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in nonlinear contro! theory

0. Introduction. Recent developments
19, 14, 15, 16, 17> 18)

-(Cf.' [2, 3] etc.) and also in analysis (cf.
indicate that there is an increasing demand for a systematic Lie theory

of semigroups. Whereas the groundworks of a local Lie theory begin to

emerge (cf. (12, 4, 5, 8]), there is not much on the record on 2 global
definitions and

theory (cf. [12, 6, 9]). We will briefly outline the basic
the principal difficulties.

Let G be a connected Lie group and S be a gubsemigroup of G. I.n
order to simplify matters we assume that the group generated bY 510
G algebraically is all of G. Then we can associate with S a tangent
object L (S) by setting L(S) = {zeL(G):2= limg oo Zn: EXP 77 ¥
S,n € N}, where L(G) is the Lie algebra of G and €xp : _L(_G) -G8
the exponential function. It turns out (cf. [12]) that L(S) 182 we:dg&
i.e., that it is a closed convex set, which is also closed under addition
and multiplication by positive scalars. Moreover it satisfies

(0.1) edr [ (§) = L(§) forallz€ L(syn LS

where adz(y) = [r,y] with the pracket in L{(G)- We c?léa wedge
satisfying (0.1) a Lie wedge and L (S) the tangent wedge ol O+

It has been shown in [8] that, for any Lie Wedge,w’ th?r;; x:;fog
local semigroup S, with L(Sw) = W, ie. oe ;5’) and
ZI/{/V of the identity in G containing Sw . S. U

=z € L(G) : z = lim ro0 M €XP Tn w’ i i
other l{land t_l'_xé ezcamples (cf.vl (8]) show that by 19 meah? (l:] ev.;ry G
wedge in L (G) the tangent wedge of a (gk’bfﬂ) subsem;,g/f ian (G) do
Thus the principal question is: For edges a
there exist subsemigroups S of G such that L(5)=

It is one basic idea of Lie theory that the tal.lgellt 0;]
ble on the object U er

vide as much information as possi
0 Received by the editors on March 18, 1986 and 3% ¥
87.

ect should Pro
consideration-

September 2,
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In the case of semigroups it is quite clear that, in contrast to the group
situation, many different semigroups may have the same tangent ob-
Ject. Therefore one is interested especially in semigroups that are in a
sense determined by their tangent object. We call a subsemigroup S
of G infinitesimally generated if (S) generates L (G) as a Lie algebra
and we have

(0.2) expL(S) € S C (expL(S)) ,

where (exp L (S)) is the subsemigroup of G generated algebraically by
exp L (5).

Let W be any Lie wedge in L ((?) which generates L(G) as a Lie
algebra. Suppose there exists a subsemigroup S of G such that
L(S) =W. Since we have

(0.3) L(S)={zeL(G):expRTz S},

by [12] we may assume that § is closed and contains expW. If we
now let T be the subsemigroup of G generated algebraically by exp W,
then obviously W ¢ L(T) c L(S) ¢ W so that W is the tangent
wedge of an infinitesimally generated subsemigroup of G. Thus a
complete answer to our principal question would provide a classification
of all infinitesimally generated subsemigroups and hence yield a general
framework of a Lie theory of semigroups.

At the moment we are far from being able to give a complete answer
to our principal question. If we want to derive positive results we need
to restrict to certain classes of groups and to certain classes of Lie
wedges. The groups we will consider here are of the type G = CA,
where C is a compact subgroup and A is an abelian normal subgroup.
Such a group we will call a motion group. Accordingly we call a Lie
algebra L a motion algebra if it is of the type L = K + I, where I is an

abelian ideal and K is compactly embedded, i.e., spec(adz) C R for
allz e K.

