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ABSTRACT

Regarding carrier recovery as the estimation of
the fading distortion we reveal the common basis
of coherent and differentially coherent detection.
In the differentially coherent receiver a very
simple estimate of the fading distortion is used
whereas the coherent receiver uses the optimal
estimate [1]. Further, the bit error rates for
M-ary PSK and DPSK transmission are calculated
using a single wmethod of calculation for both
detection schemes. The calculation takes into
account non-perfect carrier recovery, cochannel
interference, and diversity. The results allow a
direct comparison of the two schemes and show that
coherent detection is preferable in many realistic
fading environments.

I. INTRODUCTION

It is well known that coherent detection schemes
are superior to differentially coherent or nonco-
herent schemes in terms of power efficiency, if &
stable carrier reference can be established. How-
ever, carrier recovery is the key problem on a
fading channel with its amplitude fluctuations and
random frequency modulation. Weber studied the
performance of a PLL on a fading channel quantita-
tively [2]. It is common opinion that if the fa-
ding is rapid enough this precludes any phase-
locked type of carrier recovery [3]. A popular
alternative is to use differential detection since
then the problem of acquiring a phase-tracking
loop tn this highly degraded environment is avol-
ded and since it 1s assumed that the detection
loss due to phase jitter on the carrier reference
in the coherent receiver exceeds the signal-to-
noise ratio penalty associated with differential
detection [4). However, differential detection
suffers in the same way from channel disturbances
as the coherent scheme does. E.g., a detailed ana-
lysis of differential detection of binary PSK is
found in [5). However, a direct comparison of the
two detection schemes that takes into account the
performance degradation of both the coherent
receiver {(due to a noisy phase reference) and the
differentially coherent receiver (due to channel
phase changes over two consecutive signalling
intervals) has not yet been given.
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The aim of this paper is to present such a com-
parison for the frequency-nonselective Rayleigh
fading channel. The common origin of the two detec
tion schemes is revealed by viewing carrier reco-
very as estimation of the multiplicative fading
distortion. In a previous paper we found the opti-
mal carrier recovery structure for the channe)
model under consideration [1]. Since this struc-
ture 1s linear, phenomena like hang-up and
threshold effect do not occur., Therefore the error
variance of the carrier recovery is a suitable
measure to assess Its performance. Taking into
account the nonperfect carrier reference we calcu-
late the error rate for coherent and differen-
tially coherent detection of M-ary PSK by applying
Stein’s method [6]. In addition to thermal noise
we consider cochannel interference as a further
source of degradation. Besides the results for the
coherent receiver the exact formulas for the error
rate of differential detection for M = 4,8 seem to
have not yet been published.

This paper is organized as follows. After the
description of the channel model and the coherent
receiver in section II we show the common basis of
coherent and differentially coherent detection
(section III1). Section IV contains the error rate
calculation and in section V the performance of
the two detection schemes is compared.

11. CHANNEL MODEL AND RECEIVER STRUCTURE

We consider linearly phase modulated signals
transmitted over a frequency-nonselective Rayleigh
fading channel in the presence of both thermal
noise and multiple cochannel interference. The
received signal, in complex baseband notation, is
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r(t) = h(t)vﬁs/? hI aig(t-ST) + n(t) +
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where a, is the i-th transmitted symbol and g(*}
is the signal pulse. With the pormalization
Iz(t)z'(t)dt = T and jai = 1. Eg denotes the

energy per symbol. T is the symbol period, and

;(t) is complex additive white gaussian noise with
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doublesided spectral density No. The fading dis-

tortion h(t) is a zero mean complex gaussian noise
s with unity power. The last term in eq. (1)

oces
pr . h (1),
n

i caused by cochannel interference. Esn

T the fading distor-
" n

tion, the i-th transmitted symbol and the time
shift of the n-th interferer relative to the time
scale of the useful signal, respectively. We
assume that the fading distortions hn(t). n=1,.

