
Big Data:
Sublinear Algorithms for
Distributed Data Streams

Dissertation

In fulfillment of the requirements for the academic degree
Doctor rerum naturalium (Dr. rer. nat.)

MANUEL MALATYALI

Heinz Nixdorf Institute & Computer Science Department
Paderborn University, Germany
Research Group Algorithms and Complexity

This work is part of the project “Distributed Data Streams in Dynamic Environments
(DisDaS)” and was supported by the German Research Foundation (DFG)
within the Priority Program “Algorithms for Big Data” (SPP 1736).

Reviewer:

• Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn

• Prof. Dr. Christian Scheideler, University of Paderborn

Abstract

We consider a sensor network comprised of numerous nodes which sense the environ-
ment and are equipped with communication capabilities to convey this information to a
server. The server evaluates a function (e.g., Maximum, etc.) based on the information
at the sensor nodes currently observed. To fulfill this task, the sensor nodes can send
their observations to the server, and in turn, the server can send messages directly to a
sensor node or broadcast a message to all sensor nodes with unit costs. The objective
is to minimize the total communication while the server computes the function.

We apply two different techniques to tackle this situation: First, we consider filter-
based protocols and compare protocols against an optimal offline algorithm which
knows the whole input in advance and sets filters in an optimal way. Second, we
design and analyze protocols in the framework of dynamic algorithms. That is, given
observations at a specific time step, we assume that only a fraction of the sensors iden-
tify a change in their observation in comparison to the previous time step. We aim at
communication protocols which use communication depending on this fraction.

Zusammenfassung

Wir betrachten ein Sensornetzwerk aus zahlreichen Knoten, die die Umgebung beob-
achten und in der Lage sind, diese Informationen an einen Server zu übermitteln. Der
Server evaluiert eine Funktion (z.B. Maximum, etc.) basierend auf den Informationen,
die aktuell bei den Sensorknoten vorliegen. Zu diesem Zweck können die Sensor-
knoten und der Server Nachrichten schicken. Die Sensorknoten können an den Server,
der Server wiederum eine Nachrichten direkt an einen Sensorknoten oder an alle Sen-
sorknoten senden. Dabei haben alle oben genannten Nachrichten einheitliche Kosten.
Das Ziel ist es, die gesamte Kommunikation zu minimieren, während der Server die
gegebene Funktion berechnet.

In diesem Setting wenden wir zwei verschiedene Techniken an: Zunächst betra-
chten wir filterbasierte Protokolle und vergleichen Protokolle mit einem optimalen
Offline-Algorithmus, der die Eingabe im Voraus kennt und die Filter optimal bestimmt.
Zweitens entwerfen und analysieren wir Protokolle im Rahmen von dynamischen Al-
gorithmen. Das bedeutet, zwischen zwei Zeitpunkten an denen eine Ausgabe berech-
net wird, ändert sich nur für ein Bruchteil der Sensorknoten die beobachte Information.
Es werden Kommunikationsprotokolle entwickelt mit einem Kommunikationsaufwand
abhängig von der Anzahl der geänderten Sensoren.

CONTENTS

1 A Short Introduction 1
1.1 Background . 4

1.2 Basis of the Thesis . 5

1.3 Outline . 7

A Monitoring Problems using Filters 9

2 Introduction to Filter-Based Algorithms for Distributed Streams 11
2.1 Model Description . 12

2.2 Problems Description . 13

2.3 Description of Filter-Based Algorithms 14

2.4 Competitive Algorithms . 16

2.5 Related Work . 17

3 Node Existence & Domain Monitoring 21
3.1 Introduction & Contribution . 22

3.2 Existence – One-Shot Computation 23

3.3 Existence Monitoring . 26

3.4 Domain – One-Shot Computation 31

4 Exact & Approximate Top-k Monitoring 33
4.1 Introduction & Contribution . 34

4.2 Preliminaries . 35

4.2.1 Top-k-Value Monitoring . 35

4.2.2 Exact Top-k-Position Monitoring 37

VI CONTENTS

4.2.3 Discussion on Approx. Top-k-Position Monitoring 40

4.3 Maximum – One-Shot Computation 41

4.4 Top-K – One-Shot Computation . 45

4.5 Exact Top-k-Position Monitoring . 48

4.6 Lower Bound . 51

4.7 Allow the Online Algorithm to Err 52

4.8 Lower Bounds for the Approx. Top-k-Monitoring Problem 56

5 Top-k-Position Monitoring against an Approximate Offline Algorithm 57
5.1 Introduction & Contribution . 58

5.2 Lower Bound for Competitive Algorithms 59

5.3 Upper Bounds for Competitive Algorithms 60

5.3.1 The DENSEPROTOCOL . 61

5.3.2 The SUBPROTOCOL . 64

5.4 Error Augmentation . 70

6 Future Research Perspectives 73

B Dynamic Algorithms 81

7 Introduction to Dynamic Algorithms 83
7.1 Model Description . 84

7.2 Problems Description . 85

7.3 Related Work . 85

8 Fully Dynamic Algorithm for the FREQUENCY Problem 87
8.1 Introduction & Results . 88

8.2 Frequencies – A One-Shot Computation 89

8.2.1 Constant Factor Approximation of Frequencies 89

8.2.2 Arbitrary Approximation of Frequencies 91

8.3 Maintaining Frequencies over Multiple Time Steps 94

9 A Communication-Efficient Data Structure for Top-k and k-Select Queries 97
9.1 Introduction & Results . 98

9.2 Outline of the Data Structure . 99

9.3 Initialization of the Data Structure 100

9.4 Update . 105

9.5 Weak Select . 107

CONTENTS VII

9.6 Strong Approximate k-Select . 108
9.6.1 One-Shot Approximate k-Select 113
9.6.2 Top-k . 114

10 Fully Dynamic & Filter-Based APPROXIMATE COUNT DISTINCT 117
10.1 Introduction & Contribution . 118
10.2 Count Distinct Monitoring – One Shot 119
10.3 Approximate Count Distinct Monitoring 121

11 Future Research Perspectives 123

CHAPTER 1

A SHORT INTRODUCTION

In the recent years streaming algorithms gained lot of attraction due to cheap storage
hardware. The capability and the willingness to store large quantity of data arose.
In every aspect of our current life data is being created. The amount of sensors is
becoming larger (e.g. smartphones, internet-of-things devices, connected cars, etc.)
and thus grows the amount of data generated on the fly. A fraction of this data is sent to
a data center and is stored for a later analysis. To be capable of managing and analyzing
these amounts of data, sublinear algorithms were designed. In the following we shed
some light on these algorithms which are executed inside a data center.

A streaming algorithm processes the data one by one in a given order and is not
allowed to access passed data1. The objective is to compute a function on the data and
at the same time minimize the space required to fulfill this task. Since exact solutions
often require random access to large parts of the data, it is allowed to introduce an error
to the output. Interestingly, for numerous problems the introduced error yields algo-
rithms which only use polylogarithmic memory. In presence of rich literature in this
important as well as attracting research area, the term of sublinear space algorithms
arose, also often referred to as streaming algorithms (see [Agg07, Mut05] for a survey).

Furthermore, in huge data centers, data is not only stored on one huge hard disk,
but is instead also stored in a distributed manner. Each hard disk is accessed by a pro-
cessor and the processors are tasked to collectively compute a function on the presence
of the entire data and store this result at one dedicated processor, denoted by server. To
fulfill the task the processors can send messages to the server and the server can send
messages directly to the other processors. In such a scenario, the communication chan-

1Here we only consider so-called one pass algorithms. There are also multiple pass algorithms which
can access passed data in the next pass.

2 A Short Introduction

nel between the server and the processors represents the bottleneck, since a congested
communication channel slows down the overall execution time of the computation of
the function. To prevent this, protocols using sublinear communication are designed
in a distributed setting. Most notably this setting is represented by the distributed mon-
itoring model introduced by Cormode, Muthukrishnan and Yi [CMY08].

We now switch the setting and consider one that includes the generation of the
data and its transmission to the data center. Precisely, data is generated by a sensor
node (e.g., by observing the local environment) and a sensor node can send a message
containing its observation and its unique identifier to a server inside the data center.
Furthermore, the server can send a message to a sensor node and is able to send a
broadcast message to all sensor nodes at unit cost. We denote this model by the Dis-

tributed Monitoring Model with a Broadcast Channel (DMBC) and give a formal defi-
nition in Section 2.1. We assume discrete time steps, at the beginning of each time step
the sensor nodes observe their environment then a communication protocol is allowed
to take place. We assume that a message is delivered instantaneously and the function
is computed at each time step after the protocol terminates.

The essential differences between the settings within the data center and our set-
ting represented by the DMBC model are that, on the one hand, only problems that
relate exclusively to the current point in time are considered. On the other hand, the
focus is not exclusively within a data center, but on the communication between mobile
sensors and the data center itself. A server in the data center can broadcast messages
via antennas or satellites, whereby devices receive messages from the server and send
messages directly to the server. We consider the cost of broadcasting from the server
to all devices with the same cost as sending a message to the server.2 For the sake of
simplification, we consider communication rounds: i.e., nodes first decide whether to
send their input to the server, then the server responds with a broadcast message. In
our model, we assume that all sensors can store the current observation. This means
that an exact solution can be calculated for all problems as follows: Each sensor sends
its observation to the server. In fact, if only a single communication round is allowed,
for some problems the overall communication cannot be improved. The difficulty lies
in deciding which observations are necessary to determine an output for the current
point in time. For illustration the maximum of temperature values measured at the sen-
sor nodes should be calculated. If two communication rounds are allowed, in the first
round each of the n sensors sends with a probability of 1/

√
n. The server broadcasts

the maximum of the received values. Then all nodes with a higher value send a message

2Our results can also be applied within a data center. Here the costs of a broadcast are often estimated
with logarithmic costs.

3

to the server. Altogether only O(
√
n) messages on expectation are sent. That means

with a second round of communication an algorithm with linear costs (w.r.t. commu-
nication) can be transformed into an algorithm with sublinear costs. In this thesis we
will design protocols that often only require a polylogarithmic number of messages. If
we compute an output only once we denote this by a one-shot computation.

Further Motivation Besides the fact that communication efficient transmission be-
tween devices and a data center seems to be a promising setting, there is a further
motivation to consider this model. Consider the congested clique model (CC) intro-
duced by Lotker et al. in [LPPSP03] which recently gained a lot of attention. In the
CC model there are n nodes in a complete network (a clique). The time is divided into
rounds; in each round a node is able to sendO(log n) bits to each of the n−1 neighbor
nodes. A protocol is said to terminate if every node decides for the same output. For
a given task the number of communication rounds is subject to being minimized. In
the CC model it is of particular interest to prove superconstant lower bounds. In fact
for several problems, protocols are known which only need constant communication
rounds.

If we consider one of these protocols, it is easy to see that this can be mapped to
a protocol which uses a constant number of communication rounds and a number of
O(n) messages. The interesting question is whether there are protocols which only
need o(n) messages while the number of communication rounds is still constant.

Techniques We tackle the problem at hand by two different strategies: First, we re-
sign to introduce any assumptions to the coarse of the input streams. That is, we assume
the presence of an adversary who is able to generate at each point in time the input for
the sensor nodes for the next time step. This setting allows to be generically applied to
a variety of scenarios. In little detail, we apply techniques from the field of distributed
databases known as filters, e.g., [MBP06]. Their purpose is to ’filter out’ pieces of data
which are not necessary for a computation. It turned out that filters can reduce costs
significantly especially for data streams that are ’similar’ in consecutive points in time.
In Section 2.5 we give a detailed overview of the current state of research. In very
short, Yi and Zhang [YZ12] were the first to consider a distributed scenario in which
a server is tasked to be always informed about the value of one single sensor node,
up to an additive error of ∆. Besides others, they designed and analyzed a protocol
which usesO(log(∆) ·OPT) messages, where OPT is the number of messages an op-
timal communication strategy uses. On the basis of this, Lam, Liu, and Ting [LLT10]
were the first who applied this mix of filters and competitive analysis to the distributed

4 A Short Introduction

monitoring model. They considered the dominance relationship monitoring problem
in which at every point in time the server is tasked to output the rank of each single
sensor node.

Second, we tackle the problems from the perspective of dynamic algorithms. In
little detail, we assume that the adversary is updating parts of the input and the server
is asked to refresh the output. Clearly, if the adversary updates all observations, the
costs for the new computation is the same as for one-shot computations. However,
we consider a setting in which the adversary changes a fraction of the sensors. We
analyze the number of messages and the time used depending on the amount of nodes
that observed new values; however, the protocol itself does not know this fraction.
Furthermore, they neither rely on these as an input nor try to guess it.

It is hard to keep up the strands of research previous to this aspect. A current field
of research under the keyword of (fully) dynamic algorithms is often understood as
adding or deleting one single item to or from the instance and recomputing the desired
output. There are tons of examples which range from graph problems (e.g., Shortest
Paths [FMS93]) to scheduling related problems (e.g., bin packing [FFG+18]). Here,
we consider a more general variant in which a batch of updates is allowed to take place
until the next computation takes place. Or in other words, a series of update operations
is being called before an output is required. In its manifold details seeing this setting
as a data structure reflects this most properly.

1.1 Background

One could get the impression that the research area of streaming algorithms is a recent
trend. However, we like to shed some light on the very beginning of this field of
research and give credits to the pioneers in this area.

Sequential Streaming Streaming Algorithms dates back to 1980 by Munro and Pa-
terson [MP80] as they considered the scenario in which data is stored on a large mag-
netic tape. With respect to the data on the tape, the objective is to evaluate a function.
Since accessing the data in a pattern driven by the course of an algorithm is very costly,
Munro and Paterson identified an interesting class of algorithms which are restricted
to access the data in the given order and they called these streaming algorithms. The
crucial fact is that this model is essentially different from the model which allows ran-
dom access (the RAM model). Even in their first work they have shown intriguing
insights in the relation between the number of passes over the input and the potential
quality of the evaluated function. These early breakthroughs still have an impact even

1.2 Basis of the Thesis 5

for modern technologies. In contrast to magnetic tapes, hard disks have an access time
that is significantly faster; however, there is still a head which has to move to the place
at which the required data lies. An algorithm that directly processes the data which is
under this moving head improves the overall performance.

Distributed Streaming Most notable from the model perspective is the continuous
distributed monitoring model described in [CMY08]. In contrast to sequential stream-
ing, this model assumes that each of n sensors generates or observes a data stream in a
synchronous manner. The goal is to continuously compute a function, i.e., to compute
at every point in time the value of the function applied to all n data streams generated so

far. This computation is done using a central server (also referred to as a coordinator)
that is connected to all n sensors. The major objective is to minimize the communi-
cation volume, i.e., the overall number of bits transmitted between the sensors and the
server.

An important class of problems investigated are threshold computations: Here, it
is assumed that the generated streams are observations of events. The corresponding
threshold problem is to continuously decide whether the current number of events has
reached some given threshold τ or not. Exact characterizations, including matching
lower bounds in the deterministic case, are known. Results for more complex functions
like the entropy or the p-th frequency are presented in [ABC09, CMY08].

1.2 Basis of the Thesis

The thesis is based on the following publications. The following overview of the pub-
lished results is considered within the DMBC model (distributed monitoring with a
broadcast channel) which we described informally in the introduction and introduce
formally in Section 2.1. Note that this model is an extension of the continuous moni-
toring model introduced by Cormode, Muthukrishnan and Yi in [CMY08].

Online Top-k-Position Monitoring of Distributed Data Streams

In the first paper, the server has to know the k nodes currently observing the largest
values, for a given k between 1 and n. This problem is denoted as the Top-k-Position
Monitoring problem. We design and analyze an algorithm that solves this problem
while bounding the total amount of messages exchanged between the nodes and the
server.

6 A Short Introduction

Our algorithm employs the idea of using filters which, intuitively speaking, leads
to few messages to be sent if the new input is “similar” to the previous ones. The
algorithm uses a number of messages that is by a factor ofO((log ∆+k) · log n) larger
than that of an offline algorithm that sets filters in an optimal way, where ∆ is upper
bounded by the largest value observed by any node.

• Mäcker, M., and Meyer auf der Heide. Online Top-k-Position Monitoring of
Distributed Data Streams. In: 29th International Parallel and Distributed Pro-

cessing Symposium (IPDPS, 2015), [MMM15].

On Competitive Algorithms for Approximations of Top-k-Position Monitoring of
Distributed Streams

The server is supposed to keep track of an approximation of the set of nodes currently
observing the k largest values. Such an approximate set is exact except for some im-
precision in an ε-neighborhood of the k-th largest value. This approximation of the
Top-k-Position Monitoring Problem is of interest in cases where marginal changes in
observed values (e.g., due to noise) can be ignored so that monitoring an approximation
is sufficient and can reduce communication.

This paper extends the results from [MMM15], where we have developed a filter-
based online algorithm for the (exact) Top-k-Position Monitoring Problem. There we
have presented a competitive analysis of our algorithm against an offline adversary
that also is restricted to filter-based algorithms. Our new algorithms as well as their
analyses use new methods. We analyze their competitiveness against adversaries that
use both exact and approximate filter-based algorithms, and observe severe differences
between the respective powers of these adversaries.

• Mäcker, M., and Meyer auf der Heide. On Competitive Algorithms for Ap-
proximations of Top-k-Position Monitoring of Distributed Streams. In: 30th

International Parallel and Distributed Processing Symposium (IPDPS, 2016),
[MMM16].

Monitoring of Domain-Related Problems in Distributed Data Streams

We consider monitoring problems related to the domain Dt to be the set of values
observed by at least one node at time t. We provide randomized algorithms for moni-
toring Dt, (approximations of) the size |Dt| and the frequencies of all members of Dt.
Besides worst-case bounds, we also obtain improved results when inputs are parame-
terized according to the similarity of observations between consecutive time steps. This

1.3 Outline 7

parameterization allows to exclude inputs with rapid and heavy changes, which usually
leads to the worst-case bounds but might be rather artificial in certain scenarios.

• Bemmann, Biermeier, Bürmann, Kemper, Knollmann, Knorr, Kothe, Mäcker,
M., Meyer auf der Heide, Riechers, Schaefer, Sundermeier. Monitoring of Do-
main Related Problems in Distributed Data Streams. In: Structural Information
and Communication Complexity (SIROCCO 2017) [BBB+17].

A Dynamic Distributed Data Structure for Top-k and k-Select Queries

Our goal is to compute the k currently lowest observed values (Top-k) or a value with
rank in [(1−ε)k; (1+ε)k] with a probability at least 1− δ (approximate k-Select). We
consider different variants of this problem:

1. Protocols which answer Top-k and k-Select queries as one-shot versions. These
protocols are memoryless in the sense that they gather all information at the time
of the request.

2. A dynamic data structure which at any point in time can answer a request for a
rank k with a data item d with a rank ’close’ to k.

We describe how to combine the two parts to receive a protocol answering the
stated queries over multiple time steps. We present a communication-efficient dynamic
data structure that supports these queries under updates of the data items arriving at the
sensor nodes. We show that the bounds on the expected number of messages and the
expected communication rounds decrease significantly.

• Biermeier, Feldkord, M., and Meyer auf der Heide. A Communication-Efficient
Distributed Data Structure for Top-k and k-Select Queries. In: 15th International

Workshop on Approximation and Online Algorithms (WAOA, 2017), [BFMM17].

• Feldkord, M., and Meyer auf der Heide. A Dynamic Distributed Data Structure
for Top-k and k-Select Queries. In: Adventures Between Lower Bounds and

Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His

60th Birthday, [FMM18].

1.3 Outline

The thesis is structured in two parts: In Part A we tackle the problems of using filters
and apply competitive analysis. In Part B we design and analyze dynamic algorithms.

8 A Short Introduction

We start Part A with a technical introduction in Chapter 2. We propose the model
in Section 2.1, describe the considered problems in Section 2.2 and apply filters specif-
ically to the problems in Section 2.3. We then describe the considered adversary in
Section 2.4 and present relevant related results in Section 2.5. In Chapter 3 we con-
sider the problem of monitoring the existence and the domain and use this toy problem
to illustrate first simple insights and apply a filter technique. In Chapter 4, protocols
are designed which monitor the Top-k. In Chapter 5 the optimal offline algorithm is
allowed to introduce an error. We sketch future research perspectives of filter-based
algorithms in Chapter 6.

Part B considers dynamic algorithms and introduces the needed basis in Chapter 7.
We consider the Frequency Problem as a toy problem in Chapter 8. In Chapter 9 we
consider the Top-k and the k-Select problems under the aspect of dynamic algorithms.
Chapter 10 combines both techniques of using filters and the aspect of dynamic algo-
rithms to the problem of approximating the distinct count. Finally, the future of this
area of research is sketched in Chapter 11.

PART A:

MONITORING PROBLEMS USING FILTERS

CHAPTER 2

INTRODUCTION TO FILTER-BASED ALGORITHMS

FOR DISTRIBUTED STREAMS

In the following, we consider the problems of monitoring the Existence, the Domain,
the Top-k, and Approximate Top-k in a distributed sensor network. We introduce the
Distributed Monitoring with a Broadcast Channel (DMBC) Model, which deals with
distributed data stream and a single server which is asked to evaluate the given function
on the basis of the observations in the current time step.

In this chapter we introduce the notation and techniques used. We design and eval-
uate our algorithms using competitive analysis: i.e., we compare the costs of our algo-
rithm (which is not aware of the future updates of the data stream) against an optimal
offline algorithm which knows the whole instance in advance.

The problems we look at do not admit bounded competitiveness without further
restrictions on the optimal offline algorithm. Therefore, we use filters and restrict the
optimal offline algorithm to be filter-based, i.e., to set filters in an optimal way. Intu-
itively speaking, a filter defines, for each sensor node, a set of observations at which
the output need not change and thus, the sensor node does not need to send a message
to the server. The competitiveness gives insight about the number of filters the online
algorithm has to set in comparison to the offline algorithm, and thus sets a focus on the
importance of knowing the future in advance or in other words measures the price of
not knowing the future.

12 Introduction to Filter-Based Algorithms for Distributed Streams

2.1 Model Description

In our setting there are n distributed nodes identified by unique identifiers (IDs) from
the set {1, . . . , n}, each receiving a continuous data stream (v1

i , v
2
i , v

3
i . . .), connected

to a single server. Also, at time t, a node i observes vti ∈ N and does not know any vt
′

i ,
t′ > t. We omit the index t if it is clear from the context.

Following the model in [CMY08], we allow that between any two consecutive
time steps, a communication protocol exchanging messages between the server and
the nodes may take place. The communication protocol is allowed to use an amount
of rounds which is polylogarithmic in n and max1≤i≤n(vti). The nodes can send mes-
sages to the server, but not to each other. They are able to store a constant number of
integers, compare two integers and perform Bernoulli trials with success probability
2i/n for i ∈ {0, . . . , log n}. The server can, on the one hand, communicate to one
device, and has, on the other hand, a broadcast channel to send one message received
by all nodes at the same time. All the communication methods described above incur
unit communication cost per message, the delivery is instantaneous, and we allow a
message at time t to have a size at most logarithmic in n and max1≤i≤n(vti).

Notation of Time Recall that a time step t defines a point in time at which the sensor
nodes obtain a new piece of input (vti for node i at time t). Between two consecutive
time steps t and t + 1 a communication protocol takes place. The protocol consists
of multiple (communication) rounds: A sensor nodes performs local computations and
may decide to send a message to the server. The server collects all messages, performs
local computations and (may) decide on a message to broadcast to all sensor nodes.

Since all nodes are synchronized, the server is able to identify the situation that no
sensor decided to send a message and, on the other hand, the sensor nodes can identify
that the server did not decide to send a message. Furthermore, the server is able to
collect and read all messages given by the sensor node, even if every node has decided
to send a message, i.e., the capacity of the communication channel in one round is not
restricted.

If the communication protocol of each node for the current time step has termi-
nated, the server decides on the output of the function at time t and the sensor network
proceeds from time step t to the next time step t+ 1.

2.2 Problems Description 13

2.2 Problems Description

In this section we consider four problems, specifically Existence Monitoring, Domain
Monitoring, Top-k-Position Monitoring, and Approximate Top-k-Position Monitoring.

Definition 2.2.1 (Existence Monitoring). Let vti ∈ {0, 1} hold for all i and t. At each

time step t the server has to output the logical disjunction; i.e., the server outputs 1 if

and only if there exists a sensor node i with vti = 1.

We generalize this problem to the Domain Monitoring problem. That is, at any
point in time, the server needs to know the domain, the set of values observed at a
particular time step. More formally:

Definition 2.2.2 (Domain Monitoring). Let vti ∈ {1, . . . ,∆} hold for each i and t. At

each time step t the server has to output set Dt = {v1, . . . , vn} ⊆ {1, . . . ,∆}.