The Lie wedges we want to restrict ourselves to are the so called
semialgebras (cf. [5]). These are Lie wedges W for which we can
find a neighborhood B of 0 in L (G) such that the Campbell-Hausdorff
multiplication z * y = z 4+ ¥+ [2,y]/2 + --- is defined on B and
W N B is a local semigroup w.r.t. *, ie., (WNB)« (WNB) Cc W.
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ges of divisible local

Equivalently, semialgebras are the tangent wed
tion of semialgebras

semi i
Whiciroups. r1.‘here is yet another characteriza
we describe since we will use it in the sequel.

thﬁitw‘/fv i?e a Wedge iQ a finite dimensional vectorspace L. Assume

T, = (W éezemmtmg, e that W W = L. For z € W we set

definition of T :E) NRTz W)~ {cf. [5]). A closer inspection of the

of W atzi . yields (cf. [5]) that we may call T the tangent space

terminolo 1151 accordance wth our geometrical intuition. With this

for all z gy [6] shows that W is a semialgebra if and only if [z, T, CTs
ew.

provide some

T : .
he paper is organized as follows: In Section 1 we
ent

i:(liegr: : fasc tst?n the e’fiStence of a semigroup with a prescrijbed tanger
mOtiolll alecblon 2 will be devoted to the study of semlalgebras in
those gebras, a.nd the last section will contain & description of

semialgebras in motion algebras which are the tangent wedges of

inﬁ ! 1 . -
grongSlmally generated subsemigroups in the corresponding motion

je groups. In this section

1. A lemma on subsemigroups of L
with a prescribed

:‘:nlg);z:e a lemm.a on the existence of subsemigroups :
it cone .Wh.lch is of general interest. The idea is that if a cone

) _Df0perly inside a wedge W that is already the tangent wedge of a
;mlgrouP S, then one can construct a semigroup SK with tangent coneé
) 'by taklng the union of a local semigroup with tangent cone K (which
xists by Lie’s Fundamental Theorem, cf. [8]) and 2 translate of 5- We
note that, using a considerable amount of machinery, it is possible t0
e?ctend this result so that we no longer have to assume that K is a cone
(ie., satisfies KN K = {0}). Fora proof of the generalization we refer
to [11] and [10]. Here we give a technical but elementary proof of the
special case in order to make the paper as self-contained a3 possible- In
order to state the lemma precisely e introduce the following notation:
For two wedges W, and W5 in a vectorspace L, W€ write W1 CC W, if
WI\(W,n W,)is contained in the interior of Wa.

Lemma 1.1. Let G be a Lie group S) =
generated subsemigroup of G whos¢ tangent wedd® Lgi' i
generating in L(G) = L. If K ¢ "
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L (G) satisfying K CC W, then there exists a closed subsemigroup Sk
of G with K = L (Sk).

Proof . Note first that we can find a cone K’ satisfying K cC K’ CC
W. Now choose a nonzero zo € K. Then we can find a Campbell-
Hausdorff neighborhood B in L(G), a compact neighborhood of zero
By contained in B and an ¢ > 0 such that the maps ¢; : By — B
defined by ¢:(x) = tzo * = are homeomorphisms onto ¢¢(By) for all
t € | €€. Making € and B smaller if necessary, we may assume by
[12] that there is a closed set 3" ¢ By N K’ with (x> )NByC )
and K = {z € L(G) : z = limnz,,z, € 5'}. Finally we may
assume that exp|p, is a homeomorphism onto its image satisfying
exp(K' N By) N §°! = {1}. In fact exp(K') ¢ § and SN S°!
is a Lie subgroup with L(SNS*') = W N ( W) by [12]. Hence
exp” Hexp(K' N By) NS c W N ( W)Nn K’ = {0}.

Note that the uniform continuity of the *-multiplication on By and
the fact that K’ CC W allow us to find an ¢; > 0 with €1 < € and
open, relatively compact, neighborhoods B; and B; of zero such that
(K' N B1)\By C e1xg % (WNBy),By* By C By and €;79 € By. In
fact, choose B; and Bj such that By x By C By C B; C int By. Then
(K" N B1)\B; is a compact subset of the interior of W N By. Hence we
may find an €; > 0 such that e;zp * ((K' 1 By)\By) is still contained
in int(W N By). But we may assume that €1 < € so that ¢.., is a
homeomorphism onto its image and we obtain

(K'NBi)\By = ¢! ( €; 20+ (K'NBy)\B2) C ¢-. (W N By)
= €120 * (W N By)

as desired (cf. Figure 1).
Now we define 3" = S"NB, and §' = (exp Y_')(exp e12¢)S. Then

(exp 7 )exp ) = exp(Y + 3) € exp(3"NBy)
C exp(z NBy) U exp((z NBy)\B,)
C exp Z'UeXP((K' N B1)\By).