represent the energy,

.,N, are independent of each other and of h(t) and
have the same statistical properties as h{t).
In the recelver the incoming signal is filtered by

a matched filter with impulse response g‘(-t).
sampling the matched filter output at t = kT and

using @& normalization to simplify later
calculations gives1
1 »
z{k) := = Jr(t)g (t-kT)dt (2)

ST T
= h(k)ak + n{k) +
N 1 o n .
Em ?J'hn(t-rn)g agg(t-1T-v Jg (t-kT)dt
(3)

with K

hik} = -;- Ih(t)lg(t—kT)]zdt (4)

If h(t) is constant during the integration inter-
val then the sampled matched filter output con-
tains all the information of the continuous-time
signal that is relevant for detection. n(k) is
complex white gaussian noise with variance R =
NO/ES. Here z(k) is denoted as received signal

sample. From egq. (3) it follows that the degrada-
tion caused by the cochannel interferers depends
on their time shifts T n=1,..,N. In the case

of not too severely bandlimited pulses maximum
interference occurs for Tn =0, n=1, ..N. Using

this in (3) one obtains

N
n
2(k) = h(k)a, + n(k) + TVE_7E] ah (k) (5)

n=1

Due to the randomness of the interfering symbols
the cochannel interference induced term in (5) is
white gaussian noise with variance Zhh/CIR where

. Bl [t |2

1 2 2
-5 jjl (1|2 |e(r) | o, (t-7)atar (6)

and CIR is the carrier-to-interference ratio

IWe assume perfect bit timing and absence of
intersymbol interference.

CIR = Es/[§£‘ Esn] (7

n=1

ph(T) is the (normalized) autocorrelation function
of the fading distortion

py(T) = E[h(tsm)h™(t)]) (8)

In [1] we derived the maximum a posteriori detec-
tor of the transmitted symbol sequence in the case
of absence of cochannel interference. However
since cochannel interference causes an additional
white noise term which can be combined with n(k)
to form an overall white noise term of variance (R
+ Zhh/CIR), the results of (1] are still valid.

The derivation showed that carrier recovery equals
the estimation of the fading distortion h(k), a
result that was perviously found by Kam and Teh
[7}. If a linear state space model of the fading
distortion exists then this signal model deter-
aines the Kalman filter as the optimal state es-
timator {8] and thus as the optimal carrier reco-
very unit. Fig. 1 shows a receiver structure that
employs this carrier recovery and uses a decision-
directed elimination of the symbol phase for ca: -
rier synchronization. To avoid phase ambigv’:i::
the information 18 associated with thc chase
transitions, i.e. a is the output of » !i(ferza-

tial encoder which maps the uncoded
{a) onto {a} according to

A8 sequence

(9)

% T "k-1%
In the receiver the reverse operation must be

performed (see fig. 1). For M-ary phase shift
keying a {and ak) is element of the set {exp(j0),

exp{jen/M),..,exp{jen{M-1)/M)}. We assume that
each symbol is equally likely and that the symbol
sequence Jjs white.

Note that the receiver presented Is easily
implemented digitally since a fixed oscillator is
used in the receiver and all synchronizer and
detector operations are performed on the sampled
matched filter output (no VCO is needed).

‘ 3 ax

Filter |

r(t)

Kaliman-|
filter

+— Dift. Decod.

|
|
|
I
|
|
|
!
i

Fig.1: Blockdiagram of coherent receiver

I1I. DIFFERENTIALLY COHERENT DETECTION

Let us assume absence of modulation for the moment

1 N
{i.e. a =a . ~.. = a - 1 for all k). The Kalman

filter deltivers the optimal estimate ﬁ(k}k-l) for



h(k) given all received signal samples up to time
step (k-1): 2(k-1) = {z(0), ..,z(k-1)}:

B(kik-1) = E[h(k)}]|Z(k-1)] (10)