Furthermore, we consider a problem which takes the ordering of the values into
account. The Top-k-Position Monitoring problem asks the server to output the IDs of
the nodes holding the k largest values.

Definition 2.2.3 (Top-k-Position Monitoring). At each time t the server has to out-

put the value of a function F mapping from the current values vt1, . . . , v
t
n to the set

{s1, . . . , sk}, k ≤ n, of nodes currently observing the k largest values among the

(multi-)set {vt1, . . . , vtn}.

We refer to this set of nodes as top-k := {i | ∃j ∈ {1, . . . , k} : vti = π(j, t)},
where π(j, t) denotes the j-th largest value at time t. Explicitly, the values at times
t′ < t do not matter for this output. To ease the presentation, we assume that all vi are
pairwise distinct at every time t. However, the main results remain valid if we drop this
assumption.

We relax the definition stated above and study the following approximate variant
of the problem in which the output is exact except for nodes in a small neighborhood
around the k-th largest value.

Definition 2.2.4 (Approximate Top-k-Position Monitoring). Let π(k, t) denote the

node which observes the k-th largest value at time t and denote by top-k the nodes

observing the k largest values. Given an error 0 < ε < 1, for a time t we denote

by E(t) := (1
1−εv

t
π(k,t),∞] the range of values that are clearly larger than the k-th

largest value and by A(t) := [(1 − ε)vtπ(k,t),
1

1−εv
t
π(k,t)] the ε-neighborhood around

the k-th largest value. Furthermore, we denote by K(t) := {i : vti ∈ A(t)} the nodes

14 Introduction to Filter-Based Algorithms for Distributed Streams

in the ε-neighborhood around the k-th largest value. Then, at any time t, the server is

supposed to know the nodes F(t) = FE(t) ∪ FA(t) = {i1, . . . , ik} according to the

following properties:

1. FE(t) = {i : vti ∈ E(t)} and

2. FA(t) ⊆ K(t) = {i : vti ∈ A(t)}, such that |FA(t)| = k − |FE(t)| holds.

Denote by ∆ the maximal value observed by some node (which may not be known
beforehand). We use F1 = F(t) if t is clear from the context, F2 = {1, . . . , n}\F(t),
and call F∗ the output of an optimal offline algorithm. Note that the optimal algorithm
is optimal with respect to the number of filters used during a phase and may output a
set of nodes which reflects an approximate Top-k. If the k-th and the (k+ 1)-st largest
value differ by more than ε vtπ(k,t), F(t) coincides with the set in the (exact) Top-k-
Position Monitoring problem and hence, F(t) is unique. We denote by σ(t) := |K(t)|
the number of nodes at time t which are in the ε-neighborhood of the k-th largest value
and σ := maxt σ(t). Note that |K(t)| = 1 implies that F(t) is unique. Furthermore
for solving the exact Top-k-Position Monitoring problem we assume that the values are
distinct (otherwise we break ties by using the nodes’ identifier in case the same value
is observed by several nodes).

2.3 Description of Filter-Based Algorithms

A set of filters is a collection of intervals, one assigned to each node such that, as
long as the observed values at each node are within the given interval, the value of
the function F does not change. For the problem at hand, this general idea of filters
translates to the following definition.

Definition 2.3.1. For a fixed time t, a set of filters is defined by an n-tuple of intervals

(F t1 , . . . , F
t
n), Fi ⊆ N ∪ {−∞,∞} with vti ∈ F ti , such that as long as the value of

node i only changes within its interval, i.e., it holds vt
′

i ∈ F t
′

i = F ti for t′ ≥ t, the

value of the function F need not change. We use F ti = [`ti, u
t
i] to denote the lower and

upper bound of a filter interval, respectively.

In our model, we assume that nodes are assigned such filters by the server. If a
node violates its filter, i.e., the currently observed value is not contained in its filter,
the node may report the violation and its current value to the server. The server then
computes a new set of filters and sends them to the affected nodes. To this end, the
server is allowed to assign “invalid” filters; i.e., there are affected nodes that directly

2.3 Description of Filter-Based Algorithms 15

observe a filter violation. However, for such an algorithm to be correct, we demand that
the intervals assigned to the nodes at the end of the protocol at time t and thus, before
observations at time t+ 1, constitute a (valid) set of filters. We call such an algorithm
filter-based. Note that the fact that we allow invalid filters simplifies the presentation
of the algorithms in the following. However, using a constant overhead the protocols
can be changed such that only (valid) filters are sent to the nodes.

Note that the easiest way of defining a set of filters is to assign the value currently
observed by a node as its interval. In this case the usage of filters does not lead to any
benefit, so in general we are looking for filters that are as large as possible to mini-
mize the count of filter changes which is directly related to the number of exchanged
messages.

In order to serve its purpose that the value of the function F does not change as
long as the observed values are within their filters, we define in the following a filter as
large as possible.

Definition 2.3.2 (Existence Filter). Denote by r a sensor node which is the represen-

tative with vtr = 1. Define for the representative r, the filter Fr := [1, 1] and for each

remaining node i, the filter Fi := [0, 1]. In case no node i observed the value vi = 1,

each node i defines its filter to be Fi := [0, 0].

The filters for the domain are a generalization of the Existence Filters:

Definition 2.3.3 (Domain Filter). LetRt be a sequence (j1, . . . , j∆) of nodes such that

for all observed values v ∈ Dt a representative i is determined with jv = i and vti = v.

Define for each node i which is a representative (jv = i), the filter Fi := [v, v]. For

each value v /∈ Dt which is not observed, no representative is given, i.e., jv = nil. The

filters of nodes i which are no representatives are defined as Fi := [−∞,∞].

Now we consider the filters for the Top-k problem. Observe that each pair of filters
(Fi, Fj) of nodes i ∈ top-k and j /∈ top-k must be disjoint except for a (possible) single
common point at their boundaries. Formally, we can state this observation as shown in
the lemma below.

Lemma 2.3.4 (Top-k Filter). For a fixed time t, an n-tuple of intervals forms a set of

filters for the Top-k-Problem if and only if

1. for all i ∈ F(t) it holds vi ∈ Fi = [`i, ui], and

2. for all j /∈ F(t) it holds vj ∈ Fj = [`j , uj] and uj ≤ `i, for all i ∈ F(t).

The filter for the Approximate-Top-k Problem is similar to the Top-k filters up to
an potential overlap of size ε · vk+1.

16 Introduction to Filter-Based Algorithms for Distributed Streams

Lemma 2.3.5 (Approximate-Top-k Filters). For a fixed time t, an n-tuple of intervals

forms a set of filters for the Approximate-Top-k Problem if and only if

1. for all i ∈ F(t) it holds vi ∈ Fi = [`i, ui], and

2. for all j /∈ F(t) it holds vj ∈ Fj = [`j , uj] and (1− ε)uj ≤ `i, for all i ∈ F(t).

If a node observes a value inside the filter at time t and observes at time t + 1 a
value that is larger than the upper bound of its (previously defined) filter, we say the
node violates its filter from below. A violation from above is defined analogously. If
such a violation occurs, the node may report it and its current value to the server.

2.4 Competitive Algorithms

To analyze the quality of our online algorithms, we use analysis based on competitive-
ness and compare the communication volume induced by the algorithm to that of an
appropriately defined offline algorithm. In our model, an offline algorithm knows all
the input streams in advance and without further restrictions can trivially solve the Top-
k-Monitoring Problem without any communication. In order to still reap meaningful
results and assess the quality of our algorithm, we assume the optimal offline algorithm
OPT to use filters assigned by the server to the nodes. Hence, to lower bound the cost
induced by OPT , we will essentially count the number of filter updates over time.

We call an online algorithm ALG c-competitive if for every instance (i) its com-
munication volume is by a factor of at most c larger than the communication volume
of OPT, in case ALG is deterministic and (ii) the expected communication volume is
by a factor of at most c larger than the communication volume of OPT , in case ALG
is randomized.

Adversary We assume that the instance (for comparison between the online and of-
fline algorithm) is given by an adversary. There are three different kinds of adversaries
underlying for this comparison:

The oblivious adversary generates the whole instance in advance only with respect
to the algorithm’s code. In detail, the adversary can respond to deterministic choices
by the algorithm but does not know the outcome of random experiments.

The weak adaptive adversary generates the instance piecewise, that is, only a cur-
rent time step. In detail, the adversary has no access to the random process used by
the algorithm but still foresees deterministic choices. In our case the weak adaptive

2.5 Related Work 17

adversary can see the (deterministic) choices of filters applied to the sensor nodes but
not the random sample chosen among the sensor nodes.

The strong adaptive adversary can access not only the algorithm itself, but also the
outcome of random experiments. Informally speaking, against this adversary random-
ization does not give any benefit upon a deterministic algorithm.

In our work we will make use of the oblivious and the weak adaptive adversary
and, if not stated otherwise, we compare the online algorithm against a weak adaptive
adversary. Since we do not compare against a strong adaptive adversary we will simply
use the terms oblivious and adaptive adversaries.

2.5 Related Work

The Continuous Monitoring Model is introduced in [CMY08] by Cormode, Muthukr-
ishnan, and Yi with an emphasis on n nodes generating or observing distributed data
streams and a designated coordinator. In this model the coordinator is asked to continu-
ously compute a function, i.e., to compute a new output with respect to all observations
made up to that point. The objective is to aim at minimizing the total communica-
tion between the nodes and the coordinator. We enhance the continuous monitoring
model (as proposed by Cormode, Muthukrishnan, and Yi in [CMY08]) by a broadcast
channel. Note that in comparison to our model, we introduce a dynamic data struc-
ture which computes a function only if there is a query for it. However, there is still a
continuous aspect: to compute an estimate of k after every time step.

A general approach to reduce the communication when monitoring distributed data
streams is proposed in [ZCPT09]. Zhang et al. use the notion of filters, which are also
an integral part of our algorithm presented in this paper. They consider a problem called
continuous skyline maintenance in which a coordinator is supposed to continuously
maintain the skyline of dynamic objects. As they aim at minimizing the communication
overhead between the coordinator and the objects, they use a filter method that helps
avoid the transmission of updates from the objects to the coordinator in case these
updates cannot influence the skyline maintained by the coordinator. More precisely,
the dynamic objects are points of a d-dimensional space and filters are hyper-rectangles
assigned by the coordinator to the objects in such a way that as long as these points are
within the assigned hyper-rectangle, updates need not be communicated.

In their work [YZ12], Yi and Zhang were the first to study streaming algorithms
with respect to their competitiveness. In their model there is one node and one coor-
dinator and the goal is to keep the coordinator informed about the current value of a

18 Introduction to Filter-Based Algorithms for Distributed Streams

multivalued function f : Z+ → Zd that is observed by the node and changes its value
over time, while minimizing the number of messages. Among others, for d = 1, Yi
and Zhang present an algorithm that is O(log δ)-competitive if the last value received
by the coordinator might deviate by δ from the current value of f . For arbitrary d, a
competitiveness of O(d2 log(d · δ)) is shown.

Following the idea of studying competitive algorithms for monitoring streams and
the notion of filters, Lam et al. [LLT10] present an algorithm for online dominance
tracking of distributed streams. In this problem a coordinator always has to be in-
formed about the dominance relationship between n distributed nodes, each observing
an online stream of d-dimensional values. Here, the dominance relation of two nodes
b1 and b2 currently observing (p1, . . . , pd) and (q1, . . . , qd), respectively, both from
{1, . . . , U}d, is defined as b1 dominates b2 if pi < qi for some 1 ≤ i ≤ d and pj ≤ qj

for all other 1 ≤ j ≤ d. Their algorithm is based on the idea of assigning filters
to the nodes and they show that a mid-point strategy, which basically sets filters to
be the mid-point between neighboring nodes, is O(d logU)-competitive with respect
to the number of messages sent in comparison to an offline algorithm that sets filters
optimally.

In [DEI06], Davis, Edmonds and Impagliazzo consider the following resource al-
location problem: n nodes observe streams of required shares of a given resource and
let ∆ denote the size of this resource. The server has to assign, to each node and in
each time step, a share of the resource that is as least as large as the required share.
(Their results assume that the sum of the shares required in one step is at most ∆).
They assume real-valued required shares and show that there is no online algorithm
with bounded competitiveness. Then, they present an online algorithm that assumes
resource augmentation – the online algorithm may use a larger resource – and prove its
competitiveness. The algorithm is based on the idea of “steal from the rich”: A node
that needs a larger share repeatedly steals small parts from nodes chosen randomly,
proportionally to their current shares.

In [GK12], Giannakopoulos and Koutsoupias also applied the approach of com-
petitive analysis, however, with a completely different fashion: They consider a single
server which is given an input stream, processes it one by one in the given order and is
allowed to store a fixed number of items of the data stream. The task is to continuously
output the most frequent item and compare the quality of their output against an adver-
sary which also is allowed to store the same number of data items but knows the whole
input sequence in advance. They show that the maximum over all time steps does not
lead to bounded competitiveness, but taking all time steps into account and averaging
over all outputs leads to bounded competitiveness of O(

√
m), where m denotes the

2.5 Related Work 19

length of the data stream.

Further Related Work An interesting area of problems within this model are thresh-
old functions: The coordinator has to decide whether the function value (based on
all observations) has reached a given threshold τ . For well-structured functions (e.g.
count-distinct or the sum-problem) asymptotically optimal bounds are known [Cor13,
CMY11]. Functions which do not provide such structures (e.g. the entropy [ABC09])
turn out to require much more communication volume.

A related problem is considered in [BO03]. In their work, Babcock and Olston
consider a variant of the distributed top-k monitoring problem: There is a set of objects
{O1, . . . , On} given, in which each object has a numeric value. The stream of data
items updates these numeric values (of the given objects). In case each object is asso-
ciated with exactly one node, their problem is to monitor the k largest values. Babcock
and Olston have shown by an empirical evaluation that the amount of communication
is an order of magnitude lower than that of a naive approach.

A model related to our (sub-)problem of finding the k-th largest values, and ex-
ploiting a broadcast channel is investigated by the shout-echo model [MG85, RSS86]:
A communication round is defined as a broadcast by a single node, which is replied
by all remaining nodes. The objective is to minimize the number of communication
rounds, which differs from ours.

CHAPTER 3

NODE EXISTENCE & DOMAIN MONITORING

In this chapter, we tackle the Existence Problem and the Domain Problem and design
one-shot and monitoring algorithms. On the one hand, these problems are toy prob-
lems to illustrate first simple ideas other protocols are based on. On the other hand, we
introduce notations and show how to analyze the quality of an algorithm using compet-
itive analysis where we compare our algorithm against an optimal filter-based offline
algorithm.

The Existence Problem is a fundamental problem which occurs as a subtask in
several different problems: Simply think of the question whether there is a node which
observed a filter violation or not (recall that as long as each node observes values within
their filter; i.e., within a range of values, the output need not change). If there is no filter
violation, no communication needs to take place. This means, for each protocol it is of
particular interest to efficiently identify filter violations.

In this chapter we design a protocol which solves the task to decide whether there
exists a node i (which observed the value vi = 1) or not with probability 1. The
number of sent messages is based on a random process and we show an upper bound
on the expected number of messages of O(1) (for one single execution). However, if
there does not exist such a node, there is no communication at all. We will exploit this
fact later in this section with respect to monitoring the existence; i.e., we decide the
Existence Problem over multiple time steps.

22 Node Existence & Domain Monitoring

3.1 Introduction & Contribution

Problem Communication Time

Existence O(1) log n+ 1

Existence Monitoring O(T)

O(log n)-comp.

Domain O(|D|) log n+ 1

Domain Monitoring O(T |D|)
O
(

log
(

n
dmin

))
-comp.

We start the presentation of the competitive algorithms with a toy problem called
EXISTENCE. Recall its definition (Section 2.2): Assume all nodes observe only binary
values, i.e., ∀i, t : vti ∈ {0, 1}. The server is asked to decide the logical disjunction for
one fixed time step t, i.e., output F(t) = 1, if and only if there exists a node i which
observed the value vti = 1. We extend this problem to the so-called DOMAIN problem
(cf. Section 2.2): Assume all nodes observe (integral) values from {1, . . . ,∆}. The
server is asked to output the domain, Dt = {vt1, . . . , vtn} ⊆ {1, . . . ,∆}, i.e., each
value which is observed by at least one sensor node.

A Short Note Although the EXISTENCE and DOMAIN problems share a common
structure we use these two problems to present two different approaches to tackle its
single shot variants which can be exchanged easily. The EXISTENCEPROTOCOL (pre-
sented in Algorithm 1) technically reflects the idea to match the probability of sending
a message with the unknown size of nodes that observed the value 1. On the other hand,
the DOMAINPROTOCOL for computing the DOMAIN uses a probability distribution of
sending a message based on a geometric experiment.

The results for monitoring the Domain are based on the same approach as the Ex-
istence Monitoring Problem and the results directly follow; we omit its presentation.

Chapter Basis Parts of the model, analyses, and results for the one-shot computation
presented in the remainder of this chapter are based on the following publications:

• Mäcker, M., and Meyer auf der Heide. On Competitive Algorithms for Approximations

of Top-k-Position Monitoring of Distributed Streams. In: 30th International Parallel and

Distributed Processing Symposium (IPDPS, 2016), [MMM16].

• Bemmann, Biermeier, Bürmann, Kemper, Knollmann, Knorr, Kothe, Mäcker, M., Meyer

auf der Heide, Riechers, Schaefer, Sundermeier. Monitoring of Domain Related Problems

in Distributed Data Streams. In: Structural Information and Communication Complexity

- 24th International Colloquium (SIROCCO 2017), [BBB+17].

3.2 Existence – One-Shot Computation 23

3.2 Existence – One-Shot Computation

Consider the EXISTENCE Problem for a single time step. That is, we omit the index t
and consider n nodes observing values v1, . . . , vn from the universe {1, . . . ,∆}. We
start with a protocol which only uses a constant number of messages in expectation and
uses a logarithmic number of rounds (recall that the model introduces the constraint to
use at most a polylogarithmic number of rounds).

Observe that in our model one message is sufficient to decide the problem assuming
the nodes have a unique identifier in {1, . . . , n} and the protocol uses n rounds:
Consider a protocol in which node i sends in round r = i a broadcast message if and
only if no node has sent a message before. After n rounds the server can compute
EXISTENCE. However, this protocol uses n communication rounds, which violates the
constraint of using only a polylogarithmic number of rounds between each time step.

In contrast to such an approach where each node has its dedicated time slot to send
a message, we on the one hand randomly map several nodes to the same time slot, but
on the other hand show that the expected number of messages sent by the protocol is
only constant.

The simple idea of the EXISTENCEPROTOCOL is to synchronously let each
node flip a coin with an initial success probability of 1/n and iteratively double
the success probability until it reaches 1 or some node has sent a message and
the protocol terminated.

Note that the EXISTENCEPROTOCOL is a Las Vegas algorithm; i.e., the algorithm
is always correct and the number of messages needed is based on a random process.

Algorithm 1 EXISTENCEPROTOCOL

• Initially each node i defines activei = true iff vi = 1 holds.
• In each round r = 0, 1, . . . , log n the active nodes send messages uniformly and

independently at random with probability pr := 2r/n.
• As soon as at least one message was sent or the γ-th round ends, the protocol is

terminated and the server can decide EXISTENCE.
• If the last round γ = log n is reached, all active nodes i with vi = 1 send a

message with probability 1.

24 Node Existence & Domain Monitoring

Analysis. We prove that it is sufficient to use a constant amount of messages on
expectation and observe that the number of communication rounds is logarithmic in n.

To analyze the number of communication rounds simply observe that Algorithm 1
defines rounds r = 0, . . . , log n and thus, uses at most log n+1 communication rounds.

Observation 3.2.1. The algorithm EXISTENCEPROTOCOL needs up to log n+1 num-

ber of communication rounds.

Now we consider the number of messages used in this process:

Theorem 3.2.2. The algorithm EXISTENCEPROTOCOL usesO(1) messages on expec-

tation to solve the problem EXISTENCE.

Proof. We analyze the above protocol and show that the bound on the expected number
of messages is fulfilled. LetX be the random variable for the number of messages used
by the protocol and b be the number of nodes i with vi = 1. Note that the expected
number of messages sent in round r is b·pr and the probability that no node has sent a
message before is

∏r−1
k=0 (1− pk)

b.

Observing that the function f(r) = b · pr (1− pr−1)
b has only one extreme point

and 0 ≤ f(r) < 2 for r ∈ [0, log n], it is easy to verify that the series can be upper
bounded by simple integration:

E[X] ≤ b

n
+

log(n)∑
r=1

b2r

n

r−1∏
k=0

(
1− 2k

n

)b

≤ 1 +

log(n)∑
r=1

b2r

n

(
1− 2r−1

n

)b
≤ 1 +

∫ log(n)

0

b2r

n

(
1− 2r−1

n

)b
dr + 2

≤ 3 +

[
b

(b+ 1)n ln(2)
(2r − 2n)

(
1− 2r−1

n

)b]logn

0

≤ 3 +
1

n ln(2)
·

(
(2logn − 2n)

(
1− 2logn−1

n

)b
+ 2n

(
1− 20−1

n

)b)

≤ 3 +
1

n ln(2)

[
(n− 2n)

(
1− 1

2

)b
+ 2n

(
1− 1

2n

)b]

3.2 Existence – One-Shot Computation 25

≤ 3 +
1

n ln(2)

[
(−n)

1

2b
+ 2n

(
1− 1

2n

)b]

≤ 3 +
1

ln(2)

(
2

(
1− 1

2n

)b
− 1

2b

)

≤ 3 +
1

ln(2)

(
2− 1

2b

)
≤ 3 +

2

ln(2)
≤ 6 .

Applications. This protocol can be used for a variety of subtasks, e.g. validating that
all nodes are within their filters, identifying that there is some filter violation or whether
there are nodes that have a higher value than a certain threshold.

Corollary 3.2.3. Given a time t. There is an algorithm which decides whether there

are nodes which observed a filter violation using O(1) messages on expectation.

Proof. For the distributed nodes to report filter violations we use an approach based
on the EXISTENCEPROTOCOL to reduce the number of messages sent in case several
nodes observe filter violations at the same time. The nodes apply the EXISTENCEPRO-
TOCOL as follows: Each node that is still within its filter applies the protocol using a
0 as its value and each node that observes a filter violation uses a 1. Note that by this
approach the server is definitely informed if there is some filter violation and otherwise
no communication takes place.

Observation 3.2.4. Given a time step t. In case no node observed a filter violation no

communication takes place.

26 Node Existence & Domain Monitoring

3.3 Existence Monitoring

Now we consider the EXISTENCEMONITORING problem to decide EXISTENCE at any
point in time t. One can simply think of a protocol which applies the one-shot protocol
(cf. Algorithm 1) at each time step. Consider T time steps, then this algorithm uses
O(T) messages in expectation.

Interestingly, this upper bound is (asymptotically) tight, since it is complemented
by a simple lower bound construction in which the output alternates between 0 and 1.
Although this analysis is asymptotically tight, to compute a new solution from scratch
in each time step does not seem to reflect the essence of the problem properly. Consider
an instance which is (somehow) ’similar’ between consecutive time steps: Let t be a
time step and node i with vti = 1 has sent a message during the execution of the
EXISTENCEPROTOCOL. Assume in time step t + 1 node i again observed vt+1

i = 1.
We exploit this fact by the applying the following simple idea:

Consider a node i which observed at time t the value vti = 1 and has sent a
message to the server. Node i witnesses the output F(t) to be 1. We denote this
node i to be the representative. As long as i observes vt′ = 1 for consecutive
time steps t′ > t, no message is sent.

An Improved Algorithm - Short Discussion Now we have an idea which reflects
the intuition of exploiting similarities between consecutive time steps. However, a
classical (worst-case) analysis still does not show any improvement. (In the worst-case,
exactly those nodes i observe the value vi = 0 at time t+ 1 after sending a message at
time t. Even a restriction on the number of nodes that are allowed to change its value
is not sufficient to reduce the upper bound.)

Before we apply competitive analysis to the (much more detailed) algorithm we
like to develop a deeper understanding of the character of the problem and how this
improves the communication bounds. Since if even only one node at a time changes
its value, in other words an instance which is highly similar to the previous time step,
does not improve the worst-case bound, consider the following:

We denote by s the stability the number of consecutive time steps in which a node
observed the value v = 1. More formally, if the value changed from time step t− 1 to
time step t, then the value stays the same during the next s time steps, i.e., vt 6= vt−1,
then ∀t′ ≤ t + s : vt′ = vt. We can simply observe that an analysis based on such a

3.3 Existence Monitoring 27

parameter leads to a simple improved upper bound of O(T/s) msg. in expectation.