But exp((K' n Bi)\Bz2) C (expe;zo)exp(W N Bg) C S since
expW C S. If we now set Sk = exp >'U 8, then this shows that
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—ele-K'ﬂBO

N
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FIGURE la.

(exp ! '
Sk. ’lzhe)zrgjcifz ) C Sk. Moreover, since §' C 5, we have §'S € S’ C
e, in order to show that Sy is a semigroup it only remains

to sho
Let w that (exp }.')S’ is contained in Sk-
et 8 € !
some 2’ € Szland z € 3 be fixed. Then s = (expz')(exp€1%o
Case 1 and g € S. We have to consider two cases:
ase 1. ’ .
= exp(z *I’:‘-T € Bs. In this case we conclude (exp z)(exP z')
z')(exp €170)g € S’ since £ * T € 3.

Cas
e 2 w2 € Y \Bz In this case we k
1 e Y NBy

)g for

(exp €1T0)9

I = €1%0 * w
c K'n B;.- Hence

for
(expszr)r(le w ,E W N Bg since T * T
S’ & expz')(exp€1%0)g = (eprla:o)(expw)(expelxo)g which is B
since expw € S.
_ K. In order t0 do that it

Fi
suﬁ?;any we have to show that L(Sk)
es to show that we can find 3 neighborhood U oflinG such that
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FIGURE 1b.

exp 1Sk NU) C 5" since then L(Sk)=K.

Note that exp(f* €12p) iS compact since expf is. But Z' * €120
does not contain zero, for otherwise ~6129 € ). N—K C K'NBiN-K =
{0}. The set 4 = (exp(3>" * €120))S is closed since S is closed and

exp(Z'*qm‘g) is compact. Moreover A contains S’ but not the identity
1 since we calculate

exp(Y " *e129) NS~ C exp(K' N By)NS~!'c {1}.

Thus there exists a neighborhood U of the identity in G such that
U N A =@ which implies i N Sk C exp ' o

The following example shows that the hypothesis on K to satisfy
K\{0} C int W cannot be dropped.

‘ Example 1.2. Let G be the Heisenberg group and K; be a cone
in L(G,) containing a central point in its interior. If G = G, ® R and
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K=K +

with Ll(é?lfje l’{t*“h)en—KLC L(Gy) 63-R+ and G, ® R T is a semigroup

semigroup S in G = L(G1) ® R*t. Nevertheless there cannot be a

semigroup contai _Wlth L(S) = K since SN G would have to be a
aining central points which is not possible by [9].

In this section we give
mialgebras W in
her we can find

2. i .
. Coms‘lalelalgebrag in motion algebras.
motiorll) Zle %)eometn.c description of all generating se
global gebras which will enable us to decide whet

semigroups S with L (S) = W or not.

First we .
note that motion algebras admit a sort of fitting decompo-

sition.

onal Lie algebra,

Lem
ma 2.1. Let L = K + I be a finite dimenst
deal, i.€., L 15 a

when ;
motiZnK lzs compactly embedded and I 1s an abelian 1
algebra. Then we have the decomposttion

(2.1) L= (K, 1]+ [K, K|+ Z(K,L),

and (2.1) 18 @ direct

wh :
ere Z(K,L) is the centralizer of K in L
) is abelian.

dec 4
omposition of vector spaces. Moreover Z(K,L

2 . _ |
roof. Since K is compactly embedded, any ade with z € K 18
the vector spaces (K, L} and

S’Z(*(mI;Silf;ﬂple so that L is the direct sum of

Cent’ ). Moreover we have K = K, K|+ 2 (K) where Z(K) is the

de er of K and [K, K| is semisimple. Since [K, 1] N K, K] = (0) the
composition (2.1) follows.