However other, suboptimal estimators are possible.
Let us assume that only the last received signal
sample, z(k-1), is available to obtain an estimate
for h(k). Since h(k) and z(k-1) are jointly
gaussian the optimal estimate in the sense of
ninimal mean square error

b (k) = E[h(k}|z(k-1)] 1y
is linear [8]:
A’ . _l _
B (k) = I F - z(k-1) (12)
Using (3) and (4) one finds
5, - E[n(k)z" (k-1)] = E[h(K)h"(k-1))
- L [lewr Pleo P mremater (o)
T
2
L, " Elfz(k-1)|") = £, + R + B /CIR (14)
The error variance of the estimate (11) is ¢
o = Elnik) - B ]?
o p2(T)
=Ly OpTnta ¥ Tererom Y
where we used the approximations
zhh N1 (16a)
I, ™ Py (T {16b)

which are valid if h(t) is approximately constant
for the length of the signal pulse. Of course the
estimation error varlance (15) can never be
smaller than that of the Kalman filter, however
the actual difference depends on the signal model.

Now let us use the estimator (11) as the carrier
recovery unit. For phase modulation schemes the
error rate of the receiver only depends on the
phase of the recovered carrier. Since the real

does not affect this phase, the

-1
constant thzzz

error rate of a receiver that uses ﬁ“(k) = z{k-1)

instead of h’{k) will be the same. The receiver
that uses this simple carrier recovery is equal to
the receiver of fig. 1 except that the Kalman
filter is omitted.

The receiver structure can be further simplified
by shifting the multiplication with a. behind the

k
decision stage. It can be shown that this does not
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affect the overall symbol decision ak' Fig.
the

shows resulting receiver structure. The
operations performed after the decision device are
just differential encoding and differentfa)
decoding which cancel out and thus can be omitteq,

What remains ls nothing else but a baseband rea-
lization of the optimal differentially coherent
detector. The matched filter is the optimal recej-
ving filter (see remarks after egq. (4)). Note that
successive noise samples n(k) are independent. [,
other publications often a somewhat vague descrip-
tion of the receiving filter is used ("filter
bandwidth such that additive noise is suppressed
but signal waveform remains undistorted”). Here we
have found a common basis for the description of
coherent and differentially coherent detection,
The differentially coherent detector is just a
special case of the coherent detector where a very
simple carrier recovery is used. Having found this
common basis we are now able to compare the two
schemes with each other in terms of bit error rate
using the same method of calculation for both
recelvers.
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Fig.2: Baseband realization of differentiall
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coherent receiver

IV. BIT ERROR RATE OF MPSK TRANSMISSION

A lower bound of the error probability of the
coherent receiver 1s obtained when it is assumed
that the symbol phase is known for synchronization
and thus can be perfectly removed in front of the
Kalman filter. In this case no differential
encoding is needed since no phase ambiguity can
occur. We have calculated this lower bound in {1}
using the approximations (1€) and assuming absence
of cochannel interference. Here we will give up
these restrictions and extend the calculation to
the differentially coherent case.

Because of the rotational symmetry of the detec-
tion problem we can assume without loss of gene-
L J
a

rality that ak =1 (ak k-1 = 1 for diff.

detection) has been transmitted. Applying Stein’s
result for Rayleigh fading channels Maciejko (9]
ghowed that If the error probablility can be
expressed as

coherent

2 2
P, = prob{|v,|" - [v,|° <0} {17)

with

Y Yzz complex gaussian random variat les

1



the error probability is

then
p = (1 -w) (18)
e 2
ith
" Riy = Rap
y- (19)
\J(Rll*Rzz 4R12R21
»
- E[Y,Y 20
RIJ 1Y, J1 (20)

E.g.. the error rate of binary PSK is (see fig. 1)

= Prob(Re{z{k)h*(Kk)} < 0) (21)