On the basis of this observation we can precisely define the task for the algorithm:
At a time t, find the node which observes the value 1 for the longest period of time. An
algorithm which knows the future in advance can solve this task in an optimal way. In
contrast to the absolute number of messages used, we express the number of messages
used in relation to the costs of an offline algorithm (competitive analysis).

Formally, we express our bounds with respect to the number of candidates which
could be chosen as the representative and the number of changes of these in compar-
ison to an optimal offline algorithm which has the minimal number of such changes.
Observe that if the adversary is strongly adaptive, i.e., it can choose the instance on the
basis of the choice of the representative, the algorithm yields the same O(T) result,
however expressed differently (as O(n), where n denotes the number of candidates).
In case the adversary is oblivious, i.e., it generates the instance in advance, we show
that the algorithm needs a logarithmic number of representatives more, compared to an
optimal offline algorithm. Note that the competitiveness against an adaptive adversary
is O(n).

Protocol Description Due to these observations we next formalize a parameter de-
scribing this behavior and provide a competitive analysis. To this end, we consider the
number of differences in the sequences of nodes rept−1 and rept and call this differ-
ence the number of changes of representatives. Let OPT denote the minimum possible
number of changes of representatives (over all considered time steps T). The formal
description of our algorithm is given in Algorithm 2. Roughly speaking, the algorithm
defines phases, where a phase is defined as a maximal time interval during which there
exists one node observing value v = 1 throughout the entire interval. Whenever a
node being a representative changes its observation, it informs the server so that a new
representative can be chosen (from those observing v = 1 throughout the entire phase,
which is indicated by activei = true). If no new representative is found this way, a
new phase starts: all nodes observing v = 1 become active and one of these nodes is
sampled uniformly at random.

Additionally, if no node observed the value v = 1 at time t, no representative is
defined, but also no communication took place. Note that each node only stores two
bits of information: one bit to indicate whether the node is active and one bit to indicate
that node i is the representative.

Now we apply competitive analysis and compare the algorithm against a restricted
offline algorithm, i.e., an offline algorithm that has to set filters. For the problem at
hand this means the offline algorithm has to broadcast the representative rept of the

28 Node Existence & Domain Monitoring

current time step t.

Algorithm 2 EXISTENCEMONITORING

Initialize with t := 0, Ft−1 := 0, rept−1 := null, pt−1 := 0.
Each node i defines activei := true if and only if vti = 1.
(Rule for any t′ ≥ t: Each node with vt

′

i = 0 deactivates, i.e., defines activei := false.
If node i was the representative rept′−1 = i, i sends a message to the server.)
repeat

Server defines t := t+ 1, Ft := Ft−1, rept := rept−1, pt := pt−1

Each sensor node i observes a value vti .
if Ft = 0 then

Each node i defines activei = true if and only if vti = 1.
Server redefines rept by applying the EXISTENCEPROTOCOL to active nodes.
if rept 6= null then Server redefines output and phase Ft := 1, pt := pt−1 + 1.

else
if rept sends a message then

Define rept by applying EXISTENCEPROTOCOL to all active nodes.
if rept = null then

Server redefines output and phase Ft := 0, pt := pt−1 + 1

Each node i defines activei = true if and only if vi = 1.
Server defines rept by applying the EXISTENCEPROTOCOL to active nodes.
if rept 6= null then Server redefines Ft := 1

Analysis In the following we show an upper bound on the competitiveness of the
EXISTENCEMONITORING protocol as given in Algorithm 2. We shortly discuss some
insights gained by the algorithm and its proof afterwards.

Theorem 3.3.1 (Competitiveness of EXISTENCEMONITORING). EXISTENCEMON-
ITORING as described in Algorithm 2 is O(log n)-competitive against a filter-based

offline algorithm with respect to an oblivious adversary.

Proof. We consider one phase of the EXISTENCEMONITORING algorithm and show (i)
that the offline algorithm has to send a message at least once and (ii) that the algorithm
only sends O(log n) messages on expectation. Let P = {t1, . . . , tm} denote such a
phase. For the sake of contradiction, assume to the contrary that the offline algorithm
did not send any message during P , i.e., defined a (valid) filter throughout P .

[Case 1] First, consider the case that during the phase, no node observed a value
v = 1, i.e., ∀t ∈ P, i ∈ {1, . . . , n} : vti = 0. Note that both the offline and on-

3.3 Existence Monitoring 29

line algorithms only send a broadcast message to inform each node that there is no
representative. During the phase P no node sends further messages as given by the
EXISTENCEMONITORING protocol since each node i defines activei to be false if it
observes vi = 0.

[Case 2] Now consider the case that during the phase the output is F = 1.
To formally argue that the optimal offline algorithm has to communicate, we intro-

duce some notation: Let At1,t′ := {i | ∀t1 ≤ t ≤ t′ : vti = 1} denote the set of nodes
that observe the value vi = 1 at each point in time t with t1 ≤ t ≤ t′. The set At1,t1
contains all nodes that observe v = 1 at time step t1. Furthermore, At1,t′+1 can be
defined inductively, i.e., At1,t+1 = At1,t ∩ {i | vt+1

i = 1}. That is, from time step t
to a consecutive time step t+ 1 the set At1,t+1 is a subset of At1,t. The phase P ends
if and only if no representative can be found within the active nodes; i.e., if At1,t is
empty and this implies that there is no node which observed the same value in the time
period {t1, . . . , t}. This fact leads to a contradiction to the assumption that the offline
algorithm did not communicate as intended.

Next we analyze the expected cost of the EXISTENCEMONITORING protocol as
given in Algorithm 2 during the considered phase P . Let w.l.o.g. At1 := At1,t1 =

{1, 2, . . . , k}. With respect to the fixed phase, only nodes in At1 can communicate
and the communication is bounded by the number of changes of the representative for
v = 1 during the phase. Let t′i be the first time after t1 at which node i does not
observe v. Let the nodes be sorted such that i < j implies t′i ≥ t′j . Let r1, . . . , rm be
the nodes Algorithm 2 chooses as representatives in the considered phase. We show
that E[m] = O(log k) holds. To this end, partition the set of time steps t′i into groups
Gi. Intuitively, Gi represents the time steps in which the nodes continuously observe
value v = 1 since time t1 and the size of the initial set of nodes that observed v is
halved i times. Formally, Gi contains all time steps t`i−1+1, . . . , t`i (where `−1 := 0

for convenience) such that `i is the largest integer fulfilling |At1,t′`i | ∈ (k/2i+1, k/2i].
Let Si be the number of changes of representatives in time steps belonging to Gi.

We have E[m] =
∑log k
i=0 E[Si]. Consider a fixed Si. Let Ej be the event that the j-th

representative chosen in time steps belonging to Gi is the first one with an index in{
1, . . . , b k

2i+1 c
}

. Observe that as soon as this happens, the respective representative
will be the last one chosen in a time step belonging to group Gi.

Now, since the algorithm chooses a new representative uniformly at random from
the index set

{
1, . . . , b k2i c

}
, the probability that it chooses a representative from the set{

1, . . . , b k
2i+1 c

}
is at least 1/2 except for the first representative of v, where it might

be slightly smaller due to rounding errors. The event Ej occurs only if each of the first
j − 1 representatives were not chosen from this set, i.e., Pr[Ej] ≤

(
1
2

)j−2
. Hence,

30 Node Existence & Domain Monitoring

E[Si] =
∑
j E[Si|Ej] · Pr[Ej] ≤

∑
j j · (

1
2)j−2 =

∑
j

j
2j−2 = O(1).

A Short Note. Now we have shown that the EXISTENCE problem can be monitored
and its complexity is by a factor of O(log n) larger in comparison to a filter-based
offline algorithm with respect to a predefined instance.

Revisiting the analysis and especially the worst-case instance with respect to com-
petitive analysis one can observe that this instance is highly ’similar’ between consec-
utive time steps: i.e., only one node i changes its value from vti = 1 to vt+1

i = 0.
Furthermore one considered phase P consists of n time steps which means that there is
one node iwhich is from the beginning (at time step t1) chosen by the offline algorithm
as a representative which observed v = 1 throughout the whole phase P .

3.4 Domain – One-Shot Computation 31

3.4 Domain – One-Shot Computation

We extend the EXISTENCE problem from the previous section as follows: Identify each
value v which is observed by at least one node; we denote this task by the DOMAIN

problem. Recall the formal definition of Domain Monitoring (cf. Definition 2.2.2) to
output at each time t the set Dt = {v1, . . . , vn} ⊆ {1, . . . ,∆}; this one shot computa-
tion considers only a fixed time step t.

To solve this task, one might simply verify that the following simple change in
the EXISTENCEPROTOCOL (cf. Algorithm 1) outputs the function correctly: Let each
node i still be active as long as no node i′ with vi′ = vi has sent a message before.
As a consequence, for each value v which is observed by at least one node, there is a
message sent to the server.

However, we present here a different approach to solve this task which is based on
the following idea:

Each node draws a random variable from a geometric distribution.
For each value v: Those nodes with the (potentially same) largest random value
inform the server about their value.

The formalized protocol directly translates the idea in a very nice way. The pro-
tocol is almost self describing, however a node can broadcast a message by sending a
message to the server, which in turn sends a broadcast message to each sensor node.

Algorithm 3 DOMAINPROTOCOL

1. Each node i draws hi from a geometric distribution with probability p := 1/2.
2. As long as no node i′ with vi′ = vi broadcasted before, node i broadcasts its

value in round ri := max(log n− hi, 0).
3. The server outputs the union of all broadcasted values.

Analysis. Similar to the analysis of the EXISTENCEPROTOCOL, we shortly consider
the number of rounds and the number of messages sent.

To bound the number of communication rounds, note that Line 2 of the protocol
introduces rounds between 0 and log n. Recall that the server is capable of processing
up to n messages in a round, which directly implies:

32 Node Existence & Domain Monitoring

Observation 3.4.1. The DOMAINPROTOCOL as presented in Algorithm 3 uses at most

log n+ 1 communication rounds.

Now we consider the number of messages sent by the DOMAINPROTOCOL:

Theorem 3.4.2. Applied for a fixed time t, the DOMAINPROTOCOL uses at most

O(|Dt|) messages in expectation.

Proof. Let Xv
i be a binary random variable indicating that node i ∈ Nv

t sends a mes-
sage to the server, and Xv :=

∑
iX

v
i . According to the algorithm node i sends a

message if and only if its height hi matches round ri = max(log n − hi, 0) and no
other sensor i′ has sent its value before, i.e., ∀i′ : ri′ ≥ ri.

Pr [Xv
i = 1] = Pr [∃r ∈ {1, . . . , log n} : hi = r ∧ ∀i′ ∈ Nv

t \ {i} : hi′ ≤ r]

≤
logn∑
r=1

Pr[hi = r] · Pr[∀i′ ∈ Nv
t \ {i} : hi′ ≤ r]

≤
logn∑
r=1

1

2r

(
1− 1

2r

)nv−1

.

Since the random variables are binary, we can simply upper bound E[X] as follows:

E[X] ≤ nv ·
logn∑
r=1

1

2r

(
1− 1

2r

)nv−1

.

Observing that f(r) = nv · 1
2r

(
1− 1

2r

)nv−1
has only one extreme point and f(r) ≤ 2

for all r ∈ [0, log(n)], we use the integral test for convergence to obtain

E[X] ≤ nv ·
logn∑
r=1

1

2r

(
1− 1

2r

)nv−1

≤ nv
∫ logn

0

1

2r

(
1− 1

2r

)nv−1

dr + 2

≤

[
1

ln (2)

(
1− 1

2r

)nv]logn

0

+ 2 ≤ 1

ln (2)
+ 2 < 4.

We apply the same argumentation independently for each value v ∈ Dt, concluding
the proof.

CHAPTER 4

EXACT & APPROXIMATE TOP-k MONITORING

In this chapter we consider problems regarding the k largest values at the current time
step t and its monitoring variants for multiple time steps. We design and analyze Las
Vegas algorithms which solve the problem with probability 1 and the number of mes-
sages used is on the basis of a random process.

Now after we have first insights handling monitoring problems (i.e., Existence and
Domain) we extend the techniques used for one-shot and monitoring computations.
Monitoring the Top-k(-Positions) yields a property which we can exploit to reduce
communication, especially in comparison to monitoring the Sum: Only the subset (of
size k) is needed to evaluate the output, whereas monitoring the Sum makes it necessary
to transmit each update of any value (at least in the worst case).

In more detail, we consider the Top-k-Position Monitoring instead of monitoring
the values. Monitoring the positions (node IDs) is a generalization of monitoring the
values: The Server can simply probe each node (in the top k) by its ID and identify the
top-k values using k messages.

Furthermore, comparing both by its output, we observe that the top-k value problem
has to update the output whenever some value within the top-k is updated. However,
if we only monitor the (set of) nodes observing the top-k values, the output is more
’resilient’ against small updates. Especially if only the top-k values change, but not the
set itself.

In this chapter we will further generalize the problem to monitor an approximation
of the top-k positions. That is, if only small changes occur within the k-th largest
values, e.g. the nodes observing the k-th and k + 1-st largest values ’oscillate’, large
parts of these updates have to be transmitted when considering the exact version.

34 Exact & Approximate Top-k Monitoring

4.1 Introduction & Contribution

Problem On., Off. Error Competitiveness

Top-k-Position Monitoring 0, 0 O(k + log n+ log ∆)

0, 0 Ω(k + log n+ log ∆)

Approx. Top-k-Pos. Mon. ε, 0 O(k + log n+ log log ∆ + log 1
ε)

ε, 0 Ω(k + log n+ log 1
ε)

The goal of this chapter is (among others) to design and analyze algorithms which
monitor the Top-k-Positions exactly and with an allowed error of ε > 0 (described
formally in Definition 2.2.4). We will show that the one-shot computation needsO(k+

log n), which is asymptotically tight (since we provide lower bounds), and show that
monitoring needs O(log ∆) or O(log log ∆ + log 1

ε) additional messages to monitor
the Top-k in case the exact or approximated variant is considered.

Chapter Basis. Parts of the model, analysis, and results for the one-shot computation
presented in the remainder of this chapter are based on the following publications:

• Mäcker, M., and Meyer auf der Heide. Online Top-k-Position Monitoring of Distributed

Data Streams. In: 29th International Parallel and Distributed Processing Symposium

(IPDPS, 2015), [MMM15].

• Mäcker, M., and Meyer auf der Heide. On Competitive Algorithms for Approximations

of Top-k-Position Monitoring of Distributed Streams. In: 30th International Parallel and

Distributed Processing Symposium (IPDPS, 2016), [MMM16].

• Biermeier, Feldkord, M., and Meyer auf der Heide. A Communication-Efficient Dis-

tributed Data Structure for Top-k and k-Select Queries. In: 15th International Workshop

on Approximation and Online Algorithms (WAOA, 2017), [BFMM17].

• Feldkord, M., and Meyer auf der Heide. A Dynamic Distributed Data Structure for Top-

k and k-Select Queries. In: Adventures Between Lower Bounds and Higher Altitudes -

Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, [FMM18].

Outline of the Chapter. We subdivide this chapter into four parts. First, we present
the ideas for the protocols and discuss small variations of the problems. Second, we
design a protocol which solves the Top-k problem for a single time step. Then, we
present a protocol which monitors the Top-k and is competitive against an offline algo-
rithm which is filter-based. We complement this protocol by lower bounds which are
asymptotically tight. Finally, we allow the online algorithm to solve an approximation
variant of the problem and compare the performance against an offline algorithm which
is filter-based and still solves the exact problem.

4.2 Preliminaries 35

4.2 Preliminaries

4.2.1 Top-k-Value Monitoring

The reader might ask why we consider the Top-k-Position Monitoring problem, which
is the task to identify the IDs of the sensor nodes instead of considering the values

within the Top-k. To answer this question we shortly consider the Top-k-Value Moni-
toring problem.

For the purpose of illustrating the effects we face with the monitoring aspect of
the problem, we now assume that there is a protocol which we apply to identify the
k largest values using O(CTop-k) messages. Furthermore, we assume that all observed
values are pairwise different.

Definition 4.2.1 (Top-k-Value Monitoring). At each time t let vt1, . . . , v
t
n be the values

observed by the sensor nodes. Furthermore, denote by st1, . . . , s
t
n be the sorted version

of the observed values vt1, . . . v
t
n at time t, with sti ≥ stj , iff i < j.

The server has to output st1, . . . , s
t
k, k ≤ n at any point in time t.

Now, observe that without the restriction of filter-based algorithms (especially for
the optimal offline-algorithm) there is no online algorithm with bounded competitive-
ness.

Observation 4.2.2. Each online algorithm has an unbounded competitiveness against

an optimal offline algorithm.

For this simply consider an instance in which two sensor nodes observe two val-
ues in an alternating fashion. The optimal offline algorithm has to output the same
(maximum) value all the time in comparison to the online algorithm which has to com-
municate at least one value at each time step to be correct.

Since this approach does not lead to any insight in the problem, we consider filter-
based algorithms instead. Recall that a filter is defined as an interval of values which,
as long as each node stays within its filter, the output need not change (and thus, no
communication needs to take place). Applied to the Top-k-Value Monitoring problem
a filter translates to the following definition:

Definition 4.2.3 (Top-k-Value Filter). For a fixed time t, an n-tuple of intervals forms

a set of filters for the Top-k-Value Problem if and only if

1. for all i ∈ F(t) it holds vi ∈ Fi = [vi, vi], and

2. for all j /∈ F(t) it holds vj ∈ Fj = [−∞, sk], where sk denotes the k-th largest

value.

36 Exact & Approximate Top-k Monitoring

Protocol Description. Now the online algorithm boils down to the following very
simple strategy: Identify the k largest values using the protocol given as assumed (using
O(CTop-k) messages). Then, it is sufficient to broadcast the k-th largest value v, such
that all nodes i with vi ≥ v define their filter to Fi := [vi, vi] and the remaining nodes
i with vi < v to Fi := [−∞, v].

Simply observe whenever a node within the k largest values observed a different
value, a filter violation occurs such that the node sends a message to the server. To
prevent that each node sends a message to the server, each node that observed a filter
violation applies the protocol to identify the k-largest values. Consider the second case,
a node observed a value which was not part of the output: The server is informed that
there are new values within the Top-k.

An Analysis Sketch. We shortly argue on the competitiveness, however without giv-
ing a formal proof. It is easy to verify that the optimal offline algorithm can define the
nodes filter using only one message, i.e., broadcasting the k-th largest value. Further-
more, observe that the offline algorithm needs to define new filters if one node within
the Top-k observed a value which differs from the previous one, or a node which was
not within the Top-k in the previous time step observes now a value within the Top-k
leading to a filter violation.

On the other hand, the online algorithm needs until the next filter violation at most
O(CTop-k) messages. The given protocol is executed at most two times: once to initially
identify the k largest values, and afterwards at most once if a filter violation occurs.

This short argumentation directly leads to a competitiveness ofO(CTop-k). To com-
pare this result with the Top-k-Position Monitoring problem, we just apply the com-
plexity of the protocol which we design and analyze in a later section. This protocol
uses O(k + log n) messages in expectation.

Proposition 4.2.4. There is an online algorithm which monitors the Top-k-Values and

is O(k + log n)-competitive against a filter-based offline algorithm.

4.2 Preliminaries 37

4.2.2 Exact Top-k-Position Monitoring

We now have some insight in monitoring the Top-k-Values. However, we have seen
that each change of a value within the Top-k directly implies a message to the server
and an update of the respective filter. We aim for a problem which still identifies the k
largest values efficiently, but allows protocols which not necessarily transmit the whole
update stream of the k largest values.

To this end consider the problem of (only) monitor the IDs of the nodes that ob-
served the k largest values. As long as the set of nodes does not change it is easy to
probe these nodes and identify the k largest values. We understand the Top-k-Position
Monitoring as a generalization of the Top-k-Value Monitoring problem since it poten-
tially reduces the amount of communication. However, this does not directly implies
that the competitiveness is reduced. In fact we will show the opposite: Additionally to
the costs of a one-shot computation, the (filter-based) offline algorithm can set filters
better compared to the online algorithm.

Proposition 4.2.5. Let each sensor node observe values from 1, . . . ,∆. There is an

online algorithm which monitors the Top-k-Positions and is O(k + log n + log ∆)

competitive compared to a filter-based offline algorithm.

To prove this statement, we start with a protocol for the one-shot computation of
the k largest values and the respective sensor nodes. We start by presenting a protocol
which identifies the Maximum value and the ID in Section 4.3 usingO(log n) messages
in expectation and with high probability. This can be used to identify the Top-k using
O(k · log n) messages in expectation and with high probability. This result might be of
independent interest.

Afterwards, we present a protocol which uses O(k + log n) messages in expecta-
tion to identify the Top-k in Section 4.4. Using the EXISTENCEPROTOCOL and the
algorithm for the one-shot problem, a protocol is presented which proves the claimed
competitiveness of O(k + log n+ log ∆) in Section 4.5. Finally, we show a matching
lower bound for restricted class of online algorithms in Section 4.6.

38 Exact & Approximate Top-k Monitoring

High-level Discussion: Maximum & Top-k. We now shortly discuss the ideas of
the protocols and start with the MAXIMUM problem. The protocol presented in the
next section is technically based on the EXISTENCEPROTOCOL.

Let each node synchronously flip a coin with an initial success probability of
1/n and iteratively double the success probability. On a successful coin flip a
message is sent to the server. A node does not take part in this process if a larger
value is observed.

Note that the EXISTENCEPROTOCOL terminated as soon as there was at least one
message. Here, we only let each nodes stop the process that observed a larger value.
Furthermore it is easy to see that this process identifies the largest value and the respec-
tive node with probability 1 if executed to the last round.

To identify the Top-k, we might apply the MAXIMUMPROTOCOL multiple times
to identify the k largest values – however, observe that a lot of communication is (not
necessarily) used. Especially those nodes that send a message to identify the set of
nodes that are ’near’ to the maximum might send a message multiple times. The idea
is to prevent this situation – one might think of ’going back’ a few steps without starting
the whole process from its beginning. This translates to a well known idea which we
simulate here in a distributed fashion and without preprocessing:

We build a simple search-tree-like structure based on a height the nodes drawn
from a geometric distribution. Afterwards, a simple strategy comparable to an
in-order tree walk is applied.

Note that this protocol always identifies the Top-k and technically this allows us
to only consider one single random experiment, i.e., the expected number of nodes to
identify the k + 1st largest value.

4.2 Preliminaries 39

Monitoring of Top-k-Positions Using Filters One solution for this problem is to use
the TOP-K-PROTOCOL at each time step. However, if the Top-k does not change this
might be an unnecessary large amount of communication. We apply filters to identify
changes to the input which need not be sent to the server.

Observe that for this problem it is sufficient to sent only a single value v which
divides the Top-k from the remaining nodes, i.e., a value which is between the k-th and
the (k+1)-st largest value. Based on this observation, the task for the online algorithm
is to decide where to set the value v which divides the Top-k and the remaining sensor
nodes from each other. Since no information about the future is known, and the ad-
versary has no restriction in the process of generating the values that the sensor nodes
observe in future time steps, the strategy is as follows:

Initially identify the (k + 1)-st largest values and the respective sensor nodes.
As long as the Top-k-Positions do not change, define the filters in the middle
between the k-th and the (k + 1)-st largest value.

This strategy yields additional O(log ∆) messages in expectation (by applying the
EXISTENCEPROTOCOL for identifying a filter violation). Note that this strategy only
leads to a competitiveness of O(k + log n + log ∆) if the observed values are integer
values (with ∆ the size of the universe). Furthermore, since the adversary is strongly
adaptive, it is easy to see that every online algorithm needs at least Ω(log ∆) messages.

Note that this strategy successfully reduces communication each time the values at
a new time step are within its filters or it is possible to find new filters; i.e., the Top-k
set did not change. Intuitively speaking, filters can be seen as a certificate that witness
the correctness of the output. If filters are violated, i.e., the certificate does not hold, the
protocol tries to find a new certificate without computing the output new from scratch.
In case this was successful, communication is reduced. As a consequence, if we only
consider instances in which at each time step at least one node from the Top-k changes
every time this strategy fails.

However, we will present two approaches to also tackle these situations: First, if
a node switches its position with a node ’close’ to the k-th largest value, we relax the
problem to only monitor approximated Top-k-Positions which we discuss in the next
section. On the other hand, if generally just a few nodes are change overall, the Top-
k might change a lot, but the random structure to reduce the candidates significantly
might be potentially reused. This is a completely different approach which we denote
by Maintaining Algorithms and discuss in the second part of this thesis (cf. Chapter 7).