Note that Z(K,L) = Z(K) + Z(
[z, K] = {0}} and hence Z(K,)L)' = Z(

K, I) where Z(K, 1) = {z €1

K, 1y ={0} ©

We now are ready to give the announced deseription of semialgebras

in motion algebras.
Theorem 2.2. Let L be a motion algebra- Then for 6™y generating

semialgebra W in L we have
(i) [L,I] C W for any abelian ideal I of L.
aazwzwforauzeL.

(ii) W is invariant, i.e., €
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(iii) W is of the form W = J 1 R™¥(a +C), where J is an ideal,
C is a compact convex neighborhood of zero in a compactly embedded
subalgebra E of L, and a Z(K, L) where K is the mazimal compactly
embedded subalgebra of I, containing F.. Moreover C is invariant under
the group generated by the e*® with k ¢ K.

Proof. (i) Let L be a counterexample to claim (i), which has minimal
dimension and consider an z € int W. If Y C W is a neighborhood
of z then the set U, 1 = {3 luivi] :us € U,v; € In € N}
is all of [L, 1] and, for any u € U\I, the wedge W N (Ru+ 1) is a
generating semialgebra in Ry + J — A,. If I has codimension greater
than one in L, then the minimality of the counterexample shows that
Ru,I] CW for all u e iy \I since A, is again a motion algebra. But
then [L,1] = U, 11 cw contrary to our assumptions. Thus I is a
hyperplane in L, since I cannot be abelian.

Now let 2 € I\I be such that Rz is compactly embedded and
consider the operator ) = aqdx : L — L and its dual D : I — L.
Both D and D are semisimple with purely imaginary spectrum. If
y € W\I such that Ty is a tangent hyperplane of W in y, then T, N[
is a hyperplane in which is invariant under ady, hence also under
D. Therefore any nonzero linear form w € [ with kerw = T, N1
is an eigenvector of D and thus contained in ker D. We conclude
that D(I) C kerw C T,. Since y was an arbitrary point on W\I

which defines g tangent hyperplane Lemma 1.2 [4] implies that [L, =
D(I) C NyewTy C W (cf. also [4]).

This final contradiction to our assumptions proves part (i) of the
theorem.

In order to prove Parts (ii) and (iii) we note that Lemma 2.1 implies
L=[L1+ K K]+ Z(K,L). By part (i) we know that (L, 1] < W
and hence W; = wn (K, K]+ Z(K, L)) is a generating semialgebra mn .
the compact Lie algebra (K, K] + Z(K, L). Thus [7] shows that W, =
Ji+R™(a+C), where J; and E = R¢ ape ideals in [K, K|+ Z(K,L)
and C is a compact convex neighborhood of 0 in E, which is invari-
ant under the group generated by the e%9% with 7 ¢ [K,K]+ Z(K,L).
Moreover a € Z(K,L) and W, is invariant in [K, K|+ Z(K,L). But
since [L,1] is an ideal, W; + [L,1] is invariant. Finally we have



INFINITESIMALLY GENERATED 873

L=I[L I+ (K
K, K]+ Z(K, L) and [L,]] € W so that W = W1+ [L 1]

and t 1 i w =
he proof is finished if we set J=J [ I ]
=J, +|L,I]. O

Note that
th
e results of Theorem 2.2 can be extended to a certain

degree:

Remarks 2
3. L
K and a nilpotent s:ielel}ifthe sum of a compactly embedded subalgebra
, then any generating semialgebra W in L is

nvariant.

Proof. Let L
We can assume tEZta ]\?ounterexample of minimal dimension. BY [7]
embedded in Rz + Z N?é {0}. If z € int W then Rz is compactly
r=k+nkeKn (N), where Z(N) is the center of NV, since, for
2.2 implies that [ : ‘ZE N, we have adz|z(N) = adk|z(n)- Therefore
chosen arbitraril - (N)] c W and thus [L,Z(N)} c W since £ Was
an ideal in L Sbifnm mt. W. Set J = [L,Z(N)] and note that J s
our claim welhavecj I; 15 a C_Ounterexample of minimal dimension to
z € C'(W), ie., such =0 wh¥ch means that Z(N) C Z(L). Let mow
by the min’in'1 1’ uch that T is a hyperplane and0F#YEZ (N). Then
ality of L we know that (W + Ry) /Ry is invariant in

