ( ) ;
f o r ( Time p o s s i b l e S t a r t = p l a n n e d J o b s . g e t S t a r t T i m e s ( ) ) {

i f ( p o s s i b l e S t a r t >= r e l e a s e && p o s s i b l e S t a r t < d e a d l i n e ) {
i f ( p l a n n e d J o b s . g e t F r e e R e s s o u c e s ( p o s s i b l e S t a r t ) >= r e s ) {

/ / p o s s i b l e s t a r t
Time s t a r t = p o s s i b l e S t a r t ;
Time end = ge tT imeWhereLessResAva i l ab l e ( s t a r t , r e s ) ;
end = min ( end , d e a d l i n e ) ;
T imeSlo t t i m e S l o t = new TimeSlo t ( s t a r t , end ) ;
t i m e S l o t s . add ( t i m e S l o t ) ;

}
}

}
r e t u r n t i m e S l o t s ;
}

}

Listing 3.1: Pseudo code for an overbooking algorithm.
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3.2 Introduction of Statistics

This section describes how the Probability Density Functions (PDFs) and Cumu-
lative Distribution Functions (CDFs) are created. The overbooking approaches
need them for the PoS calculation.

A PDF describes the probability that a job ends after exactly x% of its estimated
runtime. An example for a PDF is given in Figure 3.1, which shows this prob-
ability distribution resulting from all jobs submitted to the Arminius cluster in
2007. The x-axis shows the runtime in % of the estimation and the y-axis shows
the probability density that the jobs ends at exact this point.

In order to create PDFs, the ratio of real to estimated runtimes of historical job
traces has to be extracted. While it is possible to model the PDFs and CDFs as
continuous or discrete functions, this dissertation assigns the ratio of the real to
estimated runtime of each job to corresponding integrated percent values. As a
consequence, the mathematical model for the calculation of the PDFs and CDFs
will be based on discrete functions. Therefore, the PDFs have i = 0, 1, · · · , 100
containers with Xi ratios of 0% to 100%. The resulting PDF is defined by the
discrete empirical distribution:

PDF (x) =
|{Xi|Xi = x}|

n

where n is the number of samples. PDF (x) returns the fraction of samples that
have terminated at x% of the estimated runtime.

Figure 3.1 The PDF derived from all jobs in the examined cluster.
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Figure 3.2 The CDF for several time slots.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage of used estimated runtime

Pr
ob

ab
ili

ty

 

 

Runtime under 10 min
Runtime of 10 min to 1 hour
Runtime of one hour to 2 hours
Runtime of two hours to 3 hours
Runtime of three hours to 4 hours
Runtime of four hours to 5 hours
Runtime of five hours to 12 hours
Runtime of more than 12 hours

A CDF is defined as:

CDF (x) =
|{Xi|Xi ≤ x}|

n

A CDF describes the probability that the real runtime of a job with an assigned
PDF will be less than or equal to x% of its estimated runtime. Thus, the CDF is a
cumulative PDF.

CDF (x) =
x∑
i=0

PDF (i)

Figure 3.2 shows eight different CDFs. Each presents a group of jobs with an
estimated runtime in the same time range.

3.2.1 Selecting Attributes for PDF Creation

The PDFs can be built based on several parameters. One goal of this thesis is to
create different PDFs for different job characteristics. When a new job arrives
in the system, the most appropriate PDF has to be selected according to the
knowledge about the user, the application, or the resources. The more jobs are
available in the groups, the more accurate the PDFs can be.

The work uses the following attributes. They are discussed in detail on page 58.

• Estimated runtime

• Requested resources
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• Submission user based statistics

• Selected application

• Combinations of the above mentioned

3.2.2 Building a Joint PDF

In the overbooking scenario, a job has an assigned start time. However if the
corresponding resources are free, it can start anytime after it is eligible. Therefore,
all currently running jobs on the assigned resources can influence the start time of
a new job. Each of them has its own probability density function that describes its
probability to end.

The comprehensive overbooking approach uses the joint PDF of a new job and
its direct predecessors to calculate the probability that this job finishes in time.
The joint PDF has to include the job’s basic function and the combined functions
from its predecessors. It contains the information for a set of jobs. Thus, the joint
PDF is the basis to calculate the probability that the complete set of jobs ends
before the last job’s deadline.

The challenge is that several jobs, j1 to jn, can end before the start of a new job.
The maximum number n of jobs is equal to the amount of required nodes. The
minimum number is zero if all resources are free at release time.

The jobs have different estimated runtimes. However, the basic PDF functions
store the probabilities in the percent bins. Therefore, when the joint PDF is
calculated, the basic PDFs of the jobs are firstly transformed into a PDF format
that is based on fixed time step intervals. The PDFs of the fixed time steps have
more bins when they are longer and less bins when they are shorter. Afterwards,
they can be compared and joint.

Figure 3.3 Exemplary job schedule.
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An example is given in Figure 3.3 for a job that requests five resources. We have
to calculate the joint PDF of all jobs that are scheduled before and might possibly
run before the new job. In the example, these are all jobs but the job R4. The
latest start of the job is the latest planned finish of any job planned before (i.e.
R1). If possible, a job is allowed to start earlier. The earliest possible start time
is either the jobs own release time or the earliest point in time when all previous
jobs ended.

The resulting joint PDF at time t is built on the decomposition of the joint CDF.

PDFjoint(t) = CDFjoint(t)− CDFjoint(t− 1)

The time frame the CDFjoint represents lies in between a job’s release and its
latest end. The CDFjoint is based on the CDFs of the previously scheduled jobs.

If there is one job before, the joint probability that this job has ended until time t
is obviously given by its own CDF. CDFjoint(t) = CDF (t).

If there are two jobs j1 and j2 the probability that both jobs have ended until time
t are dependent on the probability that j1 has ended and j2 has ended. As two
different jobs in the schedule are independent, we can multiply both probabilities.

CDFjoint(t) = CDF1(t)CDF2(t)

Following, the resulting CDFjoint(t) for m jobs is:

CDFjoint(t) =
m∏
i=1

CDFi(t)

The CDFs of the jobs before are already the product of their own CDF and the
joint CDFs of their predecessors. Due to this fact, only the last of possibly many
jobs on each of the assigned resources has to be considered.

For the complete CDFjoint all points in time in between the jobs release and the
latest end min(x,l) have to be calculated.

CDFjoint =

#jobs before∏
i=1

CDFi(t)|min(x,l)
t=0

3.2.3 Resulting Combined PDF for PoF Calculation

In case the joint PDF of the previous jobs and the basic PDF of a new job
are overlapping, the expected joint execution time distribution consists of the
convolution of the job’s basic PDF and the calculated joint PDFs of all jobs
finishing earlier (see also [Birk 09a]). The resulting combined PDF is the input
of the PoF calculation for the comprehensive overbooking.

If the job j has one or more direct predecessors, the convolution of the execution
time distribution always has to be computed with the joint distribution of the
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previous jobs. The previous jobs already include the distributions of all possibly
influential previously planned jobs. For the simulation, the convolutions are based
on discrete values.

PDFcombined = (PDFjoint ◦ PDFnew job)

The number of steps is given by the used steps per time unit and the length of the
job. The distributions are continuous functions and the discrete mapping reduces
the accuracy. Nevertheless, the convolutions have to be calculated numerically as
no (reasonable) closed formula exists. A discrete convolution is defined as:

PDFcombined(n) =
∞∑

k=−∞

PDFjoint(k)PDFnew job(n− k)

for each of the n steps in between the job’s earliest possible start and latest
possible end.

3.3 Overbooking Approaches

This section describes the two approaches for calculating the PoF for overbook-
ing according to the scenario depicted in Figure 3.4. The first presented is the
comprehensive approach that covers the most important measurable parame-
ters. Secondly, the developed heuristic is shown. It has a better runtime than
the comprehensive approach and is more flexible because it uses more general
assumptions.

3.3.1 Comprehensive Approach

The comprehensive overbooking algorithm was designed to support a very ac-
curate PoF calculation. The exemplary job in Figure 3.5 can only be placed
overlapping with the jobs on node 1 and 3. It is, however, successful when either

Figure 3.4 The job can only be accepted using overbooking.
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the job itself or the jobs on node 1 or 3 run shorter. It is also sufficient, when all
jobs together spare the overlapping time.

The comprehensive overbooking procedure maps jobs on resources at SLA ne-
gotiation time. This allows using node specific failure predictions. In addition,
the placement of jobs to resources at negotiation time allows an inclusion of the
failure probability of the specific selected resources into the PoS calculation. Con-
sequently, the probability of successfully completing an overbooked job depends
on the probability of resource failures and the probability of finishing in time. To
finish in time means the job has an execution time that fits into its time-slot. The
result of the calculation is the probability that a job j executes successful in a
given time-slot of length l.

PoF(j) and PoS(j) The probability of failure for a job j (PoF(j)) is, with the
penalty of the SLA, used to calculate the risk of overbooking. The probability
of success for the job j (PoS(j)) is, in cooperation with the fee of the SLA, used
to calculate the opportunity of overbooking. The PoF(j) and PoS(j) are directly
dependent because PoF(j) = 1−PoS(j). Therefore, the following only describes
the calculation of PoS(j).

PoS(j) The probability PoS(j) depends on the probability Pavailable(R) that
the requested resources are operational at job start, the probability Pexecutable(j)
that the job is able to end within its given maximum execution time, and the
probability Psuccess(min(x, l), R) that the resources survive the job’s execution.
All three factors are independent; therefore, they can be multiplied.

PoS(j) = Pavailable(R) · Pexecutable(j) · Psuccess(min(x, l),R).

In the following, the factors are defined in detail.

Pavailable The probability Pavailable that a resource is available at job-start depends
on its mean time to failure MTTF and its mean time to repair MTTR. The
availability of one resource/node is defined as the ratio of its MTTF to the
aggregate of its MTTF and MTTR.

Figure 3.5 The new job overlaps with the planned jobs on resources 1 and 3.
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Pavailable =
MTTF

MTTF + MTTR

Here, MTTF is given by the failure rate λ, MTTF = 1
λ

, and MTTR is given by
the repair rate µ, MTTR = 1

µ
, of a resource.

Pavailable =
1
λ

1
λ

+ 1
µ

=
1

1 + λ
µ

When a job is planned to run on a set of resources R, the probability Pavailable(R)
depends on the probability that all required nodes are available at start time. The
distinction of resources allows us to create accurate estimations of the probability
of job crashes caused by node outages.

Pavailable(R) =
n∏
i=1

1

1 + λi
µi

Here, the index i denotes the failure and repair rates of the ith resource from the
set of n resources R. This model assumes that the node failures are independent.
This is a simplification compared to previous work [Iosu 07, Schr 06]. It has been
shown that node failures are bursty and correlated. However, a successful job
execution is not possible, if one of the planned resources fails. Therefore, the
amount of other node failures is not included in the calculation.

Pexecutable The probability of success for a job execution Pexecutable(j) is defined
based on the job’s cumulative distribution function. The cumulative distribution
function describes the probability that a job finishes until its maximum given
runtime (min(x, l)). If the job is planned with the user’s estimated execution
time x, the probability Pexecutable(j) is 1. If the runtime is limited to l < x, the
probability Pexecutable(j) < 1.

If the job has no predecessor in the plan, it is scheduled as soon as possible and
Pexecutable(j) is given by its own execution time distribution. If the job has one
or more direct predecessors, the convolution of the execution time distribution
always has to be computed with the joint distribution(s) of the previous job(s).
The reason for using the joint distribution of the predecessor jobs is that due
to overbooking, job j has no defined start time. The job starts at the end of its
last ending direct predecessor. Which job of its predecessors ends last is not
necessarily known. It can be any job on the planned resources, which has a
possible end time after the new job’s release e. The predecessor jobs already
include the distributions of all possibly influential, previously planned jobs due to
their own Pexecutable calculation.

Pexecutable(j) is given by the convolution of its own probability density function
PDFj and the PDFjoint (PDFcombined =PDFjoint◦PDFj).
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The defined PDFcombined function has to be transformed into its cumulative function
CDFcombined. The resulting function is defined as:

Pexecutable(j) = CDFcombined(min(x, l))

The process of building PDFjoint as well as the modeling of the convolution
process that results in Pexecutable(j) was described in Section 3.2.

Psuccess Psuccess(min(x, l),R) describes the probability that the job’s resources
R survive the execution time. The maximum possible execution time is either the
user-estimated runtime x or, in the overbooking case, the length of the time slot l.
According to the underlying failure information, several approaches can model
the survival probability.

Weibull Failure Model
Several papers show that crashes in cluster systems are correlated and bursty
[Schr 06, Saho 04] and that the failure rates of large clusters follow a Weibull
distribution [Iosu 07, Nurm 05]. According to Feitelson, the CDF for a Weibull
distribution is defined as

F (x) = 1− e−(
x
β
)α ,

where x is the investigated time frame, α is a shape parameter, and β is a scale
parameter.

Consequently, for calculating Psuccess according to a Weibull failure model, the
definition of Psuccess(min(x, l)) as 1− e−(

min(x,l)
β

)α would describe the survival rate
of a specific node. Here, β describes the spreading of the distribution, this means
how fast the tail will decay. α describes the failure rate over time of a specific
resource. A value of α < 1 indicates that the failure rate decreases over time due
to high infant mortality. α = 1 means the failure rate is constant, and a value of
α > 1 indicates that the failure rate increases due to an aging process [Feit 11]. α
and β have to be calculated based on monitoring information of the past failure
behavior for each of the resources r ∈ R.

Following, the success rate for one resource r can be modeled as:

Psuccess (min(x, l)) = 1− e−(
min(x,l)
β

)α

Node failures are typically dependent on the failures of other nodes. Since almost
all jobs fail when one of its resources fails, it does not matter if the node failure
causes or is caused by other node failures. Causality has no influence on an already
failed job. Therefore, the failures are modeled to be independent. Following, the
resulting Weibull failure model for a set of resources R is:

Psuccess(min(x, l),R) =
n∏
i=1

Psuccess(min(x, l), ri) =
n∏
i=1

1− e−(
min(x,l)
βi

)αi



46 Overbooking

Here, ri ∈ R denotes the ith resource from the set of n resources R. Each resource
ri has an own failure shape αi and failure spreading βi.

Hyper-Exponential Failure Model
Other related work assumes that hyper exponential distributions are the best
instrument for failure modeling [Nurm 05, Mutk 87, Lee 93]. According to Feit-
elson, a hyper-exponential distribution is a combination of several exponential
distributions.

This means that each failure can be caused from a set of reasons. Each reason has
an own exponential distribution with failure rate λ and a probability p. Follow-
ing, the Psuccess(min(x, l)) for one resource and one failure reason would be an
exponential distribution.

Psuccess(min(x, l)) = 1− e−λmin(x,l)

In the case of two failure reasons, the first reason is described by the first ex-
ponential distribution with probability p1 and the failure rate λ1. The other
exponential distribution has the probability p2 and failure rate λ2. The probability
is p2 = 1 − p1 and λ1 should be different from λ2, else the two failure reasons
can be unified to one failure reason. For one resource with two failure reasons,
the resulting success probability is:

Psuccess(min(x, l)) = 1− (p1e
−λ1min(x,l) + p2e

−λ2min(x,l))

If more than two failure reasons Λ exist the probability is the sum of the single
exponential distributions. Following, for one resource r and k failure reasons, the
definition of Psuccess is:

Psuccess(min(x, l)) = 1−
k∑
j=1

pje
−λjmin(x,l)

Here, λj ∈ Λ denotes the failure rate of the jth failure reason. The jth reason has
the occurrence probability pj . It holds

∑k
j=1 pj = 1.

If a job has several resources r ∈ R and k failure reasons, the definition of Psuccess

is the product of the single failures of each resource ri.

Psuccess(min(x, l),R) =
n∏
i=1

Psuccess(min(x, l), ri) =
n∏
i=1

1−
k∑
j=1

pije
−λijmin(x,l)

Here, ri ∈ R denotes the ith resource from the set of n resources R. λij ∈ Λ
denotes the jth failure rate (with the occurrence probability pij) of the k failure
groups of resource ri.

Poisson Process
The Weibull or Hyper-Exponential distributions describe an aging process of the
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resources that takes months, maybe years, while the typical jobs only last between
a couple of minutes and some days. In addition, the failure rate has to be adapted
over the day and week/weekend because it has been shown that the failure rate
also depends on the load of the system [Schr 06, Saho 04]. Therefore, Weibull or
Hyper-Exponential distributions were not the best choice for this dissertation.

Instead, focus for the job execution is on a Poisson process with constant failure
rate λ. Feitelson gives a good overview about statistical distributions in Workload
Modeling for Computer Systems Performance Evaluation [Feit 11].

The constant failure probability λ allows a simple model of the probability that
the job’s resources survive the execution time. For one resource the probability is:

Psuccess(min(x, l)) = 1− e−min(x,l)λ

If the job is assigned to more than one resource, a statistical estimation of λ for
each cluster resource r is needed and the Poisson process describes the probability
that all of the job’s resources survive the execution time. When the job occupies a
set of several resources R the probability is modeled as:

Psuccess(min(x, l),R) =
n∏
i=1

Psuccess(min(x, l), ri) =
n∏
i=1

1− e−min(x,l)λi

The failure rates λ1, . . . , λn describe the probability that the job survives the
execution time with n resources r1, . . . , rn ∈ R.

When the monitoring system is able to create fine-grained failure rates λ, for
instance, for each hour of a day, the given λ could be replaced by a sophisticated
function.

For the simulation, the Poisson process was implemented because the available job
traces were limited to a few months. Therefore, no resource aging was assumed
and a constant failure rate chosen.

The ideas for the comprehensive overbooking with, first, the focus on sin-
gle resources and, secondly, the extension to parallel systems, were shown
in [Birk 09a, Birk 10].

Drawbacks of the Comprehensive Approach However, the comprehen-
sive approach has some disadvantages for a practical application.

• Cluster systems with many nodes offer a large amount of possible combi-
nations when and where a job can run. Checking all combinations needs
building PDF convolutions for every possible gap. This leads to a bad
runtime of the planning process. The number of jobs for each simulation
run was limited to 1000 in order to retrieve results in an acceptable time.

• The mapping of jobs to specific compute resources at submit-time is inflex-
ible. Many other nodes may become free before the job can start on the
planned resources. This earlier start time would often enable the job to be
completed in time.
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Figure 3.6 Heuristic Overbooking:
The free and occupied nodes are counted for all planed jobs.

Nodes

Time
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Number of 
occupied nodes 

at time t

• The schedule is unnecessarily fragmented because unused time slots on the
resources remain free.

3.3.2 Heuristic Overbooking

Due to the huge amount of convolutions, the comprehensive approach needs a
long runtime. Therefore, additionally a heuristic was supplied.

The heuristic overbooking approach no longer decides where the job should run
at SLA negotiation time. Instead, it counts the overall resources and uses their
number to calculate the probability of the job to be successful. As a consequence,
the resources are not assigned to the job at planning time but at its start. The job
is accepted only with its planned start and end time. Figure 3.6 highlights the
number of free nodes as a line that forms the shape of the already planned jobs.

This approach is more flexible because a job can run on every node. The drawback
is that it is not known which job(s) will be the predecessor(s) and that only a
general assumption about the resource stability can be made. In addition, the
application of the heuristic is only possible if all nodes can execute all jobs with
the same performance.

3.3.2.1 Planning and Overbooking: A Heuristic

The heuristic planning strategy is able to overcome the drawbacks of the compre-
hensive overbooking. It is designed to be more flexible than the comprehensive
overbooking and allows a faster acceptance test. The decision which resources
should be used is no longer made at submit-time but at the job start. Therefore,
specific resources cannot be taken into account anymore. Instead, the calculation
uses general assumptions about resource stability. Calculating joined PDFs is
impossible because waiting jobs are not mapped to resources.

The heuristic algorithm combines the runtime and the resources of each job into
an overall schedule of the machine. When a new job arrives, this plan is used to
determine at which point in time a job can be started. The schedule considers the
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accumulated runtimes of the already planned jobs, the user-estimated runtime of
the new job, and the number of resources.

The heuristic planning approach has the following abilities:

• The system is much more flexible because the planning does not assign
nodes; it just counts free resources.

• The procedure is conservative because the algorithm only estimates the
probability of the job finishing within the planned start and end time. An
SLA violation of one job has no influence on other jobs.

• The schedule is calculated much faster because it does not rely on convolu-
tions.

• The schedule is less fragmented because the scheduler replans the whole
schedule each time a job finishes.

• Replanning allows a steady update of the complete schedule, and even
overbooked jobs can get their full runtime if previous jobs finish earlier.

In summary, the planning is easier to calculate and more flexible.

3.3.2.2 Calculation of the PoS

This section illustrates the calculation of the PoS for the heuristic. The PoS
describes the probability that the job has an execution time that fits into a time-
slot between its specified start and end time.

For the following calculations, we keep the attributes [o, e, x, ω, d, n, λ, µ]. The
set of resources R is missing because it is not known which resources the job
will occupy later. Accordingly, node specific failure rates λr and repair rates µr
cannot be considered anymore either. Instead, a general assumption about the
node stability λ, µ is used.

PoS(j) The probability PoS(j) is, like in Section 3.3.1, defined by the avail-
ability Pavailable(n), the probability Pexecutable(j) that the job is executable, and
Psuccess(min(x, l), n) the probability that the n job’s resources survive the execu-
tion.

PoS(j) = Pavailable(n) · Pexecutable(j) · Psuccess(min(x, l), n)

Pavailable The heuristic does not know where a job will run until it is started.
Therefore, only a generic estimation of the node stability Pavailable(n) is possible.
From the comprehensive approach, we know that the probability that the resources
are available at job-start is the product of probabilities of the single nodes. Where
in the comprehensive case, each resources had an own failure probability, in the
heuristic there is a general one: λ and µ.

Following, the probability that the resources are operational at the start time is
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Pavailable(n) =
n∏
i=1

1

1 + λ
µ

=

(
1

1 + λ
µ

)n

where i = 1, . . . , n is the requested number of resources. Due to the fact that all
nodes have the same failure probability, it is possible to power up the results to
the amount of resources instead computing all equal single results and building
the product.

Pexecutable Another simplification of the heuristic is based on the calculation
of Pexecutable(j). Convolutions are not done anymore. The heuristic only uses
the CDFj of the job itself and the planned job length min(x, l). The maximal
allowed execution time min(x, l) is either the user-estimated runtime x or, in the
overbooking case, the length of the time-slot l.

Pexecutable(j) = CDFj(min(x, l))

Psuccess Psuccess(min(x, l), n) describes the probability that the job’s resources
survive the execution time. Unlike to the comprehensive approach, the used
resources are not known at negotiation time. Therefore, only general assump-
tions about the stability of a cluster’s resources can be made. This leads to a
simplification of the formulas used for calculating the success probability. In the
next paragraphs, you can see that the indexes of the used products are not used
anymore. Each product computes the same value. Therefore, we can just power
up one result to the power of the requested resources.

Weibull Failure Model
When only a general stability assumption of the cluster system is possible the
variables simplify as follows. Here, n is the number of requested nodes.

Psuccess(min(x, l), n) =
n∏
i=1

(
1− e−(

min(x,l)
β

)α
)

=
(

1− e−(
min(x,l)

β
)α
)n

Hyper-Exponential Failure Model
The hyper exponential distributions use generalized groups of exponential distri-
butions for all resources r1, . . . , rn.

Psuccess(min(x, l), n) =
n∏
j=1

(
1−

k∑
i=1

piλie
−λimin(x,l)

)
=

(
1−

k∑
i=1

pie
−λimin(x,l)

)n
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Poisson Process
Each resource has now the same failure rate λ for the job execution. Therefore, a
Poisson process has for n requested resources the following probability.