40 Exact & Approximate Top-k Monitoring

4.2.3 Discussion on Approx. Top-k-Position Monitoring

Now we shortly discuss on the motivation to consider this problem, the ideas of the
protocols and aim for a deeper technical understanding where the bounds analyzed
afterwards stem from.

Recall that monitoring the Approximate Top-k-Positions allows (only) the online
algorithm to choose nodes as an output which are ’close’ to the k-th largest value. As
a direct consequence, filters are allowed to overlap. Intuitively speaking, the goal is
to bring down the term of O(log ∆) in the competitiveness down to an O(log 1/ε)

by applying standard techniques from approximation algorithms. And in fact, if we
introduce an additive error (sayM), we claim that the competitiveness ofO(k+log n+

log ∆) is reduced to O(k + log n+ log(∆−M)). (Where we again compare against
an offline algorithm which solves the exact problem.)

However, with respect to a multiplicative error, we face the following situation:
If filter violations are often observed from above, the allowed error shrinks smaller
and smaller. To conclude, allowing the online algorithm to err, introduces the need to
identify ’very roughly’ at which point the offline algorithm defines its filters and apply
the approximation strategy afterwards. Intuitively speaking, to identify this ’rough’
value (more formally, the optimal value is approximated up to constant factors) the
online algorithm needs additional O(log log ∆) messages in expectation.

Proposition 4.2.6. Let each sensor node observe values from 1, . . . ,∆. There is a

online algorithm which monitors the Approximate Top-k-Positions with a competitive-

ness ofO(k+log n+log log ∆+log 1/ε) compared to a filter-based offline algorithm

which monitors the Top-k-Positions.

We will show a very simple lower bound on the competitiveness of Ω(k + log n+

log 1/ε). This does not match the upper bound up to the term of O(log log ∆) which
is introduced by this additional step of identifying a constant factor approximation of
the result. The exact result for this situation, i.e., the competitiveness of an online algo-
rithm which monitors the Approximated Top-k-Positions, in comparison to an offline
algorithm which monitors the (Exact) Top-k-Positions remains open.

Next Steps We now start with the technical presentation of the protocols and their
analysis. At first the MAXIMUMPROTOCOL is considered.

4.3 Maximum – One-Shot Computation 41

4.3 Maximum – One-Shot Computation

In this section we present and analyze a protocol to determine the maximum value
currently observed by a set of nodes. This protocol is asked to solve the one-shot
version of the Maximum Problem; i.e., we assume that the protocol is applied at a fixed

time t. Hence, the values of the nodes do not change during a single execution.

Protocol Description. In order to determine the maximum value currently hold by
n nodes the algorithm works as follows (cf. Algorithm 4): The algorithm proceeds in
logN rounds, for a given N > n. At the beginning, i.e., before round r = 1, all nodes
are set to be active. In each round r, each active node decides independently of the
other nodes to send its value to the coordinator with a probability of 2r/N . After this,
the coordinator broadcasts the largest value observed so far (in case it changed) and
nodes having a value not larger than this maximum are deactivated, i.e., they no longer
take part in the algorithm. The next round continues with all nodes still being active.

Algorithm 4 MAXIMUMPROTOCOL(N) .N > n

1. Each node i initially defines activei := true and max0 := −∞.
2. For round r := 1 to logN do
3. If node i is active and maxr > vi then
4. activei := false.
5. If node i is active and maxr < vi then
6. Node i flips a coin with success probability p = 2r

N

7. If coin flip is successful then
8. Node i sends (i, vi) to the server.
9. activei := false.

10. If maxr > maxr−1 then
11. Server broadcasts maximum maxr of all seen values.

Note that Algorithm 4 constitutes a Las Vegas algorithm that always computes the
correct solution in logN steps, but the number of messages exchanged is described
by a random variable which we denote by M . Furthermore, there may be rounds
without communication; each node however is able to determine the current round r
independently and without communication based on their synchronous clocks.

42 Exact & Approximate Top-k Monitoring

Analysis. To analyze the expectation of the random variable M , we first analyze the
probability that a fixed node sends a message to the coordinator during one execution of
MAXIMUMPROTOCOL. This is used to upper bound the expected number of messages.
Afterwards, we show that this (asymptotic) bound holds with high probability. The
bounds are shown to be asymptotically tight as complemented in Section 4.6.

Lemma 4.3.1. LetMi be a binary random variable indicating whether the sensor node

i ∈ {1, . . . , n} sends a message during a run of Algorithm 4. Then,

Pr[Mi = 1
∣∣r ∈ R2] ≤

∑
r∈R2

2r

N
·
(

1− 2r−1

N

)i
.

Proof. Let Si,j be a binary random variable indicating whether node i’s coin flip is
successful in round r. Let Ai,j be a binary random variable indicating that node i is
active in round j. A node sends a message in round j if and only if it is active in round
j and its coin flip results in a success. Furthermore it deactivates itself after sending a
message, so it is not possible that one node sends two or more messages. Hence,

Pr[Mi = 1
∣∣r ∈ R2] =

∑
r∈R2

Pr[Si,r and Ai,r = 1]

=
∑
r∈R2

Pr[Si,r
∣∣Ai,r = 1] · Pr[Ai,r = 1]

=
∑
r∈R2

2r

N
· Pr[Ai,r = 1] .

Observe that a node i is active at the beginning of round r if and only if it is active at
the beginning of round r−1 and no node i′ ≤ i sends a message in round r−1. Hence,
for r = 1 we obtain Pr[Ai,1 = 1] = 1 and for r > 1:

Pr[Ai,r = 1] = Pr[no i′ ≤ i sends in round r − 1
∣∣Ai,r−1 = 1] · Pr[Ai,r−1 = 1] .

In a fixed round r, the decisions of active nodes whether to send a message or not are
independent. Additionally, Ai,r = 1 implies Ai′,r = 1 ∀1 ≤ i′ ≤ i. Hence,

Pr[no i′ ≤ i sends in round r − 1
∣∣Ai,r−1 = 1] ≤

(
1− 2r−1

N

)i

4.3 Maximum – One-Shot Computation 43

Pr[Ai,r = 1] ≤
r−1∏
r′=1

(
1− 2r

′

N

)i
≤
(

1− 2r−1

N

)i
,

By an inductive argument. Therefore the probability forMi = 1 is bounded as claimed
by the lemma.

This result about the probability that a node sends a message can be used to deter-
mine an upper bound on the expected communication volume.

Theorem 4.3.2 (Upper Bound of MAXIMUMPROTOCOL). The expected number of

messages sent in Algorithm 4 is at most 4 · log n+ 6 using logN number of rounds.

Proof. [Communication] We upper bound the expected number of messages during the
execution of Algorithm 4 by upper bounding the number of messages during rounds
R1 defined by the set of rounds {0, . . . , logN − log n − 1} and R2 = {logN −
log n, . . . , logN} independently of each other.

E[M
∣∣r ∈ R1] ≤

∑
i∈[n]

E[Mi

∣∣r ∈ R1] ≤
∑
i∈[n]

Pr[Mi

∣∣r ∈ R1]

≤
∑
i∈[n]

∑
r∈R1

Pr[Si,r = 1 ∧Ai,r = 1]

≤
∑
i∈[n]

∑
r∈R1

2r

N
· 1 ≤ n

N

logN−logn−1∑
r=1

2r ≤ n

N
(2logN−logn) = 1

By Lemma 4.3.1, we have E[Mi

∣∣r ∈ R2] ≤
∑
r∈R2

2r

N ·
(

1− 2r−1

N

)i
. Hence,

E[M
∣∣r ∈ R2] ≤

∑
i∈[n]

∑
r∈R2

2r

N

(
1− 2r−1

N

)i
(4.1)

≤ 1

N

∑
r∈R2

2r
∑
i∈[n]

(
1− 2r−1

N

)i
(4.2)

≤ 1

N

∑
r∈R2

2r
1

1−
(

1− 2r−1

N

) (4.3)

=
1

N

∑
r∈R2

2r
1

2r−1

N

=
∑
r∈R2

2 = 2 · log n+ 2 , (4.4)

proving the expected number of messages, where in Equation (4.3) we replaced the
terms of the geometric series.

44 Exact & Approximate Top-k Monitoring

Since the expected number of messages sent by the sensor nodes is upper bounded
by 2 log n + 3 for all rounds r ∈ R1 ∪ R2 and the server only sends a message if and
only if a sensor has sent a value, the total number of messages is upper bounded by
4 log n+ 6 as claimed.

[Time] The number of rounds directly follow from Step 2, which defines to use a
number of logN rounds. Since in each iteration at most one message may be sent by
the server and at most one message is potentially sent by the node, the total amount of
rounds follows as stated above.

Theorem 4.3.3. The number of messages sent in Algorithm 4 is at most O(log n) with

high probability, i.e., for any fixed c > 1 it isO(log n) with probability at least 1− 1
nc .

Proof. Note that although the random variables Mi are not independent, a variable Mi

only depends on those Mj with j < i. Observe that the event of a node i to send
a message, only decreases the probability of sending a message of another node. It
is known that Chernoff bounds for the upper tail of a distribution can be applied to
variables satisfying such a kind of negative correlation [SF13]. More precisely, we can
apply such a Chernoff bound if for all I ⊆ {1, . . . , n} it holds

Pr[∀i ∈ I : Mi = 1] ≤
∏
i∈I

Pr[Mi = 1] .

Without loss of generality assume that I = {i1, . . . , i`} and vi1 ≥ vi2 ≥ . . . ≥ vi` .
Then we have

Pr[∀i ∈ I : Mi = 1] = Pr[Mi1 = 1 ∧ . . . ∧Mi` = 1]

= Pr[Mi1 = 1
∣∣Mi2 = 1 ∧ . . . ∧Mi` = 1]

· Pr[Mi2 = 1 ∧ . . . ∧Mi` = 1]

≤ Pr[Mi1 = 1] · Pr[Mi2 = 1
∣∣Mi3 = 1 ∧ . . . ∧Mi` = 1]

· Pr[Mi3 = 1 ∧ . . . ∧Mi` = 1]

≤ Pr[Mi1 = 1] · Pr[Mi2 = 1] · . . .
...

≤
∏
i∈I

Pr[Mi = 1]

and thus, the Mi’s are negatively correlated and we obtain the claimed result by apply-
ing a standard Chernoff bound.

4.4 Top-K – One-Shot Computation 45

4.4 Top-K – One-Shot Computation

In this section we present an algorithm which identifies all k largest values currently
observed by the sensor nodes. In this section, we denote by n the number of nodes that
participate in the algorithm which is unknown to the algorithm and N a given upper
bound for n. Note that by applying the MAXIMUMPROTOCOL k times, the problem
can be solved using O(k · log(n)) messages in expectation and O(k · log(N)) rounds.

Here, we design and analyze an algorithm which improves both bounds and allows
a trade-off between the number of messages and the number of rounds used. We denote
by φ the trade-off parameter and will show upper bounds of k + 1−φ

φ · log1/φ(n) + 1
φ

for the number of messages and O(φ · k + log1/φ(N)) for the number of rounds.

Protocol Description We apply the idea of identifying the k largest values in a dis-
tributed (non binary) search tree as discussed in Section 4.2. The protocol is given a
parameter φ, where φ ∈

(
0, 1

2

]
holds. Furthermore there is a parameter hmax to define

the maximal height of the distributed search tree. If only an upper bound of n (denoted
by N) is known we apply the parameter hmax := log1/φN to the protocol.

Algorithm 5 TOP-KPROTOCOL (φ, hmax)
Initialization()

1. Each node i draws a ran-
dom variable hi, i.i.d. from
a geometric distribution with
p := 1− φ

2. Server defines
` := −∞, u :=∞,
h := hmax, S := ∅

3. Call Top-k-Rec(`, u, h)
4. Raise an error, if |S| < k

Top-k-Rec(`, u, h)

1. If h = 0 then
2. if |S| = k then return S,
3. else end recursion
4. Server probes sensor nodes i with
` < vi < u and hi ≥ h
Let r1 < . . . < rj be the responses

5. Call Top-k-Rec(`, r1, h− 1)
6. S ← S ∪ r1

7. For i = 1 to j − 1 do
8. Call Top-k-Rec(ri, ri+1, h− 1)
9. S ← S ∪ ri+1

10. Call Top-k-Rec(rj , u, h− 1)

The algorithm starts by drawing a random variable hi from a geometric distribution,
i.e., Pr[hi = h] = φh−1(1− φ). For the monitoring problem we will apply φ := 1

2 (as
defined in Corollary 4.4.5) which results in Pr[hi = h] = 2−h. Observe that a smaller
choice of the failure-probability φ results in smaller random heights hi, but a larger
expected number of siblings. To succeed an inorder treewalk the server identifies
the siblings of a node with respect to the current path of the protocol by broadcasting
values `, u and h to identify all nodes i with values ` < vi < u and a height of hi ≥ h.

46 Exact & Approximate Top-k Monitoring

Analysis In the following we show that the expected number of messages used by
the TOP-KPROTOCOL is upper bounded by k+ 1−φ

φ · log1/φ(n) + 1
φ in Theorem 4.4.3.

Afterwards, an upper bound of O(φ · k + hmax) on the number of communication
rounds is presented in Lemma 4.4.4. Defining φ := 1

2 the bound on the communication
translates to k + log(n) + 2 in Corollary 4.4.5 and O(k + log n) number of rounds.
The communication bound is asymptotically tight as complemented by a simple lower
bound of Ω(k + log n) in Section 4.6.

We show an upper bound on the communication used by the TOP-KPROTOCOL

analyzing the expected value of a mixed distribution: Intuitively speaking, consider the
path from the root to the maximum in a non-binary searchtree. For each node i on the
path consider the number of siblings j with a larger value, i.e., vj > vi. To bound the
expected number of such siblings j, we first consider on a fixed height h the number
tries Gh until the first node j′ has drawn a height hj′ > h (for each height h this
results in the geometric-sequence, Definition 4.4.1). On the basis of Gh, we consider
the number of nodes that have drawn precisely the height hj′ = h (for each height h,
the geocoin experiment Definition 4.4.2).

Note that this analysis turns out to be very simple since independence can be ex-
ploited in a restricted way and leads to a proper analysis with respect to small constants.

Definition 4.4.1. We call a sequence G = (G1, . . . , Gm) of m random experiments a

geometric-sequence if each Gh is chosen from a geometric distribution with pgeoh :=

φh. We denote its size(G) :=
∑
hGh and say it covers all nodes, if size(G) ≥ n.

For the analysis, we choose a fixed length of m := log1/φ(n) and modify G to
G′ = (G1, . . . , Gm−1, n) such that G′ covers all nodes with probability 1.

On the basis of a given geometric-sequence, we define a sequence describing the
number of messages send by the nodes on a given height. We take the number of nodes
Gj as a basis for a Bernoulli experiment where the success probability is the probability
that a node sends a message on height hj . This is Pr[h = hj

∣∣h ≤ hj] = φh−1(1−φ)
1−φh .

Definition 4.4.2. We denote a geocoin experiment by C = (C1, . . . , Cm) a sequence

of random variables Ch which are drawn from the binomial distribution Binom(n =

Gh, p
bin
h = φh−1(1−φ)

1−φh), i.e., Ch out of Gh successful coin tosses and each coin toss is

successful with probability pbinh .

Theorem 4.4.3. Let n > k and hmax ≥ log1/φ(n) hold. The TOP-KPROTOCOL uses

at most k + 1−φ
φ log1/φ(n) + 1

φ messages in expectation.

Proof. The probability to send a message of a node v within the Top-k is 1. It remains
to show that the overhead is bounded by 1−φ

φ log1/φ(n) + 1
φ .

4.4 Top-K – One-Shot Computation 47

The number of messages sent by Algorithm 5 (excluding the k nodes observing the
k largest values) is upper bounded by a geocoin experiment C.
Let H := log1/φ(n). For h < H we use that the geometric distribution is memory-less
and hence

E[Ch] = (1− pgeoh) · (pbinh + E[Ch]) = (1− φh) ·
(
φh−1(1− φ)

1− φh
+ E[Ci]

)
.

This can simply be rewritten as E[Ch] = 1−φ
φ .

For h ≥ H = log1/φ(n) we bound the number of messages by the total num-
ber of nodes with height at least H. These can be described as the expectation of a
Bernoulli experiment with n nodes and success probability φH−1 and hence we can
bound E[C≥H] ≤ φH−1 · n = 1

φ .
In total, we get

∑
h

E[Ch] =

(H−1∑
h=1

E[Ci]

)
+ E[C≥H] ≤ 1− φ

φ
log1/φ(n) +

1

φ
,

concluding the proof.

Lemma 4.4.4. The TOP-KPROTOCOL needs O(φ · k + hmax) communication rounds

in expectation.

Proof. We structure the proof in two steps: First, we analyse the number of rounds
used to determine the maximum, and second, the number of communication rounds
used to determine the Top-k.

Observe that the algorithm uses a linear amount of steps (linear in hmax), until
it reaches h = 1, after which the maximum is found. Afterwards, in each step the
algorithm recursively probes for nodes successively smaller than the currently largest
values that are added to the output set S. Note that by the analysis in Theorem 4.4.3,
the number of nodes that send a message in expectation in each round is (1 − φ)/φ

(for h < log1/φ(n)). Thus, in each communication round there are Ω(1
φ) nodes in

expectation that send a message, such that after an expected number ofO(φ ·k) rounds
the TOP-KPROTOCOL terminates.

Corollary 4.4.5. ForN = n, φ := 1
2 , and hmax := log(n), the TOP-KPROTOCOL uses

an amount of k + log(n) + 2 number of messages in expectation and O(k + log(n))

communication rounds.

48 Exact & Approximate Top-k Monitoring

4.5 Exact Top-k-Position Monitoring

In this section we describe our algorithm for monitoring the IDs of the nodes holding
the k largest values. Assuming that we have distributed protocols to solve the following
problems: Compute the k largest values and the respective nodes which observed these
values (Section 4.4) using k + log n messages in expectation. Second, identify a filter
violation only using O(1) messages in expectation (Section 3.2).

Protocol Description. Recall that the key idea is to use filters to prevent that nodes
communicate changes to the coordinator that are not essential for the computation of
the Top-k. In case filters are violated, the EXISTENCEPROTOCOL (cf. Algorithm 1) is
applied to identify this. The strategy to update the filters is as follows:

Initially, filters are set to be [−∞,mid] or [mid,∞], respectively, where mid is
determined by the coordinator. The coordinator applies the TOP-KPROTOCOL and
identifies the k-th and (k + 1)-st largest value. On the basis of these values mid is
defined as the midpoint of vk and vk+1. Now consider a time t at which nodes violate
their filters. (Note that the coordinator is informed that some filter violation has hap-
pened.) The server determines new intervals and broadcasts these to the nodes. This
might incur new filter violations. Either the protocol finds new intervals (within the
same phase) which do not lead to filter violations, or a new phase begins.

Algorithm 6 TOP-k-POSITION MONITORING

[New phase p at time step t0]

1. Determine k + 1 largest values and the respective nodes using the TOP-
KPROTOCOL.

2. Server defines M := [vk+1, vk] and mid the midpoint of M .
3. Server broadcasts mid. Each node i with vi > mid defines its filter Fi :=

[mid,∞] and each i with vi ≤ mid defines Fi := [−∞,mid], respectively.
4. Each node i defines a boolean flag topi = 1, iff vi > mid holds.

[Same phase p, filter violation]

1. if filter violation from below (i.e., topi = 0) with value vi
2. then Server redefines M := M ∩ [vi,∞]

3. else Server redefines M := M ∩ [−∞, vi]
4. If M = ∅ then Server starts a new phase.
5. else Server broadcasts mid, the midpoint of (updated) M .
6. Each node i updates its value according the rules above.

[Same phase p, no filter violation] (No communication takes place)

4.5 Exact Top-k-Position Monitoring 49

Analysis. In order to prove the competitiveness of TOP-k-POSITION MONITORING

as presented in Algorithm 6, we first define the minimum value and the maximum value
with respect to a set of nodes and a period of time steps in Definition 4.5.1. Afterwards,
we show that there has to be value v which separates the Top-k and the remaining
nodes during a period of time at which no communication does not need to take place
in Lemma 4.5.2. On the basis of this observation we show the main result, the upper
bound on the competitiveness of O(k + log n+ log ∆) as given in Theorem 4.5.3. As
a short remark we consider the number of rounds and show that the protocol does not
violate the demanded bound, i.e., to only use a polylogarithmic number of rounds in
expectation, in Observation 4.5.4.

Definition 4.5.1. Let t0, t be given time steps with t ≥ t0. We denote the Top-k during

[t0, t] by F1 := F(t′) with t′ ∈ [t0, t] assuming F(t′) is constant during [t0, t]. (Let

F2 := [n] \ F1 respectively.) We denote the maximum over all values observed by

nodes i ∈ F2 during [t0, t] by MAXF2(t0, t) = maxt0≤t′≤t maxi∈{k+1,...,n}(v
t′

i).

Consequently, let MINF1(t0, t) be the minimum over all values observed by nodes

i ∈ F1. We omit the parameters, if they are clear from the context.

Lemma 4.5.2. Consider time steps [t0, t] and some arbitrary time step t′ ∈ [t0, t].

If OPT uses the same set of filters throughout [t0, t], the minimum over all nodes

i ∈ F(t′) is greater or equal the maximum over all nodes i /∈ F(t′), i.e., MINF1
≥

MAXF2
.

Proof. Proof by contradiction. Assume OPT uses the same set of filters throughout
[t0, t], but MAXF2 > MINF1 holds. Then there are two nodes, i ∈ F1 and j ∈ F2,
and two times t1, t2 ∈ [t0, t], such that vt1i = MINF1 and vt2j = MAXF2 . Due to
the definition of a set of filters and the fact that OPT has not communicated during
[t0, t], OPT must have set the filter for node i ∈ F1 to [s1,∞], s1 ≤ vt1i , and for node
j ∈ F2 to [−∞, s2], s2 ≥ vt2j . This is a contradiction to the definition of a set of
filters (applied for this problem in Lemma 2.3.4).

As direct implications of the previous simple observations a filter-based algorithm
only needs to define two different intervals of values. One interval to let all nodes
that are part of the output, i.e., are in the Top-k, and one interval for the remaining
nodes. The second observation that can be made is that no change in the output can
occur without violating the filter. Another consequence will be used to argue that
there is no further choice of a filter during a (consecutive) interval of time, i.e., if
MAXF2

> MINF1
. The considerations above lead to the following theorem.

50 Exact & Approximate Top-k Monitoring

Theorem 4.5.3. Let ∆ := maxt(v
t
k − vtk+1). Then the TOP-k-POSITION MONI-

TORING as presented in Algorithm 6 is O(k + log n + log ∆)-competitive against a

centralized filter-based offline algorithm.

Proof. We split the time into intervals on the basis of the time steps t1, t2, . . . at which
OPT communicates. Consider the case that for a given time step ti a time step ti+1

exists at which OPT communicates. Fix an arbitrary interval I := [ti, ti+1) for i ≥ 1.
Since OPT does not communicate during I ′ := (ti, ti+1), the Top-k does not change
and there is a set V∗ of values which separate F1 and F2 during I . At the end of I , the
protocol has chosen one value mid ∈ V∗ to define the nodes filter (otherwise a filter
violation would have occurred and the algorithm would have updated the filters). This
implies that the algorithm computes the output during this time interval only once, i.e.,
the TOP-KPROTOCOL is called only once. And since the phase restarts at most once,
at most O(log ∆) filter violations have to be processed. Each uses O(1) messages in
expectation to be identified and thus, the number of messages as claimed follows.

Now consider the second case in which OPT did not communicate after time step
ti. Since OPT did not communicate, the Top-k does not change at any time t′ ≥ ti.
Furthermore, and on the basis of Lemma 4.5.2, there is a set of values V which separate
F1 and F2: For each v ∈ V it holds MINF1

≥ v ≥ MAXF2
. Such a value v is chosen

by the algorithm as a value mid after at most log ∆ handled filter violations.

The previous observations show that only two intervals are sufficient to define the
filters for the nodes. In detail it is sufficient for an algorithm to broadcast only the value
mid to define the interval [−∞,mid] for each node i /∈ F(t) and [mid,∞] for those
nodes i ∈ F(t). That is, an optimal filter-based offline algorithm only needs to send
one message to define the filters.

Observation 4.5.4. The TOP-k-POSITION MONITORING protocol uses an amount of

O(k + log(∆ + n)) number of rounds per time step.

Proof. First, recall that one execution of the protocol EXISTENCEPROTOCOL needs
precisely log n number of rounds. This protocol is applied to reliably identify a filter
violation. However, since the algorithm is only informed about some filter violation the
updated filters may incur new filter violations. However, after O(log ∆) filter updates,
a new phase starts, using O(k + log n) number of rounds in expectation.