L/R
Y, hence
are two cases : (fs:igi): also that (W + Ry) is ipvariant 10 L. There
Case 1
(W"'Rz;,) y € T,. In this case T, is als
so that by [7] we have [z, L] € Ty

Case

somintgebra oo ales [ this case we have (2 T2

conclude (z Lli also [CUay] = (O since y € Z(N)C Z(L)-

our assu ' < Tw‘ which shows that W is jnvariant
mptions. This proves the claim. O

o a tangent hyperplane of

¢ T, since W is a
Thus we again
, contradicting

3. .

decide S‘-;leEmIgroups in motion groups- The problem to

a pre w ether there exists a subsemigroup § of a Lie grouP G with

problscrlbed tangent wedge W may

erou er(r}as, The first is to find a subsemigr G of the unive
p G of G with tangent wedge )

it is : .
possible to project S down to G without €8
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Proposition 3.1. Let G and H be Lie groups and ¢ : G — H
a quotient map. If S is a subsemigroup of G generating G as a
group, then L(g)(L(S)) C L(q(S)) where L(q) : L(G) — L(H) i
the morphism associated with g. The converse need not be true. If T
is a subsemaigroup of H generating H as a group and containing the
identity then L(q¢' (T)) = (L(q))" L(T).

Proof. Note first that we may assume that S is closed since
q(S) c q(S) so that L(q)(L(S)) c L(q(S)) implies L{q)L(S) =
L()(L(3)) € L(¢(8)) € L(S) ) = L(a(S)). It now expy : L(H) =
H and expg : L{G) — G are the respective exponential functions, then
expg R "z C S implies expy RTL(q)(z) = q(expg R "x) C q($) €
q(S) , hence, by (0.3), z € L(g(5)). To see that the converse is not
true consider an ice-cream cone W in R® and factor a discrete sub-
group of a line whose intersection with W is a halfline in the boundary
of W; then W is a semigroup with L (W) = W, whereas the quotient
semigroup has a halfspace as tangent wedge.

To see the last statement note first that ¢! (T) generates G as a group
since T generates H and kerq C ¢! (T) so that L (¢! (7)) makes sense.
Moreover g(¢' (T') = T so that the inclusion L (¢* (T)) C L(g)’ L(T)
follows from the first part. Conversely if z € L(g)! (L{(T)), then
expy RYL(¢)x € T so that expo RTz C ¢* (T). But since H
1s metrizable [1; Cap. IX, § 2, Prop. 1.8] implies that ¢' (T) C
(¢" (T)) , since any Cauchy sequence in T can. be lifted to a Cauchy
sequence in ¢' (T). In fact, for any s € ¢! (T') we find a sequence hn
in T' converging to g(s) and hence a sequence s, € ¢' (hn) C ¢' (T)
converging to s, i.e., s € (¢! (7)) . Thus exp; Rz C (¢! (T)) or
by (03), z € L(¢' (T)). O

Proposition 3.1 shows that, for invariant wedges, our problems are
reduced to the case of proper cones:

Corollary 3.2. Let G be a Lie group and W a generating invariani
wedge in L(G). Then there erists a subsemigroup S of G with L(S) =
W if the analytic group A associated with H Wy=wn.w is closed
and there exists a subsemigroup T of G/A such that L (T) = W/H (W)-
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Proo

Theref{) ‘re E(i)stz ﬁlrst that H(W) is an ideal since W Is invariant.
Juotient ma C (O;sed normal subgroup of G and we may consider the
wedge in L(g)(i L(A — G/A. But W/H(W) is a generating invariant
the identity. Th f)) SO th'a1.; T generates G/A as a group and contains
with L(q)" W us Proposition 3.1 implies that g (T) is a semigroub
g q)! (W/HW))= W as tangent wedge, which proves our claim.

