
PADERBORN UNIVERSITY

DISSERTATION

Efficient Parallel Branch-and-Bound
Search on FPGAs Using Work Stealing

and Instance-Specific Designs

by
Heinrich Riebler

A thesis submitted in fulfillment of the requirements
for the degree of Dr. rer. nat.

in the

Faculty for Computer Science, Electrical Engineering
and Mathematics

September 20, 2019

iii

Gewidmet meinen Eltern, in Dankbarkeit und Liebe.

v

Acknowledgements
I would like to thank:

• My supervisor Prof. Dr. Christian Plessl. This work would not have been pos-
sible without your professional and personal support during the last years.

• Prof. Dr. Marco Platzner for serving as a reviewer for this thesis.

• Prof. Dr. Friedhelm Meyer auf der Heide, Prof. Dr. Kevin Tierney and
Dr. Theodor Lettmann for serving on the oral examination committee.

• All colleagues from the High-Performance IT Systems research group, the Pa-
derborn Center for Parallel Computing and the SFB 901 – On-The-Fly Com-
puting. A warm thanks goes to Gavin Vaz, Tobias Kenter and Achim Lösch for
intensive collaborations on joint projects.

• A special thanks goes to Michael Laß, Robert Mittendorf and Thomas Löcke,
who directly contributed to my research covered in this thesis as Master stu-
dents or student assistants I have supervised. It was a pleasure to work with
you.

These acknowledgments would not be complete without thanking my family for
their unconditional support: first and foremost, Lina, Mael and our little son on the
way. Furthermore, I would like to thank my parents, my sister, my brother and all
members of my family-in-law.

vii

Abstract

In recent years, increasing technization and market analysis purposes have resulted
in more and more data being generated. The growing need of data analysis and
processing has become omnipresent for many combinatorial optimization or plan-
ning problems. To take advantage of the promises of the digital age, efficient search
algorithms and their efficient implementations in terms of performance and energy
efficiency are important. Only the combination and fine tuning of efficient algo-
rithms and their efficient implementation on suitable platforms can lead to a high
performance and low energy consumption.

One of the most common methods for processing such very large search spaces
is using branch-and-bound (B&B) search algorithms. B&B search algorithms are
highly relevant because they are used to solve many real-world operational prob-
lems (e.g. production and personnel planning, scheduling, complex decision pro-
cesses, etc.). The search space in branch-and-bound searches is organized in a tree
data structure and the algorithm tries to eliminate infeasible solutions as early as
possible by pruning unpromising subtrees through a bounding function. Since these
excluded subtrees no longer have to be considered, the computing effort is reduced
considerably in some cases.

In this thesis, we study the insufficiently understood efficient realization of
branch-and-bound algorithms for field programmable gate arrays (FPGAs). FPGAs
are integrated circuits consisting of programmable logic blocks and programmable
interconnects that can be specialized for specific applications after manufacturing
the chip. Branch-and-bound problems are inherently difficult and not the typical
class of problems that have been tackled using FPGAs, because they are control-
driven and not data-driven. On the other hand, FPGAs have proven to be highly ef-
ficient in terms of chip area, power consumption and performance for a wide range
of other suitable application domains. In this thesis, we bridge this gap and show
that custom hardware designs can significantly accelerate the execution of these al-
gorithms. First, we identify general elements of B&B algorithms and develop and
demonstrate their efficient implementation as a finite state machine on FPGAs. Our
architecture shows trade-offs between highly optimized combinational datapaths
for the performance-critical parts of the search tree and more resource-efficient pipe-
lined ones for the less frequent and more complex parts.

Then we extend our design with two optimization techniques to further improve
the efficiency. For the first optimization we introduce the concept of hardware work-
ers that autonomously cooperate using work stealing to allow parallel execution of
branch-and-bound algorithms and full utilization of the target FPGA. The hardware
workers dynamically share and balance their work and show near linear speedups.
For the second optimization we explore the advantages of instance-specific designs
for B&B algorithms that target a specific problem instance to improve performance
and combine them with the design using work stealing. The instance-specific design

viii

utilizes the high potential of FPGAs for specialization and custom optimization for
a particular problem instance. We present a fully automated generation of custom-
tailored designs that existing tools do not deliver. We demonstrate how instance-
specific designs can be generated on-the-fly such that the provided speedups out-
weigh the additional time required for design synthesis.

Finally, we evaluate all of our approaches and compare each result to those ob-
tained using similar techniques in software. Our results show that our hardware
implementation targeting a Maxeler FPGA system can outperform a software im-
plementation while being more energy efficient at the same time.

ix

Zusammenfassung

Durch die zunehmende Technisierung entstehen immer mehr Daten oder es wer-
den Daten für marktanalytische Zwecke generiert. Entsprechend aufwendig wer-
den Entscheidungs-, Planungs- oder Optimierungsprobleme, deren Ziel darin be-
steht, eine bestimmte – im Idealfall beste – Lösung in den immensen Suchräumen
dieser Daten zu finden. Neben effektiven Algorithmen zur Lösung solcher Probleme
spielt deren hocheffiziente Implementierung auf modernen Rechenanlagen eine im-
mer wichtigere Rolle. Von besonderer Bedeutung ist dabei das Verhältnis der Daten-
verarbeitungsleistung zur elektrischen Leistungsaufnahme. Nur durch die Kombi-
nation und Feinabstimmung von effizienten Algorithmen und effizienten Implemen-
tierungen auf geeigneten Rechenanlagen kann eine hohe Datenverarbeitungsleis-
tung bei geringer Leistungsaufnahme erzielt werden.

Eine der verbreitetsten Methoden, um derartige Suchprobleme effizient zu lösen,
ist das Branch-and-Bound (B&B) Verfahren. Branch-and-Bound wird beispielsweise
vielfach im Bereich der Unternehmensplanung (z.B. zur Produktions- und Personal-
einsatzplanung) und zur Entscheidungsunterstützung bei kombinatorischen Opti-
mierungsproblemen verwendet. Der sich aus der Problemstellung ergebende Such-
raum wird beim B&B-Verfahren in einer Baum-Datenstruktur organisiert. Das Ver-
fahren schließt durch schrittweises Verzweigen im Baum (branch) und Begrenzen
von Teilbäumen (bound) systematisch Teilbereiche des Suchraums aus, die nicht zu
einer gültigen bzw. optimalen Lösung führen können. Da diese ausgeschlossenen
Teilbereiche nicht mehr betrachtet werden müssen, reduziert sich der Rechenauf-
wand teilweise erheblich.

In dieser Arbeit konzentrieren wir uns auf die effiziente Implementierung von
Branch-and-Bound Verfahren auf Field Programmable Gate Arrays (FPGAs) für der-
artig gelagerte Suchprobleme. FPGAs sind integrierte Schaltkreise, bestehend aus
programmierbaren Logikbausteinen, die für bestimmte Aufgaben spezialisiert wer-
den können. Branch-and-Bound-Probleme gehören nicht zu den klassischen Prob-
lemen, die auf FPGAs untersucht werden, da die Berechnungsvorschrift von B&B-
Verfahren kontroll- und nicht datengesteuert ist. Andererseits haben sich FPGAs
für eine Vielzahl geeigneter Anwendungsbereiche als hocheffizient in Bezug auf
Schaltkreisfläche und Verhältnis von Datenverarbeitungsleistung zur elektrischen
Leistungsaufnahme erwiesen. In dieser Arbeit schließen wir diese Lücke und zeigen,
dass hochspezialisierte FPGA-Implementierungen die Ausführung von Branch-and-
Bound-Algorithmen erheblich beschleunigen können. Dazu identifizieren wir zu-
nächst allgemeine Elemente von Branch-and-Bound-Algorithmen und zeigen sys-
tematisch Möglichkeiten einer effizienten Implementierung auf FPGAs mit Hilfe
von Zustandsautomaten. Wir untersuchen bei der Auswahl unserer Architektur
die entstehenden Kompromisse zwischen hochoptimierten kombinatorischen Da-
tenpfaden für die leistungskritischen Teile des Suchraums und ressourceneffizien-
teren Datenpfaden mittels Pipelining für die weniger häufigeren und komplexeren
Teile des Suchraums. Anhand einer konkreten Fallstudie demonstrieren wir, wie

x

durch Ausnutzung der architektonischen Merkmale, der Spezialisierung und der
unterschiedlichen Parallelitätsstufen von FPGAs eine Auslagerung der Berechnung
auf den FPGA zu einer Verbesserung der Datenverarbeitungsleistung führt.

Anschließend erweitern wir unser Design noch um zwei Optimierungsverfahren,
um die Effizienz der Ausführung weiter zu steigern. Die erste Optimierung erzielen
wir durch die Parallelisierung des Branch-and-Bound-Verfahrens auf dem FPGA.
Als Parallelisierungsstrategie verwenden wir Work Stealing, womit die autonome
Zusammenarbeit mehrerer Instanzen auf einem FPGA ohne zentrale Steuereinheit
ermöglicht wird. Jede Instanz bemüht sich selbstständig um Arbeitspakete, indem
sie aktiv Pakete von anderen Instanzen stiehlt. Dadurch werden eine effiziente Ar-
beitslastverteilung und eine parallele Ausführung des B&B-Verfahrens sichergestellt.
Unsere Implementierung ermöglicht die volle Ausnutzung des FPGAs und zeigt
nahezu lineare Skalierungseigenschaften, wenn die Taktrate des FPGAs konstant
bleibt. Für die zweite Optimierung untersuchen wir instanzspezifische FPGA-
Designs, angewandt auf Branch-and-Bound-Algorithmen. Diese zielen darauf ab,
besonders schwierige bzw. zeitintensive Probleminstanzen einer Anwendung zu
verbessern. Dazu wird die konkrete Probleminstanz analysiert und die konfigurier-
bare Schaltung speziell auf das konkrete Problem optimiert. Dies demonstriert das
hohe Spezialisierungspotential von FPGAs. Wir beschreiben eine vollautomatische
Generierung von maßgeschneiderten FPGA-Designs für das Branch-and-Bound-
Verfahren und kombinieren diese zusätzlich mit den Parallelisierungstechniken aus
der ersten Optimierung.

Schließlich evaluieren wir alle unsere Ansätze und vergleichen jedes Ergebnis
mit denen, die mit äquivalenten Techniken bei einer Ausführung in Software auf
Central Processing Units (CPUs) erzielt werden können. Unsere Ergebnisse zeigen,
dass unsere Hardware-Implementierung auf einem Maxeler FPGA-System eine Im-
plementierung in Software hinsichtlich der Datenverarbeitungsleistung übertreffen
kann und gleichzeitig energieeffizienter ist. Zudem können wir belegen, wie in-
stanzspezifische Designs sogar nach Bedarf on-the-fly generiert werden können, so-
dass die erzielte Beschleunigung die zusätzliche Zeit für die Erstellung des FPGA-
Designs mittels Hardware-Synthese überwiegt.

xi

Table of Contents

Acknowledgements v

Abstract vii

Zusammenfassung ix

Table of Contents xi

1 Introduction 1
1.1 Contributions Overview . 1
1.2 Thesis Structure . 2

2 Foundations: Reconfigurable Computing 3
2.1 Field-Programmable Accelerators . 3
2.2 Design Flow of Hardware Acceleration 5
2.3 MaxCompiler Programming Model . 6

2.3.1 Host Application . 7
2.3.2 Kernel . 7
2.3.3 Manager . 8
2.3.4 State Machines . 9
2.3.5 Compilation Tool Flow . 10

2.4 Chapter Conclusion . 10

3 Excursion to Cryptography and Information Security 11
3.1 Introduction to Side-Channel Attacks 11

3.1.1 Cold-Boot Attacks . 12
3.1.2 Remanence Effect of Main Memory 13
3.1.3 Attack Vector and Relevance . 14

3.2 Modeling Bit Errors . 15
3.2.1 Perfect Asymmetric Decay . 16
3.2.2 Expected Value as Threshold . 17

3.3 Advanced Encryption Standard . 19
3.3.1 Key Schedule: Secret Key and Round Keys 19
3.3.2 Secret Key Expansion . 21
3.3.3 Fundamental Cryptographic Principles 23

3.4 Chapter Conclusion . 25

4 Intermediate Findings: Identification of Secret Key Material 27
4.1 Basic Idea and Software Approach . 27
4.2 Hardware Implementation . 30

4.2.1 Input . 30
4.2.2 Heuristics . 30
4.2.3 Computation of Reference Key Schedule 31
4.2.4 Computation of the Hamming Distances 32

xii

4.3 Evaluation . 32
4.3.1 Software Reference . 32
4.3.2 Kernel Replication . 33
4.3.3 Results . 33
4.3.4 Discussion . 34

4.4 Chapter Conclusion . 35

5 Branch-and-Bound with Reconfigurable Hardware 37
5.1 Basics and Common Terminology . 38

5.1.1 Tree Data Structure . 38
5.1.2 Traversal Strategies: Tree Structure and Search Path 39

5.2 Branch-and-Bound: General Idea . 40
5.2.1 Algorithmic Pattern . 41
5.2.2 State Machine Design for Reconfigurable Hardware 44

5.3 Case Study: Secret Key Reconstruction 45
5.3.1 Basic Idea . 45
5.3.2 Software Approach . 48
5.3.3 Bounding the Search Space: Error Model 49

5.4 Branch-and-Bound in Hardware . 50
5.4.1 Software Translation: Concrete Finite State Machine 50
5.4.2 Selecting Branches . 51
5.4.3 Computing Inferred Knowledge: Implication Chains 51
5.4.4 Checkpointing Tree Traversal . 52
5.4.5 Maintaining the Bound: Applying Error Model 53

5.5 Evaluation . 55
5.5.1 Target Platforms . 55
5.5.2 Error Metrics . 56
5.5.3 Evaluation Scenario . 57
5.5.4 Software Implementation . 57
5.5.5 Performance Comparison of Software to Hardware 59

5.6 Chapter Conclusion . 62

6 Work Stealing with Reconfigurable Hardware 65
6.1 Motivation and General Description . 65
6.2 Extensions of the General State Machine 67

6.2.1 Coordination and Synchronization of Stealing 69
6.2.2 Initialization and Termination . 70

6.3 Evaluation . 71
6.3.1 Evaluation Scenario . 71
6.3.2 Results . 72

6.4 Chapter Conclusion . 74

7 Instance-Specific Computing with Reconfigurable Hardware 77
7.1 Motivation and General Description . 77

7.1.1 Methods for Customization . 78
7.1.2 Generation of Instance-Specific Designs 79

7.2 Instance-Specific Branch-and-Bound Search Trees 79
7.2.1 Instance-Specific Branching Order 80
7.2.2 Generating Valid and Optimal Search Tree Structures 82
7.2.3 Selecting Instance-Specific Search Tree Structures 83

7.3 Generation of Instance-Specific Hardware Designs 84

xiii

7.4 Evaluation . 85
7.4.1 Results . 85
7.4.2 On-the-Fly Hardware Synthesis 87
7.4.3 Discussion and Practical Considerations 88

7.5 Chapter Conclusion . 90

8 Related Work 91
8.1 Side-Channel and Cold-Boot Attacks . 91

8.1.1 Acquisition of Sensitive Data . 91
8.1.2 Search and Extraction of Secret Key Material 92
8.1.3 Reconstruction of Secret Keys . 93

8.2 Branch-and-Bound in Soft- and Hardware 94
8.2.1 Parallelization and Work Stealing 94
8.2.2 Instance-Specific Computing . 98

8.3 Chapter Conclusion . 99

9 Conclusion 101
9.1 Summary . 101
9.2 Outlook . 102

List of Tables 104

List of Listings 105

List of Figures 108

Acronyms 109

A Supplemental Material 113

Author’s Publications 116

Bibliography 118

1

Chapter 1

Introduction

The branch-and-bound (B&B) algorithmic pattern is a powerful tool for processing
very large search spaces or to find optimal solutions in them. It is the most com-
monly used algorithmic pattern and systematic method to solve combinatorial op-
timization problems such as scheduling, logistics, applied mathematics, planning,
decision processes and many others. Branch-and-bound algorithms explore tree-
based search spaces systematically by eliminating unpromising subtrees as early as
possible. Nevertheless, the exploration is highly time-intensive for large problem
instances because the search trees are growing exponentially and are extremely ir-
regular in size and structure. There are several techniques to tackle those instances.
The most promising ones are parallelization and the utilization of problem-specific
features.

1.1 Contributions Overview

In this thesis, we systematically analyze and study the insufficiently understood ef-
ficient realization of branch-and-bound algorithms for field programmable gate ar-
rays (FPGAs). FPGAs have proven to be highly efficient in terms of chip area, power
consumption and performance with a high potential for specialization for different
workloads. However, the irregular structure of branch-and-bound algorithms and
the control-driven execution flow makes them not the typical class of problems that
have been addressed with FPGAs. The main contributions of this thesis are:

1. We identify general elements that are required to implement B&B problems
with FPGAs and abstract them as a finite state machine design. We present
an architecture that uses highly optimized combinational datapaths for the
performance-critical levels of the search tree and more resource-efficient pipe-
lined ones for the less frequent and more complex levels. On the basis of a
concrete case study, we show how a transformation from software to hard-
ware alone can lead to improvements in orders of magnitude in performance
by exploiting the architectural features and different levels of parallelism of
FPGAs.

2. We then extend this design in order to allow multiple hardware workers to
dynamically share and balance their load using work stealing when exploring
the large search space of a branch-and-bound problem. We present a parallel
FPGA architecture that is scalable with the available resources and provides
speedups proportional to the number of workers.

2 Chapter 1. Introduction

3. Using the parallelized design, we further accelerate the execution by exploring
the advantages of instance-specific computing on FPGAs. We present a fully
automated tool flow to generate designs that are custom tailored to a specific
problem instance that existing tools do not deliver. Our work shows that this
technique is in particular beneficial to accelerate problem instances that are
especially difficult and highly time-intensive to solve.

4. We evaluate all of our proposed methods and compare each result to those ob-
tained using similar techniques in software on CPUs. In contrast to existing
approaches, we also demonstrate how instance-specific designs can be gener-
ated on-the-fly such that the provided speedups outweigh the additional time
required for a complete design synthesis.

All presented concepts and results have been peer-reviewed and published in
two premier international conferences [3, 2] and one journal article [1]. Beside Hein-
rich Riebler as lead researcher, first author and main contributor, Robert Mitten-
dorf contributed during his Master’s thesis [207] to the first implementation of work
stealing in soft- and hardware. Thomas Löcke contributed during his Master’s the-
sis [186] to the first implementation of instance-specific computing in soft- and hard-
ware and, finally, Michael Laß contributed as a student assistant to the evaluation
results used in our journal article [1]. A complete list of the author’s publications is
summarized before the main bibliography starting on page 117.

1.2 Thesis Structure

The remainder of this thesis is structured as follows: Chapter 2 starts with the foun-
dations on reconfigurable computing and the design flow and programming model
for FPGAs that is used in the practical parts of this work. Chapter 3 takes an ex-
cursion to the cryptography and information security domain to motivate the case
study used throughout the thesis to apply the concepts to real-world and relevant
problems. In Chapter 4, we present our intermediate findings with regard to our
case study. The tackled subproblem in this chapter is highly suitable for FPGAs and
our presented solution significantly outperforms software-based implementations.
The next three chapters present the original research on efficient branch-and-bound
algorithms for reconfigurable hardware. In Chapter 5, we present the main con-
cepts and building blocks for a general hardware design for processing large search
trees using branch-and-bound with FPGAs. Afterwards, we describe in Chapter 6
the extension of our general, but sequential branch-and-bound hardware design to
allow parallelization of the work on FPGAs using hardware workers. The result-
ing parallel design is then further improved by using instance-specific computing
in Chapter 7. We describe how different search trees using B&B can be dynamically
constructed by utilizing application- and instance-specific information to improve
the search process including an on-the-fly hardware acceleration. Finally, we present
related work in Chapter 8 and conclude our work and point to directions for future
research in Chapter 9.

3

Chapter 2

Foundations: Reconfigurable
Computing

This chapter provides the background information and foundations on reconfig-
urable computing that are used in the following chapters. The ideas and concepts in
this thesis heavily rely on practical parts, implemented and evaluated on reconfig-
urable hardware, namely on field programmable gate arrays (FPGAs).

In this chapter, we first give a general motivation for reconfigurable computing
in Section 2.1. We describe the ideas and building blocks of FPGAs and then outline
the hardware acceleration with FPGAs. The hardware acceleration is first explained
in Section 2.2 on a general level and then in Section 2.3 concretely on the components
and program blocks of the MaxCompiler, which is the programming model used for
the design and implementation of our concepts.

2.1 Field-Programmable Accelerators

A computer system is typically considered from two perspectives, the software and
the hardware side. In a traditional view, the hardware side offers a fixed function-
ality after fabrication and the software provides the flexibility by executing dif-
ferent applications to change the type of computation. Reconfigurable comput-
ing [129, 215] tries to blend both perspectives together by making the hardware
(datapath, memory and/or functional units) programmable after fabrication. The
configuration (usually of the size of several kilo- or megabytes) is loaded onto the
reconfigurable hardware via a data stream of bits and can be partially or completely
reassigned [89, 227]. Computer systems using reconfigurable hardware are repro-
grammed to adapt their architecture to the requirements of the type of computation
that is under execution. The ability to make substantial architectural changes can
lead to orders of magnitude better implementations in terms of performance (execu-
tion time), utilization (chip area efficiency) and power usage [220, 163].

A field programmable gate array (FPGA) [274, 172] is the most prominent uni-
versally programmable reconfigurable hardware. The FPGA can be reconfigured in
the field by the user after fabrication. The programming (also called configuration)
determines the functionality of individual flexible logic blocks and their flexible in-
terconnect (see Figure 2.1). The logic blocks are laid out as an array structure and can
be grouped into hierarchical clusters, which are interconnected with configurable
switch boxes. The three most important elements of a logic block are lookup tables
(LUTs) to implement combinational logic, flip-flops (FFs) to implement sequential

4 Chapter 2. Foundations: Reconfigurable Computing

logic to buffer values, and configurable multiplexers to select between these ele-
ments. The configuration to program the FPGA is generated by a logic synthesis.
The process is similar to the compilation of software but needs hours to days to
complete, because of the tremendous search space to place and route the desired
functionality to the logic blocks. In fact, branch-and-bound search algorithms are
often used for this process [260, 258, 104, 146].

The performance of an FPGA design depends on a number of assessable factors,
such as the number of cycles required to perform a task and the read/write rate of
the memory and communication buses. The functionality is fixed after configuration
and the runtime of an application is given by the number of cycles and the achieved
clock frequency. There are no dynamic events such as interrupts. This makes the
performance of an FPGA design well predictable and allows the modeling of the ex-
pected acceleration before its actual implementation. It can help to verify the results
of the design and implementation and to identify possible sources of bottlenecks.

Switch
box

Logic
Block

Switch
box

Switch
box

Logic
Block

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

Logic
Block

I/O I/O I/O

I/O I/O I/O

I/O
I/O

I/O

I/O
I/O

I/O

LUT

FF

M
U

X

Switch box

Logic block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

BRAM BRAM Logic
Block

DSP DSP

Logic
Block

Logic
Block

Logic
Block

Figure 2.1: Schematic illustration of an FPGA architecture. The array structure con-
sists of logic blocks, switch boxes and specialized elements (DSPs or BRAMs).

Over time, modern FPGAs have expanded their building blocks beyond the ba-
sic logic capabilities mentioned above to include more specialized elements fixed in
silicon. Conceptually, these elements can also be built from the basic logic primi-
tives, but with higher chip area requirements and lower clock frequency. Examples
of these building blocks include digital signal processor (DSP) blocks typically used
for multiplications, multi-gigabit transceivers for high-speed communications, hard
IP processor cores to mimic system-on-chip behavior and, most importantly, external
and local (high bandwidth) memory. External memory is typically on-board DDR
RAM. Local memory is embedded into the FPGA’s array structure as BRAMs. A
single BRAM can store several kBits and multiple BRAMs can be cascaded to form
larger memory blocks with configurable address depths and data widths. The logic
of lookup tables can also be used as local memory to store several bits. This type of
local memory is called LUT RAM.

2.2. Design Flow of Hardware Acceleration 5

FPGAs are especially suitable for computationally intensive applications with a
regular computation and/or communication pattern. Individual independent op-
erations can be processed completely in parallel on spatially different computing
units. The resulting execution is data- and not control-driven. Control-driven sys-
tems perform the required calculations at different points in time on the same com-
puting units (temporal processing). The computing unit has to be able to perform a
variety of functions and is therefore typically more general than necessary for a con-
crete task. In contrast, data-driven FPGA designs have their own custom computing
unit for the respective calculation (spatial processing). Each custom unit can be ex-
actly specialized for the required task. FPGAs have been used for many data-driven
application domains, e.g. from image processing and recognition [21, 271, 108, 71],
pattern matching in data or network streams [64, 26, 182, 181], or in the informa-
tion security domain [285, 267, 231]. FPGAs also have very suitable properties in
the cryptography domain [138, 79]. Cryptographic applications usually require a lot
of computing power and can be strongly spatially parallelized due to their often
independent (sub-)structures. Compared to CPUs, FPGA-accelerated implemen-
tations can achieve a much higher throughput and energy savings when encrypt-
ing and decrypting data and can still be flexibly configured to different parame-
ters [282, 240, 261, 119].

Application
Identify suitable

areas for
acceleration

Design and
implement for

hardware
Simulation

functionally
correct?

no

Logic synthesis
and technology

mapping

yes
performance
achieved?

no

yesAccelerated
application

I 1 2 3 4

5

6

O

Figure 2.2: Schematic design flow of hardware acceleration.

2.2 Design Flow of Hardware Acceleration

In Figure 2.2, we show a schematic sequence of how an application can be acceler-
ated using FPGAs. At the beginning, an original application I usually exists in soft-
ware that should be accelerated in parts in hardware. In the software application,
areas that are suitable for acceleration must be identified. This step 1 is usually
performed by profiling the application with representative data sets. Loops are typ-
ically good candidates for recurring tasks that can be offloaded. Once the affected
areas have been identified, the developer transforms the computation into a form
suitable for hardware in step 2 . The developer can use components from the used
programming model and programming language to implement the computationally
intensive part in hardware. FPGAs work best when they can continuously perform
the same operations in a parallel and pipelined fashion. The major part of the devel-
opment only takes place on simulation level 3 , because the actual hardware synthe-
sis is very time consuming. The process needs to be iterated in 4 until the desired
functionality is achieved. The simulation can only give hints on the correctness of the

6 Chapter 2. Foundations: Reconfigurable Computing

implementation. The actual performance and utilization of the resources in hard-
ware can only be checked after the logic is synthesized in the step 5 . If the design
and implementation meet the desired functionality and performance, the accelerated
application O is the outcome. Otherwise, the design needs to be adjusted and the
steps 1 – 6 have to be repeated.

2.3 MaxCompiler Programming Model

The design flow and implementation of the practical parts of this thesis are based
on the MaxCompiler [222] programming model and tool chain. It is mainly driven
by Java and offers predefined APIs for specifying the FPGA implementation as so-
called data flow engines (DFEs). Each DFE is comprised of one or more kernels,
which implement the application logic, and of a manager that controls the routing
of data streams between kernels, the CPU and off-chip memory. Figure 2.3 outlines
the different components and general architecture. The system can connect multi-
ple FPGAs and memory devices via PCIe to the CPU where the host application is
located. The computation and communication tasks are divided into kernels and
managers. This separation of the application eases the design and implementation
process.

CPU

MaxelerOS

Host application
(C++ or Fortran)

DFE
+^

x
+

DFE
+^

x
+

DFE
+^

x
+

Large memory Large memory Large memory

Kernel

Manager

Host memory

Fast local
memory

SLiC

MaxRing

Large
on-board
memory

PCIe

Overall system,
sits within Linux

Interface to
call DFEs

Figure 2.3: Components and overall architecture of the MaxCompiler. The depicted
system consists of three FPGA cards connected through PCIe, each with on-board

memory.

The development of an accelerated application with the MaxCompiler typically
consists of three program parts: a host application, the kernel and the manager.
In this thesis, state machines (SMs) will also play an important role and are also
explained. They can either be implemented in the kernel or the manager.

2.3. MaxCompiler Programming Model 7

2.3.1 Host Application

The host application can be written in C/C++ or Fortran. It calls functions to load the
FPGA configuration and initializes the direct memory access (DMA) transactions.
These are required for the actual data transfer to and from the FPGA. In addition,
the host application allocates and initializes the data buffers and transfers them via
the so-called simple live CPU (SLiC) interface. The raw data is loaded from the host
to the FPGA via PCIe. As soon as enough data is available, the calculations start
immediately on the FPGA. At the same time, available results are transferred back
to the host application in parallel. The SLiC interface also provides functions to
execute specific tasks on the DFE and set system parameters for the whole FPGA.

2.3.2 Kernel

A kernel (written in MaxJ) contains the parts of the actual application logic and gets
its input data from the manager. It can be seen as a unidirectional cycle-free graph,
where the data streams from one side to the other. The kernel execution typically has
a fixed number of cycles to complete, dependent on the size of the input stream. The
kernel graph is usually divided into a control part implemented with counters and
a data part. The graph consists of several node types, which are listed in Table 2.1.

Calculation nodes perform arithmetic or logical operations (e.g. +, −, ∗, <,
& or ⊕) or represent type conversions from one data type to another (e.g.
floating-point number, fixed-point number or integer).

Value nodes provide parameters. They are either constant or scalar. The host
application can set scalar value nodes at runtime.

Stream position nodes allow access to different positions in the data stream.
They can either go forward or backward.

Multiplexer nodes enable the integration of decisions.

Counter nodes help the control flow of the application. They allow the reac-
tion to certain positions in the data stream or can indicate boundary condi-
tions such as the start or end of the stream.

I/O nodes connect the kernel externally to the manager. They serve as an
interface for data input and output.

Table 2.1: Possible node types of a kernel graph.

A compiler converts a program to generate such a data flow graph. The structure
of the data flow graph represents the logic of the application. The graph shows the
nodes for the machine commands or executable actions and the edges for the de-
pendencies of the data. The connections are fixed and no additional control instruc-
tions are required. As soon as the preconditions for an action are met, it is executed
and the result is forwarded to the next action in the graph. Individual indepen-
dent actions are processed completely in parallel on spatially different computing
units. The resulting execution of the statements is therefore data-driven rather than
control-driven. In the second step, optimizations and transformations take place in

8 Chapter 2. Foundations: Reconfigurable Computing

the graph. The actual code for the FPGA is then generated from the graph in a hard-
ware description language.

A simple example using these nodes is shown in Figure 2.4. It receives an input
stream consisting of six elements and computes the moving average with a sample
window of three elements. To do this, the current element is simply added to the
previous and subsequent elements and divided by three. The left part of the figure
shows the start phase with empty actions in the data flow (highlighted in yellow),
because the first element has no predecessor. The middle part of the figure shows the
first tick when the pipeline is completely filled and correct results are produced in
every tick. The final phase on the right side has again empty action nodes, because
the end of the stream is reached. The example shows the consistent and regular flow
of data through the graph and the respective values. The example highlights that
the common fork/join constructs from multi-core processors are no longer necessary
because parallelism implicitly exists.

0 1 2 3 4 5

-1 +1

3

?

1

/

?

?

?

0

0?

+

+

y

x
0 1 2 3 4 5

-1 +1

3

1

2

/

3

1

? 1

0

10

+

+

y

x
0 1 2 3 4 5

-1 +1

3

9

?

/

?

?

? 1 2 3 4 ?

0

54

+

+

y

x

input stream

output stream

…

Figure 2.4: Example of three phases in the data flow of an application.

2.3.3 Manager

The manager [188] typically instantiates itself and the kernels. Then both compo-
nents are aligned to each other. For example, it organizes the concrete type and
size of the input and output of data through a kernel. The data streams can also be
configured to be routed to other FPGAs or to external memory. Figure 2.3 shows
the connection between different FPGAs using the dedicated high-speed MaxRing
interconnect. Each FPGA can have up to two direct, bidirectional MaxRing connec-
tions. A header file is generated from the configuration of the manager via the SLiC
interface. This header file defines the signature of the data streams (e.g. the data
types) and contains various actions for the host application, such as whether the call
to the kernel should be synchronous or asynchronous.

2.3. MaxCompiler Programming Model 9

Other important aspects of the manager are the settings of the hardware level pa-
rameters. These are mainly the parameters to guide the hardware synthesis process
(target frequency, seed, level of effort to place and route, etc.). The settings not only
help to improve performance, but also can determine the success of the hardware
synthesis.

2.3.4 State Machines

Most importantly for this thesis, the MaxCompiler offers also an API [189] to de-
scribe finite state machines (FSMs) that can control memory streams and datapaths
for applications that can not be expressed as a simple streaming datapath such as
regular kernels. FSMs and state machines (SMs) allow the implementation of fine-
tuned control blocks in the kernel and manager. They provide deeper control mech-
anisms for the data flow with better accessibility than a kernel with counters alone.
Figure 2.5 illustrates the execution model and the connection between the inputs and
outputs when using state machines. Two functions describe the behavior in each cy-
cle: NEXT_STATE and OUTPUT_STATE. Starting from the current state in cycle t and the
current input, the first function calculates the next state for cycle (t + 1). The second
function controls the output of the machine depending on the current state and the
input. Both functions are executed completely in parallel. The state machine stores
the data of the current cycle for the next cycle.

Next	State

Output

PROGRAM

input(t)

output(t)

NEXT_STATE
function

OUTPUT_STATE
function

NEXT_STATE

OUTPUT_STATE

state(t)

state(t+1)

Figure 2.5: Execution model for state machine transitions.

The MaxCompiler offers state machines in two different variants: embedded in
the kernel as a kernel SM or directly integrated in the manager as a manager SM.
Both variants follow the execution model described above in the illustration but dif-
fer in two decisive aspects:

First of all, a kernel state machine still strictly follows the data flow model de-
scribed above for kernels and only uses the state machine APIs to simplify a com-
plex control block. The state machine embedded in a kernel is executed in every tick
completely aligned to the surrounding kernel. It usually receives an input in every
tick and produces an output in every tick. Consequently, kernel scheduling directly
determines state machine scheduling.

In contrast, the developer can use a manager state machine if the regular data
flow model does not fit the application. The manager state machine does not nec-
essarily process an input in every tick and generate an output in every tick. The
manager state machine is executed at every system clock and has no surrounding
kernel. Hence, a manager state machine does not have a fixed number of cycles to
complete, but is rather signal driven. Its scheduling is typically directly linked to
the production of an output, the result. The connection to the input or output is

10 Chapter 2. Foundations: Reconfigurable Computing

controlled by the state machine itself via signals with requests and responses. The
developer has to manually take care of the communication control. In particular, the
state machine needs to signal when new data should be read and when valid data
is present at the output. An essential part of the design and implementation in this
thesis is based on manager state machines.

2.3.5 Compilation Tool Flow

Finally, the MaxCompiler offers a supporting tool for the development of the de-
scribed components, the MaxIDE. The interaction of the components and the com-
pilation flow is shown in Figure 2.6. The kernel and manager compilers 1 translate
the respective programs (written in MaxJ, an extended form of Java) into machine
language. In the first step, the normal Java compilation with syntax checking takes
place. The generated .class-files are then executed. The execution includes three
intermediate steps: the construction of the data flow graph, the optimization and
transformation of the graph, and the generation of the configuration for the FPGA
by backend (FPGA vendor) tools 2 . The MaxCompiler is able to take care of type
conversions and can automatically perform optimizations such as retiming [173],
buffer size optimization and pipelining. The execution of these three steps produces
a .max-file 3 that can either be simulated or completely synthesized in hardware.
The .max-file contains the configuration of the FPGA as a bitstream and further data
that the FPGA needs to control the data transfers. Finally, the host application is
compiled, merged with the .max-file and linked against the required libraries 4 .
The resulting binary file 5 can be invoked standalone and the MaxelerOS serves as
a bridge between software and hardware, similar to a regular hardware driver.

MaxIDE
Host application
(C++ or Fortran)

Manager
(MaxJ)

Kernel
(MaxJ)

Compiler,
Linker

SLiC Manager Compiler Manager Compiler

DFE Configuration
(*.max file)

Accelerated
application

Simulation or
logic synthesis

Backend (FPGA vendor) tools

1

MaxelerOS

2

3

4

5

Figure 2.6: Compilation tool flow.

2.4 Chapter Conclusion

In this chapter, we provided background information and foundations on reconfig-
urable computing required for this thesis. The ideas and concepts introduced in
the following chapters heavily rely on practical parts and are designed and imple-
mented for FPGAs. We outlined the architecture and building blocks of FPGAs and
introduced the MaxCompiler as the main programming model that is used for the
actual implementation.

11

Chapter 3

Excursion to Cryptography and
Information Security

In this chapter, we will take an excursion to the cryptography and information se-
curity domain. The overall ideas for studying general branch-and-bound (B&B)
on FPGAs started with the examination of very uncommon problems for FPGAs,
namely the so-called cold-boot attacks (CBAs). Cold-boot attacks are part of side-
channel attacks against computer systems that rather exploit specific aspects of the
whole ecosystem where algorithms are implemented and executed, instead of ex-
ploiting an algorithm itself. Side-channel attacks form a very interesting and impor-
tant area in the information security domain. We analyzed and studied cold-boot at-
tacks for FPGAs and designed and developed very efficient implementations. From
the analysis and implementations we were able to generalize the solution to be able
to transfer the lessons learned to other branch-and-bound problems outside the spe-
cific domain. With this background information in mind, the following structure of
this thesis might be easier to assess.

In this chapter, we will give a general motivation and background information
required to understand the challenges imposed by our case study. In Section 3.1,
we give an introduction to general side-channel attacks and the specialties of cold-
boot attacks. We work out three typical phases that are required to spawn a real
attack vector. Then, in Section 3.2, we present two distinct error models that are
required by the branch-and-bound algorithm used in this thesis to be able to prune
the search space. Finally, we describe the functionality of the advanced encryption
standard (AES) in Section 3.3 because our case study makes heavy use of its internal
operations.

3.1 Introduction to Side-Channel Attacks

According to a study by the Ponemon Institute [225], 12,000 laptops are lost at US
airports per week. The study states that about 53% of business travelers carry sen-
sitive data. In a later study [226] of the same institute, 275 organizations in Europe
were interviewed. The researchers found that about 8% of all laptops in compa-
nies are lost during their lifetime. During the twelve-month study period, about
72,000 laptops disappeared. The Ponemon Institute estimates the cost per laptop at
about 35,000e. Only a small fraction of this sum is made up of hardware costs. The
loss of availability, integrity and, most importantly, confidentiality of information
represents the far larger cost share. Even though some definitions and numbers pre-
sented by the studies are controversial [32, 217], the overall risk and consequences
associated with lost laptops should raise awareness. A recent survey [165] indicates

12 Chapter 3. Excursion to Cryptography and Information Security

that most companies have unprotected data and poor information security practices,
making them vulnerable to attackers. The consequences of such incidents for a com-
pany can include significant financial and customer confidence losses.

The users of modern communication and information systems therefore demand
security technologies against the threats of unintentionally loosing or leaking any
kind of data. Cryptography and information security techniques offer the key tech-
nologies for effectively counteracting threats of integrity and confidentiality. Com-
panies and individuals increasingly encrypt the data stored on hard disk drives by
using full disk encryption tools and the data transferred during communication by
using secure protocols (for example, HTTPS [235], VPN [62] or WPA2 [170]).

The tools and protocols support different ciphers (for example, AES [12],
RSA [237], ECC [151], Serpent [18], or Twofish [243]) in different combinations, con-
figurations and modes. While modern cipher algorithms themself are considered
secure, actual implementations have to keep the secret key material in main mem-
ory. For efficiency reasons, auxiliary key material is stored in addition to the secret
key itself. The key material is derived from the secret key itself and can contain
round keys in the case of symmetric ciphers such as AES/Serpent/Twofish or co-
factors/modulus in the case of public-key cryptosystems such as ECC/RSA. This
additional material is always needed in the encryption and decryption process. It is
very sensitive, because it can reveal characteristics of the secret key itself. Keeping
the sensitive key material in the main memory of a computer system for efficiency
reasons was assumed to be secure. Firstly, the main memory was expected to be
volatile and quickly change into a default state erasing its contents when removing
the power supply. And secondly, memory cells were expected to be isolated, not in-
terfering each other states allowing privilege separation between different processes.