Note that a worst-case instance (which maximizes the competitive ratio) would
present only one filter violation at a time-step. For such an instance the algorithm
needs O(k+logn·log ∆

log ∆) (amortized) number of rounds per time-step.

4.6 Lower Bound 51

4.6 Lower Bound

We show that the given bounds of computing the Maximum or the Top-k are optimal
(up to constant factors). We show that if the observed values at a time t are pairwise
distinct, then any comparison-based randomized algorithm needs a number of mes-
sages that is at least logarithmic, i.e., E[X] = Ω(log n). By following Yao’s minimax
principle, it is sufficient to show that, given a probability distribution on the inputs, any
deterministic algorithm has to send Ω(log n) messages in expectation.

Theorem 4.6.1 (Lower Bound). Every comparison-based randomized algorithm re-

quires Ω(log n) messages on expectation to compute the maximum in our model.

Proof. Let the inputs be distributed according to a distribution P in such a way that
each instance where each of the numbers {1, . . . , n} is assigned to exactly one node
vi is chosen with probability (1/n!). Consider any deterministic algorithm A that
calculates the maximum in our model. Since we are looking for a lower bound on
the number of messages, we see that A can basically not do better than having a fixed
sequence (s1, . . . , sn) of nodes that it probes consecutively in this ordering, skipping
nodes that have values smaller than the maximum value observed so far.

By the following simple argument, we can show the desired result: Assume for
the moment that A probes all nodes, i.e., A receives a randomly chosen permutation
of the values {1, . . . , n}. The course of the algorithm can be (partly) described by
gradually constructing a binary search tree of the observed values. Now consider the
actual course of the algorithm: A skips nodes which cannot deliver new information
about the maximum value. Then the course of the algorithm is nothing else but the
path in the binary search tree from the root to the node holding the maximum value. It
is known (e.g. [SF13]) that in expectation this path has a length of Θ(log n), proving
the theorem.

We extend the lower bound to the number k of values that are to be determined.
Simply observe that k constitutes the size of the output (in terms of machine words)
and since each sensor node observes only one value at a time step, also k messages
have to be sent.

Corollary 4.6.2. Ω(k + log n) messages in expectation to determine the k largest

values in our model.

52 Exact & Approximate Top-k Monitoring

4.7 Allow the Online Algorithm to Err

In this section, we analyze the competitiveness of the online algorithm which is asked
to compute an relaxation of the Top-k-Positions and compare this against an offline
algorithm which solves the exact problem. The main result in this subsection is an
upper bound on the competitiveness of O(k + log n + log log ∆ + log 1

ε). Note that
this bound is tight up to an additive log log ∆ term as simply shown in Section 4.8.

Short Overview. Consider the approach from the past section: The protocol uses an
interval to choose a value with the purpose to a) separate the Top-k from the remaining
nodes and b) define filters. This interval is denoted by M = [`, u] and has the invariant
that OPT had to choose a value mid∗ within this interval, i.e., mid∗ ⊆ M . If for a
phase p this M is empty, OPT had to communicate at least once.

Within this framework, the strategy of the previous section was to always choose
the midpoint of M to define Filters. This is one of three strategies of algorithm
APRXTOP-K, which additionally uses the following strategies: First, if ` and u are
ε-close, then a filter is chosen, which overlaps this gap. And second, the midpoint-
strategy is extended by a preceding strategy which chooses the midpoint on a logarith-

mic scale. We describe the approach below in (much) more details.

Algorithm Description. We propose an algorithm started at t that computes the out-
put set F1 := F(t) using the TOP-KPROTOCOL and for all consecutive times tries to
find Filters that preserve this output. If no Filter can be found, a new phase starts.

The time steps t0, t1, . . . at which the algorithm is executed are split into phases
p0, p1, Each phase is split into at most three subphases. A subphase is defined as
the time steps of a phase p at which the same rule can be executed by the protocol.

The algorithm tries to find a value m which partitions F1 from F2, such that for all
nodes i ∈ F1 it holds vi ≥ m and for all nodes i ∈ F2 it holds vi ≤ m. Thus, only two
different filters that are basically defined by such one value. Whenever a filter violation
is reported, this value is recalculated and used to set filters properly.

The approach proceeds in rounds. In the first round we define an initial interval
M0. In the r-th round, on the basis of interval Mr, we compute a value m that is
broadcasted and is used to set the filters to [0,m] and [m,∞]. As soon as node i
reports a filter violation observing the value vi, the coordinator redefines the interval
Mr+1 := Mr ∩ [−∞, vi] if the violation is from above and Mr+1 := Mr ∩ [vi,∞]

otherwise. For the sake of readability, and since at a round r there is no need to keep
the information about round r′ < r, we omit the parameter to identify its round.

4.7 Allow the Online Algorithm to Err 53

Algorithm 7 APRXTOP-K

Rule R1 Rule R2 Rule R3
Condition log `+ 2 ≤ log u log `+ 2 > log u

∧ ` < (1− ε)u
` ≥ (1− ε)u
∧ ` ≤ u

Def. m midpoint of
M =

[
dlog `e, blog uc

] midpoint of
M = [`, u]

/

Def. Filters F1 := [2m,∞]
F2 := [−∞, 2m]

F1 := [m,∞],
F2 := [−∞,m]

F1 := [`,∞],
F2 := [−∞, u]

[Initialize at time t, new phase p]
1. Compute the nodes holding the (k + 1) largest values.
2. Define F(t), ` := vtk+1, u := vtk and M := [`, u] .
3. If the condition for Ri holds
4. then apply rule Ri (i.e., define m and broadcast new filters F1, F2).
5. else (i.e., no condition holds, ` > u) Start a new phase p+ 1, call Initialize.

[Filter-violation by node i at time t, in phase p]
1. If the filter violation is reported from below
2. then ` := vti else u := vti .
3. If the condition for Ri holds
4. then apply rule Ri (i.e., define m and broadcast new filters F1, F2).
5. else (i.e., no condition holds, ` > u) Start a new phase p+ 1, call Initialize.

Note that in one phase it is not necessary that all subphases have to be proceeded.
Due to this fact, the algorithm applies a rule on the basis of the current situation (i.e.,
on the basis of u and `). If no rule can be applied, it holds ` > u and a new phase starts.
We now consider the subphases in more detail:

R1 The first subphase is applied if log ` + 2 > log u holds, i.e., ` and u differ
more than a (predefined) constant factor. A midpoint-strategy is applied on a
logarithmic scale, i.e., the midpoint of dlog `e and blog uc is chosen as the value
m. To separate F1 from F2 the value v := 2m is broadcasted to the nodes. The
subphase terminates if log `+ 2 ≤ log u holds, i.e., u = Θ(`).

R2 During the second subphase it holds log ` + 2 ≤ log u and ` ≤ (1 − ε)u. Now
the midpoint strategy is applied (in the same way as in the previous section for
monitoring the exact Top-k-Positions). However, the strategy is interrupted at
the time step at which ` and u differ by a factor of ε factor.

R3 The final subphase is started, in case ` ≥ (1−ε)u holds. The filters are defined as
F2 := [−∞, u] andF1 := [`,∞], i.e., they overlap in at most εu values. Note that
this overlap meets the definition of filters for the Approximate Top-k-Position
Monitoring problem. The current phase stops with the next filter violation.

54 Exact & Approximate Top-k Monitoring

Analysis We analyze the protocol as given in Algorithm 7 in the following steps:
First, we shortly analyze the correctness of the algorithm; i.e., we show that the output
is correct at each time step and that the defined filters are correct in Observation 4.7.1.
Second, we upper bound the number of messages used in each phase p in Lemma 4.7.3.
Third, we show our main result: an upper bound on the competitiveness, where we
compare the protocol against an adversary who solves the exact problem in Theo-
rem 4.7.4. Finally, (as a side-remark) we consider the number of rounds and show
that this can be upper bounded by a polylogarithmic term in Observation 4.7.5.

We start with the first step and observe its correctness. Simply observe that for a
fixed phase p if rule R1 or R2 are applied filters overlap only in a single value, i.e.,
constitute Top-k Filters, which are more restricted than the Approximate Top-k Filters.
Thus, in these time steps the output is even a correct output for monitoring the Top-k
exactly. If rule R3 is applied the filters overlap at most by εuwhich meets the definition
of an Approximate Top-k Filter and implies the correctness of the output.

Observation 4.7.1. Consider a time step t0 and a phase p which starts at t0 and ends

at time t′ which is defined by APRXTOP-K. The protocol computes and monitors the

Top-k approximately for a given ε > 0 during p.

Now we argue that the number of messages during a phase p is upper bounded by
O(k + log n + log log ∆ + log 1

ε) in expectation. To this end, we upper bound the
number of messages in each subphase (i.e., each time step of a phase p in which the
same rule is applied).

Consider the first subphase (all time steps of a fixed phase p in which rule R1 is
applied):

Lemma 4.7.2. Let t be a given time step, assume F(t) the output determined by the

protocol. Let p1 the interval of (consecutive) time steps in which the rule R1 holds

and the output does not change. The protocol uses at most O(log log ∆) messages in

expectation (during p1).

Proof. Consider an arbitrary, fixed phase p1 consisting of consecutive time steps p1 =

{t1, . . . , t′} in which rule p1 always holds. Note that the server defines (and broadcasts)
the value m to be the midpoint of the interval dlog `e and blog uc. In other words, a
midpoint-strategy on a logarithmic scale is applied. To analyze the amount of messages
needed and express it in terms of ∆, observe that in the worst case u = ∆ and ` = 0

holds. Now observe that after O(log log ∆) filter violations (no matter from below or
from above) the condition of rule R1 does not hold any longer. Each filter violation

4.7 Allow the Online Algorithm to Err 55

uses at most O(1) messages in expectation by applying the EXISTENCEPROTOCOL as
presented in Algorithm 1.

By the same arguments we can show that the second subphase needs O(log 1/ε)

and the third subphase needs O(1) messages in expectation. We conclude:

Lemma 4.7.3. Consider a phase p. The algorithm uses a number of messages upper

bounded by O(k + log n+ log log ∆ + log 1
ε) in expectation throughout p.

Proof. To argue on the number of messages, observe that the initialization can be ex-
ecuted using O(k + log n) number of messages in expectation by applying the Top-k
protocol as given in Algorithm 5. At the time the condition of the rules are checked
these steps can be performed without any additional communication since the server
keeps track of u and `. Each subphase is executed at most once and thus, each number
of messages from the subphases is added to the overall costs per phase p at most once.
If no rule can be applied, no further subphase is called and no further message is being
sent. A new phase p′ is started concluding the analysis for the subphase p.

We have shown the correctness of the online algorithm and the number of mes-
sages used during a phase. Now we can combine these results to the result on the
competitiveness:

Theorem 4.7.4. The algorithm APRXTOP-K has a competitiveness which is upper

bounded by O(k+ log n+ log log ∆ + log 1
ε) allowing an error of ε > 0 compared to

an optimal offline algorithm that solves the exact Top-k-Position Monitoring problem.

Proof. Fix a phase p = {t, . . . , t′}. The number of messages of APRXTOP-K follow
from Lemma 4.7.3.

Now we argue that OPT had to communicate at least once in the interval [t, t′ + 1]

during which APRXTOP-K was applied.
If OPT communicated, the bound on the competitiveness directly follows. Now

assume that OPT did not communicate in the interval [t, t′ + 1]. We claim that the
interval L = [`, u] which is maintained during APRXTOP-K always satisfies the in-
variant L∗ ⊆ L. If this claim is true, we directly obtain a contradiction to the fact that
OPT did not communicate because of the following reasons. On the one hand, because
OPT has to monitor the exact Top-k-Positions, OPT chooses the same set of nodes
F∗ = F1 = F(t) which was chosen by the online algorithm. On the other hand, at
the time t′ + 1 the algorithm APRXTOP-K starts a new phase, and thus, u < ` holds.
Thus, the interval L is empty and since L∗ ⊆ L holds, it follows that L∗ is empty and
hence, OPT must have communicated.

56 Exact & Approximate Top-k Monitoring

We now prove the claim. Recall that APRXTOP-K starts a new phase with ` and
u defining the interval L such that L∗ ⊆ L holds by definition. To show that L∗ ⊆ L

holds during the entire interval [t, t′ + 1], it suffices to argue that each change of u or `
also has to hold for L∗:

Consider the cases in which filter violations are observed and hence the interval
L is modified: If a filter violation from below happened at a time t′′, there is a node
i ∈ F2 with a value vt

′′

i = `t
′′
> `t

′′−1 and thus, `∗ > vt
′′

i holds. (Analogously for
filter violation from above.) This case distinction leads to the result, that L∗ has to be
a subset of L = [`, u].

Finally, and as a side remark we consider the number of communication rounds
the algorithm needs per time step. Recall that the protocol is allowed to use a poly-
logarithmic number of rounds at each time step which can be shown easily (assuming
k is polylogarithmic): The Top-k protocol and the EXISTENCEPROTOCOL only use
polylogarithmic number of rounds and are applied only a polylogarithmic number of
rounds.

Observation 4.7.5. The protocol APRXTOP-K as presented in Algorithm 7 uses a

polylogarthmic number of rounds per time step.

4.8 Lower Bounds for the Approx. Top-k-Monitoring
Problem

In this section we present a simple lower bound to show the tightness of the result in the
previous section. We show that the result is tight up to an additive term ofO(log log n).

Theorem 4.8.1. Let A be a comparison-based online algorithm which solves the ap-

proximate Top-k problem. Then A has a competitiveness against an offline algorithm

of at least Ω(k + log n+ log 1
ε).

Proof. Note that the output has to be computed by any algorithmA and thus, the same
argument holds as in Corollary 4.6.2 proving a lower bound of Ω(k + log n).

It remains to show a lower bound of Ω(log 1/ε). For this simply consider two
sensor nodes with observed values v1 := ∆ and v2 := ∆/2. The instance is generated
such that the sensor node with the smallest difference to the filter border (as defined by
algorithm A) moves towards the boarder and yields a filter violation.

CHAPTER 5

TOP-k-POSITION MONITORING AGAINST AN

APPROXIMATE OFFLINE ALGORITHM

In this chapter, we study a variant in which the optimal offline algorithm is allowed
to introduce an error; i.e., we monitor the Top-k-Positions approximately. It turns out
that it is much more challenging for online than for offline algorithms to cope with or
exploit the allowed error in the output.

This fact is formalized in a lower bound of Ω(n) (for constant k), which is much
larger than previous upper bounds of O(k + log n + log ∆) for the exact problem.
However, we also propose two online algorithms that are competitive against offline
algorithms. One online algorithm, is allowed to make use of the same error ε as the
offline algorithm, which results in a competitiveness ofO(n2 log ∆) (assuming reason-
able relations between n and ∆ to simplify the bounds). Furthermore, an augmented
version which allows the online algorithm an error of 2ε compared to ε the offline algo-
rithm uses with the result ofO(n)-competitiveness (again with reasonable assumptions
on n and ε and ∆).

58 Top-k-Position Monitoring against an Approximate Offline Algorithm

5.1 Introduction & Contribution

Problem Err. On. Err. Off. Competitiveness

Approx. Top-k Position εON εOFF Ω(n/k)

ε ε O(n2 log ∆)

2ε ε O(n)

In this chapter we concentrate on the problem of monitoring Approximate Top-k-
Positions. We start with a very simple construction to show a lower bound of O(nk)

on the competitiveness of any (potentially randomized) online algorithm and arbitrary
allowed errors εON , εOFF ≥ 1

∆ . We show that there exists an online algorithm which
admits bounded competitiveness of O(n2 log ∆). Furthermore, if the online algorithm
is allowed to use twice the error of the offline algorithm, the competitiveness is only
O(n) which is asymptotically tight for the cases in which k = O(1) and ∆ = O(2n).

A Short High-level Discussion of the Problem. The inclined reader might ask why
this problem is essentially different in comparison to the previous section although the
problem is almost the same.

In fact, the central question of ’where to set filters’ is still present. However, ob-
serve that after the set of nodes that observed the k largest values, the output did not
change until the considered phase ended (recall a phase is defined as the interval of
time steps in which the optimal offline algorithm did not communicate). That is, dur-
ing a phase the output did not change, only a valid set of filters was tasked to find. One
might think of this filter as a certificate which witnesses the correctness of the output.

The problem we tackle in this section raises the following tasks: (1) decide on an
output and (2) define filters. Note that if a subset is chosen, it is not clear where to set
filters: i.e., a midpoint-strategy might show where the optimal offline algorithm might
have set the filters. However, this particular set of node is not necessarily part of the
output. These two aspects are orthogonal and thus, yield a competitiveness much larger
than the results in previous sections.

Chapter Basis. Parts of the model, analysis, and results in the remainder of this
chapter are based on the following publication:

• Mäcker, M., and Meyer auf der Heide. On Competitive Algorithms for Ap-
proximations of Top-k-Position Monitoring of Distributed Streams. In: 30th

International Parallel and Distributed Processing Symposium (IPDPS, 2016),
[MMM16].

5.2 Lower Bound for Competitive Algorithms 59

5.2 Lower Bound for Competitive Algorithms

We show a lower bound on the competitiveness proving any online algorithm has to
communicate at least (σ − k) times in contrast to an offline algorithm which only uses
k + 1 messages. Recall that the adversary generates the data streams and can see the
filters communicated by the server. Note that as long as the online and the offline
algorithm are allowed to make use of an error ε ∈ (0, 1) the lower bound holds, even
if the errors are different.

Theorem 5.2.1. Any filter-based online algorithm which solves the Approximate-Top-

k-Position Monitoring problem and is allowed to make use of an error of ε ∈ (0, 1) has

a competitiveness of Ω (σ/k) compared to an optimal offline algorithm which is allowed

to use a (potentially different) error of ε′ ∈ (0, 1).

Proof. Consider an instance in which the observed values of σ ∈ [k + 1, n] nodes are
equal to some value y0 (the remaining n − σ nodes observe smaller values) at time
t = 0 and the following adversary: In time step r = 0, 1, . . . , n − k, the adversary
decides to change the value of one node i with vri = y0 to be vr+1

i = y1 < (1− ε) · y0

such that a filter violation occurs. Observe that such a value y1 exists if ε < 1 holds
and a node i always exists since otherwise the filters assigned by the online algorithm
cannot be feasible. Hence, the number of messages sent by the online algorithm until
time step n−k is at least n−k. In contrast, the offline algorithm knows the n−k nodes
whose values change over time and hence, can set the filters such that no filter violation
happens. The offline algorithm sets two different filters: One filter F1 = [y0,∞] for
those k nodes which have a value of y0 at time step n − k using k messages and
one filter F2 = [0, y0] for the remaining n − k nodes using one broadcast message.
By essentially repeating these ideas, the input stream can be extended to an arbitrary
length, obtaining the lower bound as stated.

A Short Remark. The lower bound presented above can be enlarged such that the
(asymptotic) competitiveness is Ω(σ) since the optimal offline algorithm needs only to
communicate a constant amount of filters for each phase (as described above).

60 Top-k-Position Monitoring against an Approximate Offline Algorithm

5.3 Upper Bounds for Competitive Algorithms

Now we propose an algorithm DENSEPROTOCOL and analyze the competitiveness
against an optimal offline algorithm in the setting that both algorithms are allowed
to use an error of ε.

A Simple Assumption. The algorithm DENSEPROTOCOL is started a time t. For
sake of simplicity we assume that the k-th and the (k + 1)-st node observe the same
value z, that is z := vtπ(k,t) = vtπ(k+1,t). However, if this does not hold we can define
the filters to be F1 = [vtπ(k+1,t),∞] and F2 = [0, vtπ(k,t)] until a filter violation is
observed at some time t′ using O(k + log n) messages in expectation. If the filter
violation occurred from below define z := vtπ(k,t) and if a filter violation from above is
observed define z := vtπ(k+1,t).

Technical Idea. The high-level idea of this protocol is similar to the APRXTOP-K.
That is, we compute a guess L on the lower endpoint of the filter of the output F∗

of OPT (assuming OPT did not communicate during [t, t′]) for which the invariant
`∗ ∈ L∗ ⊆ Lr holds. The goal of DENSEPROTOCOL is to halve the interval L while
maintaining `∗ ∈ L until L = ∅ and thus show that no value exists which could be used
by OPT.

To this end, the algorithm partitions the nodes into three sets. Intuitively speaking,
the first set which we call V1 contains those nodes which have to be part of the optimal
output, V3 those nodes that cannot be part of any optimal output and V2 the remaining
nodes. The sets change over time as follows. Initially V t1 contains those nodes that
observes a value vti >

1
1−εz. Since the algorithm may discover at a time t′ > t that

some node i has to be moved to V t
′+1

1 which also contains all nodes from previous
rounds, i.e., V t

′

1 ⊆ V t
′+1

1 . On the other hand, V t3 initially contains the nodes which
observed a value vti < (1 − ε)z. Here also the algorithm may discover at a time
t′ > t that some node i has to be moved to V t

′+1
3 which (similar to V1) contains nodes

from previous rounds. At the time t the set V t2 simply contains the remaining nodes
{1, . . . , n} \ (V t1 ∪ V t3) and its cardinality will only decrease over time.

In the following we make use of sets S1 and S2 to indicate that nodes in V2 may
be moved to V1 or V3 depending on the values observed by the remaining nodes in V2.
Nodes in S1 observed a value larger than z but still not that large to decide to move
it to V1 and similarly nodes in S2 observed smaller values than z but not that small to
move it to V3.

5.3 Upper Bounds for Competitive Algorithms 61

5.3.1 The DENSEPROTOCOL

Next we propose the algorithm DENSEPROTOCOL in which we make use of an algo-
rithm SUBPROTOCOL for the scenario in which some node i exists; that is, in S1 and
in S2. At a time at which the SUBPROTOCOL terminates it outputs that `∗ has to be
in the lower half of L or in the upper half of L thus, the interval L is halved (which
initiates the next round) or moves one node from V2 to V1 or V3. Intuitively speak-
ing SUBPROTOCOL is designed such that, if OPT did not communicate during [t0, t],
where t0 is the time the DENSEPROTOCOL is started and t is the current time step, the
movement of one node i ∈ V2 to V1 or V3 implies that i has necessarily to be part of
F∗ or not. For now we assume the algorithm SUBPROTOCOL to work correctly as a
black box using SUB(n, |L|) number of messages.

Note that in case L contains one value and is halved, the interval L is redefined
to be empty. In case the algorithm observes multiple nodes reporting a filter violation
the server processes one violation at a time in an arbitrary order. Since the server may
define new filters after processing a violation one of the multiple filter violations may
be not relevant any longer, thus the server simply ignores it.

Algorithm 8 DENSEPROTOCOL

1. Define z := vtπ(k,t) = vtπ(k+1,t) and the following sets:
V1 := {i ∈ {1, . . . , n} | vti > 1

1−εz},
V3 := {i ∈ {1, . . . , n} | vti < (1− ε)z} ,
V2 := {1, . . . , n} \ (V1 ∪ V3).

Define an interval L := [(1 − ε)z, z] and define sets S1, S2 of nodes which are
initially empty and use S to denote S1 ∪ S2.

2. The following rules are applied for each time step t:
Let ` be the midpoint of L and u := 1

1−ε`
For a node i the filter is defined as follows:
If i ∈ V1, Fi := [`,∞];
If i ∈ V2 ∩ S1, Fi := [`, 1

1−εz].
if i ∈ V2 \ S, Fi := [`, u];
If i ∈ V2 ∩ S2, Fi := [(1− ε)z, u].
if i ∈ V3, Fi := [0, u].
The output F(t) is defined as V1∪ (S1 \S2) and k−|V1∪ (S1 \S2)|many nodes
from V2 \ S2.

62 Top-k-Position Monitoring against an Approximate Offline Algorithm

DENSEPROTOCOL (part 2)

3. Wait until time t, at which some node i reports a filter violation:
a. If i ∈ V1, then redefine L to be the lower half of L and define S2 := ∅.
b. If i ∈ (V2 \ S) violates its filter from below then

b.1. If the server observed strictly more than k nodes with larger values
than ur then redefine L to be the upper half of L and define S1 := ∅.

b.2. else add i to S1 and update i’s filter.

c. If i ∈ S1 \ S2 violates its filter then

c.1. If i violates its filter from below then move i from S1 and V2 to V1

and update i’s filter.
c.2. else add i to S2 and call SUBPROTOCOL.

d. If the server observed k nodes with values vi > u and n − k nodes with
values vi < ` then call APRXTOP-K

e. If L was redefined at this time step t then

e.1. if L is empty then end the protocol,
e.2. else Apply rules from Step 2 (update u, `, and all filters). Goto Step 3.