) |zgk)-ﬁgk)|a
2

Py, 2PSK

- Prob[lzi!lgﬁlkllz 0] (22)

where ﬁ(k) equals 3(k|k-1) in the coherent and

ﬁ"(k) = z(k-1) in the diff. coherent case. In [1]
we showed that also the bit error rate of 4PSK and
8PSK can be cast in the desired form (17). For the
computation of the error rate we now only need to
calculate the correlation terms Rij for the two

detectlon schemes and insert the result into (18).
The R, ,’s can again be easily calculated from the

ij

variances and covariances of z(k) and h(k) Note ,
that the variance of z(k) has already been given
in (14). Here we consider only Rayleigh fading.
However Stein’s method can also be applied to Rice
fading. In that case the calculations are a bit

more tedious (Marcum’s Q-function is involved).

A) Coherent detection
Using the orthogonality theorem of estimation

theory {8] the variance of the estimate B(k|k-1)
results in

g =elfbkik-n]? =g, - (23)
hh
and, similarly
£ = elhtak-0z"00] - £, - o (24)

hz

where a® = E[|h(k) - h(kik-1}|?] is the stationary
solutjon of the Ricatti equation (8].
Now the correlation terms are calculated using

(14), (23), and (24). Inserting them in (19) gives
the error rate of 2PSK via (18)

i
Po,2psk " 2|1 \[

= 0 and 2

(25)

—a Zhh/C[R

For o = 1 we obtain the well-known

result for coherent detection when a perfect
carrier reference is achievable [11]. Using the
results of [1} the bit error rate of 4PSK and 8PSK
can be found to be

1 1
Poapsk = 2|t - —
207+ Tt 2£hh/CIR
b 0
1+
. - az
hh
(26)
with Eb = Bs/logzﬂ
and
P - % [1euy + 3 () (o) (27)
b,8PSK 3 1 2 1 2
with
cosQ,
i
“l =
2 2 b
g (1+sin a )+——-—-—w£ /CIR z ain a
b/No hh |
1+
. - 02
hh
i =1,2
where

a, = 3n/8; a, = n/8

1

The error rates (25-27) are still a function of

the performsance 02 of the carrier recovery.

However 02 can be calculated from the channel
parameters by solving the Ricatti equation. If
this dependency is inserted the error rate can be
directly expressed as a function of the signal-to
-noise ratio, the carrier-to-interference ratiq
and the spectral characteristics of the fading.

B) Differentially coherent detection

Since 3"(k) = z(k-1) the variance of the estimate

ﬁ“ is equal to (14). Inserting (5) and using (13)
one finds for the crosscorrelation

N E
» sn n ]
£ = Elz(k-1)z" (k)] = Ehz[l P T R apay )
hz n=1 s
(28)
which depends on the interfering symbols.

Therefore the error rate of the differentially
coherent receiver first has to te calculated as a
function of the interfering symbols. Afterwards
the mean error rate is obtained by averaging over
these symbols. Note that in the coherent case the
Kalman filter performs this averaging operation,
since for the carrier recovery the cochannel
interference term is simply an additional white
gaussian noise term.

Using the same method of calculation as for the
coherent case one obtains



E
s n n

N ]
zhz[' * E——-} T, "% ]]

1
Pp.oopsk(®) = |t - ) :
: [1+—]+—
hh CIR E'/No
(29)
In the following we assume E = E = .. =E
sl 82 sn

for convenience. For a white symbol sequence with
equally probable symbols the probability for each

n s
k-l) is 1/M. In (29) we

need the sum of the interferer phases. The proba-

bility that the phase exp(j0) occurs Ko-tllea,

exp(j2n/M) occurs K]-tines etc. with the restric-
tion that

possible value of a:(a

n-1
T_K - N (30)
1=0
{s ("generalized Bernoulll trial" {10])
N1 1
P(K K. ,...K ) - — (31)
0’1 L2 M YT Y SN I |
Hence the average error probebility is
Py.opsk = Z— Pb,opsk!®IP(Kg Kpo Ky 1) (32)

where the summation is over all combinations of
K,’s that obey (30). In the case of M = 2 avera-

1
ging is very simple since Pb.ZDPSK(a,
linearly on the interferer symbols, eq. (29). Thus
the averaging operation can be directly applied to

depends

the interferer symbols. Since E(a:(n:_l)‘] = 0 we
obtain

- E{P (a)] =

Po. 20PsK b.20PSK

zhz

1
iy Rl (33)

£ 1.

