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1 Introduction

One of the main challenges in computer science is to determine the complexity of prob-
lems, structures, and algorithms. Since complexity and performance can vary drastically
depending on the considered input instance, it is our goal to provide a profound theoretical
analysis that gives reliable statements about the complexity and performance in applica-
tions, especially for algorithms. There are mainly two different traditional approaches to
achieve this goal, which are theworst case analysisand theaverage case analysis.

Certainly,worst case analysisis the strongest and most reliable complexity measure we
have. In worst case analysis, we ask for the maximum complexity of a particular problem
over all input instances. The analysis is thus independent of input instances and holds
for any input scenario and under any condition. But for many problems the worst case
complexity bounds are rather pessimistic and for some problems and algorithms rarely
or almost never encountered in applications. One famous example for this is thesimplex
algorithm for linear programming. The worst case complexity of the simplex algorithm is
proven to be exponential, while at the same time it shows an extremely good performance
in practice and is therefore widely used.

In order to provide a more ‘realistic’ analysis method researchers introduced theaver-
age case analysis. In the average case analysis a probability distribution on input instances
is defined. The average case complexity of a problem or an algorithm is then the expected
complexity measured on input instances from that distribution. For example, a low average
case complexity provides at least some evidence that an algorithm might perform well in
practice. But in most cases the average case analysis depends on the chosen probability dis-
tribution in the sense that we obtain different results for different probability distributions.
Furthermore, we observe that the usually considered probability distributions provide in
some cases a too optimistic complexity measure compared to the behavior encountered in
applications. One reason for this is that in many applications the inputs have very special
properties and that these properties cannot be captured by any probability distributions.

However, for many problems and algorithms we see a large discrepancy between their
average case and worst case complexity. Moreover, the ‘typical’ complexity of a problem
or algorithm one encounters in practice seems to lie usually somewhere between its average
and worst case complexity. Thus there is need for a complexity measure that bridges this
gap between average case and worst case.

In 2001, Spielman and Teng introduced thesmoothed case analysisas a hybrid between
average case and worst case analysis. In smoothed analysis, the input is object to slight
random perturbations, e.g. modeled by adding a random vector from a fixed probability
distribution to the input. The smoothed complexity of an algorithm or problem is then
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1 Introduction

defined to be the worst case expected complexity over all perturbed inputs where the ex-
pectation is taken with respect to the random perturbation, e.g. the added random noise.
The smoothed complexity is measured as a function of the input size and the magnitude of
the perturbation. Indeed, later we will see that smoothed analysis is able to provide such a
bridge between average case and worst case analysis.

Besides this appealing theoretical motivation the use of smoothed analysis is partic-
ularly well motivated in the context ofcomputational geometry. In many areas we en-
counter applications from computational geometry, e.g. in computer-aided design, oper-
ations research, geographic information systems, computer graphics, and combinatorial
optimization. In these applications of computational geometry the input data often come
from experimental and physical measurements and are thus afflicted with some error since
measuring devices have only limited accuracy. A standard assumption in physics is that
this error is distributed according to the Gaussian normal distribution. Thus we can use
smoothed analysis with Gaussian error to model inputs coming from physical measure-
ments. By the assumptions that physical measurements are not precise and that the error is
distributed according to the Gaussian normal distribution, smoothed analysis provides an
expected worst case complexity measure for this class of inputs.

Another interesting motivation for smoothed analysis in the context of computational
geometry is that the computations on a computer are carried out with limited accuracy.
When we consider the case that the input points are computed with fixed precision arith-
metic we observe that the rounded position of any point lies within a hypercube of a partic-
ular side length around its ‘real’ position where the side length of the hypercube depends
on the rounding. We can now model this scenario by the assumption that every point is
distributed uniformly in a hypercube centered at its ‘real’ position having an appropriate
side length (depending on the considered rounding). We obtain thus an expected worst
case complexity measure for computations under limited accuracy.

In this thesis, the combinatorial complexity of some fundamental geometric structures is
considered. The main contribution is to introduce a formal model for smoothed analysis of
the combinatorial complexity of geometric structures. Among other problems, this concept
is applied to the number ofextreme pointsof theconvex hullof a point set inIRd. In the
following, some of the results for this problem are sketched.

In particular, for the convex hull we will assume that the input points are perturbed
by Gaussian normal noise of varianceσ2. It is then shown that the worst case expected
number of extreme points, or for short, the smoothed number of extreme points is poly-
logarithmic in the number of input points and polynomial in1/σ. For this result almost
matching upper and lower bounds are given where the dimensiond is considered as a
constant. Interestingly, for uniform noise of varianceσ2 the smoothed number of extreme
points is polynomial in the number of input points and1/σ. This reveals a significant
discrepancy between the perturbation by Gaussian normal noise and by uniform noise. In
other words, the assumptions of measurement errors and fixed precision arithmetic lead to
quite different behavior and results.

Indeed, the analysis is much broader and provides actually bounds on the smoothed
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1.1 Outline

number of extreme points for a whole class of continuous probability distributions. An
interesting open problem is to generally classify those probability distributions for which
the smoothed complexity is low or high.

Smoothed analysis is also used to introduce a new complexity measure for motion, the
smoothed motion complexity. Especially when considering applications on moving objects
the influence of measurement errors is not negligible and of major importance. The use
of smoothed analysis is thus very well motivated in the context of motion and motion
complexity. The concept of smoothed motion complexity is then applied to the problem of
maintaining a smallest axis-aligned bounding box of a moving point set.

Another fundamental geometric structure is theVoronoi diagramof a set of points inIRd.
The combinatorial complexity of Voronoi diagrams (= number of all faces) is assumed to
be low in the average case but for most probability distributions explicit proofs are not
published. In this thesis the case is considered that the points are chosen uniformly from
a hypercube and it is shown that the expected complexity of the Voronoi diagram is then
also linear in the number of points. Based on this average case analysis it seems possible
to carry out a smoothed case analysis of the Voronoi diagram which is a quite interesting
open problem.

1.1 Outline

In Chapter 2, an introduction to smoothed analysis is given with a formal definition and a
broad overview on related work. In several papers, smoothed analysis and also its variants
have been applied to problems from very distinct areas of research.

In the first technical Chapter 3, smoothed analysis is applied to the problem of count-
ing the number ofleft-to-right maximain a sequence of elements. The chapter starts with
an average case analysis of the problem and presents then the smoothed case analysis in
great detail where upper and lower bounds for various noise distributions are given. On
the one hand, this problem and its analysis serves very well as an introductory example to
the concepts and techniques used in this thesis. On the other hand, the left-to-right max-
ima problem represents somehow a1-dimensional version of two other multi-dimensional
problems that are considered in the next two chapters.

The problem to count the number ofextreme pointsis a kind of canonical extension of
the left-to-right maxima problem to higher dimensions, and it is treated in Chapter 4. The
chapter starts with an average case analysis and presents then upper and lower bounds for
the smoothed number of extreme points for various noise distributions.

In Chapter 5, motion and especially moving point sets are considered under the notion
of motion complexitywhich is a complexity measure for movement of objects. It is pro-
posed to extend this notion tosmoothed motion complexity, which is as the name already
indicates, a ‘smoothed’ version of motion complexity. This concept is then applied to the
bounding boxproblem where the number of combinatorial changes to the description of
the bounding box of a moving point set is considered. Upper and lower bounds on the
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1 Introduction

smoothed motion complexity of the bounding box problem are given.
In the last technical Chapter 6, theVoronoi diagramof a random point set and particu-

larly the expected number ofVoronoi verticesis considered. It is shown to be only linear in
the number of points for the case that the points are uniformly distributed in a hypercube.
For the case that the points are chosen uniformly from inside a ball, Dwyer [Dwy91] gave
already an explicit proof that the expected number of vertices is linear. He conjectured
that similar results hold for other uniform distributions but proofs are lacking so far or not
published in any form.

Each chapter starts with a short introduction and a brief overview of related work in
order to help classify the considered problem and the obtained results, and ends with a
summary and conclusion. Finally, in the last Chapter 7, a summary and conclusion of all
results in this thesis is given together with a prospect of future work in this area.

1.2 Bibliographic Notes

Parts of the work presented here in this thesis have been published in preliminary form
in the proceedings of theEuropean Symposium on Algorithms (ESA)and theEuropean
Workshop on Computation Geometry (EWCG). These publications are

• V. Damerow, H. R̈acke, F. Meyer auf der Heide, C. Scheideler, and C. Sohler.
Smoothed Motion Complexity. InProceedings of the 11th European Symposium
on Algorithms (ESA), 2003. [DMR+03]

• V. Damerow and C. Sohler. Smoothed Number of Extreme Points under Uniform
Noise. InProceedings of the 20th European Workshop on Computational Geometry
(EWCG), 2004. [DS04b]

• V. Damerow and C. Sohler. Extreme Points under Random Noise. InProceedings
of the 12th European Symposium on Algorithms (ESA), 2004. [DS04a]

• M. Bienkowski, V. Damerow, F. Meyer auf der Heide, and C. Sohler. Average
Case Complexity of Voronoi Diagrams ofn Sites from the Unit Cube. InProceed-
ings of the 21st European Workshop on Computational Geometry (EWCG), 2005.
[BDMS05]

The results of Chapter 3 on the smoothed number of left-to-right maxima and of Chap-
ter 5 on the smoothed motion complexity of the bounding box are based on the work in
[DMR+03]. The lower bounds for the smoothed number of extreme points are an exten-
sion of this work, too. The upper bounds for the smoothed number of extreme points are
an extension of the results presented in the papers [DS04b] and [DS04a]. The average case
analysis of the Voronoi diagram in Chapter 6 is based on the work presented in [BDMS05].
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2 Smoothed Analysis

The general idea of smoothed analysis is to weaken the worst case complexity by adding
small random noise to any input instance. Thesmoothed complexityof a problem is then
the worst case expected complexity over all input instances, where the expectation is with
respect to the random noise, and is given as a function of the input size and the relative
magnitude of the perturbation. To see how this complexity measure compares to worst
case and average case complexity we will consider these, too. In the following section, the
worst case, average case and smoothed case complexity ofalgorithmsis introduced and
formally defined.

2.1 Smoothed Analysis of Algorithms

Let Xn denote the space of all input instances of lengthn to a particular algorithmA,
consider for example the space all linear programming problems of lengthn to the simplex
algorithm. LetTA(x) denote the running time of algorithmA on inputx ∈ Xn. Theworst
case complexityof algorithmA is then the function

Cworst(A, n) := sup
x∈Xn

TA(x) .

To consider theaverage case complexityof algorithmA, a probability measure∆ onXn

is introduced. The average case complexity of algorithmA is then defined as

Cave(A, n) := E∆

[
TA(x)

]
,

wherex is a random variable on(Xn, ∆) andE∆ is the expectation with respect to∆.
For thesmoothed complexityof algorithmA, in contrast, a probability measure∆x is

considered for each input instancex ∈ Xn, and the smoothed complexity of algorithmA
is defined as

Csmooth(A, n) := sup
x∈Xn

E∆x

[
TA(y)

]
,

wherey is a random variable on(Xn, ∆x).
This definition of course heavily depends on the probability measures∆x that are used.

Which measures to use depends on each individual problem, but normally one will con-
sider measures which put much weight on inputs that are similar, or near, tox. This notion
is best illustrated by the following examples.
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2 Smoothed Analysis

1. If Xn is a finite discrete metric space with metricd, one can consider

∆x({x′}) = f(d(x, x′))

with some suitable functionf that is e.g. supported on a bounded neighborhood of
0.

2. If Xn is a vector space andϕ : Xn → IR≥0 a suitable probability density function
one can consider

∆x(B) =

∫
B

ϕ(x− x′) dx′

whereB is a subset ofXn.

An important aspect of smoothed analysis is that the concept of smoothed complexity is
a generalization of both average case and worst case complexity. While the former can be
obtained by setting all distributions∆x equal to the same global distribution∆, the latter
is obtained in the case that the probability measures∆x are all concentrated in the pointx
itself. One could therefore also say that smoothed analysis actually interpolates between
worst case and average case analysis.

Besides the general definition of smoothed complexity, in most papers that appeared
on smoothed analysis, the following more concrete definition of smoothed complexity is
used. LetXn be a vector space, e.g.Xn = IRn. The smoothed complexity of algorithmA
is then the function

Csmooth(A, n) := sup
x∈Xn

E∆

[
TA(x + ||x|| · ρ)

]
,

where∆ is again a probability measure onXn andρ a random vector on(Xn, ∆).
The vectorρ is also denoted as therandom noiseby which the input instances to al-

gorithmA are perturbed. By multiplyingρ with ||x||, the magnitude of the perturbation
is related to the magnitude of the input that is perturbed. This is important when the
considered problems are invariant under scaling which is for example the case for linear
programs. Otherwise it would happen that problems that are equivalent up to their ‘size’
obtain different results under the same perturbation. In the following we will denote this
definition of smoothed analysis as theadditive perturbation scheme.

The name “smoothed analysis” comes from the following observation. If we consider
the complexity of a problem or an algorithm as a function from the input space to the
combinatorial size of the problem or the running time of the algorithm or to any other
complexity measure, and we plot this function, we obtain a complexity landscape, see
also Figure 2.1. The smoothed complexity is then the highest peak in this landscape after
it is convolved with a small random noise distribution. One could also interpret this as
taking for each single input point the average complexity value over a small (weighted)
neighborhood of this input point and assigning this value to the input point.
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2.1 Smoothed Analysis of Algorithms
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Figure 2.1:Complexity Landscape and Smoothed Complexity Landscape1.

Smoothed analysis provides thus an insight into the topology of worst case instances in
the input space. A low smoothed complexity shows whether bad inputs are pathological
and isolated and can thus be avoided by already slight changes to the input instance. A
high smoothed complexity reveals that bad inputs are somehow closely connected in terms
of lying closely in the same neighborhood of the input space.

2.1.1 Smoothed Analysis of the Simplex Algorithm

Smoothed analysis was introduced by Spielman and Teng [ST04] to explain the typically
good performance of the simplex algorithm in applications. For many variants of the
simplex algorithm with different pivot rules, the worst case complexity is proven to be
exponential, e.g. on the famous Klee-Minty cubes [KM72]. Nevertheless, the simplex al-
gorithm shows an extraordinarily good performance on input instances from applications.
The simplex algorithm is also known to have polynomial average case complexity under
different notions of average case. The first average case analysis of the simplex algorithm
was given by Borgwardt [Bor80], many other researchers followed him and investigated
the average case complexity for other variants and pivot rules of the simplex algorithm. But
still these results are not considered to give a satisfying explanation of the good behavior
of the simplex algorithm encountered in practice.

Another intention for Spielman and Teng to introduce smoothed analysis as a new com-
plexity measure was to model inputs that are encountered in applications. Besides the
assumption that inputs are afflicted with measurement errors, another motivation for us-
ing randomly perturbed inputs comes from the observation, that usually inputs are formed
in processes subject to chance, randomness, and arbitrary decisions. On the other hand

1Reproduction by courtesy of Daniel Spielman.
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2 Smoothed Analysis

typical inputs can have very special properties such as being degenerated, which holds
especially for the simplex algorithm. It is e.g. not unusual that typical input instances
to the simplex algorithm contain many0-entries in the constraints matrix. Indeed, this
phenomenon is captured by taking the worst case over all perturbed input instances.

Spielman and Teng now consider a particular two-phase shadow-vertex simplex method
on linear programs of the form

maximize cT · x
subject to A · x ≤ b

whereA is an(m × n)-matrix, b is anm-vector, andc is ann-vector over the reals. Let
T (A, b, c) denote the time complexity of this simplex method. They show that for everyb
andc, the smoothed complexity of this method,

max
A∈IRm×n

EG

[
T (A + ||A|| ·G, b, c)

]
= poly(m, n, 1/σ)

is polynomial inm, n, and1/σ, independent ofb andc, whereG is a Gaussian random
(m× n)-matrix of varianceσ2 centered at the origin.

Most remarkable about this result is, that the complexity of the simplex algorithm actu-
ally grows incredibly slow from the polynomial average case complexity to the exponential
worst case complexity. This can be seen from the smoothed case bound, where the recip-
rocal of the standard deviation1/σ goes only by a polynomial factor into the smoothed
case bound.

The result of Spielman and Teng definitively marks a major step to an understanding of
the behavior of the simplex algorithm in applications since it gives us a strong evidence
that worst case instances are pathological and very isolated in the input space and therefore
almost never encountered in practice.

2.1.2 Smoothed Analysis of Condition Numbers

Since 2001 several other papers on the smoothed analysis of algorithms have been written.
The following results are all obtained for the additive perturbation scheme.

In numerical analysis, thecondition numberof a problem instance plays an important
role. Generally, it is defined to indicate the sensitivity of the output to slight perturba-
tions of the input instance, and the running time of an algorithm is often given in terms
of the condition number of its input. Instead of bounding the condition number in the
average case, it is proposed to consider the smoothed value of the condition number in
order to show that already under small noise it is unlikely that a problem is ill-conditioned
[SST03]. In this stream of research, thePerceptron algorithm[BD02] andRenegar’s algo-
rithm [DST03, ST03b] for linear programming, and most recently,Gaussian elimination
[San04] are investigated.
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2.1 Smoothed Analysis of Algorithms

In some sense connected to the analysis of smoothed condition numbers is the research
work of Beier and V̈ocking. They consider the sensitivity of perturbations todiscrete opti-
mization problemslike the Knapsack problem [BV04a] and generally to the class of all bi-
nary optimization problems [BV04b]. The analyses are actually broader than in smoothed
analysis since they can even handle the case that the elements of an input instance are
from different probability measures. This enables them to study the effects of correlations
between the random elements of input instances and gives also a nice framework to study
semi-random input models where some elements of an input instance are adversarial and
some stochastic. Maybe most remarkable is their result that a binary optimization problem
has a polynomial smoothed complexity if and only if it has a pseudo-polynomial complex-
ity. This result was recently extended to all integer linear programs [RV05].

2.1.3 Discrete Perturbation Models

We just saw how smoothed analysis with the additive perturbation scheme is applied to
discrete algorithms. There are also attempts to define meaningful models for discrete
perturbations in order to analyze other discrete algorithms. This makes sense in several
settings, e.g. when investigating discrete structures like graphs and algorithms on graphs,
but also for other problems and algorithms like sorting and scheduling.

Banderier et al. [BMB03] were the first to introduce discrete perturbations. They define
partial permutationswhere the elements in a sequence are randomly permuted with prob-
ability p. In the partial permutations model they analyze then thequicksort algorithm2.

Banderier et al. introduce alsopartial bit randomizationwhere integers are perturbed by
randomly choosing the lastk bits. This model is extended by Becchetti et al. [BLMS+03]
and applied to clairvoyant scheduling. They introducesmoothed competitive analysisfor
online algorithms and present an analysis of the smoothed competitive ratio of themulti-
level feedback algorithm. The usual competitive analysis gives often a too pessimistic
estimation of the performance of an online algorithm since the online algorithm is mea-
sured against an optimal offline algorithm with full knowledge of the future. Sometimes
the offline algorithm is thus simply too strong. In smoothed competitive analysis, the of-
fline algorithm is somehow weaker since the input instances are randomly perturbed and
it has not full knowledge about the future. In this sense, it seems quite natural to apply
smoothed analysis to the analysis of online algorithms.

As already mentioned, Banderier et al. consider the number of comparisons of thequick-
sort algorithmin the partial permutations model. Eppstein [Spi] proposed to refine this
model in such a way that the already sorted input and the reverse-sorted input stay unper-
turbed and that the perturbation of other inputs depends on their distance to these inputs.
This perturbation would capture one significant property of the continuous perturbation
scheme, that the zero (here the sorted and reverse-sorted inputs) stay unperturbed and that
other inputs are perturbed in proportion to their distance to zero.

2They consider a deterministic variant of quicksort where the first element is always taken as pivot element.
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2 Smoothed Analysis

Spielman and Teng [ST03a] try to further develop this concept and introduceproperty-
preserving perturbations. The idea is to restrict a natural discrete perturbation model to
preserve certain properties of the input. The notion of a ‘natural’ perturbation scheme in
discrete settings is of course very vague since for most discrete problems is not nearly clear
what natural means. E.g. for graphs Spielman and Teng propose to define perturbations
by XORing an input graph with some random (sparse) graph such that some particular
property of the input graph (such as having aρ-clique) stays preserved by the perturbation.
Then they measure the smoothed error probability of sub-linear time algorithms for this
property. This idea is in some sense closely related to studies in the field ofproperty
testing.

In property testing one wants to decide whether an input instance has a certain property
or differs significantly from all instances with that property. Property testing provides an
alternative weakening of decision problems and is thus related to smoothed analysis. It
seems therefore promising to join these two models. In this stream of research, Flaxman
and Frieze [FF04] consider the diameter of randomly perturbed graphs and present an
algorithm for recognizing strong connectivity of smoothed instances and also present a
property tester for recognizing if a digraph isk-linked.

2.2 Smoothed Analysis of Geometric Structures

In this thesis the combinatorial complexity of (geometric) structures on point sets inIRd is
considered, such as the number ofleft-to-right maximain a sequence of elements or the
number ofextreme pointsof theconvex hullof a point set. We investigate the smoothed
case complexity of these structures under an additive perturbation scheme which is defined
as follows.

Definition 1 (Perturbed Input Point) For a fixed probability measure∆ defined onIRd

consider an input pointp ∈ IRd and a random noise vectorρ from∆. Let p̃ be the random
vector that is given by

p̃ := p + ρ .

The random vector̃p is also denoted as the perturbed point to input pointp, or for short
as theperturbed input point.

For a setP of n input pointsp1, . . . , pn from IRd we denote bỹP the set of perturbed
input points under random noise∆. It is given by

P̃ := {p1 + ρ1, . . . , pn + ρn} = {p̃1, . . . , p̃n} ,

whereρ1, . . . , ρn are independent and identically distributed random noise vectors from
∆.

The smoothed complexity of a geometrical structure is defined on input instancesP
wherep ∈ [0, 1]d for all p ∈ P. The reason for this confindement is that the input point set

10



2.2 Smoothed Analysis of Geometric Structures

needs to be normalized since the geometric structures considered here are invariant under
scaling.

Definition 2 (Smoothed Complexity) For a setP of n input points from[0, 1]d consider
some geometric structure onP and letT (P) denote a combinatorial complexity measure
for this structure. For a fixed probability measure∆ on IRd, thesmoothed complexityof
T (P) is defined as

max
P

E∆

[
T (P̃)

]
whereP̃ is the set of perturbed input points under random noise from∆.

This perturbation scheme is also used by Bansal et al. who consider the labeling of smart
dust [BMS04]. By smart dust a large set of small and very simple devices is meant, each
consisting of a sensor and a sender that gathers sensor data and sends it to a central station.
These devices are usually placed with low accuracy. It is thus very natural to model the
imprecise information about the position of the sensor devices by random perturbations to
the position information.