— And their symmetric cases —
a’. If i ∈ V3 then redefine L to be the upper half of L and define S1 := ∅.
b’. If i ∈ (V2 \ S) violates its filter from above then

b’.1. If the server observed strictly more than n − k nodes with smaller
values than ` then redefine L to the lower half of L and define S2 := ∅.

b’.2. else add i to S2.

c’. If i ∈ S2 \ S1 violates its filter then

c’.1. If i violates its filter from above
then delete i from S2, delete i from V2, and add i to V3.

c’.2. else add i to S1 and call SUBPROTOCOL.

Analysis. We analyze the correctness of the protocol in the following lemma and the
number of messages used in Lemma 5.3.2. We prove that OPT communicated at least
once in Lemma 5.3.6. Note that we assume (for the moment) the SUBPROTOCOL to
be correct in order to prove the correctness of DENSEPROTOCOL.

Lemma 5.3.1. The protocol DENSEPROTOCOL computes a correct output F(t) at any

time t.

5.3 Upper Bounds for Competitive Algorithms 63

Proof. By definition the output consists of nodes from V1, S1 and (arbitrary) nodes
from V2 \ S2 (cf. step 2.). Observe that by definition of the filters of the nodes in these
subsets, the minimum of all lower endpoints of the filters is ` following the rules in step
2. Also observe that the maximum of all upper endpoints of the filters of the remaining
nodes is u. Since by definition u = 1

1−ε` holds, the values observed by nodes i ∈ F1

are (lower) bounded by ` and nodes i ∈ F2 are (upper) bounded by u, thus the overlap
of the filters is valid.

Now we argue that there are at least k nodes in the set V1∪S1∪V2\S2. To this end,
assume to the contrary that t is the first time step at which strictly less than k nodes
are in the union of these sets. Now observe that the cases in the DENSEPROTOCOL in
which nodes are deleted from one of V1, S1 or V2 \ S2 are 3.c.1., 3.c.2., and 3.b’.2..

Observe that in step 3.c.1. the algorithm moves i from S1 and V2 to V1 and thus
i is again part of the output and does not change the cardinality. In step 3.c.2. the
node i is added to S2 and SUBPROTOCOL is called afterwards. At this time t′ node i is
(again) part of the output of SUBPROTOCOL and thus there are sufficiently many nodes
to choose as an output which is a contradiction to the assumption. In the remaining
case 3.b’.2. DENSEPROTOCOL adds i to S2. However, since at time t′ strictly less than
k nodes are in V1 ∪ S1 ∪ (V2 \ S2), there are strictly more than n− k nodes in S2 ∪ V3

and thus, the algorithm would execute step 3.b’.1. instead. This leads to a contradiction
to the assumption. By these arguments the correctness follows.

Lemma 5.3.2. The protocol DENSEPROTOCOL uses an amount of O(k + log n+

σ log(εvk) + (σ + log(εvk)) · SUB(σ, |L|)) messages in expectation.

Proof. Initially the algorithm computes the Top-k and probes all nodes which are in
the ε-neighborhood of the node observing the k-th largest value, using O(k log n+ σ)

messages on expectation.
During each round r each node can only violate its filter at most constant times

without starting the next round r + 1 or leading to a call of SUBPROTOCOL based on
the following simple arguments: All nodes i in V1 or V3 directly start the next round
r+1 after a filter violation. Now fix a node i ∈ V2 and observe that if it is not contained
in S1 and S2 it is added to S1 if a filter violation from below or to S2 if a filter violation
from above is observed. At the time this node i observes a filter violation in the same
direction (i.e., from below if it is in S1 and from above if it is in S2) it is added to V1 or
V3. In these cases the next filter violation will start the next round. The last case that
remains is that it is added to both sets, S1 and S2. Observe that the SUBPROTOCOL is
called and starts the next round or decides on one node (which may be different from
the fixed node i) to be moved to V1 or V3.

64 Top-k-Position Monitoring against an Approximate Offline Algorithm

Observe that at most σ + 1 nodes can perform filter violations without starting the
next round since each node from V1 or V3 directly starts the next round and the number
of nodes in V2 is bounded by σ. Furthermore observe that after each round the interval
L is halved thus, after at most log |L0|+ 1 rounds the set Lr is empty.

Now focus on the SUBPROTOCOL which also halves L after termination or decides
on one node i ∈ V t′2 to be moved to V t

′+1
1 or V t

′+1
3 . Thus, it can be called at most

σ + log(εvk) times, leading to the result as stated above.

5.3.2 The SUBPROTOCOL

We propose an algorithm which is dedicated for the case in the execution of DENSE-
PROTOCOL that one node i was added to S1 and to S2. In detail, it has observed a
value which is larger than ur and a value which is smaller than `r. As a short remark,
if i ∈ F∗ would hold, then `∗ ≤ `r follows and on the other hand if i /∈ F∗ holds, then
`∗ ≥ `r follows, but DENSEPROTOCOL cannot decide i ∈ F∗ in steps 3.c.2. or 3.c’.2.

Algorithm 9 SUBPROTOCOL

1. Define an interval L′0 := Lr ∩ [(1− ε)z, `r], S′1 := S1, and S′2 := ∅. Set r′ := 0

indicating the round.

2. The following rules are applied for (some) round r′:
Let `′r be the midpoint of L′r′ and u′r′ := 1

1−ε`
′
r′ .

For a node i the filter is defined as follows:
If i ∈ V1, F ′i := Fi;
If i ∈ V2 ∩ (S′1 \ S′2), F ′i := [`r,

1
1−εz].

If i ∈ V2 ∩ S′1 ∩ S′2, F ′i := [`′r′ ,
1

1−εz];
if i ∈ V2 \ S′, F ′i := [`r, u

′
r′].

if i ∈ V2 ∩ (S′2 \ S′1), F ′i := [(1− ε)z, u′r′];
if i ∈ V3, F ′i := [0, u′r′];

The output F(t) is defined as V1 ∪ (S′1 \ S′2) ∪ (S′1 ∩ S′2) and sufficiently many
nodes from V2 \ S′2.

5.3 Upper Bounds for Competitive Algorithms 65

SUBPROTOCOL (part 2)

3. Wait until time t′, at which node i reports a filter violation:

a. If i ∈ V1, then terminate SUBPROTOCOL and set Lr+1 to be the lower half of Lr .

b. If i ∈ (V2 \ S′) violates its filter from below

b.1. If the server observed strictly more than k nodes with larger values than ur then

• set L′
r′+1 to be the upper half of L′

r′ and redefine S′
1 := S1.

• If L′
r′+1 is defined to the empty set then terminate SUBPROTOCOL and define

the last node i which was in S′
1∩S′

2 and observed a filter violation from above

to be moved to V3. If such a node does not exist, the node i ∈ S1 ∩ S2 moves

to V3.

b.2. Else add i to S′
1.

c. If i ∈ S′
1 \ S′

2 violates its filter

c.1. If i violates its filter from below then move i from V2 and S′
1 to V1.

c.2. Else add i to S′
2 and update i’th filter.

d. If i ∈ S′
1 ∩ S′

2 violates its filter

d.1. If i violates from below then move i to V1 terminate the SUBPROTOCOL.

d.2. else

• define L′
r′+1 to be the lower half of L′

r′ and redefine S′
2 := ∅.

• If L′
r′+1 is defined to be the empty set then terminate SUBPROTOCOL and

move i to V3.

e. If the server observed k nodes with values vi > ur and n− k nodes with values vi < `r

then call APRXTOP-K

f. If L′
r′+1 was set increment r′, update u′

r′ , `
′
r′ , all filters using the rules in 2., and goto

step 3.

— And their symmetric cases —

a’. If i ∈ V3, then

• set L′
r′+1 to be the upper half of L′

r′ and redefine S′
1 := S1.

• If L′
r′+1 is defined to the empty set then terminate SUBPROTOCOL and define the

last node i which was in S′
1 ∩ S′

2 and observed a filter violation from above to be

moved to V3. If such a node does not exist the node i ∈ S1 ∩ S2 moves to V3.

b’. If i ∈ (V2 \ S′) violates its filter from above

b’.1. If the server observed strictly more than n−k nodes with a value less than `r , then
terminate SUBPROTOCOL and set Lr+1 to be the lower half of Lr .

b’.2. else add i to S′
2.

c’. If i ∈ S′
2 \ S′

1

c’.1. If i violates its filter from above then move i from V2 and S′
2 to V3.

c’.2. else add i to S′
1 and update i’th filter.

66 Top-k-Position Monitoring against an Approximate Offline Algorithm

Analysis. We analyze the correctness of the SUBPROTOCOL in the following lemma
and the number of messages used.

Lemma 5.3.3. The protocol SUBPROTOCOL computes a correct output F(t′) at any

time t′ at which a node i ∈ S1 ∩ S2 exists.

Proof. By definition the output consists of nodes from V1, S′1 \ S′2, S′1 ∩ S′2 and (arbi-
trary) nodes from V2 \ S′2 (cf. step 2.). Observe that by definition of the filters of the
nodes in these subsets, the minimum of all lower endpoints of the filters is `′r′ (in case
the node is in S1 and in S2) following the rules in step 2. Also observe that the max-
imum of all upper endpoints of the filters of the remaining nodes (in subsets V2 \ S′,
S′2 \ S′1 or V3) is u′r′ . Since by definition u′r′ = 1

1−ε`
′
r′ holds, the values observed by

nodes i ∈ F1 are (lower) bounded by `′r′ and nodes i ∈ F2 are (upper) bounded by u′r′
thus, the overlap of the filters is valid.

Now we argue that there are at least k nodes in the sets V1, S1 \ S2, S1 ∩ S2, and
V2 \ S2. To this end, simply assume to the contrary that at a time t′ there are strictly
less than k nodes in the union of the sets. It follows that at this time t′, the algorithm
has observed that there are strictly more than n−k nodes with a value smaller than `′r′ .
Thus, the algorithm would continue (compare case b’.1.) with a lower value of `r or,
in case the interval Lr is empty, terminates (which is a contradiction).

By these arguments the correctness follows.

Lemma 5.3.4. The protocol SUBPROTOCOL uses at most O(σ log |L|) messages on

expectation.

Proof. During each round r′ each node can only violate its filter at most constant times
without starting the next round r′ + 1 based on the following simple arguments: All
nodes i in V1 or V3 directly start the next round r′ + 1 after a filter violation. Now fix
a node i ∈ V2 and observe that if it is not contained in S′1 and S′2 it is added to S′1 if
a filter violation from below or to S′2 if a filter violation from above is observed. At
the time this node i observes a filter violation in the same direction (i.e., from below
if it is in S′1 and from above if it is in S′2) it is added to V1 or V3. In these cases the
next filter violation will start the next round. The last case that remains is that it is
added to both sets, S′1 and S′2. Observe that APRXTOP-K terminates if i ∈ S′1 ∩ S′2
violates its filter from below (and moves itoV1). Otherwise i violates its filter from
above SUBPROTOCOL starts the next round r′ + 1.

Observe that at most σ + 1 nodes can perform filter violations without starting the
next round since each node from V1 or V3 directly starts the next round (r+ 1 from the

5.3 Upper Bounds for Competitive Algorithms 67

DENSEPROTOCOL or r′ + 1 this protocol) and the number of nodes in V2 is bounded
by σ.

Furthermore observe that after each round the interval L′, the guess of OPTs lower
endpoint of the upper filter, is halved. The range of L′ is upper bounded by the range
of L thus, after at most log |L|+ 1 rounds the set L′ is empty.

Lemma 5.3.5. Given a time point t at which SUBPROTOCOL is started. At the time t′

which SUBPROTOCOL terminates, there is one node i that is moved from V2 to V1 or

V3 or the interval Lr (from DENSEPROTOCOL) is halved correctly.

Proof. Focus on the cases in which L′ is halved or there is a decision on a node i to
move to V1 or V3 (cf. cases 3.b.1., 3.d.1. 3.d.2., 3.a’., and 3.c’.1.).

In step 3.b.1. the server observed at the time t′ a filter violation from i ∈ V2\S′ and
there are (strictly) more than k nodes observed with a larger value than u′r′ . Observe
that in this case for all subsets S with k elements there exists one node i /∈ S which
observed a value vi ≥ u′r′ , thus no matter which set is chosen by OPT, for the upper
bound u∗ for nodes i /∈ F∗ it holds: u∗ ≥ u′r′ , and since u′r′ = 1

1−ε`
′
r′ holds, it follows

`∗ ≥ `′r′ . Furthermore if L′r′+1 was defined as the empty set, and a node i ∈ S′1 ∩ S′2
exists, observe that i observes a value vi ≤ `′r′ and since in this case u∗ ≥ u′r′ holds,
i /∈ F∗ follows. If such a node i does not exist during the execution of SUBPROTOCOL,
the node i ∈ S1 ∩ S2 which initiated the SUBPROTOCOL can be decided to move to
V3 since during the execution of SUBPROTOCOL the interval L′ is only halved to the
upper half, thus i ∈ S1 ∩ S2 observed a value vi < `r = `′r′ and since u∗ ≥ u′r′ holds,
this i /∈ F∗ follows.

In step 3.d.1. the node i observed a value vi which is larger than 1
1−εz and thus has

to be part of F∗.
In step 3.d.2. the node i observed a value vi < `′r′ . If during the execution of

SUBPROTOCOL the set L′ was defined as the upper half at least once then there was a
node j ∈ V3 or strictly more than k nodes which observed a larger value than u′r′ . It
follows that this i cannot be part ofF∗. In case during the execution of SUBPROTOCOL

the set L′ is alway defined to the lower half, then `′r′ is the lower end of L and since
node i observed a value strictly smaller than `′r′ it cannot be part of F∗.

The arguments for case 3.a’. are similar to 3.b.1.
For the remaining case 3.c’.1. simply observe that i observed a smaller value than

(1− ε)z thus i cannot be part of F∗ follows.
First, focus on the steps in which L is halved and observe that steps 3.a. and 3.b’.1.

are the same cases as in the DENSEPROTOCOL.

68 Top-k-Position Monitoring against an Approximate Offline Algorithm

Lemma 5.3.6. Given a time point t at which DENSEPROTOCOL is started. Let t′ be

the time point at which DENSEPROTOCOL terminates. During the time interval [t, t′]

OPT communicated at least once.

Proof. We prove that OPT communicated by arguing that `∗, the lower endpoint of
the upper filter, i.e., the filter for the output F∗, is in the guess Lr at each round r
(`∗ ∈ L∗ ⊆ Lr). Hence we show that although if we halve the interval Lr, the invariant
`∗ ∈ L∗ ⊆ Lr is maintained all the time of the execution of DENSEPROTOCOL and
possible calls of SUBPROTOCOL.

In the following we assume to the contrary that OPT did not communicate through-
out the interval [t, t′]. We first argue for the execution of DENSEPROTOCOL and as-
sume that the invariant by calls of SUBPROTOCOL hold by Lemma 5.3.5.

First focus on the DENSEPROTOCOL, which halves the interval Lr in steps 3.a.,
3.b.1., 3.a’., and 3.b’.1.:

In step 3.a. in which a node i ∈ V1 violates its filter from above and observes a
value vi < `r, it holds: i ∈ F∗ thus, `∗ < `r follows.

In step 3.b.1. there are (strictly) more than k nodes with a larger value than ur. It
follows that for all subsets S (with k elements) there is one node i /∈ S observing a
value larger than ur and thus, `∗ ≥ (1− ε)ur = `r holds.

The case 3.a’. (which is symmetric to 3.a.) is executed if a node i ∈ V3 observed a
filter violation (vi > ur) which implies that the upper endpoint u∗ of filter F2 is larger
than vi and thus, `∗ ≥ (1− ε)ur = `r.

In step 3.b’.1. (which is symmetric to 3.b.1.) there are (strictly) more than n − k
nodes with a smaller value than `r. It follows that for all subsets S (with k elements)
there is one node i ∈ S observing a value smaller than `r and thus, `∗ ≤ `r holds.

Theorem 5.3.7. There is an online algorithm for Approximate-Top-k-Position Moni-

toring which isO(σ2 log(εvk) +σ log2(εvk) + log log ∆ + log 1
ε)-competitive against

an optimal offline algorithm which may use an error of ε.

Proof. The algorithm works as follows. At time t at which the algorithm is started, the
algorithm probes the nodes holding the k+1 largest values. If vtπ(k+1,t) < (1−ε)vtπ(k,t)

holds, the algorithm APRXTOP-K is called. Otherwise the algorithm DENSEPROTO-
COL is executed. After termination of the respective call, the procedure starts over
again.

Observe that if the condition holds, there is only one unique output and thus, the
APRXTOP-K monitors the Top-k-Positions satisfying the bound of O(k + log n +

log log ∆ + log 1
ε) on the competitiveness. If the condition does not hold, there is

5.3 Upper Bounds for Competitive Algorithms 69

at least one value in the ε-neighborhood of vtπ(k,t) and thus, the DENSEPROTOCOL

monitors the approximated Top-k-Positions as analyzed in this section.
The number of messages used is simply obtained by adding the number of messages

used by the respective algorithms as stated above.

To obtain the upper bounds stated at the beginning, we upper bound σ by n and
vk by ∆: O(n2 log(ε∆) + n log2(ε∆) + log log ∆ + log 1

ε). Note that for constant
ε and assuming ∆ = O(2n) we obtain a much simpler bound of O(n2 log ∆) on the
competitiveness.

70 Top-k-Position Monitoring against an Approximate Offline Algorithm

5.4 Error Augmentation

In the previous Sections we proposed an algorithm which monitors the Top-k approx-
imately against an approximate (filter-based) offline algorithm. We have seen that for
the online algorithm it is much harder to find the optimal filters in comparison to the
setting in which the offline algorithm has to compute the exact Top-k. In this section
we consider the variant in which the offline algorithm is still allowed to introduce an
error; however, we compare the online algorithm which is allowed to err by 2ε against
an offline algorithm which is allowed to err by ε.

Corollary 5.4.1. There is an online algorithm for Approximate-Top-k-Position Moni-

toring which isO(σ+log n+log log ∆+log 1
ε)-competitive against an optimal offline

algorithm which may use an error of ε′ ≤ ε
2 .

Proof. At the initial time step t the algorithm probes the nodes holding the k+1 largest
values. If vtπ(k+1,t) < (1− ε)vtπ(k,t) holds the algorithm APRXTOP-K is called.

Otherwise the online algorithm simulates the first round of the DENSEPROTOCOL.
That is, nodes are partitioned into V1, V2, and V3 and the filters are defined as proposed
(cf step 2. of DENSEPROTOCOL). Here all nodes with values larger than 1

1−ε (1− ε
2)z

are directly added to V1 instead of adding to S1, and nodes observing values smaller
than (1− ε

2)z are added to V3. Furthermore, if a filter violation from some node i ∈ V2

is observed, it is directly moved (deleted from V2 and added) to V1 in case it violates
from below, and added to V3 if violated from above.

Whenever a node from V1 (or from V3) violates its filter the algorithm terminates.
Additionally if (strictly) more than k nodes are in V1 the algorithm is terminated or if
(strictly) less than k nodes are in V1 ∪ V2. If exactly k nodes are in V1 and n− k nodes
are in V3 the APRXTOP-K is executed.

For the following argumentation on the competitiveness we focus on the case that
APRXTOP-K was not called since the analysis of APRXTOP-K holds here. Observe
that OPT (with an error of ε′) had to communicate on the basis of the following obser-
vation:

Let t′ be the time at which the algorithm terminates. Assume to the contrary that
OPT did not communicate during [t, t′]. In case node i ∈ V1 observes a filter violation
from above,

(
vi < (1− ε

2)z
)

and ε′ ≤ ε
2 , OPT had to set `∗ ≤ vi and u∗ ≥ z, which

leads to a contradiction to the definition of filters. In case node i ∈ V3 observes a filter
violation from below,

(
vi >

1
1−ε (1− ε

2)z
)

and ε′ ≤ ε
2 , OPT had to set u∗ ≥ vi and

`∗ ≤ z, which leads to a contradiction to the definition of filters. The fact that OPT had

5.4 Error Augmentation 71

to communicate in the remaining cases follows by the same arguments. Since all cases
lead to a contradiction, the bound on the competitiveness as stated above follows.

CHAPTER 6

FUTURE RESEARCH PERSPECTIVES

In this first part of the thesis we considered filter-based algorithms and gained some
initial insights in this research area. However, since there was not much known about
filter-based algorithms with respect to competitive analysis, we see several points of
extensions and also see a large potential of further investigations.

Generalizations of Filter-based Protocols.

First of all it is worth to elaborate on problems for which a competitive algorithm exists
without further restrictions. Similar to the work of Lam et al. [LLT10] we restricted
the online and offline algorithms to be filter-based. Only through this was it possible
to design an algorithm with a competitiveness independent of the length of the input
stream.

Another approach is the model by Yi and Zhang in [YZ12]. In their work, they
assume the optimal offline algorithm to be able to see the future data stream in advance,
but it has to transmit the data from the sensor node to the server. In other words, one
could think of the sensor node executing the offline algorithm, but having to transmit
data on every change in the output to the server. Yi and Zhang mentioned that there is
no protocol known to be competitive for n > 1 sensor nodes. Note that for monitoring
the Top-k-Positions, this does not lead to a protocol with bounded competitiveness (for
at least 2 nodes). And the same holds for monitoring the Top-k-Values. However, for
the problem to output both, the Top-k Positions and the respective values we propose
that there exists a protocol which admits bounded competitiveness.

More generally, the question arises which properties make a problem hard or easy to
solve – with respect to the analysis we have done in this first part. Intuitively speaking,
filters make it possible for sensor nodes to decide locally that new observed values do

74 Future Research Perspectives

not infect the output. A more explicit understanding of this phenomenon is needed.
Also the explanation should be ’complete’ in the sense that if some property out of the
(potential) set of properties does not hold, the problem directly does not admit bounded
competitiveness.

A good starting point is to consider the number of filters an algorithm is able to
choose from. The examples we considered in this work only have a bounded number of
potential filters. Additionally, a comparable work of Davis et al. [DEI06] has shown the
connection between unbounded competitiveness and the fact that the number of filters
that can be chosen from is unbounded. In general it is easy to verify that problems
with a bounded number of outputs and filters admit bounded competitiveness. This
we will elaborate further in the next section – however, the open question is whether
there exists a problem with either an infinite number of outputs or filters that still admit
bounded competitiveness.

Generic Filter-Based Approach.

The previous question asked in general about the existence of an algorithm. Now we
ask whether we can explicitly define a generic algorithm which is competitive. For
this, we assume that a given problem admits bounded competitiveness. Assuming that
the number of filters and the number of outputs that can be chosen in the presence of
the input at a given time step is bounded, it is trivial to come up with the following
canonical algorithm:

Consider a fixed time in space t. Choose an output arbitrarily and a filter wit-
nessing its correctness arbitrarily. At a later time t′, and if there was a filter
violation, choose a new output which is correct throughout the time horizon
[t, t′] (if necessary) and a new filter which was correct throughout [t, t′] arbi-
trarily.

Since there is a bounded number of potential outputs and for each output the num-
ber of (valid) filters are bounded, the fact that the competitiveness is bounded can be
verified easily.

If we apply such a schema to the Top-k-Position monitoring problem (and assuming
that a protocol for the one-shot computation uses O(Cn) messages), an upper bound
of O(Cn + ∆) follows. Although this is much worse than the protocol stated in this
thesis, which is only O(Cn + log ∆) competitive, this generic strategy reflects the rule

75

to choose the values sk+1 + 1, sk+1 + 2, sk+1 + 3, . . . , sk instead of the midpoint
strategy.

Now consider the following variation of the generic approach: Instead of choos-
ing an arbitrary output and an arbitrary filter, consider an output and a filter chosen
uniformly at random from the set of outputs and filters. Without giving a proof we pro-
pose that the expected competitiveness (even against a strongly adaptive adversary) is
O(Cn+log ∆). That is, we propose that the competitiveness only increases by constant
factors.

It would be nice to elaborate further with more examples. It might turn out that
such a generic approach is very fruitful (still assuming a one-shot protocol is given)
and makes it much easier to come up with results for monitoring a problem.

Generalizing to Different Models.

We now address an aspect which was not mentioned before but is still very impor-
tant: The results presented here (seem to be) tightly coupled to our DMBC model
(Distributed Monitoring model with a Broadcast Channel).

Revisiting our protocols the fellow reader observes that the analyzed competitive-
ness is based on the costs for the one-shot computation on the one hand and on addi-
tional costs while the instance ’evolves’ over time. Indeed, the costs for the one-shot
computation is highly dependent on the considered model and also differs significantly
if the model changes. However, the – potentially more interesting – monitoring part
might be reused across different variants. We consider two different models to elabo-
rate on this more deeply: the Congested Clique model and a variant of the distributed
streaming model which minimizes the communication per node (instead of total com-
munication).