Psuccess(min(x, l), n) =
n∏
i=1

(
1− e−min(x,l)λ) =

(
1− e−min(x,l)λ)n

This process describes the probability that the job’s resources survive the execution
time. The heuristic overbooking approach was presented in [Birk 11a].

3.4 Runtime Analysis

Here, a runtime analysis of the approaches is given in the Big-O notation. The
runtime of the algorithms is dominated by two factors: The selected placing
routine and the runtime of the PoS calculation.

The acceptance tests are done in O(1) because they compare 2 numbers, the PoF
and the threshold, or the risk and the opportunity.

A convolution has a calculation-runtime that is dependent on the underlying
implementation. The most common used convolution algorithm is the fast Fourier
transformation (FFT). The FFT is applied by the simulation and has a runtime of
O(t log(t)) [Corm 01]. Here, t is the number of steps in the discrete distributions.
However, the estimated runtime of a job and therefore the length of a PDF is
typically limited. The resulting question is; can we assume a constant runtime
O(1) for the calculation (due to the job-runtime limitation) or has the number of
steps t an impact on the calculation-runtime O(t log(t))?

3.4.1 Comprehensive Approach

The placing of the comprehensive backfilling and overbooking is comparable
to the bottom-left strip packing approach. The proven runtime for an efficient
implementation of this approach is O(n2) [Chaz 06].

The runtime of the PoS calculation depends on the calculation of the three terms
Pavailable, Pexecutable, and Psuccess. Pavailable and Psuccess are calculated by a product of
the results of each planned resource and therewith depend on the number of re-
sources k. The runtime of the calculation of Pexecutable depends on the convolution
of the joint PDF of the jobs that are planned directly before. In the worst case,
this may be (n− 1) jobs. However in this thesis, the jobs are exclusively assigned
to the resources and, therefore, the number of parallel running jobs cannot be
bigger than the number of resources k. Thus, the runtime of the PoS calculation
is combined by the runtime of Pavailable, Pexecutable, and Psuccess. The complexity of
building the joint PDF is in O(k).

If we assume the number of resources to be similar compared to the number
of jobs that are typically planned at a time and the length of the estimated job-
runtime to have influence on convolutions, then, the runtime of the comprehensive
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approach would be influenced by the resources O(k), the job placing O(n2), and
the convolutions O(t log(t)). In this case, the theoretical result of the combined
runtime of the comprehensive approach would be O(t log(t)n2k).

If we assume the runtime of the jobs t and the number of resources k to be limited,
then, the runtime would be constant O(1). In this case, the runtime would be
O(n2). Hence, a measurement of the simulation runtime in practice would be
beneficial to compare the approaches.

3.4.2 Heuristic Approach

The heuristic does not place a job on resources directly. Instead, it counts the
occupied resources sorted by time. At job-start, the system decides where the
job should run. This can be done in constant time because the free resources are
known. As a result, omitting resources at planning time reduces the complexity
from 2 dimensions (resources× time) to one dimension (time). In theory, this cor-
responds to a search and update problem that should be solvable in O(n log(n)).

For the implementation in this work, the scheduler holds a list of free resources.
If a new job is put into the schedule, a fitting gap in the list has to be found. This
can be done in linear runtime O(n) and has to be done for each of the n jobs.
This means the placing strategy also has O(n2) runtime.

The runtime of the PoS calculation is also dependent on the runtime needed
to calculate Pavailable, Pexecutable, and Psuccess. However, the calculation does not
depend on the number of resources but can be done in constant time. In addition,
there are no convolutions because only the jobs’ own PDF is used. Therefore, no
FFT algorithm is needed and all PoS calculations have a constant runtime O(1).

If we assume the number of jobs to be dominant compared to the number of
resources, the result of the combined runtime analysis of the heuristic algorithm
would be also O(n2). In this case, both approaches would have the same com-
plexity.

However, in practice the number of jobs that are planned by the provider will be
limited because the jobs will have deadlines that are near their release. Hardly a
customer will accept and pay for jobs that are planned in the far future. Therefore,
in practice the estimated job-runtime and the size of the cluster will have an
impact on the real runtime of the algorithms. However, these factors only affect
the comprehensive approach, thus, the heuristic will very likely be faster. As a
consequence, a closer look of the practical runtime issues is beneficial.

3.4.3 Practical Issues

In practice, the jobs are not known in advance and occur online. This means a
scheduler does not need to deal with all jobs. At a point in time in which the
provider offers his services, not all jobs will have arrived and some were already
completed and gone. Thus, only the actual planned jobs p are counting.
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In addition, the number of resources in modern clusters can be very large1.
Therefore, the number of resources can have an impact on the average runtime.

Further, not the complexity class but the real runtime of the algorithms is impor-
tant. The customer of a resource provider wants a direct feedback. A response
time of one second is acceptable. Five or more seconds may not be acceptable.
For websites, it is shown that most users are willing to wait for only about two
seconds for simple information retrieval tasks [Nah 04].

If the complexity of placing exactly one job is analyzed, the complexity is reduced
to the number of planned jobs p. This means that both overbooking algorithms
have, according to the runtime analysis before, a complexity class of O(p) . In
this case, the runtime that is used for the probability calculation is important. The
complexity for calculating the probability is O(t log(t)k) for the comprehensive
and O(1) for the heuristic approach. If estimating the runtime complexity under
this circumstances, the comprehensive approach is with O(t log(t)pk) worse than
the heuristic with O(p). However in practice, the job-length that influences t will
be limited, the resources are limited, and the planned jobs will very likely not
exceed a certain limit because users will try other providers if they would have to
wait to long for the job execution.

Following, to get a clue whether the assumptions made will be reproducible in
practice, the simulation at the end of this thesis should not only show the impact
of both overbooking algorithms but in addition measure their runtime.

3.5 Market Mechanisms and Overbooking

A resource provider normally applies overbooking transparently. For example,
the customer does not know that his flight company has overbooked his plane
until money is offered to take the next one. Accordingly, overbooking of cluster
resources could be applied transparently to the SLA negotiation.

However, different market mechanisms for computational markets exist. There-
fore, different overbooking strategies might be beneficial. The related work in
Section 2.1.2 shows a brief overview of market mechanisms. These are:

• Auctions

• Bidding and Tendering

• Bartering Models

• Commodity Models

Now, a discussion about the applicability of overbooking to the market mecha-
nisms follows.

Auctions [Nisa 98, Pada 03, Wald 92] are the most frequently used market mech-
anism. Here, the provider of a service might introduce overbooking to offer more

1JUGENE of FZ Jülich has nearly 300,000 cores http://www.fz-juelich.de/
portal/DE/Forschung/Informationstechnologie/Supercomputer/
JUGENE.html

http://www.fz-juelich.de/portal/DE/Forschung/Informationstechnologie/Supercomputer/JUGENE.html
http://www.fz-juelich.de/portal/DE/Forschung/Informationstechnologie/Supercomputer/JUGENE.html
http://www.fz-juelich.de/portal/DE/Forschung/Informationstechnologie/Supercomputer/JUGENE.html
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resources than available. In the auction based overbooking, the price is not fixed
but depends on supply and demand. Therefore with overbooking, a provider might
reduce the price that is offered by the customers due to a virtually higher supply.
As a consequence, the application of overbooking in auction-based markets has
to be applied with caution. However if the user demand is significantly higher or
the own resources are already sold, overbooking should provide extra income.

Bidding or Tendering [Ston 94] are reverse auctions. The customer defines the
price of a service. Here, the provider can calculate the PoS for overbooking for a
job under the actual utilization of its services. If the opportunity (PoS and the fee)
that is offered for the bid is higher than the risk (PoF and the penalty), the bid can
be accepted. In that case, the price is customer defined before. In the long run,
the provider can thus reduce prices on the market because the customer might
have offered a higher bid when no one wanted to accept his former one.

In Bartering Models [Buyy 05], resources are exchanged without the involvement
of money. This means, the impact of an SLA violation can only be measured in
lost reputation. Reputation and its impact on the next trades is difficult to measure.
Consequently, overbooking should only be used for jobs with a minimal PoF. In
addition, different traded goods like storage space of CPU cycles need different
measures for a PoF estimation. If storage space is exchanged and the space is
overbooked, statistics about storage usage are necessary.

Commodity Markets [Amir 98] are markets where the prices are given by a
formula. Overbooking might be included in the functions of commodity markets
by adding terms that allow the application of overbooking. Another way to
include overbooking might be to implement it transparently into the commodity
functions. In case of overdemand, a provider might offer more resources than
he has available. Like all other market mechanisms, overbooking might reduce
the prices because the ratio of supply and demand also influences the formulas.
Overbooking creates more virtual resources and hence the overall prices might
decrease.

To summarize, overbooking can be included transparently into market mecha-
nisms.

This thesis assumes that the overbooking process is transparently applied to the
user. The SLA negotiation is not part of this work. The resource providers can
decide which SLA technology they want to take and which market mechanism
they want to apply by their own demands.

The negotiation can be done through direct communication between users and
customers or over a broker. Based on the offered price for a service, the requested
resources, utilization, and resource stability the resource provider can decide
if he applies overbooking or not. However independent of the market overlay,
overbooking might decrease the market prices.
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3.6 Evaluated Strategies

For the purpose of analyzing the benefits of overbooking, this thesis implemented
four scheduling strategies. The heuristic and the comprehensive overbooking
approach and their corresponding strategies without overbooking were applied.

3.6.1 Conservative Backfilling

Conservative backfilling plans jobs on their resources with the full estimated
runtime. The resources that a job will use are determined at negotiation time. It
is known which jobs are running where and when. This allows using stability
estimations for the specific resources. Consequently, the PoF calculation process
is very accurate. The conservative backfilling does not release nodes at job end
but at the end of the user-estimated execution time. However when a job can fit in
a gap in the plan, it is backfilled and planned at the earliest possible start-point.
Only gaps of sufficient size are used. The backfilling is conservative because no
already planned job is delayed.

3.6.2 Comprehensive Overbooking

The comprehensive overbooking works on the same basis as the conservative
backfilling. In case the comprehensive overbooking approach tries to overbook a
job, the PoF is calculated according to the comprehensive overbooking strategy.
A promising gap is selected due to a given placing strategy and acceptance test.
When a job ends, its resources are freed even when the user-estimated runtime
was not fully consumed. It is then checked if any of the planned jobs can start
earlier on the freed resources.

3.6.3 Heuristic Planning

Heuristic planning counts the available and already planned resources and checks
whether or not a job can be executed with its requested resources and full estimated
runtime. Resources are not assigned to jobs at planning time. Instead, the
heuristic counts the free resources in a given time plan and, based on this plan,
can determine when enough resources will be free. This allows a prediction of a
job’s start and end time but does not contain information on which resources a job
will run. The used resources are selected at job start. When a job ends earlier as
user-estimated, the plan is rescheduled. This allows jobs to start earlier, prevents
fragmentation of the schedule, and, thus, allows a higher utilization.

3.6.4 Heuristic Overbooking

The heuristic overbooking works similar to the heuristic planning but can assign
less runtime to a job. In case the heuristic overbooking approach tries to overbook
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a schedule, the PoF is calculated according to the heuristic overbooking strategy.
A promising gap is selected due to a given placing strategy and acceptance test.



4 Determination of PDF Classes

This chapter discusses the statistical analysis that provides the basis for estimating
the probability of a successful overbooking. The chapter starts with a brief
discussion of the possible job attributes that can be used for the creation of
statistics. Thereafter, an exemplary analysis of user estimations of traces from
the Arminius Cluster in Paderborn is shown. The chapter is completed by a user
survey that was designed to reveal how the users of Arminius estimate their job
runtimes.
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4.1 Correlating Attributes

Preventing SLA violations is the most important task when applying overbooking.
Accurate predictions about the runtime-estimations are key factors to be profitable.
At a first glance, an analysis of runtime-estimations and real execution-times
shows that the job durations are on average overestimated by a factor of two
to three [Stre 03]. Other related work shows that the distribution of the actual
maximum runtimes seems to be uniform. Depending on the trace, 15% to nearly
30% of jobs are underestimated [Mual 01]. The RMS kills them after the SLA-
guaranteed runtime.

To obtain appropriate predictions about the overestimated runtime, job obser-
vations on clusters and an analysis of the user-committed SLAs are necessary.
If enough monitoring data is available, the following question arises: How can
statistical information about actual job runtimes be used to efficiently overbook
machines?

Related work shows two approaches to estimate runtime. The first approach
focuses on user estimations, and the other one tries to automatically generate the
estimations, based on previously measured application runtimes.
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In this dissertation, the users estimate their job runtimes and the overbooking
algorithms try to evaluate the estimation quality based on statistical information.
To find convincing statistics, the jobs were classified by the following attributes:

1. Runtime-Estimation Analysis The basic analysis could be about the relation
of estimated to real runtimes. The question is, how accurate is the user
estimation ability, and further, is the estimation quality dependent on the job
length, i.e. are longer estimated jobs estimated better [Down 99, Feit 95]?

2. Requested Resources Analysis Another anchor point could be the analysis
of correlations between the resource consumption of jobs and the estimation
accuracy.

3. User Runtime Analysis Better results could be achieved if the runtime-
estimation analysis is done on a user basis. Users often submit the same
applications with similar input and similar runtime. However, for a user
specific analysis, many previous jobs of the users have to be collected. This
approach is not possible for new users.

4. Application Runtime Analysis In addition, an application-oriented statistical
analysis of monitoring data could be applied. This analysis can identify
correlations of overestimations and specific applications. Performed studies
[Gibb 97, Down 97, Smit 98] show that automatically determined runtime-
estimations based on historical information can be better than the user’s
estimations. Enough data has to be available to allow such an analysis.

5. Combined Runtime Analysis In addition to the runtime-estimation, re-
sources, user, and application analysis, another way could combine the
approaches in order to identify specific correlations.

For all methods, the selected jobs have to be analyzed, and their behavior has to
be described by the corresponding probability density functions.

In case the statistical interpretation shows that a user made accurate estimations,
the scheduler should not use his jobs for overbooking. If the statistic shows
that another user underestimates the runtime, the scheduler might even assign
more runtime to avoid job kills. If the statistic shows that some users tend to
overestimation, their jobs are promising for overbooking.

4.2 Analysis

This section presents the results of the interpretation of job traces of the Arminius-
cluster in Paderborn. The analysis is the basis for the creation of different PDF
classes. The Arminius cluster had 200 nodes, each with dual core Xeon CPUs and
4 GB RAM. OpenCCS managed the cluster system. Every user had to provide a
runtime-estimation when submitting a job. OpenCCS does not log single entries
for a job in the log-files, but different entries for different events. Each standard
event, SUBMIT, CHTIME, ALLOC, EXEC, or FREE has its own entry.

• A SUBMIT entry is logged when a user inserts a job into CCS.
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• A CHTIME entry is logged when a user changes the estimated duration of
a job.

• An ALLOC entry is logged when the resources are allocated.

• An EXEC entry is logged when a job finishes. This entry contains the real
runtime a job needed.

• A FREE entry is logged when the resources are released.

For parsing the traces, the distributed log entries needed to be combined because
different information is needed for building the statistical analysis.

• Submit-time (job occurrence) (from the SUBMIT log entry)

• Estimated execution-time (from ALLOC or, if existing, CHTIME)

• The user (from SUBMIT)

• Requested resources (from SUBMIT)

• Start-time (from ALLOC)

• The executable (from EXEC)

• Real execution-time (from EXEC)

The users can adapt the reserved runtime-estimation during their job’s run when
they recognize that the job would otherwise be killed. Each adaption is logged by
a CHTIME log entry. When one or more CHTIME commands adapt the runtime-
estimation, the last runtime-estimation is taken as input for the statistics. If no
CHTIME event occurred the runtime-estimation is collected from the ALLOC
entry. Taking the latest runtime-estimation entry statistically means that the users
created better estimations as they really did. The fact that they adapted the runtime
during a job’s execution means that they miss-estimated the runtime before.

Two kinds of reservations in OpenCCS cannot be used for analyzing the user
estimation quality.

• OpenCCS allows empty advance reservations. This means a reservation
does not necessarily have a job (an EXEC entry). The entry is missing
when the user interactively works on the nodes and starts jobs himself via
the command line. In such a case, there is no real execution-time logged.

• The other subset of reservations that cannot be used are reservations with
more than one EXEC command. A user can reserve nodes and start jobs
on the reservation with a specific CCS command. In this case, many real
runtimes occur for a reservation for only one estimated runtime.

In both cases, the system has to provide the full estimated runtime for the reser-
vation. Overbooking is not even possible when the advance reservation remains
unused because the user might access the reservation at its end. In the following,
the advance reservations were ignored for the Arminius analysis.

Clustering Estimations For the analysis of the user runtime-estimations, the
Arminius traces from 2007 were used. The investigated job classes were:
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• Runtime classes: The question is if grouping jobs into different classes of
estimated runtime helps to get more precise PDFs. For example, longer
running jobs might be better estimated.

• Resource classes: Is grouping jobs into classes according to the requested
number of cluster nodes beneficial? The underlying assumption here is that
jobs with more resources might be better estimated.

• Application classes: There are several kinds of applications: some have
the same runtime, for others the runtime depends directly on the input, and
there are still others where it is uncertain how long a job will take. Grouping
jobs into classes according to the used applications might be an advantage
for the PoF estimation accuracy.

• User classes: There are users that try to estimate the runtime for every job,
and there are users that always estimate a too long runtime to be sure that
the job has enough time to finish. Therefore, an analysis based on different
users themselves might also provide good results.

Table 4.1: Runtime of Arminius’ jobs in 2007 in seconds
Jobs 33,318

Total Runtime 571,256,953
Total Estimated Runtime 1,013,932,300

Average Runtime 17,145
Average Estimated Runtime 30,431

This chapter finishes with the summary of a survey that asked the most fre-
quent users about their estimations and whether they would profit from statistical
interpretations of their estimation quality.

4.2.1 Runtime

This section presents the time analysis on the basis of different types of runtime-
estimation classes. The first task was the definition of the time-frames to get
an adequate classification. On the one hand, a fine granular classification with
many classes might lead to a better estimation process. On the other hand, a class
needs a measurable amount of jobs for the statistical interpretation, otherwise the
resulting PDFs have a weak expressiveness. A short overview led to the following
time-frames for the estimated runtime: x < 10 minutes, 10 minutes to 1 hour, one
hour to 2 hours, two hours to 3 hours, three hours to 5 hours, five hours to 12
hours, and more than 12 hours. Table 4.2 summarizes the jobs belonging to the
classes.

Figure 4.1 shows the probability density functions that were created based on the
jobs of the Arminius system and filtered according to the eight runtime classes.
Figure 4.2 shows the corresponding cumulative density functions.

An ordering of the CDFs according to the estimation quality is difficult because
many of the CDFs are overlapping and consist of a number of very early ending
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Table 4.2: Runtime-estimation classes and the belonging jobs
Timeframe Number of jobs

under 10 minutes 5,685
10 minutes to 1 hour 5,806
one hour to 2 hours 1,070
two hours to 3 hours 827

three hours to 4 hours 11,945
four hours to 5 hours 814
five hours to 12 hours 3,770
more than 12 hours 3,401

jobs and also a number of very late ending jobs with less jobs in between. The
resulting curve of such a class of jobs is increasing very fast at the beginning and
also increases very fast at the end but has a very low pitch in the middle.

However, a class with a huge number of jobs with a real-runtime near the runtime-
estimation, can be counted as good. This means that the curve increases slowly
at the beginning and more rapidly at the end because well estimated jobs are
finishing near the end of the estimated runtime. A fast increasing curve (like the
three curves for the classes of jobs under 10 minutes, jobs of 10 minutes to 1 hour,
and jobs of one hour to 2 hours estimated runtime) symbolizes classes where are

Figure 4.1 The resulting PDFs from the runtime-estimation analysis.
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Figure 4.2 The resulting PDFs from the runtime-estimation analysis.
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a huge amount of jobs is ending very early. Over 50% of these jobs use less than
10% of their estimated runtime.

The analysis of the Arminius data shows that the assumption that longer estimated
jobs are estimated better does hold. Of the jobs with a runtime-estimation of
more than three hours, more than the half need more than 80% of their estimated
runtime.

The class of jobs from two to 3 hours shows an interesting result. Here, a
measurable amount of jobs ended between 50 to 60 percent of the runtime-
estimation.

Organized according to the estimation quality, the best estimated jobs are: over
12 hours, three to four hours, five to 12 hours, four to 5 hours, one to 2 hours, the
class for 10 minute jobs, two to 3 hours, and 10 minutes to one hour.
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4.2.2 Resources

This section presents the resource analysis on the basis of different resource
classes. The classes are build on the jobs number of requested nodes. The classes
are summarized in Table 4.3.

Table 4.3: Resource classes and the belonging jobs
Requested number of nodes Number of jobs

1 Node 7,582
2 Nodes 11,600

3 to 4 Nodes 5,675
5 to 8 Nodes 4,418

9 to 16 Nodes 2,864
17 to 32 Nodes 982
33 to 64 Nodes 131

more than 64 Nodes 66

Figure 4.3 shows the PDFs that were created based on the Arminius trace and
sorted according to eight resource classes. The goal was to find meaningful groups
of jobs with a similar number of jobs in it. This was difficult because there is a
dominating number of jobs with a few resources. Therefore, the classes where

Figure 4.3 The resulting PDFs from the statically analysis about requested nodes.
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Figure 4.4 The resulting CDFs from the statically analysis about requested nodes.
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selected according to requested resources and the resources grouped in borders
by the powers of 2.

The CDFs of Figure 4.4 show that the class of jobs with two requested nodes has
the best estimation quality. The class with three to four nodes contains 50% of
jobs that use more than 50% of the estimated runtime. The class for jobs with
one node has, on the one hand, the biggest amount of jobs that use zero percent
of the estimated runtime but also a measurable amount of jobs that are well
estimated (30% of the jobs use over 50% of the estimated runtime). Such jobs are
inappropriate for overbooking because of their extreme behavior. The reason for
the huge amount of one-node jobs ending with zero runtime is that many test jobs
were executed. They were used to detect if OpenCCS was operational or if the
availability of the overlaying Grid software was monitored by automated test jobs.
The jobs were submitted for one node, the typical 10-minutes default duration,
and only contained a date or hostname command. For overbooking, such test jobs
might be detected and removed because they are submitted without negotiation or
the monitoring daemon is negotiating.

The curves of the other classes are similar. The analysis shows that the jobs with
a small amount of nodes are in tendency better estimated than the jobs with many
nodes.

In practice, similar job-classes could be combined. However, in this dissertation
the classes were kept. For the simulations, also logs of other clusters systems
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were applied and these clusters could have jobs that show more divergent behavior
dependent on the requested resources.

4.2.3 Applications

This section describes the application analysis on the basis of classes according
to different applications. Arminius was a compute cluster frequently used by
scientists. Consequently, it was regularly occupied by applications that were
under development and improved and completed over time. Improved simulations
allow us to get results with an increasing level of detail. This process, however,
may require more runtime according to the increasingly complex calculations.
On the contrary, the runtime might decrease due to more efficient algorithms or
data structures.

As a consequence, grouping the jobs into classes of executables might lead to
many possibly imprecise classes. As a result, classes for bigger groups of jobs
were necessary. A very interesting idea is the use of classes for different workers.
OpenCCS allows the creation of workers for special kinds of jobs. These workers
define the execution environments for applications. Thus, the workers ease the
usability of the cluster system. The workers were used to group jobs into different
classes and these classes were used for the statistical interpretation.