In recent years, both assumptions have been invalidated by security experts. In
the first case, Skorobogatov [255] and Halderman et al. [126] have shown that the
memory contents of SRAM and DRAM decay surprisingly slowly over time. The
decay can be slowed further by cooling the chips, which opens the possibility to
attack the secret keys and thus to circumvent the cryptography and information se-
curity procedures. In the second case, Kim et al. [149] first were able to bypass the
isolation between memory cells to alter values in order to violate the systems in-
tegrity and later Kwong et al. [164] exploit the same row hammering technique to also
read the memory contents from this side-channel affecting the system’s confidential-
ity.

In the following, we will mainly focus on specific details imposed by cold-boot
attacks. The basic ideas, attack vectors and algorithmic challenges are very similar
to other side-channel attacks.

3.1.1 Cold-Boot Attacks

The cold-boot attack (CBA) is a serious problem for software-based encryption pro-
grams. By observing, measuring and combining certain properties, such as patterns
in the main memory, the attacker attempts to draw conclusions about parts of the
secret key material in the main memory. The cold-boot attack exploits especially the
long decay time of memory cells, also called the remanence effect [141].

3.1. Introduction to Side-Channel Attacks 13

3.1.2 Remanence Effect of Main Memory

In modern computer systems, at runtime the main memory typically contains the
programs to be executed accompanying the corresponding data – also known as
the von Neumann architecture [276]. The main memory module is an electronic
circuit consisting of a large number of cells, whereby each cell essentially encodes
a single bit of data. Figure 3.1 shows the most commonly used variant of a sin-
gle dynamic random access memory (DRAM) cell realized as a one-transistor one-
capacitor (1T1C) pair. Conceptually, the capacitor holds a charge to store a binary
value (high charge for logic 1 and low for logic 0) and the transistor acts as a con-
troller enabling reads and writes to retrieve and change the value.

bit line

word line

RO
W

 D
EC

O
DE

R

COLUMN DEC

SENSE AMPLIFIER

1T1C memory cell

Figure 3.1: Schematic illustration of the memory chip organization realized with
one-transistor one-capacitor (1T1C) DRAM memory cells.

The memory cells implemented as static random access memory (SRAM) retain
its data while the power supply remains. In contrast, DRAM cells are volatile, which
means that the charge in the capacitor will slowly leak away. Depending on the
memory chip organization, the cell is hard-wired to either power or ground leading
to a decay of the cell to either logic 0 or 1 – the so-called ground state. To prevent
the cell from losing its stored value and returning to its ground state, it must be re-
freshed periodically with current. As a result, a DRAM main memory module has
a defined maximum refresh interval before the cells start to return to their ground
state. As bit errors in the main memory have serious consequences for the program
execution and for the stability of an entire system, the manufacturers of DRAM use
very short refresh intervals (in the range of 64 milliseconds or less) to keep the prob-
ability of unwanted memory decay extremely low. In fact, modern memory cells are
even refreshed after read operations to prevent the destruction of data, due to the
very cost-efficient nature of the design.

When a system is turned off or the main memory module is suddenly removed,
the DRAM cells are not refreshed anymore and the stored data is lost. However,
it has been shown by Halderman et al. [126] that the memory cell contents are not
lost immediately. The decay can be slow enough to allow (partially) retrieving its
contents, especially at low temperatures by artificially cooling the memory chip.
This remanence effect is primarily attributed to the high density of memory cells
and opens an attack vector on cryptographic applications that keep secret keys in
DRAM for encryption and decryption of data.

14 Chapter 3. Excursion to Cryptography and Information Security

011001111

10...01100010000
0000110011111000
0000010010101001
1001001010001010
0101110111010010
100010111011...1

10...11100010000
0000110011111000
0001010010100001
1001001010001010
0101110101010010
100110111010...1

10...11100010000
0000110011111000
0001010010100001
1001001010001010
0101110101010010
100110111010...1

10...11100010000
0000110011111000
0000010010101001
1001001010001010
0101110101010010
100110111010...1

Original main
memory content

Memory dump
containing bit errors

Identified
key material

Reconstructed
key material

0 —> 1
1 —> 0

1 2 3

Figure 3.2: Main phases of a cold-boot attack.

3.1.3 Attack Vector and Relevance

In a cold-boot attack [47, 16, 218, 211, 250], physical access to the target system by
the attacker is a prerequisite. The attacker can get temporary access to the victim’s
computer (e.g. in the office during lunch break) or steal the victim’s laptop at an
inattentive or hectic moment. Another prerequisite is that the computer is in an
active state (screen lock, standby, hibernate, etc.) at the time of the attack. The victim
must have booted up the computer and logged in. Otherwise, the main memory
contains no secret key material. The attack vector is depicted in Figure 3.2 and can
be divided into three successive phases for better structuring [275]:

1 Acquisition of the main memory contents.

2 Search and extraction of the secret key material.

3 Analysis and reconstruction of the secret key.

The attacker’s goal is thus to read the contents of the main memory, to find all
the key material in it, and then to find and reconstruct the secret key. In the case of
a successful attack, the attacker is able to decrypt the secret data or undermine the
secured communication channel.

1 Acquisition of the Main Memory Contents The acquisition of the memory con-
tent does not require any special hardware or software. Depending on how much
time and resources the attacker has at her control and how many countermeasures
are expected to be taken by the victim’s system, the attacker can choose and adjust a
suitable method presented by Halderman et al. [126]. The attacker typically obtains
an image of the main memory contents by either rebooting the machine from a USB
drive that dumps the contents to a persistent storage, or by physically transplanting
the memory modules into another machine that is under the attacker’s control. If
the reboot process or the transplantation is done quickly, only a small fraction of the
bits will have changed their value due to memory decay. The main memory can be
strongly cooled during this process, which reduces the expected number of decayed
errors. But as this procedure cuts the power to the memory module, the stored con-
tents often contain bit errors. As individual bits can change their stored value, the
acquisition of the memory content does not provide an exact copy.

3.2. Modeling Bit Errors 15

We call the proportion of decayed to total bits the error rate. The error rate is
highly dependent on the type of the side-channel attack. For cold-boot attacks, the
error rate is directly related to the moment of the last refresh of the memory. The
longer the memory is not refreshed, the more bits decay. The result of a decay due
to a missing refresh is a bit error in the corresponding cell of the memory. Details
on the specific behavior and distribution of the decay over time are presented by
Halderman et al. [126].

2 Search and Extraction of the Secret Key Material In the next step, secret key
material–in essence, (pseudo) random numbers of 128, 192 or 256 bits length–has
to be identified in the memory dump with the typical size of several gigabytes (key
search).

The secret keys alone are very small and contain a high entropy, which is diffi-
cult to search for. However, since the actual encryption and decryption operations
require not just the secret key, but also auxiliary key material (for example, round
keys), the key material is usually pre-computed and stored as a contiguous block
in main memory. By exploiting the publicly known cryptographic structure of a ci-
pher and layout of the key material in memory, the resulting memory image can be
searched for sections that could correspond to (decayed) cryptographic keys.

3 Analysis and Reconstruction of the Secret Key Finally, the same information
about the cipher can be used to correct bit errors in the extracted key material (key
fix). The key material might contain many redundancies compared to the searched
key, because it is derived from it. In this step, the redundancies can be used to de-
tect and correct bit errors imposed by memory decay. If successful, the secret keys
can be recovered and the cryptography and information security procedures can be
circumvented.

Please note that especially the first two phases might slightly differ for other
side-channel attacks, but follow exactly the same principles. For example, the most
recent RAMBleed [164] attack uses a specific sequence of main memory accesses to
cause bit errors in other locations of the memory than the one accessed. Leveraging
those induced bit flips allows the attacker to read portions of the secret keys. This
attack can even be performed remotely. The obtained secret keys have also bit flips
similar to the decayed values for cold-boot attacks and therefore require same the
reconstruction techniques as discussed in phase 3 .

In the next section, we show how resulting bit errors caused by the side-channel
attack can be modeled. Bit errors typically follow patterns and other dependencies
that can be used in the search and the reconstruction processes to prune the search
space and recover the secret key. We present two distinct models for bit errors caused
by memory decay during cold-boot attacks.

3.2 Modeling Bit Errors

As mentioned earlier in Section 3.1.2, DRAM contents will gradually decay when the
memory module is not refreshed. Halderman et al. [126] have investigated the main
memory decay using different DRAMs (architectures, manufacturers, models, etc.)
and test scenarios (with/without cooling, refresh at different time intervals, etc.) and

16 Chapter 3. Excursion to Cryptography and Information Security

found some interesting decay patterns. Two of the most important findings can be
summarized as follows:

1. Most bits decay continuously into the ground state of the main memory cell.
The probability of this observation increases the longer the main memory is
not refreshed. With a sufficiently long period without refreshing the cells, the
entire memory cells decays to the ground state.

2. Only a very small fraction of bits (about 0.1%) flips in the opposite direction of
the ground state. Wang [281] found for other DRAMs a slightly higher fraction
of opposite bit flips, but confirms the overall observation.

The decay of memory is extremely asymmetric: this means that bit flips from 0
to 1 (denoted as 0 1) and bit flips from 1 to 0 (denoted as 1 0) occur with differ-
ent probabilities depending on the ground state of the memory cells. Consequently,
the number of errors is dominated by the decay of the bits into the ground state
(with about 99.9%), compared to the rare decay in the opposite direction (remain-
ing 0.1%). Hence, Halderman et al. proposed to completely ignore the unlikely flip
direction opposite the ground state of the memory cell and assume only bit errors
in the dominant direction. The model following this observation is called perfect
asymmetric decay.

3.2.1 Perfect Asymmetric Decay

Perfect asymmetric decay (PAD) assumes that only the dominant decay into the
ground state of the cell exists and neglects the other 0.1% of the bit errors that can
occur in real scenarios. This assumption offers very elegant and efficient implica-
tions in the search and recovery of secret keys. The most important implication is
the known bit.

Lemma 3.1 (Known Bit) Under the assumption of perfect asymmetric decay, only
bit flips in the direction of the ground state of the cell M exist. Consequently, all
bits with the opposite value of the ground state are considered correct and can be
directly determined. Equation 3.1 represents the relationship between the ground
state and the known bit.

KNOWN_BIT =

{
1, if ground state of memory cell M = 0
0, if ground state of memory cell M = 1

(3.1)

If, for example, d = 0x94 = 14810 = 1001 01002
1 is the obtained decayed byte

and M = 0000 00002 is the ground state of the considered cell. Then every bit with
the value 1 (here 1001 01002) is considered correct (or known) because a decay from
0 1 cannot take place in the PAD model. Consequently, all divergent bit values
(6= 1) at these positions can be immediately excluded (or bounded) in the recovery
process of the secret key, because they are not compatible to the model.

The above considerations show that PAD provides a very simple way to deter-
mine the set of compatible candidates at an early stage. The next lemma shows how
a candidate (a possible correct part of the secret key) can be checked.

1Throughout the thesis, we will use numbers to different base systems. The general format is
numberbase. If the base is omitted, the decimal system (base 10) is used. Numbers with the prefix
0x or in monospace font are hexadecimal (base 16).

3.2. Modeling Bit Errors 17

Lemma 3.2 (Compatibility of Bytes with PAD) If c is a candidate byte, d the de-
cayed byte and M the ground state, then c and d are considered compatible if the
following equation is holds:

is_compatiblePAD(c, d, M) = (c⊕ d) ∧ (d⊕M) = 0

For example, the candidate byte c = 1110 10112 cannot decay to an observed byte
d = 1101 00112 when M = 0000 00002 is the ground state, because the fourth bit
must have flipped from 0 to 1:

is_compatiblePAD(c = 1110 1011, d = 1101 0011, M = 0000 0000) (3.2)
= (1110 1011⊕ 1101 0011) ∧ (1101 0011⊕ 0000 0000) = 0001 0000 6= 0

On the other hand, c = 1110 00112 and d = 1100 00002 with M unchanged are com-
patible:

is_compatiblePAD(c = 1110 0011, d = 1100 0000, M = 0000 0000)
= (1110 0011⊕ 1100 0000) ∧ (1100 0000⊕ 0000 0000) = 0

The following, very important observation should be made clear by the formula and
the examples: the compatibility between two bytes is decided in this model com-
pletely independent of past or following decayed bytes. It is a decision based on
local knowledge (d and M), can be evaluated using simple operations and is there-
fore very suitable for hardware.

However, the PAD model fails for certain problem instances because in reality
bit errors in both directions are possible. The next model includes this observation
and is called expected value as threshold.

3.2.2 Expected Value as Threshold

In our previous work [2], we proposed a threshold-based error model that takes
both error directions into account and generalizes Halderman’s observations. Our
expected value as threshold (EVT) model separates the overall error rate of bit flips
r (see Section 3.1.3) into bit flips in each direction 1 0 (denoted as r1 0) and 0 1
(denoted as r0 1):

r = r1 0 + r0 1

The perfect asymmetric decay (PAD) model is subsumed in this model when r1 0 =
0 or r0 1 = 0: i.e. reducing to a decay in only one direction. With given r1 0 and r0 1
rates, we can compute the expected number of bit flips in each direction, denoted as
n1 0 and n0 1, by multiplying the rates with the total number of bits N in the full
key material:

n1 0 = r1 0 · N
n0 1 = r0 1 · N

Using this information, the next lemma shows how a candidate can be checked with
the EVT model to estimate if the candidate is a possibly correct part of the secret key:

18 Chapter 3. Excursion to Cryptography and Information Security

Lemma 3.3 (Compatibility of Bytes with EVT) We compute the number of bits that
would have flipped from 1 to 0 and from 0 to 1 for a candidate byte c, denoted by
c1 0 and c0 1, and compare them against the number of expected bit errors for the
entire key material. If one of the numbers exceeds its expected value, the candidate is
not compatible, as outlined in Listing 3.1.

1 # Initialization with given r1 0, r0 1 and N.
2 n1 0 ← r1 0 · N
3 n0 1 ← r0 1 · N
4 # Global information storing the already consumed bit flips.
5 n̄1 0 ← 0
6 n̄0 1 ← 0
7
8 is_compatibleEVT(c, d, M) :
9 c1 0 ← compute_bit flips_1_to_0(c, d, M)

10 c0 1 ← compute_bit flips_0_to_1(c, d, M)
11
12 # Check if bit flips induced by candidate exceed expected numbers.
13 if ((c1 0 + n̄1 0 ≤ n1 0) ∧ (c0 1 + n̄0 1 ≤ n0 1))
14 # Candidate is compatible. Update consumed bits.
15 n̄1 0 ← c1 0 + n̄1 0
16 n̄0 1 ← c0 1 + n̄0 1
17 return true
18 else :
19 return false

Listing 3.1: Compatibility check with the EVT error model.

Compared to the PAD model, the compatibility can no longer be decided locally
between the decayed byte and the ground state. The bit errors from past and fol-
lowing bytes have an effect on each other and must always be carried throughout
each compatibility check. This approach therefore requires global knowledge for the
decision of the compatibility and has a high computational intensity compared to
the PAD model, as will be shown later.

We also give an example for the compatibility check with the EVT model to create
a better intuition. We assume the following scenario: The overall error rate is given
by r = 5% with a ground state M = 0. Separating the error rate into the individual
asymmetric direction of bit flips gives r1 0 = 4.9% and r0 1 = 0.1%. To compute the
expected number of bit flips, we multiply the individual rates with the total number
of bits in the full key schedule (N = 1408 for AES-128), which gives us n1 0 ≈ 69
and r0 1 ≈ 1. This means that candidate bytes are compatible as long as any of these
numbers is not exhausted. This is especially critical for r0 1, where only one bit flip
opposite the ground state will be tolerated.

We recall the candidate byte from Equation 3.2. In the PAD error model the can-
didate c = 1110 10112 cannot decay to the observed byte d = 1101 00112, because
the fourth bit (underlined) must have flipped against the ground state from 0 to 1.
However, with the EVT this candidate is compatible, as shown in the compatibility
check in Listing 3.2 .

The expected value as threshold model considers bit errors in both directions
and is therefore the better model for practical considerations. However, it has some
important differences to note. On the one hand, it is very difficult to determine the
required thresholds (error rates in each flip direction) correctly. Due to the sensitivity

3.3. Advanced Encryption Standard 19

1 # Initialization expected number of errors:
2 # r = r1 0 + r0 1 = 0.049 + 0.001 = 0.05 and N = 1408.
3 n1 0 ← 69 # = 0.049 · 1408
4 n0 1 ← 1 # = 0.001 · 1408
5 # So far , no bit flips have been consumed.
6 n̄1 0 ← 0
7 n̄0 1 ← 0
8
9 # Compatibility check of first candidate.

10 is_compatibleEVT(c = 1110 0011, d = 1101 0011, M = 0000 0000)
11 # Returns true , candidate is compatible.
12 # Candidate deviates at three bits.
13 # Number of consumed bits is updated.
14 n̄1 0 ← 2 # 67 more bits can flip in this direction.
15 n̄0 1 ← 1 # No more bit flips in this direction will be tolerated.

Listing 3.2: Compatibility check with the EVT error model applied to example.

of the model, the thresholds must be as accurate as possible, because invalid candi-
dates pass the compatibility check if the threshold is too high and valid candidates
do not pass the bound if the threshold is too low. From a statistical point of view,
the search should not be bounded when the number of bit flips exceeds the expected
number of bit flips, but instead when exceeding a certain number of errors that is
unlikely to occur based on the given expected values. For simplicity, we assume that
this deviation is already considered in the given error rates.

In this thesis, we will focus on the search and reconstruction of advanced encryp-
tion standard (AES) keys. Therefore, we describe the required functionality of AES
in the next section, explain the basic cryptographic principles behind the individual
operations and indicate the requirements for an implementation in hardware.

3.3 Advanced Encryption Standard

The advanced encryption standard (AES) [72] is one of the most used encryption
algorithms and the default block cipher in a variety of systems and tools, e.g. disk
encryption [103], WLAN, HTTPS, SSH [288] and VoIP [114]. AES is the successor of
the data encryption standard (DES) [78, 66]. From 1976, DES has been the official
encryption standard of the US government for over 20 years. To stop the increasing
successful attacks against DES and to increase the key length of effectively only 56
bits, DES was executed three times in a row with three different keys (called Triple-
DES or 3DES [251]). This temporary solution worked for that time, but was much
slower. As a result, in 1997 a call for proposals for a successor of DES took place
and yielded the algorithm Rijndael by Joan Daemen and Vincent Rijmen as the win-
ner against 14 competing algorithms. Other finalists from the selection process are
also known and used ciphers, for example, Twofish [243] or Serpent [18]. AES is
a symmetric block cipher, has a fixed block size of 128 bits and features a variable
key length of 128, 192 or 256 bits (each referred to as variant AES-128, AES-192 or
AES-256).

3.3.1 Key Schedule: Secret Key and Round Keys

The AES algorithm requires a set of round keys to encrypt and decrypt data. The
way in which these are generated is decisive for the security of the cryptographic

20 Chapter 3. Excursion to Cryptography and Information Security

process and defined by the AES key expansion function [72]. The secret master key
is used as the first round key from which all other round keys are derived. The
so-called key schedule is comprised of the master key and the (key size dependent)
number of other round keys. The key schedule is the secret key material that is the
target for side-channel attacks. The number of rounds varies and depends on the
key length. Table 3.1 shows the common key sizes l with the number of rounds r.

number of round keys r key size l in bytes (bits) key schedule in bytes (bits)
10 16 (128) 176 (1,408)
12 24 (192) 312 (2,496)
14 32 (256) 480 (3,840)

Table 3.1: Number of rounds r for key size l.

w 0 1 2 3

r
b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
10 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

w: word, b: byte, r: round

Table 3.2: Overall structure of an AES-128 key schedule KS and illustration of the
ascending addressing scheme.

Notation and Addressing Scheme Table 3.2 shows the overall schematic structure
of an AES-128 key schedule KS consisting of 11 round keys, including the secret
master key in round 0 (highlighted in blue). A real AES-128 key schedule is shown
in Table 3.4. To be able to reference specific parts of the key schedule, we define a set
of operations and their notation:

1. Each round r ∈ {0, . . . , 10} consists of 16 bytes, divided into four words w ∈
{0, . . . , 3} of four bytes b ∈ {0, . . . , 3} each.

2. A specific byte can therefore be addressed uniquely via KSr,w,b. The asterisk
character * can be used as a wildcard for certain information.

3. The operations KSr,w (short form of KSr,w,∗) and KSr (short form of KSr,∗,∗) re-
trieve a 4-byte word or a 16-byte round, respectively. An alternative, flat ad-
dressing is also possible to retrieve a single byte with KS[i], i ∈ {0, 1, . . . 175}
or a range or bytes with KS[i. . . j], i, j ∈ {0, 1, . . . 175}, i ≤ j. In Table 3.4 the
ascending addressing positions (0–175) are shown.

4. Both notations can be combined to retrieve the four bytes of a complete word
containing the byte KS[i] via KSw[i] or the 16 bytes of a complete round con-
taining the byte KS[i] via KSr[i].

3.3. Advanced Encryption Standard 21

5. Finally |KS| refers to the size of (parts of) the key schedule in bytes.

For example, KS0 and KS0,∗,∗ and KS[0 . . . 15] all retrieve the 16 bytes of the secret
master key in round 0 highlighted in blue. KS0,0 and KS0,0,∗ retrieve the 4 bytes of
word 0 in round 0. KS8,2,3 references the same byte as KS[139]. Finally KS[139]w
references the same word as KS[136 . . . 139] with a size of |KSw[139]| = 4 bytes.

3.3.2 Secret Key Expansion

Figure 3.3 and Figure 3.4 show how the 10 round keys in the AES-128 key schedule
are generated from the secret master key in round 0 using two different functions.
The first word of each round key is computed by applying a complex expansion using
word 0 and word 3 of the preceding round key, including a non-linear substitution
(SBox) and introducing a round-specific constant (RCon). The SBox and RCon are pub-
licly known constant lookup tables [72], simply mapping one value to another (see
Appendix A). The remaining words 1 . . 3 of each round key are computed by ap-
plying a simple XOr expansion between the same word of the previous round key
and the previous word of the same round key. Both expansions are bijective, which
simply means that the computations can also be performed backwards: e.g. if word
3 and 1 are known then word 2 can be computed using backward expansion.

E5 6C E5 49

0 1 2 3w
b

r 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1
0

2
3
4
5
6
7
8
9
10

XOr

RConrotate substitute

SBox

XOr

complex expansion for word 0

1 2

3 4

5A 57 45 49 52 5A 49 475F 56 49 455F 55 4E 44

Figure 3.3: Complex AES key expansion operations to generate the second round
key for word 0. The next rounds follow the same principle.

E5 6C E5 49

0 1 2 3w
b

r 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1
0

2
3
4
5
6
7
8
9
10

XOr

simple XOr for rest

5

5A 57 45 49 52 5A 49 475F 56 49 455F 55 4E 44
BA 39 AB 0D

Figure 3.4: Simple XOr AES key expansion operations to generate the second round
key for all remaining words of round 1. The next rounds follow the same principle.

22 Chapter 3. Excursion to Cryptography and Information Security

Example Using the described operations we will expand a secret key to the full
key schedule KS to create a good understanding of the underlying operations. The
secret key is:

key = [5A, 57, 45, 49][5F, 55, 4E, 44][5F, 56, 49, 45][52, 5A, 49, 47] = KS0

The first round key KS0 is the secret master key itself shown in Table 3.3. Each
individual position designates a byte, therefore it is a 16-byte or 128-bit key (AES-
128). If the key is too short, a padding symbol is appended at the end to fill the
missing positions. The numbers used in this example are hexadecimal, although the
leading prefix 0x is mostly truncated.

w 0 1 2 3

r
b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 5A 57 45 49 5F 55 4E 44 5F 56 49 45 52 5A 49 47

Table 3.3: Initial key schedule consisting of the secret master key KS0 in round 0.

First, the second round key KS1 is expanded in five steps from the secret key in
round 0. The steps 1 to 4 describe the complex expansion of the first word KS0,0
(see Figure 3.4), while step 5 applies the simple expansion using the XOr operator
(symbol ⊕) of the remaining words KS0,1, KS0,2 and KS0,3 (see Figure 3.3).

1 complex: rotate The last word KS0,3 is taken from the previous round key and
rotated. The cyclic permutation shifts all elements left and places the first byte
at the end position:

r = rotate(KS0,3) = rotate([52, 5A, 49, 47]) = [5A, 49, 47, 52] (3.3)

2 complex: substitute −Next, each byte must be replaced by the corresponding
value in the SBox (see Appendix A). This operation is called SubBytes.

s = SubBytes(r) = SubBytes([5A, 49, 47, 52]) = [BE, 3B, A0, 00] (3.4)

3 complex: XOr The intermediate result s from the previous step is now XOred
to the first word KS0,0. The XOr operation is very fast and requires a small
number of gates in hardware. Basically it is a simple bit flipper with minimal
hardware and no unwanted carry flag.

t = s⊕ KS0,0 = [BE, 3B, A0, 00]⊕ [5A, 57, 45, 49] = [E4, 6C, E5, 49] (3.5)

4 complex: round constant− The result t is now XOred with the round constant
in RCon. The constant varies from round to round. The complete lookup table
of all round constants can also be found in Appendix A. The result is the first
word of the next round key KS1,0.

KS1,0 = t⊕ rcon(1) = [E4, 6C, E5, 49]⊕ [01, 00, 00, 00] = [E5, 6C, E5, 49] (3.6)

5 simple − The remaining words KS1,1, KS1,2, KS1,3 are much easier to calculate.
To do this, the previous word is XOred to the same word of the previous round.

3.3. Advanced Encryption Standard 23

KS1,1 = KS1,0 ⊕ KS0,1 = [E5, 6C, E5, 49]⊕ [5F, 55, 4E, 44] = [BA, 39, AB, 0D]
KS1,2 = KS1,1 ⊕ KS0,2 = [BA, 39, AB, 0D]⊕ [5F, 56, 49, 45] = [E5, 6F, E2, 48]
KS1,3 = KS1,2 ⊕ KS0,3 = [E5, 6F, E2, 48]⊕ [52, 5A, 49, 47] = [B7, 35, AB, 0F]

(3.7)

All five steps together result in the first round key KS1. For the remaining rounds
the same sequence of operations (steps 1 to 5) takes place and results in the next
round key and so on. The fully expanded key schedule KS for the example is shown
in the Table 3.4. The example has a 16-byte (128-bit) key and therefore 10 round keys.

w 0 1 2 3

r
b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 5A 57 45 49 5F 55 4E 44 5F 56 49 45 52 5A 49 47
1 E5 6C E5 49 BA 39 AB 0D E5 6F E2 48 B7 35 AB 0F
2 71 0E 93 E0 CB 37 38 ED 2E 58 DA A5 99 6D 71 AA
3 49 AD 3F 0E 82 9A 07 E3 AC C2 DD 46 35 AF AC EC
4 38 3C F1 98 BA A6 F6 7B 16 64 2B 3D 23 CB 87 D1
5 37 2B CF BE 8D 8D 39 C5 9B E9 12 F8 B8 22 95 29
6 84 01 6A D2 09 8C 53 17 92 65 41 EF 2A 47 D4 C6
7 64 49 DE 37 6D C5 8D 20 FF A0 CC CF D5 E7 18 09
8 70 E4 DF 34 1D 21 52 14 E2 81 9E DB 37 66 86 D2
9 58 A0 6A AE 45 81 38 BA A7 00 A6 61 90 66 20 B3
10 5D 17 07 CE 18 96 3F 74 BF 96 99 15 2F F0 B9 A6

Table 3.4: All round keys for the example. The secret master key is in round 0 and
the expanded round key is in round 1.

3.3.3 Fundamental Cryptographic Principles

This section describes the three basic ideas [236, 257, 118] behind cryptosystems and
explains how they are manifested in AES by encrypting some input data with the
key schedule generated in the previous section. AES works round-based for en-
cryption and decryption. This means that the same operations are applied several
times in a row to the data to be encrypted or decrypted. The following 16-byte input
serves as an example that will be encrypted using the key schedule generated in the
previous section:

input = [41, 4E, 47, 52][49, 46, 46, 5F][4D, 4F, 52, 47][45, 4E, 21, 2A] (3.8)

If the input would not correspond to the full block size of 16 bytes, again a padding
symbol is appended. We will encrypt the input with the first round key; the remain-
ing rounds follow the same sequence. First, the input is XOred with the secret key
in round 0 of the key schedule. The result is:

input0 = input⊕ KS0

= [41, 4E, 47, 52][49, 46, 46, 5F][4D, 4F, 52, 47][45, 4E, 21, 2A]
⊕ [5A, 57, 45, 49][5F, 55, 4E, 44][5F, 56, 49, 45][52, 5A, 49, 47]

= [1B, 19, 02, 1B][16, 13, 08, 1B][12, 19, 1B, 02][17, 14, 68, 6D]

(3.9)

Idea 1 − Confusion The relationship between the encrypted message and the
plain text has to be obfuscated. A simple example of confusion is provided by the
Caesar cipher [63]. It maps the letters of the ordered alphabet to another letter. Each

24 Chapter 3. Excursion to Cryptography and Information Security

letter is moved to the right by a certain number of places and substituted with the
letter at this position. The number of shifts to the right is the secret key. The follow-
ing example in Equation 3.10 shows a mapping with the secret key 5.

A B C D E . . . Z
F G H I J . . . D

� (3.10)

In AES, the confusion property is ensured by the use of the Rijndael substitution box
(SBox). To hide the relationship between individual bytes, each byte is mapped to a
byte of the fixed SBox (see Appendix A).

t = SubBytes(input0)

= [AF, D4, 77, AF][47, 7D, 30, AF][C9, D4, AF, 77][F0, FA, 45, 3C]
(3.11)

Idea 2 − Diffusion Another principle is to change the positions of the letters in
the secret text. Ideally, a small change in the secret text leads to many changes in
the ciphertext. In AES the diffusion follows from the two operations ShiftRows and
MixColumns. To apply these operations, the 16 bytes are aligned into a (4× 4) matrix
representation. ShiftRows moves the lines of the substituted input t from the last
Equation 3.11 ascending to the left and attaches the superimposed elements to the
right side again.

u = Shi f tRows(t) = Shi f tRows(

AF 47 C9 F0
D4 7D D4 FA
77 30 AF 45
AF AF 77 3C

)

=

0←− AF 47 C9 F0
1←− [D4] 7D D4 FA
2←− [77] [30] AF 45
3←− [AF] [AF] [77] 3C

 =

AF 47 C9 F0
7D D4 FA [D4]
AF 45 [77] [30]
3C [AF] [AF] [77]

= [AF, 7D, AF, 3C][47, D4, 45, AF][C9, FA, 77, AF][F0, D4, 30, 77]

(3.12)

This is followed by the second transposition using the function MixColumns. The
function gets u from Equation 3.12 in matrix notation and performs a matrix multi-
plication:

v = MixColumns(u)

=

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

AF 4F C9 F0
7D D4 FA D4
AF 45 77 30
3C AF AF 77

 =

51 03 44 DB
83 94 10 64
D3 F3 37 DD
40 1D 88 01

 (3.13)

The calculation rules of the matrix multiplication are over a Galois field [158]. The
following rules are applied to multiply the elements ui ∈ u:

1 · ui = ui

2 · ui =

{
2 ∗ ui if ui < 128
2 ∗ ui ⊕ 0x11B else

3 · ui = (2 · ui)⊕ ui

(3.14)

3.4. Chapter Conclusion 25

Here the ∗ denotes the normal multiplication with natural numbers; otherwise the
matrix multiplication needs to applied. The calculation of the bracketed value DB is
carried out as an example:(

2 3 1 1
)
·
(
F0 D4 30 77

)T
= (2 · F0)⊕ (3 · D4)⊕ (1 · 30)⊕ (1 · 77)
= ((2 ∗ F0)⊕ 11B)⊕ ((D4 · 2)⊕ D4)⊕ 30⊕ 77

= (1E0⊕ 11B)⊕ (((2 ∗ D4)⊕ 11B)⊕ D4)⊕ 30⊕ 77

= FB⊕ ((1A8⊕ 11B)⊕ D4)⊕ 30⊕ 77

= FB⊕ (B3⊕ D4)⊕ 30⊕ 77

= FB⊕ 67⊕ 30⊕ 77

= DB

The result v from Equation 3.13 is finally XOred with the second round key KS1 of
the key schedule to complete the first round of the encryption:

input1 = v⊕ KS1

= [51, 83, D3, 40][13, 9C, FB, 05][44, 10, 37, 88][DB, 64, DD, 01]
⊕ [E5, 6C, E5, 49][BA, 39, AB, 0D][E5, 6F, E2, 48][B7, 35, AB, 0F]
= [B4, EF, 36, 09][B9, AD, 58, 10][A1, 7F, D5, C0][6C, 51, 76, 0E]

(3.15)

input1 will then be transformed the same way as input0 starting with Equation 3.9
XOred to the next next round key KS1.

Idea 3 − Kerckhoffs’ Principle The strength of the cryptosystem should not lie in
the secrecy of the encryption process, but rather in the secrecy of the key [63]. The
disclosure of the key expansion function and the encryption and decryption pro-
cesses provides an additional public discussion platform to uncover and eliminate
weaknesses of a cipher. As a result, the complete specification of the AES algorithm
Rijndael is freely available [72]. There are also robust implementations in hardware
and software.

3.4 Chapter Conclusion

In this chapter, we took an excursion to the cryptography and information security
domain to lay the fundamentals required by the case study used in this thesis. We
explained the basic ideas of side-channel attacks in general and cold-boot attacks
in particular, which will be analyzed stepwise and accelerated in the next chapters
using reconfigurable hardware.

In order to model the bit errors caused by a side-boot attack, we introduced
two distinct error models: an idealized error model called perfect asymmetric de-
cay (PAD), which considers only bit errors in one direction (1 0 or 0 1), and the
realistic error model called expected value as threshold (EVT), which supports bit
errors in both directions (1 0 and 0 1). The main difference between the mod-
els is that for PAD the compatibility can be computed using only local information,
whereas for EVT the bounding function is more complex and requires global state
space information that needs to be carried during all compatibility checks.

26 Chapter 3. Excursion to Cryptography and Information Security

Finally, we explained the key expansion of the AES cipher and described the
cryptographic principles behind the individual operations. We showed that AES
has a very simple structure and uniform functionality. While this simple structure is
often an expressed criticism, it is an essential basis for its efficiency and popularity.

27

Chapter 4

Intermediate Findings:
Identification of Secret Key
Material

We started our studies on side-channel attacks by accelerating the algorithm for
searching secret key material in a possibly large stream of noisy data with recon-
figurable hardware. In this chapter, we present our FPGA-based approach and ar-
chitecture.

The key search algorithm serves as a good starting point for the rest of the stud-
ies presented in this thesis. The procedure gives a good intuition to hardware accel-
eration with FPGAs, but is algorithmically and computationally less complex than
the branch-and-bound algorithmic pattern that is tackled in the following chapters.
The approach and results discussed in this chapter are published and presented
in a peer-reviewed conference article [3] in the International Conference on Field-
Programmable Technology (ICFPT), the premier conference in the Asia-Pacific re-
gion on reconfigurable computing.

The remainder of this chapter is structured as follows. In the first Section 4.1, we
present the basic ideas of a software implementation for searching secret key mate-
rial in a data stream containing bit errors acquired by a side-channel attack. Then,
in Section 4.2, we present our design and implementation for identifying AES key
schedules with reconfigurable hardware. Afterwards, we compare the performance
of our accelerator with a CPU implementation and discuss the results in Section 4.3.
Finally, we draw a conclusion in Section 4.4.

4.1 Basic Idea and Software Approach

For the identification of secret key material in a data stream acquired from the first
step of a side-channel attack (see Section 3.1.3) we use the method proposed by Hal-
derman et al. [126]. The algorithm is designed for software and is based on the
assumption that the secret key material, for example an AES key schedule, is located
contiguously in the data stream. Figure 4.1 depicts the processing idea of the data
steam divided into four distinct steps:

1 In the first step, the method runs through the data stream byte by byte. For
each input byte (5A at position 0 in the figure), a window of 176 continuous
bytes is forming a decayed AES-128 key schedule D = (D[0], D[1], . . . , D[175]).
In the figure, D0 (first 16 bytes of round 0, see addressing scheme in Sec-
tion 3.3.1) represents a possible secret key, while the remaining 160 bytes of

28 Chapter 4. Intermediate Findings: Identification of Secret Key Material

the considered window are the round keys. For each decayed key schedule
D the procedure evaluates whether it could be a decayed version of an actual
AES key schedule. The vast majority of the examined potentially decayed key
schedules strongly differs from a consistent key schedule. Therefore the soft-
ware variant proposed by Halderman et al. uses an early exit heuristic.

2 The heuristic examines whether more than eight repetitions of any byte occur
in D. If the test is positive, the procedure skips the position in question because
such an event is very unlikely in a valid key schedule.

3 Otherwise, this is followed by the second heuristical check of D, which is much
more computationally intensive than the first one: Using the expansion rule of
AES-128 (see Section 3.3.2), for each byte of D a validation byte of a reference
key schedule R is calculated. Figure 4.2 illustrates this in detail for round 1
of R. Word 0 results from the complex key expansion (steps 1 to 4 of the key
expansion function) and the remaining words are computed with a simple XOr
expansion (step 5). R is therefore the expected key schedule from the considered
window D if it would contain no errors.

window of 176 bytes forming
decayed AES-128 key schedule

Input byte at position 0 of the stream

5A 57 45 49 5F 55 4E 44 5F 56 … 2F F0 B9 A6 E0 21 93
memory dump stream

apply early exit heuristic on D

…

compute reference key schedule R from D

1

D

R

2

3

∑(Δ) > !

compute number of unequal bits Δ4

valid candidate
for reconstruction

∑(Δ) ≤ !

> 8 same bytes

Δ

Figure 4.1: A continuous memory stream is processed to identify valid secret key
material candidates for AES-128. Here, the first byte at position 0 is evaluated.

4.1. Basic Idea and Software Approach 29

4 In the last step, a validation is performed by counting the number of unequal
bits between D and R. This is done by calculating the Hamming distance
∆(D, R) = (∆0, ∆1, . . . , ∆175) between each byte of D and R. The Hamming
distance [36] serves as a measure for the difference between two elements
and is defined by the number of unequal bits of a byte, e.g. ∆(0xDB, 0x9D) =
∆(11011011, 10011101) = 3. Each individual Hamming distance corresponds
to the number of bit errors between the found decayed byte from D and the
expected byte from the reference R. To get the number of all errors, all single
Hamming distances are summed up ∑ ∆(D, R). If the sum is below or equal a
threshold value δ, D is accepted and output as a possible key schedule candi-
date containing bit errors that need to be corrected.

The threshold value δ determines the tolerance (in terms of number of bit errors)
towards candidates that are accepted as possible key schedules and must therefore
be defined in advance. The procedure returns all key schedule candidates that are
valid under δ as output. If the value of δ is selected too high, too many false-positive
candidates are detected. If the value of δ is selected too low, the right candidates
might not be detected. The Hamming distance used in this procedure serves as an
error model similar to the described errors models from Section 3.2. In contrast to
the PAD and EVT model, the direction of a bit flip is not relevant in this part of the
attack and therefore not reflected by this model.

0 1 2 3w
b

r 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1
0 0 1 2 3 12 13 14 15

0 1 2 3w
b

r 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1
0

16 17 18 19

D

R complex expansion

(a) Complex expansion, when word 0 is involved.