Congested Clique: First, observe that the Top-k-Position monitoring problem can
be solved trivially using 1 round of communication: i.e., every node sends a message
comprised of the nodes’ ID and the value to its neighbors. We define filters for Top-k
in the same way as presented in Chapter 4. As long as all nodes observe new values
within their filters no communication round is needed to determine the new output. If
a filter violation occurred, 1 round is sufficient to determine the new output or new
filters. Observe that the problem in this model has a competitiveness of O(log ∆).

76 Future Research Perspectives

Monitoring Graph Streams.

It seems to be promising that graph-related problems (e.g. matching, shortest paths,
etc.) makes more sense to consider within the congested clique model.

We see that the results are based on costs for the one-shot computation and on costs
for ’not knowing the future’. Consider the Top-k-Monitoring which is O(k + log n +

log ∆) competitive. The one-shot computation has costs of O(k + log n) where the
costs for redefining filters for consecutive time steps needs O(log ∆) messages.

It makes sense to define the offline algorithm also to be distributed; i.e., each node
knows its own future in advance, but the server is still not aware of it. We expect the
bounds to become smaller, in comparison to the setting that we use in our analysis.

Smoothed Competitiveness.

Revisiting the worst-case instances (with respect to competitiveness) as a result of our
analysis we see that the instances have a high similarity between consecutive time steps.
Often only one single node observes a different, very characteristic value which leads
to communication in that moment. The inclined reader might think of these instances to
be fragile and potentially show improved bounds applying smoothed competitiveness.

Although this approach seems to be promising, it is technically hard to upper bound
the expected coefficient between the online and offline costs, since both are random
variables (simplified notation):

E
[
ALG

OPT

]
To prevent these difficulties, one could analyze the coefficient of the expected (online,
offline) cost. However, an instance-wise comparison seems to make much more sense
in this context (also simplified):

E[ALG]

E[OPT]

However, note that this is not an instance-wise comparison any longer and the in-
sights gained by this analysis is (at least) questionable. We propose that for a restricted
class of algorithms we can apply a general and substantial simplification of the anal-
ysis. Assuming the instance to be given at different time steps, we assume that the
instance can be partitioned into phases in which OPT has costs of at least 1 or the in-
stance has infinite size and the phase is the last phase. We propose that for sufficiently
large instances, the following holds:

EI
[
ALGI
OPTI

]
≤ O(Ep[ALGp])

77

That is, instead of calculating the expectation of a fraction of two random variables
and with respect to the whole instance, it is sufficient to consider the expected cost of
the algorithm if applied to a phase p. Furthermore, this phase p does not have worst-
case length; the expected length of this phase is considered.

Sliding Windows

In this thesis we considered problems which task the coordinator to output a function
on the data currently observed. That is, the observations in the past potentially make
it simpler to evaluate a function at the current time step. However, are not necessitated
for this computation. This excludes a fundamental property of streaming algorithms,
namely that an algorithm has to make an irrevocable decision (whether to keep the data
or to ’throw it away’). To some extent a filter can be seen as a rule for this decision;
however, this fact only works in one direction. In case there is no violation of some
sensor node’s filter, all data can be thrown away. If there exists a node with a filter
violation the nodes have to be able to access the value currently observed although
they locally did not violate its filter.

In a step towards applying streaming techniques more naturally, problems with
respect to sliding windows can be considered: For example, the server is tasked to
output the k largest positions / values of the past w time steps (typically w for window
size). Expressing our work within this problem formulation, we considered the case in
which w = 1 holds.

We shortly discuss what enlightening insights we can expect if we tackle this in-
teresting problem in the presence of sliding windows. Now we shortly discuss the
problem and gain first insights: Following the work of Giannakopoulos and Koutsou-
pias [GK12] it is easy to verify that the worst case is a strongly monotonic decreasing
function (initially at a value of v at time t). At time step t+ w the adversary is able to
decide to generate input which is always 0 (for the next w time steps) or, again, present
the largest value v.

In case the adversary chooses the larger value v at time t + w, the output need
not change (and an offline algorithm need not change output and filter). The other
case helps to argue that the protocol needs to store all values which are presented.
Assuming a protocol does not store the data (or transmitted it to the server) the output
is not correct. This yields that the standard competitiveness approach (even with the
restriction of filters) does not lead to finite competitiveness.

However, we see potential for different techniques to be able to unfold: Apply-
ing Smoothed Competitiveness the first step is to consider one phase (of consecutive

78 Future Research Perspectives

time steps) until the output needs to change due to the perturbation of the input val-
ues. We denote such a phase p. The technique which we considered in the last section
should reduce the problem of considering the expected costs for the whole instance,
to this very simple phase p, and consider the expected costs for this phase with re-
spect to the expected length. Now we divide the phase p into subphases of size w
which follow the worst-case characteristics as described above. Assuming each node
has local storage capabilities of at most half of the size of the sliding window, Ω(w)

data items have to be transmitted to the server. Applying the techniques of Damerow
et al. [DMadHR+03, DMMadH+12] we propose that the number of data items that
have to be transmitted to the server are significantly reduced to O(logw) due to the
perturbation. However, a more detailed and more careful analysis is needed on how
the effect of distributed observations affects the applicability of the technique. Further-
more, it would be interesting to see that the competitiveness drops down to be constant
for polylogarithmic storage at the sensor nodes.

79

PART B:

DYNAMIC ALGORITHMS

CHAPTER 7

INTRODUCTION TO DYNAMIC ALGORITHMS

In the following chapters we consider the problems of dynamically computing an ap-
proximation of the frequency, and the count distinct. Furthermore, we develop a dis-
tributed dynamic data structure which is used for Top-k and k-Select queries.

Until now, we designed and analyzed filter-based online algorithms, i.e., compare
an online protocol against an offline algorithm which (is filter-based and) knows the
whole instance in advance. Here, we concentrate on algorithms which initially deter-
mine an output and are able to update this output if the distributively given instance
partially changes. We aim for algorithms which use significantly fewer costs to dy-
namically adapt to these changes assuming the fraction of the instance which changes
is not too large.

84 Introduction to Dynamic Algorithms

7.1 Model Description

For the sake of self containment we restate the model defined in Section 2.1.
In our setting there are n distributed nodes identified by unique identifiers (IDs)

from the set {1, . . . , n}, each receiving a continuous data stream (v1
i , v

2
i , v

3
i . . .), which

can be exclusively observed by the respective nodes. Also, at time t, a node i observes
vti ∈ N and does not know any vt

′

i , t′ > t. We omit the index t if it is clear from the
context.

Following the model in [CMY08], we allow that between any two consecutive
time steps, a communication protocol exchanging messages between the server and
the nodes may take place. The communication protocol is allowed to use an amount
of rounds which is polylogarithmic in n and max1≤i≤n(vti). The nodes can communi-
cate to the coordinator, but cannot communicate to each other. They are able to store
a constant number of integers, compare two integers and perform Bernoulli trials with
success probability 2i/n for i ∈ {0, . . . , log n}. The coordinator can, on the one hand,
communicate to one device, and has, on the other hand, a broadcast channel to com-
municate one message received by all nodes at the same time. All the communication
methods described above incur unit communication cost per message, the delivery is
instantaneous, and we allow a message at time t to have a size at most logarithmic in n
and max1≤i≤n(vti).

Notation of Time. Recall that a time step t defines a point in time at which the sensor
nodes obtain a new piece of input (vti for node i at time t). Between two consecutive
time steps t and t + 1 a communication protocol takes place. The protocol consists
of multiple (communication) rounds: A sensor nodes performs local computations and
may decide to send a message to the server. The server collects all messages, performs
local computations and (may) decide for a message to broadcast to all sensor nodes.

Since all nodes are synchronized, the server is able to identify the situation that no
sensor decided to send a message and, on the other hand, the sensor nodes can identify
that the server did not decide to send a message. Furthermore, the server is able to
collect and read all messages given by the sensor node, even if every node has decided
to send a message: i.e., there is no restriction on the capacity of the communication
channel in one round.

If the communication protocol of each node for the current time steps terminated,
the server decides for the output of the function at time t and the sensor network pro-
ceeds from time step t to the next time step t+ 1.

7.2 Problems Description 85

7.2 Problems Description

In this thesis, we consider the monitoring of different problems related to the domain of
the network. The domain at time t is defined as Dt := {v ∈ {1, . . . ,∆} | ∃i with vti =

v}, the set of values observed by at least one node at time t. For ease of description let
st1, . . . , s

t
n be the sorted version of the data items dt1, . . . , d

t
n received at time step t.

Definition 7.2.1 (Frequency). For each v ∈ Dt monitor the frequency |Nv
t | of nodes

in Nv
t := {i ∈ {1, . . . , n} | vti = v} that observed v at t; i.e., the number of nodes

currently observing v.

Definition 7.2.2 (Approximate k-Select). Let k ∈ {1, . . . , n} be given. The server is

tasked to output a value v which is observed by sensor node ’close’ to the k-th smallest

observation; i.e., close to rank k. Formally, output v with v ∈ {st(1−ε)k, . . . , s
t
(1+ε)k}.

Definition 7.2.3 (Approximate Count Distinct). For each v ∈ Dt monitor the fre-

quency |Nv
t | of nodes in Nv

t := {i ∈ {1, . . . , n} | vti = v} that observed v at t; i.e.,

the number of nodes currently observing v.

7.3 Related Work

The basis of the model considered in this paper is the continuous monitoring model

as introduced by Cormode, Muthukrishnan and Yi in [CMY08]. In this model, there
is a set of n distributed nodes, each observing a stream given by a multiset of items
in each time step. The nodes can communicate with a central server, which in turn
has the task, at any time t, to continuously compute a function f defined over all data
observed across all streams up to time t. The goal is to design protocols aiming at the
minimization of the number of bits communicated between the nodes and the server. In
[CMY08], the monitoring of several functions is studied in their (approximate) thresh-
old variants, in which the server has to output 1 if f ≥ τ and 0 if f ≤ (1 − ε)τ , for
given τ and ε. Precisely, algorithms for the frequency moments Fp =

∑
im

p
i where

mi denotes the frequency of item i for p = 0, 1, 2 are given. F1 represents the simple
sum of all items received so far and F0 the number of distinct items received so far.
Since the introduction of the model, monitoring of several functions has been studied,
such as the monitoring of frequencies and ranks by Huang, Yi and Zhang in [HYZ12].
The frequency of an item i is defined to be the number of occurrences of i across all
streams up to the current time. The rank of an item i is the number of items smaller
than i observed in the streams. Frequency moments for any p > 2 are considered by

86 Introduction to Dynamic Algorithms

Woodruff and Zhang in [WZ12]. A variant of the Count Distinct Monitoring Problem is
considered by Gibbons and Tirthapura in [GT01]. The authors study a model in which
each of two nodes receives a stream of items and at the end of the streams a server is
asked to compute F0 on the basis of both streams. A main technical ingredient is the
use of so-called public coins, which, once initialized at the nodes, provide a way to
let different nodes observe identical outcomes of random experiments without further
communication. We will adopt this technique in Section 10.2. Note that the previously
mentioned problems are all defined over the items received so far, which is in contrast
to the definition of monitoring problems which we are going to consider and which
are all defined only on the basis of the current time step. This fact has the implication
that in our problems the monitored functions are no longer monotone, which makes its
monitoring more complicated.

Concerning monitoring problems in which the function tracked by the server only
depends on the current time step, there is also some previous work to mention. In
[LLT10], Lam, Liu and Ting study a setting in which the server, at any time, needs
to know the order type of the values currently observed. That is, the server needs to
know which node observes the largest value, second largerst value and so on at time
t. In [YZ12], Yi and Zhang consider a system only consisting of one node connected
to the server. The node continuously observes a d-dimensional vector of integers from
{1, . . . ,∆}. The goal is to keep the server informed about this vector up to some
additive error per component.

CHAPTER 8

FULLY DYNAMIC ALGORITHM FOR THE

FREQUENCY PROBLEM

In this section we design and analyze a fully dynamic algorithm for the FREQUENCY

Problem, i.e., to output (an approximation) of the number of nodes currently observing
value v, for each v ∈ {1, . . . ,∆}.

The problem is of fundamental interest since it provides approximations for several
other problems, e.g. Maximum, Sum, Top-k, Quantiles, and Heavy Hitters.

We start by considering a single time step and present an algorithm that solves the
subproblem of outputting the number of nodes that observe v within a constant mul-
tiplicative error bound. Afterwards, and based on this subproblem, a simple sampling
algorithm is presented which solves the Frequency Problem for a single time step up to
a given (multiplicative) error bound and with given error probability.

Furthermore, we consider multiple time steps and assume that the change in the
frequency is upper bounded by a constant factor σ. By this, we can show significantly
smaller communication bounds for multiple time steps in comparison to worst-case
instances.

Observe that the FREQUENCY Problem inherits the DOMAIN Problem. Recall that
the DOMAIN (of t) is the set of observed values at a specific time step t as defined
in Definition 2.2.2. In fact, we use the DOMAINPROTOCOL (as presented in Algo-
rithm 3, Section 3.4) as a subroutine and evaluate the frequency of each observed value
afterwards.

88 Fully Dynamic Algorithm for the FREQUENCY Problem

8.1 Introduction & Results

Problem Expected communication costs

Frequency (One Shot) O
(
d
ε2 log d

δ

)
Frequency (Maintaining) O

(∑
t∈T |Dt| 1

ε2 log |Dt|δ

)
O
(
(σ + δ) · T d

ε2 log d
δ

)
Recall the DOMAIN problem in Definition 2.2.2, which is to identify the set of

values observed at a specific time step t. Let dt be the size of the Domain Dt at the
time step t, which is defined as dt := |{v ∈ {1, . . . ,∆}|∃i : vi = v}|. Let |Nv

t | denote
the number of nodes that observe value v at time step t. The subscript t is suppressed if
it is clear from the context. Here, we compute an (ε, δ)-approximation; i.e., for a given
(multiplicative) error bound ε and a failure probability δ the algorithm ensures that for
each value v the output ñvt fulfills ñvt ∈ [(1− ε)|Nv

t |, (1 + ε)|Nv
t |] with probability at

least 1− δ at a time step t.

Note that if we assume that the domain does not change during a time interval of
T time steps, applying the one-shot computation T times yields an upper bound of
O(T d

ε2 log d
δ). That is, the algorithm which exploits similarities between consecutive

time steps uses less communication by a factor of σ.

A Short Technical Overview. In this chapter we apply simple standard sampling
techniques. As a first step the DOMAINPROTOCOL is applied to identify the set of
observed values using O(d) messages in expectation. Afterwards, for each value v
we apply a variant of the DOMAINPROTOCOL to estimate the frequency |Nv

t | of the
value v ∈ Dt by a constant factor with a given failure probability δ′ using O(log 1

δ′)

messages. Through this, we can apply a standard sampling technique to estimate |Nv
t |

up to (given) error ε and failure probability δ usingO(1
ε log 1

δ) messages in expectation.

To reduce the communication for multiple time steps, the idea is straightforward.
We consider a phase of at most T time steps and a single value v as follows: Initially,
the frequency is approximated up to ε/3 error. Instead of calculating the frequency
itself, the algorithm samples the number of nodes that observe v for the first time
(denoted by entering nodes) and on the other hand the number of nodes that do not
longer observe v (denoted by leaving nodes). Since this number of nodes that change
is upper bounded by σ|Nv

t |, the protocol determines the frequency for each time step
using the initial frequency and adds / substracts the sample for entering and leaving
nodes.

8.2 Frequencies – A One-Shot Computation 89

Chapter Basis. Parts of the model, analysis, and results in the remainder of this
chapter are based on the following publication:

• Bemmann, Biermeier, Bürmann, Kemper, Knollmann, Knorr, Kothe, Mäcker,
M., Meyer auf der Heide, Riechers, Schaefer, Sundermeier. Monitoring of Do-
main Related Problems in Distributed Data Streams. In: Structural Information

and Communication Complexity - 24th International Colloquium (SIROCCO

2017), [BBB+17].

8.2 Frequencies – A One-Shot Computation

8.2.1 Constant Factor Approximation of Frequencies

In this section we will use the DOMAIN protocol to estimate the number of nodes that
measure a certain value v. Observe that the expected maximal height of the geometric
experiment increases with a growing number of nodes observing v. We exploit this fact
and use it to estimate the number of nodes with value v, while still expecting constant
communication cost only. For a given time step t and a value v ∈ Dt, we define an
algorithm FREQUENCYCONSTANTFACTORAPPROXIMATION as follows:

Algorithm 10 FREQUENCYCONSTANTFACTORAPPROXIMATION

1. Apply DOMAINPROTOCOL (cf. Algorithm 3) for all sensor nodes i.
2. Let rv denote the (first) communication round in which the server receives the

response (for a value v).
3. The algorithm outputs ñvconst := 2r as the estimation for |Nv

t |.

We show that we compute a constant factor approximation with constant probabil-
ity. Then we amplify this probability using multiple executions of the algorithm and
taking the median (of the executions) as a final result.

Lemma 8.2.1. The algorithm FREQUENCYCONSTANTFACTORAPPROXIMATION es-

timates the number |Nv
t | of nodes observing the value v at time t up to a factor of 8,

i.e., ñvconst ∈ [|Nv
t |/8, |Nv

t | · 8] with constant probability.

Proof. Let nv be the number of nodes currently observing value v, i.e., nv := |Nv
t |.

Recall that the probability for a single node to draw height h is Pr[hi = h] = 1
2h

, if
h < log n, and Pr[hi = h] = 2

2h
, if h = log n. Hence, Pr[hi ≥ h] = 1

2h−1 for all
h ∈ {1, . . . , log n}.

90 Fully Dynamic Algorithm for the FREQUENCY Problem

We estimate the probability of the algorithm to fail, by analysing the cases that
ñvconst is larger than log nv + 3 or smaller than log nv − 3. We start with the first case
and by applying a union bound we obtain:

Pr[∃i : hi > log nv + 3] ≤ Pr[∃i : hi ≥ dlog nve+ 3]

= nv ·
(

1

2

)dlognve+2

≤ 1

4
.

For the latter case we bound the probability that each node has drawn a height
strictly smaller than log nv − 3 by

Pr[∀i : hi < log nv − 3] ≤
∏
i

Pr[hi < dlog nve − 3]

=

(
1− 1

2dlognve−4

)nv
≤
(

1− 8

nv

)nv
≤ 1

e8
.

Thus, the probability that we compute an 8-approximation is bounded by

Pr

[
nv

8
≤ 2hi ≤ 8nv

]
= 1−

(
Pr[∃i : hi > log nv + 3] + Pr[∀i : hi < log nv − 3]

)
≥ 1−

(
1

4
+

1

e8

)
> 0.7

We apply an amplification technique to boost the success probability to arbitrary
1− δ′ using Θ(log 1

δ′) parallel executions of the FREQUENCYCONSTANTFACTORAP-
PROXIMATION algorithm and choose the median of the intermediate results as the final
output.

Corollary 8.2.2. Applying Θ
(
log 1

δ′

)
independent, parallel instances of FREQUEN-

CYCONSTANTFACTORAPPROXIMATION, we obtain a constant factor approximation

of |Nv
t | with success probability at least 1− δ′ using Θ

(
log 1

δ′

)
msg. in expectation.

Proof. Choose d = 45
2 ln 1

δ′ to be the number of copies of the algorithm and return
the median of the intermediate results. Let Ij be the indicator variable for the event
that the j-th experiment does not result in an 8-approximation. By Lemma 8.2.1 the
failure probability can be upper bounded by a constant, i.e., Pr [Ij] ≤ 0.3. Hence,
using a Chernoff bound, the probability that at least half of the experiments do meet

8.2 Frequencies – A One-Shot Computation 91

the required approximation factor of 8 is

Pr

 d∑
j=1

Ij ≥
1

2
d

 ≤ Pr

 d∑
j=1

Ij ≥
(

1 +
2

3

)
· 0.3 · d

≤ e−(2

3)
2· 13 ·0.3·d = e−

2
45 ·d = e−

2
45 ·

45
2 ln 1

δ′ = δ′.

Observe that if at least half of the intermediate results are within the demanded error
bound, so is the median. Thus, the algorithm produces an 8-approximation of |Nv

t |
with a success probability of at least 1− δ′, concluding the proof.

8.2.2 Arbitrary Approximation of Frequencies

To obtain an (ε, δ)-approximation, in Algorithm 11 we first apply the FREQUENCY-
CONSTANTFACTORAPPROXIMATION algorithm to obtain a rough estimate of |Nv

t |
(cf. Algorithm 10). It is used to compute a probability p, which is broadcasted to the
nodes, so that every node observing value v sends a message with probability p. Since
the FREQUENCYCONSTANTFACTORAPPROXIMATION result ñvconst in the denomina-
tor of p is close to |Nv

t |, the number of messages sent on expectation is independent
of |Nv

t |. The estimated number of nodes observing v is then given by the number of
responding nodes n̄v divided by p, which, on expectation, results in |Nv

t |.

Algorithm 11 FREQUENCYEPSILONFACTORAPPROX(v ∈ Dt, ε, δ)
(Node i)

1. Receive p from the server.
2. Send a response message with probability p.

(Server)
1. Set δ′ := δ

3
2. Call FREQUENCYCONSTANTFACTORAPPROXIMATION(v, δ′) to obtain ñvconst.
3. Broadcast p = min

(
1, 24

ε2ñvconst
· ln 1

δ′

)
.

4. Receive n̄v messages.
5. Compute and output estimated number of nodes in Nv

t as ñv = n̄v/p.

Lemma 8.2.3. The algorithm FREQUENCYEPSILONFACTORAPPROX as given in Al-

gorithm 11 provides an (ε,δ)-approximation of |Nv
t |.

Proof. The algorithm obtains a constant factor approximation ñvconst with probability
1− δ′. The expected number of messages is E [n̄v] = nv · p.

We start by estimating the conditional probability that more than (1 + ε)nvp re-
sponses are sent under the condition that ñvconst ≤ 8nv and p < 1. In this case we

92 Fully Dynamic Algorithm for the FREQUENCY Problem

have
p =

24

ε2ñvconst
· ln 1

δ′
≥ 3

ε2nv
· ln 1

δ′
,

hence using a Chernoff bound it follows

p1 := Pr [n̄v ≥ (1 + ε)nvp |ñvconst ≤ 8nv ∧ p < 1] ≤ e−
ε2

3 n
v· 3
ε2nv

·ln 1
δ′ = δ′.

Likewise the probability that less than (1−ε)nvpmessages are sent under the condition
that ñvconst ≤ 8nv and p < 1 is

p2 := Pr [n̄v ≤ (1− ε)nvp |ñvconst ≤ 8nv ∧ p < 1]

≤ e−
ε2

2 n
v· 3
ε2nv

·ln 1
δ′ ≤ e− 3

2 ln 1
δ′ < δ′.

Next consider the case that ñvconst > 8nv and p < 1 holds. Using

Pr [ñvconst > 8nv] ≤ Pr

[
ñvconst > 8nv ∨ ñvconst <

nv

8

]
≤ δ′

and pi · Pr [ñvconst ≤ 8nv] ≤ pi for i ∈ {1, 2},

Pr [(1− ε)nvp < n̄v < (1 + ε)nvp |p < 1]

≥ 1− (Pr [ñvconst > 8nv] + (p1 + p2)) ≥ 1− 3δ′ = 1− δ.

For the last case p = 1, we have Pr [(1− ε)nvp < n̄v < (1 + ε)nvp |p ≥ 1] = 1, by
using n̄v = nv . Now, Pr [(1− ε)nvp < n̄v < (1 + ε)nvp] ≥ 1 − δ directly follows.

Lemma 8.2.4. Algorithm FREQUENCYEPSILONFACTORAPPROX as given in Algo-

rithm 11 uses Θ(1
ε2 log 1

δ) messages on expectation.

Proof. Recall that each of the nv nodes sends a message with probability p, leading
to nv · p messages on expectation. First assume that the constant factor approximation
was successful, i.e., n1

8 ≤ ñ
v
const ≤ 8n1. If p < 1, we have

nv · p = nv
24

ε2ñvconst
· ln 1

δ′
≤ 24 · 8

ε2
· ln 1

δ′
= Θ

(
1

ε2
log

1

δ

)
.

If p = 1, by definition 24
ε2ñvconst

· ln 1
δ′ ≥ 1, hence ñvconst = O

(
1
ε2 · log 1

δ′

)
. Thus,

nvp ≤ 8ñvconstp = O
(

1
ε2 · log 1

δ′

)
.