Figure 4.5 The resulting PDFs from the statistical analysis of requested workers.
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Figure 4.6 The resulting CDFs from the statically analysis about requested work-
ers.
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There are workers for applications like g03, abaqus, openfoam, or starcd, and
there are workers for execution environments like scampi, mpich, mvapich, shell,
or pshell. Table 4.4 summarizes the workers and their submitted jobs. Figure

Table 4.4: Workers and the belonging jobs
Worker Number of jobs belonging to the worker
scampi 22,635
mpich 3,447
starcd 3,017
shell 1,767
g03 1,325

mvapich 455
pshell 306

openfoam 153
mvapich 455

4.5 shows the PDFs that were created based on the workers of Arminius. Figure
4.6 shows the corresponding CDFs. Scampi is the best estimated execution
environment. Openfoam only has a small amount of really badly estimated jobs,
while mpich has over 60% of jobs that use less than 1% of their runtime-estimation.
Overall, the worst estimated workers were mpich and pshell.
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4.2.4 Users

This section provides the results of the user analysis on the basis of different users
and their estimation abilities. Arminius was utilized by 112 different scientists in
2007. Some of them submitted a huge amount of jobs and some only very few.
Statistics are more conclusive when they are based on many jobs. Therefore, the
top 10 users were selected for analysis. They submitted 22923 jobs that represent
69% of all jobs in 2007. Table 4.5 summarizes the analysis of the top 10 users.

Table 4.5: Top 10 users and their jobs
Worker Number of jobs submitted from the user
user 1 11,480
user 2 2,821
user 3 1,830
user 4 1,524
user 5 1,247
user 6 1,205
user 7 1,130
user 8 1,115
user 9 750

user 10 740

Figure 4.7 shows the PDFs and Figure 4.8 the corresponding CDFs. User 1
submitted over 11,000 jobs, almost one-third of all jobs. He estimated very well
compared to other users. The following user survey revealed that his program
supported checkpointing. As a consequence, he did not care about a job-kill in
case of overestimation; the job could be restarted from its last checkpoint. Users
like him have to be treated carefully when overbooking is applied or such users
and their jobs might be excluded from overbooking. The number of jobs he
submitted is so high that the shape of the curves can also be seen in the other
classes his jobs fall into.

In addition, 80% of the jobs of user 6 use between 45% and 60% percent of their
runtime-estimation. Such users are more reliable for overbooking. User 5 has
a nearly uniform looking PDF and according an almost linear increasing CDF.
The users 4, 7, 8, and 10 have similar distributions. The users 2 and 3 have the
worst estimations. User 2 greatly overestimated the runtime, over 95% of his jobs
ended directly at their start-time.

4.2.5 Conclusion

The very divergent statistics for the different categories indicate that the chosen
categorization will be useful. They reveal the greatly varying behaviors of jobs
for the different classes. Knowing the behavior of highly specialized classes
of jobs allows us to create far more precise probability density functions and,
consequently, more precise estimations of the probability that a job will finish in
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Figure 4.7 The resulting PDFs from the statistical analysis of the users.
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a given gap. Therefore, the chosen classes seem to be promising in supporting
overbooking with accurate PoS estimations.

However, a number of different classes contain jobs with a similar behavior. The
distinction of the jobs in these classes is not very useful. The classes could be
combined or a new partitioning could create more expressive results. Nevertheless,
in this dissertation the classes were kept. For the simulations, also logs of other
clusters systems were applied and these clusters could have jobs that show more
divergent behavior.

Concluding, the user CDFs show the highest spreading of the curves. As a conse-
quence, this analysis might be best to apprehend and map divergent estimation
qualities. Somehow, this seems to be obvious because an analysis cannot be more
specific as focussed on one user. Such analyses are the best fitting statistical
inputs for the overbooking algorithms. Therefore, overbooking might be most
promising with the PoS calculation based on this classification. However for users
with little jobs or new users, using such a specific analysis is not possible. For
them, a more general assumption has to be used.

The simulation of the overbooking strategies will reveal which classification might
be most useful.
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Figure 4.8 The resulting CDFs from the statistical analysis of the users.
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4.3 User Survey

As an extension to the analysis of the user runtime-estimation abilities, a survey
asked the users of 2007 about how they estimate their job’s runtime.

The users were asked if and how they estimate runtimes, what kind of applications
they use (HTC, massively parallel, long running, batch), if they develop the
used applications themselves, if they use one or many applications, and if their
applications are dependent on each other. Further, the survey asked them about
the reasons for their runtime-estimation and if they use checkpointing. At last,
the study asked if the users would profit from a statistical interpretation of their
runtime-estimations. The top 40 users were queried and 16 surveys came back.
Table 4.6 shows the results.

From the top ten users in 2007, five filled out the survey. Of the five surveys, two
were from the best estimating users. Both use applications with an embedded
checkpointing mechanism, where a restart of a job is possible. This indicates that
applications will have better estimated jobs. Thus, overbooking should be used
with caution for those users.

The result indicates that checkpointing allows jobs to more likely use their full
runtime. As a consequence, applications with checkpointing should only be
overbooked very carefully.
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Table 4.6: Summary of the user survey.
Answers 16

use third party software 8
use self developments 10

HTC/batch jobs 7
massive parallel jobs 10

long running jobs 6
Runtime of test jobs

short 3
variable 3

long 0
very long 0

Runtime of jobs
always the same 1
often the same 4

no idea 1
rarely the same 7
never the same 1

If more than one application is used, how frequently is it changed
rarely 4

dependent on project 5
parallel execution 0

rarely dependent on results 1
frequently 0

Is checkpointing possible
no 4

no and I miss it 0
yes, but I do not use it 1

yes, rarely I use it 2
yes, I use it frequently 9

How do you estimate the runtime of your jobs
I always book the same time 3

trial and error 0
overestimation 5

I use checkpointing and re-start from checkpoint
if it was underestimated 3

I know the runtime from the last runs 2
other estimations 3

Profit from statistical analysis of the job runtimes
yes 5
no 11

Other interesting observations are that more than half of the users developed their
application themselves (10 out of 16) More than half of the users’ jobs were
massively parallel (10 out of 16). When checkpointing is available, users tended
to use it (9 out of 12).
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The analysis of the user estimation abilities presented here is based on the scientific
users and traces of an academic compute provider. OpenCCS operates at best
effort, this means that a user has no guarantees that the job will be executed.
OpenCCS plans the jobs and offers the user a defined start date, but in case the
cluster system crashes, the user’s job will be replanned once the cluster system is
available again.

The users were allowed to use the cluster system based on their scientific projects.
They did not have to pay for an execution. This might have encouraged them
to overestimate the resources because they only wanted to make sure that their
jobs were not killed due to a deadline. An indication for this assumption is that
most users thought that they would not profit from an analysis of their runtime-
estimations. The users were happy with the state of the art process. However, if
the users had to pay money, they might try to buy tighter runtime bounds. As a
consequence in a commercial scenario, the jobs might be estimated better.

Depending on the application, the survey indicates that for some users a better
estimation process might be possible. Four out of 16 answers said that the runtime
of jobs can be estimated well and one answer said that his application always
needs the same runtime.

However, 9 out of 16 answered that the runtime is not assessable. Even in a
commercial scenario, this group of users will further tend to overestimate.

Conclusion What do we learn from the survey? First of all, 16 answers are
not sufficient for a survey to get a broad knowledge about user estimation abilities.
However, some conclusions can be extracted.

When the used applications support checkpointing, the probability that jobs will
take their full runtime increases; such jobs should be overbooked more carefully.

In scientific environments, the users do not care much about their estimation
quality and, consequently, are not interested in a statistical analysis of their
runtime-estimations. This behavior might change in a commercial environment
where the users have to pay for their estimated runtime. Accordingly, they might
estimate better. As a consequence, the results of the simulations of overbooking
clusters might not directly be applicable to the commercial case.

However, the log traces from non-commercial clusters can still be conclusive and
give an idea. Even in the commercial case, a broad number of customers (in the
survey 56%, or 9 out of 16 cases) would overestimate their jobs because they have
no or little idea about the requested runtime. As a consequence, they would still
have to overestimate their job-runtimes to be sure to get the results.
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5 Simulation Environment

The simulation environment was designed to evaluate the benefits of the overbook-
ing approaches. This chapter discusses the used parameters first. It is described
which parameters can be taken directly from the input sources, which are adjusted,
and which are created. Secondly, the implementation of the simulation environ-
ment is shown, including the used data structures and the event system. At last,
the section presents the implemented placing routines first fit and best fit.
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The proposed overbooking algorithms need to be evaluated to know their value for
cluster providers. A theoretical proof of the quality and abilities of mathematical
models serves this purpose. However when looking into real job data, no suitable
underlying statistical function was found that could have been the basis for a
mathematical proof. Consequently, a simulation should evaluate the abilities of
the overbooking algorithms on the basis of real job traces. The simulations used
two sources of real world job traces.

The first one is the Parallel Workload Archive (PWA) [Feit 10]. Here, many job
traces of various, mostly scientific compute providers are listed. These traces are
frequently used to create evaluations of new scheduling ideas and algorithms. The
traces should allow comparing the simulations of this dissertation to simulations
in related work. The traces of the workload archive are an important source of
job traces in the field of scheduling simulations. However, the job information
of the traces is condensed. Some information, like used applications or users,
are reduced to numbers. As a consequence, a suitable grouping of these kinds of
information is not possible.

Therefore, job-traces of the PC2’s own cluster Arminius were applied additionally.
This allows asking the cluster operators about job behaviors or just querying
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Table 5.1: Job Creation Model

Variable Description

x requested job length from job traces

ω real job length from job traces

o occurrence time adapted from job traces

e earliest allowed start equal to the occurrence time

d deadline o+ 2x

n requested resources from job traces

λ failure rate from failure archive

µ repair rate from failure archive

the users about the ways they estimate the job runtime. The user-survey was
described in Section 4.3.

5.1 Simulation Parameters

Basis for the simulation are the job information that were retrieved from the job-
traces. Most attributes and parameters were directly extracted and used. However,
some attributes had to be adjusted because the simulations need a high load of
jobs. In addition, deadlines had to be created; otherwise overbooking could be
done without any risk.

5.1.1 Simulation Input

The following paragraphs describe the used information for the simulation input.
The description starts with the directly selected information, describes where the
simulation adjusted job information, and finishes with the information that had to
be guessed because they were not contained in the job traces. Table 5.1 shows the
simulation’s job data.

Selected Job Information

For each job, the directly selected information were the user-estimated runtime
x, the real runtime ω, and the number of resources n. Not listed in the table but
extracted for the simulation were the user and the used executable.

The failure and repair rates of the resources were not contained in the job traces.
The failure archive from the Los Alamos National Laboratory [Los 11] was used
as an alternative source. To be comparable, the same failure traces were used for
every simulation run (LANL traces 18 and 19 ). Both traces had 1024 cluster
nodes. Therefore, it was possible to simulate up to 2048 different resources. For
clusters with more resources, the simulation started for the 2049th node at the first
LANL node again. According to the LANL traces, the failure rate was defined as
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λ = 1.2904 · 10−4 and the repair rate as µ = 0.4333. These values are used as the
statistical assessments of the resource stability.

Adjusted Job Information

In practice, job submissions are bursty. As a consequence, the occurrence times o
from the traces should be used to preserve the natural behavior. Unfortunately, it
is shown by the traces in the Parallel Workload Archive [Feit 10] that clusters are
not fully utilized during the complete runtime and the utilization varies, depending
on the trace, between 10.7% and 83.5%. To create an overload, the occurrence
rate of the jobs had to be increased. To reach this goal, the occurrence times of the
jobs were adjusted by a fixed factor that was determined for each simulation run.
The adjusted occurrence times created an occurrence speed of jobs that would
create 200% cluster utilization if all jobs would use their full estimated runtime.
The resulting overload allows evaluating the overbooking strategy.

Generated Job Information

The simulation requires a deadline for each job. Such a deadline was not avail-
able in the job traces because a cluster normally operates on a best effort basis.
Therefore, the deadline had to be guessed. It was assumed that users would not
pay money for a job if they would not get a defined QoS in terms of a guaranteed
job end. A user wants his job to be executed as fast a possible. Consequently if
the provider will not be able to provide an early deadline, the user will choose
another provider even if it costs more money. For the simulation, the deadline
was defined to be twice the estimated runtime (d = o+ 2x).

The simulation environment allows to define a release or earliest-start time for
a job. The release time is normally as soon as possible. However, in practice
it might be in the future because a job can have dependencies to other jobs or
just needs time for the stage-in of huge amount of input data. This release time
is not part of the traces. Therefore, it had to be guessed. For a simplification
of the simulation, it was assumed that the release would be as soon as possible.
Therefore, it was set to the occurrence time (e = o). For future work, it is however
possible to define release times in the future. The simulation is capable of such a
task.

Information about SLA charges/fees and penalty are also not contained in the job
traces. However in SLAs, this information is paramount. The fee for a successful
job execution describes the profit for the provider, and the penalty must be paid if
violating the deadline.

Due to the distinct market mechanisms described in Section 3.5, fee and penalty
of an SLA could be defined based on the requested resources, the ratio of supply
and demand, or the user can describe it himself. A realistic guess about the height
and the ratio of fees to penalties is important because the results are dependent
on this assumption. The challenge here is, that even the actual commercial cloud
providers like the Amazon EC2, demand fees for the use of their resources but do
not offer any penalty for a violated SLA1.

1Amazon EC2 Cloud Pricing: http://aws.amazon.com/en/ec2/#pricing

http://aws.amazon.com/en/ec2/#pricing
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Table 5.2: The used traces for the PWA simulations
Trace Resources Jobs Complete Util. Jobs/statistics Input Util. Occurrence Factor
CTC 430 79,302 66.2% 31,509 29.67% 0.15

HPC2n 240 527,371 72% 181,121 20.18% 0.1
LANL 1024 201,387 75.2% 50,956 51.4% 0.26

SDSC-BLUE 1152 243,314 76,2% 138,553 23.5% 0.1175
SDSC-DataStar 1664 96,089 62,8% 30,708 21.54% 0.1

SDSC-SP2 126 73,496 83.5% 17,060 62.14% 0.3107

Therefore, in the simulations with PoF thresholds, the simulation environment
defines the fee and penalty, based on the requested resources’ quantity, as one
virtual coin (VC) for each booked CPU hour (fee = penalty = nx). For the risk
based simulation, it was decided to run 4 simulations with four different ratios of
fees to penalties. This range of fees to penalties should cover the range from a low
penalty, smaller than the fee, to penalties higher than the fee. The range begins
with a ratio of 1

2
(penalty = 1

2
fee), continues over a ratio of 1 (penalty = fee), and

a ratio of 2 (penalty = 2× fee), and ends with a ratio of 4 (penalty = 4× fee).

5.1.2 Parallel Workload Archive

The archive contains several workload logs. However, not every trace contains
estimated runtimes. These, though, are necessary to evaluate the overbooking
approach. As a consequence, all traces without user estimations were omitted.
From the remaining traces, all jobs without user runtime-estimations or miss-
ing required information were removed before the simulation. The necessary
information were occurrence time, resources, and estimated and real runtime.
Consequently in some traces, so many entries had to be removed that they at the
end had a too low utilization and were not useful for the simulation anymore. As
a result, the traces CTC, HPC2n, LANL-CM5, SDSC-BLUE, SDSC-DataStar,
and SDSC-SP2 were selected for the simulation. The simulation used the last
20,000 jobs of the traces in 20 test batteries of 1000 jobs. The PDFs were based
on the jobs, prior to the 20,000 simulation input jobs.

Job Trace Information Table 5.2 shows the key information of the traces
that were used as simulation input. The first row of the table describes the CTC
trace. The cluster system had 430 nodes and 79,302 jobs that created a utilization
of 66.2%. From the 79,302 jobs every job was removed where information like
occurrence time, resources, and estimated and real runtime was missing. After
removing the not usable jobs, 51,509 jobs remained. 31,509 Jobs were taken
to learn the PDFs. The remaining 20,000 jobs still had a utilization of 29.67%,
thus the occurrence rate of the jobs was adapted by a factor of 0.15 to create
the desired utilization of 200%. This means, the original occurrence time was
multiplied with 0.15. In the traces, the first job has a occurrence time of 0 seconds
and the occurrence time for all following jobs is the real distance in which jobs
were submitted. Multiplying this time with a fixed factor keeps the behavior that
jobs occur in bursts but the jobs occur nearer to each other and thus the utilization
increases. The other traces were treated the same way.



Chapter 5 • Simulation Parameters 77

5.1.3 Arminius

In addition to the simulations with the Workload Archive, a job trace of the
Arminius cluster system was used. The simulation with the Arminius trace used
the jobs from 2007 to create the statistics and the first 60,000 jobs from 2008
to implement the simulation. The jobs were submitted in 60 test-bulks of 1000
jobs. Due to the fact that OpenCCS is a planning based resource management
system, every job contained a runtime estimation. Every job entry that was
missing information was deleted. In addition, every advance reservation and every
submission with more than one executable entry had to be removed.

The Arminius cluster had 200 nodes and 33,318 jobs in 2007 that created a utiliza-
tion of 86.9%. After removing the unusable advance reservations or submissions
with more than one job, 33,245 jobs remained and were taken to learn the PDFs.
From the traces in 2008, 60,000 jobs were taken as input for the simulation. The
average utilization of the 2008 cluster was 91.22%. The remaining jobs lead to a
utilization of 44%; thus, the occurrence rate of the jobs was adapted by a factor
of 0.22.

5.1.4 Acceptance Tests

The simulation uses the two acceptance tests from Section 3.1.3. The applicability
of the overbooking strategies should be shown using the example of commercial
markets with money exchange and scientific environments where no money is
paid.

Acceptance Tests Based on PoFmax The acceptance based on probabili-
ties is applied with increasing PoFmax thresholds. The thresholds were increased,
from PoFmax = 0.05, in 5% steps, to PoFmax = 1. The goal of the PoF based
acceptance test is to show that overbooking can be applied in an environment
where no money is exchanged for instance, in academia. Additionally, the aim is
to find appropriate PoFmax values.

Acceptance Based on Risk and Opportunity The acceptance based on
risk and opportunity applies the equation: Do not accept jobs where the risk (PoF
of the job multiplied by the penalty) is higher than the opportunity (PoS of the job
multiplied by the charge). The simple equation with (Risk < Opportunity) from
Section 3.1.3 could have little influence on the results because nearly the same
value of won money would be lost. Therefore, a SecurityFactor was added to the
equation. The SecurityFactor should ensure that the overbooking was able to win
more money than to loose. The applied formula is shown in Algorithm 5.1.

For the simulations, the chosen SecurityFactor was 2 for the heuristic overbooking
strategy and 4 for the comprehensive strategy. The values were chosen as an
educated guess based on former simulations. The SecurityFactor is a means to
take more or less risk into the overbooking. In practice, it has to be adapted to the
provider’s strategy.
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Algorithm 5.1 Applied risk acceptance test.
if PoS × Charge > PoF × Penalty × SecurityFactor then

accept the SLA.
else

reject the SLA.
end if

5.2 Implementation

This section describes the implementation of the simulation. The simulation was
implemented in Matlab2 because it is a high level programming language with a
broad support of optimized libraries for mathematical calculations. For instance,
the quite frequently used convolutions are supported as functions on the basis of
fast Fourier transformations (FFT).

This section starts with an overview of the used data structures. In the following,
first the event system and then the placing routines for jobs are described.

5.2.1 Used Data Structures

The simulation manages several general data structures. There are structs for
incoming jobs, planned jobs, dropped jobs, successful jobs, and failed jobs. Each
entry for a job contains information about the job-ID, occurrence time, release
time, deadline, estimated runtime, basic PDF, the real runtime, the planned
start time, the calculated PDF, the calculated PoF, a boolean value if the job is
overbooked, the planned finish time, the requested number of resources, and the
number of assigned resources.

In addition, the simulation manages the current plan. It consists of data structures
for the running jobs and the disabled jobs. Disabled jobs were already running
and became disabled because node(s) crashed. These job(s) can be restarted if
there is time available until the deadline. Two lists for the availability of resources
are used to keep track of the node crashes. In the comprehensive overbooking
approach, each resource has its own plan. It is needed because the allocation of
every single node has to be mapped. The plan keeps track of every job that does
or will run on a node. The entry for each job contains the job-ID, start time and
the end time. This allows us to always know which resource is free at each time.

5.2.2 Events

The simulation is steered by an event system. The events are triggered at defined
points in time. Each event has a corresponding procedure that consists of one or
more tasks. The simulation executes the tasks and evaluates the results. Figure
5.1 gives an overview of the events.

2Matlab, http://www.mathworks.de/

http://www.mathworks.de/
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Figure 5.1 The simulation event processing.
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• Node repair

The following describes the functionality of the procedures to handle the events.

Job Occurrence

At job occurrence, the scheduler tries to place the job in the current plan. The
job can start at its release time and has to finish before its deadline. In between
release and deadline, the job can be moved on the resources.

Depending on the scheduling strategy, the job gets is whole runtime (compre-
hensive backfilling, heuristic planning) or it can be overbooked (comprehensive
overbooking, heuristic overbooking). For all strategies, the job is killed at the
start of the next planned job.

To reach this goal, the method detects feasible gaps in the plan. In case of
backfilling or heuristic planning, the gaps have to be the size of the estimated
runtime. For overbooking, the PoF for placing the job in a gap that is too short
has to be calculated. When the PoF is acceptable, the job is selected. Otherwise,
the next gap is selected until no other gap is found. In this case, the job is counted
towards the amount of dropped jobs.

Job Start

When a job start event occurs, the corresponding job is selected. Then, it is
checked whether or not the resources are free. It is possible that there is a lack of
free resources at a planned job-start because some resources might have crashed.
If enough resources are free, the start time is set to the current time, and the job
is assigned to the resources. If not enough resources are free, the job is placed
as a disabled job. Depending on the strategy, jobs on the disabled list can be
delayed or lost. In strategies without overbooking, the whole runtime is assigned
to the job. A job is lost when the time until the deadline is shorter than the user
estimation. In the overbooking scenario, the job can start later when the resource
returns because it can run shorter and still finish before the gap ends.

Job End

If the job is running and the end of the job is reached, the result is determined.

• The job is successful when the end of the actual runtime is reached.

• It is not successful when the next job should start and the job has not
reached the end of the computation. In that case, it has to be killed.

However when the job got the full maximal estimated runtime, the SLA is fulfilled
because the user misestimated the execution time.

• If the job finished successfully, it is counted towards the amount of success-
ful jobs.

• If the job is on the disabled list, it is counted as failed.
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If a following job is scheduled, the start event for the job is triggered.

Node Failure

When a node failure event occurs, it is checked if the node is occupied. If the node
is not occupied, it is just put to the list of crashed nodes. If the node is occupied,
the assigned job is moved to the disabled job-list and the job’s resources are freed.
The heuristic additionally tries to replan the job directly.

Node Repair

If a node repair event occurs, the node becomes part of the amount of available
nodes. The comprehensive overbooking algorithm detects if there is a disabled
job assigned to this node. When there is such a job, its start event is triggered.
The heuristic replans with the additional resource.

5.2.3 Placing Routines

Several placing strategies could be applied to the overbooking algorithms. First
fit (FF), more precisely bottom left first is one of them. The advantage of FF is
that the algorithm is fast because it ends when a gap is found. Only if no suitable
place for a job is found, all possible gaps have to be checked.

On the other hand, best fit (BF) provides better results. However, every possible
time slot hast to be checked to select the best one. For the simulation, FF and BF
were implemented and are described in the following.

First Fit

Figure 5.2 exemplarily shows the applied first fit (FF) placing. Independent
of the overbooking strategies, three steps occur. The differences are that the
comprehensive approach selects resources directly and the heuristic planning
counts nodes overall. In the beginning, a job is selected and the first gap in the
plan is detected.