0 1 2 3w
b

r 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1
0

16 17 18 19
4 5 6 7

0 1 2 3w
b

r 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1
0

20 21 22 23

D

R XOr expansion

(b) XOr expansion for words 1–3. Here word 0 is shown exemplarily.

Figure 4.2: Computation of the reference key schedule R from bytes of the decayed
key schedule D using either the complex (in Figure 4.2a) or simple XOr (in Fig-

ure 4.2b) expansion function.

30 Chapter 4. Intermediate Findings: Identification of Secret Key Material

The efficiency of these heuristics depends on the structure of the input: If there
are many structured areas, many unnecessary computations can be skipped and the
speed of processing is increased. However, if the data is highly random, the applica-
tion spends a lot of time computing the heuristic without excluding candidates. Our
analysis of the runtime behavior has shown that the reference software implemen-
tation spends 20-40% in these tests.

The core algorithm only utilizes the operations from the AES key expansion,
which are inherently suitable for a hardware implementation. The computation of
R can be fully parallelized, as well as the validation check with the Hamming dis-
tances. Finally, the algorithmic structure follows the streaming data flow model that
should also favor FPGAs. Therefore, we designed and implemented this algorithm
in reconfigurable hardware, which is described in the next section.

4.2 Hardware Implementation

The following sections take up the individual parts of the software approach and
describe their conceptual adaption and transformation, such that they are suitable
for an implementation on an FPGA and use the possible inherent parallelism of the
algorithm and the hardware architecture. The examples and numbers in this section
refer to the search for an AES-128 key schedule. We implemented and evaluated two
separate kernels, one for AES-128 and one for AES-256. Even though they use a set of
the same operations, we separated them in order to avoid configuration overheads
inside the critical path of the kernels.

4.2.1 Input

The search for possible key schedules can be implemented as a streaming application
in hardware, where every new input byte together with previous bytes in the buffer
forms a new decayed key schedule D (see Figure 4.1). Thus, even though the used
input in every cycle is a data window of 176 bytes (480 bytes for AES-256), only one
byte per cycle has to be transferred from the host. The calculation starts immediately
after the transfer of the first data window is present on the device. After a relatively
short latency, the pipeline is filled and the first value is in the output stream. If there
are enough values, the return transfer takes place, while the calculation is continued
with new values in parallel.

4.2.2 Heuristics

Since we aim for a throughput of one entire key schedule check per clock cycle in our
hardware implementation, the described software optimizations (early exit heuris-
tic and threshold δ) are not required. Instead, we always compute the entire error
value for each byte position in the data stream and transfer it back to the host. Thus,
we can avoid searching with a too low or too high threshold δ and having to repeat
the entire search. In contrast to the software solution, the pipelined search in hard-
ware without heuristics is not data-sensitive and the computation of all error values
causes no computational overheads.

4.2. Hardware Implementation 31

4.2.3 Computation of Reference Key Schedule

For every byte in the decayed key schedule D, we know from the key expansion
rule (see Section 3.3.1) how to compute it depending on two previous words. This
principle is used to compute the reference words of R from D. The expansion rule is
applied to every word from round 1 to 10. In the existing reference implementations
by Halderman et al. [126], the calculation of all bytes of R is executed sequentially.
However, as shown in Figure 4.2, all bytes of R are expanded from already existing
values in D. Hence, the computations are independent of each other and can be
completely parallelized. As a result, the calculation takes only one step in hardware
due to the fully spacial parallelization of all bytes of R. The upper part of Figure 4.3
schematically indicates the complete parallel calculation of all bytes R[i] from D in
one step.

Most of the expansions (all bytes in word 1, 2 and 3) are computed by the sim-
ple expansion rule with the help of a XOr gate. In contrast, the bytes in word 0 are
computed by the complex expansion rule comprising rotation, substitution and XOr
operations (see Figure 3.4, page 21). The substitution operation is implemented as a
lookup table in BRAM (LUT BRAM). To maximize throughput, a total of 40 substi-
tution operations per candidate key schedule R have to take place in parallel. Thus,
we use 20 dual-ported BRAMs, all filled identically with the content of the substi-
tution table, in order to support 40 parallel requests. Similarly, ten parallel lookups
of round constants (RCon) are required as input to the XOr operations, which we
implement with lookups to five dual-ported BRAMs.

3

4

D

R[175]R[i] R[172] R[173] R[174]R[3]R[0] R[1] R[2] … … R

Δ[175]Δ[i] Δ[172] Δ[173] Δ[174]Δ[3]Δ[0] Δ[1] Δ[2] … … Δ

compute number of unequal bits Δ

compute reference key schedule R from D

+ + + +
…

+ +

+
… …

∑(Δ)

4 4

5

11

Figure 4.3: Complete parallelization of the computation of the individual bytes of R
and the corresponding Hamming distances ∆. The Hamming distances are summed

up with a balanced adder tree.

32 Chapter 4. Intermediate Findings: Identification of Secret Key Material

4.2.4 Computation of the Hamming Distances

In the next stage, we use the number of unequal bits as the basis of a simplified
error model: i.e. we compute the Hamming distance between each pair of refer-
ence byte R[i] and the decayed byte D[i]. This is also completely parallelizable due
to the independence of the individual positions after all R[i] are computed, as is
illustrated in the lower part of Figure 4.3. The sum of all individual Hamming dis-
tances ∆[i] is then aggregated by a balanced adder tree, which enables us to use
adders with the specific bit-widths required to represent the highest possible error
value at each level. The complete adder for AES-128 to compute the aggregated
sum ∑176

i=0 ∆(D[i], R[i]) therefore requires dlog2(|∆|)e = dlog2(176)e = 8 levels. Each
level adds two adjacent elements, so that the next level only has about half as many
elements. If x is the number of bytes in the full key schedule, the total number of
adders required is x− 1: e.g. 175 adders for AES-128. For each decayed key sched-
ule D, the resulting aggregated sum ∑176

i=0 ∆(D[i], R[i]) is returned to the host via an
output stream, representing the number of unequal bits. The whole computation
is fully pipelined, so our key search kernel computes one error sum per position in
each cycle after the pipeline is filled. Note that since the complex expansion rule for
R[i] takes several cycles, whereas the simple XOr can be performed in a single cycle,
the pipeline needs to be balanced. However, the MaxCompiler performs these steps
transparently to the developer.

4.3 Evaluation

In this section, we evaluate the performance of our hardware accelerator for search-
ing secret key material by comparing the runtime with the software implementation
of Halderman et al. [126]. We use both real contents of the main memory after cold-
booting a running machine that uses encryption and synthetic random data. The real
decayed memory content has been acquired using the tools provided by Halderman
et al.1 The random data has been generated by using the Linux random number
generator, i.e., by reading from /dev/urandom. The random data is not as strongly
affected by the early exit heuristics as real decayed data, because it has no inherent
structure in the memory dump and serves for better repeatability of our results.

4.3.1 Software Reference

The software implementation provided by Halderman et al. is written in single-
threaded C code. It discards candidates by the early exit heuristic or as soon as
they exceed the given error threshold δ. Therefore, we execute all tests with three
different thresholds:

• No decay: δ = 0. Accepts only candidates without any bit errors. The Ham-
ming distance heuristic in software is maximally effective in this case, because
most of the candidates can immediately be discarded.

• Small decay: δ = 100. Accepts only candidates with at most 100 bit errors. For
an AES-128 key schedule with a total of 1408 bits, δ = 100 represents a decay
of up to 7%.

• Large decay: δ = 500. Accepts candidates with a decay of up to 36%. In this
case, the Hamming distance heuristic will be less effective.

1https://citp.princeton.edu/research/memory/code/

https://citp.princeton.edu/research/memory/code/

4.3. Evaluation 33

For all configurations, result printing to standard output (stdout) is disabled, as
it consumes a significant amount of time for high thresholds because a lot of can-
didates are detected. The software reference has been executed on the host of the
Maxeler system described in detail in Section 5.5.1.

4.3.2 Kernel Replication

We synthesized the described hardware design with the MaxCompiler tool chain for
Maxeler MPC-C system mentioned above. Even when a throughput of one candi-
date key schedule D per cycle is reached, the key search can be further parallelized,
since each validation of a key schedule is independent of all others. One way to do
so is to divide the entire search space into N chunks and let N kernels work on those
chunks in parallel. Since potential key schedules could also exist at the borders of
chunks, the chunks have to be sufficiently overlapping. This additional paralleliza-
tion approach is well suited not only for hardware kernels, but also for multi-core in
software.

Number of Parallel Kernels 1 2 4 8
Used LUTs (%) 4.03 5.97 11.67 20.61

Used FFs (%) 3.13 5.47 10.17 19.56
Used BRAMs (%) 2.07 3.48 6.30 11.94

Used DSPs (%) 0.00 0.00 0.00 0.00

Achieved Frequency (MHz) 250 240 210 170

Table 4.1: Synthesis results of replicated AES-128 key search kernels targeting a
Virtex-6 SX475T FPGA.

In hardware, we implemented this high-level parallelization strategy and repli-
cated up to eight parallel kernels on one FPGA. Table 4.1 shows that the kernel repli-
cation reduces the achievable clock frequencies, but resource utilization still permits
higher replication factors. However, our analysis in the next section shows that the
current implementation becomes bandwidth limited at this point.

4.3.3 Results

All software and hardware tests are performed on one Maxeler system: for the soft-
ware implementations using its host CPU and for hardware tests using the host CPU
plus one of its FPGA accelerator cards.

real memory contents synthetic random data
threshold δ AES-128 and AES-256 AES-128 and AES-256

0 215 540
100 230 605
500 420 1114

Table 4.2: Runtime in seconds of software key search for 2 GB of input data. The
algorithm searches for AES-128 and AES-256 keys with a single run.

Without modifications, the software reference code of Halderman et al. can pro-
cess at most 2 GB of input data. If the main memory dump is larger, it needs to be
manually partitioned into overlapping chunks and executed several times. The mea-
sured software runtimes are reported in Table 4.2. Since the execution time for key
identification scales almost exactly linearly with input size, we report only the results
on 2 GB of data here. The software checks for AES-128 and AES-256 key schedules in
one run. Since we implemented AES-128 and AES-256 in different hardware kernels,

34 Chapter 4. Intermediate Findings: Identification of Secret Key Material

we perform two subsequent hardware calls and sum up their runtimes to mimic
the functionality of the software implementation. As our hardware implementation
computes the entire error value for all candidates, its runtime is independent of the
threshold δ.

real memory contents synthetic random data
number of kernels AES-128 AES-256 Σ AES-128 AES-256 Σ

1 10.60 10.66 21.26 10.62 10.59 21.21
8 2.73 2.83 5.56 2.67 2.76 5.43

Table 4.3: Runtime in seconds of hardware key search for 2 GB of input data. The
search is separated into two kernels, one for AES-128 and one for AES-256, in order

to avoid configuration overheads inside the critical path of the kernels.

The hardware results on 2 GB of input data are summarized in Table 4.3 and
contain a design with only one kernel to mimic the single threaded software refer-
ence and a design with eight kernels working on different chunks of the entire data.
Again, the runtimes scale almost linearly with input size. Our implementation was
tested with up to 8 GB of input data. We compute the speedups in terms of improve-
ment in speed of execution compared to the software implementation using the sum
of AES-128 and AES-256 execution times and summarize the speedups in Table 4.4.

real memory contents synthetic random data
threshold δ 1 kernel 8 kernels 1 kernel 8 kernels

0 10.1 38.7 25.5 99.4
100 10.8 41.4 28.5 111.4
500 19.8 75.5 52.5 205.2

Table 4.4: Improvement in speed of execution (speedup) of hardware key search
over software implementation for 2 GB data.

4.3.4 Discussion

The single kernel hardware implementation performs between 10x and 52x faster
than the software version, depending on the input data and threshold parameters.
Notably, this variability comes purely from the software implementation. Since the
hardware uses a throughput-optimized deterministic design, its performance is in-
dependent of the input data and any error threshold. Actually, checking close to 2
billion candidate key schedules in 2 GB of data at a clock frequency of 250 MHz and
a throughput of one candidate per cycle let us expect a runtime of 8s in the best case.
Our measured runtimes of 10.6s comes close and includes the runtimes of the host
code and for streaming the data between CPU and FPGA, where it is not perfectly
overlapped with the computation times.

Replicating the kernel eight times yields an additional speedup of 3.85x over
the single kernel hardware implementation. Considering the replication factor and
clock frequencies, we would have expected a speedup of 5.4x in compute through-
put. Inspecting the discrepancy, we note that the result output for 2 GB of input data
(one byte per position) is 4 GB (two-byte short integer for the error sum). At a total
runtime of 2.75s, this corresponds to a bandwidth of 1.45 GB/s, which approaches
the 2 GB/s bandwidth that the PCIe 2.0 connection to the FPGA card can deliver.
Thus, for further acceleration, we need to overcome this bandwidth limitation, for

4.4. Chapter Conclusion 35

example by filtering results on the FPGA or by encoding them more efficiently, pos-
sibly with some form of compression.

The high-level parallelization strategy applied to hardware can of course also be
used in software. Preliminary tests show that on physical CPU cores almost perfect
scaling is possible, whereas when using simultaneous multithreading hardly any
additional speedup is achieved without further optimizations. However, even when
assuming perfect scaling on all 12 physical cores of our test machine, still 4 to 17 such
high-end server systems would be required to match the performance of a single
FPGA accelerator card.

4.4 Chapter Conclusion

In this chapter, we have presented our intermediate findings on the acceleration
of the identification of secret key material in a stream of erroneous data using an
FPGA. Our hardware implementation achieves speedups of up to 205x compared
to the software reference. In order to make the data flow of our hardware imple-
mentation regular and to decouple the calculations from the user-defined threshold
δ, we changed the design to a streaming application. The new design provides the
total error sum ∑ ∆(D, R) for every position in the data stream. The advantage of
this redesign is that the application is independent of δ and that the size of the input
corresponds to the size of the output times two. The host application can optionally
analyze the complete output after the calculation and, depending on the actual out-
put, filter the most promising candidates.

Once a potentially decayed key schedule is identified as a promising candidate,
the actual secret key needs to be reconstructed by correcting the bit errors caused
by the side-channel attack. While searching secret key material served as a good
starting point to introduce the case study and hardware acceleration with FPGAs,
key reconstruction is essentially a branch-and-bound tree search procedure. The
computation is highly irregular and thus not a natural fit for FPGAs. This problem
will be addressed and accelerated stepwise in the following chapters.

37

Chapter 5

Branch-and-Bound with
Reconfigurable Hardware

In this chapter, we present the main concepts for a general hardware design for us-
ing branch-and-bound (B&B) with FPGAs. Following our cross-cutting case study
of side-channel attacks, we discussed in Chapter 3 that the key material acquired
during an attack probably contains bit errors, e.g. due to memory decay. Given the
possibility of bit errors, cryptographic keys may not conform exactly to the expected
values. Hence, the secret key cannot be obtained immediately and reconstruction
techniques are required to compensate the bit errors and get the secret key. The key
reconstruction is based on traversing a large, highly unbalanced and dynamically
growing search tree in order to find a feasible or optimal solution. The algorithmic
idea forms a perfect example to study the branch-and-bound design flow for recon-
figurable hardware. Nonetheless, it is a very unusual and insufficiently understood
problem for FPGAs, because the computation and algorithmic structure is very ir-
regular.

The approach and results discussed in this and the following chapters are pub-
lished and presented in a peer-reviewed conference article [2] in the International
Symposium on Field-Programmable Custom Computing Machines (FCCM), the pre-
mier A-ranked conference on capabilities of FPGAs and other reconfigurable hard-
ware. Furthermore, an in-depth version has been peer-reviewed and published as a
journal article [1] in the ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), a highly relevant journal focusing on research with reconfigurable
systems.

The remainder of this chapter is structured as follows: In Section 5.1, we de-
fine the basic terms and traversal methods for a tree data structure. Then we give
a description of the branch-and-bound algorithmic pattern in Section 5.2. We ex-
plain and highlight the building blocks and variants of B&B that are important for a
general realization and specialties for hardware realizations. In Section 5.3, we intro-
duce the AES key reconstruction as the last and most difficult algorithmic challenge
of our case study. On the basis of the AES key reconstruction we develop a stepwise
process in Section 5.4, revealing how a B&B algorithm can be transformed and trans-
lated into a form suitable for an efficient implementation on an FPGA. We present
the application-specific details of the AES key reconstruction, but also lift the con-
cepts onto a more general level towards common B&B problems. Then we evaluate
our hardware design and compare the results to a software reference in Section 5.5.
Finally, we conclude this chapter in Section 5.6.

38 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

5.1 Basics and Common Terminology

In this section, we give a basic introduction to the common terminology used in the
rest of this thesis. Afterwards, the branch-and-bound algorithmic pattern and its
main building blocks are described.

5.1.1 Tree Data Structure

A tree is a well-known and widely used data structure to organize hierarchical data
or to model optimization problems [65]. A search tree [67] is a special, typically very
large subtype used for locating values or optimal solutions. The leaves of a search
tree represent potential solutions, while nodes represent intermediate steps towards
these solutions using edges that connect nodes. For many problems, the size of the
search space is tremendous, resulting in very wide and deep tree structures with
exponential growth.

0x00

0x02

0x080x07 0x09

0x01

0x050x04 0x06

0x03

0x0B0x0A 0x0C

root

parent

first-
child

next-siblingsubtree

leaf

5 3 7 weight

4 2 8 1 4 6 3 9 1

level 0

level 1

level 2

value

Figure 5.1: Visualization of a 3-ary search tree T3 of depth d = 3.

k-ary Search Tree A k-ary search tree Tk [239] is organized, as the name suggests,
in a tree where each node has a branching factor or degree of maximally k children
or is a leaf node without children. Figure 5.1 exemplary shows a 3-ary tree T3 and
labels the most important notations. Each node is associated with a value and each
edge has a weight, reflecting a cost or reward using the edge or playing a certain
move. In general, a full k-ary search tree Tk with depth d (number of levels) has a
total number of nodes of

|Tk| = k0 + k1 + k2 + · · ·+ kd =
d

∑
i=0

ki =
kd+1 − 1

k− 1
, (5.1)

indicating the exponential increase of nodes on each level. To give an intuitive in-
terpretation, Chess has an average branching factor k of about 35-38 [246], which
means that there are 35-38 legal moves on average at each turn. With an average
game length of about 40 turns per player, the full search space is already massive.
In perspective, the game Go has an average branching factor k of about 250 and the
average game length is doubled compared to Chess [17].

5.1. Basics and Common Terminology 39

In addition to a value, each node contains edges at least to its first-child, next-
sibling and parent node to be traversable. If an edge is missing, it is set to NULL: e.g.
the root node of a tree has no parent. In practice, typically more edges are introduced
to make the tree traversal more efficient using shortcuts, e.g. the parent can have
edges to all his direct children as depicted in Figure 5.1.

5.1.2 Traversal Strategies: Tree Structure and Search Path

There are different strategies to traverse a search tree towards a seeked or optimal
value. Each traversal starts at the root node and proceeds towards a leaf node, build-
ing a sequence of the used nodes called a search path. The most important strate-
gies for tree traversals are the breadth-first search (BFS), depth-first search (DFS) and
best-first search (BeFS) [97].

Breadth-First Search (BFS) BFS first explores all siblings on the present tree level l
before moving to all nodes on a higher level(l + 1). The traversal strategy is typically
implemented as a queue data structure using the first-in-first-out (FIFO) principle
to manage current search state. However, as the number of nodes on each level
increases exponentially by a factor of k, this strategy may become quickly infeasible
for larger search trees due to memory limitations of real systems.

Depth-First Search (DFS) In contrast, DFS builds a path that only explores one
node per level and tries to traverse as fast as possible towards a leaf node where fea-
sible solutions are located. If the leaf node is not the seeked or optimal value, back-
tracking to lower levels is used to continue the search. DFS algorithms are typically
recursively specified, because the single path of interest is built in an incremental
way. Therefore, the total memory requirements can be bound by the depth of the
search tree (depth d = logk(|Tk|) for a k-ary tree, see Equation 5.1) multiplied by the
branching factor k. Practical implementations use a stack data structure following
the last-in-first-out (LIFO) principle to manage the search state.

Best-First Search (BeFS) BeFS is considered an informed search, because it ex-
plores the most promising nodes first according to a specific rule, e.g. minimizing
or maximizing the weights of the edges used on the path. The actual level of a node
is of minor importance. The traversal strategy is typically implemented as a priority
queue, serving elements with lowest/highest weights first.

The strategy for traversing a search tree reflects a trade-off between maximizing
the knowledge about the search space while staying within the memory bounds of
a real computer system. In practice, strategies are also combined: e.g. starting the
search with a depth-first search (DFS) and switching to a breadth-first search (BFS)
on nodes close to leaf nodes. For the example 3-ary tree in Figure 5.1, a possible
sequence in which the nodes are explored by each strategy is the following:

BFS = (0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C)
DFS = (0x00, 0x01, 0x04, 0x05, 0x06, 0x02, 0x07, 0x08, 0x09, 0x03, 0x0A, 0x0B, 0x0C)

BeFS = (0x00, 0x02, 0x07, 0x08, 0x01, 0x05, 0x04, 0x09, 0x03, 0x0C, 0x0A, 0x06, 0x0B)

40 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

Besides the search path, which decides the order in which branches are taken,
the second most important property of trees for this thesis is the tree structure. The
tree structure defines the actual hierarchy of a tree, beginning with the root node
and followed by its children. Figure 5.1 shows one concrete tree structure, starting
at the node 0x00. Accordingly, all paths will start at this node, independently of the
traversal strategy. By defining another node as the root node, the search tree and the
possible path to traverse it would be completely different. By analyzing an actual
search problem instance, an optimized tree structure can be constructed to accelerate
the search procedure.

However, the exponential increase in the total number of nodes leads to a com-
binatorial explosion, making a plain brute-force search impractical with any of the
presented strategies and therefore quickly infeasible for larger search trees due to
memory and time limitations of real systems. The only way to face the combinatorial
explosion is to reduce the search space at each tree level by discarding unpromising
subtrees that have a very low probability to lead to the seeked value or an optimal
solution. In this thesis we focus on three techniques to improve the processing of
large search trees: The first one, branch-and-bound, is the main focus of this chapter
and will be explained next. The second, work stealing is used for dynamic distri-
bution of the work to several workers and will be the focus of Chapter 6; finally we
utilize instance-specific information to improve the performance for very hard problem
instances in Chapter 7.

5.2 Branch-and-Bound: General Idea

The branch-and-bound (B&B) search is the most commonly used algorithmic pat-
tern to solve combinatorial optimization or planning problems [169]. Branch-and-
bound appears in a variety ofNP-hard real-world problem domains, such as logis-
tics [265, 44], scheduling [137, 80], combinatorics [43, 212], decision processes [61],
planning [124, 125], and many others (see related work in Chapter 8).

Formally, the tackled problems can be defined as minimization or maximization
problems1 of an objective function obj(x), where x = (x0, x1, . . . , xd−1) are d variable
constraints that need to be found. Intuitively, each (xi)i=0,...,d−1 corresponds to the
node on the i-th level in the search tree that is reached through a specific, unique
search path from the root node using the nodes (x0, x1, . . . , xi−1). In the case of a
k-ary tree (see Section 5.1.1), each (xi)i=0,...,d−1 has k possible branches and d corre-
sponds to the depth of the search tree. For NP-hard branch-and-bound problems,
an exponential number of potential solutions are located on leaves of the search tree,
making a complete, brute-force search impractical.

The main idea behind the B&B pattern is to avoid an explicit enumeration through
all possible paths in the search tree by discarding unpromising subproblems early
on. This idea is illustrated in Figure 5.2. In (a), the total search space S including the
set of all feasible solutions is represented by the root node of the corresponding 3-ary
search tree. In (b), the set of feasible solutions derived from the root node is parti-
tioned into smaller, usually disjoint subproblems S0, S1 and S2 through imposition
of a new constraint for the first variable x0. These smaller subproblems S0, S1 and

1To keep the following description compact and without loss of generality, we focus only on mini-
mization problems.

5.2. Branch-and-Bound: General Idea 41

S

S

S0 S1 S2 S0 S1 S2

S10 S11 S12

S S

S2

S0
S1 S0

S10

S11

root node of
search tree

partitioned by branch
imposing new constraint

discarded by bound
leading to no or
worse solutions

total search space

S12
S2

(a) (b) (c)

x0

x1

Figure 5.2: Main idea of the branch-and-bound principle.

S2 satisfy the same constraints as S and are additionally constrained by the value
of x0 in each branch. Then each subproblem can be evaluated separately and sys-
tematically with the same principle of partitioning into smaller subproblems with
additional constraints for their descendants. The status of the search is described by
a pool of live or unexplored nodes (colored in yellow in Figure 5.2) and optionally
an intermediate best solution, if reached. Depending on the tree traversal strategy
(see Section 5.1.2) the next node to expand is selected from the pool. In (c), the sub-
problem S1 is selected and then further partitioned into the subproblems S10, S11 and
S12 by imposing a new constraint for the second variable x1.

The search process is continued until the seeked value or a provable optimal
solution is found, or the search process contains no live nodes in the pool. The ter-
mination and convergence towards a feasible solution can be guaranteed if the size
of each subproblem is getting smaller by adding more constraints and the number
of feasible solutions in the search space is limited.

The final key element of the B&B approach is the bounding function bnd(y) that
computes for any node y ∈ S a value representing a lower or upper bound of a
potential solution including y. With the help of the bounding function bnd(y) and
an intermediate best solution found so far, large parts of the total search space can be
directly discarded [50, 206, 168, 28]. In Figure 5.2 (c) the subproblems S0 and S12 (in
gray) are discarded by the bounding function, while the root node S and the inner
node S1 (in green) are compatible to the bounding function and added to the pool of
live nodes.

5.2.1 Algorithmic Pattern

Listing 5.1 shows the described branch-and-bound algorithmic pattern in pseudo-
code. Before the search process begins, an initial feasible solution can be optionally
computed by the function COMPUTE_INITIAL_BOUND() with the help of a heuristic to
serve as an intermediate bound (line 2). In line 3, the pool of live, yet unexplored
nodes is populated with the root node, where the search always starts.

42 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

1 # Initialization.
2 bound ← COMPUTE_INITIAL_BOUND(root)
3 pool ← { root }
4 solution ← NULL
5
6 # Main loop.
7 while pool 6= ∅ :
8 # Select node to process from pool.
9 cur_node ← COMPUTE_BRANCH(pool)

10 pool_remove(cur_node)
11
12 # Compute additional information inferred by selected node.
13 INFER_KNOWLEDGE(cur_node)
14
15 # Compute bound inferred by selected node.
16 cur_bound ← COMPUTE_BOUND(cur_node)
17
18 # Validate , if current bound is valid.
19 if check_bound(cur_bound , bound) == VALID :
20 # Check , if the seeked value or better solution is found.
21 # Update bound and store solution accordingly.
22 if solution_found(cur_node , cur_bound , bound , solution) :
23 continue
24
25 # Otherwise , generate next nodes to process and add to pool.
26 cur_node_children ← GENERATE_LIVE_NODES(cur_node)
27 pool_add(cur_node_children)
28 else:
29 # Node and subtree cannot lead to a better solution.
30 discard(cur_node)

Listing 5.1: General algorithm for (lazy) branch-and-bound with the five essential
operations highlighted.

The main loop in line 7 iterates over the total search space as long as the pool
of unexplored nodes is not empty. In each iteration step, the next node to process
(cur_node) is selected from the pool by the function COMPUTE_BRANCH and the selected
node is removed from the pool (lines 9–10). Then the additional constraints inferred
by the selected node are computed in line 13 by the INFER_KNOWLEDGE function. Af-
terwards, the bounding function is computed for cur_node by the COMPUTE_BOUND
function. If the computed bound exceeds the initial bound or the current best solu-
tion, the selected node and all descendants are discarded from the search, because
they cannot lead to a feasible solution (lines 28–30). In the previous example in Fig-
ure 5.2 (c), the subproblems S0 and S12 colored in gray are discarded by the bounding
function. If, on the other hand, the computed bound value is valid, the algorithm
checks if a better solution or the seeked value is found. If this is the case, the bound
is updated, the found solution is stored and the search continues (lines 22–23). Oth-
erwise, the GENERATE_LIVE_NODES operation in lines 26–27 generates the next nodes
to process and adds them to the pool of live nodes. The partitioning of the search
space into multiple subproblems is represented by the branches in the search tree
(see Figure 5.2 (b) with branches to S0, S1 and S2).

The presented variant in Listing 5.1 is named lazy branch-and-bound, because
the generation of the next nodes to process (line 26) is performed after the bound
operation [65]. This variant is used when the next node to be processed should be of

5.2. Branch-and-Bound: General Idea 43

the highest depth in the search tree (following the DFS principle, see Section 5.1.2).
In contrast, the eager branch-and-bound variant calculates the bounds as soon as
possible without selecting a specific node to process. Choosing between the vari-
ants creates an interesting trade-off between the number and type of live nodes in
the pool. The nodes are either raw (without a computed bound, leaving additional
computational efforts) or already bounded and ready for further expansion. Select-
ing the right strategy is especially important for the parallelization of branch-and-
bound to generate a good granularity of work items to distribute, which is the focus
of Chapter 6.

Depending on the problem domain and instance, one can implement numer-
ous custom variants for the five essential operations highlighted in Listing 5.1 to
construct the most promising algorithmic search pattern dynamically with lazy or
eager variants. These essential operations are discussed briefly with more details
in the next paragraphs and afterwards applied to the case study accompanying this
thesis.

1 COMPUTE_INITIAL_BOUND(root): Compute Initial Bound An intermediate
feasible solution is computed to receive an initial bound in order to discard
unpromising subproblems as early as possible and reduce the search space. Be-
sides very problem-specific heuristics, general approximation techniques [33]
such as simulated annealing [273], tabu search [109] or genetic algorithms [77]
are typically used. If no heuristic exists, the initial bound is set to +∞ or −∞.

2 COMPUTE_BRANCH(pool): Select Branch The selection of the next node to
process from the pool of live nodes follows the tree traversal strategies dis-
cussed in Section 5.1.2. The depth-first search (DFS) variant is useful if no
initial bound is available, because with DFS the search process reaches leaf
nodes as fast as possible and therefore produces a feasible solution and an ini-
tial bound. Otherwise, a combination of the search strategies is useful to reflect
the trade-off between the number of live nodes in the pool and the memory ca-
pacities of the actual system. The selection of a branch comes with the addition
of constraints, often in form of assigning values to variables.

3 INFER_KNOWLEDGE(cur_node): Compute Further Information Based on the
constraints added by selecting a particular branch in the previous step, addi-
tional information can be inferred.

4 COMPUTE_BOUND(cur_node): Discard Infeasible Subproblems In order to
avoid the combinatorial explosion during the search process, the bounding
function bnd(cur_node) is the key component. The function tries to bound
each selected node as close as possible to the optimal value (called a tight
bound). However, computing the correct or very tight value is usually NP-
hard itself and therefore bnd(cur_node) is usually also a heuristic and obliges
the trade-off between quality (tight bound) and time (efficient estimation). The
bound operation is highly application-specific and could be an upper or lower
threshold. To be useful in practice, the bounding function typically has the
following properties:

44 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

• If cur_nodep is the parent node of cur_node, then the bounding function
is monotonic: bnd(cur_nodep) ≤ bnd(cur_node). The bound value in-
creases (or does not get smaller) by adding more information through
additional constraints. The bound value of the parent holds as a lower
bound for the value of any solution implied by the descendants of the
node. For maximization problems, the inequality symbols are inverted.

• For all leaves, the potential solution derived from the bounding function
leads into a feasible solution of the original problem: bnd(xd) = obj(xd),
where x is a leaf node and d the depth of the search tree.

5 GENERATE_LIVE_NODES(cur_node): Subdivide the Search Space If a solu-
tion is not found yet, the next live nodes to process are generated and added
to the pool. Depending on the tree traversal strategies the nodes can be on the
same level as the current node, on the next higher level towards a leaf node or
on any other level that is promising.

5.2.2 State Machine Design for Reconfigurable Hardware

The first challenge is to translate the branch-and-bound (B&B) algorithmic pattern
with the five essential operations described above into a hardware design. As B&B
algorithms always consist of the same general elements, we are able to develop a
general finite state machine (FSM, see Figure 5.3) for the main loop that represents
each operation in an FSM state.

The first operation COMPUTE_INITIAL_BOUND 1 is optional and only executed at
most once to compute the initial bound by a heuristic and therefore located on the
host CPU, while the other, computationally intensive operations 2 - 5 are located
in reconfigurable hardware.

The superstate PROCESS corresponds approximately to the while loop in List-
ing 5.1. It contains several substates: The state COMPUTE_BRANCH 2 is responsible
for selecting the most promising live node from all possibilities in the pool. After-
wards the further knowledge is inferred by the INFER_KNOWLEDGE 3 state. Next,
the state COMPUTE_BOUND 4 is responsible for pruning the search space, going back
to the COMPUTE_BRANCH 2 state if the currently considered branch with the corre-
sponding bound cannot lead to a feasible solution. If COMPUTE_BOUND 4 assesses
the currently considered branch as valid, but not a feasible solution yet, the state
GENERATE_LIVE_NODES 5 is entered. This state generates the next live nodes to pro-
cess and adds them together with the current search context into the data structure
of the pool. The states responsible for operations on the pool data structure are
condensed under CHECKPOINTING. The checkpointing mechanism keeps track of the
current state of the search. A checkpoint added by POOL_ADD needs to contain all
information that is required by the COMPUTE_BRANCH 2 state to fully define the state
of the FSM, i.e. the used search path to the selected node of the search tree and the
corresponding bound.

5.3. Case Study: Secret Key Reconstruction 45

COMPUTE_BOUND
compute bound for node
and implied knowledge

COMPUTE_BRANCH

INFER_KNOWLEDGE
compute further knowledge
based on constraints added

check
bound

solution
found?

GENERATE_LIVE_NODES
next nodes with additional

constraints to process

yes:
SUCCESS

no

VALID

INVALID: discard

yes:
FAILURE

select node to process from
pool of live nodes

BOUND

CHECKPOINTING

BRANCH POOL_REMOVE
remove node from pool of

live nodes

POOL_ADD
insert search context to pool

of live nodes

COMPUTE_INITIAL_BOUND

optional: initial bound is
computed with heuristics

root node,
optional: initial bound

1

2

3

4

5

live
pool

empty?

no

PROCESS

Figure 5.3: General elements of a FSM that implements the main loop of the B&B
design paradigm (see Listing 5.1).

5.3 Case Study: Secret Key Reconstruction

The secret key reconstruction provides a perfect example to study the aforemen-
tioned concepts of the branch-and-bound algorithmic pattern in reconfigurable hard-
ware on a concrete application and to generalize the lessons learned to other prob-
lems. Reconstructing corrupted keys is the last necessary step in a side-channel at-
tack. The main idea of secret key reconstruction was proposed by Halderman et.
al. [126]. In this thesis, we use the improved variant proposed by Tsow [269] for AES
key schedules, because it is algorithmically closer to the branch-and-bound algo-
rithmic pattern and offers more optimization opportunities. Although the following
concepts can be applied for all AES key sizes with minor adaptations, we will de-
scribe them for AES-128 for simplicity and comprehensibility. We will describe the
software approach proposed by Tsow and explicitly point out and refer to the gen-
eral branch-and-bound algorithmic pattern described in the previous Section 5.2.

5.3.1 Basic Idea

The reconstruction algorithm receives an AES key schedule identified by the meth-
ods presented in Chapter 4. From the key schedule, the secret key cannot directly
be obtained due to bit errors caused by the side-channel attack, e.g. memory decay.
The main algorithmic idea is to exploit the bijective AES key expansion function
(see Section 3.3.2) that is used to compute the round keys derived from the master
key. The expansion function provides important redundancies that can be used as a
bounding function for the branch-and-bound algorithmic pattern.

46 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

Formally, the tackled reconstruction problem can be defined as a minimization
problem of the objective function obj(x), where x = (g0, g ∈ {0, 1, . . . , 15}) are 16
variable constraints of specific key schedule values that need to be found. Table 5.1
shows one possible allocation of the 16 byte positions (emphasized in bold) pre-
sented by Tsow [269]. Values for all remaining byte positions gi for i > 0 can be
derived from already fixed bytes following implication chains (described in next sec-
tion). The 16 byte positions for g0 are chosen such that they, together with the impli-
cations, determine a complete key schedule.

w 0 1 2 3

r
b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 00 1410 1310 1210 11 149
1 10 139 129 22 148 21 138
2 20 128 33 147 32 137 31 127
3 30 44 146 43 136 42 126 41 55 145
4 40 54 135 53 125 52 66 144 51 65 134
5 50 64 124 63 77 143 62 76 133 61 75 123
6 60 74 88 142 73 87 132 72 86 122 141 71 85 99
7 70 84 98 131 83 97 121 140 82 96 1010 130 81 95 109
8 80 94 108 120 1510 93 107 1110 159 92 106 119 158 91 105 118
9 90 104 117 157 103 116 156 102 115 155 101 114 154

10 100 113 153 112 152 111 151 110 150

w: word b: byte r: round

Table 5.1: One possible allocation for the position of the 16 byte values g0, g ∈
{0, 1, . . . , 15} (emphasized in bold) for AES-128. The remaining values gi for i > 0

are derived from implication chains to complete round 8.

To achieve this, the reconstruction algorithm proposed by Tsow [269] resembles
a depth-first search (DFS) and traverses the search space as shown in the left part of
Figure 5.4. The search space is a 256-ary search tree and has a fixed maximum depth
of d = 16 levels. The search space is partitioned into 256 possible branches in each
level g ∈ {0, 1, . . . , 15} of the tree by sequentially assigning (or guessing) a value for
g0 from all 256 possible values of a byte (0x00, 0x01, . . . , 0xFF) that is compatible
with a bounding function.

Reusing the terminology defined in Section 5.1.2, we want to emphasize two im-
portant connections: different positions for g0 in the key schedule result in different
tree structures, while the guessing order for the actual values for each g0 results in
different search paths. Accordingly, Table 5.1 shows one possible allocation for all
positions of g0, g ∈ {0, 1, . . . , 15}, while the sequential guessing of values for each
g0 from all 256 possible values of a byte (0x00, 0x01, . . . , 0xFF) is one possible search
path. We call a search using the allocation in Table 5.1 and incremental guessing
a static tree structure and static incremental search path. In this chapter, only the
static variants are used in software and hardware. In the following chapters we will
analyze concrete problem instances to further improve the search by building dy-
namic tree structures and dynamic search paths.

Each guessed value g0, g ∈ {0, 1, . . . , 15} corresponds to a specific position in the
key schedule and guessing a value corresponds to imposing a new constraint in the
search tree. If a valid value for g0 is found that is compatible to a bounding function,
the search proceeds on the next search tree level, sequentially guessing a value for
(g + 1)0. The compatible guessed bytes for the example in Figure 5.4 are colored
in green. For the first byte position 00 in Figure 5.4, the possible values are tried

5.3. Case Study: Secret Key Reconstruction 47

Byte position
g0

00
…

10
…

… … 20

150

…

…

Implication chain
gi with i > 0

11

21 22

all remaining
byte positions

…

k = 256:
256 children per node

leaf: feasible solution
compatible assignment

for all positions

valid value for
with compatible bound0x00 0x01 0x5A

0x00 0x01 0x02 0xE5

0x00 0xFF 0x00 0x71

0x00 0x2B

total search space:
initially empty
key schedule

00

discarded by bound
leading to no solution

searched
path x

none
bit flips induced

by guessed value

n1⇝0 n0⇝1

Figure 5.4: Search tree for the key reconstruction, starting at the root node and se-
quentially guessing compatible byte values in each level.

consecutively, starting with 0x00 and continued until the compatible value 0x5A is
guessed. Then the search proceeds with the next byte position 10.