I
hh{ ch] “EN
s 0
For M = 4.8 the error rate (as a function of the
Interferer symbols) is calculated in the same way
as for the coherent case. Since its dependence on
the interfering symbols is no longer linear the
averaging (32) does not lead to such compact
results as in (33). For M = 4 and absence of
cochannel interference one obtains again a quite
simple result

£
P Y P hz
b.4DPSKICIR » © © 2 —
N
hn" E /N, z
(34)

For both detection schemes the above calculations
can be extended to diversity reception. The
combiner of the L independent diversity branches
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recelved that achieves best performance |
“maximal ratio combiner” [11] where the g,
variable is the sum of the L matched filter
signals scaled by the optimal estimates

8 the
Cisjop
Outpyt
of the
This Combinep

can easlily be implemented in our coherent recelver
since a Kalman filter for each diversity bran,

compiex channel gain E'. £=1,..L.

delivers the optimal estimates ﬁe(klk-l). In the

differentially coherent case the estimates ﬁ;(k)

are used instead. Using this combiner, eq. (18)
must be replaced by [11)
L-1
2.8
1 28] (1-
SHEPM RS (25

£-0

Hence inserting u for the detection and modulatiop
schemes under consideration gives the performance
of the coherent and differentially coherent
receiver when using diversity.

V. PERFORMANCE COMPARISON

To exemplify the results, fig. 3 shows the bit
error rate of unfiltered MPSK for the land mobile
radio channel with its typical doppler spectrum
{12] versus Eb/No. Here we assumed a normalized

{on bit rate l/Tb = logzl/T) cutoff frequency of

of “DTb

vehicle speed v = 180 km/h, carrier freq. fc = 900

the doppler spectruam = .09 (corresponds to

Mz, data rate 10 ksymbols/s) and absence of co-
channel interference. In the coherent recelver we

Fig.3: Bit error rate of MPSK transamission on land
mobile radio fading channel (uDTb = 0.09, CIR » !



a second order Kalman filter for carrier
ery. Details of the filter design and the
cnannel simulator are described in [13}. Por ideal
cartier reference [11] (for both coherent and
dif(erentlally coherent detection) the error rate
is {nversely proportional to Eb/N0 and no irredu-

cible error rate exists. However here all curves
exhibit an irreducible error rate. The higher the
alphabet size of the modulation scheme ia, the
petter the performance of the coherent receiver is
{p comparison to differentially coherent detec-
tion. This 18 due to the fact that for high level
sodulation schemes the error rate is mainly deter-
sined by synchronization inaccuracies. Since the
carrler recovery of the coherent receiver is su-

rior. the coherent receiver clearly outperforms
differential detection for large M.

"cov

in fig. 4 the influence of cochannel interference
is discussed for the same channel conditions as in
tig. 3. It shows the carrier-to-interference ratio

required to achleve a bit error rate of 10'2 ver-
sus Eb/No. We assumed a frequency reuse cluster of

7 cells which corresponds to 6 cochannel inter-
terers with equal finterferer energy. Since co-
channel interference appears to the Kalman filter
to be white noise it is suppressed by the filter.
Por differential detection a similar effect is not
present. Therefore coherent detection s more
resistant to cochannel interference. E.g.,

achieve P, = 1072 for E, /N, + ® and for 4PSK, a

CIR = 20 dB is needed in the coherent case and CIR
= 27 dB for the differentially coherent receliver.