The first step is the pre-scheduling step, which handles the empty plan as well
as jobs that start before all others. The second case, backfilling, handles the
backfilling part, where the algorithm tries to place the job in between others in
the plan. The last part, post-scheduling, is applied if the job is the last one in
the plan. The transparent blue parts in Figure 5.2 are applied in the overbooking
cases only. They are not used if the algorithms run without overbooking. When
the algorithms found a suitable gap, the job is put into the plan and is accepted.
When a gap is not sufficient, the next gap is searched, selected, and checked. Only
if no suitable gap can be detected, the job is dropped.
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Figure 5.2 The process for the first fit job placing.
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In theory, best fit (BF) provides the better results [John 74b]. For the simulations,
a near BF solution was easily applied.
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Figure 5.3 The process for the best fit job placing.
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The algorithms first try to place a job without overbooking, and only in case this
is not possible, the FF approach with overbooking is chosen. The BF algorithm
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is shown in Figure 5.3. Basically, it first uses the standard algorithm without
overbooking and then the overbooking parts of the FF approach.



6 Evaluation with PWA Traces

This and the next chapter present the abilities of the overbooking strategies. This
chapter shows the results from simulations with job traces from the Parallel
Workload Archive (PWA).
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The different statistical sources for the evaluation of the benefits of overbooking
were defined in the previous chapters. The job parameters like estimated duration,
deadline, or the requested resources were described in Section 5.1 and the PDFs
that were the simulation input origin in Section 3.2 and Chapter 4. The underlying
assumption is that a well-defined input function should have a positive impact on
the overbooking results.
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Overbooking Based on Statistical Runtime Analysis The statistical
runtime-estimation analysis was based on the user job-runtime-estimations in the
PWA. The overbooking strategies were evaluated with the following traces: CTC,
HPC2n, LANL, SDSC-BLUE, SDSC-DataStar, and SDSC-SP2. An important
task for the analysis was grouping jobs in appropriate classes based on their
estimated runtime. The following timeframes of the estimated runtime were used:
under 10 minutes, 10 minutes to 1 hour, one hour to 2 hours, two hours to 3
hours, three hours to 5 hours, five hours to 12 hours, and more than 12 hours. The
runtime-classes were defined and discussed in Section 4.2.1.

Overbooking Based on Statistical Resource Analysis The second
analysis was based on the requested resources. The same traces from the runtime-
estimation analysis were applied for the resource analysis. The statistical analysis
was based on grouping jobs according to the amount of requested resources. The
following resource groups resulted: 1 node, 2 nodes, 3 to 4 nodes, 5 to 8 nodes,
9 to 16 nodes, 17 to 32 nodes, 33 to 64 nodes, and more than 64 nodes. The
resource-classes were defined and discussed in Section 4.2.2.

Evaluated Planning Strategies To reveal the benefit of the overbooking
approach, the four scheduling strategies introduced in Section 3.6 were imple-
mented.

• Comprehensive Backfilling

• Comprehensive Backfilling with overbooking

• Heuristic planning

• Heuristic planning with overbooking

For the evaluation, two different acceptance tests were applied

• one on the PoF threshold and

• one on the risk assessment

The results of the simulation are either the number of successful or failed jobs
or the amount of sold compute power. The sold compute power is the number
of resources multiplied by the booked runtime in hours. The compute power is
counted in virtual coins (VCs). Each virtual coin corresponds to an estimated
resource usage hour.

6.1 CTC

The first simulation was based on the Cornell Theory Center (CTC) trace from the
PWA. The cluster system had 430 nodes and 79,302 jobs that created a utilization
of 66.2%. From the 79,302 jobs, every job that was missing information like
occurrence time, resources, and estimated and real runtime was removed. After
removing the unusable jobs, 50,000 jobs remained. From this jobs 30,025 were
selected to learn the PDFs. The remaining 20,000 jobs still had a utilization of
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29.67% according to the runtime-estimations. Thus, the occurrence rate of the
jobs was multiplied by a factor of 0.15. Therefore, the jobs occur about 6.6 times
faster as in reality. This factor increases the estimated utilization to 200% (if all
jobs would need the full estimated runtime). This overload allowed the evaluation
of the overbooking strategies. In the following simulations, the other traces were
treated the same way.

Figure 6.1 The runtime-estimation analysis of the CTC trace.
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Input Statistics Figure 6.1 shows the CDFs calculated from the statistical
runtime-estimation analysis of the CTC trace. These CDFs, or more precisely the
corresponding PDFs, were the input for the first part of the simulation. It was
based on user runtime-estimations. The line plots describe the different runtime
classes. In the legend, the number behind each entry shows how many jobs were
assigned to this class. The line for Runtime of one hour to 2 hours (2,455 Jobs)
starts at 0.3. This means that in this group three out of ten jobs ended directly
at the beginning of the execution. In contrast, the jobs with a Runtime under 10
min (6,351 Jobs) used at least 8% of their estimated runtime. The last line in the
legend shows the distribution over all jobs (30,025 Jobs).

Figure 6.2 shows the functions that were created by the amount of booked re-
sources. These CDFs were the input for the second part of the simulation.

When comparing the CDFs, one can see that the spreading of the plots for the
runtime-estimation based CDFs seems to be wider than that of the resource CDFs.
As a consequence, the use of functions from the runtime-estimation analysis
might produce better results for the simulation.
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Figure 6.2 The resource analysis of the CTC trace.
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Table 6.1: The PoFmax gain with the CTC trace.
PoF simulation runt. est. plus PoFmax resources plus PoFmax

Comp. backfilling 14,260 14,260
Heuristic planning 23,860 23,860

Comp. overbooking 23,300 63% 0.1 23,110 62% 0.6
Heur. overbooking 28,280 19% 0.15 27,330 15% 0.6

6.1.1 PoF Acceptance Test

This section presents the results of the simulation with the acceptance tests based
on the PoFmax threshold. For this and the following PWA traces, the simulation
started with the two, before mentioned, statistical analyses based on the booked
runtime and the chosen resources. Table 6.1 summarizes the maximum gain for
both simulations. The first column lists the evaluated strategy. The second column
shows the maximum result of the simulation with the runtime-estimation based
simulations. This maximum result is the average value of the 20 simulation runs
for a given PoFmax threshold. This threshold is written in the 4th column. The
third column shows the surplus of the overbooking strategies in percent. The
columns 5 to 7 show the corresponding results of the simulations based on the
resource CDFs. Now follows a discussion of the results in more detail.
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Results of the Runtime-Estimation based PDF simulations The input
statistics for the simulations were those illustrated in Figure 6.1. The achievable
jobs of the simulation with 20 test batteries of 1000 jobs are pictured in Figures
6.3 and 6.4.

Figure 6.3 (a) contains eight lines. Four lines for the successfully executed jobs
and four lines for the failed ones. The x axis of the figures describes the PoFmax

threshold. It was increased in 5% steps from 0.05 to 1. The transparent error areas
around the values are 95% confidence intervals. The y axis shows the number of
jobs.

For the successful jobs, two lines, one for the heuristic planning and the other for
the comprehensive backfilling, are horizontal and never change. This is due to
the fact that these two strategies do not overbook jobs and also do not consider
the results of a PoF calculation. A job is accepted when it completely fits into a
gap. One can directly see that the heuristic allowed a more profitable result than
the comprehensive backfilling approach. The reason is that the heuristic replans
all jobs after each job’s end and, consequently, can accept new jobs when others
ended earlier. The comprehensive backfilling assigns the resources to their jobs
for the entire booked runtime. The comprehensive backfilling accepted 330 and
the heuristic planning 600 of 1000 possible jobs.

Two other lines for the successful jobs are for the two overbooking strategies. The
successful jobs changed depending on the PoFmax. In the beginning, the number
of successfully executed jobs increased with a higher accepted PoFmax because
new jobs could be accepted and the maximum failure probability was low. The
accepted jobs were successful. Eventually at a certain threshold, the number of
successful jobs decreased. This could be caused by two reasons. On the one hand,
additional jobs were accepted, but due to the higher PoFmax it was more likely
that they fail and, on the other hand bigger jobs with more resources and therefore
a higher PoF were accepted. These bigger jobs prevented the acceptance of other
smaller ones. Consequently, the overall number of successful jobs fell. For the
comprehensive overbooking, the most jobs were accepted with a PoFmax of 0.15
(See Figure 6.3(a)). For the heuristic overbooking, the number of jobs increased,
and from PoFmax of 0.45 on, it was relatively stable. It varied within the 95%
confidence interval. The maximum number of successful jobs for the heuristic
was 680 out of 1000 and for the comprehensive overbooking, it was 740.

For the failed jobs, the lines for heuristic planning and comprehensive backfilling
never change. A job that is not overbooked fails because one of its resources
crashed. In this simulation, nearly no job failed this way. For both overbooking
approaches, the number of failing jobs steadily increased. This was caused by the
failing jobs that were accepted with higher PoF. The amount of failed jobs of the
comprehensive approach was always higher than the amount of failed jobs of the
heuristic.

Figure 6.3(b) shows the difference of the successful minus the failed jobs. As
mentioned above, the non-overbooking strategies did not change. For the over-
booking strategies, the number of jobs increased in the beginning with increasing
PoFmax due to a higher number of accepted and successful jobs. It then fell
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Figure 6.3 CTC: Jobs with PoF acceptance test and runtime-estimation based
PDFs.

(a) The successful and failed jobs of the CTC trace.

(b) The difference of successful and failed jobs.
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Figure 6.4 CTC: Profit and penalties with PoF acceptance test and runtime-
estimation based PDFs.

(a) The fees and penalties of the CTC trace.

(b) The gain.
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because more of the newly accepted jobs were failing or fewer but bigger jobs
were accepted. For the comprehensive approach, the maximum number of these
jobs was at PoFmax = 0.05 and then steadily fell. For the heuristic overbooking,
the number of jobs in tendency increased until an PoFmax = 0.45 and afterwards
tended to fall until a PoFmax = 0.95. From this value on, the number of jobs fell
straight. Interestingly, the plot does not behave monotonic (firstly increasing and
then falling). Instead, it fluctuates albeit in the borders of the confidence intervals.
This means that sometimes bigger jobs were chosen that allowed a higher utiliza-
tion. A higher amount of simulation runs should create fewer fluctuating curves.
However, due to the limited amount of jobs in the traces this was not possible for
the PWA based simulations. The Arminius based simulations in the next chapter
used more jobs.

More important than the number of jobs is the generated profit of the strategies.
The y axis in Figure 6.4(a) shows the fees in virtual coins for successful jobs and
the penalties for the failed. A virtual coin (VC) is one booked node hour. Figure
6.4(b) shows the gain (fees - penalties).

The successful jobs and fees of the overbooking approaches show an interesting
difference. While the successful jobs only increased in the beginning, the fees
always did. This means that due to a higher PoFmax not more but bigger jobs
were accepted. The bigger jobs had a higher failure probability because they used
more resources for a longer time. They were accepted with a higher PoFmax and
prevented the acceptance of some shorter jobs that were accepted before. While
in Figure 6.3(a) almost no jobs seemed to have failed due to resource outages,
one can see that there were jobs that failed by the penalties that had to be paid for
them.

Figure 6.4(b) points out the combined gain (fees - penalties). For the non-
overbooking strategies, the gain did not change. For the overbooking strategies,
the gain increased in the beginning due to the higher amount of successfully ac-
cepted jobs, and after the peak value, the gain fell because more of the additionally
accepted jobs were failing.

This indicates that the underlying statistical functions were accurate and the PoF
of the jobs was well estimated. With a low threshold, most additionally accepted
runtime was successfully sold and when the accepted risk became too high, more
and more additionally accepted runtime failed. If the underlying statistic would
not have been accurate, the shape of the plot would be different. If the PoF would
be underestimated, the additional accepted jobs would fail at the beginning and
the gain decrease because the strategy would be too offensive. If the PoF would
be overestimated, no additional runtime would be accepted at the beginning or no
runtime would fail at the end because the strategy was too conservative.

In this setting, the maximum gain for the heuristic was 28,280 VCs with a PoFmax

of 0.15. For the comprehensive overbooking, the maximum gain was 23,300 VCs
at PoFmax = 0.1. From a PoFmax of 0.95, the gain dropped below the results of
the heuristic planning approach. The comprehensive approach showed the same
behavior. This was caused by the fact that the maximum threshold of PoFmax = 1
did not mean that every job would fail. Even in this setting, many jobs with a
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lower PoF, or full estimated runtime, were accepted and successful. In addition,
if the schedule was full and no gap with enough resources was available, no more
jobs could be accepted even with PoFmax = 1.

Comparing the non-overbooking strategies, the heuristic planning earned 70%
more money compared to the backfilling because the heuristic was more flexible.
If comparing both overbooking strategies, the heuristic overbooking earned 22%
more profit than the comprehensive overbooking. The difference, between 22%
and 70% additional profit shows that the comprehensive overbooking earned
more additional profit than the heuristic overbooking. The result can be seen in
Table 6.1. The comprehensive overbooking increased the profit by 63% and the
heuristic by 19%. With other words, overbooking is more profitable for worse
scheduling strategies.

In addition, one can see an important difference between the jobs and the re-
sulting fees. With the same incoming jobs, the heuristic overbooking sold more
resources and made more profit than the comprehensive overbooking. This was
caused by the fact that the heuristic replanned all jobs after a job’s end, while the
comprehensive approach only moved the jobs on the assigned resources. This
means that the heuristic had a less fragmented schedule, could accept bigger jobs,
and thus it successfully sold more compute time. The comprehensive approach
had a more fragmented schedule that could be filled with a higher number of
smaller jobs. In this setting, the flexibility of the heuristic was much higher than
the comprehensive approach. The non-overbooking heuristic planning even had a
better result than the comprehensive overbooking.

Results Resources Here, are the results of the simulation described that
was based on an analysis of the number of booked resources and the correspond-
ing runtime-estimation quality. The input statistics for calculating the PoF for
overbooking are illustrated in Figure 6.2. Figures 6.5 and 6.6 plot the results.

Figure 6.5(a) shows that with the PDFs based on the booked resources the number
of accepted jobs increased over a longer period compared to the simulation with
the input PDFs from the runtime-estimation frames.

The comprehensive overbooking had the highest number of successful jobs, about
750, with a PoFmax of 0.55. For the heuristic overbooking, with a PoFmax of 0.75,
about 700 jobs were successful. The number of failed jobs, for both overbooking
strategies, remained low up to a PoFmax of 0.55.

Figure 6.5(b) shows the difference of successful minus failed jobs. Here, one
can see that for the comprehensive strategy the maximum difference of jobs was
700 at a PoFmax of 0.55. The heuristic approach had 650 jobs with a PoFmax of
0.7. Following to the peak values, the plots decrease directly. The number and
difference of jobs for the strategies that did not overbook were the same as for
the simulation with runtime-estimation based PDFs. The reason is that the input
data for the simulation was exactly the same. The different PDFs have only an
influence on the results of the overbooking approaches.

Figure 6.6(a) shows the fees for successful jobs and the penalties for the failed
ones. Figure 6.6(b) shows the gain.
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Figure 6.5 CTC: Jobs with PoF acceptance test and resource based PDFs.

(a) The successful and failed jobs of the CTC trace.

(b) The difference of successful and failed jobs.
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Figure 6.6 CTC: Profit and penalties with PoF acceptance test and resource based
PDFs.

(a) The fees and penalties of the CTC trace.

(b) The gain.
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Figure 6.6(a) shows that the fees were steadily increasing with a higher PoFmax.
The comprehensive overbooking decreased beginning from a PoFmax of 0.95. The
penalties remained on the level of the non-overbooking approaches or were even
lower until a PoFmax of 0.55. This means that even for a high PoFmax threshold
accepting new jobs is beneficial. Thus, the PoF estimation process is conservative
and tends to overestimate.

The reason that less jobs for the overbooking approaches failed than for the
corresponding non-overbooking is that the non-overbooking approaches fail if
one of their resources fails. The overbooking strategies are allowed to plan the
jobs with less runtime and can therefore restart jobs after a node failure even if the
full runtime is not available anymore. If a before crashed job takes less runtime
than assigned, it still can be successful.

Figure 6.6(b) shows the gain of the simulation with the resource based PDFs. The
shape of the curves in this figure indicates that the underlying statistical functions
are quite accurate. With a low threshold until 0.6, runtime was additionally
successful sold and when the accepted risk became too high (PoFmax above
0.6) more and more additionally sold jobs failed. Here again, the heuristic
without overbooking was better than the comprehensive overbooking approach.
The heuristic overbooking had a maximum gain of 27,330 VCs with a PoFmax

of 0.6. The comprehensive overbooking had a maximum gain of 23,110 VCs
with a PoFmax between 0.35 and 0.6. From a PoFmax of 0.9, both overbooking
approaches were worse than the approaches without overbooking.

The profits of the runtime-estimation function based simulation were higher than
the results of the resource functions. We already assumed this when we had a look
at the input CDFs. The runtime-estimation CDFs were distributed wider than the
resource based CDFs. This means that the effect of the chosen groups is better if
the groups are more divergent. Homogenous group classes are less supportive for
overbooking. The runtime-estimation PDF simulation had a maximum gain of
28,280 VCs compared to 27,330 VCs with the resource based PDFs.

6.1.2 Risk Acceptance Test

This section contains the results of the simulation with the CTC trace and a
risk based acceptance test according to Section 3.1.3. This simulation applied
a commercial environment where the penalties for missing job deadlines are
often higher than the fees. Thus in the commercial environment, jobs should be
accepted if the opportunity (fee multiplied by PoS) is significantly higher than the
risk. The opportunity should be as twice as high as the risk to yield realistic profits.
For the comprehensive overbooking, the opportunity has to be four times higher
than the risk. Table 6.2 summarizes the results of the risk estimation simulation.
The table shows the average results of the 20 test runs according to the penalty
ratios and the surplus of the overbooking strategies in percent.
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Table 6.2: The risk simulation results with CTC trace.
Risk simulation Penalty Ratio

Runtime based statistics 0.5 1 2 4
Comprehensive backfilling 15,535 14,260 11,710 6,611

Heuristic planning 25,071 23,862 21,444 16,608
Comprehensive overbooking 24,571 22,410 19,179 14,278

Additional comp. profit 58% 57% 63% 160%
Heuristic overbooking 30,148 27,528 23,756 19,279

Additional heuristic profit 20% 15% 10% 16%
Resource based statistics 0.5 1 2 4

Comprehensive backfilling 15,535 14,260 11,710 6,611
Heuristic planning 25,071 23,862 21,444 16,608

Comprehensive overbooking 24,038 22,019 19,357 15,464
Additional comp. profit 55% 54% 65% 134%
Heuristic overbooking 26,776 25,886 23,623 19,785

Additional heuristic profit 7% 9% 10% 19%

Results of the Runtime-Estimation based PDF simulations The re-
sults of the simulation with the risk acceptance test and the CTC runtime-
estimation statistics from Figure 6.1 are described in the following.

Figure 6.7(a) shows the results of the jobs with the risk acceptance test. In this
simulation, the risk was built based on the calculated PoF and PoS and the fee and
penalty of the SLA. In practice, it is likely that the penalty for violating an SLA
is higher than the fee. Therefore, the simulation evaluated the behavior of the
overbooking algorithms based on different ratios of penalty to fee. The simulation
started with a ratio of 0.5 and doubled the ratio to 1, 2, and 4. The results are
shown in bar graphs and the error bars illustrate 95% confidence intervals.

Similar to the runs before, the non-overbooking strategies were not affected by
the different penalty ratios.

For the overbooking algorithms, Figure 6.7(a) shows that with an increasing
penalty factor the risk increased. Consequently, the number of successful and
failed jobs decreased because the algorithms tended to be more cautious. Due to
the more cautious behavior, Figure 6.7(b) shows that the difference of successful
to failed jobs increased.

More interesting than the number of jobs was the resulting gain of the simulation.
Figure 6.8(a) show the fees for successful jobs and the penalties for the failed.
Figure 6.8(b) illustrates the gain (fees - penalties).

Figure 6.8(a) underlines that the fees for the non-overbooking strategies remained
the same because nothing changes. For the overbooked jobs, however, it is shown
that the fees decreased. This happened because fewer jobs were accepted and
could be successfully finished. On the other hand, the penalties for the overbook-
ing approaches only increased slightly even if each penalty factor doubled the
penalty. The results of the overbooking approaches decreased less because fewer
jobs failed due to the more failure-preventing job acceptance.
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Figure 6.7 CTC: Jobs with risk acceptance test and runtime-estimation based
PDFs.
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(a) The successful and failed jobs of the CTC trace.
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(b) The difference of successful and failed jobs.
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Figure 6.8 CTC: Profit and penalties with risk acceptance test and runtime-
estimation based PDFs.
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(a) The CTC traces fees for the successful jobs and the penalties of the failed jobs.
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(b) The CTC traces gain.
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For the non-overbooking strategies, jobs only failed because resources broke
down. The number of failed jobs did not change but for each penalty factor the
total number of penalties doubled.

In addition, Figure 6.8(b) shows that even with an increasing penalty factor,
the overbooking strategies had a higher income than the non-overbooking. The
total gain for the heuristic overbooking decreased from 30,148 VCs to 19,279
VCs. More interestingly, while the total gain for the comprehensive overbooking
decreased from 24,571 VCs to 14,278 VCs, the additional gain compared to the
backfilling increased from 58% to 160%.

This indicates that the overbooking approaches are also applicable to commercial
markets where fees and penalties are negotiated.

Results of the Resource based PDF simulations The last simulation
for the CTC trace was based on the PDFs for the booked resources and the risk
acceptance test. The input statistics for calculating the PoF for overbooking were
those from Figure 6.2. Figures 6.9 and 6.10 contain the experimental results and
Table 6.2 provides a summary.

Figure 6.9(a) shows the successful and failed jobs. The results were similar to
the runtime-estimation PDF function based simulation. The number of successful
jobs decreased with a higher penalty ratio because only jobs with a lower PoF were
accepted and accordingly the number of failed jobs was reduced. Consequently,
it can be seen in Figure 6.9(b) that the ratio of successful jobs dropped slightly
with a higher penalty ratio.

Figure 6.10(a) presents the fees and penalties of the simulation. Figure 6.10(b)
shows the gain. While the penalties for the non-overbooking strategies doubled
each time, the penalties for overbooking increased less. Subsequently in this trace
even with a higher penalty, overbooking approaches were more competitive than
strategies that did not overbook.

The effect remained, comparing the simulation results of the runtime-estimation
based PDFs with the simulation results of the resource based PDFs. The total gain
for the heuristic overbooking decreased from 26,776 VCs to 19,785 VCs. How-
ever, the additional gain compared to the heuristic planning increased from 7%
to 19%. For the comprehensive overbooking, the gain decreased from 24,038 to
15,464 VCs. Here, the additional gain increased from 55% to 134% compared to
the backfilling. The overbooking strategies got better results with more divergent
runtime-estimation based PDFs.

The presentation of the results of the simulation with the CTC trace ends here.
The remainder of this chapter shows the results of the remaining 5 simulations
based on traces of the PWA. All simulations were conducted in the same way.
However, the reader should have an idea by now how the simulations are evaluated.
Therefore, the following results are described in a condensed manner.
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Figure 6.9 CTC: Jobs with risk acceptance test and resource based PDFs.
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(a) The successful and failed jobs of the CTC trace.
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(b) The difference of successful and failed jobs.
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Figure 6.10 CTC: Profit and penalties with risk acceptance test and resource
based PDFs.

0.5 1 2 4
0

0.5

1

1.5

2

2.5

3
x 10

4

Penalty ratio

E
st

im
at

ed
 r

un
tim

e 
(h

ou
rs

) 
x 

R
es

ou
rc

es

(a) The fees and penalties of the CTC trace.
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(b) The combined gain of the CTC trace.
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6.2 HPC2n

This section presents the results of a cluster trace of the High-Performance
Computing Center North (HPC2n) in Sweden. The simulation had 20 test runs of
1000 jobs. The HPC2n cluster system had 240 resources. From the 202,876 jobs
of the trace, the last 20,000 jobs were submitted to the system. The previous jobs
were used to learn the statistical input; these were 154,472 entries.