Implication Chains All guessed values for byte positions g0, g ∈ {0, 1, . . . , 15} are
progressively combined using the inherent structure of a key schedule (the key ex-
pansion function of AES depicted in Figures 3.4 in Section 3.3.1, page 21) to deduce
the values of other byte positions. Those implied byte positions, denoted as gi with
g ∈ {0, 1, . . . , 15} and i > 0 in Table 5.1, form the implication chains. As shown in
the right part of Figure 5.4, the guessed value for the first position 00 is only con-
strained by the corresponding decayed byte value at the same position. While the
guessed value for the second position 10 is constrained by the decayed byte at the
same position and another implied value 11. The value for the byte position 11 can
be implied using the complex key expansion rule (see Figure 3.4) after the values for
byte positions 00 and 10 are guessed. After additionally guessing the value for the
third byte position 20, implication of the byte position 21 (combining 20 and 10) and
subsequently 22 (combining 21 and 11) is possible. Note that for some implications
also the inverse variants of the expansion rules are required, resulting in a backward
calculation inside the key schedule. The number of possible implications depends
on the byte position g0 and increases with each byte:

number_of_implications_for_position(g0) =

g if g < 11
10 if 11 ≤ g < 15
65 if g = 15

(5.2)

Recover Secret Key from Round 8 After all implications of the last byte position
150 are computed, the entire data for round 8 (highlighted in Table 5.1) of the key
schedule is known. From a single complete round key, the entire key schedule and
thus the actual secret key located in round 0 can be recovered. At this point 111

48 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

of the 176 bytes of the key schedule for AES-128 are determined. Table 5.2 shows
an optimal and maximally parallel ordering to compute the missing 55 bytes. The
idea to find such an ordering is to compute the missing values in parallel upwards
of round 8 and downwards of round 8. The empty positions represent the already
determined values. The other byte positions are labeled with letters from A till J.
The alphabetic order defines the sequence of computations. Positions with identical
letters are independent and can be computed in parallel. The letters highlighted in
bold (word 0) use the complex key expansion rule, which requires a memory access.
This constraint needs to be considered in the further study.

w 0 1 2 3

r
b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 J I H J I H J I H I
1 I H G I H G H G H
2 H G F G F G F G
3 F E F E F E
4 E D E D D
5 D C C C
6 B B
7 A
8
9 A B D
10 E B F D G E H

Table 5.2: Optimal sequence to complete missing values for the static allocation of
Table 5.1.

5.3.2 Software Approach

Listing 5.2 outlines the main function of the algorithm in pseudocode with the five
essential branch-and-bound operations highlighted. For the decayed key schedule
ks_Decayed in line 3 that was obtained from memory and contains erroneous bits, a
candidate schedule ks_Candidate is built up recursively calling the recoverKeyRec
function. In every recursive call, a value for the next byte g0 is computed in line 14
by getNextGuessedByte and all bytes that can be derived from the guessed byte are
computed in line 17 by computeImpliedBytes. If the extended candidate key sched-
ule still passes the bounding function isCompatible in line 20, the next recursive
call descends further into the search tree. Otherwise, or if no feasible key schedule
is found further down the tree, the next possible value for g0 is tried (loop in line
12). Computing the implied bytes and checking the compatibility consume the most
runtime in software and thus are crucial in order to gain performance [207]. The
positions of the guessed bytes in the key schedule are chosen according to the static
allocation in Table 5.1. After 16 bytes are guessed and checked for compatibility
along with all implied bytes, the candidate schedule ks_Candidate corresponds to
a feasible solution and can be returned as a valid AES key schedule in line 9. If the
master key in the first round key of the found solution does not decrypt the secret
data, the search can be continued to find the next feasible solution.

This idea of guessing and implying byte values to sequentially complete the key
schedule forms a 256-ary search tree, with exactly the properties introduced at the
beginning of this chapter. The algorithm is computation-bound. When guessing a
single value for one of these byte positions 00, 10, . . . , 150, all k = 256 possibilities are
tested in the worst case. The large branching factor on each level makes it necessary
to prune parts of the search tree to avoid a combinatorial explosion and to allow

5.3. Case Study: Secret Key Reconstruction 49

finding a solution in an acceptable amount of time. We use an error model as the
bounding function bnd(x) to prune the search tree, eliminating or bounding guesses
for bytes (or subtrees of the search space) that cannot lead to a feasible AES key
schedule. The details of the bounding function will be discussed in the next section.

1 # Key schedule obtained from memory
2 # contains erroneous bits caused by memory decay.
3 KeySchedule ks_Decayed
4 # Optional: COMPUTE_INITIAL_BOUND
5
6 recoverKeyRec(KeySchedule ks_Candidate):
7 # After 16 guesses a feasible solution is found.
8 if (ks_Candidate.getNumberOfGuessedBytes () == 16):
9 return ks_Candidate.getKey ();

10
11 # Impose next constraint.
12 for (i = 0 to 255):
13 # Select next branch to process: COMPUTE_BRANCH
14 g0 = ks_Candidate.getNextGuessedByte(i)
15
16 # Set guessed byte and compute implication chain: INFER_KNOWLEDGE
17 ks_Candidate.computeImpliedBytes(g0);
18
19 # Check bounding function: COMPUTE_BOUND
20 if(ks_Decayed.isCompatible(ks_Candidate)):
21 # If bound holds , continue down the tree: GENERATE_LIVE_NODES
22 key = recoverKeyRec(ks_Candidate)
23 if (key != NULL):
24 return key;
25 else:
26 # Otherwise , discard selected node and whole subtree.
27 return NULL;

Listing 5.2: Recursive algorithm for key reconstruction of AES-128 keys with the five
essential branch-and-bound operations highlighted.

5.3.3 Bounding the Search Space: Error Model

At a basic abstraction, the bounding function isCompatible in line 20 of Listing 5.2
reflects the probability that a guessed value (a candidate for the correct value) has
decayed into the observed value (in the memory image). Therefore, the goal of the
bounding function bnd(x), together with the objective function obj(x), is to minimize
the difference in terms of number of bit errors between the guessed and the decayed
key schedule. This increases the likelihood to discard unpromising candidates and
to find a feasible solution in a reasonable time. For our case study, the bounding
function that is applied by the isCompatible function is also called an error model.

The error model for our case study receives the two key schedules as input: the
found, decayed key schedule ks_Decayed and a possible candidate key schedule
ks_Candidate. The error model uses the defined rules from Section 3.2 to determine
whether the two key schedules are compatible with each other or not. The compat-
ibility in the error model under consideration determines whether all bytes of the
candidate byte can decay at all to the found bytes from the decayed memory image.
Figure 5.4 shows how different bit flips are induced by assigning different values for
each each byte. In this way, invalid candidates can be immediately determined and

50 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

excluded. If a guess for a byte is compatible, the search proceeds in the next tree
level. This reduces the search space considerably and only then can the problem be
calculated in a practicable way without a combinatorial explosion.

Note that for better performance and in contrast to the original proposal by
Tsow [269], in practice we only check the compatibility of the guessed and all im-
plied values in each level. All remaining values are already checked and reflected
by the bound values.

5.4 Branch-and-Bound in Hardware

In the beginning of this chapter, we introduced the B&B principle and emphasized
that our case study can be described as a B&B problem. In this section, we bring
both concepts together and describe the implementation of a B&B algorithm in hard-
ware. We use the AES key reconstruction as our case study to show the relationship
between the general branch-and-bound operations and the application-specific real-
ization in reconfigurable hardware. More details on the AES-specific implementa-
tion can be found in the original papers and our previous publications on AES key
reconstruction [2, 1].

5.4.1 Software Translation: Concrete Finite State Machine

The first challenge is to translate the recursive branch-and-bound algorithm from
Listing 5.2 into a form suitable for reconfigurable hardware. Combining the general
state machine design for branch-and-bound developed in Section 5.2.2 and having
the application-specific branch-and-bound elements identified in Listing 5.2, we are
able to create a concrete FSM that implements the recursive AES key reconstruction
as depicted in Figure 5.5.

CHECK_COMPATIBILITY
apply error model

(PAD, EVT)

COMPUTE_BRANCH

COMPUTE_DERIVED_BYTES
build implication chains

gi with i > 0

is
compatible? solution

found?

GENERATE_NEXT_NODES
next nodes with additional

constraints to process

yes:
SUCCESS

noVALID

INVALID: discard

yes:
FAILURE

guess next node
g0 : [0 … 255]

STATE STACK
FOR CHECKPOINTINGGUESS_NEXT_BYTE

POOL_REMOVE
remove node from pool of

live nodes

POOL_ADD
save current search context

in pool, go to next level

live
pool

empty?

no

n1⇝0 n0⇝1

root

E6
00

10

…

5B n1⇝0 n0⇝1

n1⇝0 n0⇝1

g0
top-of-stack

(TOS)

remove add

State Stack

Figure 5.5: Concrete FSM that implements the recursive AES key reconstruction
based on the branch-and-bound design paradigm.

5.4. Branch-and-Bound in Hardware 51

5.4.2 Selecting Branches

The superstate GUESS_NEXT_BYTE of the FSM corresponds approximately to the for
loop of the recursive algorithm that tries all possible values for the guessed byte g0 ∈
{0, 1, . . . , 255} in sequential order. The superstate keeps track of the current level of
the search tree and determines which byte is to be guessed next according to the
search path. It contains substates to set the guessed byte (COMPUTE_BRANCH), to com-
pute all implied bytes and to perform the compatibility check. The latter two con-
sume the most runtime in software and thus are crucial in order to gain performance.
The tasks inside those substates COMPUTE_DERIVED_BYTES and CHECK_COMPATIBILITY
differ in each level not only by their inputs, but also in the type and number of im-
plication steps to apply for the former state and in the number of new bytes to check
for the latter level (see implication chains in Section 5.3.1).

5.4.3 Computing Inferred Knowledge: Implication Chains

For the reason that all levels differ, we decided to implement the mentioned two
states of the FSM, COMPUTE_DERIVED_BYTES and CHECK_COMPATIBILITY, as separate
subcircuit for each of the 16 different reconstruction levels, one for each level. This
saves the latencies for selecting the inputs and enables optimization of their data-
paths for their specific tasks. Additionally, we gathered statistics about how often
each level is reached depending on the bit flip rate (see Figure 5.6) and found that
levels 8 and higher are typically reached at least three orders of magnitude less fre-
quently than the most frequent ones (levels 2 to 4). Therefore the more frequent
levels are optimized with elaborate combinational datapaths, whereas multi-cycle
implementations are chosen for levels 8 and higher in order to minimize their im-
pact on the clock frequency.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
level of the search tree

102

104

106

108

nu
m

be
r o

f a
cc

es
se

s 15% error rate
10% error rate
 5% error rate

Figure 5.6: Number of times each level is reached for 256 test cases.

Computing the implied bytes follows the static allocation shown in Table 5.1. As
motivated before, for each level we hardcoded all its implications into one subcircuits.
This also allowed us to hardcode the round constants RCon (required in the complex
key expansion rule) into the subcircuits to save accesses to BRAM, since in each level
at most one known round constant is used. Note that all implied bytes of each level
depend on each other, so for the example allocation in Table 5.1 after guessing 150,
first 151 needs to be derived from 150 and 114, before 152 can be derived from 151
and 115. All derivation operations that only apply the simple XOr operation are
easily combined into a single-cycle combinational path, for example from 150 all the

52 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

way left to 153. After hardcoding the round constants RCon for each level, the op-
erations of the complex expansion rule can also be merged into this combinational
path. However, this additionally requires us to store the data for the substitution
operation SBox in distributed LUT RAM that can be accessed without a latency cy-
cle. The result of an SBox-LUT operation can immediately be used for the adjacent
computation in the same cycle and does not require a waiting cycle, in contrast to
the BRAM accesses. With 256 bytes, the SBox table is slightly larger than a typi-
cal use case for LUT RAM, but easily tolerable for the short and frequent levels of
the COMPUTE_DERIVED_BYTES state. With this optimization, we were able to imple-
ment single-cycle combinatorial datapaths for the most frequent levels 0 to 7. For
the longer and conveniently less frequent levels 8 and higher, we instead employ
BRAM for the SBox lookup, splitting the state into a chain of substates, each one
ending with a read request SBox-Req and starting with the corresponding read in
the next cycle, indicated by the clock signal between the sub-levels. In the upper
part of Figure 5.7, we illustrate level 3 as an example for a single-cycle datapath,
starting with the complex expansion rule to compute 31 followed by simple XOrs to
compute 32 and 33 in a single cycle. In the lower part of the same figure, level 15 is
computed as an example for a multi-cycle datapath. In the first cycle, the implica-
tions 151-153 are computed and the SBox-LUT read request is issued. Then, in the
next cycle, the value is available and 154 is computed as the first byte of the next sub-
state, along with 155 to 157 which follow combinatorially. Afterwards, the substate
ends with the next read request to compute 158.

lev
el

3
sin

gl
e-

cy
cle

30 33
g0

implications

20

XOr

31 32

21

XOr

22

XOrXOr

Rcon
[3]

SBox-LUT

152151

114

XOr

115

XOr

150 153

116

XOr

117

XOr SBox-Req SBox-Rsp

154

118

XOr

g0

implications

clk

lev
el

15
m

ult
i-c

yc
le

…

…

… clk clk

clk

1510

clk

Figure 5.7: Illustration of datapaths for level 3 (single-cycle combinational path us-
ing SBox-LUT) and level 15 (multi-cycle combinational path using BRAM) of state

COMPUTE_DERIVED_BYTES.

5.4.4 Checkpointing Tree Traversal

Since for our case study the recursion depth is limited to 16 levels, we are able to
design a finite state machine where the current search tree node, which is implicitly
represented by the call stack of the recursive function in software (see Listing 5.2),
is translated into explicit tree nodes that are pushed to and popped from a 16-entry

5.4. Branch-and-Bound in Hardware 53

stack in the fast local memory on the FPGA (BRAM). Each of those tree nodes on
the stack stores the position inside the search tree along with all already guessed
and implied bytes of the candidate key schedule, as illustrated in Figure 5.5. For
the EVT error model we additionally need to store the sums of previous (consumed)
bit errors n̄1 0 and n̄0 1 as global information to correctly evaluate the bounding
function. In contrast to an execution in software, we would not gain performance by
using update and rollback mechanisms to save computations, because our stack has
a sufficient bitwidth to access an entire tree node in parallel.

In the DFS-style branch-and-bound search of our case study, the checkpointed
nodes correspond to an ascent or descent in the tree search (see example in Fig-
ure 5.4), keeping track of the current state: i.e. the current level of the search tree
(l ∈ {0, 1, . . . , 15}) and the next branch to consider (g0 ∈ {0, 1, . . . , 255}). The top-of-
stack (TOS) pointer holds the current level of the search, highlighted in Figure 5.5.
The checkpoints created by the state GENERATE_LIVE_NODES on the stack after a suc-
cessful compatibility check are used to generate the next live nodes to process, which
are used for backtracking as soon as all candidates for g0 on a level have been tried
and the considered branch is exhausted. A checkpoint needs to contain all informa-
tion that is required by the GUESS_NEXT_BYTE superstate. This is the current position
in the search tree (in our case all previously guessed byte values) as well as the next
branch that would be taken. To avoid repetition of calculations, we also include
all previously implied byte values and the current error counts in our checkpoints.
Since a checkpoint is created for each movement down along the search tree, the
number of elements on the stack implicitly represents the current search tree level.
It is important to understand that each checkpoint completely defines the current
state of the FSM. We will refer to the stack of checkpoints as state stack from now on,
see Figure 5.5.

5.4.5 Maintaining the Bound: Applying Error Model

The bound is used to prune the search tree. In our application it is defined by check-
ing the compatibility of the guessed and implied byte values against the decayed
key schedule: i.e. if the byte values could have decayed to the observed key sched-
ule in memory according to the error model. The state CHECK_COMPATIBILITY of the
FSM in Figure 5.5 is responsible to check this property after each guess and its cor-
responding implications. We implemented the CHECK_COMPATIBILITY state in two
variants, one reflecting the PAD error model and the other one implementing the
EVT error model (see Section 3.2).

For the PAD error model, each byte can be checked independently for its com-
patibility. It is compatible if the two bytes match, or if bits are only flipped towards
the ground state of the memory cell (see Lemma 3.2). In the CHECK_COMPATIBILITY
state, this can be checked in parallel in a single clock cycle for the guessed and all
implied bytes. For the EVT error model, at each guess the bit flips of g0 and all
implied bytes need to be summed up and compared to the expected values. The
expected values are computed on the host CPU and added as parameters n0 1 and
n1 0 to the search. This summation of bit flips is shown in Figure 5.8 and is similar
to a balanced adder tree. We need to compute two separate sums for bits flipped
in either direction 0 1 or 1 0, respectively, which is done in parallel. We use
adders with the specific bit-widths required to represent the highest possible bit flip
value at each level. Afterwards, we add the sums from the previous search level

54 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

d0 d1 d2 d3 d4 d5 d6 d7

c0 c1 c2 c3 c4 c5 c6 c7

+
+

+
+

+
+

+

2
1

3

4

bit error check
0 ⇝ 1

decayed byte at position of 30

+

guessed byte at 30

check implied byte at 31 against decayed byte at 31

check implied byte at 32 against decayed byte at 32

check implied byte at 33 against decayed byte at 33

+

4

+

5

6 +

prev_n0 ⇝ 1

≤

n0 ⇝ 1

10

10

10

next_n0 ⇝ 1

5
4

4

count number of errors 0 ⇝ 1 for level 3
30

31

32

33

number of expected bit errors
for entire key schedule

count number of errors 1 ⇝ 0 for level 3 +
prev_n1 ⇝ 0

≤

n1 ⇝ 0

10

10

10

next_n1 ⇝ 06
…

= next_n1 ⇝ 0 from level 2

custom adder tree
for level 3

Figure 5.8: Checking compatibility for level 3 with the EVT error model for bit flip
direction 0 1. The values are stored in registers.

prev_n0 1 (prev_n1 0, respectively) to the bit flips of those bytes that were guessed
or implied in the current level. If each value is less or equal to the expected values
for the entire key schedule n0 1 and n1 0, the guessed value for 30 along with the
implied bytes are compatible and passed to the next level.

The size of the required adder tree reflects the number of derived bytes in each
level (see Equation 5.2). Using this information, we added additional substates into
the CHECK_COMPATIBILITY state of our FSM to split the summation for levels 8 and
higher over multiple cycles. Otherwise, those levels become the critical path of our
design and reduce the maximal achievable clock frequency. Nevertheless, the EVT
error model still has a strong impact on our achieved clock frequencies, as shown
in the synthesis results of our reconstruction kernels for the two error models in
Table 5.3. Our implementation achieves 175 MHz on a Virtex-6 FPGA for the PAD
error model, but only 90 MHz for the EVT model.

5.5. Evaluation 55

AESKeyFixPAD AESKeyFixEVT
Used LUTs (%) 6.65 8.74

Used FFs (%) 5.06 5.04
Used BRAMs (%) 1.41 1.41

Used DSPs (%) 0.00 0.00

Achieved Frequency (MHz) 175 90

Table 5.3: Synthesis results of two key reconstruction kernels targeting a Virtex-6
SX475T FPGA.

5.5 Evaluation

In this section, we evaluate our basic hardware design and implementation devel-
oped in this chapter, which only uses the static reconstruction allocation from Ta-
ble 5.1 (page 46) and static incremental byte guesses. We show the raw overall po-
tential offered by FPGAs for a branch-and-bound problem by comparing the results
to a software implementation performing the same computations. Please note that
the results discussed in this section are based on our conference article [2]. The main
goal of the evaluation is to put our results in perspective to the state-of-the-art tech-
nique in software at the time of publication and to create a meaningful baseline for
the following chapters, where we apply advanced techniques to further accelerate
B&B problems with FPGAs.

5.5.1 Target Platforms

We executed the designs and implementations on two different platforms. The hard-
ware designs are executed on the Maxeler system introduced in Chapter 2. The soft-
ware baseline is mainly executed on the host processors of the same system. How-
ever, some very hard test cases would have exceeded the practicable runtime for
solving them on one single system. Therefore, we used also used a cluster of CPU
nodes. Results obtained by the CPU cluster are marked with **. In this section the
specification of both systems is described. The same target platforms are also used
for all further results from the following chapters. Therefore, we will refer back to
this section, if required.

PCIe

DRAM

M
em

or
y

C
on

tro
lle

rDRAM

x86 CPU
PCI Express

DFE

PC
Ie

MPC-C Platform
(FPGA Card)

Figure 5.9: Maxeler MPC-C platform architecture.

Maxeler Data Flow Computer

The target platform for implementing our hardware design is the FPGA-based Max-
eler MPC-C data flow computer system. This system is sketched in Figure 5.9 and
the corresponding programming model is described in Section 2.3. The system is

56 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

a two-socket Intel Xeon server system with 48GB of DDR-3 SDRAM with up to
four FPGA accelerator cards connected via PCIe. These FPGA cards feature a Xil-
inx Virtex-6 FPGA (XC6VSX475T) and 24GB of on-board DDR-3 SDRAM memory.
The host uses two 6-core X5650 CPUs supporting hyper-threading and running at
2.67GHz.

CPU Cluster

The target platform to execute parts of the software reference is a CPU cluster called
OCuLUS consisting of several hundreds of server nodes. We only use the CPU node
declared as small. Each of these nodes consists of two Intel Xeon E5-2670 CPU with 8
cores each running at 2.6GHz and provides 64GB of main memory. Hyper-threading
is supported, but disabled.

5.5.2 Error Metrics

In order to systematically evaluate the different designs and variants, a number of
test cases with varying error rates is required.

Independently of the concrete error model that we discussed in Section 3.2, there
are two different metrics in literature to describe the error rate of a found decayed
key schedule. Tsow’s [269] tests, which are limited to the perfect asymmetric decay
(PAD) model, are designed on the basis of an error rate dTsow that specifies for each
bit in the key schedule the probability to switch to its ground state. Let the ground
state be 0 throughout this section without loss of generality. Then an error rate of
e.g. dTsow = 60% means that around 60% of all bits are decayed, so if they have been
1 before they became 0 and if they have been 0 before, they remained 0. The latter
are clearly no bit errors, because a decay from 0 0 preserves the correct value and
all remaining ones can also be treated as correct exploiting the known bit lemma
(see Section 3.2.1). Due to the cryptographic properties of AES, a key schedule has
on average an equal amount of ones and zeros (see Appendix A). Thus, at an error
rate of dTsow = 60%, on average 50% of all bits have been zeros in the first place and
remained zeros, either after decay or not. Further 30% of all bits are flipped 1 0
and the last 20% remain ones. However, this rate of on average 30% bit flips 1 0
varies a lot depending on how the actual distribution of ones and zeros in each con-
crete key schedule is and how they are struck by the random decay process. These
considerations may affect the difficulty of the actual reconstruction task a lot with
Tsow’s decay metric, even for the same error rate.

The risk of having the same labeled tasks (e.g. a set of key schedules to recon-
struct with 60% error rate) with different difficulties can have an impact on the com-
parability of different approaches and may be misleading. Furthermore, the error
metric of Tsow only supports bit errors in one direction (e.g. 1 0), which excludes
the more realistic expected value as threshold (EVT) error model (see Section 3.2).
Therefore, we use a second error metric proposed by Wang [281]. The error rate
of Wang is defined as dWang = d1 0 + d0 1. dWang describes the total exact rate of
bit flips (e.g. dWang = 30% means that exactly 30% of all bits are flipped). The single
terms d0 1 and d1 0 describe the individual rates of zeros that became ones and ones
that became zeros, respectively. This allows to easily support the EVT error model.
To realize this error metric, we first determine the positions of the ones (zeros) in the
key schedule and then invert them according to the desired individual error rates

5.5. Evaluation 57

d0 1 (d1 0). Therefore we consider bit errors in both directions and the result differs
fundamentally for the same error rate compared to Tsow’s metric. When using this
definition of bit errors, the maximum error rate has to be much lower than the rates
used by Tsow, since the expected number of ones (zeros) in the key schedule is 50%
respectively, as argued above. Conceptually, Tsow’s metric is closer to the actual de-
cay process, whereas Wang’s model better captures the bit flip rates of decayed key
schedules retrieved from actual key search in memory. We use Tsow’s error rate d
only for the comparisons with Tsow’s results and otherwise utilize Wang’s bit flip
rates.

5.5.3 Evaluation Scenario

All key schedules used in this evaluation were created by first generating a key from
16 random bytes by reading from /dev/urandom, expanding it to a full 176 bytes key
schedule using the AES-128 key expansion as described in Section 3.3.2 and finally
randomly flipping single bits to simulate a memory decay according to one of the
discussed metrics by Tsow or by Wang with the required error rates.

Since our basic accelerator developed in this chapter follows only the static al-
location of Table 5.1 with incremental byte guesses, we always need to determine a
compatible byte at the same position for 00 of the key schedule (top left at address
0). The time needed for reconstruction depends on the value of the searched com-
patible value. If the searched compatible value to guess is large, the reconstruction
needs more effort because our state machine incrementally tries every possible value
(0–255) and reaches the correct value very late. Hence, we need to average over a
sufficiently large number of test cases to measure representative runtimes. There-
fore, we generate 10,000 random AES-128 keys for our performance tests with the
method described in the previous section. In Appendix A we show that the value
for 00 is equally distributed in the test cases. 10,000 decayed key schedules are also
used in related work [270, 141] and represent a realistic workload for real cold-boot
attacks. At a biflip rate of 30%, 422 bits of an AES-128 key schedule flip. In a con-
crete test, searching 1 GB of real memory contents for decayed key schedules with
up to 422 bit flips (δ = 422, see Section 4.1) resulted in 554 candidates. Extrapo-
lating this to 16 GB of RAM, 8864 candidates might occur in this example, which
would be approximated quite well by 10,000 key schedules. However, these num-
bers should only be considered as possible reference points and may greatly vary
with error rates, memory type, memory size and the software stack of the system
under attack.

5.5.4 Software Implementation

Since reference software was only partially available and had serious shortcomings
with regard to our tests, we implemented our own software reference. Tsow’s [269]
software is written in C, but only supports the PAD error model. Wang’s [281] soft-
ware supports both error models, but is written in Java and around one order of
magnitude slower than Tsow’s implementation. In order to achieve good perfor-
mance for our software, we implemented the reconstruction as an iterative algorithm
to avoid copy operations on the call stack during recursion steps. Additionally, we
introduced an improved guess procedure that only needs one instance of a candidate
key schedule (array) to perform the guessing and implying of bytes. As mentioned

58 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

before, we extend the candidate key schedule in-place according to the static allo-
cation from Table 5.1 on a valid assignment of g0 (and its derived bytes) and use a
rollback function to undo the changes respectively, if the computation on some level
is exhausted.

Figure 5.10: Visualization of the comparison of our C implementation to numbers
presented in the publication of Tsow (see Table 5.4).

102 103 104 105 106 107

runtime in seconds (s)

60%

50%

40%

30%

er
ro

r r
at

e
d T

so
w

on
e

da
y

on
e

we
ek

on
e

m
on

th

ha
lf

ye
ar

Tsow SW*
Our SW

error rate dTsow Sum Average St.Dev. Speedup
Tsow* SW 219.204 0.022 0.14030% Our SW 76.454 0.008 0.124 2.9

40% Tsow* SW 1,526.308 0.153 2.994
Our SW 474.249 0.047 0.471 3.2

Tsow* SW 32,551.469 3.255 55.56350% Our SW 11,602.430 1.160 25.752 2.8

60% Tsow* SW 1,638,788.166 163.879 3,753.608
Our SW 472,374.406 47.237 850.187 3.5

Runtimes in seconds (s)

Table 5.4: Our C implementation executed on the host of the Maxeler system com-
pared to numbers presented in the publication of Tsow [269] (marked as Tsow*).

Our software implementation supports both PAD and EVT error models. It is
compiled with gcc-4.4.7 at the highest optimization level. We compared its PAD
variant with Tsow’s software numbers. Tests are executed with the static allocation
of Table 5.1 for 10,000 test cases for each error rate dTsow = {30%, 40%, 50%, 60%},
same as in the article of Tsow and according to his definition of an error rate dTsow.
Table 5.4 summarizes the results. A visual representation is depicted in Figure 5.10.
Note that the listed values (marked with Tsow*) are obtained from the publication
of Tsow and only serve for a rough comparison, since his test cases are not available
and the used platform and compiler differs. So both computations are performed on
different test cases, but with a sufficiently large and equal number of tests and the
same error metric. Due to our code optimization and probably to some degree also
due to our faster CPU, our software implementation achieves an overall speedup of
around 3x over Tsow’s implementation and is thus to the best of our knowledge the
fastest one using the presented reconstruction technique at the time of publication.

5.5. Evaluation 59

5.5.5 Performance Comparison of Software to Hardware

We compare our software implementation to our presented hardware accelerator,
also supporting both error models.

Figure 5.11: Visualization of the comparison of software versus hardware for the
PAD error model with 10,000 test cases each (see Table 5.5).

101 102 103 104 105 106 107

runtime in seconds (s)

30%
25%
20%
15%
10%
5%

er
ro

r r
at

e
d W

an
g

on
e

da
y

on
e

we
ek

on
e

m
on

th

ha
lf

ye
ar

CPU
FPGA

error rate dWang Sum Average St.Dev. Speedup
CPU 14.901 0.001 0.0075% FPGA 4.956 0.000 0.001 3.0

10% CPU 118.731 0.012 0.032
FPGA 20.095 0.002 0.008 5.9
CPU 174.841 0.017 0.08015% FPGA 28.437 0.003 0.015 6.1

20% CPU 659.96 0.066 0.772
FPGA 110.835 0.011 0.136 6.0
CPU 13,895.451 1.390 21.39925% FPGA 2,187.083 0.219 3.179 6.4

30% CPU** 2,599,493.566 259.949 3,912.294
FPGA 418,751.305 41.875 602.368 6.2

CPU** computed on cluster Runtimes in seconds (s)

Table 5.5: PAD error model for 10,000 test cases each. The error rate corresponds to
the metric of Wang (dWang = d1 0 + d0 1 with d1 0 = {5%, . . . , 30%} and d0 1 = 0).

The results for the perfect asymmetric decay (PAD) error model are summarized
in Table 5.5 with memory error rates varying from 5% to 30% according to the pre-
sented error metric by Wang. The visualization of the data is depicted in Figure 5.5.
The hardware achieves a speedup of around 6× for all bit flip rates except for the
lowest tested bit flip rate, where the individual runtimes are small enough to be af-
fected by call overheads to the hardware, which limits the speedups to 3× in this
single case. We consider this case as an outlier caused by small overall runtimes. For
this error rate, the transfer time of the data to and from the accelerator dominates
the overall computation time to recover the key schedule (495 ms on average). Our
accelerator successfully recovered all keys for all error rates. With an overall aver-
age speedup of 5.6x (6.1x without the smallest error rate) we expect for the highest
error rate dWang = 30% a runtime of around 27 days for the C implementation, if it is
performed sequentially on one CPU. Since this would exceed the practicability of a

60 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

real attack, we used a cluster of hundreds of CPU nodes (all equipped with the CPU
mentioned above). Each of the 10,000 test cases for this error rate was allocated to a
central scheduler, which assigned them to a free node. If the job gets a free resource,
the computation is performed exclusively without any concurrent task. Note that
the presented runtime (marked with **) for this error rate is the pure sum of each
runtime, without the allocation time to the central scheduler and the waiting for a
free resource. With this approach, the software implementation has a sequential run-
time of about 30 days. In comparison our hardware implementation solved all test
cases for all error rates within five days on a single FPGA card.

For expected value as threshold (EVT), we performed two test series, one with
a bit flip rate into the opposite direction of the ground state of d0 1 = 0.1% and
one with d0 1 = 0.2% with total memory error rates varying from 5% to 25%. The
results are summarized in Table 5.6 and Table 5.7. The visual representations are in
Figure 5.12 and Figure 5.13. The overall runtimes increase with higher bit flip rates
both for CPU and FPGA. However, the FPGA implementation apparently scales bet-
ter, so the speedups increase from 6.5× for d1 0 = 4.9% and d0 1 = 0.1% (first row
in Table 5.6) up to 27× for d1 0 = 24.8% and d0 1 = 0.2% (last row in Table 5.7). On
the basis of this observation we expect for the highest error rate of 25% a sequential
runtime of about 20 days for d0 1 = 0.1% and about 120 days for d0 1 = 0.2% in
software on one CPU. Similar to our approach for PAD model, we used the cluster of
900 CPU nodes to distribute this case and present the sum of each discrete runtime
(marked with **). The overall sequential execution time for the software implemen-
tation is over 23 days for d0 1 = 0.1% and over 123 days for d0 1 = 0.2%, whereas
the overall execution time on one FPGA card for all test cases and all error rates is
29 hours for d0 1 = 0.1% and four and a half days for d0 1 = 0.2%, respectively.

As discussed before, the reconstruction difficulty of the various decayed key
schedules differs a lot even for the same error rates. This is also reflected in the
high standard deviations in all result tables. Therefore, even when large amounts of
parallel resources are available, in our case of several hundreds software nodes, the
achievable runtimes for an entire workload of 10,000 candidates to reconstruct have
a lower limit given by the longest running individual reconstruction. In our experi-
ments, this was about three days for d0 1 = 0.1% and twelve days for d0 1 = 0.2%
in software, which is almost three times more than the entire runtime for all 10,000
reconstructions on one single FPGA accelerator. So in this regard, a single FPGA
system outperforms the utilized CPU cluster not only by orders of magnitude in as-
set cost and energy consumption, but still delivers more practical usefulness. As a
result, the advantage of the FPGA implementation grows in particular for difficult
problem instances when the runtimes become a practical issue.

5.5. Evaluation 61

Figure 5.12: Visualization of the comparison of software versus hardware for the
EVT error model with d0 1 = 0.1% (see Table 5.6).

102 103 104 105 106 107

runtime in seconds (s)

25%

20%

15%

10%

5%

er
ro

r r
at

e
d W

an
g,

d 0
1

=
0.

1

on
e

da
y

on
e

we
ek

on
e

m
on

th

ha
lf

ye
ar

CPU
FPGA

error rate dWang Sum Average St.Dev. Speedup

CPU 329.714 0.033 0.7285% FPGA 50.499 0.005 0.027 6.5

10% CPU 1,483.592 0.148 1.132
FPGA 161.574 0.016 0.109 9.2
CPU 10,428.147 1.043 10.30515% FPGA 881.636 0.088 0.832 11.8

20% CPU 95,249.41 9.525 142.731
FPGA 6,030.007 0.603 8.397 15.8
CPU** 1,996,589.189 199.659 3,071.69125% FPGA 98,269.133 9.827 117.238 20.3

d0 1 = 0.1% Runtimes in seconds (s)

Table 5.6: EVT error model with decay opposite direction of the ground state d0 1 =
0.1% and varying total error rate from 5% to 30%.

62 Chapter 5. Branch-and-Bound with Reconfigurable Hardware

Figure 5.13: Visualization of the comparison of software versus hardware for the
EVT error model with d0 1 = 0.2% (see Table 5.7).

103 104 105 106 107

runtime in seconds (s)

25%

20%

15%

10%

5%

er
ro

r r
at

e
d W

an
g,

d 0
1

=
0.

2

on
e

da
y

on
e

we
ek

on
e

m
on

th

ha
lf

ye
ar

CPU
FPGA

error rate dWang Sum Average St.Dev. Speedup

CPU 2,501.573 0.250 2.8455% FPGA 260.108 0.026 0.257 9.6

10% CPU 12,335.190 1.234 21.820
FPGA 1,089.177 0.109 1.776 11.3
CPU 75,171.739 7.517 83.37215% FPGA 5,095.195 0.510 6.530 14.8

20% CPU 773,118.366 77.312 909.462
FPGA 36,250.274 3.625 30.053 21.3
CPU** 10,636,553.810 1,063.655 13,973.62625% FPGA 392,347.162 39.235 335.880 27.1

d0 1 = 0.2% Runtimes in seconds (s)

Table 5.7: EVT error model with decay opposite direction of the ground state d0 1 =
0.2% and varying total error rate from 5% to 30%.

5.6 Chapter Conclusion

In this chapter, we started with the basic ideas of the branch-and-bound algorithmic
pattern. We presented the general principles by defining five main operations and
discussed required transformations to translate the operations into a finite state ma-
chine suitable for FPGAs.

We used the reconstruction of erroneous AES keys as our case study to show
our concepts on a real and relevant application problem. The reconstruction of er-
roneous keys is a crucial operation in cryptography and very time consuming when
trying to break encryption systems with side-channel attacks (for example, through
cold-boot attacks). In software, the reconstruction of the AES master key can be
performed using a recursive branch-and-bound tree search algorithm that exploits
redundancies in the key schedule for constraining the search space. In this chapter,
we investigated how this branch-and-bound algorithm can be implemented on an
FPGA. We showed how a recursive search procedure in software can be translated
step-by-step to general finite state machine states with an explicit stack that stores
the context for each recursion level.

5.6. Chapter Conclusion 63

For the designed FSM architecture, we showed where and how highly optimized
combinational datapaths can be created to accelerate in particular the processing
of the most frequently accessed tree levels, which is crucial to gain performance.
For the less frequent and more complex lower levels we showed a more resource-
efficient pipelined design.

Finally, we evaluated the basic design hardware design in different scenarios and
compared it to a competitive software reference. Even though both implementations
perform algorithmically exactly the same operations, our FPGA implementation is
able to utilize the low-level parallelization and spatial processing to outperform the
software reference.

Although this design is not instance-specific and processes the search tree se-
quentially with only one worker, it was the state-of-the-art in performance for AES
key reconstruction at the time of the publication [1]. However, the evaluation also
revealed that the computation time is mainly dominated by a few especially diffi-
cult problem instances. Even after applying the branch-and-bound algorithmic pat-
tern on an FPGA with a very tight and efficient bounding function, the search can
still require a significant amount of time. The main reason is that it is unknown in
advance how much computation time each generated subproblem needs. On the
other hand, the processing of the individual subproblems during the search with
the branch-and-bound principle is independent of each other. Hence, a method to
efficiently parallelize, distribute and process the computation should improve the
performance. Therefore, we investigate in the next Chapter 6 how a parallelization
strategy for B&B problems can be applied.

65

Chapter 6

Work Stealing with Reconfigurable
Hardware

Even after applying the branch-and-bound (B&B) algorithmic pattern with an effi-
cient bounding function, the search trees are typically very large and the sequen-
tial exploration of all promising subproblems with one single worker is very time
consuming. Hence, a method to efficiently distribute and process the computation
is required. In this chapter we describe the extension of our general, but sequen-
tial branch-and-bound design developed in Chapter 5 to allow parallelization of
the work in reconfigurable hardware. We describe the necessary changes and con-
siderations in detail to parallelize the branch-and-bound algorithmic pattern using
work stealing (WS) over several hardware workers. Work stealing is a well-known
parallelization strategy for parallel computers [34], but has hardly been studied for
FPGAs.

In Section 6.1, we give an introduction to the parallelization of a task using work
stealing and motivate why this strategy is very promising for branch-and-bound
problems. Then, in Section 6.2, we design and implement the required extensions
to the sequential state machine from the previous chapter to allow parallelization.
Besides the required architectural changes, we will focus on the coordination and
synchronization of the stealing. In Section 6.3, we evaluate the performance of our
design compared to a software implementation and finally, we draw a conclusion in
Section 6.4.