Banderier et al. [BMB03] consider also the smoothed complexity of geometric struc-
tures. Among other things they analyze the smoothed number of left-to-right maxima in
thepartial permutationsmodel where each element is randomly permuted with probabil-
ity p. This problem is also considered in this thesis, see Chapter 3 and especially page 14
where the result of Banderier et al. is discussed in more detail. However, the perturbation
scheme of Banderier et al. significantly differs from the one used in this thesis.

2.2.1 Probability Distributions

In this thesis a very general class of probability measures is considered and the results
hold for all measures from this class. In the following this class of probability measure is
characterized by probability distribution functions.

In the1-dimensional case we consider probability measures of the following kind. Let
X be a1-dimensional random vector taking values from some domainR ⊆ IR. Let the
probability distribution functionof X be given by

Φ(x) := Pr[ X ≤ x ] =

∫ x

−∞
ϕ(z) dz ,

Hereϕ : IR → IR≥0 is a bounded, integrable function with
∫∞
−∞ ϕ(z) dz = 1 and is

denoted as theprobability density functionof variableX. All probability distributions of
the just described kind are denoted ascontinuous probability distributions.

In the d-dimensional case we consider probability measures that have as distribution
function thed-fold product of a1-dimensional continuous probability distribution function.

11



2 Smoothed Analysis

Let X = (X1, . . . , Xd) be ad-dimensional random vector taking values from some area
Rd =

∏d
i=1 R ⊆ IRd whereR ⊆ IR. Let theprobability distribution functionof X be

given by

Pr[ X1 ≤ x1, . . . , Xd ≤ xd ] =

∫ xd

−∞
· · ·
∫ x1

−∞
ϕ(z1) · · ·ϕ(zd) dz1 · · · dzd .

Again ϕ : IR → IR≥0 is a bounded, integrable function with
∫∞
−∞ ϕ(z) dz = 1 and is

denoted as the1-dimensionalcomponents’ density functionof X.
Note that all components ofX are mutually independent and identically distributed.

Probability distributions of the just described kind are denoted ascontinuousd-dimensional
product probability distributions. Examples for such distributions are thed-dimensional
Gaussian normal distribution or the uniform distribution in ad-dimensional hypercube.

Preliminaries. We consider the smoothed combinatorial complexity of geometric struc-
tures where the geometric structures are defined on point sets inIRd. The smoothed com-
plexity is usually given as a function of the input size, i.e. here the number of input points,
and the reciprocal of the standard deviation of the1-dimensional random noise distribution.

For uniform noise we consider the uniform distribution in a hypercube of side length
2ε centered at the origin. Note, that the standard deviation of the1-dimensional uniform
distribution (i.e. the uniform distribution in an interval[−ε, ε]) is thenε/

√
3. Thus when

considering uniform noise we do not explicitly state this but give the results only in terms
of the side length of the hypercube. However, the results are still comparable to results for
other noise distributions where the bounds are given in terms of the standard deviation.

The following other definitions hold throughout this thesis:

• The logarithm to basis2 is denoted bylog, and the logarithm to basise by ln.

• The n-th harmonic number of first order is given byH(n) =
∑n

`=1 1/`, and of
second order byH(2)(n) =

∑n
`=1 1/`2 for all n ∈ IN.

• It is H(n) = ln(n) +O(1).

• The Gamma function is given byΓ(n+1) = n! andΓ(n+1/2) = (2n)!·
√

π/(n!·22n)
for all n ∈ IN.
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3 Left-to-Right Maxima

In this first technical chapter we consider the problem to count the number ofleft-to-right
maximain a sequence of elements (numbers). We analyze the average and smoothed
number of left-to-right maxima for all continuous probability distributions.

On the one hand, this problem is very basic and rather simple since it is one dimensional.
It serves therefore as a good introductory example since proof ideas and basic technical
steps will return later in the analysis of other problems. On the other hand, the results
we obtain for this problem will be extended to higher dimensions in Chapter 4. There we
consider the number of maximal points and extreme points of the convex hull. Maximal
points are a kind of canonical extension of the left-to-right maxima problem to arbitrary
dimensions. Chapter 5 deals with the number of combinatorial changes to the description
of the bounding box of a moving point set. The left-to-right maxima problem serves there
as an auxiliary problem to improve some of the results.

However, the presentation of techniques and proofs in this chapter is in great detail in
order to make further reading more convenient. We will start now with the following
formal problem definition.

Definition 3 (Left-to-Right Maxima) Given is an arbitrary sequenceS of n numbers
(called elements)S = (s1, . . . , sn) wheresk ∈ IR for all 1 ≤ k ≤ n. If all predeces-
sors ofsk have smaller value thansk, i.e. if si < sk for all i < k, elementsk is called
a left-to-right maximum in S. Let L(S) denote the number of left-to-right maxima in
sequenceS.

The main contribution of this chapter is a rather general lemma that can be used to obtain
upper bounds on the smoothed number of left-to-right maxima for noise from continuous
probability distributions. This lemma is applied to obtain explicit bounds for noise from
the Gaussian normal distribution and the uniform distribution in a closed interval. The
upper bounds are then complemented by lower bounds. Interestingly, these upper and
lower bounds show that the smoothed number of left-to-right maxima differs significantly
for random noise from the Gaussian normal and the uniform distribution. This is even more
interesting since in the usual average case the expected number of left-to-right maxima is
the same for all continuous probability distributions.

Related Work. In many textbooks about computer science and theory [Knu97, LL83,
Kem84], the number of left-to-right maxima is considered in the context of permutations or
in the analysis of basic algorithms, e.g. for finding a maximum in a sequence of numbers.

13



3 Left-to-Right Maxima

For an input sequence ofn elements, the maximum number of left-to-right maxima
is clearlyn while it is 1 in the best case. The average number is known to be then-th
harmonic numberH(n) =

∑n
`=1 1/` for a wide variety of probability distributions. The

standard deviation is known to be(H(n)−H(2)(n))1/2, whereH(2)(n) =
∑n

`=1 1/`2 is the
n-th harmonic number of second order.

The smoothed number of left-to-right maxima has already been analyzed but for a
fundamentally different perturbation scheme than the one that is considered here. Ban-
derier at al. [BMB03] introduce so calledpartial permutationswhere in a sequence of
n elements each element is selected with some fixed probabilityp, and the selected ele-
ments are then randomly permuted where each permutation is equally likely. Under this
model, the authors show that the smoothed number of left-to-right maxima isΩ(

√
n/p)

andO(
√

n/p · log(n)). Interestingly, the worst case instance in the smoothed case under
this model is the sequence(n − k, n − k + 1, . . . , n, 1, 2, . . . , n − k − 1) for k =

√
n/p.

For the perturbation scheme that is considered here, the worst case instance is the sequence
(1, 2, . . . , n), see also Lemma 1.

Outline. In Section 3.1 the usual average case number of left-to-right maxima is con-
sidered. We will show how to derive the expected number of left-to-right maxima for a
sequence of independent and identically distributed random elements chosen from a con-
tinuous probability distribution. The average case is already well known and a proof can
actually be done by very simple considerations. But instead we present a more sophisti-
cated way of showing the average case by use of integrals. This is done to better illustrate
the approach for the smoothed case where the use of integrals is of major importance.

In Section 3.2 the smoothed case analysis is presented. The proofs are described in great
detail since the basic steps of the analysis will return in Chapter 4 where we consider the
number ofextreme pointsin d dimensions. We derive a general lemma (Lemma 2) to upper
bound the smoothed number of left-to-right maxima for all continuous noise distributions.
This lemma is applied to obtain explicit bounds for noise from the Gaussian normal distri-
butionN(0, σ) and the uniform distribution in an interval[−ε, ε]. For these noise distribu-
tions we get upper bounds ofO(1/σ · log(n)3/2 +log(n)) andO(

√
n · log(n)/ε+log(n)),

respectively. Also some general class of unimodal probability distributions is considered
which have monotonic density functions with one single ‘peak’.

In Section 3.3 lower bounds for the smoothed number of left-to-right maxima are shown
which prove that the upper bounds are almost tight for Gaussian normal and uniform noise.

In the last section the results of this chapter are shortly summarized. We also work
out the property for continuous, unimodal probability distributions that are necessary to
provide a low smoothed complexity that comes close to the average case complexity.
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3.1 Average Case Analysis

3.1 Average Case Analysis

We consider now the case when the elementss1, . . . , sn are independent and identically
distributed random variables with probability distribution functionΦ : IR → [0, 1]. Let
Φ have the integrable density functionϕ : IR → IR≥0 with

∫∞
−∞ ϕ(x) dx = 1. The

probability distribution of input elementsi is then given by

Pr[ si ≤ x ] = Φ(x) =

∫ x

−∞
ϕ(z) dz .

The following theorem holds for all distributions of the above kind.

Theorem 1 The expected number of left-to-right maxima in a sequenceS of n indepen-
dent and identically distributed random variables chosen from a continuous probability
distribution is

E [L(S)] = H(n) = Θ(log(n)) ,

whereH(n) denotes then-th harmonic number, i.e.H(n) =
∑n

k=1 1/k.

Proof. The probability for thek-th elementsk to be a left-to-right maximum inS is given
by

Pr[ sk is a left-to-right maximum inS ] =

∫ ∞

−∞
ϕ(x) · Φ(x)k−1 dx . (3.1)

This holds sinceΦ(x) is the probability that a random variablesi is not greater than
x, and since all variables are independent and identically distributedΦ(x)k−1 equals the
probability that allk − 1 predecessors ofsk are smaller thanx. Consequently, the expres-
sionϕ(x) · Φ(x)k−1 dx can be interpreted as the probability that thek-th element reaches
x and is a left-to-right maximum. Hence, integration overx gives the probability thatsk is
a left-to-right maximum.

In order to compute the integral in (3.1) we will use the substitutionz := Φ(x), where
dz = ϕ(x) dx. This yields∫ ∞

−∞
ϕ(x) · Φ(x)k−1 dx =

∫ 1

0

zk−1 dz =
1

k
.

Of course, this result only reveals the fact that the probability for thek-th element to be
the largest among the firstk elements is1/k. We can exploit linearity of expectation and
sum up over the probabilities for allk which leads to

E [L(S)] =
n∑

k=1

1

k
= H(n) .

Consequently, the theorem is proven.B 2
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3 Left-to-Right Maxima
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Figure 3.1: Shifted Gaussian bell curves – the density functions ofN(0, 1), N(1/2, 1) and
N(−1/2, 1).

3.2 Upper Bounds for the Smoothed Case

In the last section we saw how to express the probability that a random element is a left-
to-right maximum by an integral expression. In order to investigate the smoothed number
of left-to-right maxima we will express the probability that a perturbed element is a left-
to-right maximum also by an integral expression in a similar way.

Let us first consider the random noise. Letρ1, . . . , ρn be independent and identically
distributed random numbers from a continuous noise distribution with integrable density
functionϕ and corresponding distribution functionΦ. So for a given sequence of input el-
ementsS = (s1, . . . sn) we consider the sequence of perturbed elementsS̃ = (s̃1, . . . , s̃n)
wheres̃k = sk + ρk, for all 1 ≤ k ≤ n. For reasons of normalization we assume that
s1, . . . , sn ∈ (0, 1].

First of all we make the following observation. When the noise distribution is fixed the
sequence of perturbed elements also becomes a random distribution where an elements̃k

is a random number with density functionϕ(x − sk) and according distribution function
Pr[ s̃k ≤ x ] = Φ(x− sk). Contrary to the usual average case, the perturbed elements are
not drawn from the same probability distribution and are thus not identically distributed.
Instead each perturbed element has a density and distribution function that is a copy of
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3.2 Upper Bounds for the Smoothed Case

the density and distribution function of the random noise with different parameters. The
density and distribution function of̃sk differ from the density and distribution function of
the random noise only in the sense that the curves are shifted by the according amount of
sk. For example, in Figure 3.1 three shifted versions of the Gaussian density function are
depicted.

Now we can write analogously to (3.1) that

Pr
[
s̃k is a left-to-right maximum iñS

]
=

∫ ∞

−∞
ϕ(x− sk) ·

k−1∏
j=1

Φ(x− sj) dx . (3.2)

In order to proceed we first need to show the following lemma.

Lemma 1 The maximum expected number of left-to-right maxima in a sequenceS̃ of per-
turbed elements is obtained for a sequence of input elementsS that is monotonically in-
creasing.

Proof. Consider the two sequences of input elementsS1 = (s1, . . . , sk−2, sk, sk−1) and
S2 = (s1, . . . , sk−2, sk−1, sk), wheresk−1 < sk, and let the difference between the these
two elements beγ := sk − sk−1 > 0. For a fixed noise distribution we want now to show
that

β := E
[
L(S̃2)

]
− E

[
L(S̃1)

]
≥ 0 ,

whereL(S̃1) andL(S̃2) denote the number of left-to-right maxima in the perturbed se-
quences̃S1 andS̃2 under noise from the fixed probability distribution, respectively.

To see this it suffices to consider for both sequencesS1 andS2 the probability thatsk−1

and thatsk become a left-to-right maximum in the perturbed sequencesS̃1 andS̃2. Since
all elements are independent the probabilities for the other elements to be a left-to-right
maximum are equal for both sequences and we can neglect them. Hence we get that

β =
(
Pr
[
s̃k−1 is left-to-right max. inS̃2

]
+ Pr

[
s̃k is left-to-right max. inS̃2

])
−
(
Pr
[
s̃k is left-to-right max. inS̃1

]
+ Pr

[
s̃k−1 is left-to-right max. inS̃1

])
.

Let nowϕ andΦ denote the density function and distribution function of the fixed noise
distribution, respectively. Further, for ease of notation letF(x) =

∏k−2
j=1 Φ(x− sj) denote

the probability that the firstk − 2 elements inS̃1 andS̃2 are not greater thanx. Then it
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3 Left-to-Right Maxima

follows analogously to (3.2) that

β =

(∫ ∞

−∞
ϕ(x− sk−1) · F(x) dx +

∫ ∞

−∞
ϕ(x− sk) · Φ(x− sk−1) · F(x) dx

)
−
(∫ ∞

−∞
ϕ(x− sk) · F(x) dx +

∫ ∞

−∞
ϕ(x− sk−1) · Φ(x− sk) · F(x) dx

)
=

∫ ∞

−∞
ϕ(x− sk−1) · (1− Φ(x− sk)) · F(x) dx (3.3)

−
∫ ∞

−∞
ϕ(x− sk) · (1− Φ(x− sk−1)) · F(x) dx . (3.4)

In the next step we exploit in (3.3) thatΦ(x) is a positive and monotonically increasing
function, and in (3.4) we substitutex by x + γ, which yields

β ≥
∫ ∞

−∞
ϕ(x− sk−1) · (1− Φ(x− sk−1)) · F(x) dx

−
∫ ∞

−∞
ϕ(x− sk−1) · (1− Φ(x− sk−1 + γ)) · F(x) dx ≥ 0 .

The last inequality holds again sinceΦ(x) is a positive and monotonically increasing
function. Thus Lemma 1 is shown.B 2

So from now on when considering the smoothed number of left-to-right maxima, we
will assume that input sequenceS is a sequence of monotonically increasing elements
from (0, 1]. The main idea for computing the integral (3.2) is now to subdivide the interval
(0, 1] into m = d1/δe smaller intervals of lengthδ (the last one possibly shorter). Here
δ is a small parameter that is specified later. Then the sequenceS of unperturbed input
elements is subdivided intom subsequencesS1, . . . ,Sm whereS` contains all elements
s ∈ S that lie in thè -th small interval, i.e.

S` =
(
s ∈ S

∣∣ (`− 1) · δ < s ≤ ` · δ
)

.

Note that all subsequencesS1, . . . ,Sm of S are also monotonically increasing, and that
S = (S1, . . . ,Sm) by Lemma 1. This enables us to utilize that

L(S̃) ≤
m∑

`=1

L(S̃`) , (3.5)

where S̃` is the sequence of perturbed elements to input sequenceS` andL(S̃`) is the
number of left-to-right maxima in sequencẽS`.

The advantage of this approach is that for small enoughδ the elements of a subsequence
S̃` behave almost as in the usual average case. Intuitively, the reason for this is that the
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3.2 Upper Bounds for the Smoothed Case

unperturbed input elements lie very close together and that the density functions of the
perturbed elements differ only very little.

Indeed, we will apply for each subsequenceS̃` the average case bounds as if the elements
were identically distributed random numbers. Of course we make here an error but this
can easily be fixed. Then by (3.5) and a summation over all subsequencesS̃`, we obtain an
upper bound on the smoothed number of left-to-right maxima for the whole sequenceS̃.

In order to remedy the error between the smoothed number and the average number
of left-to-right maxima in subsequencẽS` we proceed as follows. In a first step we cut
off the “tail” of the considered noise distribution and treat it separately, i.e. we bound the
tail probability (later denoted asZ) and count the expected number of elements from the
tail as left-to-right maxima. This gives us in the end an additive error depending on the
considered noise distribution and onδ since the probability of the tail depends on these,
too.

For the remaining part of the probability distribution, we observe then that the smoothed
number and the average number of left-to-right maxima for each subsequence differ only
by a multiplicative factorr which depends on the choice ofδ. A multiplication of the
average number of left-to-right maxima withr remedies then the error on the smoothed
number of left-to-right maxima.

However, we have here a trade-off betweenδ and the number of subsequences. When
we chooseδ small in order to make the tail of the noise distribution not too heavy and thus
the additive error small, the number of subsequences (which ism = d1/δe) and therefore
the smoothed number of left-to-right for the whole sequence becomes large.

In order to proceed with the analysis, we will now fix one of the subsequences and
without loss of generality we consider the first subsequenceS1. Let n1 denote the number
of elements in subsequenceS1, i.e.S1 = (s1, . . . , sn1). For an elementsk in S1 we know
that

Pr
[
s̃k is left-to-right max. inS̃1

]
=

∫ ∞

−∞
ϕ(x− sk) ·

k−1∏
j=1

Φ(x− sj) dx

≤
∫ ∞

−∞
ϕ(x− sn1) · Φ(x− s1)

k−1 dx

≤
∫ ∞

−∞
ϕ(x) · Φ(x + δ)k−1 dx , (3.6)

where the last step follows by substitutingx byx+sn1 and the observation thatsn1−s1 ≤ δ.
We could easily solve this integral if instead ofϕ(x) there would occur aϕ(x+δ). Thus

in a next step we will expand the integrand in (3.6) by a multiplication:

ϕ(x) = ϕ(x + δ) · ϕ(x)

ϕ(x + δ)
.
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3 Left-to-Right Maxima

Where the ratioϕ(x)/ϕ(x + δ) is bounded we can extract it from inside the integral and
solve the remaining integral as in the average case analysis. Let

Zϕ
δ,r :=

{
x ∈ IR

∣∣ ϕ(x)

ϕ(x + δ)
> r

}
denote the subset ofIR that contains all elementsx for which the ratioϕ(x)/ϕ(x + δ) is
larger than some positive constantr. To avoid difficulties with zeros ofϕ, we will use
alternatively the definitionZϕ

δ,r := {x ∈ IR
∣∣ ϕ(x) > r · ϕ(x + δ)}. The constantr is

the same as seen earlier, i.e. it is the multiplicative error between the average case and
smoothed case number of left-to-right maxima.

We can now formulate and prove the main lemma of this section as follows.

Lemma 2 For a fixed continuous probability distribution with integrable density function
ϕ and for positive parametersδ andr define the setZϕ

δ,r := {x ∈ IR
∣∣ ϕ(x) > r ·ϕ(x+δ)}.

LetZ be the probability of setZϕ
δ,r, i.e.

Z :=

∫
Zϕ

δ,r

ϕ(x) dx .

For random noise from the fixed probability distribution, the smoothed number of left-
to-right maxima over all input sequencesS of n elements from(0, 1] is

max
S

E
[
L(S̃)

]
≤ max

{
r ·
⌈

1

δ

⌉
· H(n) + n · Z,H(n)

}
.

Proof. Let againm := d1/δe. Without loss of generality we consider again the input
subsequenceS1. We saw already in (3.6) that for an elementsk ∈ S1 it is

Pr
[
s̃k is left-to-right max. inS̃1

]
≤
∫ ∞

−∞
ϕ(x) · Φ(x + δ)k−1 dx .

We can now compute this integral in the following way

(3.6) =

∫
IR

ϕ(x) · Φ(x + δ)k−1 dx

=

∫
IR−Zϕ

δ,r

ϕ(x) · Φ(x + δ)k−1 dx +

∫
Zϕ

δ,r

ϕ(x) · Φ(x + δ)k−1 dx

≤
∫

IR−Zϕ
δ,r

ϕ(x + δ) · ϕ(x)

ϕ(x + δ)
· Φ(x + δ)k−1 dx +

∫
Zϕ

δ,r

ϕ(x) dx

≤ r ·
∫

IR−Zϕ
δ,r

ϕ(x + δ) · Φ(x + δ)k−1 dx + Z

≤ r ·
∫

IR

ϕ(x) · Φ(x)k−1 dx + Z = r · 1

k
+ Z .
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3.2 Upper Bounds for the Smoothed Case

It follows for input subsequenceS1 that

E
[
L(S̃1)

]
≤

n1∑
k=1

(r · 1

k
+ Z) = r · H(n1) + n1 · Z .

Analogous results hold also for subsequencesS2, . . . ,Sm, and by (3.5) it follows that

E
[
L(S̃)

]
≤

m∑
`=1

E
[
L(S̃`)

]
≤

m∑
`=1

r · H(n`) + n` · Z ≤ r ·m · H(n) + n · Z .

Since the analysis is independent of the considered input sequence it holds for any
monotonically increasing input sequenceS. To assure that the smoothed number of left-
to-right maxima does not drop below the average number, we take the maximum over
r ·m · H(n) + n · Z andH(n). Thus Lemma 2 follows immediately.B 2

3.2.1 Gaussian Normal Noise

In this subsection we show how to apply Lemma 2 to the case of normally distributed
noise. Let now

ϕ(x) :=
1√
2π σ

· e−
x2

2σ2

denote the density function for the standard Gaussian normal distribution with expectation
0 and varianceσ2, denoted byN(0, σ).

Theorem 2 For random noise from the standard Gaussian normal distributionN(0, σ),
the smoothed number of left-to-right maxima over all input sequencesS of n elements
from (0, 1] is

max
S

E
[
L(S̃)

]
≤ max

{
e3 ·
⌈√

ln(n)/σ
⌉
· H(n) + 1,H(n)

}
= O

(
1

σ
· log(n)3/2 + log(n)

)
.

Proof. In order to utilize Lemma 2 we chooseδ := σ/
√

ln(n). For x ≤ σ
√

2 ln(n) it
holds that

ϕ(x)/ϕ(x + δ) = e(δ/σ2)·x+δ2/(2σ2) = ex/(σ
√

ln(n))+1/(2 ln(n)) ≤ e
√

2+1/(2 ln(n)) ≤ e3 .

Therefore, if we chooser := e3 we can conclude thatZϕ
δ,r ⊂ [σ

√
2 ln(n),∞). Now, we

will derive a bound onZ =
∫
Zϕ

δ,r
ϕ(x) dx by using the following claim.