Clearly, the error rate of the coherent receiver
calculated in section IV is a lower bound, since
perfect elimination of the symbol phase for syn-
chronization has been assumed whereas the results
for differential detection are exact. If nonper-
fect elimination of the symbol phase and the in-
fluence of differential encoding of the Informa-
tion are taken into account the error rate is by
about a factor of two larger than the lower bound.
Prom fig. 3 it is clear that then the coherent
receiver 1s no longer superior for a wide range of
Eb/No. However the irreducible error rate is still

smaller in the coherent case.

Things change when diversity techniques are used.
The error rate then decreases approximately with
the L-th power of of the signal-to-noise ratio,
see flg. 5. The SNR loss of coherently detected
MPSK due to the increase in the error rate by a
factor of two because of differential encoding
becomes increasingly smaller with increasing
diversity degree L. Therefore ccherent detection
is again superior to differentially coherent
detection. The above conclusions are also valid if
channel coding together with interleaving is used
instead of diversity. Diversity can be interpreted
as just a special kind of coding.

VI. CONCLUSIONS

In this paper we compared coherent with
differentially coherent detection of M-ary PSK on

to
’
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frequency-nonselective fading channels. The major
advantage of differentially coherent detection is
that its implementation is very simple and that no
information about the channel is needed. However
if the channel characteristics are known at least
approximately and if diversity techniques or some
kind of channel coding is employed, then coherent
detection fs superior, in particular when high
level modulation schemes are used and in the
presence of cochannel interference. Thus the major
criterion for selecting an appropriate detection
scheme is not the rapidity of the (ading but
rather the aspects mentioned above.

VII. REPERENCES

[1] R. Haeb, H.Meyr, "Optimal carrler recovery and

detection on frequency-nonselective fading
channels”, to be published in IEEE Trans.
Commun.

[2] W.J.Weber, “"Performance of phase-locked loops
in the presence of fading communication
channels”, IEEE Trans. Commun., vol COM-24,
pp487-499, May 1976

[3) S.Stein, "Fading channel issues in systes

engineering”, IEEE J. sel. areas commun., vol.
SAC-5, pp68-89, Febr. 1987

{4] M.K.Simon, D.Divsalar, "Open loop frequency
synchronization of MDPSK with doppler”,
Int.Conf.Commun. (ICC’'87), paper 7.7, June
1987

[5] K.R.Wu, N.Morinaga, T.Namekawa, "Error rate
performance of binary DPSK systes with
multiple co-channel interference In land
mobile radio channels™, IEEE Trans. Veh.

Techn., vol.VT-33, pp23-31, Febr. 1984
S.Stein, “Unified analysis of certain coherent
and noncoherent binary communications
systems”, I[EEE Trans. Inf. Th. vel.IT-20,
pp43-51, Jan. 1964

P.Y.Kam, C.H.Teh, "Reception of PSK signals
over fading channels via quadrature amplitude
estimation”, IEEE Trans. Commun., vol COM-31,
pp1024-27, Aug. 1983

B.D.0.Anderson, J.R.Moore,"Optimal Filtering”,
Prentice-Hall, 1979
R.Maciejko, "Digital

16

—_—

(7]

{8

modulation in Rayleigh
fading in the presence of cochanne!l
interference and noise", IEEE Trans.Commun.,
vol.COM-29, pp1379-86, Sept. 1981

{10]A.Papoulis, “Probability, random variables,
and stochastic processes", McGraw-Hill, 1965

f11)J.Proakis, "Digital communications”, McGraw-

Hill, 1983

[12]W.C. Jakes (Ed.), "Microwave Mobile Communi-
cations”, New York: Wiley, 1974

{13)R. Haeb,H.Meyr, "A digital synchronizer for
linearly modulated signals transmitted over a
frequency-nonselective fading channel”, Int.

Conf. Commun. (ICC’88), paper 32.1, June 1988

ACKNOWLEDGENENT
The support of the Deutsche Porschungsgemeinschaft
(DPG) is greatly appreciated.



B [ =]

L

3

Fig.4: Required CIR to achieve & bit error rate of Fig.5: Bit error rate of 4PSK (coherent and
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