6.1 Motivation and General Description

Besides the trivial parallelization of branch-and-bound by starting another instance
of the search on another device or context such as described for password breaking
in Section 8.1.3, Lai et al. [166] discuss essentially three ways to introduce parallelism
into B&B operations:

1. Select more than one node to process from the pool of live nodes.

2. Compute additional knowledge and bound values inferred by the selected
node in parallel.

3. Use parallelism to generate promising live nodes.

The parallelism of type 1 corresponds to task-level parallelism, where the search
tree is explored in parallel. In Listing 6.1 we recall the general algorithm structure
and highlight the operations where parallelism can be introduced. The parallelism
of type 2 corresponds to a form of data-level parallelism [101], where operations

66 Chapter 6. Work Stealing with Reconfigurable Hardware

on subproblems (e.g. inferring knowledge and bounding the selected node) are ex-
ecuted in parallel, while the exploration of the search tree is sequential. In soft-
ware, there are several techniques available to implement and accelerate branch-
and-bound algorithms. One technique for acceleration is to parallelize the execution
on multiple CPUs. This can be done by statically dividing the tree into multiple
subtrees, each processed by a different worker (work sharing [145]). As it cannot
be known in advance how long a traversal of each subtree will take, this may lead
to workers running idle before a solution is found. Therefore a dynamic load bal-
ancing using work stealing [34, 84, 13, 58] is more powerful for the parallelization of
B&B algorithms. When a worker runs idle, it autonomously competes for new work
items by stealing them from others. A centralized distribution of work items is not
required.

In every parallelization strategy, instead of one there are, Nw workers. As a basic
abstraction of work stealing, every worker maintains an own data structure of work
packages. A work package is the smallest amount of work that can be addressed.
At the beginning, the processing can either start at one worker and is then further
distributed to the others or every worker receives some work packages to start with.
If a worker has processed all its work packages and becomes idle, it tries to gather
or steal a work package from another worker. Starting with a single package, the
execution may cause it to be split into two separate work packages: the continuation

1 # Initialization.
2 bound ← COMPUTE_INITIAL_BOUND(root)
3 pool ← { root }
4 solution ← NULL
5
6 # Main loop.
7 while pool 6= ∅ :
8 # Select more than one node to process from the pool of live nodes.
9 cur_node ← COMPUTE_BRANCH(pool)

10 pool_remove(cur_node)
11
12 # Compute additional knowledge and bound values inferred by
13 # the selected node in parallel.
14 INFER_KNOWLEDGE(cur_node)
15 cur_bound ← COMPUTE_BOUND(cur_node)
16
17 # Validate , if current bound is valid.
18 if check_bound(cur_bound , bound) == VALID :
19 # Check , if the seeked value or better solution is found.
20 # Update bound and store solution accordingly.
21 if solution_found(cur_node , cur_bound , bound , solution) :
22 continue
23
24 # Otherwise , use parallelism to generate next nodes
25 # to process and add to pool.
26 cur_node_children ← GENERATE_LIVE_NODES(cur_node)
27 pool_add(cur_node_children)
28 else:
29 # Node and subtree cannot lead to a feasible solution.
30 discard(cur_node)

Listing 6.1: General algorithm with operations highlighted where parallelism can be
introduced.

6.2. Extensions of the General State Machine 67

of the original work package and a new child work package. Each of the packages
may be split again recursively. Depending on the chosen strategy, the current worker
starts processing the child package or the continuation package. Other idle workers
may then steal the other work package correspondingly. After all the work is done,
the results are collected and the execution is complete. Work stealing is a common
load balancing technique when static division of labor (work sharing) is not feasible
(e.g. because work packages are of different sizes or the duration of their execution
cannot be estimated in advance, which is typically the case for branch-and-bound
problems). Hence, work stealing is a well-suited strategy for this kind of applica-
tion.

In the next section, we describe the required transformations and modifications
to parallelize the finite state machine (FSM) discussed in the last chapter, starting
with Section 5.2.2 to use all three types of parallelism.

FSM Logic
Hardware Worker 3

State Stack: Deque

POOL_REMOVE
remove from own

stack or steal work

…
00 10 20 30

5C

live
pool

empty?

FSM Logic
Hardware Worker 2

State Stack: Deque

POOL_REMOVE
remove from own

stack or steal work

…
00 10 20 30

live
pool

empty?

FSM Logic
Hardware Worker Nw-1

FSM Logic
Hardware Worker 0

FSM Logic
Hardware Worker 1

FSM Logic
Hardware Worker 4

State Stack: Deque

POOL_REMOVE
remove from own

stack or steal work

live
pool

empty? stealsthief

victim

steals
victim thief…

work packagebottom-of-
stack (BOS)

top-of-
stack (TOS)E6

00

10

…

5B n1⇝0 n0⇝1

n1⇝0 n0⇝1

g0

top-of-stack
(TOS)

remove add

bottom-of-stack
(BOS)

Figure 6.1: The original FSM is duplicated Nw times to create the required number
of hardware workers. The hardware workers expose their state stacks storing the

checkpoints to share the work items.

6.2 Extensions of the General State Machine

The first step to support work stealing in hardware is to create the hardware work-
ers that are able to maintain their data structure of work packages. In our work
stealing design, the original FSM developed in the last chapter as well as its state
stack (pool of live checkpoints) are duplicated Nw-times so that each FSM acts as
one hardware worker. Figure 6.1 shows schematically the replication of the FSMs
and indicates the communication that is required to handle the transfers to share
and steal work. To enable this communication, especially extensions to the accesses

68 Chapter 6. Work Stealing with Reconfigurable Hardware

through the POOL_REMOVE state are required.

The state stack from Section 5.4.4 in its previous version for one sequential worker
contained information about the parts of the search space that were already visited
or discarded. The position of the top-of-stack (TOS) in the state stack of the FSM
determined in which level of the tree the worker is currently located. Work pack-
ages located low on the state stack represent large subtrees and therefore tend to
contain more work than packages located higher on the state stack (see statistics in
Figure 5.6). To coordinate tree traversal between different workers an additional
bottom-of-stack (BOS) pointer is introduced that marks the level of the tree up to
which workers will backtrack when no solution in the considered branch is found.
This prevents workers from entering parts of the search tree that are examined by
other workers. By introducing this BOS pointer, the previous stack data structure to
handle the pool of live nodes becomes a double-ended queue (deque), see bottom
left of Figure 6.1. We define each entry on the deque between BOS and TOS as a
work package, which can either be processed by the worker itself or stolen by other
workers. Entering a deeper level of the tree by pushing the state to the deque is
equivalent to creating a new child work package and beginning to process it.

1 # Check if own deque self.deque contains work. If so ,
2 # load a work package from top-of-stack (TOS) and process it.
3 if COUNT(self.deque) > 0 :
4 PROCESS (self.deque.TOS)
5 else :
6 # Otherwise , try to acquire work from another workers.
7
8 # Check if work is available and if stealing
9 # would interfere with victim ’s deque access.

10 if (COUNT(victim.deque) == 1 and victim.state == POOL_REMOVE)
11 or COUNT(victim.deque) == 0 :
12 # Stealing is unsafe. Idle and try later.
13 idleCannotSteal ← true
14 else :
15 # Stealing is safe. Acquire and process
16 # work package from victim ’s bottom-of-stack (BOS).
17 idleCannotSteal ← false
18 # Create space on own deque.
19 self.deque.BOS ← victim.deque.BOS
20 self.deque.TOS ← victim.deque.BOS + 1
21 # Copy work package from victim ’s to own deque.
22 copy_work_package(victim.deque.BOS , self.deque.BOS)
23 # Remove work package from victim ’s deque.
24 victim.deque.BOS ← victim.deque.BOS + 1
25 # Load and process stolen work package.
26 PROCESS (self.deque.TOS)

Listing 6.2: Work stealing extension in POOL_REMOVE state. If the FSM has no elements
on own deque, it steals from a victim.

Listing 6.2 shows the work stealing extension of a worker entering the state
POOL_REMOVE of the FSM. If the bottom-of-stack and top-of-stack pointers of its own
deque are not identical (COUNT(self.deque) > 0, lines 3–4), the worker still has
work packages left on its own deque and continues with the processing at the TOS
position. Otherwise, the whole search subspace is explored and the worker needs to
steal packages from another worker (lines 6–26). Stealing work from a victim FSM

6.2. Extensions of the General State Machine 69

by a thief FSM is realized by copying the bottommost element from the victim’s state
stack to the corresponding position on the thief’s state stack (line 22) and increment-
ing the victim’s BOS by one (line 24). The BOS and TOS of the thief are set to the
recently stolen work package (lines 19–20). Moving the BOS of the victim ensures
that it will not enter the search subspace that is now explored by the thief.

00 5A00
…

00 E510
…

00 …20

30

71

00 42…

search tree managed
by worker 0 before stealing

01

01

01

01

worker 0 (victim): deque

E6 72 …

bottom-of-
stack (BOS)

top-of-
stack (TOS)

worker 1 (thief): deque

…

BOS

E6 72 …

BOS TOS

5B …

BOS TOS

copy_work_package()

00 10 20 30

00 10 20 30 10 20 30

00 10 20 30

…

5B

5B FF…

E6 FF

72 FF

43 FF

…

…

…

43 43

TOS

00

A

E

F

G

POOL_REMOVED

C

B

Figure 6.2: Stealing work by copying the bottommost stack entry.

The whole functionality of stealing work is shown in Figure 6.2 with the help
of an example of two workers. Before the stealing, worker 0 (the victim) has sev-
eral work packages in its deque A . The worker processes its own work packages
from the top-of-stack (TOS) pointer (line 4 in Listing 6.2). Each work package in the
deque has a distinct color in Figure 6.2 that represents a specific part in the search
tree B that is managed by this worker. The second worker 1 (the thief) reaches its
POOL_REMOVE state with an empty deque C . The thief tries to acquire a work pack-
age by stealing it from the victim’s deque D . Therefore, the thief allocates space on
its own deque E and copies the work package located at the bottom-of-stack (BOS)
pointer of the victim F . After stealing, the thief is responsible for the processing of
the part of the search tree labeled with G .

There are two major challenges in this approach: the choice of a victim FSM to
steal work from, and the safe synchronization between accesses to all the state stacks.
Both challenges are tackled in the next section.

6.2.1 Coordination and Synchronization of Stealing

A victim for stealing can be chosen uniformly at random among all available FSMs,
which is done in most software implementations and is known to be efficient [34].
Realizing a randomized approach in hardware requires access to all state stacks by
all workers, an arbitration mechanism and a pseudo-random number generator. The
practicability of this approach depends on the number of workers and the amount
of data stored on the state stacks.

70 Chapter 6. Work Stealing with Reconfigurable Hardware

Allowing all workers to steal from all other workers would require a large num-
ber of multiplexers. The number increases quadratically with the number of work-
ers Nw. For our work stealing implementation on FPGAs, we therefore do not use
a randomized approach but make the following simplification to reduce the hard-
ware footprint: The hardware worker x only steals work packages from its direct
neighbor (((x − 1) + Nw) mod Nw), i.e. workers are arranged in a ring topology
as depicted in Figure 6.1. This restriction simplifies synchronization of state stack
accesses between different workers, as only the worker itself and one of its direct
neighbors can access its state stack. During normal operation a worker only changes
the TOS of its own stack (line 4 of Listing 6.2) and a thief only the BOS of its victim’s
stack (line 24); therefore concurrent access is possible and safe in general. However,
if the victim itself is in the POOL_REMOVE state to fetch a work package and it is the
only one left on the deque, stealing would lead to a conflict. In this case, stealing
is postponed until the next clock cycle by raising the idleCannotSteal signal (lines
10–13).

Apart from the conserved synchronization effort, the ring structure allows to ef-
ficiently spread workers over a large area of the FPGA as long as they are placed
close to their two neighbors. At the same time, it is ensured that all workers are
eventually able to steal work packages. In our evaluation we show that our simpli-
fied stealing approach shows negligible impact on efficiency while allowing to add
additional workers with only constant additional resource costs.

6.2.2 Initialization and Termination

The initialization and termination of our extended work stealing FSMs require fur-
ther considerations. On initialization the whole search space (root node of the search
tree) is assigned to the first hardware worker 0. During processing the worker even-
tually finds compatible assignments confirming the bounding function and spawns
new work packages by pushing its state to its own state stack. If this is done, its
neighbor can steal the continuation of the first work package. Following this pro-
cess, eventually all workers have a neighbor with work packages to steal from. The
search space is dynamically distributed and work balancing is ensured by the work
stealing principle.

For the termination there are two possible conditions: either one worker has
found a feasible solution or all workers are idle and none of them has found a fea-
sible solution. In the first case the corresponding FSM that found a feasible solution
enters the SUCCESS state (see Figure 5.5) and its result gets transfered back to the host
computer. In the unlikely case that more than one FSM wants to enter this state in
the same clock cycle, the one with the lower ID gets priority. For the second case,
if the search is exhausted without any feasible solution, each FSM is extended by
an additional idleCannotSteal signal, which is asserted when the corresponding
worker becomes idle, no work packages can be stolen and no result has been found
(line 13 of Listing 6.2). As soon as this signal is set by all hardware workers, worker
0 enters the FAILURE state and the host computer is informed that no solution was
found and terminates the search.

With the described changes, we are able to extend our original hardware design
from Chapter 5 to use work stealing with several finite state machines. Each FSM is

6.3. Evaluation 71

able to work in parallel on different parts of the search space and dynamically obtain
work packages from other hardware workers.

6.3 Evaluation

In this section, we systematically evaluate our parallelization strategy using work
stealing and compare it with the static baseline implementation in soft- and hard-
ware from Chapter 5.

20% 40% 60% 80% 100%5%

Fraction of reconstruction time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F
ra

ct
io

n
of

 k
ey

 s
ch

ed
ul

es
 r

ec
ov

er
ed

Figure 6.3: Few key schedules dominate the runtime.

6.3.1 Evaluation Scenario

We modify our evaluation scenario in comparison to Chapter 5 and focus only on
the hardest problem instances. In this and the following chapters, we look only at
the EVT error model and assume an error rate of r1 0 = 29.9% and r0 1 = 0.1%,
leading to a total error rate of dWang = 30%. This total error rate is higher than all
cases studied but still allows extensive evaluation. We focus on particularly hard
reconstruction problems to show the potential of our different advanced strategies.
Choosing even higher error rates would render the comparison to our baseline in
software impracticable, because reconstruction of some key schedules would take
several weeks.

The runtime required for the reconstruction of a large number of key schedules
is very unevenly spread over the single key schedules. Figure 6.3 shows how the
total reconstruction time develops when the key schedules are processed in increas-
ing order of their difficulty1: 90% of all key schedules can be reconstructed in under
5% of the total required time, while the other 10% are accountable for 95% of the
required time.

1Note that the runtime is not known a priori and the key schedules were reordered after execution.

72 Chapter 6. Work Stealing with Reconfigurable Hardware

0 100 200 300 400 500 600
Number of evaluated key schedules

10

100

1000

10000

A
ve

ra
ge

 re
co

ns
tru

ct
io

n
tim

e
(s

)

Figure 6.4: Evaluating 512 key schedules provides stable results.

Due to the high error rate, an evaluation based on 10, 000 key schedules like in
the previous section would have been impractical. Using the baseline hardware im-
plementation for the reconstruction of 10, 000 keys would take 10,280,000s, which
corresponds to nearly four months. According to the results presented in Chapter 5,
the software solution is at least a magnitude slower and therefore would take more
than three years. Still, it is important to base the evaluation on a sufficient number
of key schedules to make sure that not only relatively easy but also very hard recon-
struction problems are considered. To determine how many key schedules should
be used in this evaluation of very hard problem instances, we observed the average
reconstruction time for a single key schedule depending on the number of evalu-
ated key schedules. Figure 6.4 depicts the results for 512 different key schedules. It
shows that the average reconstruction time varies significantly for the first 200 key
schedules, due to a rapid increase in the average reconstruction time as soon as a
particularly hard key schedule has to be reconstructed. Then the curve flattens out,
because even for hard key schedules the reconstruction time of a single key schedule
becomes negligible compared to the total runtime. For 512 key schedules the vari-
ance shows to be insignificant. Hence, we use the generated set of 512 key schedules
throughout the evaluation of the advanced techniques.

6.3.2 Results

The measured runtimes to reconstruct all 512 key schedules using work stealing are
shown in Table 6.1. The visualization of the data is depicted in Figure 6.5. To verify
the observed speedups we repeated the measurements using software implementa-
tions. As an evaluation of the software implementation on the host platform of the
Maxeler machine would have taken too long, we performed it completely on the
OCuLUS computing cluster described in Section 5.5.1. Figure 6.6 shows a visualiza-
tion of the observed speedups. We will use this visualization to show the impact of
our incrementally added features for the rest of this thesis.

6.3. Evaluation 73

Figure 6.5: Visualization of the reconstruction of 512 key schedules using work steal-
ing with a varying number of workers (see Table 6.1).

104 105 106 107

runtime in seconds (s)

B

A

on
e

da
y

on
e

we
ek

on
e

m
on

th

ha
lf

ye
ar

CPU FPGA 1 worker 4 workers 16 workers

B

A

CPU FPGA 1 worker 4 workers 16 workers

Number of Standard Total
Feature Set Workers Sum Average Deviation Speedup

A Baseline Software 1 5,399,100 10,545 65,056 1.0

B Parallelization using work stealing 4 1,286,770 2,513 15,630 4.20C
PU

—— '' —— 16 327,164 639 3,988 16.50

A Baseline Hardware 1 526, 453 1,028 7,271 1.0

B Parallelization using work stealing 4 173,806 340 2,414 3.02

FP
G

A

Runtimes in seconds (s)

Table 6.1: Reconstruction of 512 key schedules using work stealing with a varying
number of workers.

Our work stealing design can be used for an arbitrary number of workers. Due
to the increase of utilized chip area on the FPGA and overall complexity, routing
these designs becomes harder for higher numbers of workers, resulting in lower
achievable clock rates. We determined utilization and the highest achievable clock
rate for different numbers of workers, shown in Table 6.2. Assuming that Nw work-
ers achieve an ideal speedup of Nw times over a single worker, we calculated an
equivalent clock rate for a single worker for each design. For the shown values, the
highest overall performance is achieved using six workers. The resource utilization
for different numbers of workers shows that after a large rise in utilization for the
introduction of work stealing, only constant additional resources (around 12%) are
required for each additional worker.

1.0x 3.02x4 Workers
x 3.02

1.0x

16.50x

4.20x

16 Workers
x 16.50

4 Workers
x 4.20

FP
G
A

C
PU

Baseline Work StealingA B

Figure 6.6: Visualization of the incremental speedups achieved using work stealing.

74 Chapter 6. Work Stealing with Reconfigurable Hardware

Number of Clock [MHz] Single worker equiv. Used in
Workers Nw Utilization*** [%] Max Used Max Used evaluation

1 5.9 85 80 85 80 X
2 27.8 75 150
3 40.7 75 225
4 52.2 70 60 280 240 X
5 65.2 55 275
6 76.2 50 300

***Fraction of LUT-FF pairs utilized on a Xilinx XC6VSX475T

Table 6.2: Synthesis results for different numbers of hardware workers Nw.

As synthesis time significantly increases with the number of workers and the
target clock rate, we limited our design to four workers. For the same reasons, we
did not target the maximum achievable clock rates but chose 80 MHz for our single-
worker design and 60 MHz for our four-worker design. With these clock rates syn-
thesis times are below 2.5 hours per design.

Corresponding to the reduction in clock rate, we expect a 3× speedup for our
design using four hardware workers. We observed a speedup of 3.02× over a single
worker using work stealing, which perfectly fits our model.

The software implementation used as a reference utilizes the Intel Cilk Plus [102]
framework for implementation of the work stealing approach. During execution the
process is bound to four CPU cores using the taskset utility. The 4.20× speedup
observed in software is slightly above the expected speedup of 4× that could be
reached using four CPU cores.

We use the software implementation to determine the scalability of work stealing
with respect to our hardware implementation. Using all the available 16 CPU cores,
we achieve a speedup of 16.50× compared to the single-threaded implementation.
This shows the high potential of using work stealing for B&B applications. The
comparison to software also shows that our deliberate restriction of work stealing
onto direct neighboring workers has little or no negative impact in our use case in
terms of scaling.

6.4 Chapter Conclusion

This chapter presented the extensions of our basic sequential branch-and-bound
hardware design in order to allow parallelization of work over several hardware
workers using work stealing. We transformed our existing hardware design to use
a work stealing approach where several finite state machines (FSMs) work in par-
allel on different parts of the search tree and autonomously synchronize to obtain
work packages from other workers when becoming idle. We described the required
changes on the state stack to enable concurrent access to the work packages stored.
Furthermore, this chapter discussed the fundamental principles to coordinate and
synchronize the stealing process across several workers including the initialization
and termination phases.

In comparison to the sequential design from Chapter 5, we achieved a speedup
of about 3.02× using four hardware workers on one FPGA card. Our evaluation
showed that speedups proportional to the number of workers can be expected if the

6.4. Chapter Conclusion 75

clock rate can be kept constant. The number of workers was bounded by synthesis
times and achievable clock rates and should scale with upcoming technology.

The combination of our basic branch-and-bound hardware design with the work
stealing extension enabled us to distribute the work to hardware workers. Another
opportunity for acceleration is the fact that the organization of the search (i.e. the
starting point and order of branching) and the computations within each level can
heavily impact the runtime. This effect can be amplified for a particular problem in-
stance such that a specific algorithm may be efficient to solve some instances but may
be inefficient for others. All our previous designs use the static tree structure and
static search path by incrementally guessing compatible values (see Section 5.3.1).
However, a custom tailored, instance-specific tree structure for a given problem in-
stance might lead to a significant speedup compared to a static, general solution.
In the next chapter we investigate how instance-specific computing (ISC) can be ap-
plied to improve the performance for especially hard problem instances by utilizing
instance-specific information.

77

Chapter 7

Instance-Specific Computing with
Reconfigurable Hardware

The structure of a search tree representing the search space and the order in which
branches are explored can heavily impact the time required to find a feasible solu-
tion. Depending on the concrete realization of the branch-and-bound (B&B) oper-
ations discussed in Section 5.2.1, different subtrees may contain different elements,
subtrees may be arranged differently, or the order of live nodes on the pool may
vary. These variations may cause a particularly long runtime for some cases, where
the bounding function cannot exclude most of the unpromising parts of the search
tree early on. This has also a direct impact on the state stack that is the key element
for the parallelization with work stealing. In this chapter, we describe how different
search trees can be dynamically constructed by utilizing instance-specific informa-
tion to improve the search process with reconfigurable hardware.

In contrast to the extensions that we discussed in Chapter 6, e.g., the paralleliza-
tion of branch-and-bound in hardware using work stealing, the concepts presented
in this chapter are by their very nature tightly bound to a specific application and
its instances. Therefore, we recall our case study, the AES key reconstruction, from
Section 5.3. We start with concepts implied from our problem domain and describe
methods of how the most promising branching order and tree structure can be cho-
sen for a particular problem instance and how we automatically adapt our hardware
design to any of those search trees, resulting in instance-specific hardware designs.

In the first Section 7.1, we give a motivation for using instance-specific comput-
ing and describe the three main methods to customize a design for a particular prob-
lem instance. Then, in Section 7.2, we apply these concepts to the branch-and-bound
problem tackled in this thesis, the reconstruction of secret keys. We show heuristics
of how valid and efficient search tree structures can be generated and how the most-
promising branching order can be selected. In Section 7.3 we present our automated
toolflow that we developed to generate instance-specific hardware designs utilizing
the aforementioned methods. Finally, we evaluate the new designs in Section 7.4
and conclude this chapter in Section 7.5.

7.1 Motivation and General Description

Instance-specific computing (ISC) or sometimes instance-specific design (ISD) is pos-
sible in software and hardware. The general idea is to generate for each problem
instance a distinct program heavily specialized and tailored to the concrete charac-
teristics of that instance[129]. The generated result is usually only executed once. By

78 Chapter 7. Instance-Specific Computing with Reconfigurable Hardware

sacrificing the flexibility, the one-time execution is typically faster and the resulting
binary or circuit can be smaller, because the generality of a solution is omitted. On
the basis of this ideas, the instance-specific optimizations must provide enough im-
provements to overcome the overheads of analyzing and generating the single-use
executable.

7.1.1 Methods for Customization

The three most important methods to customize for a particular problem instance
are:

Constant Folding and Constant Propagation Constant folding is a well-known
optimization performed by compilers [99, 283, 45, 241]. The idea is to detect constant
expressions or input variables with values known at compile time and directly sim-
plify them rather than perform additional computations at runtime. The required
information to apply the simplifications originate from the compilation process it-
self, by resolving macros or system parameters or by the constraints implied by the
input data. If, for example, the value of one input to an XOr gate is known, the gate
can be replaced by an inverter or an wire. Constant propagation on the other hand
is the process of gradually replacing known constants in expressions. In combina-
tion with constant folding, whole parts of the control flow of an application can be
simplified or omitted if conditional branches can be determined to have only one
possible outcome.

In the case of ISC even the actual input data is assumed to be constant. This
opens a vector of optimizations beyond the transformations a compiler can usually
apply. Using constant folding and constant propagation, the same output can be
computed using less instructions or less logic resulting in a smaller executable or
circuit.

Custom-Precision Data Types and Functional Adaptation A concrete function-
ality is usually implemented for the general case. This is especially important for
functions operating on numbers. If the data types are not chosen carefully, over-
flows could occur, leading to wrong results and/or unintended behavior [68, 69].
However, if the actual input numbers for a specific problem instance are known,
the data type and number of bits to represent the data can be of custom precision
tailored to that input [128, 122, 205]. This optimization usually does not change the
result, but allows area savings. However, in some cases the number of bits to rep-
resent data can be reduced to still achieve a certain quality of result. The result is
guaranteed to be of a certain accuracy, but is not exact. The process of adding or
removing parts of the functionality to adapt to a certain input data with or without
allowing inaccuracies is called functional adaption or approximate computing.

Architectural Adaption In contrast to the other two methods, architectural adap-
tion [15, 264, 252] tries to alter the way a result is computed on circuit level. One
example is the introduction of custom instructions executed by a custom execution
unit or the introduction of pipeline parallelism to increase throughput. The overall
function and results typically stay the same.

7.2. Instance-Specific Branch-and-Bound Search Trees 79

7.1.2 Generation of Instance-Specific Designs

The generation of instance-specific designs in software is the just the recompilation
of a program with hardcoded input data. Using the described methods and ad-
ditional compiler optimizations (dead code elimination, etc.), a one-time executable
can be generated within seconds. However, as CPUs have a general control and data
path anyway, the more natural way to exploit instance-specific optimizations is the
use of libraries that adapt the called function depending on runtime parameters. As
an example, a certain problem instance can be analyzed to automatically configure
an algorithm with good parameters at runtime [140, 157, 216].

Unlike for CPUs, integrated circuits are designed for a particular use, rather than
for the general purpose. Instead of having a flexible control and data path, the spe-
cific required control path is unrolled spatially on the circuit. Application-specific in-
tegrated circuits (ASICs) offer a lot of benefits that are well aligned with the instance-
specific computing principle [162]. However, they are custom-designed and hard-
wired for a particular application. The cutting edge technology for instance-specific
computing are therefore FPGAs. FPGAs can also be customized to a particular appli-
cation; but unlike ASICs, FPGAs can be reprogrammed after fabrication. Hence, for
a given FPGA design the methods described above can be used to reduce the gen-
eral design to perfectly fit only a particular instance of the problem. However, the
generation of an instance-specific design (the actual hardware synthesis) for FPGAs
needs a lot of time (in the order of hours to days) – in contrast to the compilation
of seconds for software. As the resulting circuit is expected to be only a single-use
design, the amortization for instance-specific designs for FPGAs is very challenging
and only viable for problem instances that are guaranteed to be hard and have long
execution times.

Branch-and-bound problems offer a perfect example to study instance-specific
computing on FPGAs, because the search trees are highly irregular and therefore
hard instances occur that dominate the overall runtime. A custom tailored, instance-
specific tree structure for a given problem can lead to a significant speedup in com-
parison to a static solution. In contrast to existing work, we do not just use the
methods described above to reduce a general application design down to a particu-
lar instance, but combine our general B&B hardware design with the work stealing
extensions and instance-specific computing. In the next section, we apply the de-
scribed methods to our case study, the secret key reconstruction, and describe how
we adapt our hardware design to the instance-specific concepts automatically.

7.2 Instance-Specific Branch-and-Bound Search Trees

The exploration of the search tree that is spawned by a branch-and-bound (B&B)
problem depends on the structure of the tree (which node or constraint is selected
first) and the path that is followed during each branch-and-bound operation (the
value that imposed for that node constraint). In the AES key reconstruction the
structure of the search tree is determined by the selection of byte positions to guess
values for and the path is determined by the order in which values are guessed in
each level. The static allocation showed earlier in Table 5.1 of Section 5.3 on page 46 is
one of many possible ways to select the byte positions to reconstruct a key schedule
that gives a particular tree structure, while the sequential guessing of a compatible

80 Chapter 7. Instance-Specific Computing with Reconfigurable Hardware

CHECK_COMPATIBILITY
apply error model

(PAD, EVT)

COMPUTE_BRANCH

COMPUTE_DERIVED_BYTES
build implication chains

gi with i > 0

is
compatible? solution

found?

GENERATE_NEXT_NODES
next nodes with additional

constraints to process

yes:
SUCCESS no

VALID

INVALID: discard

yes:
FAILURE

guess next node
g0 : [0 … 255]

STATE STACK
FOR CHECKPOINTINGGUESS_NEXT_BYTE

POOL_REMOVE
remove node from pool of

live nodes

POOL_ADD
save current search context

in pool, go to next level

live
pool

empty?

no

n1⇝0 n0⇝1

root

Figure 7.1: Finite state machine designed for secret key reconstruction with states
highlighted that profit from instance-specific computing.

value is one of many possible ways to chose a value.

In the following, we present how the branching order can be improved by effi-
ciently exploiting the information given by the actual problem instance. The branch-
ing order creates the path for how a search tree structure is explored. Then we de-
scribe how different valid and optimal tree structures for a search tree depending
on the problem instance can be built and estimate the total number of possible tree
structures. The selection of the most promising tree structure among all possibilities
may effect the runtime dramatically. Therefore, we also describe how a tree structure
can be chosen for a particular problem instance to solve it efficiently.

7.2.1 Instance-Specific Branching Order

Branch-and-bound search algorithms can traverse the created search trees in various
orders (see Section 5.1.2), e.g. using a static order like in breadth-first search (BFS) or
depth-first search (DFS) or some heuristical ordering like in best-first search (BeFS).
Optimally, a heuristic should first branch to subtrees that promise the best solution
or the highest chance to efficiently find a feasible solution. The state COMPUTE_BRANCH
of the finite state machine (FSM) in Figure 7.1 selects and sets the next value and
therefore determines the taken branch. In comparison to the static branch selection
strategy from Chapter 5, in this section we introduce an optimized, instance-specific
heuristic for the branching order. Instead of statically incrementing the guessed
value for a byte from 0 to 255, we dynamically reorder the values individually on
each position to visit the most promising branches of our search tree first.

The guessed values have different probabilities to decay to the value observed
in the memory image. These probabilities can be computed in advance as the de-
cayed value and assumptions about the decay probabilities per bit are known for a
particular problem instance. In our error model, the error rates r1 0 and r0 1 de-
termine the total fraction of bits that have flipped in one direction. Because in a key

7.2. Instance-Specific Branch-and-Bound Search Trees 81

from candidate byte 0x9C︷ ︸︸ ︷
flip type γ 1 0 0 1 1 1 0 0 count probability

0 0 X X X 3 1− p0 1
0 1 X 1 p0 1
1 0 X X 2 p1 0
1 1 X X 2 1− p1 0

1 0 0 0 1 0 1 0︸ ︷︷ ︸
to decayed byte 0x8A

Table 7.1: Calculation of the decay probability from a candidate byte 0x9C to the
decayed 0x8A for all possible flip types.

schedule of N bits without errors ones and zeros are expected to be equally frequent
and represent half of the bits each, we can assess the probability of a 1 bit flipping
towards a 0 bit (denoted with p1 0) and the probability of a 0 bit flipping towards a
1 bit (denoted with p0 1) as:

r1 0 · N =
1
2

N · p1 0

p1 0 = 2 · r1 0

(7.1)
r0 1 · N =

1
2

N · p0 1

p0 1 = 2 · r0 1

(7.2)

Branching Heuristic Applied to Examples We apply the branching heuristic to
some example guessed values to emphasize the potential of the new branching order
that exploits instance-specific information over a static incremental method.

In our example, the decayed byte value d = 0x8A = 100010102 is received
from memory and a promising value should be guessed that is compatible to the
bounding function (error model). Assuming the probabilities p0 1 = 0.002 and
p1 0 = 0.5981 are given, we examine two different candidates:

1. g0 = 0x9C = 100111002. As shown in Table 7.1, for such a guessed value three
bits would have stayed at 0, two bits would have flipped from 1 to 0, one bit
would have flipped from 0 to 1 and two bits would have stayed at 1. We can
assess the probability of 0x9C decaying to 0x8A as:

probability_of_decay(0x9C, 0x8A) = ∏
flip type γ

probability(γ)count(γ)

= (1− p0 1)
3 · p0 1

1 · p1 0
2 · (1− p1 0)

2

= 0.9983 · 0.0021 · 0.5982 · 0.4022

= 1.149 · 10−4

2. g0 = 0x63 = 011000112. The second candidate is the inverted version of the
first (0x9C XOred 0xFF). In contrast to the first candidate, three bits would have
flipped from 0 to 1, which is highly unlikely. Accordingly the probability for
this candidate to be a promising branch is very small:

probability_of_decay(0x63, 0x8A) = 0.9982 · 0.0023 · 0.5982 · 0.4021

= 1.145 · 10−9

1Note the probabilities are highly asymmetric, because the decay towards the ground state (here
assumed to be 0) of the memory cell is dominant, see Section 3.2.

82 Chapter 7. Instance-Specific Computing with Reconfigurable Hardware

These calculations have to be performed for all the 16 byte positions of the tree
structure represented in the search tree and for all 256 possible byte values that can
be guessed. With a total of 4096 calculations, this can easily be done in software
before starting the key reconstruction on the FPGA. We therefore sort all possible
candidate values for each of the 16 byte positions on the basis of the calculated de-
cay probabilities of that particular problem instance beforehand in software. When
starting the execution of the FSM, we transfer the optimized order of candidates
along with the decayed key schedule to the FPGA where it is stored in BRAM. The
COMPUTE_BRANCH state of the FSM has to be changed accordingly to not just incre-
ment the value of the bytes but instead read the new value from the BRAM. Please
note that with this instance-specific optimization implemented in BRAMs the de-
sign does not require to be synthesized again when the branching order is changed.
We performed extensive tests and this implementation variant delivers equal perfor-
mance to statically hard-coding the optimized branching order, but saves the effort
of an additional synthesis.

7.2.2 Generating Valid and Optimal Search Tree Structures

During the branch-and-bound search process, each selected node to expand should
infer as much knowledge as possible to tighten the search space by adding further
constraints. To minimize the key reconstruction effort, each byte whose value is
guessed should imply values for as many other bytes as possible to exploit the re-
dundancy in the key schedule. One of those optimal tree structures that maximize
the knowledge is shown in Table 5.1. Optimality is guaranteed if Equation 5.2 is ful-
filled. This ensures that the tree structure is of minimal length and only compatible
values for 16 byte positions denoted by g0, g ∈ {0, 1, . . . , 15} have to be guessed to
reach a feasible solution. Also, it is preferable to choose a tree structure that uses
many non-linear substitutions (SBox operations), because these cause single-bit er-
rors to multiply and therefore allow efficient pruning of the search tree. Tsow [269]
proposed a method to construct tree structures that fulfill these criteria.

10

choose position for 00

0
r b
w

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3
0

r b
w

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3
0

r b
w

0
1
2
3
4
5

006
7
8
9

10

0 1 2 3
0

r b
w

0
1
2
3

10

4
5

006
7
8
9

00

1000 10

10

20

20 30

20

30
…

0 1 2 3
A B C D

choose position for 10
1 implication possible

choose position for 20
2 implications possible

choose position for 30
3 implications possible

Figure 7.2: Generation of a reconstruction tree structure (first four byte positions). If
the positions are chosen according to the construction rule, the number of implica-

tions is maximized.

7.2. Instance-Specific Branch-and-Bound Search Trees 83

The proposed procedure to gradually construct tree structures is sketched in Fig-
ure 7.2 for an example tree structure P where possible choices are highlighted. The
tree structure construction starts in A with an arbitrarily chosen position for 00 from
P∗,0 (the 44 bytes in any round of word 0, see addressing scheme in Section 3.3.1) for
which a value is to be guessed at level 0 of the search tree. In the figure the second
byte of round 6 P6,0,1 has been chosen as the position for 00. Starting from this byte
position, the bytes to be guessed at positions 1 to 10 are chosen from the adjacent
positions in the same column because this allows for inferring one additional byte
using the complex expansion rule of the AES key expansion scheme (see Figure 3.4,
page 21). There are at most two possible choices for each of those byte positions:
either the one on top or the one below all previously chosen byte positions. In B

the position for 10 can either be P5,0,1 or P7,0,1. Assuming P5,0,1 has been chosen, in
C the adjacent positions for 20 are P4,0,1 or P7,0,1. After the first 11 byte positions

have been selected, the byte positions for the remaining levels 11 . . 15 are fixed. All
of the tree structures built upon this strategy result in the reconstruction of a com-
plete round key for round 8 like the example shown in Table 5.1 of Section 5.3. The
missing values of the key schedule can be derived from this complete round key for
a final compatibility check.

Number of Possible Tree Structures Considering a byte from round key k as the
starting position, in each of the following 10 levels the decision is made if an upper
or a lower byte position is chosen next. The decision for an upper byte position has
to be made k-times, leading to (10

k) possible sequences of decisions. Taking all round
keys and all of the four first bytes from each key as possible starting positions into
account leads to a total of 4 · ∑10

k=0 (
10
k) = 4096 choices. So overall, 4096 different

search tree structures can be constructed using Tsow’s approach.

7.2.3 Selecting Instance-Specific Search Tree Structures

The selection of the correct tree structure for a particular instance may affect the run-
time dramatically. On the basis of the tree structure selection heuristic of Tsow [269]
we describe the basic principle and our extensions. His approach, which only con-
siders the simplified perfect asymmetric decay (PAD) error model, is described in
the following paragraph. Afterwards, we present our adaptation of this heuristic to
our more realistic expected value as threshold (EVT) error model (see Section 3.2).

The PAD error model only accounts for flips into a single direction, e.g. 1 0
or 0 1. With this property, all bits with value 1 can immediately be assessed as
not flipped and are therefore called known bits (see Lemma 3.1). During key recon-
struction the search is bounded whenever a byte value is guessed that conflicts with
a known bit. As early bounds imply a shorter runtime of the algorithm, the heuris-
tic tries to maximize the number of known bits in the tree nodes near the root. The
heuristic follows a greedy approach, placing byte positions with a high number of
known bits close to the root of the search tree. For the first level, the heuristic se-
lects the byte position 00 with the most known bits from the first four bytes (see A

in Figure 7.2) of all round keys in the decayed key schedule. While selecting either
the upper or lower next byte position for levels 1 . . 10, the heuristic chooses the byte
position with the most known bits among these two, see Figure 7.2 B - D .

84 Chapter 7. Instance-Specific Computing with Reconfigurable Hardware

Wang [281] extended this heuristic to the EVT error model by replacing the
known bit criterion with a dominant bit criterion to encounter possible bit flips in
both directions, 1 0 and 0 1. The dominant bit is chosen as

DOMINANT_BIT =

{
1 if r1 0 > r0 1
0 otherwise

(7.3)

where r1 0 and r0 1 determine the total fraction of bits which have flipped towards
one direction. As the probabilities of flips in one direction is orders of magnitude
higher than flips in the other direction, the dominant bit is used as a replacement for
the known bit. Using this adaption to the EVT error model, the heuristic of Tsow can
be applied like for the PAD error model to generate and select the most promising
tree structure for a particular problem instance.