Claim 1 For the density functionϕ(x) of the Gaussian normal distributionN(0, σ) it holds
for anyk ≥ 1/

√
2π that ∫ ∞

σ·k
ϕ(x) dx ≤ e−k2/2 .
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3 Left-to-Right Maxima

The proof of this claim is deferred to the end of this subsection. With the claim it follows
that

Z =

∫
Zϕ

δ,r

ϕ(x) dx ≤
∫ ∞

σ
√

2 ln(n)

ϕ(x) dx ≤ 1

n
.

Altogether we can apply Lemma 2 with the parametersδ = σ/
√

ln n, r = e3, and
Z = 1/n. It follows that for every input sequenceS the expected number of left-to-right
maxima in the perturbed sequenceS̃ under Gaussian normal noise is at most

E
[
L(S̃)

]
≤ max

{
e3 ·
⌈√

ln(n)/σ
⌉
· H(n) + 1,H(n)

}
.

B 2

We observe that it does not make sense to apply Theorem 2 for arbitrary values of
σ. If σ ≥ Ω(

√
log(n)) we obtain the average case bound ofO(log(n)), and thus we

cannot distinguish in the analysis between the usual average case and the smoothed case.
If σ ≤ O(log(n)3/2/n) we obtain an expected number of left-to-right maxima ofO(n).
This means that for variances this small the perturbation of (worst case input) instances
does not show any effect in our analysis.

It remains now to prove Claim 1.

Proof of Claim 1.By a linear substitutiont = x2/(2σ2), dx = σ/
√

2t dt we get that∫ ∞

σ·k
ϕ(x) dx =

∫ ∞

σ·k

1√
2π σ

· e−
x2

2σ2 dx

=
1√
2π

·
∫ ∞

k2/2

e−t · 1√
2t

dt

≤ 1√
2π

· 1

k
· e−k2/2 ≤ e−k2/2 .

B 2Claim 1

3.2.2 Uniform Noise

We consider now random noise that is uniformly distributed in the interval[−ε, ε]. The
corresponding density function is given by

ϕ(x) :=

{
1
2ε

if x ∈ [−ε, ε]

0 else .
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3.2 Upper Bounds for the Smoothed Case

Theorem 3 For random noise from the uniform distribution in[−ε, ε], the smoothed num-
ber of left-to-right maxima over all input sequencesS of n elements from(0, 1] is

max
S

E
[
L(S̃)

]
≤ max

{
2 ·

⌈√
n · H(n)

2ε

⌉
,H(n)

}

= O

(√
n · log(n)

ε
+ log(n)

)
.

Proof. Again we want to utilize Lemma 2 . We chooser = 1, then it follows immediately
that for0 < δ < 2ε we haveZϕ

δ,r =
{
x ∈ IR

∣∣ ϕ(x) > ϕ(x + δ)
}

= [ε− δ, ε]. We can now
computeZ which is

Z =

∫ ε

ε−δ

1

2ε
dx =

δ

2ε
.

With Lemma 2 it follows that the smoothed number of left-to-right maxima is at most
d1/δe · H(n) + n · δ/(2ε). If we chooseδ =

√
2ε · H(n)/n we get that for every input

sequenceS the expected number of left-to-right maxima in the perturbed sequenceS̃ under
uniform noise is at most

max
S

E
[
L(S̃)

]
≤ max

{
2 ·

⌈√
n · H(n)

2ε

⌉
,H(n)

}
.

B 2

Again we observe that Theorem 3 is not applicable for uniform distributions with arbi-
trary values ofε. If ε ≥ Ω(n/ log(n)) we obtain the average case bound ofO(log(n)) and
we cannot distinguish in our analysis between the usual average case and the smoothed
case. Ifε ≤ O(log(n)/n) we obtain an expected number of left-to-right maxima ofO(n)
and we cannot distinguish if a (worst case) instance is perturbed or not.

3.2.3 Unimodal Noise Distributions

In this section we investigate upper bounds for general noise distributions that fulfill the
following condition. We denote a continuous probability distribution asunimodalif the
corresponding integrable density function is bounded and monotonically increasing on
IR≤0 and monotonically decreasing onIR≥0. In other words, the density function has a
single peak atx = 0. Note that the following analysis holds also for distributions that
have a single peak not atx = 0 but at any otherx. But for ease of notation we restrict the
analysis to the first case. The following theorem gives now an upper bound on the number
of left-to-right maxima for arbitrary unimodal noise distributions with peak atx = 0.
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3 Left-to-Right Maxima

Theorem 4 For random noise from a unimodal continuous probability distribution with
density functionϕ, the smoothed number of left-to-right maxima over all input sequences
S of n elements from(0, 1] is

max
S

E
[
L(S̃)

]
≤ max

{
7 ·
√

n · H(n) · ϕ(0),H(n)
}

= O
(√

n · log n · ϕ(0) + log n
)

.

Proof. Since we consider here monotonic probability distributions,ϕ(0) denotes the
(global) maximum of the density function. In order to utilize Lemma 2 we chooser := 2
whereasδ will be chosen later.

Again we need to derive a bound forZ =
∫
Zϕ

δ,r
ϕ(x) dx. We want now to find a

covering for setZϕ
δ,r by defining setsZi, i ∈ IN, such that

⋃
iZi ⊇ Zϕ

δ,r. Then we will
estimate

∫S
i Zi

ϕ(x) dx in order to derive an upper bound forZ.
We observe that forx + δ ≤ 0 we haveϕ(x) ≤ ϕ(x + δ) because of the monotonicity

of ϕ. Hence, it isZϕ
δ,r ⊆ [−δ,∞). Now we partition[−δ,∞) into intervals of the form

[(`− 1) · δ, ` · δ] for ` ∈ IN0. We defineZi to be thei-th such interval that has a non-empty
intersection withZϕ

δ,r. If less thani intervals have a non-empty intersection thenZi is the
empty set. By this definition we obtained the wanted covering, and it is

⋃
iZi ⊇ Zϕ

δ,r as
desired.

We can now bound
∫S

i Zi
ϕ(x) dx as follows. First suppose that allZi ⊂ IR≥0. Let zi

denote the start of intervalZi, i.e.Zi = [zi, zi + δ]. Then we obtain that∫
Zi

ϕ(x) dx ≤ δ · ϕ(zi) ,

becauseZi is of lengthδ andϕ(x) takes its maximum value within intervalZi atϕ(zi). If
Z1 = [−δ, 0] it follows that

∫
Z1

ϕ(x) dx ≤ δ · ϕ(0) for similar reasons.
Furthermore, it holds thatϕ(zi+2) ≤ 1/2 · ϕ(zi) for all i ∈ IN. To see this consider

another point in intervalZi that belongs also toZϕ
δ,r, e.g.ẑi ∈ Zi ∩ Zϕ

δ,r. It is now

ϕ(zi) ≥ ϕ(ẑi) > 2 · ϕ(ẑi + δ) ≥ 2 · ϕ(zi+2) ,

where we utilize that̂zi ∈ Zϕ
δ,r = {x ∈ IR

∣∣ ϕ(x)/ϕ(x + δ) > r}, thatr = 2 and that
ẑi + δ ≤ zi+2.

Now we can combine everything and we obtain∫
S

i Zi

ϕ(x) dx ≤
∫
Z1

ϕ(x) dx +
∑
i∈IN

∫
Z2i−1

ϕ(x) dx +
∑
i∈IN

∫
Z2i

ϕ(x) dx

≤ δ · ϕ(0) +
∑
i∈IN

δ · ϕ(z2i−1) +
∑
i∈IN

δ · ϕ(z2i)

≤ δ · ϕ(0) +
∑
i∈IN

1

2i−1
· δ · ϕ(z1) +

∑
i∈IN

1

2i−1
· δ · ϕ(z2)

≤ δ · ϕ(0) + 2δ · ϕ(z1) + 2δ · ϕ(z2) ≤ 5δ · ϕ(0) .
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3.3 Lower Bounds for the Smoothed Case

Figure 3.2: The curves of two density functions are depicted for probability distributions
causing a high smoothed complexity.

It follows thatZ ≤ 5δ · ϕ(0) and Lemma 2 yields that the smoothed number of left-to-
right maxima is at most2·d1/δe·H(n)+n·5δ·ϕ(0). Now, choosingδ :=

√
H(n)/(n · ϕ(0))

gives that for every input sequenceS the expected number of left-to-right maxima in the
perturbed sequencẽS under noise from a unimodal distribution is at most

E
[
L(S̃)

]
≤ max

{
7 ·
√

n · H(n) · ϕ(0),H(n)
}

.

B 2

It remains to mention that the Gaussian normal and uniform noise distributions are of
course also unimodal distributions. For uniform noise, the Theorem 3 follows up to a
constant factor also from this result since for the uniform distribution in an interval[−ε, ε]
the maximal density is clearly1/(2ε). If we consider here Gaussian normal noise, we
obtain a much worse result than the one shown in Theorem 2 since the maximal density is
1/(
√

2π σ).

3.3 Lower Bounds for the Smoothed Case

To complete this chapter about the left-to-right maxima we will consider the tightness of
the just seen upper smoothed case bounds. Of course, a general lower bound arises from
the average case bound ofΘ(log(n)). For the case of Gaussian normal noise this leaves
only a gap of roughly

√
log(n) to the upper bound ofO

(
1/σ · log(n)3/2 + log(n)

)
.

For the case of uniform noise this general lower bound reveals a much larger gap to the
upper bound ofO(

√
n · log(n)/ε+log(n)). In the following we construct an explicit input

sequence for which a large smoothed number of left-to-right maxima is achieved for the
uniform noise distribution. This closes the gap to the upper bound up to a factor of roughly√

log(n).
In fact, the following theorem holds not only for the uniform distribution but for all con-

tinuous probability distributions whose density functions have bounded support. Without
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3 Left-to-Right Maxima

s1 s2 s3 s4

n4/

n8/

0 ...

Figure 3.3: Input sequence for the lower bound construction for` = 4.

loss of generality we assume that the density functions are non-zero only in the interval
[−ε, ε] and zero everywhere else, see also Figure 3.2 which shows two examples of such
density functions. Of course, the uniform distribution belongs to this class of distributions,
too.

Theorem 5 For all continuous probability distributions with density functionϕ of bounded
support, i.e.ϕ is non-zero only in the interval[−ε, ε], the smoothed number of left-to-right
maxima over all input sequencesS of n elements from(0, 1] is

max
S

E
[
L(S̃)

]
≥ min

{√
n/ε ·

(
1− Φ

(
ε−

√
ε/n
)√n·ε

)
, n

}
,

whereΦ denotes the distribution function ofϕ. If the probability distribution is unimodal
andϕ(ε) 6= 0 it is

max
S

E
[
L(S̃)

]
≥ min

{
(1− 1/e) ·

⌈√
n · ϕ(ε)

⌉
, n
}

.

Proof. Consider the following input sequenceS = (s1, . . . , sn) of n elements. For some
` ∈ IN, ` ≤ n, subdivideS into m := dn/` e subsequencesS1, . . . ,Sm of length`, the last
subsequence possibly shorter. Let all elements in each particular subsequence have equal
values such that the elements in a subsequenceSi have valuei · `/n, i.e.s(i−1)·`+1 = · · · =
si·` = i · `/n for all 1 ≤ i ≤ m, see also Figure 3.3.

Let nowρ1, . . . , ρn ben independent and identically distributed random variables from
a continuous probability distribution whose density functionϕ has bounded support only
in the interval[−ε, ε]. Again lets̃k = sk+ρk denote the perturbed element to input element
sk, for all 1 ≤ k ≤ n.

If elementsk is from subsequenceSi, i.e.sk = i · `/n, we observe that̃sk is distributed
in the interval[i · `/n− ε, i · `/n + ε] after the perturbation. Consider now the case thats̃k
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3.4 Conclusion

is large, i.e.̃sk > (i− 1) · `/n + ε. It follows thats̃k is also larger than all elements in the
preceding subsequencesS̃1, . . . , S̃i−1. So if there is at least one element in subsequenceS̃i

that has a value larger than(i− 1) · `/n + ε, then there is also at least an element inS̃i that
is a left-to-right maximum.

For the input elementsk in subsequenceSi, it is now

Pr[ s̃k ≤ (i− 1) · `/n + ε ] = Pr[ i · `/n + ρk ≤ (i− 1) · `/n + ε ]

= Pr[ ρk ≤ ε− `/n ] =: Φ(ε− `/n) .

It follows then

Pr
[

no element inS̃i is larger than(i− 1) · `/n + ε
]
≤ Φ(ε− `/n)` , (3.7)

and thus
E
[
L(S̃)

]
≥ m ·

(
1− Φ(ε− `/n)`

)
.

Choosing` =
√

n · ε we get thatm = dn/` e =
√

n/ε. The first part of the theorem
follows then immediately. Note that the smoothed number of left-to-right maxima cannot
exceedn.

For unimodal noise distributions with density functionϕ(ε) 6= 0 we can also conclude
that1− Φ(ε− `/n) ≥ ϕ(ε) · `/n and thusΦ(ε− `/n) ≤ (1− ϕ(ε) · `/n). Choosing now

` =
⌈√

n/ϕ(ε)
⌉

we get that(3.7) ≤ 1/e and therefore we have

E
[
L(S̃)

]
≥ (1− 1/e) ·

⌈√
n · ϕ(ε)

⌉
.

B 2

From the Theorem, the following Corollary follows immediately.

Corollary 1 For random noise from the uniform distribution in the interval[−ε, ε], the
smoothed number of left-to-right maxima over all input sequencesS of n elements from
(0, 1] is at least

max
S

E
[
L(S̃)

]
≥ min

{
(1− 1/e) ·

⌈√
n/(2ε)

⌉
, n
}

= Ω
(
min

{√
n/ε, n

})
.

3.4 Conclusion

The results of this chapter are summarized in the following tabular overview. The bounds
are given inO-notation.
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3 Left-to-Right Maxima

Upper Bounds Lower Bounds

GaussianN(0, σ) O
(
(1/σ) · log(n)3/2 + log(n)

)
Ω
(
log(n)

)
uniform in [−ε, ε] O

(√
n · log(n)/ε + log(n)

)
Ω
(
min

{√
n/ε, n

})
An interesting result is definitively that for different noise distributions we obtain a dif-

ferent smoothed complexity of the left-to-right maxima problem. We see that for Gaus-
sian normal noise of varianceσ2, the smoothed number of left-to-right maxima is poly-
logarithmic in the number of elements and polynomial in1/σ. Interestingly, for uniform
noise in an interval of length2ε we obtain that the smoothed number of left-to-right max-
ima is polynomial in the number of elements and1/ε.

Since both bounds are only a factor of roughly
√

log(n) away from corresponding lower
bounds this discrepancy is really significant. This result is especially suprising since in the
average case we obtain an expected number of left-to-right maxima ofΘ(log(n)) for all
continuous probability distributions.
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4 Extreme Points

The convex hull of a point set ind-dimensional Euclidean space is one of the fundamental
combinatorial structures in computational geometry. In this chapter we are interested in
the number of extreme points of the convex hull of a point set.

Definition 4 (Convex Hull – Extreme Points) Given is a setP of n points p1, . . . , pn,
wherepk ∈ IRd for all 1 ≤ k ≤ n. Theconvex hull of P is the smallest convex set
containing all points inP and is denoted byconv(P), i.e.

conv(P) :=

{
n∑

i=1

λi · pi

∣∣ λi ≥ 0,
n∑

i=1

λi = 1

}
.

If the points inP are in general position (nod + 1 points lie on a common hyperplane)
the convex hull ofP is a d-dimensional (simplicial) polytope. The faces ofconv(P) of
dimension1 are called vertices orextreme pointsand their number is denoted byV(P).

Analogously to Chapter 3, the main contribution in this chapter is a rather general lemma
by which upper bounds on the smoothed number of extreme points can be obtained for
noise from continuousd-dimensional product probability distributions. Again we apply
this lemma explicitly to the cases that the random noise comes from the standard Gaussian
normal distribution and from the uniform distribution in a hypercube.

Related Work. The convex hull of a point set ind-dimensional Euclidean space and its
properties have been studied extensively in the last decades.

To compute the convex hull of a point setP means to compute a description of the
polytope formed byconv(P). A convex polytope can be described in many ways where
Seidel [Sei97] distinguishes between purely geometric and combinatorial descriptions. By
purely geometric it is meant that the output consists only of the vertices (= extreme points)
and/or the facets (=(d−1)-dimensional faces) of the polytope (given by coordinates and/or
defining inequalities, respectively). A combinatorial description contains also further in-
formation about the facial structure, for example given by a Hasse diagram of the face
lattice of the polytope. To compute this can be hard since McMullen [McM70] showed
that the number of faces in a polytope is at worstΘ(nbd/2c).

For geometric descriptions the case is different. To compute the extreme points of a
convex hull is also known as theirredundancy problem. A point is extreme (or irredundant)
if it cannot be represented as a convex combination of the remaining points inP. To test
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4 Extreme Points

whether a point is irredundant one has to solve for alln input points a linear programming
problem ind variables withn− 1 constraints.

For fixed dimensiond this can be done in linear time e.g. by Megiddo’s [Meg84] linear
programming algorithm, which leads immediately to a an algorithm for the extreme point
problem that runs inO(n2) time. Matoǔsek could reduce this bound toO(n2−2/(bd/2c+1) ·
log(n)O(1)) by using a data structure for linear programming queries [Mat93] that exploits
that the linear programs are closely related. One year later, Clarkson [Cla94] developed
a simple output-sensitive algorithm of run-timeO(n · V(P)) by reducing the number of
involved constraints for every linear program fromn− 1 to V(P).

Chan [Cha96b] combined this idea with Matoušek’s data structure and obtained for
fixedd > 3 anO(n · log(V(P))d+2 + (n · V(P))1−1/(bd/2c+1) · log(n)O(1)) time algorithm
for the extreme point problem. Since an optimal output-sensitive algorithm is of time
O(n · log(V(P))) this algorithm is almost optimal (up to a factor oflog(V (P))O(1)) when
V(P) = O(n1/bd/2c/ log(n)K) for a sufficiently large constantK.

In dimensions 2 and 3, there is no need to distinguish between combinatorial and purely
geometric polytope descriptions since they cannot differ much in terms of their sizes. Out-
put sensitive algorithms with optimal time boundO(n · log(F(P))) were given in the
2-dimensional case by Kirkpatrick and Seidel [KS86] and in the 3-dimensional case by
Chazelle and Matoǔsek [CM95], whereF(P) denotes the number of all faces ofconv(P).
Also Chan [Cha96a] obtained an algorithm of this time bound for dimensions 2 and 3 by
similar techniques as described above.

Having optimal or almost optimal output-sensitive algorithms it remains to answer the
question about the quantitative behavior of the extreme points. Several researchers have
treated the combinatorial structure of the convex hull ofn random points. In 1963/64,
Rényi and Sulanke [RS63, RS64] were the first to consider the area and perimeter (length
of the boundary) and the number of extreme points of the convex hull in expectation. For
the latter they showed the following results. In the plane, letP be a set ofn independent
and identically distributed points uniformly chosen from a bounded convex set with contin-
uously differentiable boundary (e.g. a sphere or ellipse). The expected number of vertices
is thenΘ(n1/3). If the points are uniformly chosen from a convex polygon the expected
number of vertices isΘ(log(n)), and if the points are chosen from the2-dimensional Gaus-
sian normal distribution the expected number of vertices isΘ(

√
log(n)).

This work was continued by several other authors, e.g. by Efron [Efr65], Raynaud
[Ray65, Ray70], Carnal [Car70], and Affentranger and Wieacker [AW91], and extended
to higher dimensions and other probability distributions. For instance, Raynaud [Ray70]
considered the case that the points inP are chosen uniformly from thed-dimensional unit
ball and he showed thatE [V(P)] = Θ(n(d−1)/(d+1)). For the case that the points are
chosen uniformly from anyd-dimensional polytope (e.g. thed-dimensional hypercube)
Affentranger and Wieacker showed a bound ofE [V(P)] = Θ(log(n)d−1). If the points
are chosen from thed-dimensional Gaussian normal distribution again Raynaud [Ray70]
provedE [V(P)] = Θ(log(n)(d−1)/2). In all these resultsd is considered to be a constant.
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Generally, for continuousd-dimensional product probability distributions Bentley et al.
[BKST78] and Buchta et al. [BTT85] derived an upper bound ofO(log(n)(d−1)) on the
expected number of extreme points (this includes of course the Gaussian normal and the
uniform distribution in a hypercube). Har-Peled [Har98] gave another nice proof of this
result, and interesting for us is that these proofs are based on the computation of the ex-
pected number ofmaximal points(see below). Indeed, in our analysis we also exploit the
close connection between extreme and maximal points.

Maximal Points. The problem of counting the number ofextreme pointsis very closely
related to the problem of counting the number ofmaximal pointswhich we will exploit also
for our analysis. in order to define maximal points we need to introduce also the notion of
orthants of a point.

Definition 5 (Orthant of a Point) Consider a pointp = (p(1), . . . , p(d)) ∈ IRd. For any
subsetI ⊆ [d] = {1, . . . , d} let

oI(p) :=
∏
i∈I

(
−∞, p(i)

]
×
∏
i/∈I

[
p(i),∞

)
denote theorthant centered at pointp that is introduced by the index setI.

Definition 6 (Maximal Points) Given is a setP of n pointsp1, . . . , pn in IRd. A point
pi ∈ P, 1 ≤ i ≤ n, is denoted amaximal pointofP, if there is an index setI ⊆ [d] such
thatoI(pi) is empty, i.e. no other point ofP − {pi} lies inoI(pi).

LetD(P) denote the number of maximal points of setP.

The reason for the close relation between extreme points and maximal points lies now
in the following observation. A pointp ∈ P is not maximal, if each of the2d orthants
centered atp contains at least one other point. In this case,p is notextremeeither, see also
Figure 4.1. It follows immediately that the number of maximal points is an upper bound
on the number of extreme points, i.e.

V(P) ≤ D(P) . (4.1)

Buchta [Buc89] showed that the expected number of maximal points for a setP of n
independent and identically distributed points chosen from a continuousd-dimensional
product probability distribution isΘ(log(n)d−1). This holds of course also for the uniform
distribution in ad-dimensional hypercube and thed-dimensional Gaussian normal distribu-
tion. Dwyer [Dwy90] considered the case that the points are chosen from ad-dimensional
ball and proved thatE [D(P)] = Θ(n(d−1)/d).

The problem of counting the number of maximal points as it is treated here is essentially
an extension of the one-dimensional left-to-right maxima problem (see the previous Chap-
ter 3) to arbitrary dimensions. This will become very clear by a closer look at the analysis.
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o  (p)
1,2

o  (p)

o    (p)f  
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f   g

Figure 4.1:On the left side a pointp ∈ IR2 and its four orthants are depicted. In2 dimen-
sions, they are also called quadrants. On the right side we see, that extreme
points are also maximal points.