Figure 6.11 HPC2n: The CDF functions.
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(a) The runtime-estimation analysis of the HPC2n trace.
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(b) The resource analysis of the HPC2n trace.



104 Evaluation with PWA Traces

Approximately 27,000 jobs were not usable because the runtime-estimations or
other important information was missing.

Figure 6.11(a) shows the CDFs calculated from the statistical runtime-estimation
analysis and Figure 6.11(b) shows the CDFs according to the booked resources.

All in all, the runtime-estimation analysis reveals more distributed probability
density functions. Figure 6.11(a) demonstrates that the jobs with a runtime-
estimation of under ten minutes have the worst accuracy, while the jobs with an
estimated-runtime of five to ten hours are estimated best.

The CDFs for the resource analysis are illustrated in Figure 6.11(b) and seem less
distributed than the runtime-estimation CDFs. Jobs with more than 64 resources
have the worst estimations and jobs with 2 nodes the best. Of course, the CDF
distribution among all jobs is the same for both analyses because it had the same
input. In this and the following traces, the simulation results are shown in a more
condensed view. The focus is on the combined gain.

6.2.1 PoF Acceptance Test

The evaluation starts with the PoF based acceptance test. Table 6.3 summarizes
the maximum values for the runtime-estimation and resource statistics and shows
the surplus of the overbooking strategies in percent.

Table 6.3: The PoF max gain with HPC2n trace.
PoF simulation runt. est. plus PoFmax resources plus PoFmax

Comp. backfilling 31,250 31,250
Heuristic planning 45,150 45,150

Comp. overbooking 58,860 88% 0.9 60,750 94% 0.9
Heur. overbooking 68,570 52% 1 68,570 52% 1

Figures 6.12(a) and 6.12(b) show that the results of the PoF calculation with the
underlying PDF functions are tending to PoF overestimation. With a low threshold
until PoFmax of 0.3 for the runtime-estimation based PDFs and 0.6 for the resource
based PDFs no additional runtime was sold. Starting above these thresholds, the
curves show that it was possible to successfully overbook additional jobs. For the
heuristic, with a PoFmax of 1 it was possible to successfully get the highest gain.

Another indication that the underlying statistics were not very accurate was shown
by the fluctuating results. For some simulation runs, with the given threshold some
very big and dominating jobs were accepted and were successful or failed and
for the next higher threshold, they were not accepted. This behavior underlines
the uncertainty of the real average value being printed in the line plots, which
is illustrated by the 95% confidence intervals. The simulation only had 20 runs
due to the limited amount of jobs in the traces. However, the more careful
comprehensive backfilling avoids the fluctuating results by not accepting big jobs.
The approach cannot move jobs on the resources; therefore, the plan is more
scattered and fewer big gaps for big jobs exist.
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Figure 6.12 HPC2n: The gain for the PoF acceptance test.

(a) The combined gain of the runtime-estimation PDF.

(b) The combined gain of the resource based PDF.



106 Evaluation with PWA Traces

Table 6.4: The Risk simulation results with HPC2n trace.
Risk simulation Penalty Ratio

Runtime based statistics 0.5 1 2 4
Comprehensive backfilling 34,024 31,246 25,691 14,581

Heuristic planning 47,756 45,149 39,936 29,511
Comprehensive overbooking 60,318 55,789 52,605 48,664

Additional comp. profit 77% 79% 105% 234%
Heuristic overbooking 64,716 59,486 51,189 47,416

Additional heuristic profit 36% 32% 28% 61%
Resource based statistics 0.5 1 2 4

Comprehensive backfilling 34,024 31,246 25,691 14,581
Heuristic planning 47,756 45,149 39,936 29,511

Comprehensive overbooking 52,910 52,223 50,988 48,329
Additional comp. profit 56% 67% 99% 231%
Heuristic overbooking 54,085 53,340 51,622 47,129

Additional heuristic profit 13% 18% 29% 60%

For the heuristic, the best results were achieved with a very high PoFmax of
1. It allowed an income of 68,570 VCs. For the more stable comprehensive
approach, the best results were 58,860 and 60,750 VCs with a PoFmax of 0.9. The
comprehensive approach could increase the gain of backfilling by about 88% to
94% and the heuristic overbooking by 52%.

For the comprehensive approach, the resource density functions provided a slightly
higher maximum result and fluctuated less as when used by heuristic approach.
Therefore, the resource based PDFs seemed to be more appropriate than the
runtime-estimation based PDFs. Instead, the runtime-estimation probability
density functions were dangerous, especially for the heuristic overbooking. To be
usable, they will have to be adapted with more recent monitoring information.

It is important to point out that the average results of the simulation runs were
overlapping. This is shown by the fluctuating results of the heuristic overbooking
and the huge and overlapping 95% confidence intervals of the strategies. This
means that with the given PDFs, the jobs of the traces were so divergent that the
strategies could beat one another. Thus, this simulation showed that it is important
to adapt the statistical input to the current monitoring information to be able to
cope with changing behaviors.

6.2.2 Risk Acceptance Test

Here, the risk acceptance test based simulation is evaluated, and the results of
the 20 test runs according to the penalty ratios are shown in Table 6.4. The table
shows the average results and the surplus of the overbooking strategies in percent.
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Figure 6.13 HPC2n: The gain for the risk acceptance test.

0.5 1 2 4
−1

0

1

2

3

4

5

6

7

8
x 10

4

Penalty ratio

E
st

im
at

ed
 r

un
tim

e 
(h

ou
rs

) 
x 

R
es

ou
rc

es

 

 

Comprehensive Backfilling
Heuristic Planning
Comprehensive Overbooking
Heuristic Overbooking

(a) The combined gain of the runtime-estimation PDF.
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(b) The combined gain of the resource based PDF.
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Figure 6.13 shows that the runtime-estimation PDF based overbooking had the
best results for the low penalty ratio of 0.5. For all scheduling strategies, the
results shrank when the penalty ratio increased. However compared to the non-
overbooking strategies, the results of the overbooking strategies shrank less.
The overbooking strategies were relatively stable, especially with the runtime-
estimation probability density functions. One can see this in Table 6.4 with a look
on the percentage of profit. The heuristic overbooking increased from 36% to
61% with the runtime-estimation functions and from 13% to 60% for the resource
based PDFs.

The comprehensive overbooking benefited a lot more from the penalty ratios. The
profit increased from 77% to 234% with the runtime-estimation based CDFs and
from 56% to 231% for the resource analysis based overbooking.

Accepting fewer jobs due to higher risk increased the profit of the overbooking
strategies compared to the non-overbooking counterparts. This indicates that the
strategies were too offensive. Either the input functions have to be adapted or the
security factor should be increased to get more reliable and better results.

At this point, the presentation of the results of the HPC2n trace is finished. The
four remaining simulations with traces of the PWA are presented in the same
format.
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6.3 LANL

This section shows the results of the simulation with 20 test runs of 1000 jobs
for the Los Alamos National Lab (LANL) trace of the PWA. The LANL cluster
system had 1024 resources. From the 122,060 jobs of the trace, the last 20,000
were submitted to the system. The 49,993 previous jobs were used to learn the
statistical input. The remaining about 50,000 jobs were not usable.

Figure 6.14 LANL: The CDF functions.
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(a) The runtime-estimation analysis of the LANL trace.
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(b) The resource analysis of the LANL trace.
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Table 6.5: The PoF max gain with LANL trace.
PoF simulation runt. est. plus PoFmax resources plus PoFmax

Comp. backfilling 39,070 39,070
Heuristic planning 39,180 39,180

Comp. overbooking 52,460 34% 0.05 52,970 36% 0.05
Heur. overbooking 56,690 45% 0.1 59,400 52% 0.05

Figure 6.14(a) shows the cumulative density functions calculated from the statisti-
cal runtime-estimation analysis of the workload trace. Figure 6.14(b) illustrates
the cumulative density functions according to the booked resources. The best
runtime-estimation frame is the frame for jobs between three and 5 hours. The
jobs with a runtime-estimation from two to 3 hours are also estimated well. The
LANL trace contained no jobs with a duration of more than 12 hours. While
the runtime-estimation analysis of the LANL trace shows divergent CDFs, the
resource analysis shows that the cluster only had jobs that used more than 32
resources, and the resulting CDFs of this analysis are very similar. Therefore, the
runtime-estimation analysis seems to be more beneficial for overbooking.

6.3.1 PoF Acceptance Test

The results of the PoF based acceptance tests are illustrated in Figures 6.15(a)
and 6.15(b). Table 6.5 summarizes the maximum values for the resource and
runtime-estimation statistics and shows the surplus of the overbooking strategies
in percent.

Figure 6.15 shows interesting behaviors. Backfilling and heuristic planning had
the same results with about 39,000 VCs. If comparing the two overbooking
strategies, both lines have a very similar shape. Both overbooking approaches
had the maximum gain at a PoFmax of 0.05 and fell at a PoFmax between 0.3 and
0.45 through the lines of the non-overbooking strategies.

The shape of the curves indicates that the PoF calculations with the underlying
functions were tending to failure underestimation. With a low threshold until
PoFmax of 0.05 additional runtime was sold but the curves show that with a higher
threshold the gain nearly directly decreased.

In both cases, the heuristic had a higher profit of 56,690 VCs (PoFmax = 0.1)
with the runtime-estimation analysis and 59,400 VCs (PoFmax = 0.05) with the
resource analysis. The comprehensive approach had a result of 52,460 VCs (time
functions, PoFmax = 0.05) and 52,970 VCs (resource functions, PoFmax = 0.05).
The results of the simulation with the two analyses were very similar. The
comprehensive approach earned 34% and 36% additional profit. The heuristic
received an additional gain between 45% and 52%. While the non-overbooking
strategies were very similar, the heuristic interestingly profited more from the
overbooking. This implies that the heuristic is more flexible. While the heuristic
planning was not able to profit from the flexibility, the heuristic overbooking was.
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Figure 6.15 LANL: The gain for the PoF acceptance test.

(a) The combined gain of the runtime-estimation PDF.

(b) The combined gain of the resource based PDF.
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Table 6.6: The Risk simulation results with LANL trace.
Risk simulation Penalty Ratio

Runtime based statistics 0.5 1 2 4
Comprehensive backfilling 43,299 39,070 30,614 13,701

Heuristic planning 50,627 39,180 16,273 -29,532
Comprehensive overbooking 47,325 48,672 42,922 27,354

Additional comp. profit 9% 25% 40% 100%
Heuristic overbooking 45,863 40,557 35,244 7,633

Additional heuristic profit -9% 3% 116% -125%
Resource based statistics 0.5 1 2 4

Comprehensive backfilling 43,299 39,070 30,614 13,701
Heuristic planning 50,627 39,180 16,273 -29,532

Comprehensive overbooking 52,603 49,628 43,032 28,298
Additional comp. profit 21% 27% 41% 107%
Heuristic overbooking 49,633 47,837 29,965 02,342

Additional heuristic profit -2% 22% 84% -107%

The assumption that due to the spreading of the distribution the runtime-estimation
analysis would be better than the resource analysis did not hold. The results of the
simulation based on the different input statistics were similar. The comprehensive
approach was a little better when using the resource density functions and the
heuristic was better with the runtime-estimation based PDFs.

The reason for the similar results is that the estimations change their accuracy
over time. This is the case when a project is finished or new users begin to use
the cluster. Then, different jobs with new applications occur. This simulation
shows that it is important to adapt the statistical input to the current monitoring
information to be able to cope with changing estimation accuracy.

6.3.2 Risk Acceptance Test

The risk based acceptance test is depicted in Figures 6.16(a) and 6.16(b). Table
6.6 summarizes the results of the risk estimation simulation. The table shows the
average results of the 20 test runs according to the penalty ratios and the surplus
of the overbooking strategies in percent.
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Figure 6.16 LANL: The gain for the risk acceptance test.
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(a) The combined gain of the runtime-estimation PDF.
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(b) The combined gain of the resource based PDF.
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The non-overbooking approaches had the same results as in the PoF acceptance
test with a penalty ratio of 1. However, the non-overbooking heuristic had a
better result with a penalty ratio of 0.5 (with a penalty ratio of 0.5, the profit is
50,627 VCs) and declines with a penalty ratio of 2 (16,273 VCs). With a penalty
ratio of 4, the heuristic planning had a negative income (-29,532 VCs). This
means that the heuristic lost a lot more jobs than the backfilling.

Here, the overbooking approaches profited from the policy that overbooked jobs
could be started with less runtime than estimated and, thus, could be restarted after
a node crash. Therefore, the loss due to higher penalties was smaller than for the
non-overbooking strategies. In this simulation, the comprehensive overbooking
strategy had a higher profit than the heuristic. However with a higher risk due
to a higher penalty ratio, the overbooking strategies accepted jobs with a lower
calculated PoF only, and the additional profit increased.

The negative values of the additional profit, with a penalty ratio of 4, for the
heuristic simply shows that the result of the heuristic planning was negative.
However, it remains positive for the overbooking approach. The heuristic lost
too many SLAs due to node outages, which made the approach lose more money
than it gained. The heuristic fills the resources to the maximum, even if nodes
crashed. This could cause a great loss of money for the heuristic.

The presentation of the LANL based simulation ends here, and the chapter
continues with three traces from the San-Diego Supercomputer Center SDSC.
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6.4 SDSC-BLUE

This section shows the simulation results for the San-Diego Supercomputer Center
Blue Horizon (SDSC-BLUE) trace with 20 test runs of 1000 jobs. The SDSC-
BLUE cluster system had 1,152 resources. From the 243,314 jobs of the trace, the
last 20,000 jobs were submitted to the simulation. The previous jobs were used
to learn the statistical input; these were 133,613 entries. The remaining about
90,000 jobs were not usable.

Figure 6.17 SDSC-BLUE: The CDF functions.
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(a) The runtime-estimation analysis of the SDSC-BLUE trace.
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(b) The resource analysis of the SDSC-BLUE trace.
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Table 6.7: The PoF max gain with SDSC-BLUE trace.
PoF simulation runt. est. plus PoFmax resources plus PoFmax

Comp. backfilling 52,420 52,420
Heuristic planning 70,390 70,390

Comp. overbooking 81,810 56% 0.6 82,940 58% 0.05
Heur. overbooking 96,620 37% 0.75 92,260 31% 0.85

Figure 6.17(a) presents the cumulative density functions calculated with the
statistical analysis of the SDSC-BLUE trace. One can see two different groups of
CDFs. The shorter jobs (up to 2 hours) are estimated worse than the jobs from
two to 12 hours.

Figure 6.17(b) plots the cumulative density functions according to the booked
resources. Here, one can see that only jobs with 8 or more resources were
submitted. The jobs with more than 32 resources were better estimated than the
jobs with 8 to 32 resources.

If the simulation’s jobs would have the same behavior, the results of the over-
booking should profit from the more distributed CDFs of the runtime-estimation
analysis. However, the CDFs of the resource analysis also displayed different
behaviors of the resource classes even if three of the classes remained unused.
Therefore, overbooking might also profit from the results of the resource analysis.

6.4.1 PoF Acceptance Test

Table 6.7 shows the maximum values of the simulation with the PoF based
acceptance test. The table shows the average results of the 20 test runs for the
runtime-estimation and resource statistics and the surplus of the overbooking
strategies in percent.

From the non-overbooking strategies, the heuristic earned a lot more with about
70,000 VCs average gain than the backfilling strategy with about 52,000 VCs.

The results of the overbooking strategies were similar. The heuristic had, with
96,620 VCs for the runtime-estimation based PDFs and 92,260 VCs for the
resource functions, a better result than the comprehensive approach with 81,810
and 82,940 VCs, respectively. The heuristic seemed to profit more from the
runtime-estimation based PDFs, while the comprehensive overbooking worked
better with the resource based PDFs.

Like the HPC2n trace, the heuristic had a fluctuating result. Especially the
difference between a PoFmax of 0.6 and 0.9 for the runtime-estimation probability
density function based simulation was enormous. However, the 95% confidence
intervals indicate that this might happen. One can see that many jobs had over
64 resources. This means that a job with a long runtime-estimation was worth so
many VCs that it could influence the whole result of the test run.

Beneath the fluctuating curves, their shape indicates that the underlying functions
were suitable. With a low threshold, more and more additionally accepted runtime
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Figure 6.18 SDSC-BLUE: The gain for the PoF acceptance test.

(a) The combined gain of the runtime-estimation PDF.

(b) The combined gain of the resource based PDF.
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Table 6.8: The Risk simulation results with SDSC-BLUE trace.
Risk simulation Penalty Ratio

Runtime based statistics 0.5 1 2 4
Comprehensive backfilling 57,962 52,416 41,325 19,142

Heuristic planning 77,695 70,387 55,772 26,541
Comprehensive overbooking 85,460 79,439 70,629 58,177

Additional comp. profit 47% 51% 71% 204%
Heuristic overbooking 95,475 89,787 73,210 58,411

Additional heuristic profit 23% 28% 31% 120%
Resource based statistics 0.5 1 2 4

Comprehensive backfilling 57,962 52,416 41,325 19,142
Heuristic planning 77,695 70,387 55,772 26,541

Comprehensive overbooking 86,498 82,937 70,541 59,896
Additional comp. profit 49% 58% 71% 213%
Heuristic overbooking 91,319 85,556 79,276 44,648

Additional heuristic profit 18% 22% 42% 68%

was successfully sold and if the accepted PoF became too high more and more
additionally accepted jobs failed.

The heuristic produced the best result with a high PoFmax of about 0.75 while
the comprehensive approach had nearly the same gain for a broad PoFmax range
from 0.05 to 0.8. The comprehensive overbooking had a smaller maximum gain.
However, according to its underlying strategy, the additional overbooking-profit
was with 56% and 58% for the comprehensive overbooking higher than the
additional profit of the heuristic. It only had 37% and 31% of additional profit.

The two underlying statistical analyses had similar results. The heuristic profited a
little bit more from the runtime-estimation based PDFs, while the comprehensive
approach profited more from the resource analysis.

6.4.2 Risk Acceptance Test

The simulation with the risk based acceptance test is summarized in Table 6.8.
The table shows the average results of the 20 test runs according to the penalty
ratios and the surplus of the overbooking strategies in percent.
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Figure 6.19 SDSC-BLUE: The gain for the risk acceptance test.
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(a) The combined gain of the runtime-estimation PDF.
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(b) The combined gain of the resource based PDF.
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The outcome of the risk based simulation with the SDSC-BLUE shows that both
results of the non-overbooking strategies decreased linearly with an increasing
penalty ratio.

From the overbooking algorithms, the heuristic suffered more on the higher
penalty ratios. The heuristic’s results were at the beginning better than the
comprehensive ones and at the end on or below the level of the comprehensive
overbooking.

For both overbooking strategies, the additional gain increased with the penalty
ratio.

The heuristic profited more from the runtime-estimation CDF based simulation
with a gain between 23% and 120%. The comprehensive approach profited more
from the resource analysis based simulation. In the simulation, the additional
profit increased from 49% to 213%. The presentation of the SDSC-BLUE based
simulation ends here, and the chapter continues with the next traces from the
San-Diego Supercomputer Center.
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6.5 SDSC-DataStar

In this section, the results of the San Diego Supercomputer Center DataStar
(SDSC-DataStar) trace simulation with 20 test runs of 1000 jobs are presented.
The SDSC-DataStar cluster system had 1,664 resources. From the 96,089 jobs of
the trace, the last 20,000 jobs were submitted to the simulation. The previous jobs
were used to learn the statistical input; these were 28,491 entries. The remaining
48,000 jobs were not usable.

Figure 6.20 SDSC-DataStar: The CDF functions.
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(a) The runtime-estimation analysis of the SDSC-DataStar trace.
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(b) The resource analysis of the SDSC-DataStar trace.
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Table 6.9: The PoF max gain with SDSC-DataStar trace.
PoF simulation runt. est. plus PoFmax resources plus PoFmax

Comp. backfilling 64,360 64,360
Heuristic planning 99,290 99,210

Comp. overbooking 114,490 78% 0.4 110,150 71% 0.75
Heur. overbooking 134,110 35% 0.6 130,680 32% 0.7

Figure 6.20(a) shows the cumulative density functions calculated with the statisti-
cal runtime-analysis of the workload trace. Figure 6.20(b) shows the cumulative
density functions according to the booked resources.

For the runtime-estimation analysis, only two curves differed from the others.
The one to 2 hours estimates were worse and the five to 12 hours estimates were
better than the average. The SDSC-DataStar had jobs with a minimum resource
request size of 8 resources. Therefore, only 5 different resource classes exist. The
shapes of the resource based CDFs are similar. Only the jobs with 33 to 64 nodes
were estimated a little better. Therefore, the resource analysis does not seem to be
very beneficial for this simulation.

6.5.1 PoF Acceptance Test

Table 6.9 summarizes the maximum gain of the PoF based acceptance test. The
table shows the average results of the 20 test runs for the runtime-estimation and
resource statistics and the surplus of the overbooking strategies in percent.

The non-overbooking strategies had an average income of 64,360 VCs for the
backfilling and 99,290 VCs for the planning. This was 54% more income for the
heuristic planning. For the overbooking strategies, the resulting curves show that
the heuristic made a higher profit than the comprehensive approach.

For the runtime-estimation based PDFs, the heuristic approach had 134,110 VCs
with aPoFmax of 0.6, about 20,000 VCs more profit than the comprehensive
approach. Both strategies profited from an increasing PoFmax threshold. The
highest gain of the comprehensive approach was achieved at a PoFmax between
0.3 and 0.4. The heuristic seemed to be more conservative and had increasing
results until a PoFmax of 0.6.

For the resource based PDF based simulation, both plots for the overbooking
approach were nearly linear in a PoFmax range between 0.05 and 0.55 and then
began to increase. The comprehensive approach had its maximum profit at a
PoFmax = 0.75 and the heuristic had its maximum at a PoFmax = 0.7.

The maximum gain of the heuristic lay at 134,110 VCs for the runtime-estimation
analysis and 130,680 VCs for the resource analysis. For the comprehensive ap-
proach, it was 114,490 and 110,150 VCs, respectively. The heuristic overbooking
had about 20% more income.
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Figure 6.21 SDSC-DataStar: The gain for the PoF acceptance test.

(a) The combined gain of the runtime-estimation PDF.

(b) The combined gain of the resource based PDF.
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The profit compared to the non-overbooking strategies was for the comprehensive
overbooking higher with 78% and 71%, according to 35% and 32% for the
heuristic overbooking. This shows that the overbooking of the comprehensive
approach can compensate the bad performance of the simple backfilling strategy.

The shape of the runtime-estimation density function indicates that the underlying
function was accurate. With a low threshold, more and more additionally accepted
runtime was successfully sold and if the accepted PoF became too high more and
more additionally accepted jobs failed. The resource density function was not so
supportive. In the beginning, no additional runtime was sold and above a short
peak, the gain fell. The more accurate runtime-estimation based PDFs also allow
a higher profit than the resource density functions. This corresponds with the
assumptions when comparing the functions in the beginning of this section.

6.5.2 Risk Acceptance Test

Table 6.10 summarizes the results of the risk based acceptance test and the SDSC-
DataStar simulation. The table shows the average results in VCs for the penalty
ratios and the surplus of the overbooking strategies in percent.