7.3 Generation of Instance-Specific Hardware Designs

Each of the tree structures chosen by the heuristic corresponds to a distinct search
tree instance on which the B&B reconstruction algorithm operates. Not only does
the order of bytes whose values need to be guessed differ between different recon-
struction tree structures but also the partitioning of all bytes of the key schedule into
guessed and implied bytes. Depending on the chosen tree structure, the implied
bytes may be derived from values of varying sets of other bytes, requiring the im-
plementation of different implication chains (see Section 5.3.1) for all positions in the
key schedule. Moreover, for other B&B problems with different algorithmic patterns
(see Section 5.2.1), the different search trees may also differ in their structure: e.g.
having a different number of children per node, local or global bounding functions,
etc. This high variability makes the implementation of a universal hardware design
challenging. Instead, we developed a generator for hardware designs to support
different k-ary search trees. The generator translates a description of the general
tree into code for a custom FSM suitable for the Maxeler toolflow [222]. The overall
toolflow is sketched in Figure 7.3.

The first step 1 in automatically creating an instance-specific circuit is to an-
alyze the problem instance by a custom software that generates a search tree. In
our application we use Tsow’s heuristic described in the last section to build the
most promising reconstruction tree structure 2 . In the AES key reconstruction
many XOr operations are performed. If a concrete decayed key schedule is pro-
vided as an input, many of these operations can be removed or simplified to in-
verters. On the basis of the structure of the problem instance, our design genera-
tor creates domain-specific code (MaxJ) for each new decayed key schedule 3 and
the Maxeler tools transform this code into a hardware design, which is further pro-
cessed by FPGA vendor tools to generate an FPGA configuration 4 . Additionally,
the corresponding software for the host computer to transfer the required data and
parameters is generated and compiled. The design generator builds fully custom
instances of the superstate GUESS_NEXT_BYTE (including the states COMPUTE_BRANCH,
COMPUTE_DERIVED_BYTES and CHECK_COMPATIBILITY, highlighted in Figure 7.1) for
each node in the tree. The order in which children are visited is read from a ROM,
allowing to modify the branching order without synthesizing a new design bo . The
number of hardware Nw workers can be set using a parameter ws .

7.4. Evaluation 85

Problem
Instance

Design Generator

Tree Heuristic

Code Generator

Implementation
Toolflow

FPGA Vendor Tools

HW Description
(MaxJ)

Instance-Specific
Reconstruction

DesignBitfile &
Host executable

Input Automated Toolflow Output

GCC

Branching Order
Generator Runtime

Arguments

Branching Order

MaxCompiler

Decayed Key Schedule

Decayed Key
Schedule

Supporting Work
Stealing

Work Stealing
parameters

1

2 3

4

bo

ws

5

Figure 7.3: Toolflow of our instance-specific design approach.

In our application, the reconstruction of AES keys, the generator also contains
application-specific logic. Although the tree structure specifies which bytes are im-
plied in each level, it does not specify rules to imply these bytes. In order to deter-
mine possible implications, the design generator keeps track of the set of bytes that
already have values assigned. Based on this information the generator automatically
selects implication rules to infer as many bytes as possible from already known byte
values. Depending on the complexity of the implication rules, multiple implications
are combined and performed in a single clock cycle, or split into multiple clock cy-
cles. If the complex expansion rule of the AES key expansion scheme (see Figure 3.4
in Section 3.3.2) is required to infer another byte value, a ROM access is used for the
SBox operation and additional clock cycles are introduced to access data stored in
the ROM following the principle described for a single FSM in Chapter 5.

7.4 Evaluation

In this section, we evaluate our instance-specific techniques developed in this chap-
ter, namely the optimized branching order and the dynamic search tree structures.
To measure the overall impact, we incrementally add those strategies to the work
stealing design from the previous Chapter 6. The evaluation is performed using the
same 512 key schedules with the highest error rates. We assess the impact on the
total time required to do the same task in software and hardware.

7.4.1 Results

The measured runtimes to reconstruct all 512 key schedules using work stealing and
the different instance-specific techniques are shown in Table 7.2. The corresponding
visualization of the data is depicted in Figure 7.4 and the incremental speedups by
each technique are shown in Figure 7.5.

Our first optimization, reordering the branches based on the specific key sched-
ule that is being reconstructed C , leads to a 1.55× speedup in hardware on top of the
improvements achieved by work stealing. The same optimization leads to a slightly
lower speedup of 1.31× (4 workers) and 1.38× (16 workers) in software.

86 Chapter 7. Instance-Specific Computing with Reconfigurable Hardware

For the PAD error model it was already shown by Tsow [269] that using a heuris-
tically chosen reconstruction tree structure can have a significant impact on the re-
construction time. In our measurements, the adaptation of this heuristic to the EVT
error model shows an additional 10.04× speedup on our hardware design in D .
Combined with the aforementioned techniques B and C a total speedup of 46.95×
compared to our hardware baseline implementation A is reached. A reconstruc-
tion of 10, 000 key schedules using instance-specific hardware designs for all key
schedules would take about 219,000 seconds, which corresponds to about 61 hours,
instead of the four months needed when using the static hardware baseline imple-
mentation or over three years when using the static software baseline implemen-
tation. To validate these results we also implemented the adapted heuristic D in
software and observed a slightly higher speedup of 10.86×. For 16 workers, the
instance-specific solution even achieves a speedup of 12.49×, showing that the po-
tential benefit of using the instance-specific approach increases for a higher number
of workers.

Figure 7.4: Visualization of the reconstruction of 512 key schedules using work steal-
ing and different instance-specific techniques (see Table 7.2).

104 105 106 107

runtime in seconds (s)

E

D

C

B

A

on
e

da
y

on
e

we
ek

on
e

m
on

th

ha
lf

ye
ar

on-the-fly synthesis

CPU FPGA 1 worker 4 workers 16 workers

E

D

C

B

A

CPU FPGA 1 worker 4 workers 16 workers

Number of Standard Total
Feature Set Workers Sum Average Deviation Speedup

A Baseline Software 1 5,399,100 10,545 65,056 1.00

B Parallelization using work stealing 4 1,286,770 2,513 15,630 4.20

—— '' —— 16 327,164 639 3,988 16.50

C ISD: optimized branching order 4 984,943 1,924 11,674 5.48

—— '' —— 16 236,768 462 2,787 22.80

D ISD: dynamic tree structure 4 90,663 177 1,076 59.55

C
PU

—— '' —— 16 18,952 37 217 284.88

A Baseline Hardware 1 526,453 1,028 7,271 1.00

B Parallelization using work stealing 4 173,806 340 2,414 3.02

C ISD: optimized branching order 4 112,605 220 1,522 4.68

D ISD: dynamic tree structure 4 11,214 22 142 46.95FP
G

A

E ISD: on-the-fly synthesis 4 46.488 91 270 11.32

Runtimes in seconds (s)

Table 7.2: Reconstruction of 512 key schedules using work stealing and different
instance-specific techniques.

7.4. Evaluation 87

FP
G
A

C
PU

1.0x 3.02x4 Workers
x 3.02

1.0x

16.50x

4.20x

16 Workers
x 16.50

4 Workers
x 4.20

Baseline Work StealingA B ISD: optimized
branching orderC

22.80x

5.48xx 1.31

x 1.38

ISD: dynamic tree
structureD

46.95x Pre-synthesized Designs
x 10.04

11.32xOn-the-Fly Synthesis
x 2.42E

59.55x

x 12.49

x 10.86

284.88x

4.68xx 1.55

Figure 7.5: Visualization of speedups achieved by the different techniques in
Table 7.2.

The presented hardware numbers A – D only include the runtime of the key
reconstruction and do not take into account the synthesis times of instance-specific
designs. Since the number of possible tree structures and therefore hardware designs
is limited to 4096 (see Section 7.2.2) and synthesis of these designs can be parallelized
on many machines, an attacker with sufficient resources may have precomputed and
stored these designs in advance, making this a plausible scenario. In the next section,
we evaluate whether dynamically generating these designs on-the-fly (OTF) for a
particular problem instance can still lead to a significant speedup of our application.

7.4.2 On-the-Fly Hardware Synthesis

The first thing to note here is that a previously generated hardware design can be
reused for different key schedules if the heuristic chooses the same tree structure
for reconstruction. In fact, when evaluating the heuristically chosen tree structures
for reconstruction of 10, 000 key schedules only about 1,500 different tree structures
were generated, as shown in Figure 7.6.

1 10 100 1000 10000
Number of evaluated key schedules

1

10

100

1000

10000

N
um

be
r o

f d
iff

er
en

t d
es

ig
ns maximum

Figure 7.6: Re-use of designs for other instances.

88 Chapter 7. Instance-Specific Computing with Reconfigurable Hardware

Generation Strategy Synthesis of one custom hardware design takes about 2.5
hours on our target platform. As the syntheses of different designs are independent
of each other, they can be parallelized depending on the number of CPU cores and
amount of memory available. Our target system featuring a total of 12 CPU cores
implies an amortized synthesis time of 2.5/12 hours when running twelve syntheses
in parallel. Since most of the key schedules can be reconstructed in significantly less
time it is not reasonable to build an instance-specific design for every key sched-
ule. We therefore propose an initial reconstruction of all key schedules on a general
hardware design (e.g. the one following the static allocation in Table 5.1) and abort-
ing those reconstructions that run longer than a certain threshold. For these hard
key schedules an instance-specific design is generated on-the-fly and used for recon-
struction. In the following section we evaluate how this threshold should be chosen
for our application and what speedup is achievable using our proposed method.

Amortization We denote p as the percentage of key schedules for which we build
instance-specific designs on-the-fly. The threshold tthres after which we abort a key
reconstruction is then chosen as the reconstruction time of the easiest from the p
hardest key schedules. Further we denote the reconstruction time for a key schedule
on the general hardware design as tgen and on the instance-specific design as tIS. tsyn
is the time required to synthesize an instance-specific design. For solving a single
key schedule the required amortized time can then be assessed as:

amortized_reconstruction_time =

tgen

#FPGA if tgen < tthres

tthres+tIS
#FPGA +

tsyn
#CPU Cores otherwise.

(7.4)
Figure 7.7 shows the calculated total reconstruction time for all 512 key sched-

ules depending on the value chosen for p, based on our target system, performing
12 syntheses in parallel and using one FPGA. It shows that on-the-fly generation of
hardware designs leads to a lower total reconstruction time if p is below 27%. The
threshold tthres in this case is 20s. The lowest reconstruction time is achieved by
choosing p as 7%, leading to tthres being 271s. In this case a speedup of 2.42× over
using a general hardware design is achieved. Compared to our baseline hardware
implementation, this corresponds to a total speedup of 11.32× in E . This value does
not account for possible re-use of previously generated designs. In the scenario of re-
constructing 10, 000 possible key schedules, this would allow even higher speedups.

Although for this evaluation we used posteriori knowledge about the recon-
struction times of our key schedules, it shows that a significant speedup is possible
by generating instance-specific hardware designs on-the-fly if the problems show a
strong variation in difficulty between problem instances. Also it shows that a wide
range of values for p (0–26%) leads to a positive speedup.

7.4.3 Discussion and Practical Considerations

Overall the evaluation showed that each of our proposed techniques leads to a sig-
nificant speedup over the baseline implementation, which was to the best of our
knowledge the fastest known hardware implementation at the time of publication.
Assuming pre-synthesized instance-specific designs we achieved a total speedup of
46.95× compared to a hardware baseline combining those techniques. Considering

7.4. Evaluation 89

40% 60% 80% 100%7% 26%

Fraction of key schedules solved using custom designs

200000

300000

400000

112605

46487To
ta

l r
ec

on
st

ru
ct

io
n

tim
e

(s
)

Reduced reconstruction time
Increased reconstruction time

Comparison to static design:

Figure 7.7: Reconstruction time using on-the-fly synthesis.

a dynamic on-the-fly generation of these designs still leads to a total speedup of
11.32×.

Even the comparison of a complete CPU node at full utilization with 16 workers
versus one fully utilized FPGA card with only 4 workers gives the FPGA a perfor-
mance advantage of 1.69×. This assumes that all the designs are pre-synthesized,
which is a valid assumption for agencies or attackers that reconstruct secret keys on
a daily basis.

In terms of power consumption, we collected the power usage of the FPGA with
the Maxeler tool maxtop -v. The FPGA itself consumed on average 16.5 W while
executing the key reconstruction. The host system is mainly used to trigger the
FPGA and is idle afterwards. Exact power measurements of the host cannot be
provided, because the Westmere-based processors do not support Intel’s running
average power limit (RAPL) interface [75]. In this prototypical setup, the host con-
sists of powerful server CPUs, which are not required in a real scenario.

On the other hand, the Sandy Bridge-based microarchitecture of the cluster nodes
where the software reference is computed supports the RAPL interface. The RAPL
interface provides sensors that can be accessed by model-specific control registers to
read the power consumption of different CPU components. The sensors are updated
in intervals of about 1 ms. Besides sensors for the different power planes, there are
sensors to measure the memory controller or the whole package. We use the tool
Likwid Powermeter [266] in version 4.3.2 to read the RAPL sensors in order to get
the power consumption. The CPU has a thermal design power (TDP) of 115 W per
socket and we measured an average consumption for the whole package including
the memory controllers of 95.4 W per socket during the key reconstruction using 16
workers. This gives the FPGA an advantage in energy efficiency of:

2 · 95.4W · 1.69×
16.5W

= 19.54× (7.5)

90 Chapter 7. Instance-Specific Computing with Reconfigurable Hardware

7.5 Chapter Conclusion

In this chapter, we studied how the branch-and-bound hardware design developed
as a static variant in Chapter 5 and parallelized in Chapter 6 can be combined with
instance-specific designs (ISDs). The general idea of ISD is to generate a distinct pro-
gram heavily specialized and tailored to the concrete characteristics of a particular
problem instance. Two important factors for the acceleration of a B&B algorithm are
the organization of the tree structure spawning the search tree and the exploration
of the search tree by branching to the most promising subtrees first. In this chapter
we tackled both problems.

We designed and implemented strategies to create optimal tree structures and
to follow most-promising subtrees with the help of heuristics. The result is an auto-
mated toolflow that analyzes a particular problem instance and generates the instance-
specific hardware design. We evaluated both optimizations and also assessed an
on-the-fly approach for the synthesis of instance-specific designs.

91

Chapter 8

Related Work

In this chapter, we outline and categorize related work in the areas covered in this
thesis. We begin with side-channel and cold-boot attacks in Section 8.1 and discuss
a set of related problems within the cryptography domain. Afterwards, we focus on
the main aspect of this work, the branch-and-bound (B&B) algorithmic pattern. In
Section 8.2, we cover related work using the general branch-and-bound principle in
soft- and hardware. Then we describe related work in the parallelization of B&B in
Section 8.2.1 and instance-specific computing in Section 8.2.2.

8.1 Side-Channel and Cold-Boot Attacks

Side-channel attacks (SCA) are a branch of the information security and cryptogra-
phy domain that were covered in Chapter 3. The main goal of an attacker is to obtain
sensitive key-dependent data exploiting the physical implementation of a cryptosys-
tem as illustrated in Figure 8.1. SCAs have been exploited over decades [154, 153]
to break hardware and software security mechanisms and to gain access to sensitive
data. In this section, we outline related work regarding side-channel attacks and put
them in perspective to the attack vector presented in Section 3.1.3.

Cryptosystem
(AES, RSA, Serpent, …)input text output cipher text

side-channel
leaks key-dependent information

secret key

Figure 8.1: Illustration of a cryptosystem that leaks key-dependent information over
a side-channel.

8.1.1 Acquisition of Sensitive Data

Cryptographic algorithms need to be implemented on real electronic devices and
hold sensitive data such as secret key material during execution. However, all elec-
tronic devices leak information — sometimes in unusual and unexpected ways. The
most prominent attacks on such side-channels are:

92 Chapter 8. Related Work

Timing Analysis Attacks Physical implementations perform computations in non-
constant time. These timing variations can be measured and combined with statis-
tical analysis to gain knowledge about secret parameters of a cryptographic algo-
rithm. Timing attacks were first proposed by Kocher [154] on RSA keys. Similar
attacks exist for other ciphers [133, 31, 35, 219]. Most recent variants even exploit
the microarchitecture of processors with timing attacks to extract information about
private data using the speculative execution of instructions [152] or a race condition
that can arise between instruction execution and privilege checking [184].

Power Analysis Attacks Similar to timing attacks, the power consumption of a
device may provide information about the involved computations. Power analysis
attacks have been demonstrated for most prominent symmetric and asymmetric key
ciphers and are especially critical for smart cards [190, 198, 199].

Fault attacks An attacker tries to induce computational faults on the actual de-
vice performing the cryptographic computation. This could, for instance, be done
physically by precise voltage manipulation [19, 20], optically illuminating specific
transistors [256] or exposing the device to high temperatures [136].

Main Memory Attacks Some decades ago researchers pointed out the critical de-
cay time of RAM, the remanence effect [183, 123, 255] as introduced in Section 3.1.2.
The fundamental work of Halderman et al. [126] is regarded as a milestone and
initial impulse for further efforts and investigations. Halderman et al. impressively
reproduced and categorized the decay patterns of main memory at different temper-
atures and provided concrete attack models and vectors characterized as cold-boot
attacks. Apart from the remanence effect of main memory, recently Kim et al. [149]
were able to bypass the isolation between memory cells and change cell values with-
out permission using the row hammering technique. Kwong et al. [164] build on this
technique to also read memory contents.

Using these side-channel attacks, an attacker can measure such unintended sources
of leakage to either gain a full dump of the main memory or to guess portions of sen-
sitive data that represent the secret key material. The intercepted data is typically not
an exact copy and contains bit errors caused by the attacking method.

If the attacker gets a full memory dump, like in the case of cold-boot attacks,
the secret key material needs to be identified. Related work regarding this task is
explained in Section 8.1.2. If the attacker already gets portions of the secret key ma-
terial, the identification can be skipped and reconstruction techniques are required,
which are explained afterwards in Section 8.1.3.

8.1.2 Search and Extraction of Secret Key Material

The first search for cryptographic keys in streams of data took place in file systems.
Shamir et al. [245] describe two concepts for searching for RSA keys. On the one
hand, they used the mathematical relationship between the public and private keys
for the direct verification of key candidates. On the other hand, they describe the
general structure of cryptographic keys in the file system and the high entropy com-
pared to normal data or program code. Klein [150] introduced the search of RSA
keys in main memory and provided a free implementation. In contrast to Shamirs

8.1. Side-Channel and Cold-Boot Attacks 93

et al. he exploits the standard storage format for private keys and SSL certificates
in main memory to identify the secret key material. Kaplan et al. [143] describe the
segmentation of the memory into relevant areas. They show that segmentation can
significantly reduce the search space and thus speed up the search for key candi-
dates.

8.1.3 Reconstruction of Secret Keys

Halderman et al. [126] proposed one of the first algorithms for the correction of bit
errors in AES keys. Their method does not use the full structure of the key schedule
and has many algorithmic parts using brute force to reconstruct a key. Tsow [269]
took up the basic work of Halderman et al. and uses the described guessing and
pruning phases to reduce the search space tremendously. Kamal et al. [141] im-
proved the recovery of Tsow by reformulating the method into a boolean SAT prob-
lem and solving it with an off-the-shelf SAT solver (MaxSAT). In contrast to our
work, both methods only support the simple PAD error model. Albrecht et al. [16]
model the reconstruction problem with set of non-linear algebraic equations with
noise. Similar to our work, their model supports also asymmetric decay. However,
they apply the method to the symmetric ciphers Twofish and Serpent and not to
AES.

Similar reconstruction methods exist also for public-key cryptosystems. Heninger
et al. [131] presented a general method to recover secret RSA keys given a random
fraction of the bits of the private key. Lee et al. [171] applied the same ideas to private
RSA keys obtained from cold-boot attacks. Henecka et al. [130] used also Hamming
distances with a user-defined threshold to prune key candidates that are unlikely
to be the searched key. Paterson et al. [221] further improved this method using an
coding-theoretic approach.

FPGAs have been used for many cryptographic applications. Several loosely re-
lated articles discuss the implementation of the AES algorithm on FPGAs to mainly
explore performance versus area trade-offs [290, 174, 60, 113]. Eisenbach et al. [95]
present a good survey on this topic. Other researchers [46, 48, 148] target FPGAs
for fault attacks to weaken secure AES implementations on the device. Another
related usage of FPGAs in this area is brute-force password testing and breaking.
John the Ripper [178] is one of the most popular tools with an open-source FPGA
support to break password hashes with a dictionary or brute-force attack. COPA-
COBANA [159, 117] is an FPGA-based code breaker optimized for cracking DES
keys using an exhaustive search. Mencer et al. [197] presented a key search engine
for the stream cipher RC4 consisting of 512 FPGAs. Other projects exist tackling dif-
ferent ciphers or specific aspects such as performance to cost ratios [230, 23, 86, 85].

These projects solve a similar problem that is presented in the case study of this
thesis. The specialization of FPGAs is used to achieve very high processing rates
comparable to ASICs with the full flexibility offered by reconfiguration to tackle dif-
ferent ciphers with the same device. Similar to our work, the related articles make
use of the property that all ciphers can be efficiently implemented in hardware by
design. However, all the outlined architectures work algorithmically with the prin-
ciple of exhaustive search and achieve the extremely high processing rates by the
parallel testing of millions of key candidates on hundreds of devices and instances.

94 Chapter 8. Related Work

Each individual evaluation per key candidate is comparably easy to the branch-and-
bound problem that we solve. To the best of our knowledge, we published the first
articles that use FPGAs for accelerating the search and reconstruction of secret AES
keys containing bit errors as obtained through cold-boot attacks.

8.2 Branch-and-Bound in Soft- and Hardware

The basic principles and general idea of the branch-and-bound algorithmic pattern
have been described in Chapter 5. In this section we outline and categorize related
work including efforts to parallelize the computation and use instance-specific opti-
mizations. We present similar approaches to ours using these techniques and high-
light differences to our work.

Lawler et al. [92] give an early survey on the essential methods and features of
the branch-and-bound approach. They outline the general relationship [213] to sev-
eral other applications [169, 14], including integer linear programming [100], non-
linear programming [121] and various NP-hard assignment problems [107, 185].
These properties make B&B a universal tool for tackling these important problems.
Boyd et al. [40] show for many of these problems how they can be formulated with
the B&B paradigm and provide useful examples. Further examples can be found
by the excellent article from Clausen [65]. A more recent survey by Morrison et
al. [210] presents further advantages in the algorithmic design for the main opera-
tions (search strategies, branching strategies and bounding rules).

8.2.1 Parallelization and Work Stealing

Branch-and-bound problems are inherently difficult and only small problem instances
can be solved with one single worker in a reasonable amount of time. Consequently,
the parallelization of the branch-and-bound operations was a relevant topic early
on [279, 161, 81, 82].

Early Experiments First parallelization strategies were designs for multiprocessor
systems [279, 161] consisting of a couple of nodes. The first implementations were
dealing with anomalies [166, 177] due to insufficiently understood architectural re-
quirements, scalability properties or data structures. Gendron et al. [105] presented
a detailed survey of the literature on early parallel branch-and-bound algorithms
and architectures. They analyzed existing theoretical and practical work and pro-
posed a classification system for branch-and-bound algorithms similar to the one
used in Section 6.1. Parallelism type 1 corresponds to a form of data-level paral-
lelism, where operations on subproblems (e.g. inferring knowledge and bounding
the selected node) are executed in parallel, while the exploration of the search tree
is sequential. Parallelism type 2 corresponds to task-level parallelism, where the
search tree is explored in parallel. Finally, parallelism type 3 describes the process-
ing of completely different search trees in parallel. The design and implementation
developed in this thesis uses the parallelism of types 1 and 2 to get the reached effi-
ciency to process one single problem instance.

Another highlight of the survey by Gendron et al. [105] is the synthesis and re-
view of the previous parallel systems using one centralized pool of live nodes im-
plemented as a master-slave paradigm or distributed using multiple pools. The syn-
chronization can be either synchronous or asynchronous in both cases.

8.2. Branch-and-Bound in Soft- and Hardware 95

Multiprocessor Systems Multiprocessor systems were opening up more and more
areas for new application thanks to their increasing performance. Over decades re-
searchers presented parallel branch-and-bound algorithms for different domains [93,
139, 161]. Nowadays, the high performance is closely linked to the possibility to
parallelize the problem. This mainly includes the division of the overall problem
into subtasks, which can be processed on different processors simultaneously. Each
subproblem has to be large enough that it requires a relatively long execution time,
ideally without further communication. Otherwise, multiprocessor systems cannot
be used efficiently because many process changes entail high administrative costs.
An over-distribution can also be problematic because the administrative overhead
increases even then.

A key classification of multiprocessor systems for branch-and-bound algorithms
is the type of memory. It is either shared, where all workers can access the memory
of others, or it can be distributed, where each worker has its own dedicated mem-
ory that is not accessible for others. Branch-and-bound algorithms using distributed
systems typically have a master-slave coordination scheme [134, 29, 94, 74, 39]. In
shared memory systems the global variables, error bounds, intermediate solutions,
sub-solutions and subtrees are exposed to all workers and branch-and-bound algo-
rithms [98, 70, 202] use conditions and locks to cooperate.

The actual implementation of the proposed algorithms can be either low level,
such as POSIX threads, or high level using APIs or frameworks such as OpenMP [73],
MPI [116], TBB [234], Cilk [102], OpenCL [259] or OpenACC [284]. Both strategies
have been studied for branch-and-bound problems [176]. Talbi [262] provides a good
overview. Casado et al. [51], for instance, use low-level POSIX threads. The paral-
lelization mechanisms require a lot of coding and are deeply entangled with the
application layer. The authors propose two parallelization schemes: 1) one global
pool of live nodes guarded by mutex synchronization accesses, which causes signifi-
cant overheads and 2) local pools in each thread, which perform better. The number
of workers is not static. If a condition is met, a thread can create a new one and
migrate parts of his pool. However, the authors observe that this dynamic load bal-
ancing can cause dramatic performance losses in parallel B&B. Evtushenko et al. [98]
therefore use another strategy in which each thread performs a number of steps on
its local pool and then migrates parts of his pool to a shared pool. This approach
seems to perform better. Mezmaz et al. [201] also use low-level threads combined
with grid-computing to solve the Flow-Shop scheduling problem [156] with branch-
and-bound. The load balancing is achieved with scale idle time stealing, which is
a similar form of work stealing used in our approach. In contrast to our work only
one single pool to store the live nodes is used. The evaluation in the articles shows a
big mismatch between the achieved and ideal speedup in terms of scaling. A recent
survey on load balancing using work stealing for multi- and many-core systems sys-
tems is outlined by Yang et al. [287].

On the high-level strategies, Barreto et al. [29] provide a comparison between a
serial C++ and parallel OpenMP and MPI implementations. While the sequential
implementation seems to work well, the OpenMP variant only reaches a speedup of
2.1× with 100 processors and MPI a speedup of 9.1×. Both unpromising results can
be attributed to the design choices of the authors or limitations of the used tools (for
instance, the used ILP was not thread-safe). Dimopoulos et al. [83] describe a general
strategy to translate a sequential B&B algorithm into a parallel one using a hybrid

96 Chapter 8. Related Work

model called MPI-OpenMP [229]. While changing the code into the requested struc-
ture seems promising, the experimental results are limited in terms of performance
and further investigations are required. Dorta et al. [91] propose a similar idea pro-
viding skeleton implementations that need to be adapted to the required problem.
With one high-level specification using C++ templates, the tools generate two par-
allel versions: one with message passing over MPI and one with shared memory
with OpenMP. In a second article [90] the same authors also present experimental
results for the approach that show a good scaling for up to 24 processors. For larger
numbers the algorithms are not scalable.

Recent research proposes generic frameworks [132, 24] that are in the spirit of
skeletons for certain types of optimization problems, including tree searches such
as branch-and-bound, instead of writing everything from scratch. For instance,
ZRAM [42] is one relevant framework, but many more such parallel codes exist [70,
191, 87]. An extensive survey on this topic is given by Avis et al. [25].

Systems with Instruction-Programmable Accelerators GPUs have emerged as an
efficient way for massively parallel computations. The GPU architecture is opti-
mized for a SIMD-based execution model. Hence, the B&B algorithmic pattern
is also not the typical class of directly suitable problems. Plenty of related arti-
cles address specific branch-and-bound applications (e.g. Knapsack [38, 167], Flow-
Shop [57, 194, 193], Traveling Salesman [49], etc. [37, 111, 22]) or various optimiza-
tion aspects such as thread divergence [57], caching [204] or memory [249, 30]. The
main challenge to utilize the GPU architecture is to transform the irregular workload
associated to the unpredictable tree traversal into a regular, data-parallel one that is
easier to schedule and more likely to lead to a balanced execution. A good overview
on recent efforts on GPUs is provided by Boyer et al. [41].

Regarding a multi-GPU setup a few investigations also exist [179, 53]. Chakroun
et al. [55, 56, 54] use a master-slave approach similar to the ones discussed for CPUs.
While the focus is on the feasibility of the approach, the reported speedups and
scalability seems limited. Similar to our work, Vu et al. [278, 277] use a work steal-
ing approach instead to solve the balancing and scaling issues. To avoid clustering
of work packages the stealing is performed using randomization to select a victim.
Gmys et al. [110, 112] also use a work stealing approach on GPUs. Instead of a
simple queue/dequeue pool of work packages they use a custom integer-vector-
matrix data structure [200] that better reflects the proposed hierarchical work steal-
ing strategy. Lima et al. [180] present runtime task scheduling for multi-GPUs based
on work stealing on top of Intel’s Cilk Plus framework. By overlapping commu-
nication and computation, they try to hide overheads and utilize up to 20 GPUs.
Navarro et al. [214] propose strategies to dynamically resize work packages for
multi-CPU/GPU architectures to prevent underutilization due to too small or too
large chunks for different types of workers. Elangovan et al. [96] use work steal-
ing in a parallel execution model based on OpenCL to distribute tasks across up to
4 GPUs to achieve efficient utilization. Kumar et al. [160] implement work steal-
ing between ARM and DSP cores, preferring stealing victims of the same processor
type. Guo et al. [120] implement locality-aware work stealing, preferring victims
that share the same L2 cache. Min et al. [203] extend this concept to a hierarchical
model reflecting the whole memory topology.

8.2. Branch-and-Bound in Soft- and Hardware 97

The B&B algorithmic pattern has also been studied on the Intel Xeon Phi many-
core processor [175, 192]. Melab et al. provide an extensive study [195] of big branch-
and-bound problems on many- versus multi-core processors and most recently a
study on many-core versus GPU coprocessors [196].

Systems with Reconfigurable Accelerators Branch-and-bound search algorithms
are often used in the FPGA design synthesis process [260, 258, 104, 146]. For the ac-
tual application logic, the branch-and-bound pattern has also been studied. Shimai
et al. [248] present a solver for mixed integer quadratic programming used in a real-
time, low-power environment for robot control. In contrast to our work, they use
a master-slave architecture, where the master (called the sequence control module)
statically spawns the slaves (the quadratic solver core) without dynamic work bal-
ancing. Each solver core is equivalent on all search tree levels. Bakos et al. [27] map
theNP-hard median-breakpoint problem onto an FPGA. The algorithm is extracted
from GRAPPA [209], an open-source branch-and-bound algorithm for phylogenetic
inference using gene order data. Similar to our work, the authors present a design
based on finite state machine (FSM) and use fine- and coarse-grained parallelism of
the FPGA. However, each solver core works independently on his own search tree
(single median computation). The cores can only communicate with each other to
query or exchange the current bound value.

Kestur et al. [147] use work stealing on FPGAs to solve the problem of matrix-
vector multiplication, but do not describe their architecture in detail. Ramanathan
et al. [232] start with an OpenCL work stealing implementation for GPUs and syn-
thesize the code with the help of Intel’s OpenCL SDK for an FPGA. The authors
focus on the synchronization of work items with the help of OpenCL’s atomic op-
eration instead of locks or mutexes. Despite performance and resource utilization
disadvantages, the atomic operations seem to simplify a kernel design. The work is
evaluated for k-means clustering, which can also be formulated as a B&B problem.
In contrast to this approach, which uses high-level synthesis (HLS), we use a hard-
ware implementation based on lower-level finite state machine (FSM). FSMs give us
more control on optimizations, serve as a natural level of abstraction for B&B prob-
lems, and are highly suitable for parallelization with work stealing. Yan et al. [286]
use also OpenCL for FPGAs to solve the k-means clustering problem. They try to
overcome the performance limitations of Ramanathan et al. by pipelining the com-
putation. Due to syntax limitations of the Intel FPGA OpenCL tool flow the authors
were not able to implement a pipelined work stealing strategy and used a static
work distribution approach instead. Chen et al. [59] propose a native work steal-
ing support for FPGAs similar to ours without HLS, which is more efficient than
the OpenCL variant in terms of resource usage and shows an equivalent scalabil-
ity as our approach. In contrast to our work, idle workers can steal work packages
from random victims and send the result back to the victim after computation. Sbîr-
lea et al. [242] present an extension for the Habanero-Rice runtime system [52] that
can map an image-processing pipeline onto heterogeneous components including
an FPGA. The main focus of this work is the cross-device scheduling and stealing of
tasks based on the affinity. Shen et al. [247, 135] present a work stealing approach on
an FPGA for matrix multiplication. In contrast to our work, in both cases the tackled
applications are highly regular and follow a streaming pattern.

98 Chapter 8. Related Work

Several other articles [292, 238, 272, 88] tackle load balancing with/without work
stealing in a heterogeneous environment, but none of them instantiates several hard-
ware workers on one device. The logic for cooperation is outside the FPGA.

8.2.2 Instance-Specific Computing

In software, utilizing instance- or problem-specific information to improve the per-
formance of branch-and-bound problems has been preliminary studied. For in-
stance, Morén [208] analyzes the structure of a manpower planning problem to im-
prove the bound and the branch operation. The work is evaluated for CPUs with
off-the-shelf ILP solvers.

Initial work on instance-specific computing for reconfigurable hardware tackles
the B&B algorithm for the propositional satisfiability problem (SAT) [289, 127, 142].
FPGAs are suitable for solving SAT problems because the computations (evaluation
of clauses) are highly parallelizable, similar to the solvers outlined in the previous
section. Nonetheless, it would be completely impractical to fabricate an application-
specific integrated circuit (ASIC) for each formula, due to high development costs
and inflexibility. Zhong et al. [291] present an implication circuit with a serial chain
of FSMs. Each FSM corresponds to a variable in the SAT formula and the assign-
ments of variables are tried in a fixed order. First, an FSM tries to assign 0 and a
deduction logic evaluates the result. If it is 1 (true), the solution is found; if it is 0
(false), the complement assignment is tried; if it returns x (undetermined), the next
FSM is activated. If the formula is unsatisfied for all assignments, the values are
reset and the previous FSM is activated (backtracking). The backtracking is usu-
ally guided by a cost function, which reduces the search effort by activating the
most promising FSM when the formula is unsatisfiable with the current assignment.
However, long synthesis times of several hours restrict the scope of SAT problems
for which an FPGA solution is overall faster than a software-based solution. Hence,
following works by Skliarova and Ferrari [254] and Davis et al. [76] avoid instance-
specific placement & routing and move towards HW/SW-codesign approaches. The
HW circuit is pre-synthesized and optimized only once and can then be reused for
different problem instances using dynamic reconfiguration. Rashid et al. [233] give
a good overview of the development process to generate instance-specific circuits
for SAT problems. Skliarova et al. [253] present a survey of systems using reconfig-
urable hardware to solve similar problems.

Our application uses a similar implication circuit as described for SAT solvers
or covering problems [224, 223]; but in contrast, our FSM corresponds to the entire
problem instance and not just a variable in the SAT formula. Additionally, the order
of variables for which different values are tried out is completely instance-specific.
Each variable in our problem has 256 possible values (instead of just 0 and 1), which
results in different k-ary search trees. For hardware-based SAT solvers it is necessary
to utilize large amounts of off-chip memory to scale to real-world problem instances,
whereas our problem is computation bound. The deduction of a SAT formula does
not require any error model and a variable assignment can be tested locally and
quickly. In contrast, we use a complex error model for pruning (see Section 5.4.5),
which requires global state information and considerable computation effort.

8.3. Chapter Conclusion 99

Grigoras [115] presents an instance-specific tuning approach for the sparse matrix-
vector multiplication problem. The developed framework can utilize the problem
dimension and sparsity pattern to accelerate the computation. All possible configu-
rations are pre-synthesized into a library. In contrast to our work, the tackled prob-
lem can be mapped to a data flow architecture, similar to other literature [244, 280]
that tackles graph problems. Both approaches utilize the knowledge on the graph
structure that is associate with a concrete problem instance. Koester et al. [155] ana-
lyze the assembler code of an application in order to instantiate a very long instruc-
tion word (VLIW) processor core, which is specialized exactly for these instructions.

Kašík [144] presents an instance-specific approach for solving the Eternity II puz-
zle with backtracking on an FPGA. The specific puzzle problem is encoded into the
FPGA and the search for matching candidates is performed only by a single worker.
Malakonakis and Dollas [187] examine the same problem but use an exhaustive
depth-first search with up to 22 workers on one FPGA card. All workers are ini-
tialized with a static configuration and search completely independent from each
other (work sharing). In contrast, we start the computation with one worker and the
distribution and balancing is performed autonomously using work stealing without
the interception of a host.

8.3 Chapter Conclusion

In this chapter, we presented an overview of the related articles in the areas cov-
ered in this thesis. While various branch-and-bound algorithms, work stealing and
instance-specific computing have been studied on FPGA in isolation, to the best of
our knowledge related work that covers the combination of these techniques does
not exist.

101

Chapter 9

Conclusion

In this last chapter, we briefly summarize the topics and results covered in this thesis
and outline possible directions for future work.

9.1 Summary

In this thesis, we have studied how the branch-and-bound (B&B) algorithmic pattern
can be efficiently implemented in reconfigurable hardware. B&B is highly relevant
because it is the most commonly used algorithmic pattern to solve combinatorial op-
timization or planning problems. The search space is represented as a tree and infea-
sible solutions are eliminated early by pruning subtrees which cannot lead to a fea-
sible or optimal solution. On the other hand, FPGAs have been proven to be highly
efficient in terms of chip area, power consumption and performance for a wide range
of applications and application domains. However, branch-and-bound algorithms
are not the typical class of problems that have been tackled with FPGAs, because the
computation is control- and not data-driven. In this thesis, we fill the gap of the in-
sufficiently understood branch-and-bound algorithms for reconfigurable hardware.

We have systematically designed and implemented a high-performance B&B im-
plementation on FPGAs. First, we identified general elements of B&B algorithms
and described their translation into a finite state machine (FSM). We developed
an FSM architecture that uses highly optimized combinational datapaths for the
performance-critical higher levels of the search tree and more resource-efficient pipe-
lined ones for the less frequent and more complex lower levels. Then we extended
the FSM to allow for multiple hardware workers that autonomously share and bal-
ance the computation using work stealing. Our evaluation showed that speedups
proportional to the number of workers can be expected if the clock rate can be kept
constant. The number of workers was bounded by synthesis times and achievable
clock rates and should scale with more modern technology. Using this design we
further explored the advantages of instance-specific computing on reconfigurable
hardware by generating designs that are custom tailored to a specific problem in-
stance. Using instance-specific designs we achieved improvements in performance
and energy efficiency, although in this case all instance-specific hardware designs
had to be pre-synthesized. Finally, we also evaluated an on-the-fly approach for
instance-specific computing by generating and synthesizing custom hardware de-
signs on demand at runtime. We showed that even on-the-fly generated hardware
designs can amortize the synthesis times for particularly hard problem instances and
lead to speedups over a non instance-specific approach.

102 Chapter 9. Conclusion

9.2 Outlook

We see a number of possible future directions to extend the topics covered in this
thesis, which we briefly outline:

• We instantiated all hardware workers for parallelization on one FPGA card
and achieved near linear speedups. On the other hand, the target Maxeler plat-
form has up to four FPGA cards, connected through a dedicated interconnect
(see Section 2.3 and Section 5.5.1). This multi-FPGA architecture is also get-
ting more and more attention in academia [106, 268] and industry [228, 263].
An extension of our work stealing concepts using multiple FPGAs and custom
circuit- or packet-switched interconnects for different levels of the search tree
and other network topologies are very interesting directions.