Indeed, the way how we analyze the maximal points is almost analogous to the way how
the left-to-right maxima were treated. Hence the chapters are almost equally structured.

Outline. In Section 4.1 we will consider the average case number of extreme points and
present another proof thatE [V(P)] = O(log(n)d−1) for points chosen from continuousd-
dimensional product probability distributions. Our proof makes extensive use of integrals,
which seems to be very helpful for a better readability and understanding of the smoothed
case analysis.

The smoothed case analysis is then presented in Section 4.2. The main contribution is
a very general lemma which provides upper bounds for the smoothed number of extreme
points when the random noise comes from a continuousd-dimensional product probability
distribution. This lemma is ad-dimensional version of the main Lemma 2 in Section 3.2.
The lemma is then explicitly applied for the cases that the random noise comes from the
Gaussian normal distribution of variance3 σ2 and the uniform distribution in a hypercube
of side-length2ε. For these noise distributions we get upper bounds on the smoothed
number of extreme points ofO

(
(1/σ)d · log(n)(3/2)·d−1

)
andO

(
(n · log(n)/ε)d/(d+1)

)
,

respectively.

In Section 4.3 the upper bounds are complemented by lower bounds. An explicit con-
struction is presented for which the smoothed number of extreme points under uniform
noise is large.

The chapter ends again with a brief summary and concluding remarks.

3Here the variance of the1-dimensional Gaussian normal distribution of the components is meant.
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4.1 Average Case Analysis

4.1 Average Case Analysis

In this section we will consider the case thatP is a set ofn independent and identically
distributed random points chosen from a continuousd-dimensional product probability
distribution overIRd. Let X = (X1, . . . , Xd) be a random vector from such a distribution
and letϕ : IR → IR≥0 be the1-dimensional density function of the components ofX. The
corresponding probability distribution function is then

Pr[ X1 ≤ x1, . . . , Xd ≤ xd ] =

∫ xd

−∞
· · ·
∫ x1

−∞
ϕ(z1) · · ·ϕ(zd) dz1 · · · dzd .

Note that all components ofX are mutually independent and identically distributed.
Examples for such continuousd-dimensional product probability distributions are the uni-
form distribution in a hypercube or thed-dimensional Gaussian normal distribution.

In this section we will show the following theorem.

Theorem 6 The expected number of maximal points in a setP of n independent and iden-
tically distributed random points inIRd chosen from a continuousd-dimensional product
probability distribution is

E [D(P)] ≤ 2d ·
n∑

i1=1

1

i1

i1∑
i2=1

1

i2
· · ·

id−2∑
id−1=1

1

id−1

= Θ
(
log(n)d−1

)
.

By (4.1) we can immediately conclude that also the following theorem holds.

Theorem 7 The expected number of extreme points in a setP of n independent and iden-
tically distributed random points inIRd chosen from a continuousd-dimensional product
probability distribution is

E [V(P)] ≤ O
(
log(n)d−1

)
.

We will now continue with the proof of Theorem 6.

Proof. First of all we recall that for an arbitrary pointpk ∈ P to be maximal it suffices
to have at least one empty orthant. Without loss of generality let us now fix the orthant
o[d](pk) for further considerations. Since a point has2d orthants it follows by standard
union bound that

Pr[ pk is maximal] = 2d ·Pr
[
o[d](pk) is empty

]
.

We will now show that

Pr
[
o[d](pk) is empty

]
≤ H(n)d−1/n . (4.2)

By linearity of expectation the theorem follows then immediately.
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4 Extreme Points

For reasons of better understanding let us first establish the2-dimensional case. Con-
sider a pointpk ∈ P ⊂ IR2 having the coordinatespk = (x, y). It follows that pk

has four orthants which are also called quadrants. The probability for any other point
pj ∈ P − {pk} to be not in the quadranto{1,2}(pk) = (−∞, x] × (−∞, y] is then equal
to the probability that the pointpj lies in one of the three other quadrants ofpk. These
three other quadrants areo{ }(pk) := [x,∞)× [y,∞), o{1}(pk) := (−∞, x]× [y,∞), and
o{2}(pk) := [x,∞)× (−∞, y].

It follows

Pr
[
pj ∈ o{ }(pk)

]
= Pr

[
p

(1)
j ≥ x

]
·Pr

[
p

(2)
j ≥ y

]
= (1− Φ(x)) · (1− Φ(y))

Pr
[
pj ∈ o{1}(pk)

]
= Pr

[
p

(1)
j ≤ x

]
·Pr

[
p

(2)
j ≥ y

]
= Φ(x) · (1− Φ(y))

Pr
[
pj ∈ o{2}(pk)

]
= Pr

[
p

(1)
j ≥ x

]
·Pr

[
p

(2)
j ≤ y

]
= (1− Φ(x)) · Φ(y) .

The probability for any pointpj ∈ P − {pk} to be not ino{1,2}(pk) is then given by

Pr
[
pj /∈ o{1,2}(pk)

]
= (1− Φ(x)) · Φ(y) + (1− Φ(x)) · (1− Φ(y)) + Φ(x) · (1− Φ(y))

= 1− Φ(x) · Φ(y) .

Since there aren− 1 other points inP − {pk} the probability thato{1,2}(pk) is empty is

Pr
[
o{1,2}(pk) is empty

]
=

∫
IR2

ϕ(x) · ϕ(y) · (1− Φ(x) · Φ(y)︸ ︷︷ ︸
=: z = z(x)

)n−1 dx dy . (4.3)

This integral can be solved by two linear substitutions. In a first step we will substitute
1 − Φ(x) · Φ(y) =: z = z(x), as indicated. Then it isdz = −ϕ(x) · Φ(y) · dx and this
yields the integral

(4.3) =

∫
IR

∫ 1

1−Φ(y)

ϕ(y)

Φ(y)
· zn−1 dz dy =

1

n

∫
IR

ϕ(y)

Φ(y)
· (1− (1− Φ(y)︸ ︷︷ ︸

=: z

)n) dy . (4.4)

By the indicated second substitution1 − Φ(y) =: z = z(y) where dz = −ϕ(y) · dy,
we get

(4.4) =
1

n

∫ 1

0

1− zn

1− z
dz =

1

n

∫ 1

0

n−1∑
i=0

zi dz =
1

n

n−1∑
i=0

∫ 1

0

zi dz

=
1

n

n∑
i=1

1

i
=

H(n)

n
,
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4.1 Average Case Analysis

and thus (4.2) follows immediately ford = 2. The theorem is therefore shown for the
planar case.

We consider now thed-dimensional case. All the ideas and concepts needed are already
introduced in the 2-dimensional case. The presentation is thus rather short.

Again, we consider a particular pointpk = (x(1), . . . , x(d)) and fix one of its orthants,
againo[d](pk) :=

∏d
i=1(−∞, x(i)]. The probability for any other pointpj ∈ P − {pk} to

be not ino[d](pk) is given by

Pr
[
pj /∈ o[d](pk)

]
=
∑
I⊂[d]

Pr[ pj ∈ oI(pk) ] =
∑
I⊂[d]

∏
i∈I

Φ(x(i))
∏
i/∈I

(1− Φ(x(i))) .

This expression can be simplified by using the following claim.

Claim 2

∑
I⊂[d]

∏
i∈I

Φ(x(i))
∏
i/∈I

(1− Φ(x(i))) = 1− Φ(x(1)) · · ·Φ(x(d))

The proof of claim 2 is done by an induction ond and is deferred to the end of this
section.

It follows that

Pr
[
o[d](pk) is empty

]
=∫

IRd

ϕ(x(1)) · · ·ϕ(x(d)) · (1− Φ(x(1)) · · ·Φ(x(d))︸ ︷︷ ︸
=: z = z(x(1))

)n−1 dx(1) · · · dx(d) (4.5)

which is thed-dimensional analogue to (4.3).

Analogously to the2-dimensional case, this integral can be solved byd repeated linear
substitutions. We will present here the first three substitutions for a better illustration of
the concept although the depiction is a little bit difficult.

The first substitution is already indicated, i.e.1 − Φ(x(1)) · · ·Φ(x(d)) =: z = z(x(1)).
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4 Extreme Points

We get thatdz = −ϕ(x(1))Φ(x(2)) · · ·Φ(x(d))dx(1) and it follows

(4.5) =

∫
IRd−1

∫ 1

1−Φ(x(2))···Φ(x(d))

ϕ(x(2)) · · ·ϕ(x(d))

Φ(x(2)) · · ·Φ(x(d))
· zn−1 dz dx(2) · · · dx(d)

=
1

n

∫
IRd−1

ϕ(x(2)) · · ·ϕ(x(d))

Φ(x(2)) · · ·Φ(x(d))
· (1− (1− Φ(x(2)) · · ·Φ(x(d))︸ ︷︷ ︸

=: z = z(x(2))

)n) dx(2) · · · dx(d)

=
1

n

∫
IRd−2

∫ 1

1−Φ(x(3))···Φ(x(d))

ϕ(x(3)) · · ·ϕ(x(d))

Φ(x(3)) · · ·Φ(x(d))
· 1− zn

1− z
dz dx(3) · · · dx(d)

=
1

n

n∑
i1=1

1

i1

∫
IRd−2

ϕ(x(3)) · · ·ϕ(x(d))

Φ(x(3)) · · ·Φ(x(d))
· (1− (1− Φ(x(3)) · · ·Φ(x(d))︸ ︷︷ ︸

=: z = z(x(3))

)i1) dx(3) · · · dx(d)

=
1

n

n∑
i1=1

1

i1

∫
IRd−3

∫ 1

1−Φ(x(4))···Φ(x(d))

ϕ(x(4)) · · ·ϕ(x(d))

Φ(x(4)) · · ·Φ(x(d))
· 1− zi1

1− z
dz dx(4) · · · dx(d)

=
1

n

n∑
i1=1

1

i1

i1∑
i2=1

1

i2

∫
IRd−3

ϕ(x(4)) · · ·ϕ(x(d))

Φ(x(4)) · · ·Φ(x(d))
· (1− (1− Φ(x(4)) · · ·Φ(x(d))︸ ︷︷ ︸

=: z = z(x(4))

)i2) dx(4) · · · dx(d)

= · · · =
1

n

n∑
i1=1

1

i1

i1∑
i2=1

1

i2
· · ·

id−2∑
id−1=1

1

id−1

≤ H(n)d−1

n
.

Therefore, (4.2) is shown and the theorem follows immediately.B 2

It remains to show Claim 2 which will be done now.

Claim 2 ∑
I⊂[d]

∏
i∈I

Φ(x(i))
∏
i/∈I

(1− Φ(x(i))) = 1−
d∏

i=1

Φ(x(i))

Proof of Claim 2.By induction ond.

For d = 2, it follows immediately that the claimed equality holds. The induction step
d − 1 → d follows also easily. For ease of notation, we use the following abbreviation.
Let

f(d) :=
∑
I⊂[d]

∏
i∈I

Φ(x(i))
∏
i/∈I

(1− Φ(x(i))) .
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4.2 Upper Bounds for the Smoothed Case

It is then

f(d) = f(d− 1) · Φ(x(d)) + f(d− 1) · (1− Φ(x(d))) +
d−1∏
i=1

Φ(x(i)) · (1− Φ(x(d)))

= (1−
d−1∏
i=1

Φ(x(i))) · (Φ(x(d)) + (1− Φ(x(d)))) +
d−1∏
i=1

Φ(x(i))−
d∏

i=1

Φ(x(i))

= 1−
d∏

i=1

Φ(x(i)) ,

which concludes the proof.B 2Claim 2

4.2 Upper Bounds for the Smoothed Case

In this section we consider the smoothed number of extreme points. A general lemma for
random noise from continuousd-dimensional product probability distributions is derived
and explicitly applied to noise from the Gaussian normal and the uniform distribution in a
hypercube.

We start with a formal description of the perturbation. Consider a setP of input points
p1, . . . , pd where all input points come from the unit hypercube[0, 1]d for reasons of nor-
malization. Letr1, . . . , rd be independent and identically distributed randomd-vectors
from a fixed continuousd-dimensional product probability distribution. We denote the
random vectors asnoise vectorsand their distribution as thenoise distribution. The set of
perturbed points̃P = {p̃1, . . . , p̃d} is then given by

p̃k = pk + rk, for 1 ≤ k ≤ d .

We observe that each perturbed point is itself a random vector from a continuousd-
dimensional probability distribution of the following kind. Consider the input pointpk

and its corresponding perturbed pointp̃k = pk + rk whererk is a random vector from a
fixed noise distribution. The noise distribution is thed-fold product of a1-dimensional
probability distribution and all the components ofrk are from this same1-dimensional
distribution. Letϕ : IR → IR be the1-dimensional integrable density function of the1-
dimensional distribution of the components of the random noise and letΦ : IR → [0, 1] be
the corresponding distribution function.

The components of̃pk are not anymore from an identical but from slightly different prob-
ability distributions. The distributions of the components ofp̃k depend on the components
of the input pointpk, e.g., the 1-dimensional density function of thei-th component of̃pk is
ϕ(x−p

(i)
k ) and the corresponding distribution function isΦ(x−p

(i)
k ), for all 1 ≤ i ≤ d. The

density and distribution functions of the components ofp̃k are thus slightly shifted copies
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4 Extreme Points

of the density and distribution function of the1-dimensional noise distribution, namely of
ϕ andΦ, respectively.

In this sense, alsõP is a set of independent butnot identically distributed random points
and the distribution of a particular point̃pk is thed-fold product of similar but slightly
shifted1-dimensional distributions.

Now we will start with the actual analysis of the smoothed number of extreme points.
Indeed, the approach is the same as for the average case analysis in the previous Section
4.1. Instead of extreme points we will again consider maximal points to upper bound
the number of extreme points. As before we will bound the probability that for a fixed
input pointpk the perturbed point̃pk is maximal by considering a fixed orthant ofp̃k and
computing the probability that this orthant is empty.

Let the perturbed point have the coordinatesp̃k := (x(1), . . . , x(d)). Without loss of
generality we fix again orthanto[d](p̃k) =

∏d
i=1(−∞, x(i)]. We will now derive an integral

expression for the probability thato[d](p̃k) is empty. For any other input pointpj ∈ P −
{pk} it holds that

Pr
[
p̃j /∈ o[d](p̃k)

]
=

∑
I⊂[d]

Pr[ p̃j ∈ oI(p̃k) ]

=
∑
I⊂[d]

∏
i∈I

Φ(x(i) − p
(i)
j )
∏
i/∈I

(1− Φ(x(i) − p
(i)
j ))

= 1− Φ(x(1) − p
(1)
j ) · · ·Φ(x(d) − p

(d)
j )

where the last step follows by Claim 2. This yields

Pr
[
o[d](p̃k) is empty

]
=

∫
IRd

ϕ(x(1) − p
(1)
k ) · · ·ϕ(x(d) − p

(d)
k ) · (4.6)∏

j 6=k

(
1− Φ(x(1) − p

(1)
j ) · · ·Φ(x(d) − p

(d)
j )
)

dx(1) · · · dx(d) ,

which is the “smoothed” analogue to (4.5).
The approach to solve this integral is very similar to the approach in Section 3.2 where

we considered the smoothed number of left-to-right maxima. The main idea is to subdivide
the unit hyper-cube intom := d1/δed smaller axis-aligned hypercubes of side lengthδ.
Then the input setP is divided into setsP1, . . . ,Pm whereP` is the subset ofP that is
located in thè -th small hypercube, where some ordering among the small hypercubes is
assumed. Now we can compute for all subsetsP` the expected number of maximal points
and exploit that

E
[
V(P̃)

]
≤ E

[
D(P̃)

]
≤

m∑
`=1

E
[
D(P̃`)

]
. (4.7)

The motivation for this approach is the same as in the previous chapter. Intuitively, the
advantage is that for small enoughδ the input points of a subsetP` lie so close together
that after perturbation the points behave almost as in the random average case.
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4.2 Upper Bounds for the Smoothed Case

Note that differently to Section 3.2 it is not necessary to establish an analogue to lemma
1. The reason is that the number of left-right-maxima in a sequence is depending on the
ordering of the sequence. This is of course not the case for the number of extreme/maximal
points since this number is independent of the ordering in which the input points are con-
sidered.

Without loss of generality assume now that the input subsetP` lies in the small hyper-
cube[0, δ]d and thatP` is of magnituden`. Considerpk ∈ P`, and letδ̄ = (δ, . . . , δ) and
0̄ = (0, . . . , 0). The integral in (4.6) can be simplified by the following observation. The
probability that for any other pointpj ∈ P`−{pk} the perturbed point̃pj lies not ino[d](p̃k)
is maximized ifpk = 0̄ andpj = δ̄. This yields

Pr
[
o[d](p̃k) is empty

]
≤

∫
IRd

ϕ(x(1)) · · ·ϕ(x(d)) · (4.8)

(1− Φ(x(1) − δ) · · ·Φ(x(d) − δ))n`−1 dx(1) · · · dx(d) .

In order to solve the integral (4.8) we will expand the product of density functions by a
multiplication in the following way

ϕ(x(1)) · · ·ϕ(x(d)) = ϕ(x(1) − δ) · · ·ϕ(x(d) − δ) · ϕ(x(1))

ϕ(x(1) − δ)
· · · ϕ(x(d))

ϕ(x(d) − δ)
. (4.9)

If now the ratiosϕ(x)/ϕ(x− δ) were bounded by some parameterr we could replace in
the integral (4.8) the ratios by the parameterr and solve the remaining integral very easily
as seen in the average case analysis in the previous section. In the following lemma this is
actually done, namely to identify the regions where the ratios of densities are bounded by
r and where they exceed this bound, and to solve the integral (4.8) for both regions.

The bounded ratios of density functions formalize what was meant when writing “be-
have almost as in the average case”. The parametersδ andr enable us to trade between the
number of subsetsm and the size of the regions where the ratios are not bounded byr.

Now we can state the main lemma of this section which is also ad-dimensional analogue
to Lemma 2, the main lemma about the smoothed number of the left-to-right maxima.

Lemma 3 For a fixed continuousd-dimensional product probability distribution with one
dimensional density functionϕ and for positive parametersδ andr define the set

Zϕ
δ,r := {x ∈ IR | ϕ(x) > r · ϕ(x− δ)} .

LetZ be the probability of setZϕ
δ,r, i.e., let

Z :=
d−1∑
i=0

(
d

i

)∫
Zϕ

δ,r

· · ·
∫
Zϕ

δ,r︸ ︷︷ ︸
d−i

∫
IR−Zϕ

δ,r

· · ·
∫

IR−Zϕ
δ,r︸ ︷︷ ︸

i

ϕ(x(1)) · · ·ϕ(x(d)) dx(1) · · · dx(d) .
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4 Extreme Points

For random noise from the fixed probability distribution, the smoothed number of ex-
treme points over all input setsP of n points from[0, 1]d is

max
P

E
[
V(P̃)

]
≤ max

{
2d ·

(
rd · d1/δed · H(n)d−1 + n · Z

)
,H(n)d−1

}
.

Proof. As already described earlier we plan to exploit inequality (4.7) and consider
therefore the setP` ⊂ P of n` points lying in [0, δ]d. For a pointpk ∈ P` we saw
already in (4.8) an expression for the probability thatp̃k has a fixed empty orthant. We will
now further transform this integral by subdividing the domainIRd of the integral into2d

subdomains in the following way

Pr
[
o[d](p̃k) is empty

]
≤

∫
IRd

ϕ(x(1)) · · ·ϕ(x(d)) · (1− Φ(x(1) − δ) · · ·Φ(x(d) − δ))n`−1 dx(1) · · · dx(d)

=
d∑

i=0

(
d

i

)∫
Zϕ

δ,r

· · ·
∫
Zϕ

δ,r︸ ︷︷ ︸
d−i

∫
IR−Zϕ

δ,r

· · ·
∫

IR−Zϕ
δ,r︸ ︷︷ ︸

i

ϕ(x(1)) · · ·ϕ(x(d)) ·

(1− Φ(x(1) − δ) · · ·Φ(x(d) − δ))n`−1 dx(1) · · · dx(d)

≤ Z +

∫
IR−Zϕ

δ,r

· · ·
∫

IR−Zϕ
δ,r

ϕ(x(1)) · · ·ϕ(x(d)) ·

(1− Φ(x(1) − δ) · · ·Φ(x(d) − δ))n`−1 dx(1) · · · dx(d) .

The last step follows by the observation that(1 − Φ(x(1) − δ) · · ·Φ(x(d) − δ)) ≤ 1.
Thus the firstd summands can be bounded byZ and it remains to treat the last summand.
Indeed, for the last summand we can expand the product of density functions as described
before in (4.9) and then bound the ratiosϕ(x)/ϕ(x− δ) by r becauseZϕ

δ,r was defined in
this way. This gives us then for the last summand∫

IR−Zϕ
δ,r

· · ·
∫

IR−Zϕ
δ,r

ϕ(x(1)) · · ·ϕ(x(d))·

(1− Φ(x(1) − δ) · · ·Φ(x(d) − δ))n`−1 dx(1) · · · dx(d)

≤ rd ·
∫

IR−Zϕ
δ,r

· · ·
∫

IR−Zϕ
δ,r

ϕ(x(1) − δ) · · ·ϕ(x(d) − δ) ·

(1− Φ(x(1) − δ) · · ·Φ(x(d) − δ))n`−1 dx(1) · · · dx(d)

≤ rd ·
∫

IRd

ϕ(x(1)) · · ·ϕ(x(d)) · (1− Φ(x(1)) · · ·Φ(x(d)))n`−1 dx(1) · · · dx(d)

= rd · 1

n`

n∑̀
i1=1

1

i1

i1∑
i2=1

1

i2
· · ·

id−2∑
id−1=1

1

id−1

≤ rd · H(n`)
d−1

n`

.
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4.2 Upper Bounds for the Smoothed Case

To see the second last step we refer to the proof of Theorem 6, the average case analysis.
It remains to conclude that

E
[
D(P̃`)

]
≤ 2d · (rd · H(n`)

d−1 + Z · n`) .

Remember that we havem = d1/δed subsetsP`. From (4.7) it follows that

E
[
D(P̃)

]
≤

m∑
`=1

E
[
D(P̃`)

]
≤ 2d · (rd · d1/δed · H(n`)

d−1 + Z · n) .

Since this result holds for all setsP of input points from[0, 1]d, Lemma 3 is proven.

B 2

4.2.1 Normal Gaussian Noise

We will apply now Lemma 3 to the case that the random noise comes from the Gaussian
normal distribution with expectation0 and varianceσ2, also denoted asN(0, σ). The1-
dimensional density function of the Gaussian normal distribution is

ϕ(x) :=
1√

2π · σ
· e−

x2

2σ2 .

Theorem 8 For random noise from the standard Gaussian normal distributionN(0, σ),
the smoothed number of extreme points over all input setsP of n points from[0, 1]d is

max
P

E
[
V(P̃)

]
≤ max

{
26d+2 · dd/2 ·

(
1

σ

)d

· ln(n)d/2 · H(n)d−1,H(n)d−1

}

= O

((
1

σ

)d

· log(n)
3
2
·d−1 + log(n)d−1

)
.