We
can also handle the case where [ is a compact Lie algebra.

se Lie algebra L
in L. Then, for
tements are

Lem

is comrf:at 3.3. LetG bea connected Lie group who

the mf:ci(;r; la nd let W be a generating invariant cone
: al compact sub .

equivalent: pact subgroup K of G, the following sie

1 :
(1) There erists a subsemigroup S of G such that L(S)=W.

(2) W0 L(K) = {0}.

Then we may assume that

Proof. (1) = (2). Let z € W1 L(K)-
(epr:r:) is compact, this

?ripic' € § since L(5) = L (S). Since
plies (expRzx) C S so that Rz C W, whence T =
is a vector-

gr(o? =>L(1)‘ Note first that G ~ KoV, where V

isfyilll) ' I et Ly be a hyperplane in L(G) containing L(K ) and_sat-
in L(%; m NW = {0} Thisis possible by (2). Then Ly is @D ideal
tain Ig whose corresponding analytic subgroup M is closed and con-
L GS . Now consider G/M =R and the cone (W + L)/ Ly 10
' (G/M). Identifying G/M with L(G/M) we 5€¢ that (W + Luy)/ LM
is a subsemigroup of G/M, 50 that Proposition 3.1 shows that there i’s

a subsemigroup S, of G with L ($1) = Yp where 0F ZE€ 7

B i Lum+ R
ut since Ly NW = {0} we have wcc Lt R "z so that Lemma

1.1 yields the existence of the desired 5. O

Using this result we obtain

Theorem 3.4. Let G be a motion group and W be @ geﬂefatiﬂg
semialgebra in L(G)- If A is the analytic subgroup 007"'331’0"‘1’"9.“’
H(W) and K is a mazimal compact subgroup of G, then the followind

statements are equivalent.
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(1) There exists an infinitesimally generated subsemigroup S of G
such that L (S) =W.

(2) The group A is closed and W N L(K) c HW).

Proof. (1) = (2). Recall first that A C S since S is infinitesimally
generated. If z € L(z) then expRz C A C S so that Rz € L(S),
Le., z € H(W). Hence L(A) = L(A) and thus A = A. Now consider
the quotient map ¢q: G — G/A; S = g 1(S)) since A C S so that W =
L(S) = L{q) '(L(q(S))) by Proposition 3.1. But then L(_Q(S)) =
W/H(W). Note that Theorem 2.2 implies that W is invariant and
L(G)/H(W) is a compact Lie algebra. Thus we may apply Lemma
3.3 to W/H(W) in L(G/A) and find (W/H(W)) N L(K;) = {0} in
L(G/A) = L(G)/H(W) where K, is the maximal compact subgroup of
G/A.

Note that ¢(K) is compact, hence contained in K;. Therefore
L(K) C L(q)"'L(K,), whence

W N LK) C Lg) Y (W/H(W)) N L(g) " “(L(K1))
= L(g)" ' (W/H(W) N L(K1)

= L(g)~"({0})
— H(W).

(2) = (1). Conversely, if A4 is closed we can consider G/A and ﬁ_nd’
again by Theorem 2.2, that L(G/A) is compact and W/H(W) 1 2
generating invariant cone in L(G/A). Let K, again denote the maximal
compact subgroup of G/A and q : G — G/A the quotient map-. Then
K C ¢ !(K)) and, by [13], even g '(K;) = KA since K is also
a8 maximal compact subgroup of ¢~!(K;). Hence L(q) 'L(K1) =
L(KA) = L(K) + H(W) and L(g)"\(W/H(W) N L(Ky)) = WD
(L(K) + HW)) = W N L(K) ¢ H(W) by (2). Thus Lemma 3.3
applies to W/H (W) and yields a subsemigroup S; of G/A such that
L(S1) = W/H(W). But then Proposition 3.1 shows that S = ¢~ *(51)

as tangent wedge W so that the Theorem is proven in view of the
introductory remarks. o

We conclude with

Corollary 3.5. LetG be q simply connected motion group and W be
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a generalt . .
generate dﬁﬂg Semz'algebm in L(G), then there exists an inﬁnitesimally
subsemigroup S of G such that L(S)=W.

ected it is of the form V x K, where

Proof. If G is simply conn
But then

i SemiSi
Kisa mple compact grou and V 1 V oup
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