• Our work has demonstrated the feasibility and overall conditions of efficient
branch-and-bound search on FPGAs using work stealing and instance-specific
designs. We used a concrete case study to show the required steps on an inter-
esting and yet relevant example. We described and explained different vari-
ants of branch-and-bound operations and it would be an interesting direction
to analyze to which degree the presented techniques complement each other
for different workloads.

• Our FSM-based architecture enables a clear, modular design of the different
branch-and-bound operations and the parallelization mechanism. Separating
them additionally into a library could simplify and accelerate the coding effort
for new workloads, similar to the related work described in Chapter 8.

Supplemental Material

All artifacts (source codes, supporting scripts and documentation) to reproduce the
presented results are available online on github.

https://github.com/pc2/coldboot

103

List of Tables

2.1 Possible node types of a kernel graph. 7

3.1 Number of rounds r for key size l. 20
3.2 Overall structure of an AES-128 key schedule KS and illustration of

the ascending addressing scheme. 20
3.3 Initial key schedule consisting of the secret master key KS0 in round 0. 22
3.4 All round keys for the example. The secret master key is in round 0

and the expanded round key is in round 1. 23

4.1 Synthesis results of replicated AES-128 key search kernels targeting a
Virtex-6 SX475T FPGA. 33

4.2 Runtime in seconds of software key search for 2 GB of input data. The
algorithm searches for AES-128 and AES-256 keys with a single run. . 33

4.3 Runtime in seconds of hardware key search for 2 GB of input data.
The search is separated into two kernels, one for AES-128 and one for
AES-256, in order to avoid configuration overheads inside the critical
path of the kernels. 34

4.4 Improvement in speed of execution (speedup) of hardware key search
over software implementation for 2 GB data. 34

5.1 One possible allocation for the position of the 16 byte values g0, g ∈
{0, 1, . . . , 15} (emphasized in bold) for AES-128. The remaining values
gi for i > 0 are derived from implication chains to complete round 8. . 46

5.2 Optimal sequence to complete missing values for the static allocation
of Table 5.1. 48

5.3 Synthesis results of two key reconstruction kernels targeting a Virtex-
6 SX475T FPGA. 55

5.4 Our C implementation executed on the host of the Maxeler system
compared to numbers presented in the publication of Tsow [269] (marked
as Tsow*). 58

5.5 PAD error model for 10,000 test cases each. The error rate corre-
sponds to the metric of Wang (dWang = d1 0 + d0 1 with d1 0 =
{5%, . . . , 30%} and d0 1 = 0). 59

5.6 EVT error model with decay opposite direction of the ground state
d0 1 = 0.1% and varying total error rate from 5% to 30%. 61

5.7 EVT error model with decay opposite direction of the ground state
d0 1 = 0.2% and varying total error rate from 5% to 30%. 62

6.1 Reconstruction of 512 key schedules using work stealing with a vary-
ing number of workers. 73

6.2 Synthesis results for different numbers of hardware workers Nw. . . . 74

7.1 Calculation of the decay probability from a candidate byte 0x9C to the
decayed 0x8A for all possible flip types. 81

104 List of Tables

7.2 Reconstruction of 512 key schedules using work stealing and different
instance-specific techniques. 86

105

Listings

3.1 Compatibility check with the EVT error model. 18
3.2 Compatibility check with the EVT error model applied to example. . . 19
5.1 General algorithm for (lazy) branch-and-bound with the five essential

operations highlighted. 42
5.2 Recursive algorithm for key reconstruction of AES-128 keys with the

five essential branch-and-bound operations highlighted. 49
6.1 General algorithm with operations highlighted where parallelism can

be introduced. 66
6.2 Work stealing extension in POOL_REMOVE state. If the FSM has no ele-

ments on own deque, it steals from a victim. 68

107

List of Figures

2.1 Schematic illustration of an FPGA architecture. The array structure
consists of logic blocks, switch boxes and specialized elements (DSPs
or BRAMs). 4

2.2 Schematic design flow of hardware acceleration. 5
2.3 Components and overall architecture of the MaxCompiler. The de-

picted system consists of three FPGA cards connected through PCIe,
each with on-board memory. 6

2.4 Example of three phases in the data flow of an application. 8
2.5 Execution model for state machine transitions. 9
2.6 Compilation tool flow. 10

3.1 Schematic illustration of the memory chip organization realized with
one-transistor one-capacitor (1T1C) DRAM memory cells. 13

3.2 Main phases of a cold-boot attack. 14
3.3 Complex AES key expansion operations to generate the second round

key for word 0. The next rounds follow the same principle. 21
3.4 Simple XOr AES key expansion operations to generate the second

round key for all remaining words of round 1. The next rounds follow
the same principle. 21

4.1 A continuous memory stream is processed to identify valid secret key
material candidates for AES-128. Here, the first byte at position 0 is
evaluated. 28

4.2 Computation of the reference key schedule R from bytes of the de-
cayed key schedule D using either the complex (in Figure 4.2a) or
simple XOr (in Figure 4.2b) expansion function. 29

4.3 Complete parallelization of the computation of the individual bytes
of R and the corresponding Hamming distances ∆. The Hamming
distances are summed up with a balanced adder tree. 31

5.1 Visualization of a 3-ary search tree T3 of depth d = 3. 38
5.2 Main idea of the branch-and-bound principle. 41
5.3 General elements of a FSM that implements the main loop of the B&B

design paradigm (see Listing 5.1). 45
5.4 Search tree for the key reconstruction, starting at the root node and

sequentially guessing compatible byte values in each level. 47
5.5 Concrete FSM that implements the recursive AES key reconstruction

based on the branch-and-bound design paradigm. 50
5.6 Number of times each level is reached for 256 test cases. 51
5.7 Illustration of datapaths for level 3 (single-cycle combinational path

using SBox-LUT) and level 15 (multi-cycle combinational path using
BRAM) of state COMPUTE_DERIVED_BYTES. 52

108 List of Figures

5.8 Checking compatibility for level 3 with the EVT error model for bit
flip direction 0 1. The values are stored in registers. 54

5.9 Maxeler MPC-C platform architecture. 55
5.10 Visualization of the comparison of our C implementation to numbers

presented in the publication of Tsow (see Table 5.4). 58
5.11 Visualization of the comparison of software versus hardware for the

PAD error model with 10,000 test cases each (see Table 5.5). 59
5.12 Visualization of the comparison of software versus hardware for the

EVT error model with d0 1 = 0.1% (see Table 5.6). 61
5.13 Visualization of the comparison of software versus hardware for the

EVT error model with d0 1 = 0.2% (see Table 5.7). 62

6.1 The original FSM is duplicated Nw times to create the required num-
ber of hardware workers. The hardware workers expose their state
stacks storing the checkpoints to share the work items. 67

6.2 Stealing work by copying the bottommost stack entry. 69
6.3 Few key schedules dominate the runtime. 71
6.4 Evaluating 512 key schedules provides stable results. 72
6.5 Visualization of the reconstruction of 512 key schedules using work

stealing with a varying number of workers (see Table 6.1). 73
6.6 Visualization of the incremental speedups achieved using work stealing. 73

7.1 Finite state machine designed for secret key reconstruction with states
highlighted that profit from instance-specific computing. 80

7.2 Generation of a reconstruction tree structure (first four byte positions).
If the positions are chosen according to the construction rule, the num-
ber of implications is maximized. 82

7.3 Toolflow of our instance-specific design approach. 85
7.4 Visualization of the reconstruction of 512 key schedules using work

stealing and different instance-specific techniques (see Table 7.2). . . . 86
7.5 Visualization of speedups achieved by the different techniques in Table 7.2. 87
7.6 Re-use of designs for other instances. 87
7.7 Reconstruction time using on-the-fly synthesis. 89

8.1 Illustration of a cryptosystem that leaks key-dependent information
over a side-channel. 91

A.1 Distribution of ones in 10,000 randomly generated AES-128 key sched-
ules with µ = 704.12 and σ = 18.67. 114

A.2 Distribution of the value for 00 ∈ [0, . . . , 255] in the 10,000 key schedules.115

109

Acronyms

NP class of problems that can only be solved in non-deterministic polynomial time.
40, 43, 94, 97

3DES DES applied three times. 19

AES advanced encryption standard. 11, 12, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 37,
45, 47, 48, 49, 50, 56, 62, 63, 77, 79, 83, 84, 85, 93, 94, 107, 109

AES-256 AES with key size of 256 bits. 19, 30, 33, 34, 103

AES-192 AES with key size of 192 bits. 19

AES-128 AES with key size of 128 bits. 18, 19, 20, 21, 22, 27, 28, 30, 32, 33, 34, 45, 46,
48, 49, 57, 103, 105, 107, 108, 114, 115

API application programming interface. 6, 9, 95

ASIC application-specific integrated circuit. 79, 93, 98

B&B branch-and-bound. vii, ix, x, 1, 2, 4, 11, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49,
50, 53, 55, 62, 63, 65, 66, 67, 74, 75, 77, 79, 82, 84, 90, 91, 94, 95, 96, 97, 98, 99, 101,
102, 105, 107

BeFS best-first search. 39, 80

BFS breadth-first search. 39, 80

BOS bottom-of-stack. 68, 69, 70

BRAM block RAM. 4, 31, 33, 51, 52, 53, 55, 82, 107

CBA cold-boot attack. 11, 12, 15, 62, 92

CPU central processing unit. x, 2, 5, 6, 7, 27, 33, 34, 35, 44, 55, 56, 59, 60, 61, 62, 66,
74, 79, 88, 89, 96, 98, 111

DDR double data rate (SDRAM). 4, 56

DES data encryption standard. 19, 93, 109

DFE data flow engine. 6, 7

DFS depth-first search. 39, 43, 46, 53, 80

DMA direct memory access. 7

DRAM dynamic random access memory. 12, 13, 15, 16, 107

DSP digital signal processor. 4, 33, 55, 107

110 Acronyms

ECC elliptic-curve cryptography. 12

EVT expected value as threshold. 17, 18, 19, 25, 29, 53, 54, 56, 58, 60, 61, 62, 71, 83,
84, 86, 103, 105, 108

FCCM International Symposium on Field-Programmable Custom Computing Ma-
chines. 37

FF flip-flop. 3, 33, 55, 74

FIFO first-in-first-out. 39

FPGA field programmable gate array. vii, viii, ix, x, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 27, 30,
33, 34, 35, 37, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 70, 73, 74, 79, 82, 84, 88, 89, 93,
94, 97, 98, 99, 101, 102, 103, 107

FSM finite state machine. 9, 44, 45, 50, 51, 53, 54, 62, 63, 67, 68, 69, 70, 74, 80, 82, 84,
85, 97, 98, 101, 102, 105, 107, 108

GPU graphics processing unit. 96, 97

HDD hard disk drive. 12

HLS high-level synthesis. 97

HTTPS hypertext transfer protocol secure. 12, 19

HW/SW hardware/software. 98

ICFPT International Conference on Field-Programmable Technology. 27

IP intellectual property. 4

ISC instance-specific computing. 75, 77, 78, 79, 80, 108

ISD instance-specific design. 77, 79, 86, 90

LIFO last-in-first-out. 39

LUT lookup table. 3, 4, 31, 33, 52, 55, 74, 107

MaxJ extended version of Java used by MaxCompiler and MaxIDE. 84

OTF on-the-fly. 87, 88, 89, 108

PAD perfect asymmetric decay. 16, 17, 18, 25, 29, 53, 54, 56, 57, 58, 59, 60, 83, 84, 86,
93, 103, 108

PCIe peripheral component interconnect express. 6, 7, 34, 56, 107

RAM random access memory. 4, 52, 57, 92, 109, 111

RAPL running average power limit. 89

RCon Rijndael round constant. 21, 22, 31, 51, 52, 114

Acronyms 111

ROM read-only memory. 84, 85

RSA Rivest–Shamir–Adleman. 12, 92, 93

SAT propositional satisfiability problem. 93, 98

SBox Rijndael substitution box. 21, 22, 24, 52, 82, 85, 107, 113

SCA side-channel attack. 91

SDK software development kit. 97

SDRAM synchronous dynamic RAM. 56, 109

SIMD single instruction stream, multiple data streams. 96

SLiC simple live CPU. 7, 8

SM state machine. 6, 9, 10

SRAM static random access memory. 12, 13

SSH secure shell. 19

SSL secure sockets layer. 93

TDP thermal design power. 89

TOS top-of-stack. 53, 68, 69, 70

TRETS ACM Transactions on Reconfigurable Technology and Systems. 37

VLIW very long instruction word. 99

VoIP voice over Internet protocol. 19

VPN virtual private network. 12

WLAN wireless LAN. 19

WPA2 Wi-Fi Protected Access 2. 12

WS work stealing. 40, 65, 66, 70, 74, 75, 77, 79, 96, 97

XOr exclusive Or. 21, 22, 23, 25, 28, 29, 31, 32, 51, 52, 78, 81, 84, 107

113

Appendix A

Supplemental Material

Substitution Box SBox

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
10 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
20 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
30 04 C7 23 C3 18 96 05 9A 07 12 80 E2 ED 27 B2 75
40 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
50 53 D1 00 ED 20 FC C1 5B 6A CB BE 39 4A 4C 58 CF
60 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
70 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
80 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
90 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A0 E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B0 E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C0 BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4D BD 8B 8A
D0 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E0 E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F0 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Inverse Substitution Box SBox−1

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
10 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
20 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
30 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
40 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
50 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
60 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
70 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
80 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
90 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A0 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B0 FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C0 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D0 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E0 A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F0 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

114 Appendix A. Supplemental Material

Round Constants RCon

AES-128 only takes the highlighted 10 round constants.

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 8D 01 02 04 08 10 20 40 80 1B 36 6C D8 AB 4D 9A
10 2F 5E BC 63 C6 97 35 6A D4 B3 7D FA EF C5 91 39
20 72 E4 D3 BD 61 C2 9F 25 4A 94 33 66 CC 83 1D 3A
30 74 E8 CB 8D 01 02 04 08 10 20 40 80 1B 36 6C D8
40 AB 4D 9A 2F 5E BC 63 C6 97 35 6A D4 B3 7D FA EF
50 C5 91 39 72 E4 D3 BD 61 C2 9F 25 4A 94 33 66 CC
60 83 1D 3A 74 E8 CB 8D 01 02 04 08 10 20 40 80 1B
70 36 6C D8 AB 4D 9A 2F 5E BC 63 C6 97 35 6A D4 B3
80 7D FA EF C5 91 39 72 E4 D3 BD 61 C2 9F 25 4A 94
90 33 66 CC 83 1D 3A 74 E8 CB 8D 01 02 04 08 10 20
A0 40 80 1B 36 6C D8 AB 4D 9A 2F 5E BC 63 C6 97 35
B0 6A D4 B3 7D FA EF C5 91 39 72 E4 D3 BD 61 C2 9F
C0 25 4A 94 33 66 CC 83 1D 3A 74 E8 CB 8D 01 02 04
D0 08 10 20 40 80 1B 36 6C D8 AB 4D 9A 2F 5E BC 63
E0 C6 97 35 6A D4 B3 7D FA EF C5 91 39 72 E4 D3 BD
F0 61 C2 9F 25 4A 94 33 66 CC 83 1D 3A 74 E8 CB

Distribution of Ones and Zeros in AES Key Schedule

Figure A.1 shows the distribution of ones for the 10,000 AES-128 key schedules used
in the evaluation of Chapter 5. The total number of bits in the whole key schedule
is 1,408. The measured average of ones is 704.12 bits, which well approximates the
expected 50%.

0

0.005

0.01

0.015

0.02

0.025

640 660 680 700 720 740 760 780

Figure A.1: Distribution of ones in 10,000 randomly generated AES-128 key sched-
ules with µ = 704.12 and σ = 18.67.

Appendix A. Supplemental Material 115

Distribution of Values for the First Byte

Figure A.2 shows the distribution of the value for 00 ∈ [0, . . . , 255] for the 10,000
AES-128 key schedules used in the evaluation of Chapter 5. This value is especially
sensitive for the reconstruction with the static path from Table 5.1, page 46. As de-
picted in the figure, the values are equally distributed over the whole interval.

0

10

20

30

40

50

60

0 50 100 150 200 250

Figure A.2: Distribution of the value for 00 ∈ [0, . . . , 255] in the 10,000 key schedules.

117

Author’s Publications

[1] Heinrich Riebler, Michael Lass, Robert Mittendorf, Thomas Löcke, and Chris-
tian Plessl. Efficient Branch and Bound on FPGAs Using Work Stealing and
Instance-Specific Designs. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 10(3):24:1–24:23, 2017.

[2] Heinrich Riebler, Tobias Kenter, Christian Plessl, and Christoph Sorge. Recon-
structing AES Key Schedules from Decayed Memory with FPGAs. In Proceed-
ings International Symposium on Field-Programmable Custom Computing Machines
(FCCM), page 222–229. IEEE, 2014.

[3] Heinrich Riebler, Tobias Kenter, Christoph Sorge, and Christian Plessl. FPGA-
accelerated Key Search for Cold-Boot Attacks against AES. In Proceedings In-
ternational Conference on Field Programmable Technology (ICFPT), page 386–389.
IEEE, 2013.

[4] Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl. Transparent
Acceleration for Heterogeneous Platforms With Compilation to OpenCL. ACM
Transactions on Architecture and Code Optimization (TACO), 16(2):14, 2019.

[5] Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl. Automated
Code Acceleration Targeting Heterogeneous OpenCL Devices. In Proceedings
ACM SIGPLAN Symposium on Principles and practice of parallel programming
(PPoPP), PPoPP ’18, pages 417–418, New York, NY, USA, 2018. ACM.

[6] Heinrich Riebler, Gavin Vaz, Christian Plessl, Ettore MG Trainiti, Gianluca C
Durelli, Emanuele Del Sozzo, Marco D Santambrogio, and Cristiana Bolchini.
Using just-in-time code generation for transparent resource management in het-
erogeneous systems. In Proceedings International Forum on Research and Technolo-
gies for Society and Industry (RTSI), pages 1–5. IEEE, 2016.

[7] Gianluca C Durelli, Marcello Pogliani, Antonio Miele, Christian Plessl, Heinrich
Riebler, Marco D Santambrogio, Gavin Vaz, and Cristiana Bolchini. Runtime re-
source management in heterogeneous system architectures: The save approach.
In Proceedings International Symposium on Parallel and Distributed Processing with
Applications (ISPA), pages 142–149. IEEE, 2014.

[8] Marvin Damschen, Heinrich Riebler, Gavin Vaz, and Christian Plessl. Trans-
parent offloading of computational hotspots from binary code to Xeon Phi. In
Proceedings Design, Automation and Test in Europe Conference (DATE), pages 1078–
1083. EDA Consortium, 2015.

[9] Tobias Kenter, Gavin Francis Vaz, Heinrich Riebler, and Christian Plessl. Op-
portunities for deferring application partitioning and accelerator synthesis to
runtime (extended abstract). In Proceedings HiPEAC Workshop on Reonfigurable
Computing (WRC), 2016.

118 AUTHOR’S PUBLICATIONS

[10] Gavin Vaz, Heinrich Riebler, Tobias Kenter, and Christian Plessl. Potential and
methods for embedding dynamic offloading decisions into application code.
Computers and Electrical Engineering, 55:91–111, 2016.

[11] Gavin Vaz, Heinrich Riebler, Tobias Kenter, and Christian Plessl. Deferring
accelerator offloading decisions to application runtime. In Proceedings Interna-
tional Conference on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8.
IEEE, 2014. Received best paper award.

119

Bibliography

[12] Specification of the Advanced Encryption Standard (AES). Nist standard 197,
Federal Information Processing Standards, 2001.

[13] Umut A Acar, Guy E Blelloch, and Robert D Blumofe. The Data Locality of
Work Stealing. In Proceedings of the Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 1–12. ACM, 2000.

[14] Norman Agin. Optimum Seeking with Branch and Bound. Management Sci-
ence, 13(4):B–176, 1966.

[15] Andreas Agne, Markus Happe, Achim Lösch, Christian Plessl, and Marco
Platzner. Self-Awareness as a Model for Designing and Operating Heteroge-
neous Multicores. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 7(2):13, 2014.

[16] Martin Albrecht and Carlos Cid. Cold Boot Key Recovery by Solving Polyno-
mial Systems with Noise. In Proceedings of the International Conference on Applied
Cryptography and Network Security, ACNS’11, pages 57–72, Berlin, Heidelberg,
2011. Springer-Verlag.

[17] Louis Victor Allis et al. Searching for Solutions in Games and Artificial Intelligence.
Ponsen & Looijen Wageningen, 1994.

[18] Ross Anderson, E Biham, and L Knudsen. A Candidate Block Cipher for the
Advanced Encryption Standard, 1998.

[19] Ross Anderson and Markus Kuhn. Tamper Resistance-a Cautionary Note. In
Proceedings of the USENIX Workshop on Electronic Commerce, volume 2, pages
1–11, 1996.

[20] Ross Anderson and Markus Kuhn. Low Cost Attacks on Tamper Resistant De-
vices. In International Workshop on Security Protocols, pages 125–136. Springer,
1997.

[21] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. Performance
Comparison of FPGA, GPU and CPU in Image Processing. In International
Conference on Field Programmable Logic and Applications, pages 126–131. IEEE,
2009.

[22] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. StarPU: a Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Concurrency and Computation: Practice and Experience,
23(2):187–198, 2011.

[23] Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi
Shamir. Efficient FPGA Implementations of High-Dimensional Cube Testers
on the Stream Cipher Grain-128. Special-purpose Hardware for Attacking Crypto-
graphic Systems (SHARCS), page 147, 2009.

120 BIBLIOGRAPHY

[24] David Avis and Charles Jordan. MTS: a Light Framework for Parallelizing
Tree Search Codes. arXiv preprint arXiv:1709.07605, 2017.

[25] David Avis and Charles Jordan. MPLRS: A Scalable Parallel Vertex/Facet Enu-
meration Code. Mathematical Programming Computation, 10(2):267–302, 2018.

[26] Zachary K Baker and Viktor K Prasanna. Time and Area Efficient Pattern
Matching on FPGAs. In Proceedings of the International symposium on Field pro-
grammable gate arrays (ACM/SIGDA), pages 223–232. ACM, 2004.

[27] Jason D Bakos. FPGA Acceleration of Gene Rearrangement Analysis. In
Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 85–94. IEEE, 2007.

[28] Egon Balas and Paolo Toth. Branch and Bound Methods for the Traveling
Salesman Problem. Technical report, CARNEGIE-MELLON UNIV PITTS-
BURGH PA MANAGEMENT SCIENCES RESEARCH GROUP, 1983.

[29] Lucio Barreto and Michael Bauer. Parallel Branch and Bound Algorithm-a
Comparison between Serial, OpenMP and MPI Implementations. In Journal of
Physics: Conference Series, volume 256, page 12018. IOP Publishing, 2010.

[30] A Tarun Beri, B Sorav Bansal, and C Subodh Kumar. Locality Aware Work-
Stealing based Scheduling in Hybrid CPU-GPU Clusters. In Proceedings Inter-
national Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA), page 48, 2015.

[31] Daniel J Bernstein. Cache-timing Attacks on AES, 2005.

[32] Carl Bialik. About Those Hundreds of Thousands of Lost
Laptops at Airports. https://blogs.wsj.com/numbers/
about-those-hundreds-of-thousands-of-lost-laptops-at-airports-413/.
Accessed: 2019-09-18.

[33] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hybrid
Metaheuristics in Combinatorial Optimization: A Survey. Applied Soft Com-
puting, 11(6):4135–4151, 2011.

[34] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Com-
putations by Work Stealing. JACM, 46(5):720–748, September 1999.

[35] Joseph Bonneau and Ilya Mironov. Cache-Collision Timing Attacks against
AES. In International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pages 201–215. Springer, 2006.

[36] Abraham Bookstein, Vladimir A Kulyukin, and Timo Raita. Generalized Ham-
ming Distance. Information Retrieval, 5(4):353–375, 2002.

[37] Andrey Borisenko, Michael Haidl, and Sergei Gorlatch. A GPU Parallelization
of Branch-and-Bound for Multiproduct Batch Plants Optimization. The Journal
of Supercomputing, 73(2):639–651, 2017.

[38] Abdelamine Boukedjar, Mohamed Esseghir Lalami, and Didier El-Baz. Paral-
lel Branch and Bound on a CPU-GPU System. In Euromicro International Confer-
ence on Parallel, Distributed and Network-based Processing, pages 392–398. IEEE,
2012.

https://blogs.wsj.com/numbers/about-those-hundreds-of-thousands-of-lost-laptops-at-airports-413/
https://blogs.wsj.com/numbers/about-those-hundreds-of-thousands-of-lost-laptops-at-airports-413/

BIBLIOGRAPHY 121

[39] Benoıt Bourbeau, Teodor Gabriel Crainic, and Bernard Gendron. Branch-and-
Bound Parallelization Strategies Applied to a Depot Location and Container
Fleet Management Problem. Parallel Computing, 26(1):27–46, 2000.

[40] Stephen Boyd and Jacob Mattingley. Branch and Bound Methods. 2007.

[41] Vincent Boyer and Didier El Baz. Recent Advances on GPU Computing in
Operations Research. In IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum, pages 1778–1787. IEEE, 2013.

[42] Adrian Brüngger, Ambros Marzetta, Komei Fukuda, and Jürg Nievergelt. The
Parallel Search Bench ZRAM and its Applications. Operations Research, 90:45–
63, 1999.

[43] Michael J Brusco and Stephanie Stahl. Branch-and-Bound Applications in Com-
binatorial Data Analysis. Springer Science & Business Media, 2006.

[44] A Victor Cabot and S Selcuk Erenguc. Some Branch-and-Bound Procedures
for Fixed-cost Transportation Problems. Naval Research Logistics Quarterly,
31(1):145–154, 1984.

[45] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon. Interpro-
cedural Constant Propagation. In ACM SIGPLAN Notices, volume 21, pages
152–161. ACM, 1986.

[46] Gaetan Canivet, Paolo Maistri, Régis Leveugle, Jessy Clédière, Florent Valette,
and Marc Renaudin. Glitch and Laser Fault Attacks onto a Secure AES Im-
plementation on a SRAM-based FPGA. Journal of Cryptology, 24(2):247–268,
2011.

[47] Richard Carbone, C Bean, and Martin Salois. An In-Depth Analysis of the
Cold Boot Attack. DRDC Valcartier, Defence Research and Development, Canada,
Tech. Rep, 2011.

[48] Vincent Carlier, Hervé Chabanne, Emmanuelle Dottax, and Hervé Pelletier.
Electromagnetic Side Channels of an FPGA Implementation of AES. In CRYP-
TOLOGY EPRINT ARCHIVE, REPORT. Citeseer, 2004.

[49] Tiago Carneiro, Albert Einstein Muritiba, Marcos Negreiros, and Gustavo Au-
gusto Lima de Campos. A New Parallel Schema for Branch-and-Bound Algo-
rithms using GPGPU. In International Symposium on Computer Architecture and
High Performance Computing, pages 41–47. IEEE, 2011.

[50] Giorgio Carpaneto and Paolo Toth. Some new Branching and Bounding Cri-
teria for the Asymmetric Travelling Salesman Problem. Management Science,
26(7):736–743, 1980.

[51] Leocadio G Casado, JA Martinez, Inmaculada García, and Eligius MT Hen-
drix. Branch-and-Bound Interval Global Optimization on Shared Memory
Multiprocessors. Optimization Methods & Software, 23(5):689–701, 2008.

[52] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-Java:
the New Adventures of Old X10. In Proceedings of the 9th International Confer-
ence on Principles and Practice of Programming in Java, pages 51–61. ACM, 2011.

122 BIBLIOGRAPHY

[53] Imen Chakroun. Parallel Heterogeneous Branch and Bound Algorithms for Multi-
core and Multi-GPU Environments. PhD thesis, 2013.

[54] Imen Chakroun, Nordine Melab, Mohand Mezmaz, and Daniel Tuyttens.
Combining Multi-Core and GPU Computing for Solving Combinatorial Op-
timization Problems. Journal of Parallel and Distributed Computing, 73(12):1563–
1577, 2013.

[55] Imen Chakroun and Nouredine Melab. An Adaptative multi-GPU based
Branch-and-Bound. a Case Study: the Flow-Shop Scheduling Problem. In
IEEE International Conference on High Performance Computing and Communica-
tion, International Conference on Embedded Software and Systems, pages 389–395.
IEEE, 2012.

[56] Imen Chakroun and Nouredine Melab. Towards a Heterogeneous and adap-
tive parallel Branch-and-Bound Algorithm. Journal of Computer and System Sci-
ences, 81(1):72–84, 2015.

[57] Imen Chakroun, Mohand Mezmaz, Nouredine Melab, and Ahcene Bendjoudi.
Reducing Thread Divergence in a GPU-Accelerated Branch-and-Bound Algo-
rithm. Concurrency and Computation: Practice and Experience, 25(8):1121–1136,
2013.

[58] David Chase and Yossi Lev. Dynamic Circular Work-Stealing Deque. In Pro-
ceedings of the Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pages 21–28. ACM, 2005.

[59] Tao Chen, Shreesha Srinath, Christopher Batten, and G Edward Suh. An Ar-
chitectural Framework for Accelerating Dynamic Parallel Algorithms on Re-
configurable Hardware. In Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 55–67. IEEE, 2018.

[60] Paweł Chodowiec and Kris Gaj. Very Compact FPGA Implementation of the
AES Algorithm. In International Workshop on Cryptographic Hardware and Em-
bedded Systems, pages 319–333. Springer, 2003.

[61] Jaeseok Choi, AA El-Keib, and Trungtinh Tran. A Fuzzy Branch and Bound-
based Transmission System Expansion Planning for the Highest Satisfaction
Level of the Decision Maker. IEEE Transactions on Power Systems, 20(1):476–
484, 2005.

[62] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. A Survey of Network
Virtualization. Computer Networks, 54(5):862–876, 2010.

[63] Robert Churchhouse and RF Churchhouse. Codes and Ciphers: Julius Caesar, the
Enigma, and the Internet. Cambridge University Press, 2002.

[64] Christopher R Clark and David E Schimmel. Scalable Pattern Matching for
High Speed Networks. In Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pages 249–257. IEEE, 2004.

[65] Jens Clausen. Branch and Bound Algorithms-principles and Examples. De-
partment of Computer Science, University of Copenhagen, pages 1–30, 1999.

[66] Don Coppersmith. The Data Encryption Standard (DES) and its Strength
Against Attacks. IBM journal of research and development, 38(3):243–250, 1994.

BIBLIOGRAPHY 123

[67] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009.

[68] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
guard: Automatic Adaptive Detection and Prevention of Buffer-Overflow At-
tacks. In USENIX Security Symposium, volume 98, pages 63–78. San Antonio,
TX, 1998.

[69] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-
GuardTM: Protecting Pointers from Buffer Overflow Vulnerabilities. In Pro-
ceedings of the Conference on USENIX Security Symposium, volume 12, pages
91–104, 2003.

[70] Teodor Gabriel Crainic, Bertrand Le Cun, and Catherine Roucairol. Paral-
lel Branch-and-Bound Algorithms. Parallel combinatorial Optimization, 1:1–28,
2006.

[71] D Crookes, K Benkrid, A Bouridane, K Alotaibi, and A Benkrid. Design
and Implementation of a High Level Programming Environment for FPGA-
based Image Processing. IEE Proceedings-Vision, Image and Signal Processing,
147(4):377–384, 2000.

[72] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In Proceed-
ings International Conference on Smart Card Research and Applications (CARDIS),
pages 277–284. Springer, 2000.

[73] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard API
for Shared-Memory Programming. Computing in Science & Engineering, (1):46–
55, 1998.

[74] GH Dastghaibifard, E Ansari, SM Sheykhalishahi, A Bavandpouri, and
E Ashoor. A Parallel Branch and Bound Algorithm for Vehicle Routing Prob-
lem. In Proceedings of the International MultiConference of Engineers and Computer
Scientists, volume 2, pages 19–21, 2008.

[75] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Chris-
tian Le. RAPL: Memory Power Estimation and Capping. In ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED), pages 189–194.
IEEE, 2010.

[76] John D Davis, Zhangxi Tan, Fang Yu, and Lintao Zhang. A Practical Reconfig-
urable Hardware Accelerator for Boolean Satisfiability Solvers. In Proceedings
Design Automation Conference (DAC), pages 780–785. ACM, 2008.

[77] Lawrence Davis. Genetic Algorithms and Simulated Annealing. 1987.

[78] R Davis. The Data Encryption Standard in Perspective. IEEE Communications
Society Magazine, 16(6):5–9, 1978.

[79] Guerric Meurice de Dormale and Jean-Jacques Quisquater. High-speed Hard-
ware Implementations of Elliptic Curve Cryptography: A Survey. Journal of
Systems Architecture, 53(2-3):72–84, 2007.

124 BIBLIOGRAPHY

[80] Erik Demeulemeester and Willy Herroelen. A Branch-and-Bound Procedure
for the Multiple Resource-constrained Project Scheduling Problem. Manage-
ment Science, 38(12):1803–1818, 1992.

[81] BC Desai. The BPU, a Staged Parallel Processing System to Solve the Zero-One
Problem. In Proceedings of ICS, volume 78, pages 802–817, 1978.

[82] Bipin C Desai. A Parallel Microprocessing System. In Proceedings of the Inter-
national Conference on Parallel Processing, volume 136, 1979.

[83] Alexandros C Dimopoulos, Christos Pavlatos, and George Papakonstantinou.
A General Purpose Branch and Bound Parallel Algorithm. In Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing (PDP),
pages 317–321. IEEE, 2016.

[84] James Dinan, D Brian Larkins, Ponnuswamy Sadayappan, Sriram Krish-
namoorthy, and Jarek Nieplocha. Scalable Work Stealing. In Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis,
pages 1–11. IEEE, 2009.

[85] Itai Dinur, Tim Güneysu, Christof Paar, Adi Shamir, and Ralf Zimmermann.
An Experimentally Verified Attack on Full Grain-128 using Dedicated Recon-
figurable Hardware. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 327–343. Springer, 2011.

[86] Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks.
In International Workshop on Fast Software Encryption, pages 167–187. Springer,
2011.

[87] A Djerrah, Bertrand Le Cun, V-D Cung, and Catherine Roucairol. Bob++:
Framework for Solving Optimization Problems with Branch-and-Bound
Methods. In IEEE International Conference on High Performance Distributed Com-
puting, pages 369–370. IEEE, 2006.

[88] Chrilly Donninger, Alex Kure, and Ulf Lorenz. Parallel Brutus: the First Dis-
tributed, FPGA Accelerated Chess Program. In Proceedings of the International
Parallel and Distributed Processing Symposium, page 44. IEEE, 2004.

[89] Sumanth Donthi and Roger L Haggard. A Survey of Dynamically Reconfig-
urable FPGA Devices. In Proceedings of the Southeastern Symposium on System
Theory, pages 422–426. IEEE, 2003.

[90] Isabel Dorta, Coromoto León, and Casiano Rodríguez. A Comparison Be-
tween MPI and OpenMP Branch-and-Bound Skeletons. In Proceedings Interna-
tional Workshop on High-Level Parallel Programming Models and Supportive Envi-
ronments, pages 66–73. IEEE, 2003.

[91] Isabel Dorta, Coromoto Leon, and Casiano Rodriguez. Parallel Branch-and-
Bound Skeletons: Message Passing and Shared Memory Implementations. In
International Conference on Parallel Processing and Applied Mathematics, pages
286–291. Springer, 2003.

[92] D. E. Wood E. L. Lawler. Branch-And-Bound Methods: A Survey. Operations
Research, 14(4):699–719, 1966.

BIBLIOGRAPHY 125

[93] Jonathan Eckstein. Parallel Branch-and-Bound Algorithms for General Mixed
Integer programming on the CM-5. SIAM Journal on Optimization, 4(4):794–
814, 1994.

[94] Jonathan Eckstein. Distributed versus Centralized Storage and Control for
Parallel Branch and Bound: Mixed Integer Programming on the CM-5. Com-
putational Optimization and Applications, 7(2):199–220, 1997.

[95] Thomas Eisenbarth, Sandeep Kumar, Christof Paar, Axel Poschmann, and Leif
Uhsadel. A Survey of Lightweight-Cryptography Implementations. IEEE De-
sign & Test of Computers, 24(6):522–533, 2007.

[96] Vinoth Krishnan Elangovan, Rosa.M. Badia, and Eduard Ayguadé. Scalability
and Parallel Execution of OmpSs-OpenCL Tasks on Heterogeneous CPU-GPU
Environment. In Proceedings International Conference on Supercomputing (ISC),
pages 141–155, 2014.

[97] Shimon Even. Graph Algorithms. Cambridge University Press, 2011.

[98] Yuri Evtushenko, Mikhail Posypkin, and Israel Sigal. A Framework for Par-
allel Large-Scale Global Optimization. Computer Science-Research and Develop-
ment, 23(3-4):211–215, 2009.

[99] Robert Neil Faiman Jr. Method of Constructing a Constant-Folding Mecha-
nism in a Multilanguage Optimizing Compiler, November 10 1998. US Patent
5,836,014.

[100] Marshall L Fisher. The Lagrangian Relaxation Method for Solving Integer Pro-
gramming Problems. Management Science, 27(1):1–18, 1981.

[101] Michael J Flynn. Some Computer Organizations and their Effectiveness. IEEE
Transactions on Computers, 100(9):948–960, 1972.

[102] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The Implementation
of the Cilk-5 Multithreaded Language. ACM Sigplan Notices, 33(5):212–223,
1998.

[103] Clemens Fruhwirth. New Methods in Hard Disk Encryption. na, 2005.

[104] Zhaohui Fu and Sharad Malik. Solving the Minimum-Cost Satisfiability
Problem using SAT based Branch-and-Bound Search. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pages 852–859.
ACM, 2006.

[105] Bernard Gendron and Teodor Gabriel Crainic. Parallel Branch-and-Bound Al-
gorithms: Survey and Synthesis. Operations Research, 42(6):1042–1066, 1994.

[106] Alan George, Herman Lam, and Greg Stitt. Novo-G: At the Forefront of Scal-
able Reconfigurable Supercomputing. Computing in Science & Engineering,
13(1):82, 2011.

[107] Paul C Gilmore. Optimal and Suboptimal Algorithms for the Quadratic As-
signment Problem. Journal of the Society for Industrial and Applied Mathematics,
10(2):305–313, 1962.

126 BIBLIOGRAPHY

[108] Kyrre Glette, Jim Torresen, and Moritoshi Yasunaga. Online Evolution for a
High-Speed Image Recognition System Implemented on a Virtex-II Pro FPGA.
In NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 463–
470. IEEE, 2007.

[109] Fred Glover and Manuel Laguna. Tabu Search. In Handbook of Combinatorial
Optimization, pages 2093–2229. Springer, 1998.

[110] Jan Gmys, Rudi Leroy, Mohand Mezmaz, Nouredine Melab, and Daniel
Tuyttens. Work Stealing with Private Integer–Vector–Matrix Data Structure
for Multi-Core Branch-and-Bound Algorithms. Concurrency and Computation:
Practice and Experience, 28(18):4463–4484, 2016.

[111] Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. A GPU-
Based Branch-and-Bound Algorithm using Integer–Vector–Matrix Data Struc-
ture. Parallel Computing, 59:119–139, 2016.

[112] Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens.
IVM-based Parallel Branch-and-Bound using Hierarchical Work Stealing on
Multi-GPU Systems. Concurrency and Computation: Practice and Experience,
29(9):e4019, 2017.

[113] Tim Good and Mohammed Benaissa. AES on FPGA from the Fastest to the
Smallest. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 427–440. Springer, 2005.

[114] Bur Goode. Voice over Internet Protocol (VoIP). Proceedings of the IEEE,
90(9):1495–1517, 2002.