Proof. In order to utilize Lemma 3 we need to choose the two parametersr andδ. Let

δ := σ/β whereβ :=

√
ln
(
1/
(

d
√

1 + 1/n− 1
))

. Forx ≤ −
√

2σβ it holds that

ϕ(x)

ϕ(x− δ)
= e−

δ
σ2 ·x+ δ2

2σ2 = e
− x

σ·β + 1
2β2 ≤ e

√
2+ 1

2β2 ≤ e3 .
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4 Extreme Points

Therefore, if we chooser := e3, we can conclude thatZϕ
δ,r ⊂

(
−∞,−

√
2σβ

]
. With

this approximation we can take the next crucial step, namely to boundZ. It is

Z =
d−1∑
i=0

(
d

i

)∫
Zϕ

δ,r

· · ·
∫
Zϕ

δ,r︸ ︷︷ ︸
d−i

∫
IR−Zϕ

δ,r

· · ·
∫

IR−Zϕ
δ,r︸ ︷︷ ︸

i

ϕ(x(1)) · · ·ϕ(x(d)) dx(1) · · · dx(d)

≤
d−1∑
i=0

(
d

i

)∫ −
√

2σβ

−∞
. . .

∫ −
√

2σβ

−∞︸ ︷︷ ︸
d−i

∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
i

ϕ(x(1)) · · ·ϕ(x(d)) dx(1) · · · dx(d)

=
d−1∑
i=0

(
d

i

)(∫ −
√

2σβ

−∞
ϕ(x) dx

)d−i

. (4.10)

From Claim 1 on page 21 it follows, that we can estimate the tail of the standard Gaus-
sian normal probability distributionN(0, σ) in the following way. It is

∫ −kσ

−∞ ϕ(x) dx ≤
e−k2/2 for anyk ≥ 1/

√
2π. Hence we have∫ −
√

2σβ

−∞
ϕ(x) dx ≤ e−β2

=
d

√
1 +

1

n
− 1 . (4.11)

Combining (4.10) and (4.11) we get

Z ≤
d−1∑
i=0

(
d

i

)(
d

√
1 +

1

n
− 1

)d−i

=

(
1 +

d

√
1 +

1

n
− 1

)d

− 1 =
1

n
.

We can now apply Lemma 3 withr = e3 andZ ≤ 1/n and it follows

E
[
V(P̃)

]
≤ max

{
2d ·

(
e3d · d1/δed · H(n)d−1 + 1

)
,H(n)d−1

}
.

It remains to considerδ which was earlier chosen to beσ/β. We will exploit the follow-
ing claim.

Claim 3
d
√

1 + b ≥ 1 +
b

2d
∀ 0 < b < 1

Proof of Claim 3.(
1 +

b

2d

)d

=
d∑

i=0

(
d

i

)(
b

2d

)i

≤ 1 +
d∑

i=0

(
d

i

)
· b

2d
= 1 + b

B 2Claim 3
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4.2 Upper Bounds for the Smoothed Case

It follows that

β =

√
ln
(
1/
(

d
√

1 + 1/n− 1
))

≤
√

ln(2d · n) ≤
√

d · ln(n) ,

and thus we get

d1/δe ≤ (1/σ)d · βd + 1 ≤ 2 · dd/2 · (1/σ)d · ln(n)d/2 .

Now we combine the results and conclude that for every input setP the expected number
of extreme points under Gaussian normal noise is at most

E
[
V(P̃)

]
≤ max

{
26d+2 · dd/2 · (1/σ)d · ln(n)d/2 · H(n)d−1,H(n)d−1

}
,

which proves Theorem 8.
B 2

4.2.2 Uniform Noise

In this section, we will now consider random noise that is uniformly distributed in a hy-
percube of side length2ε centered at the origin. This distribution has for its components
the1-dimensional density function

ϕ(x) =

{
1
2ε

if x ∈ [−ε, ε]

0 else .

Theorem 9 For random noise from the uniform distribution from a hyper-cube of side
length2ε, the smoothed number of extreme points over all input setsP of n points from
[0, 1]d is

max
P

E
[
V(P̃)

]
≤ max

{
2d+1 ·

(
d · n
2ε

) d
d+1

· H(n)
d−1
d+1 ,H(n)d−1

}

= O

((
n · log(n)

ε

) d
d+1

+ log(n)d−1

)
.

Proof. Again we want to utilize Lemma 3. We chooser = 1, then it follows that for
0 < δ < 2ε we haveZϕ

δ,r = {x ∈ IR | ϕ(x) > ϕ(x− δ)} = [−ε,−ε + δ]. In the next step
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4 Extreme Points

we need to computeZ which is given by

Z =
d−1∑
i=0

(
d

i

)∫ δ−ε

−ε

. . .

∫ δ−ε

−ε︸ ︷︷ ︸
d−i

∫ ε

δ−ε

. . .

∫ ε

δ−ε︸ ︷︷ ︸
i

(
1

2ε

)d

dx(1) · · · dx(d)

=
d−1∑
i=0

(
d

i

)
·
(

1

2ε

)d

· δd−i · (2ε− δ)i =

(
1

2ε

)d (
(2ε)d − (2ε− δ)d

)
= 1−

(
1− δ

2ε

)d

≤ 1−
(

1− d · δ

2ε

)
= d · δ

2ε
.

We can now apply Lemma 3 and it follows that for every input setP the expected
number of extreme points under uniform noise is at most

E
[
V(P̃)

]
≤ max

{
2d ·

(
d1/δed · H(n)d−1n + n · d · δ

2ε

)
,H(n)d−1

}
.

If we chooseδ = (2ε · H(n)d−1/(d · n))1/(d+1) we obtain the theorem.B 2

4.3 Lower Bounds for the Smoothed Case

In this section we consider lower bounds for the smoothed number of extreme and maximal
points.

For random noise from the Gaussian normal distribution we can refer to the average
case bounds which directly imply lower bounds for the smoothed case. In Theorem 6
we saw that the expected number of maximal points isΘ(log(n)d−1). Raynaud showed
that the expected number of extreme points isΘ(log(n)(d−1)/2) [Ray70]. We recall that in
Theorem 8 the smoothed number of maximal and extreme points under Gaussian normal
noise was shown to be at mostO((1/σ)d · log(n)3/2·d−1 + log(n)d−1). For the smoothed
number of maximal points, the gap between this upper bound and the average case bound
is thus roughly a factor oflog(n)d/2. For the smoothed number of extreme points, the gap
is roughly a factor oflog(n)d.

We will now show that the smoothed number of extreme points for uniform noise from
a hyper-cube is significantly larger than for the case of normally distributed noise. We do
this by constructing an input set of points such that the set of perturbed points has a large
expected number of extreme points.

Before we start with this construction we will introduce the notion ofspherical capson
the unit sphere. Let

Ωd :=

{
(x1, . . . , xd) ∈ IRd

∣∣ d∑
i=1

x2
i = 1

}
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4.3 Lower Bounds for the Smoothed Case

x

ff

Figure 4.2: Spherical capcapd(x, φ) and the corresponding region (shaded).

denote thed-dimensional Euclidean sphere of unit radius and let

Sd =
d · πd/2

Γ(d/2 + 1)

be the(d− 1)-dimensional content (surface area) ofΩd.
The angular separationbetween two pointsx, y ∈ Ωd is the angle between the line

segment joining the origin withx and the line segment joining the origin withy. The
angular separation is thusarccos(x · y) wherex · y is the inner (dot) product4 of x andy.
The set of points onΩd whose angular separation from a fixed pointx ∈ Ωd is at mostφ
is called aspherical cap centered atx with angular radiusφ and is denoted bycapd(x, φ),
i.e.

capd(x, φ) :=
{
y ∈ Ωd

∣∣ x · y > cos(φ)
}

.

When the center of a spherical cap is not relevant, the notation may be abbreviated as
capd(φ). Furthermore, we will consider the convex closure ofcapd(φ). Let us denote

capd(x, φ) := conv(capd(x, φ))

=

{
d∑

i=1

λi · zi

∣∣ z1, . . . , zd ∈ capd(φ), λi ≥ 0,
d∑

i=1

λi = 1

}

as theregion of spherical capcapd(x, φ), see also Figure 4.2.
An important property of spherical caps is expressed in the following observation.

4Forx = (x1, . . . , xd) andy = (y1, . . . , yd) the inner dot product is defined asx · y =
∑d

i=1 xi · yi.
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4 Extreme Points

Observation 1 Consider a setP of points lying inside the sphereΩd and an arbitrary
x ∈ Ωd. If the regioncapd(x, φ) is non-empty it contains at least one point ofP that is an
extreme point ofconv(P).

Our plan is now the following. First we try to place a large number of non-intersecting
spherical caps onΩd. Then we select the position of the input points in setP such that it
is guaranteed, that after the perturbation no point ofP̃ lies outside the unit sphereΩd and
that the number of spherical caps with non-empty region is large.

So in a first step we will investigate how many spherical caps of fixed angular radiusφ
can be placed on the unit sphereΩd such that they are non-intersecting. This problem is
also studied in the context ofspherical codes. A spherical code is a so-calledchannel code
(or error-correcting code) and consists of a finite set of points onΩd. Spherical codes have
important applications to transmission over the Gaussian channel and to many other areas
[CS88]. The minimum angular separation of a spherical codeC ⊂ Ωd is the minimum over
all pairwise angular separations and is denoted bysep(C), i.e.

sep(C) := min
{
arccos(c1 · c2)

∣∣ c1, c2 ∈ C ⊂ Ωd

}
.

A desirable property of a spherical code is to have a large minimum angular separation.
The maximum number of points of a spherical code ind dimensions having a minimum
angular separation greater than or equal toγ is commonly denoted byM(d, γ), i.e.

M(d, γ) := max
{
|C|
∣∣ C ⊂ Ωd and sep(C) ≥ γ

}
.

This is also interesting for us since a lower bound onM(d, 2φ) provides also a lower
bound on the number of non-intersecting spherical caps of angular radiusφ that can be
placed onΩd. The reason is that for any two points incapd(φ), the angular separation is
at most2φ. In other words, we can place in each point of a spherical code of minimum
angular separation2φ the center of a spherical cap with angular radiusφ such that all
spherical caps are non-intersecting.

We obtain a lower bound onM(d, γ) by the following simple observation. Consider
an optimal spherical codeC = {c1, . . . , cm} ⊂ Ωd such that|C| = m = M(d, γ) and
sep(C) = γ. Now we place at each pointci of the codeC the center of a spherical cap of
angular radiusγ and consider their union, i.e.∪m

i=1capd(ci, γ).
If there is now a pointx ∈ Ωd andx /∈ ∪m

i=1capd(ci, γ), it follows immediately that
arccos(x · ci) ≥ γ. ThusC ∪ {x} is also a spherical code of minimum angular separation
γ with m + 1 points, a contradiction tom = M(d, γ) being the maximum. Therefore we
haveΩd = ∪m

i=1capd(ci, γ) andM(d, γ) · S(capd(γ)) ≥ Sd, whereS(capd(γ)) denotes
the(d− 1)-dimensional content (surface area) ofcapd(γ).

We conclude that

M(d, γ) ≥ Sd

S(capd(γ))
.
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4.3 Lower Bounds for the Smoothed Case

c
i

Ri

Figure 4.3: Spherical capcapd(ci, φ) and the range cubeRi.

Lemma 4 The(d− 1)-dimensional content of a spherical cap of angular radiusγ is

S(capd(γ)) = Sd−1 ·
∫ γ

0

sin(ϑ)d−2 dϑ

= Sd−1 ·
(

1

d− 1
· γd−1 − d− 2

6(d + 1)
· γd+1 +O(γd+3)

)
.

It follows immediately thatM(d, γ) = Ω(γ−(d−1)). The proof of this lemma is deferred to
the end of this section.

For a given vectorφ let now` = `(φ) be the number of non-intersecting spherical caps
on Ωd and let them be centered at pointsc1, . . . , c` ∈ Ωd, i.e. the spherical caps are given
by capd(c1, φ), . . . , capd(c`, φ) whereci · cj > cos(2φ) for all 1 ≤ i < j ≤ `.

In the next step we will now consider the positions of the input points. Let again
P = (p1, . . . , pn) ⊂ IRd be the set of input points and consider independently and identi-
cally distributed random noise vectorsr1, . . . , rn chosen from thed-dimensional uniform
distribution in the hyper-cube[−ε, ε]d. The perturbed point̃pk = pk + rk is then uniformly
distributed in the hyper-cube

∏d
i=1[p

(i)
k −ε, p

(i)
k +ε] which we will denote as therange cube

for input pointpk.
For every spherical capcapd(ci, φ) we try to place a bunch of at leastbn/`c input points

at exactly the same position such that one vertex of their common range cube lies inci, for
1 ≤ i ≤ `. LetRi denote the common range cube for the points placed in such a way at
spherical capcapd(ci, φ), see also Figure 4.3.

Furthermore, if for a spherical capcapd(ci, φ) the input points can be placed such that
their common range cubeRi lies completely insideΩd it can be shown that the intersection
volume betweenRi and the regioncapd(ci, φ) is large. Therefore it will be likely that one
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4 Extreme Points

{ b

Figure 4.4: In the2-dimensional case, the spherical segmentseg
(1)
2 (ε) consists of the two

indicated parts ofΩd. What remains when they are removed fromΩd are two
spherical caps each of angular radiusβ = arccos(ε).

of the points from the range cubeRi lies in capd(ci, φ) after perturbation. By exploiting
Observation 1 we can then derive a lower bound on the smoothed number of extreme
points.

We call the spherical capcapd(ci, φ) valid if we can place input points as just described,
such that their common range cubeRi is contained insideΩd and a vertex of it lies inci.
In the next lemma we will investigate the number of valid spherical caps which will be
denoted bỳ v(φ) = `v.

Lemma 5 Let ε ≤ 1/
√

2. Chooseφ such thatε = sin(φ). The number of valid spherical
caps of angular radiusφ is then

`v(φ) ≥ 2d · S(capd(π/2− φ))− (d− 1) · Sd

S(capd(2φ))
= Ω

(
φ−(d−1)

)
.

Proof. A spherical capcapd(ci, φ) is non-valid if the corresponding range cubeRi lies
not completely insideΩd. We define nowd spherical segments which will be denoted by
seg

(1)
d (ε), . . . , seg

(d)
d (ε), where

seg
(i)
d (ε) =

{
x = (x1, . . . , xd) ∈ Ωd

∣∣ − ε ≤ xi ≤ ε
}

for 1 ≤ i ≤ d, see also Figure 4.4. From Figure 4.5 it follows immediately thatcapd(ci, φ)
is non-valid if and only if its centerci is from one of these spherical segments since then
the corresponding range cube juts out of the unit sphere.
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4.3 Lower Bounds for the Smoothed Case

Figure 4.5: Range cubes of valid spherical caps (filled) and of non-valid spherical caps
(non-filled).

Let us now consider a fixed spherical segmentseg
(i)
d (ε). Indeed, what remains from

the sphereΩd when seg
(i)
d (ε) is removed are two spherical caps each of angular radius

β := arccos(ε) = π/2−φ. The(d−1)-dimensional content (surface area) of the spherical
segmentseg(i)

d (ε) is then given bySd − 2 · S(capd(β))). We have now

`v(φ) ≥ Sd − d · (Sd − 2 · S(capd(β))))

S(capd(2φ))

=
2d · S(capd(π/2− φ))− (d− 1) · Sd

S(capd(2φ))

= Ω(φ−(d−1)) ,

where the last step follows with Lemma 4.B 2

In the next lemma we consider the intersection between the region of a valid spherical
cap and the corresponding range cube.

Lemma 6 Let capd(ci, φ) be a valid spherical cap and letRi be the corresponding range
cube of side-length2ε, i.e. a vertex ofRi lies in ci andRi is completely insideΩd. The
d-dimensional volume of intersection between the regioncapd(ci, φ) andRi is at least

min

{(
11

24
φ2

)d

· εd−1 ·
√

1− (d− 1) · ε2, (2ε)d

}
.
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c
i

i

Ri

Bi

Figure 4.6: The intersection volume betweencapd(ci, φ) andRi.

Proof. Consider the line segment that joins the origin and pointci and let us denote that
part of it that lies inside the regioncapd(ci, φ) by δi, see Figure 4.6. Ifφ ≤ 1 the length of
δi is then given by

||δi||2 = 1− cos(φ) ≥ 1− (1− 1

2
φ2 +

1

24
φ4) ≥ 11

24
φ2 .

Now we need to find a lower bound on the intersection volume betweencapd(ci, φ) and
Ri. Therefore consider the axis-aligned boxBi that has one vertex lying inci, is completely
contained incapd(ci, φ), and hasδi as the diagonal that joins the vertex atci with the
‘opposite’ vertex ofBi. It follows immediately thatBi is also completely contained in
Ri. We will now approximate the intersection volume betweencapd(ci, φ) andRi by the
volume of boxBi.

Let x1, . . . , xd denote now the side-lengths ofBi. The volume ofBi is then given by
vol(B) =

∏d
i=1 xi. Sinceδi is a diagonal ofBi, it follows that

xd =
√
||δi||22 − x2

1 − . . .− x2
d−1 . (4.12)

Sincecapd(ci, φ) is a valid spherical cap we know about the components of its center
ci = (c

(1)
i , . . . , c

(d)
i ) thatc(i)

i /∈ [−ε, ε] for all 1 ≤ i ≤ d, where againε = sin(φ). We can
conclude thatxi ≥ ε · ||δi||2 for all 1 ≤ i ≤ d. It remains to find out about the minimum
volume of boxBi, which is done with the following claim.

Claim 4 The volume ofBi is minimal ifd− 1 of the sides ofBi are of lengthε · ||δi||2.

The proof of this claim is deferred for now.
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4.3 Lower Bounds for the Smoothed Case

Without loss of generality we can assume now thatx1 = · · · = xd−1 = ε · ||δi||2, and it
follows by (4.12) thatxd = ||δi||2 ·

√
1− (d− 1) · ε2. The volume of boxBi is then

vol(Bi) = ||δi||d2 · εd−1 ·
√

1− (d− 1) · ε2 .

Since the intersection volume betweencapd(ci, φ) andRi should not drop below the
volume ofRi which is(2ε)d, Lemma 6 follows immediately.B 2

It remains to show that Claim 4 holds.

Proof of Claim 4.For ease of notation we abbreviateb := ε · ||δi||2. Let againx1, . . . , xd

denote the side-lengths ofBi. Without loss of generality we assume that thexj ’s are in
increasing order and thatxk is the smallest one not equal tob, i.e.b = x1 = . . . = xk−1 <
xk ≤ xk+1 ≤ . . . ≤ xd. Let alsoc := ||δi||22−x2

1− . . .−x2
k−1−x2

k+1− . . . x2
d−1. It follows

then by (4.12) thatxd =
√

c− x2
k and therefore

vol(Bi) = x1 · · ·xd−1 ·
√

c− x2
k .

The plan is now to decrease the side-lengthxk and to increasexd accordingly such that
the diagonal has still a length of||δi||2. Therefore, consider now the axis-aligned boxB̂i

with side-lengthsy1, . . . , yd such thaty1 = . . . = yk = b, andyj = xj for k+1 ≤ j ≤ d−1.
Again by (4.12) it follows then thatyd =

√
c− b2. Now we have that

vol(Bi)− vol(B̂i) = x1 · · ·xk−1 · xk+1 · · ·xd−1 ·
(

xk ·
√

c− x2
k − b ·

√
c− b2

)
> 0 .

The last step follows sincexk > b and
√

c− x2
k = xd > b. B 2Claim 4

In the next lemma we are ready to find out about the probability that the region of a
valid spherical cap contains at least one point and we thus have an extreme point after
perturbation for every valid spherical cap. Recall that the number of valid spherical caps
is denoted bỳv(φ).

Lemma 7 For k a sufficiently large constant, ifφ = k · (ε/n)1/(3d−1), the region of every
valid spherical cap is nonempty with probability at least1− 1/e, after perturbation.

Proof. Let `v(φ), the number of valid spherical caps, be as in Lemma 5. For every valid
spherical capcap(ci, φ) we place a bunch of at leastbn/`v(φ)c = O(n ·φd−1) input points
in the described way, such that a vertex of their common range cubeRi lies in ci and that
Ri is completely contained insideΩd.

From Lemma 6 it follows immediately that the probability that none of these points lies
in the regioncap(ci, φ) after perturbation is

Pr[ cap(ci, φ) is empty]

≤

1−
min

{(
11
24

φ2
)d

εd−1 ·
√

1− (d− 1) · ε2, (2ε)d
}

(2ε)d

bn/`v(φ)c

.
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Fork a sufficiently large constant, we chooseφ = k · (ε/n)1/(3d−1) such that

(2ε)d

(11
24

φ2)d · εd−1 ·
√

1− (d− 1) · ε2
≤ n

`v(φ)
.

Lemma 7 is thus proven.
B 2

By combining Lemmas 5 and 7 the next theorem follows immediately.

Theorem 10 For random noise from the uniform distribution in ad-dimensional hyper-
cube of side-length2ε ≤

√
2, the smoothed number of extreme points over all input setsP

of n points is

max
P

E
[
V(P̃)

]
= Ω

(
min

{(n

ε

) d−1
3d−1

, n

})
.

It remains to prove Lemma 4.

Lemma 4 The(d− 1)-dimensional content of a spherical cap of angular radiusγ is

S(capd(γ)) = Sd−1 ·
∫ γ

0

sin(ϑ)d−2 dϑ

= Sd−1 ·
(

1

d− 1
· γd−1 − d− 2

6(d + 1)
· γd+1 +O(γd+3)

)
.

Proof. Consider the spherical cap of angular radiusγ center ate1 := (1, 0, . . . , 0) ∈ Ωd

which is given bycapd(e1, γ) =
{
x ∈ Ωd

∣∣ e1 · x > cos(γ)
}

.
In 3-dimensional Euclidean space we can usePappus’ Centroid Theorem[Wei] which

is also known asGuldin’s First Ruleto compute the surface area of a spherical cap as
follows. The theorem gives a general formula to compute the 2-dimensional content of a
surface of revolution. Consider the curve of the integrable functionf : [a, b] → IR that
does not intersect thex1-axis. This curve is called thegenerating curveand its length is
given by

∫ b

a

√
1 + f ′(x)2 dx wheref ′(x) = df(x)/dx. The contentSf (a, b) of the surface

generated by the revolution of the generating curve about thex1-axis is then given by

Sf (a, b) =

∫ b

a

S2 · f(x)
√

1 + f ′(x)2 dx = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx .

Note thatS2 · f(x) = 2π · f(x) denotes the1-dimensional content of a2-dimensional
sphere of radiusf(x).