Table 6.10: The Risk simulation results with SDSC-DataStar trace.
Risk simulation Penalty Ratio

Runtime based statistics 0.5 1 2 4
Comprehensive backfilling 67,306 64,357 58,461 46,669

Heuristic planning 104,040 99,210 89,560 70,250
Comprehensive overbooking 119,180 111,430 101,030 93,410

Additional comp. profit 77% 73% 73% 100%
Heur. overbooking 137,380 129,370 118,470 99,020

Additional heuristic profit 32% 30% 32% 41%
Resource based statistics 0.5 1 2 4

Comprehensive backfilling 67,306 64,357 58,461 46,669
Heuristic planning 104,040 99,210 89,560 70,250

Comprehensive overbooking 107,420 103,300 100,030 91,320
Additional comp. profit 60% 61% 71% 95%

Heur. overbooking 116,270 115,410 108,850 105,240
Additional heuristic profit 12% 16% 22% 50%
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Figure 6.22 SDSC-DataStar: The gain for the risk acceptance test.
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(a) The combined gain of the runtime-estimation PDF.
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(b) The combined gain of the resource based PDF.
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For the non-overbooking strategies, the income of the backfilling approach de-
creased only slightly. This indicates that due to the risk aware overbooking
strategy fewer jobs failed because a higher risk is estimated. The income of the
backfilling approach decreased from 67,306 VCs to 46,669 VCs. The heuristic
decreased from 104,040 VCs to 70,250 VCs. For both strategies, the additional
gain increased when the penalty ratio increased. The profit for the heuristic over-
booking fell from 137,380 VCs to 99,020 VCs (for the runtime-estimations based
simulation) and 116,270 VCs to 105,240 VCs (for the resource based simulation),
respectively. For the heuristic overbooking, with a penalty factor of 4, this was
still about 70% of the profit that was made with a penalty factor of 0.5. The gain
of the comprehensive overbooking decreased from 119,180 VCs to 93,410 VCs
and from 107,420 VCs to 91,320 VCs. However, this was 77% and 95% of the
gain with a penalty factor of 0.5.

The total gain of the comprehensive approach was worse than the gain of the
heuristic. However, the additional benefit of the comprehensive overbooking
approach was higher than that of the heuristic overbooking.

For the comprehensive overbooking approach, the additional gain increased from
60% to 100%. At the top, the profit of the heuristic overbooking increased by
50%.

In this simulation, the security factor added to the risk, 4 for the comprehensive
and 2 for the heuristic overbooking, seemed to be well chosen because the
additional profit was almost stable. This simulation showed that it is possible
to get a predictable, additional profit with the overbooking strategies. For the
other simulations, this also means that the security factors, as well as the input
PDFs, should be adjusted with actual monitoring information to allow predictable
results.

The presentation of the SDSC-DataStar simulation ends here, and the last simula-
tion based on the trace of the San Diego Supercomputer Center follows.
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6.6 SDSC-SP2

This section presents the results for the San Diego Supercomputer Center (SDSC)
SP2 (SDSC-SP2) trace. The SDSC-SP2 cluster system had 128 resources. From
the 59,725 jobs of the trace, the last 20,000 jobs were submitted to the system. The
previous jobs were used to learn the statistical input; these were 16,009 entries.
The remaining 20,000 jobs were not usable because users runtime-estimations or
other important information were missing.

Figure 6.23 SDSC-SP2: The CDF functions.
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(a) The runtime-estimation analysis of the SDSC-SP2 trace.
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(b) The resource analysis of the SDSC-SP2 trace.
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Figure 6.23 (a) shows the cumulative density functions calculated with the statisti-
cal runtime-analysis of the workload trace. Figure 6.23 (b) shows the cumulative
density functions according to the booked resources.

The runtime-estimation analysis shows more distributed plots. The two groups of
jobs with an estimated duration of one hour were estimated worst. Jobs between
two and three hours also had bad estimations.

Jobs with a longer estimated duration used more of their booked runtime. The jobs
from one to 2 hours, five to 12 hours, and three to 5 hours were increasingly better
estimated. The best estimation had the jobs with more than 12 hours runtime.

The resource based CDFs have a similar shape. However, jobs with two to four
nodes differ here; their estimation quality was worse than the average. Jobs with
9 to 16 nodes were slightly better estimated than the average.

The more divergent runtime-estimation based PDFs might produce the better
overbooking results. The following simulation results will examine this.

6.6.1 PoF Acceptance Test

Like for all other traces, the PoF based acceptance test is interpreted first. Table
6.11 summarizes the results of the PoF acceptance test simulation. The table
shows the average results of the 20 test runs for the runtime-estimation and
resource statistics and the surplus of the overbooking strategies in percent. Again,
the non-overbooking strategies showed that the heuristic was more productive
than the backfilling approach. The heuristic planning earned about 24,000 VCs,
while the backfilling earned 17,000 VCs.

Table 6.11: The PoF max gain with SDSC-SP2 trace.
PoF simulation runtime profit PoFmax resources profit PoFmax

Comp. backfilling 17,280 17,280
Heuristic planning 24,090 24,090

Comp. overbooking 27,860 61% 0.05 27,530 59% 0.55
Heur. overbooking 31,290 29% 0.1 31,550 30% 0.55

The curves for the runtime-estimation and resource simulation are shaped dif-
ferently. The overbooking results of the runtime-estimation based simulation
decreased almost instantly with an increasing PoFmax threshold over 0.05. Con-
trary, the plot of the resource-based simulation is almost linear up until a threshold
of 0.6 and then decreases. However, both curves indicate that the underlying
statistical functions were not very accurate. Due to the, at first, not changing
shapes and then directly decreasing gain, the statistics were not promising for the
overbooking approaches.

The runtime-estimation based PDFs should be treated with most caution. The
input PDFs seem to indicate that the jobs would use less runtime than they
really do. In practice, an update of the statistics would be necessary to operate
successfully.
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Figure 6.24 SDSC-SP2: The gain for the PoF acceptance test.

(a) The combined gain of the runtime-estimation PDF.

(b) The combined gain of the resource based PDF.
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Table 6.12: The Risk simulation results with SDSC-SP2 trace.
Risk simulation Penalty Ratio

Runtime based statistics 0.5 1 2 4
Comprehensive backfilling 18,126 17,276 15,574 12,171

Heuristic planning 26,417 24,093 19,444 10,147
Comprehensive overbooking 14,424 14,099 17,865 20,577

Additional comp. profit -20% -18 % 14% 69%
Heuristic overbooking 20,129 9,295 12,887 24,675

Additional heuristic profit -23% -61% -33% 143%
Resource based statistics 0.5 1 2 4

Comprehensive backfilling 18,126 17,276 15,574 12,171
Heuristic planning 26,417 24,093 19,444 10,147

Comprehensive overbooking 28,168 27,233 24,892 21,801
Additional comp. profit 55% 57% 59% 79%
Heuristic overbooking 3,1427 30,598 28,222 25,575

Additional heuristic profit 18% 27% 45% 152%

The heuristic overbooking in the runtime-estimation PDF based simulation had
a maximum gain of 31,290 VCs with a PoFmax between 0.05 and 0.1. The
comprehensive overbooking earned 27,860 VCs. With a higher PoFmax, the gain
decreased. At a PoFmax between 0.25 and 0.3, both curves fell through the lines
of their corresponding non-overbooking strategies.

The simulation results based on the resource based CDFs were shaped very
differently. The gain did not change for a PoFmax between 0.05 and 0.6. Only
with a PoFmax higher than 0.65, the gain decreased. Again and thus for both
analyses, the heuristic had better results with about 31,550 VCs compared to the
maximum of 27,530 VCs of the comprehensive overbooking. For all PoFmax

thresholds, the heuristic was better than the comprehensive overbooking.

Here, the resource based PDFs seemed to produce a more reliable estimate. This
means that changing estimation behaviors are more dangerous if the past jobs had
a very divergent behavior. In practice, the input statistics should always be adapted
with the last job results. In addition if it is not possible to update the statistics, the
general average assumption might produce a more reliable overbooking result.

6.6.2 Risk Acceptance Test

Table 6.12 summarizes the results of the risk based acceptance test. The table
shows the average results of the 20 test runs according to the penalty ratios and
the surplus of the overbooking strategies in percent. The negative percent values
show that the overbooking strategies had a worser result than the corresponding
non-overbooking.

For the non-overbooking strategies, the heuristic was better than backfilling with
a low penalty ratio but decreased fast with a higher ratio. With a penalty ratio of
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Figure 6.25 SDSC-SP2: The gain for the risk acceptance test.
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(a) The combined gain of the runtime-estimation PDF.
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four, the backfilling approach was better. This means that the heuristic accepted
many additional jobs, and a lot of these additional jobs failed.

The runtime-estimation functions were not very accurate and had a bad impact on
the overbooking results. This result was similar to the PoF simulation. If the risk
was calculated too low, too many jobs that failed were accepted. One can see that
the results of the comprehensive and heuristic overbooking were worse than the
results of the non-overbooking strategies. The best way to avoid this would be
an update of the underlying statistics. A better statistical input should allow us
to detect jobs with a higher risk, which could then be declined; thus, fewer jobs
would fail. It was possible to work profitable even with the bad CDF functions.
This is implicated by the results for the penalty ratio of 4. Here, the overbooking
had a positive result because the higher risk due to the higher penalties prevented
jobs with a too high PoF from being accepted. To get a better result, a higher
security factor must be added to the calculated risk. In practice, the monitoring of
actual jobs should reveal that the predictions are faulty. At the end, the additional
gain increased from a negative value to a profit of 69% and 143%.

For the simulation with the resource based CDFs, the overbooking strategies were
always better than the basic ones. The gain increased from 55% to 79% for the
comprehensive approach and from 18% to 152% for the heuristic. This means
that the behavior of the classes of different resources was more stable and reliable
than the behavior of the classes for the runtime-estimations.
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6.7 Summary

The last section of this chapter summarizes the most important facts of the results
of the simulations with the PWA traces. The section begins with a summary of
the results of the PoF acceptance test simulation, continues with the results of the
risk based acceptance test, and concludes with a discussion of the runtime that
was used by the planning algorithms.

6.7.1 PoF Results

Figure 6.26 and Table 6.13 summarize the maximum gain of all six simulations
with the runtime-estimation and resource analysis from the PWA. Two different
kinds of input functions for the simulation were applied. One was based on
grouped estimated runtime PDFs and the other one on grouped resource PDFs.
They revealed if it is beneficial to take different sources as input for a statistical
analysis.

Table 6.13: Additional gain in % compared to the underlying non-overbooking strategy
for the PoF acceptance test and the PWA traces.

Trace runtime PoFmax resources PoFmax

CTC compreh. 63% 0.1 63% 0.6
heuristic 19% 0.15 15% 0.6

HPC2n compreh. 88% 0.9 94% 0.9
heuristic 52% 1 52% 1

LANL compreh. 34% 0.05 36% 0.05
heuristic 45% 0.1 52% 0.05

SDSC-BLUE compreh. 56% 0.6 58% 0.2
heuristic 37% 0.75 31% 0.85

SDSC-DataStar compreh. 78% 0.4 71% 0.75
heuristic 35% 0.6 32% 0.7

SDSC-SP2 compreh. 61% 0.05 59% 0.55
heuristic 29% 0.1 30% 0.55

In Figure 6.26, one can see that the heuristic approaches always provided a higher
peak profit than the comprehensive approaches. This is caused by the fact that the
heuristic was more flexible than the backfilling and the comprehensive overbook-
ing. The main reason is that the backfilling does not reschedule. This means, jobs
are always given the complete runtime. The comprehensive overbooking allows
later jobs to start earlier if the preceding jobs ended before the estimated runtime.
In addition, the comprehensive overbooking is inflexible because the jobs had to
run on the resources that were selected at negotiation. The heuristic overbooking
can start the jobs on any resource of the cluster. This provides a higher flexibility
as well as a higher utilization and more profit.
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Figure 6.26 Summary of the PoFmax threshold simulations.

0

5

10

15
x 10

4

E
st

im
at

ed
 r

un
tim

e 
(h

ou
rs

) 
x 

R
es

ou
rc

es

CTC   

HPC2n   
LANL   

SDSC−BLUE   

SDSC−DataStar   

SDSC−SP2    

 

Comprehensive Backfilling
Heuristic Planning
Comprehensive Overbooking
Heuristic Overbooking

(a) Maximum gain of the runtime-estimation PDF based simulations.
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However, the comprehensive overbooking was more reliable. Table 6.13 shows
that the additional profit compared to the backfilling approach was higher than the
additional profit of the heuristic overbooking. The results of the comprehensive
overbooking approach also fluctuated less.

Summary The simulations showed that it is possible to increase the profit
with overbooking. The impact of the different input statistics on the results of
overbooking was lower than expected. One can see that many shapes of the
figures are relatively similar. Evaluating other kinds of groups might allow us to
find more suitable input statistics.

Regardless of the overbooking strategy, the runtime-estimation based PDFs pro-
vided, on average, better results in 6 out of 12 simulations, while the resource
based PDFs gave better results for the other 6. The additional gain of the strategies
lay between 15% and 94%.

6.7.2 Risk Results

Figures 6.27 and 6.28 and Table 6.14 show the maximum gain for the simulations
with the risk acceptance test. The risk results indicate that the comprehensive
overbooking is more reliable. It had a higher additional gain compared to the
backfilling. The heuristic overbooking had a higher total profit.

Table 6.14: Additional gain in % compared to the underlying non-overbooking strategy
for the risk acceptance test and the PWA traces.

Trace runtime ratio resources ratio
CTC compreh. 160% 4 134% 4

heuristic 20% 1 19% 4
HPC2n compreh. 234% 4 231% 4

heuristic 61% 4 60% 4
LANL compreh. 100% 4 107% 4

heuristic 116% 2 84% 2
SDSC-BLUE compreh. 204% 4 231% 4

heuristic 120% 4 68% 4
SDSC-DataStar compreh. 100% 4 95% 4

heuristic 41% 4 50% 4
SDSC-SP2 compreh. 69% 4 79% 4

heuristic 143% 4 152% 4

There is an outlier in the Figure 6.28 for the LANL trace. The negative bar for
the penalty ratio of 4 does not mean that the gain is negative. It is caused by
the negative profit of the heuristic planning and backfilling, while the gain of
the corresponding overbooking strategies is positive. Therefore, the maximum
gain in Table 6.14 is given for the LANL trace at a penalty ratio of 2. However,
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Figure 6.27 Summary of the Risk simulations with comprehensive Overbooking.
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Figure 6.28 Summary of the Risk simulations with heuristic Overbooking.
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at a ratio of 4 the income of the non-overbooking heuristic was negative, while
the overbooking heuristic remains positive. Therefore, the -107% and -125%
additional win at a ratio of 4 means that the result was still positive.

Summarizing the comprehensive overbooking, it tended to be more reliable.
Therefore, the profit of this overbooking method always increased with a higher
penalty ratio. This indicates that with a higher risk due to a higher penalty ratio
the comprehensive overbooking accepted fewer jobs and these jobs had a higher
probability to be successful. Therefore, less jobs failed, and the income increased
even with higher penalty ratios. However, this also might indicate that the heuristic
approach could profit from a higher security factor. For these simulations, the
opportunity had to be four times higher than the risk to ensure that a job could be
accepted. In practice, a monitoring tool should compare the calculated failures of
the jobs to the real failures. If the amount of failures is higher than calculated, the
security factor should be increased.

Summarizing the heuristic results, they show a little different picture. Here, the
additional gain did not always increase with a higher penalty factor. The heuristic
overbooking algorithm produced a more reliable result with the resource based
PDFs than with the runtime-estimation functions. On the one hand, the runtime-
estimation functions had more often a negative additional gain. On the other hand,
runtime-estimation functions had a higher profit if they were positive.

Comparing the statistics for the resource function based simulation, the gain
always increased with a higher penalty factor. For the runtime-estimation simula-
tion, the results tended to shrink in the beginning and increased in the end. This
might indicate that the risk factor of 2 should be adapted in praxis according to
the relation of fee and penalty.

Summary The results of the risk acceptance test based overbooking were
dependent on the security factor and the quality of the input statistics. While the
statistics of the runtime-estimation analysis produced a slightly better profit, they
also produced negative results. This shows that a regular update of the probability
density functions, as well as the security factor, is important. A better statistical
input would reflect a higher risk; thus, fewer jobs would be accepted.

The importance of the security factor was also shown for the jobs of the SDSC-SP2
trace. For the runtime-estimation analysis, the results of the overbooking approach
for a low penalty ratio were worse than the ones of the heuristic planning without
overbooking. This shows that the security factor was too low. As a consequence,
too many jobs were accepted that failed in the end. However, it was possible to
work profitable with the SDSC-SP2 trace. This was shown by the results for the
penalty ratio of 4. In this case, the overbooking simulation of the SDSC-SP2 trace
had a positive result.

6.7.3 Runtime

The Section 3.4 provided already a brief theoretical runtime analysis of the
overbooking algorithms. When we assumed that the number of jobs n would be
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dominant, the theoretical approach shows that both approaches would have the
same complexity class and need quadratic runtime O(n2).

However in the discussion about practical issues, we found that when a user
negotiates online with a cluster system to add a job, not the time for scheduling
all jobs offline but the duration for calculating the probability and applying the
acceptance test for the user’s job is important.

For the case that one job is submitted, the heuristic seems to be faster than the
comprehensive approach because the runtime only depends on the number of
planned p in the system O(p). The comprehensive overbooking approach has a
runtime that is dependent on the number of jobs in the system p and the number
of resources of the cluster k as well as the time needed for the FFT calculations
O(t log(t)). Following, the complexity would be O(t log(t)pk).

To evaluate whether this has an impact in practice, this simulation measured the
runtime of the overbooking algorithms. The results are presented in the following.

The placing strategy that was used in these simulations was similar to best fit.
Related work shows that heuristic approaches, implementing this strategy, have a
runtime that is dependent quadratic to the power of the jobs and also dependent
to the number of resources [Burk 04]. However, these implementations did not
consider overbooking and were not affected by the PDF convolutions. Beneath
the results of the overbooking mechanisms, the runtime of the simulation runs
were additionally measured to get an idea about the dependence of the runtime on
this factors.

Figures 6.29 and 6.30 illustrate the average runtime. Due to the similarity of
the approaches, the runtime is only shown as a summary. One can immediately
see that the comprehensive overbooking used far more runtime than the other
approaches. The runtime did not depend on the risk or PoF acceptance test or the
strategies.

The overbooking strategies work on a best-fit basis. They first try to place the
job in a plan with the full estimated runtime, and if that is not possible, with
overbooking. Due to the many jobs and resources, the comprehensive overbooking
has to check many possible gaps. In addition, the comprehensive overbooking
approach has to calculate the convolutions of the jobs and the combined functions
for every possible gap in which jobs were running beforehand. Therefore, many
fast Fourier transformations have to be done. The simulations showed that this
takes far more time than the other strategies. The backfilling approach without
overbooking was often faster than the heuristic planning and overbooking. This
was caused by the fact that the backfilling assigns the full estimated runtime and
does not replan, while the heuristics replan after each job’s end.

The heuristic planning and the heuristic overbooking have a similar runtime. The
heuristic overbooking is very fast because it does not do convolutions anymore.
The heuristic only calculates the PoS with the given maximum runtime of the
gap. In some traces, the heuristic overbooking took more time than the heuristic
planning because building the sum of a PDF was more time consuming than the
heuristic planning. In other traces, the heuristic overbooking was faster. This
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Figure 6.29 Runtime of the PoF simulations.
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(a) Runtime-estimation PDF based simulations
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Figure 6.30 Runtime of the Risk simulations.
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(a) Time Simulations
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might be because the additionally accepted jobs reduce the gaps in the schedule
and, following, fewer gaps have to be checked.

However, the same strategies had different runtimes for the different simulations
and the confidence intervals indicate that they will not overlap. This shows that
the runtime is dependent on the simulated environment, more precisely the size
k of the cluster that is simulated. A look at the simulated clusters shows that
the clusters with more resources used more runtime in the simulations. This
is because more resources offered more possible gaps for a job that had to be
checked. Following, and as assumed in Section 3.4.3, the simulations showed that
time needed the FFT calculations and the size of the cluster k have an influence
on the runtime.

The following simulations with the Arminius trace should show if the statistics
also have an influence on the runtime. Therefore, the amount of resources will be
the same for all simulation runs with Arminius.



7 Evaluation of the Arminius
Cluster

This chapter presents the results of the evaluation based on a trace of the Arminius
cluster of the PC2. This trace allowed simulations for a broader area of statistical
analyses because more detailed input data was available and the environment was
known. These advantages allowed to extend the evaluation of the overbooking
algorithms by two additional kinds of statistical input functions, the used appli-
cation environments and individual users. The contents of this chapter are the
results of the simulations according to the four analyses of runtime-estimation,
resources, applications, and users.
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The Arminius cluster had 200 nodes with dual core CPUs and 4 GB RAM. For
the simulation of the jobs from 2007 were used to learn the statistics. These were
33,318 jobs. The jobs from 2008 were the input and 60 test batteries of 1000
jobs were submitted. Therefore, the results of this evaluation base on 60,000
jobs instead of 20,000 that were applied by the PWA simulations. The Arminius
statistics are described in more detail in Chapter 4.
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7.1 Runtime-Estimation Analysis

The presentation of the results of the Arminius simulation starts with the runtime-
estimation analysis. Figures 4.2 and 4.1 from Section 4 show the cumulative and
probability density functions according to the eight estimated-runtime classes.
According to the simulations of the PWA traces, this section starts with the results
of the PoF threshold acceptance tests and continues with the risk based acceptance
tests.

7.1.1 PoF Acceptance Test

This section discusses the results of the simulation with the acceptance test based
on the PoFmax threshold. Table 7.1 summarizes the maximum gain of the runtime-
estimation statistics based simulation. The table shows the average results of the
60 test runs according to the penalty ratios and the surplus of the overbooking
strategies in percent.

Table 7.1: The PoF max gain with Arminius and the runtime-estimation PDF
PoF simulation VCs additional gain PoFmax

Comprehensive backfilling 13,944
Heuristic planning 16,022

Comprehensive overbooking 16,140 16% 0.05
Heuristic overbooking 19,813 24% 0.5

Figure 7.1 shows the successful and failed jobs in (a) and their differences in (b).
The transparent areas around the average results of the 60 simulation runs are the
95% confidence intervals.

As already discussed in the last chapter, the curves of the non-overbooking strate-
gies in Figure 7.1(a) remained on the same level because the increasing PoFmax

threshold does not affect them. For both strategies, the number of successful jobs
increased slightly in the beginning until a PoFmax = 0.2. After that, the result-line
was almost constant. For the heuristic, the number of successful jobs increased
on average from 500 to nearly 700 jobs. The comprehensive approach remained
at about 600 of 1000 possible jobs. For the heuristic, the number of failed jobs
increased little until a PoFmax = 0.5 and then faster until a PoFmax = 0.75. From
this threshold, the number of failed jobs, as well as the number of successful jobs,
does not further increase. This means that with a PoFmax = 0.75 the simulated
cluster was completely utilized.

The corresponding number of successful minus failed jobs is displayed in Figure
7.1(b). Even with 60 simulation runs instead of the 20 from the simulations of
the PWA traces, the huge confidence intervals indicate how uncertain the average
results of the highly different single simulations are. The fluctuations of the
results additionally underlined that single simulation runs could be very different
from the mean. However, due to the higher number of the 60 simulation runs, the
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Figure 7.1 Arminius: Jobs with PoF acceptance test and runtime-estimation
PDFs.

(a) The successful and failed jobs of Arminius.

(b) The difference of successful and failed jobs.
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Table 7.2: The Risk simulation results with Arminius and the runtime-estimation PDFs
Risk simulation Penalty Ratio

Runtime-estimation CDFs 0.5 1 2 4
Comprehensive backfilling 15,835 13,944 10,160 2,593

Heuristic planning 18,054 16,022 11,960 3,834
Comprehensive overbooking 17,861 15,360 11,483 4,204

Comprehensive gain 13% 10% 13% 62%
Heuristic overbooking 21,389 18,582 16,239 10,360

Heuristic gain 18% 16% 36% 170%

average results were smoother than the serrated shape of the curves from some
PWA traces.