[115] Paul Grigoras. Instance Directed Tuning for Sparse Matrix Kernels on Recon-
figurable Accelerators. 2018.

[116] William Gropp, William D Gropp, Argonne Distinguished Fellow Emeri-
tus Ewing Lusk, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Interface, volume 1. MIT Press,
1999.

[117] Tim Güneysu, Timo Kasper, Martin Novotnỳ, Christof Paar, and Andy
Rupp. Cryptanalysis with COPACOBANA. IEEE Transactions on Computers,
57(11):1498–1513, 2008.

[118] Guang-liang Guo, Quan Qian, and Rui Zhang. Different Implementations of
AES Cryptographic Algorithm. In IEEE International Conference on High Per-
formance Computing and Communications, International Symposium on Cyberspace
Safety and Security, and IEEE International Conference on Embedded Software and
Systems, pages 1848–1853. IEEE, 2015.

[119] Xu Guo, Zhimin Chen, and Patrick Schaumont. Energy and Performance Eval-
uation of an FPGA-based SoC Platform with AES and PRESENT Coproces-
sors. In International Workshop on Embedded Computer Systems, pages 106–115.
Springer, 2008.

[120] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. SLAW: A Scalable Locality-aware
Adaptive Work-Stealing Scheduler. In Proceedings International Symposium on
Parallel and Distributed Processing (IPDPS), pages 1–12, April 2010.

BIBLIOGRAPHY 127

[121] Omprakash K Gupta and Arunachalam Ravindran. Branch and Bound Ex-
periments in Convex Nonlinear Integer Programming. Management Science,
31(12):1533–1546, 1985.

[122] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghunathan,
and Kaushik Roy. IMPACT: Imprecise Adders for Low-Power Approximate
Computing. In Proceedings of the IEEE/ACM International Symposium on Low-
Power Electronics and Design, pages 409–414. IEEE Press, 2011.

[123] Peter Gutmann. Data Remanence in Semiconductor Devices. In Proceedings
Conference on USENIX Security Symposium, SSYM’01, pages 4–4, Berkeley, CA,
USA, 2001. USENIX Association.

[124] S Haffner, A Monticelli, A Garcia, J Mantovani, and R Romero. Branch and
Bound Algorithm for Transmission System Expansion Planning using a Trans-
portation Model. IEE Proceedings-Generation, Transmission and Distribution,
147(3):149–156, 2000.

[125] Sérgio Haffner, A Monticelli, A Garcia, and R Romero. Specialised Branch-
and-Bound Algorithm for Transmission Network Expansion Planning. IEE
Proceedings-Generation, Transmission and Distribution, 148(5):482–488, 2001.

[126] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and
Edward W. Felten. Lest We Remember: Cold-boot Attacks on Encryption
Keys. Communications of the ACM, 52(5):91–98, May 2009.

[127] Youssef Hamadi and David Merceron. Reconfigurable Architectures: A new
Vision for Optimization Problems. In Principles and Practice of Constraint Pro-
gramming (CP), pages 209–221. Springer, 1997.

[128] Jie Han and Michael Orshansky. Approximate Computing: An Emerging
Paradigm for Energy-Efficient Design. In IEEE European Test Symposium (ETS),
pages 1–6. IEEE, 2013.

[129] Scott Hauck and Andre DeHon. Reconfigurable Computing: the Theory and Prac-
tice of FPGA-based Computation. Morgan Kaufmann, 2010.

[130] Wilko Henecka, Alexander May, and Alexander Meurer. Correcting Errors in
RSA Private Keys. In Annual Cryptology Conference, pages 351–369. Springer,
2010.

[131] Nadia Heninger and Hovav Shacham. Reconstructing RSA Private Keys from
Random Key Bits. In Proceedings of the Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO ’09, pages 1–17, Berlin, Heidelberg,
2009. Springer-Verlag.

[132] Juan FR Herrera, José MG Salmerón, Eligius MT Hendrix, Rafael Asenjo, and
Leocadio G Casado. On Parallel Branch and Bound Frameworks for Global
Optimization. Journal of Global Optimization, 69(3):547–560, 2017.

[133] Alejandro Hevia and Marcos Kiwi. Strength of two Data Encryption Standard
Implementations under Timing Attacks. ACM Transactions on Information and
System Security (TISSEC), 2(4):416–437, 1999.

128 BIBLIOGRAPHY

[134] Udo Hönig and Wolfram Schiffmann. A Parallel Branch–and–Bound Algo-
rithm for Computing Optimal Task Graph Schedules. In International Confer-
ence on Grid and Cooperative Computing, pages 18–25. Springer, 2003.

[135] You Huang, Junzhong Shen, Yuran Qiao, Mei Wen, and Chunyuan Zhang.
MALMM: A Multi-Array Architecture for Large-Scale Matrix Multiplication
on FPGA. IEICE Electronics Express, pages 15–20180286, 2018.

[136] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel and
Heating Fault Attacks. In International Conference on Smart Card Research and
Advanced Applications, pages 219–235. Springer, 2013.

[137] Edward Ignall and Linus Schrage. Application of the Branch and Bound Tech-
nique to some Flow-Shop Scheduling Problems. Operations Research, 13(3):400–
412, 1965.

[138] Kimmo Järvinen, Matti Tommiska, and Jorma Skyttä. Comparative Survey
of High-Performance Cryptographic Algorithm Implementations on FPGAs.
IEE Proceedings-Information Security, 152(1):3–12, 2005.

[139] Michael Jünger and Peter Störmer. Solving Large-Scale Traveling Salesman
Problems with Parallel Branch-and-Cut. 1995.

[140] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC-
Instance-Specific Algorithm Configuration. In ECAI, volume 215, pages 751–
756, 2010.

[141] Abdel Alim Kamal and Amr M. Youssef. Applications of SAT Solvers to AES
Key Recovery from Decayed Key Schedule Images. In Proceedings International
Conference on Emerging Security Information, Systems and Technologies, SECUR-
WARE ’10, pages 216–220, Washington, DC, USA, July 2010. IEEE Computer
Society.

[142] Kenji Kanazawa and Tsutomu Maruyama. An Approach for Solving Large
SAT Problems on FPGA. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 4(1):10, 2010.

[143] Brian Kaplan and Matthew Geiger. RAM is Key: Extracting Disk Encryp-
tion Keys From Volatile Memory. Master’s thesis, Carnegie Mellon University,
2007.

[144] Vladimir Kašík. Acceleration of Backtracking Algorithm with FPGA. In Pro-
ceedings International Conference on Applied Electronics (AE), pages 1–4. IEEE,
2010.

[145] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on Parallel
Programming Model. In IFIP International Conference on Network and Parallel
Computing, pages 266–275. Springer, 2008.

[146] Meenakshi Kaul and Ranga Vemuri. Optimal Temporal Partitioning and Syn-
thesis for Reconfigurable Architectures. In Proceedings Design, Automation and
Test in Europe, pages 389–396. IEEE, 1998.

[147] Srinidhi Kestur, John D. Davis, and Eric S. Chung. Towards a Universal FPGA
Matrix-Vector Multiplication Architecture. In Proceedings International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM), pages 9–16,
Washington, DC, USA, 2012. IEEE Computer Society.

BIBLIOGRAPHY 129

[148] Farouk Khelil, Mohamed Hamdi, Sylvain Guilley, Jean Luc Danger, and Nid-
hal Selmane. Fault Analysis Attack on an FPGA AES Implementation. In New
Technologies, Mobility and Security, pages 1–5. IEEE, 2008.

[149] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory with-
out Accessing them: An Experimental Study of DRAM Disturbance Errors. In
ACM SIGARCH Computer Architecture News, volume 42, pages 361–372. IEEE
Press, 2014.

[150] Tobias Klein. All Your Private Keys are Belong to us - Extracting RSA Pri-
vate Keys and Certificates from Process Memory. http://www.trapkit.de/
research/sslkeyfinder/, February 2006.

[151] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[152] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting Speculative
Execution. In IEEE Symposium on Security and Privacy (S&P), 2019.

[153] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Annual International Cryptology Conference, pages 388–397. Springer, 1999.

[154] Paul C Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and other Systems. In Annual International Cryptology Conference, pages
104–113. Springer, 1996.

[155] M. Koester, W. Luk, and G. Brown. A Hardware Compilation Flow for
Instance-Specific VLIW Cores. In International Conference on Field Programmable
Logic and Applications (FPL), pages 619–622, September 2008.

[156] Samia Kouki, Mohamed Jemni, and Talel Ladhari. Scalable Distributed Branch
and Bound for the Permutation Flow Shop Problem. In International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, pages 503–508. IEEE, 2013.

[157] C. Kroer and Y. Malitsky. Feature Filtering for Instance-Specific Algorithm
Configuration. In IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI), pages 849–855, November 2011.

[158] Volker Krummel. Sicherheit und Anwendungen des Advaned Enryption Stan-
dards (AES) Rijndael. Master’s thesis, Paderborn University, November 2001.

[159] Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred Schimm-
ler. Breaking Ciphers with COPACOBANA - A Cost-Optimized Parallel Code
Breaker. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hard-
ware and Embedded Systems (CHES), volume 4249 of Lecture Notes in Computer
Science, pages 101–118. Springer Berlin Heidelberg, 2006.

[160] V. Kumar, A. Sbîrlea, A. Jayaraj, Z. Budimlić, D. Majeti, and V. Sarkar. Het-
erogeneous Work-Stealing across CPU and DSP Cores. In Proceedings High
Performance Extreme Computing Conference (HPEC), pages 1–6, September 2015.

http://www.trapkit.de/research/sslkeyfinder/
http://www.trapkit.de/research/sslkeyfinder/

130 BIBLIOGRAPHY

[161] Vipin Kumar and Laveen N Kanal. Parallel Branch-and-Bound Formulations
for And/Or Tree Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (6):768–778, 1984.

[162] Ian Kuon and Jonathan Rose. Measuring the Gap between FPGAs and ASICs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(2):203–215, 2007.

[163] Ian Kuon, Russell Tessier, Jonathan Rose, et al. FPGA Architecture: Survey and
Challenges. Foundations and Trends in Electronic Design Automation, 2(2):135–
253, 2008.

[164] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. RAMBleed:
Reading Bits in Memory Without Accessing Them. In IEEE Symposium on Se-
curity and Privacy (S&P), 2020.

[165] VARONIS DATA LAB. Data Under Attack: 2018 Global Data Risk Report. PhD
thesis, University of Portsmouth, 2018.

[166] Ten-Hwang Lai and Sartaj Sahni. Anomalies in Parallel Branch-and-Bound
Algorithms. Communications of the ACM, 27(6):594–602, 1984.

[167] Mohamed Esseghir Lalami and Didier El-Baz. GPU Implementation of the
Branch and Bound Method for Knapsack Problems. In IEEE International Par-
allel and Distributed Processing Symposium Workshops & PhD Forum, pages 1769–
1777. IEEE, 2012.

[168] Christoph H Lampert, Matthew B Blaschko, and Thomas Hofmann. Efficient
Subwindow Search: A Branch and Bound Framework for Object Localization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129–2142,
2009.

[169] A. H. Land and A. G. Doig. An Automatic Method of Solving Discrete Pro-
gramming Problems. Econometrica, 28(3):497–520, 1960.

[170] Arash Habibi Lashkari, Mir Mohammad Seyed Danesh, and Behrang Samadi.
A Survey on Wireless Security Protocols (WEP, WPA and WPA2/802.11 i). In
IEEE International Conference on Computer Science and Information Technology,
pages 48–52. IEEE, 2009.

[171] Hyung Tae Lee, HongTae Kim, Yoo-Jin Baek, and Jung Hee Cheon. Correct-
ing Errors in Private Keys Obtained from Cold Boot Attacks. In Proceedings
International Conference on Information Security and Cryptology, ICISC’11, pages
74–87, Berlin, Heidelberg, 2012. Springer-Verlag.

[172] Uroš Legat. On-line Testing and Recovery of FPGA-based Systems. PhD thesis,
Jožef Stefan International Postgraduate School, Ljubljana, Slovenia, Mai 2012.

[173] Charles E Leiserson, Flavio M Rose, and James B Saxe. Optimizing Syn-
chronous Circuitry by Rretiming. In Third Caltech Conference on Very Large Scale
Integration, pages 87–116. Springer, 1983.

[174] Stefan Lemsitzer, Johannes Wolkerstorfer, Norbert Felber, and Matthias
Braendli. Multi-Gigabit GCM-AES Architecture Optimized for FPGAs. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages
227–238. Springer, 2007.

BIBLIOGRAPHY 131

[175] Rudi Leroy. Parallel Branch-and-Bound Revisited for Solving Permutation Combi-
natorial Optimization Problems on Multi-Core Processors and Coprocessors. PhD
thesis, 2015.

[176] Rudi Leroy, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. Work
Stealing Strategies for Multi-Core Parallel Branch-and-Bound Algorithm us-
ing Factorial Number System. In Proceedings of Programming Models and Appli-
cations on Multicores and Manycores, page 111. ACM, 2014.

[177] Guo-Jie Li and Benjamin W Wah. Coping with Anomalies in Parallel Branch-
and-Bound Algorithms. IEEE Transactions on Computers, 100(6):568–573, 1986.

[178] Ryan Lim. Parallelization of John the Ripper (JtR) using MPI. Nebraska: Uni-
versity of Nebraska, 37, 2004.

[179] João VF Lima, Thierry Gautier, Vincent Danjean, Bruno Raffin, and Nicolas
Maillard. Design and Analysis of Scheduling Strategies for Multi-CPU and
Multi-GPU Architectures. Parallel Computing, 44:37–52, 2015.

[180] J.V.F. Lima, T. Gautier, N. Maillard, and V. Danjean. Exploiting Concurrent
GPU Operations for Efficient Work Stealing on Multi-GPUs. In IEEE Inter-
national Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 75–82, October 2012.

[181] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh
Chang. Optimization of Regular Expression Pattern Matching Circuits on
FPGA. In Proceedings of the Design Automation & Test in Europe Conference, vol-
ume 2, pages 1–6. IEEE, 2006.

[182] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh
Chang. Optimization of Pattern Matching Circuits for Regular Expression
on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
15(12):1303–1310, 2007.

[183] Walter Link and Hardo May. Eigenschaften von MOS-Ein-
Transistorspeicherzellen bei tiefen Temperaturen. Archiv fur Elektronik
und Ubertragungstechnik 33, pages 229–235, June 1979.

[184] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security Symposium (USENIX Security), 2018.

[185] John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. An
Algorithm for the Traveling Salesman Problem. Operations Research, 11(6):972–
989, 1963.

[186] Thomas Löcke. Instance-specific Computing in Hard- and Software for the
Reconstruction of Decayed AES Key Schedules in Cold Boot Attacks. Master’s
thesis, Paderborn University, March 2015.

[187] Pavlos Malakonakis and Apostolos Dollas. Exploitation of Parallel Search
Space Evaluation with FPGAs in Combinatorial Problems: the Eternity II Case.
In Proceedings International Conference on Field Programmable Logic and Applica-
tions (FPL), pages 264–268. IEEE, 2011.

132 BIBLIOGRAPHY

[188] Maxeler Technologies Inc. MaxCompiler - Manager Compiler Tutorial,
Dezember 2012.

[189] Maxeler Technologies Inc. MaxCompiler - State Machine Tutorial, Dezember
2012.

[190] Rita Mayer-Sommer. Smartly Analyzing the Simplicity and the Power of Sim-
ple Power Analysis on Smartcards. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 78–92. Springer, 2000.

[191] Ciaran McCreesh and Patrick Prosser. The Shape of the Search Tree for
the Maximum Clique Problem and the Implications for Parallel Branch and
Bound. ACM Transactions on Parallel Computing, 2(1):8, 2015.

[192] N. Melab, R. Leroy, M. Mezmaz, and D. Tuyttens. Parallel Branch-and-Bound
using Private IVM-based Work Stealing on Xeon Phi MIC Coprocessor. In
c-hpcs, pages 394–399, July 2015.

[193] Nouredine Melab, Imen Chakroun, and Ahcène Bendjoudi. Graphics Process-
ing Unit-Accelerated Bounding for Branch-and-Bound Applied to a Permuta-
tion Problem using Data Access Optimization. Concurrency and Computation:
Practice and Experience, 26(16):2667–2683, 2014.

[194] Nouredine Melab, Imen Chakroun, Mohand Mezmaz, and Daniel Tuyttens. A
GPU-accelerated Branch-and-Bound Algorithm for the Flow-Shop Scheduling
Problem. In IEEE International Conference on Cluster Computing, pages 10–17.
IEEE, 2012.

[195] Nouredine Melab, Jan Gmys, Mohand Mezmaz, and Daniel Tuyttens. Multi-
Core Versus Many-Core Computing for Many-Task Branch-and-Bound Ap-
plied to Big Optimization Problems. Future Generation Computer Systems,
82:472–481, 2018.

[196] Nouredine Melab, Jan Gmys, Mohand Mezmaz, and Daniel Tuyttens. Many-
Core Branch-and-Bound for GPU Accelerators and MIC Coprocessors. In
High-Performance Simulation-Based Optimization, pages 275–291. Springer, 2020.

[197] Oskar Mencer, Kuen Hung Tsoi, Stephen Craimer, Timothy Todman, Wayne
Luk, Ming Yee Wong, and Philip Heng Wai Leong. Cube: A 512-fpga Cluster.
In Southern Conference on Programmable Logic (SPL), pages 51–57. IEEE, 2009.

[198] Thomas S Messerges, Ezzat A Dabbish, and Robert H Sloan. Examining Smart-
card Security under the Threat of Power Analysis Attacks. IEEE Transactions
on Computers, 51(5):541–552, 2002.

[199] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. Power Analysis
Attacks of Modular Exponentiation in Smartcards. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 144–157. Springer, 1999.

[200] Mohand Mezmaz, Rudi Leroy, Nouredine Melab, and Daniel Tuyttens. A
Multi-Core Parallel Branch-and-Bound Algorithm using Factorial Number
System. In IEEE International Parallel and Distributed Processing Symposium,
pages 1203–1212. IEEE, 2014.

BIBLIOGRAPHY 133

[201] Mohand Mezmaz, Nouredine Melab, and El-Ghazali Talbi. A Grid-enabled
Branch and Bound Algorithm for Solving Challenging Combinatorial Opti-
mization Problems. In IEEE International Parallel and Distributed Processing
Symposium, pages 1–9. IEEE, 2007.

[202] DL Miller and JF Pekny. Results from a Parallel Branch and Bound Algorithm
for the Asymmetric Traveling Salesman Problem. Operations Research Letters,
8(3):129–135, 1989.

[203] Seung-Jai Min, Costin Iancu, and Katherine Yelick. Hierarchical Work Stealing
on Manycore Clusters. In c-pgas, 2011.

[204] Sparsh Mittal. A Survey of Techniques for Managing and Leveraging Caches
in GPUs. Journal of Circuits, Systems, and Computers, 23(8):1430002, 2014.

[205] Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM
Computing Surveys (CSUR), 48(4):62, 2016.

[206] LG Mitten. Branch-and-Bound Methods: General Formulation and Properties.
Operations Research, 18(1):24–34, 1970.

[207] Robert Mittendorf. Advanced AES-Key Recovery from Decayed RAM-Dumps
using Multi-threading and FPGAs. Master’s thesis, Paderborn University, Au-
gust 2014.

[208] Björn Morén. Utilizing Problem Specific Structures in Branch and Bound
Methods for Manpower Planning, 2012.

[209] Bernard ME Moret, Jijun Tang, Li-San Wang, and Tandy Warnow. Steps To-
ward Accurate Reconstructions of Phylogenies from Gene-Order Data. Journal
of Computer and System Sciences, 65(3):508–525, 2002.

[210] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell.
Branch-and-bound Algorithms: A Survey of Recent Advances in Searching,
Branching, and Pruning. Discrete Optimization, 19:79–102, 2016.

[211] Tilo Müller, Andreas Dewald, and Felix C. Freiling. AESSE: a Cold-Boot Resis-
tant Implementation of AES. In Proceedings of the European Workshop on System
Security, EUROSEC ’10, pages 42–47, New York, NY, USA, 2010. ACM.

[212] Patrenahalli M. Narendra and K. Fukunaga. A Branch and Bound Algorithm
for Feature Subset Selection. IEEE Transactions on Computers, C-26(9):917–922,
September 1977.

[213] Dana S Nau, Vipin Kumar, and Laveen Kanal. General Branch and Bound,
and its Relation to A* and AO*. Artificial Intelligence, 23(1):29–58, 1984.

[214] Angeles Navarro, Antonio Vilches, Francisco Corbera, and Rafael Asenjo.
Strategies for Maximizing Utilization on Multi-CPU and Multi-GPU Hetero-
geneous Architectures. Journal of Supercomputing, 70(2):756–771, 2014.

[215] Nadia Nedjah and Chao Wang. Reconfigurable and Adaptive Computing: Theory
and Applications. CRC press, 2018.

134 BIBLIOGRAPHY

[216] Mladen Nikolić, Filip Marić, and Predrag Janičić. Instance-Based Selection of
Policies for SAT Solvers. In Oliver Kullmann, editor, Theory and Applications
of Satisfiability Testing (SAT), volume 5584 of Lecture Notes in Computer Science,
pages 326–340. Springer Berlin Heidelberg, 2009.

[217] Sean O’Neill. Who Really Believes that Fliers Lose 12,000
Laptops a Week? https://www.budgettravel.com/article/
who-really-believes-that-fliers-lose-12000-laptops-a-week_10048.
Accessed: 2019-09-18.

[218] Joo Guan Ooi and Kok Horng Kam. A Proof of Concept on Defending Cold
Boot Attack. In Asia Symposium on Quality Electronic Design, pages 330–335.
IEEE, 2009.

[219] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Coun-
termeasures: the Case of AES. In Cryptographers’ track at the RSA Conference,
pages 1–20. Springer, 2006.

[220] Kyprianos Papadimitriou, Apostolos Dollas, and Scott Hauck. Performance of
Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 4(4):36, 2011.

[221] Kenneth G Paterson, Antigoni Polychroniadou, and Dale L Sibborn. A
Coding-Theoretic Approach to Recovering Noisy RSA Keys. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 386–403. Springer, 2012.

[222] Oliver Pell and Vitali Averbukh. Maximum Performance Computing with
Dataflow Engines. j-cse, 14:98–103, 2012.

[223] M. Platzner. Reconfigurable Accelerators for Combinatorial Problems. Com-
puter, 33(4):58–60, April 2000.

[224] Christian Plessl and Marco Platzner. Instance-Specific Accelerators for Mini-
mum Covering. Journal of Supercomputing, 26(2):109–129, 2003.

[225] Larry Ponemon. Airport Insecurity: The Case of Missing and Lost
Laptops. http://www.dell.com/downloads/global/services/dell_lost_
laptop_study.pdf, June 2008.

[226] Larry Ponemon. The Billion Euro Lost Laptop Problem, 2011.

[227] Viktor K. Prasanna and Andreas Dandalis. FPGA-based Cryptography for
Internet Security. In Online Symposium for Electronic Engineers. University of
Southern California, Los Angeles, USA, 2000.

[228] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, et al. A Reconfigurable Fabric for Acceler-
ating Large-Scale Datacenter Services. ACM SIGARCH Computer Architecture
News, 42(3):13–24, 2014.

[229] Lin Quan, Weichang Shen, Jiao Cui, and Duan Geng. Application of 0–1 Knap-
sack MPI+ OpenMP Hybrid Programming Algorithm at MH Method. In Inter-
national Conference on Fuzzy Systems and Knowledge Discovery, pages 2452–2456.
IEEE, 2012.

https://www.budgettravel.com/article/who-really-believes-that-fliers-lose-12000-laptops-a-week_10048
https://www.budgettravel.com/article/who-really-believes-that-fliers-lose-12000-laptops-a-week_10048
http://www.dell.com/downloads/global/services/dell_lost_laptop_study.pdf
http://www.dell.com/downloads/global/services/dell_lost_laptop_study.pdf

BIBLIOGRAPHY 135

[230] Jean-Jacques Quisquater and François-Xavier Standaert. Exhaustive Key
Search of the DES: Updates and Refinements. SHARCS 2005, 2005.

[231] Sundararaman Rajagopalan, Rengarajan Amirtharajan, Har Narayan Upad-
hyay, and John Bosco Balaguru Rayappan. Survey and Analysis of Hardware
Cryptographic and Steganographic Systems on FPGA. Journal of Applied Sci-
ences, 12(3):201, 2012.

[232] Nadesh Ramanathan, John Wickerson, Felix Winterstein, and George A. Con-
stantinides. A Case for Work-stealing on FPGAs with OpenCL Atomics. In
Proceedings International Symposium on Field-Programmable Gate Arrays (FPGA),
pages 48–53, New York, NY, USA, 2016. ACM.

[233] A. Rashid, J. Leonard, and W.H. Mangione-Smith. Dynamic Circuit Genera-
tion for Solving Specific Problem Instances of Boolean Satisfiability. In Proceed-
ings IEEE Symposium on FPGAs for Custom Computing Machines, pages 196–204,
April 1998.

[234] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism. "O’Reilly Media, Inc.", 2007.

[235] Eric Rescorla. HTTP over TLS. 2000.

[236] Man Young Rhee. Internet Security: Cryptographic Principles, Algorithms and
Protocols. John Wiley & Sons, 2003.

[237] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[238] Andrés Rodríguez, Angeles Navarro, Rafael Asenjo, Francisco Corbera,
Rubén Gran, Darío Suárez, and Jose Nunez-Yanez. Parallel Multiprocessing
and Scheduling on the Heterogeneous Xeon+ FPGA Platform. The Journal of
Supercomputing, pages 1–21, 2019.

[239] Donald J Rose. On Simple Characterizations of k-Trees. Discrete mathematics,
7(3-4):317–322, 1974.

[240] Gaël Rouvroy, F-X Standaert, J-J Quisquater, and J-D Legat. Compact and Ef-
ficient Encryption/Decryption Module for FPGA Implementation of the AES
Rijndael Very Well Suited for Small Embedded Applications. In Proceedings In-
ternational Conference on Information Technology: Coding and Computing (ITCC),
volume 2, pages 583–587. IEEE, 2004.

[241] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise Interprocedural
Dataflow Analysis with Applications to Constant Propagation. Theoretical
Computer Science, 167(1-2):131–170, 1996.

[242] Alina Sbîrlea, Yi Zou, Zoran Budimlíc, Jason Cong, and Vivek Sarkar. Map-
ping a Data-Flow Programming Model onto Heterogeneous Platforms. ACM
SIGPLAN Notices, 47(5):61–70, 2012.

[243] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson. The Twofish Encryption Algorithm: a 128-bit Block Cipher. John
Wiley & Sons, Inc., 1999.

136 BIBLIOGRAPHY

[244] Micaela Serra and K Kent. Using FPGAs to solve the Hamiltonian cycle prob-
lem. In Proceedings International Symposium on Circuits and Systems (ISCAS),
volume 3, pages III–228. IEEE, 2003.

[245] Adi Shamir and Nicko van Someren. Playing Hide and Seek with Stored Keys.
In Proceedings International Conference on Financial Cryptography (FC), FC ’99,
pages 118–124, London, UK, UK, 1999. Springer-Verlag.

[246] Claude E Shannon. Programming a Computer for Playing Chess. In Computer
chess compendium, pages 2–13. Springer, 1988.

[247] Junzhong Shen, Yuran Qiao, You Huang, Mei Wen, and Chunyuan Zhang.
Towards a Multi-Array Architecture for Accelerating Large-Scale Matrix Mul-
tiplication on FPGAs. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1–5. IEEE, 2018.

[248] Yusuke Shimai, Junichi Tani, Hiroki Noguchi, Hiroshi Kawaguchi, and
Masahiko Yoshimoto. FPGA Implementation of Mixed Integer Quadratic Pro-
gramming Solver for Mobile Robot Control. In International Conference on Field-
Programmable Technology, pages 447–450. IEEE, 2009.

[249] Juliana MN Silva, Cristina Boeres, Lúcia MA Drummond, and Artur A Pessoa.
Memory Aware Load Balance Strategy on a Parallel Branch-and-Bound Appli-
cation. Concurrency and Computation: Practice and Experience, 27(5):1122–1144,
2015.

[250] Patrick Simmons. Security Through Amnesia: a Software-based Solution to
the Cold Boot Attack on Disk Encryption. In Proceedings of the Annual Computer
Security Applications Conference, ACSAC ’11, pages 73–82, New York, NY, USA,
2011. ACM.

[251] Gurpreet Singh. A Study of Encryption Algorithms (RSA, DES, 3DES and
AES) for Information Security. International Journal of Computer Applications,
67(19), 2013.

[252] Filippo Sironi, Marco Triverio, Henry Hoffmann, Martina Maggio, and
Marco D Santambrogio. Self-Aware Adaptation in FPGA-based Systems. In
International Conference on Field Programmable Logic and Applications, pages 187–
192. IEEE, 2010.

[253] Iouliia Skliarova and Antonio de Brito Ferrari. Reconfigurable Hardware SAT
Solvers: A Survey of Systems. IEEE Transactions on Computers, 53(11):1449–
1461, 2004.

[254] Iouliia Skliarova and António B Ferrari. A Software/Reconfigurable Hard-
ware SAT Solver. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 12(4):408–419, 2004.

[255] Sergei Skorobogatov. Low Temperature Data Remanence in Static RAM. Tech-
nical report, University of Cambridge, June 2002.

[256] Sergei P Skorobogatov and Ross J Anderson. Optical Fault Induction At-
tacks. In International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pages 2–12. Springer, 2002.

BIBLIOGRAPHY 137

[257] William Stallings, Lawrie Brown, Michael D Bauer, and Arup Kumar Bhat-
tacharjee. Computer Security: Principles and Practice. Pearson Education Upper
Saddle River (NJ, 2012.

[258] Carl Sechen Ted Stanion. A Method for Finding Good Ashenhurst Decomposi-
tions and its Application to FPGA Synthesis. In Design Automation Conference,
pages 60–64. IEEE, 1995.

[259] John E Stone, David Gohara, and Guochun Shi. OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems. Computing in Science
& Engineering, 12(3):66, 2010.

[260] Welson Sun, Michael J Wirthlin, and Stephen Neuendorffer. FPGA Pipeline
Synthesis Design Exploration using Module Selection and Resource Sharing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(2):254–265, 2007.

[261] Eric J Swankoski, Richard R Brooks, Vijaykrishnan Narayanan, Mahmut Kan-
demir, and Mary Jane Irwin. A Parallel Architecture for Secure FPGA Symmet-
ric Encryption. In Proceedings International Symposium on Parallel and Distributed
Processing, page 132. IEEE, 2004.

[262] El-Ghazali Talbi. Parallel Combinatorial Optimization, volume 58. John Wiley &
Sons, 2006.

[263] Naif Tarafdar, Nariman Eskandari, Thomas Lin, and Paul Chow. Designing
for FPGAs in the Cloud. IEEE Design & Test, 35(1):23–29, 2017.

[264] Jim Torresen, Christian Plessl, and Xin Yao. Self-Aware and Self-Expressive
Systems. Computer, 48(7):18–20, 2015.

[265] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002.

[266] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A Lightweight
Performance-oriented Tool Suite for x86 Multicore Environments. In Inter-
national Conference on Parallel Processing Workshops, pages 207–216. IEEE, 2010.

[267] Stephen M Trimberger and Jason J Moore. FPGA Cecurity: Motivations, Fea-
tures, and Applications. Proceedings of the IEEE, 102(8):1248–1265, 2014.

[268] Kuen Hung Tsoi and Wayne Luk. Axel: a Heterogeneous Cluster with FPGAs
and GPUs. In Proceedings International symposium on Field programmable gate
arrays (ACM/SIGDA), pages 115–124. ACM, 2010.

[269] Alex Tsow. An Improved Recovery Algorithm for Decayed AES Key Schedule
Images. In Proceedings International Workshop on Selected Areas in Cryptography
(SAC), pages 215–230, 2009.

[270] Alex Tsow. An Improved Recovery Algorithm for Decayed AES Key Sched-
ule Images. In Selected Areas in Cryptography, volume 5867 of Lecture Notes in
Computer Science, pages 215–230. Springer Berlin Heidelberg, 2009.

[271] Isa Servan Uzun, Abbes Amira, and Ahmed Bouridane. FPGA Implementa-
tions of Fast Fourier Transforms for Real-Time Signal and Image Processing.
IEE Proceedings-Vision, Image and Signal Processing, 152(3):283–296, 2005.

138 BIBLIOGRAPHY

[272] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. Heterogeneous Resource-
Elastic Scheduling for CPU+ FPGA Architectures. In Proceedings Interna-
tional Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies,
page 1. ACM, 2019.

[273] Peter JM Van Laarhoven and Emile HL Aarts. Simulated Annealing. In Simu-
lated Annealing: Theory and Applications, pages 7–15. Springer, 1987.

[274] John Villasenor and William H Mangione-Smith. Configurable Computing.
Scientific American, 276(6):54–9, 1997.

[275] Stefan Vömel and Felix C. Freiling. A Survey of Main Memory Acquisition
and Analysis Techniques for the Windows Operating System. Digit. Investig.,
8(1):3–22, July 2011.

[276] John Von Neumann. First Draft of a Report on the EDVAC. IEEE Annals of the
History of Computing, 15(4):27–75, 1993.

[277] Trong-Tuan Vu and Bilel Derbel. Parallel Branch-and-Bound in Multi-Core
Multi-CPU Multi-GPU Heterogeneous Environments. Future Generation Com-
puter Systems, 56:95–109, 2016.

[278] Trong-Tuan Vu, Bilel Derbel, and Nouredine Melab. Adaptive Dynamic Load
Balancing in Heterogeneous Multiple GPUs-CPUs Distributed Setting: Case
Study of b&b Tree Search. In International Conference on Learning and Intelligent
Optimization, pages 87–103. Springer, 2013.

[279] Benjamin W Wah and YW Ma. MANIP-a Parallel Computer System for Im-
plementing Branch and Bound Algorithms. In Proceedings of the Annual Sym-
posium on Computer Architecture, pages 239–262. IEEE Computer Society Press,
1981.

[280] Shin’ichi Wakabayashi and Kenji Kikuchi. An Instance-specific Hardware Al-
gorithm for Finding a Maximum Clique. In Proceedings International Conference
on Field Programmable Logic and Applications (FPL), pages 516–525, 2004.

[281] Qichao Wang. Localization and Extraction of Cryptographic Keys from Mem-
ory Images and Data Streams. Master’s thesis, Paderborn University, 2012.

[282] Shuenn-Shyang Wang and Wan-Sheng Ni. An Efficient FPGA Implementation
of Advanced Encryption Standard Algorithm. In IEEE International Symposium
on Circuits and Systems (IEEE Cat. No. 04CH37512), volume 2, pages II–597.
IEEE, 2004.

[283] Mark N Wegman and F Kenneth Zadeck. Constant Propagation with Con-
ditional Branches. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(2):181–210, 1991.

[284] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Ope-
nACC—First Experiences with Real-World Applications. In European Confer-
ence on Parallel Processing, pages 859–870. Springer, 2012.

[285] Thomas Wollinger, Jorge Guajardo, and Christof Paar. Security on FPGAs:
State-of-the-art Implementations and Attacks. ACM Transactions Embedded
Computing Systems, 3(3):534–574, August 2004.

BIBLIOGRAPHY 139

[286] Hui Yan, Zhaoshi Li, Leibo Liu, Shouyi Yin, and Shaojun Wei. Constructing
Concurrent Data Structures on FPGA with Channels. In Proceedings Interna-
tional Symposium on Field-Programmable Gate Arrays (ACM/SIGDA), pages 172–
177. ACM, 2019.

[287] Jixiang Yang and Qingbi He. Scheduling Parallel Computations by Work Steal-
ing: A Survey. International Journal of Parallel Programming, 46(2):173–197, 2018.

[288] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Protocol Architecture.
2006.

[289] Makoto Yokoo, Takayuki Suyama, and Hiroshi Sawada. Solving Satisfiability
Problems using Field Programmable Gate Arrays: First Results. In Principles
and Practice of Constraint Programming (CP), pages 497–509. Springer, 1996.

[290] Joseph Zambreno, David Nguyen, and Alok Choudhary. Exploring Area/De-
lay Tradeoffs in an AES FPGA Implementation. In International Conference on
Field Programmable Logic and Applications, pages 575–585. Springer, 2004.

[291] Peixin Zhong, Margaret Martonosi, Sharad Malik, and Pranav Ashar. Imple-
menting Boolean Satisfiability in Configurable Hardware. In Logic Synthesis
Workshop. Citeseer, 1997.

[292] Shijie Zhou and Viktor K Prasanna. Accelerating Graph Analytics on CPU-
FPGA Heterogeneous Platform. In International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD), pages 137–144. IEEE,
2017.

	Acknowledgements
	Abstract
	Zusammenfassung
	Table of Contents
	Introduction
	Contributions Overview
	Thesis Structure

	Foundations: Reconfigurable Computing
	Field-Programmable Accelerators
	Design Flow of Hardware Acceleration
	MaxCompiler Programming Model
	Host Application
	Kernel
	Manager
	State Machines
	Compilation Tool Flow

	Chapter Conclusion

	Excursion to Cryptography and Information Security
	Introduction to Side-Channel Attacks
	Cold-Boot Attacks
	Remanence Effect of Main Memory
	Attack Vector and Relevance

	Modeling Bit Errors
	Perfect Asymmetric Decay
	Expected Value as Threshold

	Advanced Encryption Standard
	Key Schedule: Secret Key and Round Keys
	Secret Key Expansion
	Fundamental Cryptographic Principles

	Chapter Conclusion

	Intermediate Findings: Identification of Secret Key Material
	Basic Idea and Software Approach
	Hardware Implementation
	Input
	Heuristics
	Computation of Reference Key Schedule
	Computation of the Hamming Distances

	Evaluation
	Software Reference
	Kernel Replication
	Results
	Discussion

	Chapter Conclusion

	Branch-and-Bound with Reconfigurable Hardware
	Basics and Common Terminology
	Tree Data Structure
	Traversal Strategies: Tree Structure and Search Path

	Branch-and-Bound: General Idea
	Algorithmic Pattern
	State Machine Design for Reconfigurable Hardware

	Case Study: Secret Key Reconstruction
	Basic Idea
	Software Approach
	Bounding the Search Space: Error Model

	Branch-and-Bound in Hardware
	Software Translation: Concrete Finite State Machine
	Selecting Branches
	Computing Inferred Knowledge: Implication Chains
	Checkpointing Tree Traversal
	Maintaining the Bound: Applying Error Model

	Evaluation
	Target Platforms
	Error Metrics
	Evaluation Scenario
	Software Implementation
	Performance Comparison of Software to Hardware

	Chapter Conclusion

	Work Stealing with Reconfigurable Hardware
	Motivation and General Description
	Extensions of the General State Machine
	Coordination and Synchronization of Stealing
	Initialization and Termination

	Evaluation
	Evaluation Scenario
	Results

	Chapter Conclusion

	Instance-Specific Computing with Reconfigurable Hardware
	Motivation and General Description
	Methods for Customization
	Generation of Instance-Specific Designs

	Instance-Specific Branch-and-Bound Search Trees
	Instance-Specific Branching Order
	Generating Valid and Optimal Search Tree Structures
	Selecting Instance-Specific Search Tree Structures

	Generation of Instance-Specific Hardware Designs
	Evaluation
	Results
	On-the-Fly Hardware Synthesis
	Discussion and Practical Considerations

	Chapter Conclusion

	Related Work
	Side-Channel and Cold-Boot Attacks
	Acquisition of Sensitive Data
	Search and Extraction of Secret Key Material
	Reconstruction of Secret Keys

	Branch-and-Bound in Soft- and Hardware
	Parallelization and Work Stealing
	Instance-Specific Computing

	Chapter Conclusion

	Conclusion
	Summary
	Outlook

	List of Tables
	List of Listings
	List of Figures
	Acronyms
	Supplemental Material
	Author's Publications
	Bibliography