In our case, the generating function is that of a semi-circle, namelyf(x) =
√

1− x2

andf ′(x) = −x/
√

1− x2, anda = cos(γ) andb = 1, so we get that

cap3(γ) = 2π

∫ 1

cos(γ)

1 dx = 2π · (1− cos(γ)) .
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Figure 4.7: Generating curve of functionf(x) revolves around thex1-axis.

The Guldin-Pappus’ Theorem has been extended to higher dimensions [Kur53]. Con-
sider a(d− 1)-dimensional surface whose intersection with a hyperplane perpendicular to
thex1-axis is a(d − 1)-dimensional hypersphere of radiusf(x), wheref : [a, b] → IR is
an integrable function that does not intersect thex1-axis. The(d− 1)-dimensional content
Sf (a, b) of this surface is then given by

Sf (a, b) =

∫ b

a

Sd−1 · f(x)d−2
√

1 + f ′(x)2 dx .

Note thatSd−1 ·f(x)d−2 denotes the(d−2)-dimensional content of a(d−1)-dimensional
sphere of radiusf(x).

To compute the(d− 1)-dimensional content of the surface ofcapd(e1, γ) we use again
thatf(x) =

√
1− x2 andf ′(x) = −x/

√
1− x2, anda = cos(γ) andb = 1, so we get that

S(capd(γ)) = Sd−1 ·
∫ 1

cos(γ)

√
1− x2

d−2
·
√

1 +
x2

1− x2
dx

= Sd−1 ·
∫ 1

cos(γ)

√
1− x2

d−3
dx .

By a linear substitutionx = cos(ϑ), dx = − sin(ϑ) dϑ and by the series expansion of
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sin(ϑ) we get that

S(capd(γ)) = Sd−1 ·
∫ γ

0

sin(ϑ)d−2 dϑ

= Sd−1 ·
∫ γ

0

(
∞∑
i=0

(−1)i ϑ2i+1

(2i + 1)!

)d−2

dϑ

= Sd−1 ·
∫ γ

0

ϑd−2 − d− 2

6
· ϑd +O(ϑd+2) dϑ

= Sd−1 ·
(

1

d− 1
· γd−1 − d− 2

6(d + 1)
· γd+1 +O(γd+3)

)
,

which concludes the proof of Lemma 4.
B 2

4.4 Conclusion

The following table gives an overview on the results of this chapter. Depicted are upper
and lower bounds for the smoothed number of extreme/maximal points for noise from
the Gaussian normal distribution and the uniform distribution. The bounds are given in
O-notation, the dimensiond is considered as a constant.

Upper Bounds Lower Bounds

Ω
(
log(n)(d−1)/2

)
(?)

GaussianN(0, σ) O
(
(1/σ)d · log(n)

3
2
·d−1 + log(n)d−1

)
Ω
(
log(n)d−1

)
(??)

uniform in [−ε, ε]d O
(
(n · log(n)/ε)

d
d+1 + log(n)d−1

)
Ω
(
min{(n/ε)

d−1
3d−1 , n}

)
The lower smoothed case bounds for random noise from the Gaussian normal distri-

bution are obtained from the average case bounds on the number of extreme points(?)
[Ray70] and on the number of maximal points(??), see also Theorem 6.

We observe that for Gaussian normal noise the lower and upper smoothed bounds leave
a gap of roughlylog(n)d/2 for the number of maximal points and roughlylog(n)d for the
number of extreme points. The gap for the uniform noise is much smaller, the bounds
differ only by a factor of roughlylog(n)d/(d+1). This might be due to the fact that for
Gaussian normal noise we do not have an explicit lower bound constructions and rely on
the average case bounds.

However, we observe analogously to the results of the previous chapter, that there is
a significant difference between the behavior under Gaussian normal noise and uniform
noise.
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4.4 Conclusion

From the upper bound results we observe again that our analysis method cannot be ap-
plied for Gaussian normal noise of arbitrary deviation. Forσ ≤ O(

√
log(n)) we obtain the

average case bound ofO(log(n)d−1). If σ ≥ Ω(log(n)3/2−1/d/n1/d) we obtainO(n) many
extreme points which means that our analysis cannot distinguish between the perturbed
and unperturbed case. For uniform noise we observe the same. Here the upper bound are
meaningless ifε ≤ O(n/ log(n)d−1−1/d) or ε ≥ Ω(log(n)/n1/d).
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5 Bounding Box of a Moving Point Set

The goal of this chapter is to present an interesting application of smoothed analysis in the
area of analysing motion and the complexity of motion. When talking about motion, we
consider a non-static scenario inIRd where given (input) points move. The movement of
each point is predictable for some time in the future. The motivation to consider motion
comes from the fact that many applications are based on algorithms dealing with moving
objects. There has been diverse research on moving objects and the question how to deal
with motion computationally and algorithmically.

This chapter gives a brief introduction into this area of research where we focus on a
complexity measure for movement of objects, themotion complexity. We then introduce
smoothed motion complexitywhich is an extension of motion complexity that is based, as
the name points out, on smoothed analysis. The motivation for using smoothed analysis
in this context comes from the observation that in applications usually the data about po-
sitions of moving objects are inherently noisy due to measurement errors. Again we will
model this measurement error by Gaussian normal noise.

To illustrate the concept ofmotion complexityand smoothed motion complexity, we
consider as an example the problem to maintain a smallest orthogonal bounding box of a
moving point set under linear motion.

Outline. In Section 5.1, a brief introduction into the area of analysing motion with a fo-
cus onkinetic data structuresis given. We introduce alsomotion complexityandsmoothed
motion complexity.

In Section 5.2, the concept of motion complexity is illustrated by an example. We
consider the problem to maintain the smallest orthogonal bounding of a linearly moving
point set inIRd. We show that the motion complexity of the bounding box is closely related
to the number of extreme points of a set of points. Thus we obtain bounds on the motion
complexity of the bounding box applying the bounds on the number ofextreme points
from the previous Chapter 4. At the end of this section, we see how the upper bounds on
the smoothed motion complexity can be improved. This is done by applying results from
Chapter 3 on the number ofleft-to-right maxima.

The last Section 5.3 briefly summarizes this chapter and gives some conclusions.

57



5 Bounding Box of a Moving Point Set

5.1 Analysing Motion

The task to process a set of continuously moving objects arises in a broad variety of ap-
plications, e.g. in mobile ad-hoc networks, traffic control systems, and computer graphics
(rendering moving objects). Therefore, researchers investigated data structures for certain
attributes of moving point sets that can be efficiently maintained under continuous motion,
e.g. to answer proximity queries [BGZ97], maintain a clustering [Har04], a convex hull
[BGH99], or some connectivity information of the moving point set [HS01].

5.1.1 Kinetic Data Structures

Basch et al. [BGH99] introducekinetic data structureswhich as a framework for data
structures for moving objects. In kinetic data structures, the (near) future motion of all
objects is known and can be specified by so-called pseudo-algebraic functions of time, i.e.
linear functions or low-degree polynomials. This specification is called aflight plan. The
flight plan may change from time to time and these updates are reported to the kinetic data
structure. The goal is to maintain the description of a combinatorial structure as the objects
move according to the flight plan.

For a kinetic data structure, the number of combinatorial changes in the description of
the maintained attribute that occur during linear (or low degree algebraic) motion are called
external events. Events that are processed by the data structure because of internal needs
are calledinternal events.

The efficiency of a kinetic data structures is then analyzed by comparing the worst case
number of internal events and external events it processes against the worst case number
of external events. Using this framework many interesting and efficient kinetic data struc-
tures have been developed, e.g. for connectivity of discs [GHSZ01] and rectangles [HS01],
convex hulls [BGH99], proximity problems [BGZ97], and collision detection for simple
polygons [KSS02].

Basch et al. [BGH99] develop also a kinetic data structure to maintain a bounding box of
a moving point set inIRd. The number of events these data structures process isO(n log n)
which is close to the worst case motion complexity ofΘ(n), as we will see later. Agarwal
and Har-Peled [AH01] show that it is possible to maintain an(1+ε)-approximation of such
a bounding box efficiently. The advantage of this approach is that the motion complexity
of this approximation is onlyO(1/

√
ε).

5.1.2 Motion Complexity

We will use now the concept of external events in order to introducemotion complexityas a
complexity measure for motion. Thus, motion complexity is already implicitly contained
in the framework of kinetic data structures. We consider here moving point sets inIRd

under linear motion that are defined as follows.
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5.2 Motion Complexity of the Bounding Box

Definition 7 (Moving Point Set) Given is a setP of n points inIRd. We callP a linearly
moving point setor a points set under linear motionif the following holds.

The positionposi(t) of theith point ofP at timet is given by a linear function oft. Thus
we haveposi(t) = pi + si · t wherepi is the initial position andsi the speed vector of the
ith point.

For linearly moving point sets we consider certain geometric structures such as the con-
vex hull or the Voronoi diagram of the point sets. The worst case number of external events
with respect to the maintainance of such a structure over time is denoted as theworst case
motion complexity. Analogously, we denote the average case number of external events as
theaverage case motion complexityof that structure.

The worst case motion complexity is the maximum number of external events over all
choices of speed values and initial positions. The average motion complexity is the ex-
pected number of external events, where all speed values and initial positions are indepen-
dent and identically distributed random vectors chosen from a fixed probability distribu-
tion.

The average case motion complexity has already been considered in the past. Ifn parti-
cles are drawn independently from the unit square then it has been shown that the expected
number of combinatorial changes to the description of the convex hull isΘ(log(n)2) and
of the Voronoi diagramΘ(n3/2), and to the closest pair problemΘ(n) [ZDBI97].

5.1.3 Smoothed Motion Complexity

Many applications are based on algorithms dealing with moving objects, but usually data
about positions of moving objects are inherently noisy due to measurement errors. There-
fore we introducesmoothed motion complexitythat considers this imprecise information
and uses smoothed analysis to model noisy data.

In the context of mobile data this means that both the speed vector and the starting posi-
tion of an input point are slightly perturbed by random noise from a fixed noise distribution.
The smoothed motion complexity is then the worst case expected motion complexity over
all input instances perturbed in such a way. The speed vectors and initial positions are
normalized such thatpi, si ∈ [−1, 1]d.

5.2 Motion Complexity of the Bounding Box

To illustrate the concept ofmotion complexityandsmoothed motion complexitywe con-
sider the problem of maintaining a bounding box of a moving point set under linear motion.
This problem is formally described in the following definition.

Definition 8 (Bounding Box) Given is a setP of n linearly moving points inIRd.
At a particular point of timet0, thebounding boxof setP with given initial positions

p1, . . . , pn and speed vectorss1, . . . , sn is then the smallest orthogonal box containing
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5 Bounding Box of a Moving Point Set

all points ofP. At any time the bounding box is uniquely defined and combinatorially
described by at most2d bounding points, i.e. the points that attain the maximum and
minimum value in each of thed dimensions.

For example, in the one dimensional case, the bounding box problem can be interpreted
as a race where all participants (drivers) have slightly different starting positions. (Without
loss of generality, we assume that all drivers have the same direction.) The radio reporter
has to tell the audience each time when the leading position changes, i.e. another driver
becomes the leader. At a particular point of time, no further changes will occur, namely
when the fastest driver has become the leader. The number of times that the radio reporter
announces a change in the leading position is the number we are interested in.

More generally, for a setP of linearly moving points, if the combinatorial description
of the bounding box ofP changes, i.e. any bounding point ofP changes, then anexternal
eventoccurs. Themotion complexity of the bounding boxis thus the number of combi-
natorial changes over time to the set of at most2d bounding points defining the bounding
box.

Clearly the worst case motion complexity of the bounding box is at most2d ·n = Θ(n).
In the best case, the motion complexity of the bounding box is0, while the average case
motion complexity isO(log(n)), as we will see later.

When we consider the smoothed motion complexity of the bounding box we add to
each coordinate of the speed vector and each coordinate of the initial position of every
input point an i.i.d. random vector from a fixed probability distribution overIRd, e.g. the
d-dimensional Gaussian normal distribution. The smoothed motion complexity is then
the worst case expected motion complexity over all choices of speed vectors and initial
positions.

In the following we will see, that the1-dimensional bounding box problem for linearly
moving point sets is dual to the2-dimensional convex hull of a point set. The results from
the previous chapter carry thus immediately over to the bounding box problem.

5.2.1 Duality between Bounding Box and Convex Hull

We make the following simplifications. We will consider only the 1-dimensional prob-
lem, i.e. all points move along a line such that their ordering changes only when they
overtake each other. Since all dimensions are independent from each other, a bound for
the 1-dimensional problem can be multiplied byd to yield a bound for the problem ind
dimensions.

We map now each point with initial positionpi and speed valuesi to a pointPi =
(si,−pi) in IR2. Then we can utilize that the number of combinatorial changes to the
description of the 1-dimensional bounding box is equal to the number of extreme points of
the convex hull of thePi’s. This relation is easily seen by the following considerations.

In a first step we consider the following scenario. For all1 ≤ i ≤ n, we consider for
the ith point with initial positionpi and speed valuesi the functionposi(t) = pi + si · t
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Figure 5.1: The upper and lower envelope of a line arrangement and the corresponding
dual set of points with the upper and lower convex hull are depicted.

which gives us the position of theith point at any point of time. Considering the graphs
of the position functions of all points in the setP, we obtain a line arrangement which
we will denote as̀ (P). Theupper and lower envelopeof the line arrangement̀(P) is
the boundary of the top and bottom cell of`(P), which is a chain of edges defined as
the maximum and minimum of the linear functions whose graphs are the lines in`(P),
respectively. We observe now the following.

The edges of the upper envelope of`(P) give us exactly the points that are rightmost and
thus the boundary points on the right side of the bounding box over time. By symmetry,
this holds also for the lower envelope of`(P), which gives us the points that are leftmost,
i.e. the boundary points on the left side of the bounding box. So by the number of edges
on the upper and lower envelope of`(P) we obtain immediately the number of different
bounding points for ‘both’ boundaries and thus the motion complexity of the bounding
box ofP.

In a second step we will consider the following simpleduality transform[dvOS00]. For
each linè : y := b + m · x in IR2 we consider the point̀? = (m,−b) in IR2 called its
dual. The dual of a pointp = (px, py) is then the linep? : y := −py + px · x. We observe
that this duality transform preserves ordering, i.e. a pointp lies above a linè if and only
if the point`? lies above linep?.

From this observation it follows immediately that the line to functionposi(t) = pi+si ·t
belongs to the lower envelope of`(P) if and only if its dual, the pointPi = (si,−pi) is a
vertex of the upper convex hull ofP1, . . . , Pn which consists of the convex hull edges that
have all remaining points below their supporing line. Of course, the same holds for the
lower envelope, the pointPi is then a vertex of the lower convex hull, see also Figure 5.1.
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5 Bounding Box of a Moving Point Set

By this method it follows immediately that the number of extreme points in2 dimen-
sions is equal to the number of edges of the lower and upper envelope of the dual line
arrangement and thus equal to the motion complexity of the bounding box in1 dimension.
The bounds on the average and smoothed number of extreme points in2 dimensions from
Chapter 4 carry thus over to the bounding box problem.

5.2.2 Average Motion Complexity of the Bounding Box

The result of Renyi and Sulanke [RS63] on the average number of extreme points of the
convex hull when points are independent and identically distributed random vectors chosen
from the2-dimensional Gaussian normal distribution implies the following theorem.

Corollary 2 The average motion complexity of the bounding box of a set ofn linearly
moving points ind-dimensional space, where initial positions and speed vectors are inde-
pendent and identically distributed random vectors chosen from thed-dimensional Gaus-
sian normal distribution, is

O
(√

log(n)
)

.

Another bound on the average motion complexity of the bounding box follows from the
2-dimensional version of Theorem 7 for all continuous probability distributions.

Corollary 3 The average motion complexity of the bounding box of a set ofn linearly
moving points ind-dimensional space, where initial positions and speed vectors are inde-
pendent and identically distributed random vectors chosen from ad-dimensional continu-
ous probability distribution, is

O (log(n)) .

5.2.3 Upper Bounds on the Smoothed Motion Complexity

From the2-dimensional version of Theorem 8 which upper bounds the smoothed number
of extreme points under Gaussian normal noise we get an upper bound on the smoothed
motion complexity of the bounding box under Gaussian normal noise.

Corollary 4 The smoothed motion complexity of the bounding box over all sets ofn lin-
early moving points ind-dimensional space, with initial positions and speed vectors from
[−1, 1]d perturbed by random noise from the Gaussian normal distribution of deviationσ,
is

O

((
1

σ

)2

· log(n)2 + log(n)

)
.

By Theorem 9, the smoothed number of extreme points under uniform noise is covered.
This gives us the following corollary.
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Corollary 5 The smoothed motion complexity of the bounding box over all sets ofn lin-
early moving points ind-dimensional space, with initial positions and speed vectors from
[−1, 1]d perturbed by random noise from the uniform distribution in a hypercube of side
length2ε, is

O

((
n · log(n)

ε

)2/3

+ log(n)

)
.

5.2.4 Lower Bounds on the Smoothed Motion Complexity

Also the lower bounds on the smoothed number of extreme points carry over to the motion
complexity of the bounding box. By the average case bound of Renyi and Sulanke [RS63]
we get the following lower bound on the smoothed motion complexity under Gaussian
normal noise.

Corollary 6 The smoothed motion complexity of the bounding box problem over all sets
of n linearly moving points ind-dimensional space, with initial positions and speed vec-
tors from [−1, 1]d perturbed by random noise from the Gaussian normal distribution of
deviationσ, is

Ω
(√

log(n)
)

.

From the2-dimensional version of Theorem 10 follows the next corollary.

Corollary 7 The smoothed motion complexity of the bounding box problem over all sets of
n linearly moving points ind-dimensional space, with initial positions and speed vectors
from [−1, 1]d perturbed by random noise from the uniform probability distribution in a
hypercube of side length2ε, is

Ω

(
min

{
5

√
n

ε2
, n

})
.

5.2.5 Improved Upper Bounds on the Smoothed Motion
Complexity

In this subsection we show how the upper bounds on the smoothed motion complexity can
easily be improved by a simple consideration. Again we consider only the1-dimensional
problem and exploit that the problem is dimension-wise independent. Results hold thus
also for thed-dimensional case.

We observe that adding a constant to all initial positions and speed values, or multiplying
these values by a constant does not change the motion complexity of the bounding box.
Thus we assume that the points are ordered by their increasing initial positions and that
they are all moving to the left with absolute speed values between0 and1. We count
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5 Bounding Box of a Moving Point Set

thus only events that occur because the leftmost point of the1-dimensional bounding box
changes.

A necessary condition for thejth point to cause an external event is that all its “pre-
ceding” points have smaller absolute speed values, i.e. thatsi < sj, for all i < j. If this
is the case, thensj is clearly aleft-to-right maximumas seen in Chapter 3. Since we are
interested in upper bounds we can neglect the initial positions of the points and need only
to focus on the sequence of absolute speed values(s1, . . . , sn) and count the left-to-right
maxima in this sequence.

It follows immediately that the results on the number of left-to-right maxima carry over
to the bounding box problem. Theorem 2 in Chapter 3 implies thus directly the following
corollary.

Corollary 8 The smoothed motion complexity of the bounding box problem over all sets
of n linearly moving points ind-dimensional space, with initial positions inIRd and speed
vectors from[−1, 1]d perturbed by random noise from the Gaussian normal distribution of
deviationσ, is

O
(

1

σ
· log(n)3/2 + log(n)

)
.

We can also use Theorem 4 for unimodal noise distributions immediately. Recall, that a
random noise distribution isunimodalif the corresponding density function is monotoni-
cally increasing onIR≤0 and monotonically decreasing onIR≥0.

Corollary 9 The smoothed motion complexity of the bounding box problem over all sets
of n linearly moving points ind-dimensional space, with initial positions inIRd and speed
vectors from[−1, 1]d perturbed by random noise from a continuous unimodal probability
distribution with1-dimensional density functionϕ, is

O
(√

n · log(n) · ϕ(0) + log(n)
)

.

These improved bounds on the smoothed motion complexity of the bounding box imply
something else. The bounds on the smoothed number of extreme points as derived in
Chapter 4 are not exactly tight, at least for the2-dimensional case.

5.3 Conclusion

In this chapter an introduction to the analysis of motion was given. We introducedmotion
complexityandsmoothed motion complexityas a measure for the complexity of maintain-
ing combinatorial structures of moving data, i.e. points.

We saw that for the problem of maintaining the bounding box of a set of linearly moving
points, the smoothed motion complexity differs significantly from the worst case motion
complexity. This makes it unlikely that the worst case is attained in typical applications.
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5.3 Conclusion

Therefore it seems promising to reconsider the use of worst case analysis for algorithms
dealing with moving objects. Especially in the development of kinetic data structures this
might lead to interesting new results.
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6 Voronoi Diagram and Delaunay
Triangulation

TheVoronoi diagramtogether with its dual structure theDelaunay triangulationare two
very important and fundamental structures in computer science. Especially in computa-
tional geometry they constitute a central topic in research [Aur91, For97] with many ap-
plications. Both structures are also well known and widely used in several other fields of
(natural) science. Besides mathematics and computer science, Voronoi diagrams and De-
launay triangulations can be found in physics, geology, agriculture, geography, and many
other disciplines.

Voronoi diagrams have the great advantage to be a rather simple but quite elegant struc-
ture. There are also many extensions of the basic Voronoi diagrams which are obtained by
varying metric, sites, environment, and constraints. In computer science they are widely
used in clustering, mesh generation, graphics, curve and surface reconstruction, and other
applications [OBS92].

Voronoi diagrams are named after the Russian mathematician Voronoi [Vor08] who gen-
eralized an original idea of Gauss [Gau40] to higher dimensions. Gauss’ work was mo-
tivated by the study of quadratic forms and was also exploited and further developed by
Dirichlet [Dir50]. Voronoi diagrams have been ‘reinvented’ by other researchers, e.g. by
the physicists Wigner and Seits [WS33], the meteorologist Thiessen [Thi11] and the bi-
ologist Blum [Blu73]. In these fields of science, the Voronoi diagram is thus known by
other names such as Wigner-Seitz diagram, Thiessen diagram, and Blum transform. In
mathematics the Voronoi diagram is usually also known as Dirichlet tessellation.

Definition 9 (Voronoi diagram) Given is a setP of n points – also calledsites– in IRd.
TheVoronoi cellof a sitep consists of all points that are strictly closer top than to any

other site inP − {p}.
TheVoronoi faceof a nonempty subsetT ofP consists of all points that are equidistant

to all sites ofT and closer to any site ofT than to any other site inP − T .
TheVoronoi diagramofP – denotedVD(P) – is the collection of all nonempty Voronoi

faces and forms a cell complex partitioningIRd.

The Voronoi cell of a sitep is always a nonempty, open, convex, full-dimensional subset
of IRd. The one-dimensional and two-dimensional Voronoi faces are also calledVoronoi
verticesandVoronoi edges, respectively.

In his work, Voronoi [Vor08] introduced also the Delaunay triangulation for sites that
form a lattice. Later Delaunay [Del34] extended this definition to irregularly placed sites
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6 Voronoi Diagram and Delaunay Triangulation

Figure 6.1: The Voronoi diagram and Delaunay triangulation of a set of points inIR2.

and the structure was then named after him.