The comprehensive approach tended to be better with very low PoFmax thresholds
and then decreased until a threshold of PoFmax = 0.75. At this threshold, the
cluster seemed to be completely utilized. It had an average value of 500 to 600
jobs for all thresholds and seemed to be more constant and predictable.

Figure 7.2 presents the resulting gain in virtual coins. Here, the huge confidence
intervals indicate the uncertainty of the average result of the 60 test runs as well.

Regarding the penalties, as shown in Figure 7.2(a), the results of all 4 strategies
were nearly equal up to a PoFmax threshold of 0.5. From this point on, the
penalties increased for the overbooking approaches until the PoFmax = 0.75.
At this point, the cluster system generally seemed to be fully utilized. Figure
7.2(b) illustrates the combined gain. The huge confidence intervals show the high
probability that the single simulation results differ.

However, one can see that the heuristic planning produced a better result than the
comprehensive overbooking.

In the beginning, both overbooking approaches had a constant average result until
a PoFmax of about 0.5. From this point on, the profit fell. The decrease stopped
for the comprehensive approach at a PoFmax of 0.75 and at a PoFmax of 0.9 for
the heuristic. This is interesting because the utilization of the simulation seemed
to be saturated at a PoFmax of 0.75. For the heuristic however, some jobs still
failed until a PoFmax of 0.9. The maximum gain for the heuristic overbooking
had nearly 20,000 VCs. The heuristic planning had, with 16,000 VCs, the same
results as the comprehensive overbooking.

7.1.2 Risk Acceptance Test

Table 7.2 summarizes the average results and the surplus of the overbooking strate-
gies and Figure 7.3 illustrates the number of jobs resulting from the simulation
with the risk acceptance test.

Figure 7.3(a) shows the number of successful and failed jobs. It underlines that
the strategies that employ overbooking could successfully schedule more jobs
than the non-overbooking strategies. From the non-overbooking strategies, the
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Figure 7.2 Arminius: Profit and penalties with PoF acceptance test and runtime-
estimation PDFs.

(a) The fees and penalties of the Arminius trace.

(b) The gain.
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Figure 7.3 Arminius: Jobs with Risk acceptance test and runtime-estimation
PDFs.
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heuristic had the most jobs. Looking at the successful jobs of the overbooking
strategies, the heuristic seems to have a slightly decreasing number, while the
comprehensive approach seems to have a constant result. However, a look at the
failed jobs shows that for both strategies their number decreased with a higher
penalty ratio due to the increasing risk.

Figure 7.3(b) illustrates the difference of successful minus failed jobs. Again,
one can see that the non-overbooking approaches were not affected by the risk
assessment, while the overbooking strategies had a different results.

Figure 7.4 shows the resulting profit and penalties for the simulation. While
Figure 7.4(a) shows that the number of failed jobs was very small compared to
the successful jobs, Figure 7.4(a) illustrates that the corresponding penalties were
high.

For the non-overbooking strategies, all jobs failed because of node outages.
Their penalties were doubled with each doubled penalty ratio. The overbooking
strategies, in this simulation mainly the heuristic, profit from the risk based
acceptance test. Fewer jobs failed and the penalties increased at a lower rate.

For the heuristic, Figure 7.4(b) indicates that the number of accepted jobs de-
creased; this allowed more jobs to be successfully executed. Therefore, the profit
was better compared to the other strategies. The additional gain of the heuristic
increased from 18% at a penalty ratio of 0.5 to 170% with a penalty ratio of 4.
The additional gain of the comprehensive overbooking increased from 13% to
62% with the same parameters.

7.2 Resources Analysis

This section continues with the presentation of the results of the Arminius trace
simulations and the applied resource statistics input. Figures 4.4 and 4.3 of
Section 4.2.2 show the input functions.

7.2.1 PoF Acceptance Test

The results of the simulation with the PoFmax threshold acceptance test are
discussed here. Table 7.3 summarizes the average results of the 60 test runs for
the resource statistics and the surplus of the overbooking strategies in percent
with the given PoFmax.

Table 7.3: The PoF max gain with Arminius and the resource based PDF
PoF simulation VCs additional gain PoFmax

Comprehensive backfilling 13,944
Heuristic planning 16,022

Comprehensive overbooking 16,158 16% 0.15
Heuristic overbooking 19,556 22% 0.4
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Figure 7.4 Arminius: Profit and penalties with Risk acceptance test and runtime-
estimation PDFs.
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(a) The fees and penalties of the Arminius trace.
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(b) The gain.



Chapter 7 • Resources Analysis 151

Figure 7.5 Arminius: Jobs with PoF acceptance test and resource based PDFs.

(a) The successful and failed jobs of the Arminius trace.

(b) The difference of successful and failed jobs.
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Figure 7.5 illustrates the successful and failed jobs. Again, the 95% confidence
intervals show that the average values could overlap. Even with 60 test runs, the
results of the Arminius trace differed more than the results of the PWA traces.
A reason for this strange behavior might be that the simulation learned the job
behaviors from the year 2007 and used the jobs from 2008 for the evaluation. The
PWA traces had a shorter time span. This gave the users less time and chance to
change their behavior.

Due to the longer time span of the Arminius traces, the average result of 2007
could differ from the results of the 2008 jobs. Thus, simulation runs in the end of
2008 used an outdated statistical input. In practice, a steady update process has to
incorporate the changing job behaviors into the PoF calculation.

Figure 7.5(a) illustrates that the comprehensive overbooking had, up to a PoFmax

threshold of 0.3, a higher number of successful jobs. For a higher PoFmax

threshold, the heuristic overbooking was more successful. For the comprehensive
overbooking, the number of failing jobs increased steadily, while the number of
successful jobs remained at the same level.

However, the number of failed jobs dominates even the heuristic overbooking
results. Figure 7.5(b) illustrates that the comprehensive overbooking had the
maximum number of jobs at a PoFmax of 0.15, while the heuristic had the best
number at a PoFmax of 0.35.

Figure 7.6 shows the corresponding gain. The fees and penalties increased over
the complete threshold range. The confidence intervals for the gathered fees and
penalties overlap in Figure 7.6(a). The combined gain in Figure 7.6(b) illustrates
that the overbooking results were best with a PoFmax of up to 0.15 (comprehensive
approach) and 0.4 (heuristic approach) and decrease thereafter.

Due to its inflexibility, the comprehensive overbooking was only able to get the
same result as the heuristic planning. The heuristic planning did not overbook
jobs. The maximum gain of the comprehensive overbooking was, with about
16,000 VCs, 16% higher than the gain to the backfilling. The heuristic overbook-
ing had a maximum gain of nearly 20,000 VCs. This was an additional 22% gain
compared to the heuristic planning and an additional 20% gain compared to the
comprehensive overbooking.

7.2.2 Risk Acceptance Test

Table 7.4 summarizes the result of the risk acceptance test and the resource
simulation of the Arminius trace. The table shows the average results of the
60 test runs according to the penalty ratios and the surplus of the overbooking
strategies in percent.

Figure 7.7(a) shows the successful and failed jobs and Figure 7.7(b) the difference
of the successful and failed. The non-overbooking strategies did not change.
Comparing these resource simulation results to the runtime-estimation simulation
results, the number of failed jobs was lower than the comprehensive results and
higher than the heuristic.
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Figure 7.6 Arminius: Profit and penalties with PoF acceptance test and resource
based PDFs.

(a) The fees and penalties of the Arminius trace.

(b) The gain.
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Figure 7.7 Arminius: Jobs with Risk acceptance test and resource based PDFs.
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(a) The successful and failed jobs of the Arminius trace.
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(b) The difference of successful and failed jobs.
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Table 7.4: The Risk simulation results with Arminius and the resource based PDFs
Risk simulation Penalty Ratio

Resource based statistics 0.5 1 2 4
Comprehensive backfilling 15,835 13,944 10,160 2,593

Heuristic planning 18,054 16,022 11,960 3,834
Comprehensive overbooking 17,174 14,830 11,539 3,136

Comprehensive gain 8% 6% 14% 21%
Heuristic overbooking 20,496 19,181 16,305 10,240

Heuristic gain 14% 20% 36% 167%

The difference of successful minus failed jobs in Figure 7.7(b) illustrates that
the overbooking strategies reduced the amount of failed jobs with a higher risk.
Compared to the heuristic planning, the comprehensive overbooking had a lower
result with a penalty ratio of 0.5 and a higher result with a penalty ratio of 1.
Starting at a penalty ratio of 2, the comprehensive overbooking had a higher ratio
than the heuristic overbooking. When comparing both overbooking strategies,
the comprehensive overbooking was too lazy when the risk was low and became
much more careful when the risk was higher.

Figure 7.8(a) shows that the shape of the fees and penalty results remained, while
the bars of the penalties were closer to the bars of the fees.

The distance between the failed and the successful jobs is bigger than the distance
between the fees and penalties for a penalty ratio of 1 or 2. This means that less
but very large jobs failed

Therefore, Figure 7.8(b) shows that the additional gain for the heuristic increased
from 14% to 167%. For the comprehensive overbooking, the gain decreased
from 8% to 6% for a penalty ratio between 0.5 and 1. For a penalty ratio of 2, it
increased to 14% and to 21% for a penalty ratio of 4. The additional gain of the
heuristic compared to the comprehensive overbooking increased from 3,000 VCs
or 18% at a penalty ratio 0.5 (difference 17,174 VCs [comp.] to 20,496 VCs
[heur.]) to 7,000 VCs or 300% at a ratio of 4 (the difference from 3,136 VCs
[comp.] to 10,240 VCs [heur.]).

The confidence intervals show that the backfilling, heuristic planning, and compre-
hensive overbooking could have negative results with these settings. In practice,
this means that the strategies were not careful enough, and the input statistics or
the security factor need to be adapted in order to work profitable.
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Figure 7.8 Arminius: Profit and penalties with Risk acceptance test and resource
based PDFs.
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(a) The fees and penalties of the Arminius trace.
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(b) The gain.
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7.3 Application Analysis

A new kind of statistical input was used for the application statistics based
simulation. The simulation used the statistical analysis according to different
requested applications. Figures 4.6 and 4.5 in Section 4.2.3 show the input CDFs
and PDFs.

7.3.1 PoF Acceptance Test

The evaluation starts with the acceptance test based on the PoFmax threshold.
Table 7.5 summarizes the maximum gain of the application analysis based simu-
lation. A discussion of the results is shown in the following.

Table 7.5: The PoF max gain with Arminius and the application PDF
PoF simulation VCs additional gain PoFmax

Comprehensive backfilling 13,944
Heuristic planning 16,022

Comprehensive overbooking 15,292 10% 0.05
Heuristic overbooking 19,170 20% 0.1

Figure 7.9 shows the jobs of the simulation. In the beginning and like outlined
in Figure 7.9(a), the amount of successful jobs was almost the same for the two
overbooking strategies. From a PoFmax threshold of 0.15 on, they increased.
The comprehensive overbooking results remained at 550 successful jobs after a
PoFmax threshold of 0.4. The heuristic overbooking increased further to over 700
jobs and remained at this level between a PoFmax threshold of 0.7 and 1.

The failed jobs increased for both overbooking strategies from the beginning. At
the end, the comprehensive overbooking had with 250 the most failed jobs. The
heuristic had 150 failed jobs with a PoFmax threshold of 1.

Figure 7.9(b) shows the difference of successful - failed jobs. The 95% confidence
intervals around the lines of the two overbooking strategies overlap up until a
PoFmax = 0.5. The curves for the heuristic increase up to a PoFmax = 0.55,
while the comprehensive overbooking decrease from the beginning.

Figure 7.10 shows the resulting fees, penalties, and the combined gain. The
overlapping confidence intervals indicate that the results of the single test runs
can differ from the average results.

The fees of both overbooking strategies slowly increased with a higher PoFmax

threshold. The penalties grew at a higher rate. Therefore, Figure 7.10(b) shows
that the gain of the simulation decreased with a higher PoFmax. The maximum
gain of the comprehensive overbooking was 15,292 VCs with a PoFmax of 0.05;
this means 10% extra. The maximum average gain of the heuristic overbooking
was 19,170 VCs with a PoFmax of 0.1. This was about a 20% extra income.
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Figure 7.9 Arminius: Jobs with PoF acceptance test and application PDFs.

(a) The successful and failed jobs of the Arminius trace.

(b) The difference of successful and failed jobs.
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Figure 7.10 Arminius: Profit and penalties with PoF acceptance test and applica-
tion PDFs.

(a) The fees and penalties of the Arminius trace.

(b) The gain.
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Table 7.6: The Risk simulation results with Arminius and the application PDFs
Risk simulation Penalty Ratio

Application based statistics 0.5 1 2 4
Comprehensive backfilling 15,835 13,944 10,160 2,593

Heuristic planning 18,054 16,022 11,960 3,834
Comprehensive overbooking 17,212 13,966 9,750 2,071

Comprehensive gain 9% 0% -4% -20%
Heuristic overbooking 20,450 18,230 14,382 10,987

Heuristic gain 13% 14% 20% 187%

7.3.2 Risk Acceptance Test

Table 7.6 summarizes the results of the risk acceptance test and the application
statistics. The table shows the average results of the 60 test runs according to the
penalty ratios and the surplus of the overbooking strategies in percent.

Figure 7.11(a) shows the successful and failed jobs for the resource simulation
and Figure 7.11(b) shows the job difference.

Similar to the resource analysis, the number of failed jobs of the overbooking
strategies was high with a low penalty ratio. The number of failed jobs decreased
when the penalty ratio grew.

Figure 7.11(b) illustrates the difference of successful minus failed jobs. The
overbooking strategies gathered an average number of 500 jobs with a penalty
ratio of 1 and 2.

Figure 7.12(a) shows the increasing penalties. The shape of the bars is similar
to the results of the resource analysis. Therefore, Figure 7.12(b) illustrates that
the additional gain increased monotonically from 13% to 187%, with a higher
penalty ratio for the heuristic.

Due to the high amount of SLA violations, even the non-overbooking strategies
have almost no gain with a penalty ratio of four. This means that nearly one-fourth
of the sold computing time got lost due to resource failures.

The heuristic was able to achieve a very high profit and the comprehensive over-
booking performed badly. Starting at a penalty ratio of 1, the comprehensive
overbooking had a worse result than the backfilling. In addition, the gain of
the comprehensive overbooking decreased with an increasing penalty ratio. The
strategy had a very bad performance with the input statistics. Either the selected
application classes must be updated to allow suitable risk calculations, or the ap-
plications are generally not able to support overbooking. To allow this simulation
approach to be successful, we need a higher security factor. The security factor
that was added in the simulation to the calculated risk value to ensure that only
jobs with very good opportunity were selected was 4. This security factor of 4
was suitable for most simulations, here however, the factor was not high enough.
Alternatively, the statistical input must be updated.
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Figure 7.11 Arminius: Jobs with Risk acceptance test and application PDFs.
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(a) The successful and failed jobs of the Arminius trace.
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(b) The difference of successful and failed jobs.
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Figure 7.12 Arminius: Profit and penalties with Risk acceptance test and applica-
tion PDFs.
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(a) The fees and penalties of the Arminius trace.
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(b) The gain.
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The confidence intervals in Figure 7.12(b) show that for a penalty ratio of 4 the
results of the backfilling, heuristic planning, and comprehensive overbooking can
lead to a loss of money. Only the heuristic overbooking works profitable.

Overall, the overbooking simulation based on the applications of Arminius had
the worst result of all the simulation runs of the Arminius traces. At first glance,
this means that the applications did not seem to be a fitting basis for overbooking.
However, the simulation did not use statistics for single applications but for CCS
workers. This workers often were application environments and complete sets of
applications were assigned too them. The simulation shows that these applications
were too different to be analyzed in groups build by CCS workers. Related work
indicates that a runtime prediction for applications is beneficial [Gibb 97, Smit 98,
Tsaf 07]. This means that applications are predictable and, therefore, can be used
for overbooking. As a consequence, another way of grouping the applications
should be evaluated.

7.4 Submission-User Analysis

The results of the simulation with PDF classes according to different users are
presented in this section. This simulation was the last one in the evaluation of the
Arminius traces. It was based on the statistical PDF classes according to different
users that submitted many jobs. Figures 4.7 and 4.8 show the CDFs and PDFs for
the top 10 users of Arminius in 2007. When new jobs from these users arrived,
their personal statistics were used. For all other users, a general statistic was
applied. The evaluation of the user statistics is discussed in Section 4.2.4.

7.4.1 PoF Acceptance Test

This section presents the results of the simulation with the acceptance test based
on the PoFmax threshold. Table 7.7 summarizes the maximum gain of the User
PDF based simulation, it contains the average results and the surplus of the
overbooking strategies.

Table 7.7: The PoF max gain with Arminius and the User PDF
PoF simulation VCs additional gain PoFmax

Comprehensive backfilling 13,944
Heuristic planning 16,022

Comprehensive overbooking 16,526 19% 0.35
Heuristic overbooking 20,520 28% 0.5

Figure 7.13 shows the successful and failed jobs in 7.13(a) and the differences
in 7.13(b). The transparent areas are the 95% confidence intervals around the
average results of 60 simulation runs. In this simulation, they are smaller than in
the other test runs. This indicates that the use of user-based statistics might be
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Figure 7.13 Arminius: Jobs with PoF acceptance test and user PDFs.

(a) The successful and failed jobs of the CTC trace.

(b) The difference of successful and failed jobs.
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Table 7.8: The Risk simulation results with Arminius and the user-based PDFs
Risk simulation Penalty Ratio

User-based statistics 0.5 1 2 4
Comprehensive backfilling 15,835 13,944 10,160 2,593

Heuristic planning 18,054 16,022 11,960 3,834
Comprehensive overbooking 18,163 15,836 12,117 4,221

Comprehensive gain 15% 19% 17% 10%
Heuristic overbooking 22,080 19,324 16,829 9,540

Heuristic gain 22% 20% 41% 149%

the most useful one because the user-based analyses allowed the most predictable
results.

The comprehensive overbooking had a slowly increasing amount of successful
jobs over the entire PoFmax range. The number of jobs of the heuristic overbook-
ing increased at a higher rate. At a PoFmax threshold of 0.9, the heuristic was
saturated. The number of failed jobs of the comprehensive overbooking began
to increase at a PoFmax of 0.25 and was saturated at a PoFmax of 0.9. For the
heuristic, the number of failed jobs started to increase at a PoFmax of 0.7 and was
saturated at a PoFmax of 0.9. This indicates that the cluster was fully utilized.

Figure 7.13 shows the resulting jobs. The confidence intervals are smaller than
in the other simulations but they still overlap until a PoFmax of 0.8. The job
difference of both overbooking strategies was the same until a PoFmax of 0.35.
From there on, the heuristic’s results were better compared to the comprehensive
overbooking.

Figure 7.14 shows the resulting gain in resource hours or virtual coins. Figure
7.14(a) shows that the fees of all strategies overlap in their confidence intervals.
The penalties of the comprehensive overbooking grew starting at a PoFmax of 0.4.
The penalties of the heuristic overbooking grew starting at a PoFmax of 0.5.

Therefore, Figure 7.14(b) shows that the heuristic overbooking had its peak gain of
20,500 VCs with a PoFmax of 0.5, and the comprehensive overbooking had a peak
gain of 16,500 VCs with a PoFmax of 0.35. For a PoFmax between 0.05 and 0.4,
the result of the comprehensive overbooking was equal to the heuristic planning;
thereafter, its result became worse. On average, the heuristic overbooking was
better than the heuristic planning. From a PoFmax of 0.9 on, it had nearly the
same result.

7.4.2 Risk Acceptance Test

Table 7.8 summarizes the results of the risk acceptance test of the last simulation.
It was based on the statistical analysis of the user behaviors. The table shows the
average results of the 60 test runs according to the penalty ratios and the surplus
of the overbooking strategies.
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Figure 7.14 Arminius: Profit and penalties with PoF acceptance test and user
PDFs.

(a) The fees and penalties of the Arminius trace.

(b) The gain.
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Figure 7.15 Arminius: Jobs with Risk acceptance test and user PDFs.
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(a) The successful and failed jobs of the Arminius trace.
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(b) The difference of successful and failed jobs.
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Figure 7.16 Arminius: Profit and penalties with Risk acceptance test and user
PDFs.
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(a) The fees and penalties of the Arminius trace.
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(b) The gain.
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Figure 7.15 summarizes the resulting jobs. Figure 7.15(a) shows that even with
low penalty ratio between 0.5 and 1, the number of failed jobs was low for the
overbooking strategies. Accordingly with a higher penalty ratio, the number of
failed jobs decreased only slightly. The number of successful jobs decreased
at a higher rate. Figure 7.15(b) shows that especially the heuristic had a lower
resulting job-difference for a higher penalty ratio.

Figure 7.16 summarizes the resulting gain. On the one hand with a higher
penalty ratio, the heuristic overbooking had a smaller fee than the other strategies.
However, it also looses less money, as illustrated in Figure 7.16(a).

The additional gain of the comprehensive approach was best with 15,836 VCs
or a gain of 19% at a penalty ratio of 1. The heuristic overbooking was best at a
penalty ratio of 4, with 9,540 VCs or a gain of 149%.

Like in all other simulations, the heuristic outperforms the comprehensive over-
booking. This was due to a much more flexible, underlying heuristic planning
strategy.

According to the confidence intervals, with a high penalty ratio of 4 the non-
overbooking strategies and comprehensive overbooking can also have negative
results. This was the last simulation run of the Arminius trace.

7.5 Summary

This section summarizes the most important facts of the simulations with the job
traces of the Arminius cluster. It starts with the results of the PoF acceptance test
and continues with a summary of the risk acceptance test. Finally, it presents the
runtime of the simulations.

7.5.1 PoF Results

Figure 7.17 summarizes the maximum gain of the simulations based on the
runtime-estimation, resources, application, and user analysis. The simulations
confirmed that it is possible to increase the profit with overbooking.

Table 7.9: Additional gain in % compared to the underlying non-overbooking strategy
for the PoF acceptance test and the Arminius simulation.

Runtime PoFmax Res. PoFmax Appl. PoFmax User PoFmax

Compreh. 16% 0.05 16% 0.15 10% 0.05 19% 0.35
Heuristic 24% 0.5 22% 0.4 20% 0.1 28% 0.5

For all simulations, the heuristic overbooking had the best results. The advantage
of the heuristic overbooking lies in the heuristic planning that outperforms the
backfilling. In three of the simulations, the comprehensive overbooking was better
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Figure 7.17 Summary of the Arminius PoFmax threshold simulations.
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(a) The maximum gain of the PoF acceptance test based simulations.

than the heuristic planning. In one case, the heuristic planning was better even
without overbooking.

The impact of the different input statistics on the results of overbooking was
measurable but low, about 4% additional gain was in between the single simulation
results. The best result was possible with the statistical density functions based on
the user’s estimations with 20,520 VCs gain, followed by the runtime-estimation
statistic with nearly 19,813 VCs gain, and the resource statistics with 19,556 VCs.
The application statistics produced the worst results with 19,170 VCs at the most.

Except for the application simulation, the shapes of the bars were similar. This
means that if the input statistics allow a certain estimation quality, the results of
the overbooking were based on the scheduling strategy and the chosen PoFmax

threshold. The maximum gain can be reached with an adequate threshold. Only
if the input statistics are of low quality, the maximum additional gain cannot be
reached. The optimal threshold allows the strategy to achieve the best result, and
in such a case, the accuracy of the underlying statistics is not important.