Definition 10 (Delaunay triangulation) Given is a setP of n points – also calledsites–
in IRd.

LetT be a subset ofP such that a sphere through all the sites ofT is empty, i.e. all other
sites inP − T are lying exterior of this sphere. TheDelaunay faceof T is the (relative)
interior of the convex hull ofT .

TheDelaunay triangulationof P – denotedDT (P) – is the collection of all Delaunay
faces and forms a cell complex partitioning the convex hull ofP.

Throughout this chapter we assume that the setP is in general position, i.e. nod+2 sites
lie on a commond-sphere and nok + 2 sites lie on a commonk-flat, for k < d. It follows
that the Delaunay triangulation ofP is a simplicial cell complex, i.e. alld-dimensional
Delaunay faces are simplices. Therefore we will consider from now on onlyDelaunay
simplices.

Duality. From Figure 6.1 we see that there is an obvious one-to-one correspondence
between the Voronoi diagram and the Delaunay triangulation of a setP. By mapping the
Voronoi face of a setT ⊆ P to the corresponding Delaunay face ofT we obtain aduality
between cell complexes that reverses face ordering. The dimensions of the Voronoi and
Delaunay face of a particular setT ⊆ P sum up to the dimensiond.

Relation to Convexity. There is a close connection between Delaunay triangulations
in IRd and convex hulls inIRd+1, and between Voronoi diagrams inIRd and half-space
intersections inIRd+1. Brown [Bro79, Bro80] was the first to give a transform that relates
the dual of Voronoi diagrams (i.e. Delaunay triangulations) inIR2 to convex hulls inIR3 via
a stereographical projection that maps the sites into points lying on a3-sphere. Brown’s
result and further extensions to higher dimensions, enabled the complete analysis of the
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combinatorial complexity of Voronoi diagrams and Delaunay triangulations [Kle80, Sei87]
in arbitrary dimensions since known results on the size of polytopes carry over.

Related Work. The Voronoi diagram can be computed in linear time from the Delaunay
triangulation, using the one-to-one correspondence between their faces. A vast variety of
basic and (relatively) simple algorithms exists for the construction of Delaunay diagrams
such as the plane sweep [For87] and the divide-and-conquer [Sha78] algorithm inIR2, and
the (randomized) incremental [GKS92, Cha91], and the gift-wrapping [CK70] algorithm
in arbitrary dimensions.

In fact, most of these algorithms are actually specialized convex hull algorithms (except
the plane sweep algorithm) due to the close relation to convexity. Any(d+1)-dimensional
convex hull algorithm can be used to compute ad-dimensional Delaunay triangulation.
All these algorithms depend in their run time on the number of faces of the Delaunay
triangulation. Unfortunately, ind dimensions this number isΘ(ndd/2e) in the worst case
[Kle80, Sei87] (for the ‘general’ diagram with the Euclidean metric).

Recent research attempts to quantify situations when the complexity (= number of faces)
of the Voronoi diagram and Delaunay triangulation is low or when it is high [Eri01]. For
setsP in general position, the number of all faces of either structure is asymptotically equal
to the number of Delaunay simplices or Voronoi vertices, respectively. In this chapter we
will thus concentrate on these two.

Average Case Complexity. The average case complexity was considered by Dwyer
[Dwy91] who showed that forn independent and identically distributed random point sites
chosen uniformly from the unitd-ball the expected number of Delaunay simplices isΘ(n).
It has been conjectured that this bound also holds for any uniform distribution in a convex
domain but until now no proofs were given [Dwy91, GN03].

In this chapter we consider the case that the point sites are chosen uniformly from inside
an axis-aligned hypercube. Our contribution is the first published proof that shows that
the expected complexity of Voronoi diagram and Delaunay triangulation is then linear.
The proof is based on a rather technical lemma (Section 6.2) that bounds the intersection
volume between the unit hypercube and a randomly chosen ball. How this lemma helps to
bound the expected number of Delaunay simplices is shown in the following section.

6.1 Average Case Analysis

In this section we will consider the case thatP is a set ofn independent and identically
distributed random points chosen uniformly from inside the unitd-hypercube[0, 1]d. We
will derive a bound on the expected number of Delaunay simplices inDT (P) by exploiting
the following observation. Any simplex that is the convex hull ofd + 1 sites fromP is a
Delaunay simplex if and only if its circumball is empty, i.e. contains no other site fromP.
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Figure 6.2: For a triangle∆ in [0, 1]2, circumball(∆) ∩ [0, 1]2 is depicted.

We will now consider all subsets ofP with d+1 elements and without loss of generality
we assume some ordering among these subsets. For all1 ≤ i ≤

(
n

d+1

)
, let Xi be a random

{0, 1} variable such thatXi = 1 if and only if the ith subset ofP has the following
property: the convex hull of theith subset is a Delaunay simplex, i.e. no other point is
contained inside this simplex.

Generally, we can then use that

E [number of Delaunay simplices inDT (P)] = E

[∑
i

Xi

]

=
∑

i

Pr[ Xi = 1 ] =

(
n

d + 1

)
·Pr[ circumball(∆) is empty] ,

where∆ is the convex hull ofd + 1 independent and identically distributed random points
chosen uniformly from[0, 1]d. By circumball(∆) we denote the circumball of∆ which is
the smallestd-dimensional ball enclosing∆.

Let vol(circumball(∆)) denote thed-dimensional volume (content) ofcircumball(∆).
Unfortunately, in general it is

Pr[ circumball(∆) is empty] 6=
(
1− vol(circumball(∆))

)n−(d+1)

for the following reason. All random point sites are chosen from inside[0, 1]d, but some
part ofcircumball(∆) might lie outside of[0, 1]d. Of course, the probability for a random
point site to be in a part ofcircumball(∆) that is not in[0, 1]d is equal to0 and therefore
we must not consider these ‘outer’ parts ofcircumball(∆). Therefore we have to bound
the volume ofcircumball(∆) ∩ [0, 1]d, which causes the main difficulty in our analysis,
see also Figure 6.2.

Fortunately, we can show the following lemma that is crucial for the further analysis.
The rather technical proof of this lemma is deferred to Section 6.2.
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Lemma 8 Let ∆ be a randomd-simplex, i.e.∆ is the convex hull ofd + 1 independent
and identically distributed random points chosen uniformly from[0, 1]d. For any constant
a ∈ [0, 1] it holds that

Pr
[
vol(circumball(∆) ∩ [0, 1]d) ≤ a

]
≤ constd · ad ,

where

constd = d3d+1 · 2d ·
(

max

{
22d · Γ(1 + d/2)

πd/2
, d!

})d

≤ (c · d)d2

,

for c some constant factor. HereΓ denotes the Gamma-function whereΓ(1/2) =
√

π, and
for all x ∈ IN it is Γ(x + 1) = x! andΓ(x + 1/2) = (2x)! ·

√
π/(x! · 22x).

Based on this lemma we will now establish the main theorem of this section.

Theorem 11 For n independent and identically distributed random points chosen uni-
formly from[0, 1]d it is

E [number of Delaunay simplices] ≤ n · constd ·
(
(d + 4) · 2(d+4)·d + 2

)
= O(n)

whereconstd ≤ (c · d)d2
is the same constant as in Lemma 8.

Proof. The main idea of this proof is to consider in a first step (classes of) simplices with
a ‘large’ circumball. Then it is more likely that another point site lies in the circumball of
these simplices and that they are therefore not Delaunay simplices. In a second step we
show that the remaining simplices with a ‘small’ circumball are only very few.

Without loss of generality we assume thatn is a power of 2. Let us now consider the(
n

d+1

)
possible simplices that haved + 1 of the givenn random point sites as vertices.

For the simplices with ‘large’ circumball we define classesC0, . . . , Clog(n)−1 such that for a
simplex∆ it holds that

∆ ∈ Ci ⇐⇒ 1

2i+1
< vol(circumball(∆) ∩ [0, 1]d) ≤ 1

2i
.

From Lemma 8 it follows immediately that

Pr[ ∆ ∈ Ci ] ≤ Pr

[
vol(circumball(∆) ∩ [0, 1]d) ≤ 1

2i

]
≤ constd ·

(
1

2i

)d

.

The probability for a simplex∆ ∈ Ci to be a Delaunay simplex is

Pr
[
circumball(∆) is empty

∣∣ ∆ ∈ Ci

]
≤

(
1− 1

2i+1

)n−(d+1)

≤
(

1

e

)n−(d+1)

2i+1

≤
(

1

2

)n−(d+1)

2i+1

.
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Now we can bound the expected number of Delaunay simplices for each classCi. For
0 ≤ i ≤ log(n)− 1 we get that

E [number of Delaunay simplices∈ Ci]

≤
(

n

d + 1

)
·Pr[ ∆ ∈ Ci ] ·Pr

[
circumball(∆) is empty

∣∣ ∆ ∈ Ci

]
≤

(
n

d + 1

)
· constd ·

(
1

2i

)d

·
(

1

2

)n−(d+1)

2i+1

.

The expected number of Delaunay simplices for all classesC0, . . . , Clog(n)−1 is then

log(n)−1∑
i=0

E [number of Delaunay simplices∈ Ci]

≤
(

n

d + 1

)
· constd

log(n)−1∑
i=0

(
1

2

)i·d+
n−(d+1)

2i+1

=

(
n

d + 1

)
· constd

log(n)−1∑
i=0

(
1

2

)(log(n)−(i+1))·d+
n−(d+1)

2log(n)−(i+1)+1

=

(
n

d + 1

)
· constd

log(n)−1∑
i=0

(
1

2

)log(n)·d+2i·n−(d+1)
n

−(i+1)·d

=

(
n

d + 1

)
· constd ·

1

nd

log(n)−1∑
i=0

(
1

2

)2i·(1− d+1
n )−(i+1)·d

≤ n · constd · ((d + 4) · 2(d+4)·d + 1) . (6.1)

The last step follows immediately ifd + 3 ≥ log(n)− 1 since

d+3∑
i=0

(
1

2

)2i·(1− d+1
n )−(i+1)·d

≤
d+3∑
i=0

2(i+1)·d ≤ (d + 4) · 2(d+4)·d .

In the case thatd + 3 < log(n)− 1 we can bound the rest of the sum as follows

log(n)−1∑
i=d+4

(
1

2

)2i·(1− d+1
n )−(i+1)·d

≤
log(n)−1∑
i=d+4

(
1

2

)i

≤ 1 .

Here we exploit thatn ≥ 2 · (d + 1) andi ≥ d + 4, since then it holds for alld that

2i ·
(

1− d + 1

n

)
− (i + 1) · d ≥ 2i−1 − (i + 1) · d ≥ i .
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6.2 Proof of Lemma 8

The expected number of remaining simplices with ‘small’ circumball can be bounded
using Lemma 8, too. LetCre denote the set of simplices such that for a simplex∆ it holds
that

∆ ∈ Cre ⇐⇒ vol(circumball(∆) ∩ [0, 1]d) ≤ 1

n
.

The expected cardinality ofCre is then

E [number of simplices∈ Cre] ≤
(

n

d + 1

)
·Pr

[
vol(circumball(∆) ∩ [0, 1]d) ≤ 1

n

]
≤ nd+1 · constd ·

1

nd
= n · constd . (6.2)

Since there are so few simplices with small circumball in expectation we do not need to
find out how many of these are possibly Delaunay simplices, and we can rather count them
all.

Now we can combine the results (6.1) and (6.2) and by linearity of expectation it follows
that

E [number of Delaunay cells] ≤
log(n)−1∑

i=0

E [number of Delaunay simplices∈ Ci]

+ E [number of simplices∈ Cre]

≤ n · constd ·
(
(d + 4) · 2(d+4)·d + 2

)
,

which concludes the proof of Theorem 11.B 2

6.2 Proof of Lemma 8

Let p1, . . . , pd+1 ∈ [0, 1]d bed + 1 independent and identically distributed random points
chosen uniformly from thed-dimensional unit hypercube. Let∆ = ∆(p1, . . . , pd+1) be
the convex hull of the random pointsp1, . . . , pd+1. For abbreviation we denote∆ also as
the random simplex.

The volume ofcircumball(∆) is given byVd · rd wherer = r(∆) is the radius of
circumball(∆) andVd = πd/2/Γ(1+d/2) is the volume of the unitd-ball. We can approx-
imate the radiusr(∆) and thus the volume ofcircumball(∆) by the following observation.

Observation 2 With the just made definitions it holds that

2 · r(∆) ≥ max
1≤i<j≤d+1

‖pi − pj‖2

≥ max
1≤i<j≤d+1

‖pi − pj‖∞ =: maxwidth(∆) ,
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6 Voronoi Diagram and Delaunay Triangulation

and therefore it is

vol(circumball(∆)) ≥ 1

2d
· Vd ·maxwidth(∆)d .

The termmaxwidth(∆)d can also be interpreted as the volume of a smallest hypercube
that contains all the pointsp1, . . . , pd+1. The smallest hypercube is of course not uniquely
defined but we know that its side-length is exactlymaxwidth(∆) by definition. In other
words, we approximate the volume ofcircumball(∆) by the volume of a smallest hyper-
cube containing all the vertices of simplex∆.

It is convenient to reformulate the random process under which this average case analy-
sis is carried out in the following way. Instead of consideringd + 1 manyd-dimensional
random variables (= random point sites) we combine the elements of the random variables
coordinate-wise, which leads tod sets ofd + 1 random numbers each.

Formally speaking, let us consider the random point sitesp1, . . . , pd+1 ∈ [0, 1]d where
pi = (p

(1)
i , . . . , p

(d)
i ) for 1 ≤ i ≤ d + 1. Let thenP1, . . . ,Pd be the sets such thatPj =

{p(j)
1 , . . . , p

(j)
d+1} for 1 ≤ j ≤ d. Note that both random processes are equivalent.

Furthermore, let
width(Pj) := maxPj −minPj

denote the maximal distance between two elements inPj. With the just made definition
we can now redefine the variablemaxwidth in the following way as

maxwidth(P1, . . . ,Pd) := max
1≤j≤d

width(Pj) ,

which is consistent with the earlier definition. Indeed, for a set of point sitesp1, . . . , pd+1 it
is maxwidth(∆) = maxwidth(P1, . . . ,Pd) where∆ is the convex hull of the point sites.
When the set of point sites is clear from the context we use onlymaxwidth.

Since we actually want to find a lower bound on the volume ofcircumball(∆) ∩ [0, 1]d

we consider the (smallest) hypercube containing all point sites that has minimal volume
when intersected with[0, 1]d. In order to have a minimal intersection volume the hypercube
might jut out of[0, 1]d in some dimensions. In Figure 6.3 two examples are given.

Therefore, we introduce the variablevalue that indicates how much each dimension con-
tributes to the volume of the minimal intersection between a smallest hypercube containing
all the point sites and[0, 1]d. If for a fixed dimension the coordinates of all point sites are
close to 0 (or 1) then this dimension might contribute less thanmaxwidth to the volume,
namely only the distance of the maximal coordinate to 0 (or the minimal coordinate to 1).

Formally, we define now the value of setPj to be

value(Pj) :=


maxwidth(P1, . . . ,Pd) if maxPj −maxwidth ≥ 0

and minPj + maxwidth ≤ 1

min {maxPj, 1−minPj} else .
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6.2 Proof of Lemma 8

Figure 6.3: Two random triangles in[0, 1]2 and the smallest enclosing sphere and small-
est enclosing square with minimal intersection area are depicted. In the first
example thex1-coordinates of the three triangle’s vertices lie close to0, in the
second example close to1, and so the squares jut out of[0, 1]2 accordingly.

With these definitions we can formulate the following lemma.

Lemma 9 With the just made definition it holds that

vol(circumball(∆) ∩ [0, 1]d) ≥ min

{(
1

2

)2d

· Vd,
1

d!

}
·

d∏
j=1

value(Pj) .

Proof. In order to prove the lemma we will consider two cases, namely that the center of
circumball(∆) lies inside[0, 1]d (case i) and that it does not (case ii).

(i) If the center ofcircumball(∆) lies inside[0, 1]d it follows immediately that at least a
fraction of(1/2)d of circumball(∆) lies inside[0, 1]d. Together with Observation 2
we get that

vol(circumball(∆) ∩ [0, 1]d) ≥
(

1

2

)d

· vol
(
circumball(∆)

)
≥

(
1

2

)d

· Vd ·
(

maxwidth(∆)

2

)d

≥
(

1

2

)2d

· Vd ·
d∏

j=1

value(Pj) .
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6 Voronoi Diagram and Delaunay Triangulation

(ii) Let B = B(circumball(∆) ∩ [0, 1]d) be the smallest axis parallel box containing
circumball(∆) ∩ [0, 1]d and letb1, . . . , bd be the width of boxB in each dimension,
i.e.vol(B) =

∏d
i=1 bi. In a first step we want to show that

d! · vol(circumball(∆) ∩ [0, 1]d) ≥ vol(B) . (6.3)

We will now distinguish two cases, namely thatcircumball(∆) ∩ [0, 1]d contains at
leastd + 1 of the2d vertices ofB and thatcircumball(∆)∩ [0, 1]d contains less than
d + 1 vertices ofB.

So, consider the case thatcircumball(∆) ∩ [0, 1]d contains at leastd + 1 vertices
of B. Let e1, . . . , ed be the unit vectors, i.e. thej-th entry in ej is a one and all
other entries are 0. Without loss of generality we assume that0̄ = (0, . . . , 0) is
a vertex ofB and that0̄, b1 · e1, . . . , bd · ed are the vertices ofB that lie also in
circumball(∆)∩ [0, 1]d. The convex hull of these vertices, namely the simplexS :=
conv(0̄, b1·e1, . . . , bd·ed) is then also completely contained incircumball(∆)∩[0, 1]d

and therefore it isvol(circumball(∆) ∩ [0, 1]d) ≥ vol(S). From geometry [HRZ97]
it is known that

vol(S) =
1

d!
· vol(B)

and therefore (6.3) follows.

Let us now consider the case thatcircumball(∆)∩[0, 1]d contains less thand+1 ver-
tices ofB. Our goal is now to place a collection of simplices insidecircumball(∆)∩
[0, 1]d such that their sum of volumes is also equal to1/d! · vol(B).
Let c := (c1, . . . , cd) be the center ofcircumball(∆) and consider thed hyper-planes
x1 = c1, . . . , xd = cd that subdividecircumball(∆) into 2d equal parts. These
hyper-planes subdivide alsoB into at most2d−1 smaller boxes. (Remember, the cen-
ter c is not contained in[0, 1]d, therefore we cannot get more than2d−1 of them.)
For each of the smaller boxes we will find at leastd + 1 vertices that lie also in
circumball(∆) ∩ [0, 1]d. As before we can take their convex hull to construct the
desired simplices, see also Figure 6.4. It follows immediately that their sum of vol-
umes is equal to1/d! · vol(B). Thus (6.3) is shown.

In the next step we want to show that

vol(B) =
d∏

i=1

bi ≥
d∏

j=1

value(Pj) (6.4)

which follows immediately with the following Claim 5, though we defer its proof to
the end of the proof of Lemma 9.

Claim 5 It holds that value(Pj) ≤ bj for all 1 ≤ j ≤ d.
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6.2 Proof of Lemma 8

S
B

S2S1
B

Figure 6.4:Depicted are the two possible cases inIR2. In the first case three vertices of box
B are contained incircumball(∆) ∩ [0, 1]2 and their convex hull, the simplex
S lies also completely incircumball(∆) ∩ [0, 1]2. In the second case only
two vertices of boxB lie in circumball(∆) ∩ [0, 1]2. The hyperplanex1 = c1

subdividesB into two smaller boxes that have both three vertices contained in
circumball(∆) ∩ [0, 1]2. The convex hull of these give the two simplicesS1

andS2.

By combining now (6.3) and (6.4) we see that

d! · vol(circumball(∆) ∩ [0, 1]d) ≥ vol(B) ≥
d∏

j=1

value(Pj)

which concludes the case (ii) and therefore the proof of Lemma 9.

B 2

It remains to show that Claim 5 holds.

Proof of Claim 5.Again we will consider two cases, namely thatcircumball(∆) ∩ [0, 1]d

and thereforeB contains at least one vertex of[0, 1]d (case a) and that it does not contain a
vertex of[0, 1]d (case b).

(a) Let us assume thatcircumball(∆) ∩ [0, 1]d contains a vertex of[0, 1]d, sayv =
(v1, . . . , vd) wherevj ∈ {0, 1} for 1 ≤ j ≤ d. SinceB contains all vertices of the
simplex∆ we can conclude that eithermaxPj ≤ bj if vj = 0 or that1−minPj ≤ bj

if vj = 1 for 1 ≤ j ≤ d.
If value(Pj) = min {maxPj, 1−minPj} then the claim follows immediately. If
value(Pj) = maxwidth thenmaxPj−maxwidth ≥ 0 andminPj+maxwidth ≤ 1.
It follows thatmaxwidth ≤ bj and thereforevalue(Pj) ≤ bj for 1 ≤ j ≤ d.
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6 Voronoi Diagram and Delaunay Triangulation

(b) Let us now assume thatcircumball(∆) ∩ [0, 1]d contains no vertex of[0, 1]d. Since
the center ofcircumball(∆) /∈ [0, 1]d we can assume that there is some numberk,
1 ≤ k < d such that up to ordering

b1 = · · · = bk > bk+1 > · · · > bd .

In other words, there is ak-dimensional faceF of [0, 1]d such that the intersection
of [0, 1]d andF is ak-ball. (If we would ‘add’ the next dimension we would obtain
a (k + 1)-dimensional spherical cap.)
Since the boxB contains all vertices of the simplex∆ it follows immediately that
b1 = · · · = bk ≥ maxwidth. Therefore we can conclude thatvalue(Pj) ≤ bj for
1 ≤ j ≤ k.
Now consider some numberj > k. LetFxj=0 be the facet (=(d − 1)-dimensional
face) of[0, 1]d that is contained in the hyperplanexj = 0 and letFxj=1 be the facet
of [0, 1]d that is contained in the hyperplanexj = 1. Sincebj < b1 the boxB
‘touches’ eitherFxj=1 or Fxj=0, i.e. facets ofB are either contained inFxj=1 or in
Fxj=0. And again, sinceB also contains all vertices of the simplex∆ it follows that
eithermaxPj ≤ bj or that1−minPj ≤ bj. Analogously to case (a) it follows that
maxwidth ≤ bj and thereforevalue(Pj) ≤ bj for k < j ≤ d.

2Claim 5

We can utilize Lemma 9 in the following way. We will show that for any valuea ∈ [0, 1]
it is

Pr

[
d∏

j=1

value(Pj) ≤ a

]
≤ d3d+1 · 2d · ad . (6.5)

We know thatvol(circumball(∆) ∩ [0, 1]d) ≥ min
{
(1/22d) · Vd,

1
d!