7.5.2 Risk Results

Table 7.10 summarized the maximal additional gain in % compared to the under-
lying non-overbooking strategy with the given penalty ratios. Figure 7.18 shows
the maximum gain of the simulations with the risk acceptance test in percent.

The results of the simulations of this test battery showed that the heuristic over-
booking was more reliable than the comprehensive. The heuristic overbooking
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Table 7.10: Additional gain in % compared to the underlying non-overbooking strategy
for the risk acceptance test and the Arminius simulation.

Runtime ratio Resources ratio Appl. ratio User ratio
Compreh. 62% 4 21% 4 9% 0.5 19% 1
Heuristic 170% 4 167% 4 187% 4 149% 4

had, for all simulations, by far the best results with a penalty ratio of 4. The
comprehensive overbooking had negative results with a penalty ratio of 2 and 4
(with the application PDFs), while the backfilling and the application statistics
have a positive one.

This demonstrates that the application statistics were not usable for the risk
acceptance test. Here, either an update or a change of the statistics is necessary,
or the security factor has to be increased.

7.5.3 Runtime

The Section 3.4 provided already a brief theoretical runtime analysis of the
overbooking algorithms that showed that the complexity classes would be the
same O(n2) if the amount of jobs n would be dominant.

However, a user is not interested in the complexity class but in the fact that he
gets a direct feedback for a job negotiation.

In this case, the heuristic seems to be faster than the comprehensive approach
because the runtime only depends on the number of planned p in the system O(p).
The comprehensive overbooking approach has a runtime that is dependent on
p, the number of resources of the cluster k, and the time needed for the FFT
calculations. Following, the complexity would be O(t log(t)pk).

To evaluate whether this difference has an impact in practice, this simulation
measured the runtime of the algorithms. Section 6.7.3 already discussed the
runtime of the simulation with the PWA traces.

This section presents the results for the Arminius trace with the additional applied
application and user statistics. In the summary of the simulation runtimes of
Section 6.7.3, we saw different runtimes for different simulations. The question
occurred whether or not the different runtimes only depended on the cluster size
and the FFT transformations or also on the input statistics. A look at the runtimes
of this set of simulations should reveal if this is the case since the environment
was the same for all simulations in this chapter. Figures 7.19 and 7.20 show the
average runtime of the simulations of the four approaches for the Arminius trace.

Compared to the PWA traces, the comprehensive overbooking still used more
runtime than the other approaches even though the distance to the heuristic
overbooking was smaller. The heuristic overbooking used about half the runtime
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Figure 7.18 Summary of the Risk simulations and the Arminius traces.
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(a) The results of the comprehensive overbooking.
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(b) The results of the heuristic overbooking.
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Figure 7.19 Runtime of the PoF simulations.
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Figure 7.20 Runtime of the Risk simulations.
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of the comprehensive overbooking. Compared to the PWA traces, only the HPC2n
trace had a similar distance.
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The runtime of the four strategies was similar for all simulations in this chapter.
Only the user-statistics based simulation was a bit faster than the average. Com-
paring this results to the runtime of the simulations shown in Section 6.7.3, it
means that the input statistics had little influence on the runtime. The time of the
FFT transformations and the size of the cluster system, and therewith the amount
of resources and possible gaps, influenced the runtime most. The risk or the PoF
acceptance test or the strategies were not very time consuming.



8 Conclusion

The conclusion first discusses the results of the evaluation of the overbooking
approaches. The second part touches the remaining issues and new questions for
future research that came up during this work.
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The evaluation of the overbooking approaches in Chapters 6 and 7 demonstrates
that the commercial selling of computing power can benefit from overbooking.
One important prerequisite for a successful application of overbooking is the
availability of reliable probability density functions. They describe the quality
of the users’ runtime estimations. Two strategies were developed and applied:
one comprehensive overbooking approach that allows predictable results and
one heuristic overbooking that proved to be faster, more flexible, and simply
more profitable. The simulation used workload traces from the parallel workload
archive and the PC2’s Arminius cluster. The evaluation of the algorithms showed
that the profit of a provider increases and comparing all simulations, the heuristic
overbooking has the best results. The additional gain depends on the load of the
cluster and the quality of the runtime estimations. For the PoF acceptance test

• the minimum additional gain for the Arminius trace and the comprehensive
overbooking with the worker statistics was 10%, and

• the maximum additional gain for the HPC2n trace and the comprehensive
overbooking with resource statistics was 94%.

For the risk acceptance test with the HPC2n trace, the time statistics, and the
penalty factor of 4, the additional gain was up to 234%. However, the risk
acceptance test also shows that with bad statistics and a too offensive approach,
the application of overbooking can lead to money loss. With the SDSC-SP2 trace,
the input statistics, and a penalty ratio of 0.5, the simulation showed a loss of
61%.

8.1 Discussion

The simulation was supposed to evaluate whether the application of overbooking
is profitable. Therefore, it was necessary to compare the comprehensive and
heuristic overbooking strategy, find suitable statistics, and evaluate the runtime.
In the following, these three points are discussed.

175
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The comprehensive overbooking approach was designed to support a very accurate
PoF calculation. It is able to calculate a job’s PoF based on node specific failure
predictions and the previously scheduled jobs. Therefore, the prediction is very
accurate. The ability to accurately calculate PoFs supports a reliable overbooking
process. The disadvantage of this approach is that the algorithm has to map
the jobs on resources at SLA negotiation time. During the start time, a better
choice of resources is often possible. As a consequence, the comprehensive
strategy has many small gaps and a more scattered schedule. In the simulation,
this disadvantage turns out to be an advantage when a higher risk or PoF was
accepted for negotiation. In this case, only small jobs can be accepted. Loosing
one of them does not lead to a high penalty.

Comparing the simulation results shows that the comprehensive overbooking is
more trustworthy and reliable. In addition, if we compare the additional gain
of the overbooking mechanisms to the underlying, not overbooking, strategies,
the additional gain is higher for the comprehensive overbooking. This indicates
that overbooking is more helpful for scheduling strategies that have a lower
utilization. Obviously, one can more easily improve a result if there is more room
for improvement. However, the simulations also show a very long runtime for the
comprehensive overbooking.

To overcome this disadvantage, a heuristic overbooking was developed. It does
not decide where the job should run at SLA negotiation time. The heuristic can
start accepted jobs on any free resources and allows replanning due to the shorter
runtime. The heuristic overbooking uses an overall resource count to calculate the
probability of the job’s success. On the one hand, this approach proved to be more
flexible because a job can run on every node. On the other hand, this strategy does
not remember the jobs that ran before. Therefore, the heuristic cannot include
statistics of these jobs into the PoF calculation. As a result, the heuristic’s PoF
estimations are not as accurate as those of the comprehensive approach. However,
ignoring the previous jobs is like assuming that they all use their full runtime.
Nevertheless, it is very likely that the jobs will run shorter and the new job will
likely start earlier and get more runtime. This probability is not included into the
PoF calculation. Therefore, the resulting PoF estimation is in tendency too high
and the algorithm tends to a PoF overestimation. However, to overestimate the
PoF is better than underestimate it because it is better to be cautious and decline a
few jobs more than to accept too many jobs that will fail.

In all simulation runs, the heuristic overbooking had a higher peak profit than
the comprehensive overbooking, with the PoF acceptance test. The simulation
shows that the heuristic has fewer but bigger gaps. Therefore, it is able to accept
bigger jobs. Consequently, the heuristic overbooking has a higher profit than
the comprehensive overbooking. The disadvantage of the heuristic is that the
results can fluctuate. This can be seen in the simulation of the HPC2n and the
SDSC-BLUE trace. They indicate that the risk to lose extremely big jobs was
often misestimated. However, big jobs are those jobs that the provider wants to
fulfill, not only because of money loss but also because of a reputation-loss.

In most simulation runs, the additional gain of the comprehensive overbooking
is higher compared to the according, not overbooking strategies. However, if
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backfilling and planning have the same results then the heuristic overbooking is
better. The LANL simulation shows this. There, the backfilling and heuristic
planning have the same results, and the heuristic overbooking is better than the
comprehensive overbooking.

The quality of the underlying statistics was supposed to be the most important
factor for the overbooking result. Therefore, the simulation implemented two
different analyses for the PWA traces and four for the Arminius. However, the
application of the different groups of statistics seems less aiding than expected.
Due to the different PoF thresholds that were applied by the simulations, a similar
peak performance was achieved with many different statistics. For the PWA
simulation runs, the one half had better results with the time statistics, and the
other half had better results with the resource statistics. For Arminius simulations,
the user statistics allowed the best results and the worker the worst.

However, the quality of the statistics definitely has an impact on the PoF calcu-
lation. The shape of the PoF acceptance test curves illustrates this. The plots
illustrate very different results. For supportive statistics, utilization and results of
the PoF acceptance test simulation increase in the beginning because new jobs
are successfully accepted; afterwards, they decrease because the acceptance test
is too aggressive. The sample simulations with supportive statistics are:

• CTC runtime-estimation and resource statistics.

• SDSC-BLUE runtime-estimation and resource statistics.

• SDSC-DataStar runtime-estimation statistics.

• Arminius runtime-estimation, resource and user statistics.

In other cases, the statistics were not very helpful because the classes were badly
chosen or the statistics were outdated. An outdated statistic can lead to a risk
underestimation or risk overestimation. Statistics that lead to an underestimation
of the PoF and the risk show directly decreasing plots. The examples for a
simulation run with a risk underestimation are the simulation of the

• LANL runtime-estimation and resource statistics.

• SDSC-SP2 traces and runtime-estimation statistics.

Statistics that lead to a PoF and risk overestimation show curves with no changes
in the resulting plots because no further jobs are accepted even with higher
threshold due to the PoF overestimation. Examples for simulation runs with risk
overestimation are:

• HPC2n runtime-estimation and resource statistics.

• SDSC-DataStar.

They never get a negative result.

However, the simulation shows that a monitoring and update process is important.
Even if many simulations tend to be overestimated, better statistics allow better
results. In practice, a monitoring and feedback system should allow steady updates.
The PoF estimation shows that with a low threshold all overbooking approaches
work well. If the overbooking approaches are carefully applied, overbooking
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is profitable. In all simulations with a maximum PoFmax of 0.1, the results are
positive. This also indicates that a very high security factor will probably lead to
a profitable overbooking, for the risk acceptance tests.

The runtime of the algorithms is best for the not overbooking strategies. This fact
is easily understandable because PoF estimations do not need to be calculated.
The backfilling is the fastest strategy because it does not use rescheduling. The
runtime of the comprehensive overbooking is the worst one due to the many
convolutions that need to be done for the PoF and risk estimation process. The
heuristic overbooking is faster. If comparing the strategies in the simulations,
it becomes clear that the runtime strongly depends on the size of the simulated
cluster. There are only small differences between the statistics of the same cluster.

Overall, the simulations showed that overbooking is applicable in a commercial
environment. The comprehensive overbooking allows more predictable results,
while the heuristic is faster and allows a higher profit. However, the underlying
statistics should be updated to allow accurate PoF and risk estimations. If accu-
rate statistics were available and the overbooking was applied carefully, it was
successful in all simulation runs.

8.2 Future Work

The main task of a scientific work is to find answers to so far unsolved questions.
Often on the way to uncover the results, new question arise. During the work of
developing and evaluating the overbooking algorithms for academical or commer-
cial resource providers, many new questions and ideas came up that are worth
analyzing in further evaluations and may introduce new overbooking abilities.
Some of them were already mentioned in the discussion of the evaluation, oth-
ers are related to an adoption of the overbooking algorithms to other fields of
application.

Future work considers:

• An improved monitoring of jobs,

• The use of commercial job traces for more appropriate statistical inputs,

• The application of advance reservations,

• The search for correlations between user estimation qualities and other job
parameters,

• The application of system generated runtime predictions,

• The usage of checkpointing and migration, and

• The extension of overbooking to virtualization, and Cloud computing.

Monitoring of Jobs The first point that should be extended is the update process
of the statistics. In practice, a monitoring and feedback system should allow
steady updates. This should avoid outdated data. After a successful or failed
job execution, the results should be included into the input statistics. A function
should be developed that ages the monitoring information such that older moni-
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toring information will have less impact on the statistics. At some point, outdated
monitoring information should be removed from the statistics.

Application of Advance Reservations The actual simulation environments only
deal with jobs that are submitted with SLAs and are free placeable in a plan in
between their release and deadline. In practice however, users are tending to query
for advance reservations. They have a defined beginning and defined end. For
example, the users can take them for interactive use during the working hours of
the day. These advance reservations cannot be overbooked or moved in the plan.
The actual simulations avoid these kinds of jobs. However, they are used quite
frequently and are a challenge because the overbooked jobs have to be placed
around. Future simulations should reveal the impact of advance reservations on
overbooking.

Use Other Sources of Job Traces to Create the Input Statistics The simulations
presented in this dissertation base on the traces of scientific compute clusters.
However additionally, the ability of overbooking for commercial providers should
be evaluated. Therefore, an extended evaluation on the basis of SLA based
job traces would be beneficial. The underlying assumption is that users tend to
estimate better if they have to pay for the compute cycles. There already are
commercial providers, like Oracle or Amazon, where customers buy resources,
but the traces or even monitoring information is not available at this time.

Find Correlations of the Runtime Estimation and Other Parameters For future
work, it would also be interesting to determine if there are other parameters that
correlate with the user runtime estimation quality. Finding good correlations
should allow the calculation of high quality PoF estimations. Beneath the moni-
toring issue, the quality of the estimations could be increased further with better
correlations.

System Generated Runtime Estimations A further step towards a more profitable
overbooking could be the creation of system generated runtime estimations for
the jobs. These estimations should provide a lower bound for the job’s runtime.
This means that, regardless of the PoF threshold, only jobs that can be planned
with this minimum runtime boundary would be accepted. This should prevent
many SLA violations.

Checkpointing and Migration Fault tolerance mechanisms like checkpointing and
migration can also lead to a less risky overbooking process. Checkpointing is the
process of taking a transparent snapshot of a (parallel) job’s memory, messages,
registers, and CPU status, e.g. the program counter. The checkpoint can be stored
in a file system available in the network [Hove 06, Hein 05b, Hein 05a, Hove 05].
Incomplete jobs could then be restarted in the next free gap of the schedule,
before the job’s completion time. Migration is the process of creating a job’s
checkpoint and transferring it to other nodes on the cluster, or even to another
cluster, and restarting the job there from this checkpoint. With the checkpointing
and migration mechanisms, jobs can be used in cooperation with planned FT
mechanisms. They are then able to restart from checkpoint in case the gap is too
short [Voss 06, Batt 07a, Batt 08b].
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Virtualization Techniques Additionally, future work should examine how over-
booking could be applied if the providers are using virtualization techniques. This
step would close the gap to the cloud approaches and allow us to migrate jobs
that took more runtime than the gap length allowed. Compute clouds already use
virtualization to simplify data center management. Virtualization allows the live-
migration of jobs and possesses other abilities, like the possibility to dynamically
change the resources of a VM during runtime [Clar, Wald 02, Chis 07]. Addi-
tionally if enough other resources are available at the end of a job’s time slot, the
job can be moved to the free resources, and an SLA violation might be prevented.
The costs of the virtualization due to migration time and of lost performance
due to virtualization overhead could then be gauged with the additional gain
by avoiding SLA violations. In addition, the possibility to overbook resources
not only vertically but also horizontally enables other possible applications of
overbooking. However, they also lead to a new complexity in estimating the
benefits.

The mentioned subjects could be investigated and might provide better PoF and
risk-prediction abilities, offer new means to avoid job kills, or allow us to exploit
further dimensions for the overbooking of jobs.

Here, this dissertation comes to its end. This work had the task to reveal whether
or not the application of overbooking is useful for SLA based scheduling systems.
The simulations showed that the developed algorithms are promising. However,
the quality of the underlying estimation statistics is important for the successful
application of overbooking by a resource provider.
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Pavailable The probability that the resources of a job are available at start time. 43,
49

Pexecutable The probability that the job is successful within its given time slot. 44,
50

Psuccess The probability that the resources are valuable during the whole runtime.
45, 50

PoF(j) The probability of failure calculated for a new job j. 43

PoS(j) The probability of success calculated for a new job j. 43, 49

acceptance test Decision whether or not to accept a new job. 77

additional gain The additional income of a DCI provider by applying an over-
booking strategy compared to the not overbooking one. 100

application analysis Statistical analysis of the user estimation quality based
on classes of jobs build on the requested application of worker. 65

Arminius Compute cluster at the PC2 in Paderborn that produces input traces
for the simulation. 58

AssessGrid Advanced Risk Assessment and Management for Trustable Grids.
6

Auctions A market mechanism. 18, 53

backfilling Scheduling strategy that is able to fill gaps in case a job fits in. 26

Bartering Models A market mechanism for resource exchange. 19, 54

BF Best Fit packing algorithm. 24, 82

BFDH Best Fit Decreasing Height. 25

Bidding A reverse auction. 19, 54

BL Bottom Left packing algorithm. 23

BPEL WS-Business Process Execution Language. 29

C3Grid Grid Scheduler of the Climate Community. 28

CAVE Cave Automatic Virtual Environment. 8

CCS Computing Center Software. 28

CDF Cummulative Density Function. 12, 38

charge The charge or fees are earned for fulfilling an SLA. 75
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CIM Common Information Model. 29

CloudStack Management of server and compute nodes with virtualization
technologies. 30

combined PDF resulting PDF of the PoF calculation for the comprehensive
overbooking. 41

Commodity Market A market where the prices are given by a formula. 19, 54

comprehensive overbooking Overbooking strategy that works on the same
basis as the conservative backfilling. It calculated the PoF for overbooking
based on specific resource stability information and the plan of jobs. It is
part of the simulation environment. 42, 55

Condor Workload management system for compute-intensive jobs. 28

conservative backfilling Backfilling strategy that does not delay other jobs,
part of the simulation environment. 27, 55

CPU Central Processing Unit. 3

CSF Community Scheduler Framework. 29

CTC Cornell Theory Center. 86

DCI Distributed Compute Infrastructure. 6, 8–11

deadline The SLA defined time until a job has to be finished. 34

DGSI D-Grid Scheduler Interoperability. 8

EASY Extensible Argonne Scheduling sYstem. 27

EASY++ EASY with system-generated execution time predictions. 27

EC European Commission. 6

Eucalyptus Elastic Utility Computing Architecture for Linking Your Programs
To Useful Systems. 30

failure rate The failure rate λ. 34, 49

FBS Finite Best-Strip. 25

FCFS First Come First Serve. 26

fee The charge or fees are earned for fulfilling an SLA. 75, 100

FF First Fit packing algorithm. 23, 24, 81

FFDH First Fit Decreasing Height. 25

FFS First Fit Shelf. 25

FMEA Failure Mode and Effects Analysis. 21

Freefluo The workflow enactment engine of Taverna. 29

FST Fuzzy Set Theory. 21

FT Fault Tolerance. 22

FTA Fault Tree Analysis. 21
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gain The gain is the income of a DCI provider. 88

Grid Service Broker A broker developed to handle data-oriented applications.
29

GridEngine successor of the Sun Grid Engine. 28

GridWay meta scheduler of Globus Toolkit. 28

GT Guarantee Term. 16

GWES Grid Workflow Execution Service. 28

Heizea OpenNebula scheduler. 30

heuristic overbooking Overbooking strategy that works on the basis of the
heuristic planning. It is part of the simulation environment. 48, 55

heuristic planning Counts resources and checks whether or not a job can be
executed with its requested resources and full estimated runtime. Resources
are not assigned to jobs at planning time, a job can start anytime after the
release on any free resource. It is part of the simulation environment. 55

HFF Hybrid First Fit. 25

HPC High Performance Computing. 11, 31

HPC2n High-Performance Computing Center North, Sweden. 103

Hyper-Exponential Failure Model Statistical model to describe a continu-
ous probability distribution. 46, 50

IaaS Infrastructure as a Service. 11

ITIL IT Infrastructure Library. 16

JAWS Extension to batch schedulers to allow the use of virtual machines. 30

jBPM The workflow engine from JBoss. 29

joint PDF PDF build on all the jobs before a new job. 40

KVM Kernel Virtual Machine. 30

LANL Los Alamos National Lab. 109

libvirt A virtualization API. 11

LoadLeveler IBM scheduler for serial and parallel jobs. 28

LRMS Local Resource Management System. 9, 28

LSF Load Sharing Facility. 28

Maestro-VC Xen based cloud solution. 29

Maui Scheduler that can be used by many different RMSs. 28

MSS Meta Scheduling Service. 28

MTTF Mean Time To Failure. 44
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MTTR Mean Time To Repair. 44

NF Next Fit packing algorithm. 23

NFDH Next Fit Decreasing Height. 25

NFS Next Fit Shelf. 25

nimrod/G A meta scheduler based on Globus Toolkit. 29

OGF Open Grid Forum. 2

OpenNebula Project to study scheduling of virtual machines. 30

openPBS open Portable Batch System. 28

OpenStack Nasa project that provides components for compute and object
storage with the support of CloudStack. 30

opportunity The probability of success multiplied with its worth. 36

P-GRADE P-GRADE or WS-PGRADE is a grid portal technology based on the
grid User Support Environment. 29

PaaS Platform as a Service. 11

PBS Portable Batch System. 28

PDF Probability Density Function. 12, 38, 44

penalty The penalty has to be paid by the provider for violating an SLA. 75

PoF Probability of Failure. 4, 21

Poisson Process Statistical model to describe a continuous probability distri-
bution. 46, 51

PoS Probability of Success. 5, 21

profit The profit is the income of a DCI provider. 35, 75

PWA Parallel Workload Archive. 73, 85

QoS Quality of Service. 16

RAM Random-Access Memory. 3

repair rate The repair rate µ. 34, 49

resource analysis Statistical analysis of the user estimation quality based on
classes of jobs build on the requested amount of resources. 63

risk The probability of occurrence of an dangerous event multiplied with its the
impact. 20, 21, 36

RMS Resource Management System. 24, 27

SaaS Software as a Service. 11

SDSC San-Diego Supercomputer Center. 114

SDSC-BLUE San-Diego Supercomputer Center Blue Horizon. 115
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SDSC-DataStar San-Diego Supercomputer Center DataStar. 121

SDSC-SP2 San-Diego Supercomputer Center SP2. 127

SDT Service Description Term. 16

SGE Sun Grid Engine. 28

SLA Service Level Agreement. 2

SLO Service Level Objective. 16

SLURM a highly scalable resource manager designed for Linux clusters of all
sizes. 28

SME Short and Medium Enterprise. 2

Taverna A workflow language for the semantic grid. 29

Tendering A reverse auction. 19, 54

time analysis Statistical analysis of the user estimation quality based on classes
of jobs build on the length of the estimated runtime. 60

Torque RMS based on openPBS. 28

UBIS Extension to batch schedulers to allow the use of virtual machines. 30

UNICORE Uniform Interface to Computing Resources. 28

user analysis Statistical analysis of the user estimation quality based on classes
of jobs build for specific users. 67

VC Virtual Coin, the corresponding virtual currency unit for a booked CPU hour.
76

VM Virtual Machine. 11, 29

VMware VMware VM Hypervisor. 30

VO Virtual Organization. 10

Weibull Failure Model Statistical model to describe a continuous probability
distribution. 45, 50

WS-Agreement Web Service Agreement. 2, 16

WS-Negotiation Web Service Agreement Negotiation. 16

WS-PGRADE P-GRADE or WS-PGRADE is a grid portal technology based
on the grid user support environment (gUSE). 29

WSAG4J Web Service Agreement for Java. 16

WSLA Web Service Level Agreement. 16

WSS Workflow Scheduling Service. 28

XBEE Xen Based Execution Environment. 29

Xen Xen VM Hypervisor. 30
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XGE Xen Grid Engine. 29
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