}
·
∏d

j=1 value(Pj)
by Lemma 9. So we can conclude that for any valuea ∈ [0, 1] it is

Pr
[
vol(circumball(∆) ∩ [0, 1]d) ≤ a

]
≤ constd · ad ,

whereconstd = d3d+1 · 2d ·
(
max

{
22d/Vd, d!

})d
. Thus Lemma 8 is also shown.

In order to show (6.5) we will now establish two lemmas. Lemma 10 will cover the
case thatmaxwidth(P1, . . . ,Pd) is at most d

√
a, while Lemma 11 will cover the case that

maxwidth(P1, . . . ,Pd) is larger thand
√

a.
Before we proceed let us briefly recall the (reformulated) random process. Instead of

random point sitesp1, . . . , pd+1 we considerd setsP1, . . . ,Pd each ofd + 1 independent
and identically distributed random numbers chosen uniformly from the interval[0, 1].

Lemma 10 For any valuea ∈ [0, 1] it holds that

Pr

[
d∏

j=1

value(Pj) ≤ a ∧ maxwidth(P1, . . . ,Pd) ≤ d
√

a

]
≤ (d + 1)d · ad .
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Proof. First of all we notice that frommaxwidth(P1, . . . ,Pd) ≤ d
√

a it follows immedi-
ately that

∏d
j=1 value(Pj) ≤ a and therefore it is

Pr

[
d∏

j=1

value(Pj) ≤ a ∧ maxwidth(P1, . . . ,Pd) ≤ d
√

a

]
ABSTANDs

= Pr
[
maxwidth(P1, . . . ,Pd) ≤ d

√
a
]

.

Furthermore, it suffices to bound only the probability thatwidth(Pj) ≤ d
√

a, because it
also holds that

Pr
[
maxwidth(P1, . . . ,Pd) ≤ d

√
a
]

=
d∏

j=1

Pr
[
width(Pj) ≤ d

√
a
]

.

The idea is now to fix for setPj the two elements4 that attain the maximal distance, i.e.
the elementsmaxPj andminPj. Now we can bound the probability that their distance
does not exceedd

√
a and that the remainingd − 1 elements inPj have values between

maxPj andminPj. It is

Pr
[
width(Pj) ≤ d

√
a
]

= (d + 1) · d ·
∫ 1

0

∫ y

max{0,y− d√a}
(y − x)d−1 dx dy (6.6)

where the outer integral denotes the range of elementmaxPj(= y) and the inner integral
the range of elementminPj(= x). The integration boundaries assure that the distance of
x andy is at most d

√
a. The integrand(y − x)d−1 denotes exactly the probability that all

remainingd − 1 elements ofPj lie betweeny andx. The fore-factor(d + 1) · d comes
from fixing the maximal and minimal element inPj.

In order to solve integral (6.6) we will split it up in the following way to remove the
maximum expression from the integration boundary of the inner integral∫ 1

0

∫ y

max{0,y− d√a}
(y − x)d−1 dx dy

=

∫ d√a

0

∫ y

0

(y − x)d−1 dx dy +

∫ 1

d√a

∫ y

y− d√a

(y − x)d−1 dx dy

=
1

d
·

(∫ d√a

0

yd dy +

∫ 1

d√a

a dy

)
=

1

d
·
(

1

d + 1
· a

d+1
d + a− a

d+1
d

)
=

1

d
· a ·

(
1−

(
1− 1

d + 1

)
· a1/d

)
≤ 1

d
· a .

4Note that all elements are distinct with probability 1.
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It follows that

Pr
[
width(Pj) ≤ d

√
a
]
≤ (d + 1) · a ⇒ Pr

[
maxwidth ≤ d

√
a
]
≤ (d + 1)d · ad ,

which concludes the proof of Lemma 10.
B 2

Lemma 11 For any value ofa ∈ [0, 1] it holds that

Pr

[
d∏

j=1

value(Pj) ≤ a ∧ maxwidth(P1, . . . ,Pd) > d
√

a

]
≤ d3d+1 · 2d · ad .

Proof. Without loss of generality, we assume some ordering on the setsP1, . . . ,Pd as
described now. Let the first setP1 attain the maximal width, i.e.width(P1) ≥ width(Pj)
for 2 ≤ j ≤ d. It follows thatmaxwidth(P1, . . . ,Pd) := width(P1).

Before we proceed let us briefly recall the definition of the functionvalue, i.e.

value(Pj) :=


maxwidth if maxPj −maxwidth ≥ 0

and minPj + maxwidth ≤ 1

min {maxPj, 1−minPj} else .

For the remaining setsP2, . . . ,Pd let df denote the number of sets for which theif -case
is true (the elements of these sets liefar awayfrom 0 or 1) and letdc denote the number
of sets for which theelse-case is true (the elements of these sets liecloseto 0 or 1), such
thatd = 1 + df + dc. Furthermore, let the sets be ordered such that theif -case is true for
the setsP2, . . . ,Pdf+1 and that theelse-case is true for the setsPdf+2, . . . ,Pd. Note that
for givendf anddc there are exactlyd!/(1! · df ! · dc!) ways to fix the described ordering
for the setsP1, . . . ,Pd.

We will summarize the considerations just made in the following definition of three
conditions. Let

A : width(P1) > d
√

a

B(df ) :
∧

2≤j≤df+1

(
width(Pj) ≤ width(P1) ∧(

maxPj ≥ width(P1) ∧ 1−minPj ≥ width(P1)
))

C(df ) :
∧

df+2≤j≤d

(
width(Pj) < width(P1) ∧(

maxPj < width(P1) ∨ 1−minPj < width(P1)
))

.
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For conditionC(df ), if (maxPj < width(P1) ∨ minPj < 1−width(P1)) is fulfilled
it follows immediately that(width(Pj) < width(P1)) is also fulfilled.

We can now rewrite

Pr

[
d∏

j=1

value(Pj) ≤ a ∧ maxwidth(P1, . . . ,Pd) > d
√

a

]

=
d−2∑
df=0

d!

1! · df ! · dc!
·Pr

[
d∏

j=1

value(Pj) ≤ a ∧ A ∧ B(df ) ∧ C(df )

]
,

wheredc = d−df−1. The sum goes only up todf = d−2 sincedc has to be greater than 0
in order to make it possible that

∏d
j=1 value(Pj) ≤ a, since otherwise it isvalue(Pj) > d

√
a

for all j. Furthermore, by conditionB(df ) we know thatvalue(Pj) = width(P1) for
1 ≤ j ≤ df + 1 and we can conclude that

Pr

[
d∏

j=1

value(Pj) ≤ a ∧ A ∧ B(df ) ∧ C(df )

]

= Pr

 d∏
j=df+2

value(Pj) ≤
a

width(P1)df+1
∧ A ∧ B(df ) ∧ C(df )

 . (6.7)

Our goal is now to find an integral expression for (6.7). It seems useful to consider first
the three conditionsA, B(df ) andC(df ) separately. While conditionsB(df ) andC(df ) are
mutually independent, they both depend on conditionA.

So in a first step we will find an expression for the probability that conditionA holds,
i.e.width(P1) > d

√
a. As in the proof of Lemma 10 we fix the two elements in setP1 that

have maximal distance, i.e.maxP1(= y) andminP1(= x). Then we can write

Pr[ A ] = (d + 1) · d ·
∫ 1

d√a

∫ y− d√a

0

(y − x)d−1 dx dy . (6.8)

In a second next step we will bound the probability that conditionB(df ) is true. By
(6.8), we assume thatwidth(P1) = (y − x). It is then

Pr[ B(df ) ] ≤
df+1∏
j=2

Pr[ width(Pj) ≤ (y − x) ]

≤
(
(d + 1) · (y − x)d

)df ,

where the last step follows analogously to the proof of Lemma 10 on page 79.
In a third step we will consider the probability for conditionC(df ) to be true. The

conditionC(df ) holds if for all setsPj, j ∈ {df + 2, . . . , d}, eithermaxPj < width(P1)
or 1−minPj < width(P1) is true.
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We define now index setsI andI ′, whereI ∪ I ′ = {df + 2, . . . , d} andI ∩ I ′ = ∅,
such that forPj, j ∈ I the first case and forPj, j ∈ I ′ the second case is true. Then we
can write

Pr[ C(df ) ] =
d∏

j=df+2

Pr[ maxPj < width(P1) ∨ 1−minPj < width(P1) ]

≤
∑
I,I′

(∏
j∈I

Pr[ maxPj < (y − x) ] ·
∏
j∈I′

Pr[ 1−minPj < (y − x) ]

)

= 2dc ·
d∏

j=df+2

Pr[ maxPj < (y − x) ] ,

where the last step follows sincePr[ 1−minPj < (y − x) ] = Pr[ maxPj < (y − x) ].
We can now conclude for (6.7) that

Pr

 d∏
j=df+2

value(Pj) ≤
a

width(P1)df+1
∧ A ∧ B(df ) ∧ C(df )


= (d + 1) · d ·

∫ 1

d√a

∫ y− d√a

0

(y − x)d−1 ·Pr[ B(df ) ] ·

Pr

 d∏
j=df+2

value(Pj) ≤
a

(y − x)df+1
∧ C(df )

 dx dy

≤ (d + 1)df+1 · d · 2dc ·
∫ 1

d√a

∫ y− d√a

0

(y − x)d−1+df ·d ·

Pr

 d∏
j=df+2

maxPj ≤ ā ∧
∧

df+2≤j≤d

maxPj < (y − x)

 dx dy

whereā := a/(y − x)df+1. What remains to be shown is captured by the following claim.

Claim 6 For any value of̄a ∈ [0, 1] it holds that

Pr

 d∏
j=df+2

maxPj ≤ ā ∧
∧

df+2≤j≤d

maxPj < (y − x)


≤ 2 · (d + 1)dc−1 · (dc − 1)dc−1 · ād · (y − x)dc ≤ O(d) · ād · (y − x)dc .

The proof of Claim 6 is deferred to the end of this subsection.
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From Claim 6 it follows that

(6.7) ≤ (d + 1)df+1 · d · 2dc · 2 · (d + 1)dc−1 · (dc − 1)dc−1 ·

ABSTANDABSTAND

∫ 1

d√a

∫ y− d√a

0

ād · (y − x)d−1+df ·d+dc dx dy

= (d + 1)d−1 · d · 2dc+1 · (dc − 1)dc−1 · ad ·
∫ 1

d√a

∫ y− d√a

0

(y − x)dc−1 dx dy .

Now for the integral in this last expression we get∫ 1

d√a

∫ y− d√a

0

(y − x)dc−1 dx dy =
1

dc

·
∫ 1

d√a

ydc −
(

d
√

a
)dc

dy

=
1

dc

·
(

1

dc + 1
−
(

d
√

a
)dc −

(
1

dc + 1
·
(

d
√

a
)dc+1 −

(
d
√

a
)dc+1

))
=

1

dc

·
(

1

dc + 1
−
(

d
√

a
)dc ·

(
1−

(
1− 1

dc + 1

)
· d
√

a︸ ︷︷ ︸
>0

))
≤ 1

dc · (dc + 1)
.

And finally it follows that

Pr

[
d∏

j=1

value(Pj) ≤ a ∧ maxwidth(P1, . . . ,Pd) > d
√

a

]

≤
d−2∑
df=0

d!

1! · df ! · dc!
· (d + 1)d−1 · d · 2dc+1 · (dc − 1)dc−1 · 1

dc · (dc + 1)
· ad

≤ d3d+1 · 2d · ad

which concludes the proof of Lemma 11.B 2

From Lemma 10 and Lemma 11 it follows that (6.2) holds for

constd = d3d+1 · 2d ·
(

max

{
22d

Vd

, d!

})d

≤ (c · d)d2

,

for some constant factorc, and thus Lemma 8 is shown.

It remains to prove Claim 6 from the previous page. Recall thatā = a/(y − x)df+1 and
thatd = df + dc + 1.
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Claim 6 For any value of̄a ∈ [0, 1] it holds that

Pr

 d∏
j=df+2

maxPj ≤ ā ∧
∧

df+2≤j≤d

maxPj < (y − x)


≤ 2 · (d + 1)dc−1 · (dc − 1)dc−1 · ād · (y − x)dc ≤ O(d) · ād · (y − x)dc .

Proof of Claim 6.For ease of notation the enumeration of the setsPdf+2, . . . ,Pd is changed
toP1, . . . ,Pdc . For1 ≤ j ≤ dc − 1 it is then

Pr[ maxPj < (y − x) ] = (d + 1) ·
∫ (y−x)

0

zd
j dzj

where the fore-factor(d + 1) comes from fixing the maximal elementmaxPj(= zj). The
integrantzd

j denotes exactly the probability that the remainingd elements inPj are at most
zj. By the integration boundaries it follows that all elements inPj are smaller than(y−x).

Now for the setPdc, in order to guarantee that
∏dc

j=1 maxPj ≤ ā it is necessary that
maxPdc does not exceed̄a/z1 · · · zdc−1 (and also not(y − x)). It is

Pr

[
maxPdc < min

{
(y − x),

ā

z1 · · · zdc−1

}]

= (d + 1) ·
∫ min


(y−x), ā

z1···zdc−1

ff
0

zd
dc

dzdc

=

(
min

{
(y − x),

ā

z1 · · · zdc−1

})d+1

=: K .

From the independence of the eventsmaxPj ≤ ā it follows that

Pr

[
dc∏

j=1

maxPj ≤ ā
∣∣ maxPj < (y − x), 1 ≤ j ≤ dc

]

= (d + 1)dc−1 ·
∫ (y−x)

0

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · K dz1 · · · dzdc−1 (6.9)

where the fore-factor(d + 1)dc−1 comes from fixing the maximal element in the sets
P1, . . . ,Pdc−1.

In order to solve the integral in (6.9) we start with some preliminary observation. For
all k ∈ IN let

R(k) :=
ā

(y − x)k
.
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Observation 3 Sinceā = a/(y − x)d−dc and(y − x) > d
√

a it follows that

R(dc − 1) < (y − x) .

Now we will split up the outermost integral in (6.9) into two integrals, one going from
0 toR(dc − 1) and the other fromR(dc − 1) to (y− x). The first integral can be solved in
a straightforward way. To solve the second integral we split it up again into two integrals
with appropriate integration boundaries. This process continues and leads finally to a sum
of solvable integrals.

It is now ∫ (y−x)

0

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · K dz1 · · · dzdc−1

=

∫ R(dc−1)

0

∫ (y−x)

0

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · K dz1 · · · dzdc−1 (6.10)

+

∫ (y−x)

R(dc−1)

∫ (y−x)

0

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · K dz1 · · · dzdc−1 . (6.11)

In integral (6.10) the variablezdc−1 is bounded byR(dc−1) and the variablesz1, . . . , zdc−2

are bounded by(y − x). Therefore, we can conclude that

ā

z1 · · · zdc−1

≥ ā

(y − x)dc−2 · R(dc − 1)
= (y − x) .

It follows then thatK = (y − x)d+1 and therefore it is

(6.10) =

∫ R(dc−1)

0

∫ (y−x)

0

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · (y − x)d+1 dz1 · · · dzdc−1

=

∫ R(dc−1)

0

(
1

d + 1

)dc−2

· (y − x)(d+1)·(dc−1) · zd
dc−1 dzdc−1

=

(
1

d + 1

)dc−1

· (y − x)(d+1)·(dc−1) · ād+1 ·
(

1

(y − x)

)(d+1)·(dc−1)

=

(
1

d + 1

)dc−1

· ād+1 .

In order to solve integral (6.11) we will split up the second outermost integral into two
integrals, one going from0 to R(dc − 2)/zdc−1 and the other fromR(dc − 2)/zdc−1 to
(y − x).

(6.11) =

∫ (y−x)

R(dc−1)

∫ R(dc−2)/zdc−1

0

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · K dz1 · · · dzdc−1ABS(6.12)

+

∫ (y−x)

R(dc−1)

∫ (y−x)

R(dc−2)/zdc−1

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · K dz1 · · · dzdc−1 (6.13)
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The integral (6.12) can be solved in a straightforward way. Since the variablezdc−2 is
bounded byR(dc − 2)/zdc−1 we can conclude that

ā

z1 · · · zdc−1

≥ ā · zdc−1

(y − x)dc−3 · R(dc − 2) · zdc−1

= (y − x) .

It follows again thatK = (y − x)d+1 and therefore it is

(6.12) =

∫ (y−x)

R(dc−1)

∫ R(dc−2)/zdc−1

0

· · ·
∫ (y−x)

0

zd
1 · · · zd

dc−1 · (y − x)d+1 dz1 · · · dzdc−1

=

∫ (y−x)

R(dc−1)

∫ R(dc−2)/zdc−1

0

(
1

d + 1

)dc−3

· zd
dc−2 · zd

dc−1 · (y − x)(d+1)·(dc−2) dzdc−2 dzdc−1

=

∫ (y−x)

R(dc−1)

(
1

d + 1

)dc−2

· ād+1 · 1

zdc−1

dzdc−1

=

(
1

d + 1

)dc−2

· ād+1 · ln
(

(y − x)dc

ā

)
.

In order to solve integral (6.13) we will split up the third outermost integral into two
integrals, one going from0 toR(dc− 3)/(zdc−2 · zdc−1) and the other fromRdc−3/(zdc−2 ·
zdc−1) to (y − x). The whole process continues now analogously. The computation of the
next integral is briefly outlined for reasons of better understanding although the depiction
becomes more and more uncomfortable. It is

(6.13) =

∫ (y−x)

R(dc−1)

∫ (y−x)

R(dc−2)/zdc−1

∫ R(dc−3)/(zdc−2·zdc−1)

0

· · ·
∫ (y−x)

0

. . . ABS(6.14)

+

∫ (y−x)

R(dc−1)

∫ (y−x)

R(dc−2)/zdc−1

∫ (y−x)

R(dc−3)/(zdc−2·zdc−1)

· · ·
∫ (y−x)

0

. . . (6.15)

As before we can conclude from the ranges of the variablesz1, . . . , zdc−1 that again
K = (y − x)d+1. After solving the inner integrals up to the two outermost ones it remains
that

(6.14) =

∫ (y−x)

R(dc−1)

∫ (y−x)

R(dc−2)/zdc−1

(
1

d + 1

)dc−3

· ād+1 · 1

zdc−2 · zdc−1

dzdc−2 dzdc−1

=

(
1

d + 1

)dc−3

· ād+1 ·
∫ (y−x)

R(dc−1)

ln

(
zdc−1 ·

(y − x)dc−1

ā

)
· 1

zdc−1

dzdc−1

≤
(

1

d + 1

)dc−3

· ād+1 · ln
(

(y − x)dc

ā

)
·
∫ (y−x)

R(dc−1)

1

zdc−1

dzdc−1

=

(
1

d + 1

)dc−3

· ād+1 · ln
(

(y − x)dc

ā

)2

.
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6.2 Proof of Lemma 8

With integral (6.15) we proceed analogously. To summarize the results so far we con-
clude that

(6.9) ≤ (d + 1)dc−1 · ād+1 ·
dc∑

i=1

(
1

d + 1

)dc−i

· ln
(

(y − x)dc

ā︸ ︷︷ ︸
>1

)i−1

. (6.16)

This can be simplified by the following observation.

Observation 4 For all x > 1 and allk ≥ 1 it is ln(x)k ≤ (k/e)k · x.

It follows that

(6.16) ≤ (d + 1)dc−1 · ād+1 ·
dc∑

i=1

(
1

d + 1

)dc−i

·
(

i− 1

e

)i−1
(y − x)dc

ā

≤ 2 · (d + 1)dc−1 · (dc − 1)dc−1 · ād · (y − x)dc

and thus Claim 6 is shown. 2Claim 6

Finally, let us have a brief look at Observation 4 which follows also easily. Consider the
following function together with its first and second derivative, namely

fk(x) := ln(x)k/x

f
′

k(x) = (k · ln(x)k−1 − ln(x)k)/x2

f
′′

k (x) = (k · (k − 1) · ln(x)k−2 − 3k · ln(x)k−1 + 2 · ln(x)k)/x3 .

It holds now thatf
′

k(x) = 0 ⇐⇒ k · ln(x)k−1 = ln(x)k ⇐⇒ x = ek. Since
f
′′

k (ek) = −kk−1/e3k < 0 it follows that forx = ek the functionf(x) attains a maximum.
Therefore it is

fk(x) ≤ fk(e
k) =

(
k

e

)k

for x > 1 andk ≥ 1 .
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7 Summary and Open Problems

In this thesis, the concept of smoothed analysis is applied to the area of computational
geometry. In the past, the use of smoothed analysis had a basically complexity theoreti-
cal motivation which holds of course also for problems in computational geometry. But
besides this, we identified two other reasons that motivate the use of smoothed analysis
particularly well in the field of computational geometry.

In many applications, concepts and methods from computational geometry are applied
to data coming from physical measurements which are imprecise and thus afflicted with
some noise. By the assumption that such measurement errors are distributed according to
the Gaussian normal distribution, smoothed analysis provides a new complexity measure
for this class of inputs. Another motivation lies in the fact that computers use only fixed
precision arithmetic. This error can be modeled by the assumption that an input point is
uniformly distributed in a hypercube around its real position.

In this thesis, the complexity of a fundamental geometric structure is considered and
analysed in the smoothed case, namely the number of extreme points of the convex hull of
a point set. It seems very promising to continue this work and to consider the smoothed
complexity of other geometric structures such as the Voronoi diagram or Delaunay trian-
gulation of point sets.

A first step toward the smoothed analysis of the Voronoi diagram is already done. The
average case analysis for points chosen uniformly from a hypercube might be a good start-
ing point. Since the Voronoi diagram is a rather relevant geometric structure that can be
found in a large variety of applications, a smoothed analysis of this structure is definitively
very interesting.

Another interesting and surprising result is surely that different probability distributions
lead to a different smoothed complexity. E.g. for the number of extreme points of the
convex hull, there is a significant gap between the smoothed complexity under Gaussian
normal and uniform noise. The smoothed number of extreme points under Gaussian nor-
mal noise is only poly-logarithmic in the number of input points, while it is polynomial
under uniform noise. This result implies directly the following questions and open prob-
lems.

• For which probability distributions is the smoothed complexity low or high?

• What is the decisive property of these distributions to cause either low or high
smoothed complexity?

• Is the smoothed complexity under Gaussian normal noise the ‘best’ we can get?
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7 Summary and Open Problems

• Is the smoothed complexity under uniform noise the ‘worst’ we can get?

It remains to mention that smoothed analysis is also very well motivated in the context
of analysing motion. In this thesis, a new complexity measure for motion is introduced,
the smoothed motion complexity. Especially in the development of algorithms and data
structures smoothed analysis might lead to very interesting new results. A first step might
be to develop a kinetic data structure for maintaining the bounding box of a linearly moving
point set that is efficient compared to the smoothed motion complexity instead of the worst
case motion complexity.
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l’Acadèmie des Sciences Paris, 261:627–629, 1965.

[Ray70] H. Raynaud. Sur l’enveloppe convexe des nuages de points aléatoires dans
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