For the case that the constant factor approximation was not successful, note that

8.2 Frequencies – A One-Shot Computation 93

Pr
[
ñvconst <

1
8·2in

v
]
≤ 1

e2i+3 holds analogously to the calculation in Lemma 8.2.1.
Also, for ñvconst ≥ 1

8·2in
v and p < 1, we have

nvp ≤ 8 · 2i · ñvconst ·
24

ε2ñvconst
· ln 1

δ
= 2i ·Θ

(
1

ε2
log

1

δ

)
.

Similarly, for p = 1, we have nvp ≤ 8 · 2i · ñvconst = 2i · Θ
(

1
ε2 log 1

δ

)
as in this case,

ñvconst = O
(

1
ε2 · log 1

δ′

)
. Hence, we can conclude

E [n̄v] ≤ Θ

(
1

ε2
log

1

δ

)
· Pr

[
ñvconst ≥

1

8
nv
]

+
∞∑
i=0

Pr

[
1

8 · 2i+1
nv ≤ ñvconst <

1

8 · 2i
nv
]
· 2i+1 ·Θ

(
1

ε2
log

1

δ

)

≤ Θ

(
1

ε2
log

1

δ

)(
1 +

∞∑
i=0

2i+1

e2i+3

)
≤ Θ

(
1

ε2
log

1

δ

)(
1 +

∞∑
i=0

2i+1−2i+3

)

≤ Θ

(
1

ε2
log

1

δ

)(
1 +

∞∑
i=0

2−i

)
= Θ

(
1

ε2
log

1

δ

)
.

Theorem 8.2.5. There exists an algorithm that provides an (ε,δ)-approximation for

the Frequency Monitoring Problem for T time steps using Θ
(∑

t∈T |Dt| 1
ε2 log |Dt|δ

)
messages in expectation.

Proof. In every time step t we first identify Dt by applying DOMAIN using Θ (|Dt|)
messages on expectation. On every value v ∈ Dt we then perform algorithm FRE-
QUENCYEPSILONFACTORAPPROX(v,ε, δ

|Dt|), using Θ
(
|Dt| 1

ε2 log |Dt|δ

)
messages in

expectation for a single time step, while achieving a probability (using the union bound)
of 1 − |D0|δ

|D0| = 1 − δ for one time step the estimation to be an ε-approximation (for
each value v). Applied for each of the T time steps, we obtain a bound as claimed.

94 Fully Dynamic Algorithm for the FREQUENCY Problem

8.3 Maintaining Frequencies over Multiple Time Steps

Applying FREQUENCYEPSILONFACTORAPPROX in every time step is a good solution
in worst-case scenarios. But if we assume that the change in the set of nodes observing
a value is small in comparison to the size of the set, we can do better.

We extend the FREQUENCYEPSILONFACTORAPPROX such that in settings where
from one time step to another only a small fraction σ of nodes change the value they
measure, the amount of communication can be reduced, while the quality guarantees
remain intact. We define σ such that

∀t : σ ≥
|Nv

t−1 \Nv
t |+ |Nv

t \Nv
t−1|

|Nv
t |

.

Note that this also implies that Dt = Dt−1 holds for all time steps t; i.e., the set of
measured values stays the same over time.

The extension is designed so that in comparison to FREQUENCYEPSILONFAC-
TORAPPROX, also in settings with many changes the solution quality and message
complexity asymptotically do not increase. The idea is the following: For a fixed value
v, in a first time step FREQUENCYEPSILONFACTORAPPROX is executed (defining a
probability p in Step 3 of Algorithm 11). In every following time step, up to 1/δ con-
secutive time steps, nodes that start or stop measuring a value v send a message to the
server with the same probability p, while nodes that do not observe a change in their
value remain silent. In every time step t, the server uses the accumulated messages
from the first time step and all messages from nodes that started measuring v in time
steps 2 . . . t, while subtracting all messages from nodes that stopped measuring v in the
time steps 2 . . . t. This accumulated message count is then used similarly as in FRE-
QUENCYEPSILONFACTORAPPROX to estimate the total number of nodes observing v
in the current time step. The algorithm starts again if a) 1/δ time steps are over, so that
the probability of a good estimation remains good enough, or b) the sum of estimated
nodes to start/stop measuring value v is too large. The latter is done to ensure that the
message probability p remains fitting to the number of nodes, ensuring a small amount
of communication, while guaranteeing an (ε, δ)-approximation.

Let n+
t , n

−
t be the number of nodes that start measuring v in time step t or that stop

measuring it, respectively, i.e., n+
t = |Nv

t \Nv
t−1|, n−t = |Nv

t−1 \Nv
t |, and n̄+

t and n̄−t
the number of them that sent a message to the server in time step t. In the following
we call nodes contributing to n+

t and n−t entering and leaving, respectively.

8.3 Maintaining Frequencies over Multiple Time Steps 95

Algorithm 12 CONTINUOUSFREQUENCYEPSILONAPPROX(v, ε, δ)
(Node i)

1. If t = 1, take part in FREQUENCYEPSILONFACTORAPPROX called in Step 2 by
the server.

2. If t > 1, broadcast a message with probability p if vt−1
i = v ∧ vti 6= v

or vt−1
i 6= v ∧ vti = v.

(Server)
1. Set δ′ := δ2.
2. Set t := 1 and run FREQUENCYEPSILONFACTORAPPROX(v, ε/3, δ) to obtain
n̄1, p.

3. Output ñ1 = n̄1

p .
4. Repeat at the beginning of every new time step t > 1:

(a) Receive messages from nodes changing the value to obtain n̄+
t and n̄−t .

(b) Break if t ≥ 1/δ or
(∑t

i=1 n̄
+
i +

∑t
i=1 n̄

−
i

)
/p ≥ n̄1/2.

(c) Output ñt =
(
n̄1 +

∑t
i=1 n̄

+
i −

∑t
i=1 n̄

−
i

)
/p.

5. Go to Step 2.

Lemma 8.3.1. For any v ∈ D1, the algorithm CONTINUOUSFREQUENCYEPSILON-
APPROX provides an (ε,δ)-approximation of |Nv

t |.

Proof. By the same arguments as in Lemma 8.2.3, we obtain an (ε,δ′)-approximation
of n1. In any further time step we compute our estimate over the sum of all received
messages (n̄1, arrivals and departures). If too many nodes change their measured value,
we redo a complete estimation of the nodes in Nv

t .

Recall that ñt is the random variable giving the estimated number of nodes by the
algorithm, and ñ+

t = n̄+

p , ñ
−
t = n̄−

p are the random variables giving the estimated
arrivals and departures in that time step. We look at any time step t > 1 where the
restart criteria are not met: Since ñt = ñ1 +

∑t
i=2

(
ñ+
i − ñ

−
i

)
and the linearity of

expectation, for any time t ≥ 1 we can use a Chernoff bound as in Lemma 8.2.3 to
show that the estimation is an (ε, δ′)-approximation.

Using a union bound on the fail probability of up to 1/δ time steps, we get a 1 −
1
δ · δ

′ = 1− δ probability of having a correct estimation in any time step.

Lemma 8.3.2. For a fixed value v and T ′ = min{ 1
2σ ,

1
δ }, σ ≤

1
2 , time steps, CON-

TINUOUSFREQUENCYEPSILONAPPROX uses Θ
(

1
ε2 log 1

δ

)
messages on expectation.

Proof. The message complexity depends on the initial size |Nv
1 | and on the number

of nodes leaving and entering Nv in those time steps, which is bounded by σ. If
FREQUENCYEPSILONFACTORAPPROX obtained a correct probability p in Step 1, i.e.,

96 Fully Dynamic Algorithm for the FREQUENCY Problem

p = Θ(1
n1

), the expected number of messages (in case p < 1) is

E

 T ′∑
t=1

n̄t

∣∣∣∣∣∣ p = Θ

(
1

n1

) = E

n̄1 +

T ′∑
i=2

n̄+
i + n̄−i

∣∣∣∣∣∣ p = Θ

(
1

n1

)
=

n1 +

T ′∑
i=2

n+
i + n−i

 p ≤ (n1 + T ′σn1) p

= Θ

((
1 + min

{
1

2σ
,

1

δ

}
σ

)
· 1

ε2
log

1

δ

)
.

Considering the case where FREQUENCYEPSILONFACTORAPPROX estimated wrong,
the message complexity could increase greatly if the probability p is too large for the
actual number of nodes (i.e., an underestimation leads to high message complexity).
But the probability to misestimate by some constant factor (which would increase the
message complexity by that factor) decreases exponentially in this factor (as shown in
Lemma 8.2.4 for FREQUENCYEPSILONFACTORAPPROX), leaving the expected num-
ber of messages to be Θ

((
1 + min

{
1

2σ ,
1
δ

}
σ
)
· 1
ε2 · log 1

δ

)
= Θ

(
1
ε2 log 1

δ

)
.

Theorem 8.3.3. There exists an (ε,δ)-approximation algorithm for the Frequency Mon-

itoring Problem using Θ
(
|D1| (1 + T ·max{2σ, δ}) 1

ε2 log |D1|
δ

)
messages in expec-

tation for T consecutive time steps, if σ ≤ 1/2.

Proof. The algorithm works by first applying DOMAIN to obtain D1 and then apply-
ing CONTINUOUSFREQUENCYEPSILONAPPROX(v, ε, δ/|D1|) for every v ∈ D1. By
Lemma 8.3.1 we know that in every time step and for all v ∈ D1, the frequency of
v is approximated up to a factor of ε with probability 1 − δ/|D1|. We divide the
T time steps into intervals of size T ′ = min{ 1

2σ ,
1
δ } and perform CONTINUOUS-

FREQUENCYEPSILONAPPROX on each of them for every value v ∈ D1. There are
d TT ′ e ≤ 1 + T · max{2σ, δ} such intervals. For each of those, by Lemma 8.3.2
we need Θ

((
1 + min{ 1

2σ ,
1
δ }σ

)
· 1/ε2 log |D1|

δ

)
messages on expectation for each

v ∈ D1. This yields a complexity of Θ
(
|D1| (1 + T ·max{2σ, δ}) 1

ε2 log |D1|
δ

)
due

to min{ 1
2σ ,

1
δ }σ ≤

1
2σ · σ = Θ(1). Using a union bound over the fail probability for

every v ∈ D1, a success probability of at least 1− |D1|δ
|D1| = 1− δ follows.

By Theorem 8.2.5, trivially repeating the single step algorithm FREQUENCYEP-
SILONFACTORAPPROX needs Θ

(
T |D1| 1

ε2 log |D1|
δ

)
messages on expectation for T

(because the number of nodes inNv
t for any v ∈ D1 is at leastNv

1 /2 in every time step
of that interval). Hence, the number of messages sent when using CONTINUOUSFRE-
QUENCYEPSILONAPPROX is reduced in the order of max{2σ, δ}.

CHAPTER 9

A COMMUNICATION-EFFICIENT DATA

STRUCTURE FOR TOP-k AND k-SELECT QUERIES

In this chapter we consider the rank related problems of Top-k and k-Select. In contrast
to all previous chapters, we generalize the considered setting: Only when there is a
query for the Top-k or for k-Select, is the output determined. We allow the parameters
to be different from query to query and furthermore we allow for multiple k-Select
queries at the same time step.

The approach in this chapter is orthogonal to the filter-based approach in Chap-
ter 4. Using filters, the output is ’preserved’ and the protocol uses less communication
by finding a new certificate that the output is correct. Assuming the output changes be-
tween each time step, the filter-based approach has no benefit upon the naive algorithm.
Intuitively speaking, here we consider the case that the Top-k changes between each
query completely; i.e., the goal is to reuse parts of previous computations to compute
the current output not from scratch.

Our results are based on the idea of keeping a (distributed) data structure which is
used to answer a query and is informed about each update. More precisely, at every
point in time, the data structure keeps track of an approximation of a data item with
rank k. These approximations can be exploited by the protocols for a Top-k or k-
Select computation to significantly decrease the communication and interestingly also
the time bounds, making this approach a very powerful tool.

98 A Communication-Efficient Data Structure for Top-k and k-Select Queries

9.1 Introduction & Results

We present a distributed data structure for our Model with the following properties: In
each step t, each client i receives a data item dti as above. For ease of description let
st1, . . . , s

t
n be the sorted version of the data items dt1, . . . , d

t
n received at time step t.

Our data structure supports the following operations:

STRONG SELECT: Output d ∈ {st(1−ε)k, . . . , s
t
(1+ε)k}

WEAK SELECT: Output d with stk·logc1 n ≤ d ≤ stk·logc2 n, with c1, c2 > 1

Our data structure gives the following performance guarantees:

• The expected amortized total communication cost for an update (amortized over
all updates of the data items received by clients) is O(1/polylogn), the number
of rounds is O(log n).
• WEAK SELECT does not need any communication. The output is correct with

probability at least 1− 1/polylogn.
• The expected total communication cost for a STRONG SELECT operation is

bounded by O(1/ε2 log 1/δ + log2 log n), the expected number of rounds is
O(log log n

k). The output is correct with probability at least 1− δ.
• The expected total communication cost for TOP-k is O(k + log log n), the ex-

pected number of rounds is O(log log n). The output is always correct.

(Recall that a one-shot computation of Top-k uses Θ(k+log n) messages in expec-
tation.) The protocols furthermore allow for a trade-off between the expected number
of messages used and the number of communication rounds (i.e., time) to be executed.
The bounds stated above represent the case in which the protocol is executed with a
parameter aiming at minimizing the communication bounds.

Chapter Basis. Parts of the model, analysis, and results in the remainder of this
chapter are based on the following publication:

• Biermeier, Feldkord, M., and Meyer auf der Heide. A Communication-Efficient
Distributed Data Structure for Top-k and k-Select Queries. In: 15th International

Workshop on Approximation and Online Algorithms (WAOA, 2017), [BFMM17].

• Feldkord, M., and Meyer auf der Heide. A Dynamic Distributed Data Structure
for Top-k and k-Select Queries. In: Adventures Between Lower Bounds and

Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His

60th Birthday, [FMM18].

9.2 Outline of the Data Structure 99

9.2 Outline of the Data Structure

Our data structure maintains a Sketch(t) about the data items received at time t in the
server, at every time step t as follows: As above, let st1, . . . , s

t
n be the sorted version

of the data items dt1, . . . , d
t
n received at time step t. Fix sufficiently large constants

c1, c2, c > 1. A Sketch(t) is a subset of data items denoted by {rt1, . . . , rtm}, where
m ≤ log n. We call Sketch(t) correct if it consists of a set of data items {r1, . . . , rm}
such that, for each k = 1, . . . , n, there exists a rj such that stk·logc1 n ≤ rj ≤ stk·logc2 n

holds. We say the data item rj is the representative of the set of data items d with
sk·logc1 n ≤ d ≤ sk·logc2 n. INIT denotes the process of computing Sketch(t), where
the input dt1, . . . , d

t
n of step t is given to the n sensor nodes.

Observation 9.2.1. Consider a time step t at which the Init operation is called. A

correct Sketch(t) is also a correct Sketch(t′), for a t′ > t, if at most logc(n) values of

the clients are updated during the time interval (t, t′].

This observation holds, because in the worst case the rank of a fixed data item, fac-
ing logc n updates, can change by at most logc n. Since we allow the representatives
to be upper bounded by stk·logc2 n simply observe that this still holds after logc n up-
dates, for sufficiently large choices of constants. On the other hand, to prevent that the
representative rj does not become smaller than stk, the data structure computes a data
item rj > stk·logc1 n. Note that the constants c1 and c2 depend on c. However, if the
constants are (beforehand) chosen large enough, this ensures that after logc n updates
Sketch(t) is also a Sketch(t′).

Lemma 9.2.2. INIT is executed correctly with probability at least 1 − 1/polylogn.

It needs expected total communication of O(log n) and O(log n) rounds.

We present the INIT algorithm and the necessary technical basis to prove this
lemma in Section 9.3. We prove that the algorithm computes a Sketch(t) correctly
in Theorem 9.3.6 and present the performance guarantees in Theorem 9.3.9.

The next operation UPD denotes the process of updating Sketch(t), in response to
the updates of data items received in step t.

Lemma 9.2.3. UPD can be done using expected amortized (w.r.t. number of updates of

data items in the nodes) total communication ofO(1/polylogn), the amortized number

of rounds is constant (assuming each update is processed at a different time step). For

every step t, the computed Sketch(t) is correct with probability at least 1−1/polylogn.

The UPD algorithm is presented in Section 9.4. In this section, we shortly argue
its correctness in Lemma 9.4.1 and show communication bounds in Lemma 9.4.2.

100 A Communication-Efficient Data Structure for Top-k and k-Select Queries

By definition of a correct Sketch(t), the following observation holds.

Observation 9.2.4. Given a correct Sketch(t), WEAK SELECT can be executed with-

out any communication. It is correct with probability 1− 1/polylogn.

We present this observation shortly in Section 9.5.

Lemma 9.2.5. Given a correct Sketch(t), STRONG SELECT can be correctly com-

puted with probability 1 − δ. It needs O(1/ε2 log 1/δ + log2 log n) communication

and O(log log n) communication rounds.

This result is considered in Section 9.6. The algorithm is based on three phases
which are analyzed independently. The main result of this section is presented in The-
orem 9.6.8.

Lemma 9.2.6. Given a correct Sketch(t), TOP-k can be computed using expected total

communication of O(k+ log log n) and O(k+ log log n) communication rounds. The

output is always correct.

The TOP-k algorithm is presented in Section 9.6.2. On the total communication is
argued in Lemma 9.6.10 and the number of rounds in Lemma 9.6.11.

The lemmata above imply the performance guarantees formulated in the previous
section.

9.3 Initialization of the Data Structure

We start the presentation of our results with the goal to prove the first lemma. We
propose the algorithm INIT which computes the Sketch(t) at a time step t. Since (a
variation of) this algorithm is reused in later sections, we describe a procedure CFS
(ConstantFactorSelect) with different parameters (see Algorithm 13).

Protocol Description. The high-level idea of COFASEL is as follows: Initially each
node is defined to be active. The protocol samples a node uniformly at random and
broadcasts its value. All nodes with a larger data item deactivate themselves. This
process is repeated until the remaining nodes are sampled with probability 1.

However, since the server does not know which nodes remain active, a sample
cannot be chosen directly. Instead, we let the nodes proceed a random process such
that the server can probe each node with a certain outcome on the basis of the random
process. We consider this random process in more detail: Each node i chooses a height
hi from a geometric distribution; i.e., the number of coin flips with success probability

9.3 Initialization of the Data Structure 101

p until one coin flip was successful. (Observe that based on the definition of p, the
expected maximal height maxihi varies. This fact can be used to trade-off between the
expected number of messages and the number of rounds the algorithm uses.)

Intuitively speaking, we build a distributed (not binary) searchtree in which the
heights are chosen randomly and the algorithm follows the path to the sensor node
observing the minimum value. The log n nodes on this path yield an approximation of
the data items with respect to their ranks. We will exploit this fact and show that a data
item at a specific level can be used to approximate a given rank successfully.

Algorithm 13 INIT()
COFASEL(φ, hmax, k) [ConstantFactorSelect]

1. Each node i defines a random variable hi, i.i.d. drawn from
a geometric distribution with p = (1− φ), and
redefines hi := min{hi, hmax}.

2. Server defines dmin :=∞, keeps a set S := ∅, and initializes cnt := 0.
3. if k = 1 then hmin := 1.
4. else hmin := blog1/φ(7k)c+ 1. (let α := log1/φ(7k)− blog1/φ(7k)c)
5. for h := hmax to hmin do
6. Server probes all nodes i with di < dmin and hi = h.
7. Let a1 < a2 < . . . < aj be the responses, ordered by their values.
8. The representative rh := a1 is added to S as tuple (a1, h).
9. if h > hmin > 1 then Server redefines dmin := a1 else dmin := a(1/φ)α .

10. output dmin

INIT()
1. call COFASEL(φ := 1

2 , hmax = log n, k = 1).

Initialize. We only need a simple variant of the COFASEL protocol as follows: The
INIT operation defines p := 1/2, the success probability of each coin flip. That is, each
sensor node has a height of 2 in expectation. Thus, observe that the expected maximum
of n nodes is hmax = log n. For each height h the server keeps the smallest response of
the sensor nodes in the data structure.

102 A Communication-Efficient Data Structure for Top-k and k-Select Queries

Correctness: Initialize Computes Sketch(t). Recall that the data structure is asked
to answer each request for a data item of rank k by a representative r, where r groups a
set of requests with different ranks with the same response. To this end, we divide the
ranks 1, . . . , n into classes C1, . . . , Cm, where m is chosen sufficiently large such that
each data item belongs to a class. The exact number of classes is based on a constant
that is defined by the analysis; however, note that m = O(log n) holds.

We define a representative for each class which is the response for a request of
any rank in the next-smaller class. Furthermore, the height of a class represents the
expected maximum height found within this class, such that our representative will
have a height value within the noted bounds. In the following we use the constant
κ > 1 chosen sufficiently large which represents the constants in the bounds on the
precision and the success probability. Furthermore, letH := log1/φ(log(n)) to ease the
notation. The idea of classes is captured in the following definition:

Definition 9.3.1 (Classes). A Class Ct` consists of all data items dtj with rank(dtj) ∈
[log6`κ(n), log6(`+1)κ(n)). We define hmin(C`) := (6`κ + 1κ)H and hmax(C`) :=

(6`κ+ 7κ)H. The height of the class Ct` is given by h(Ct`) := (hmin(Ct`), hmax(Ct`)].

By abuse of notation we introduce dti ∈ Ct` which shortens rank(dti) ∈ Ct` . Fur-
thermore let class(d) be the class where the data item d belongs to; i.e., for a given d,
class(d) gives the class Ct` such that d ∈ Ct` holds.

Definition 9.3.2 (Inner Classes). We denote by an inner class It`,τ (where τ ∈ {0, 1, 2}
holds) the set of data items dti with a rank between log6`κ+2κ(n) and log6`κ+4κ(n).

The height of It`,τ is h(It`,τ) = ((6`κ+ (2τ + 1)κ)H, (6`κ+ (2τ + 3)κ)H].

We omit the time step t in our notation whenever it is clear from the context.

Definition 9.3.3 (Well-Shaped). The data items in an inner class I`,τ are well-shaped
if for each data item di ∈ I`,τ it holds hi ≤ (6`κ+ (2τ + 3)κ)H.

We start by analyzing the outcome of the INIT operation. That is, we show that a
class is well-shaped with sufficiently large probability in Lemma 9.3.4 and argue that
the data structure has one representative in Theorem 9.3.6, afterwards.

Lemma 9.3.4. After an execution of INIT, the inner class I`,τ is well-shaped with

probability at least 1− log−κ(n).

Proof. Recall that for a fixed data item di and sensor node i the probability for hi > h

is φh. Fix an inner class I`,τ and consider the data items di ∈ I`,τ . We upper bound

9.3 Initialization of the Data Structure 103

the probability that there is a data item with a height of at least h with h := (6`κ +

(2τ + 3)κ)H by applying the union bound as follows:

Pr[∃di ∈ C`,τ | hi > h] ≤
(

log6`κ+(2τ+2)κ(n)− log`8κ+2τκ(n)
)
· φh

≤ log6`κ+(2τ+2)κ(n) · log−(6`κ+(2τ+3)κ)(n)

≤ log−κ(n)

Lemma 9.3.5. Consider the inner class I`,1. There is a data item di ∈ I`,1 with

hi > (6`κ+ 3κ)H with high probability.

Proof. Here we simply upper bound the probability that each data item in the inner
class has a height of at most h as follows:

Pr[∀di ∈ I`,1 | hi ≤ (6`κ+ 3κ)H] ≤
(

1− 2−(6`κ+3κ)H
)|I`,1|

≤
(

1− log−(6`κ+3κ) n
)log6`κ+4κ n− log6`κ+2κ n

≤
(

1

e

) 1
2 logκ n

≤ n− 1
2 log(e) logκ−1(n) ≤ n−c,

for some constant c.

We can now prove the first part of Lemma 9.2.2, i.e., that INIT computes a cor-
rect Sketch(t). Technically, we show a result which is more restricted than the stated
precision of Lemma 9.2.2, as follows:

Theorem 9.3.6. After execution of INIT there exists, for each rank k, a data item in

Sketch(t) with rank between k · log2κ(n) and k · log10κ(n) with probability at least

1− log−κ+2(n).

Proof. First consider a fixed inner class I`,τ for a fixed ` ∈ N and τ ∈ {0, 1, 2}. On
the basis of Lemma 9.3.4 we can show that the distribution of the random heights is
well-shaped with a probability at least 1− log−κ(n). Now, with high probability there
is a data item with such a height for sufficiently large κ and n due to Lemma 9.3.5.
These observations together show that there is a data item d identified and stored in
DS with probability at least 1− log−κ+1(n).

Furthermore, note that the number of inner classes is upper bounded by log n. The
argument stated above applied to each class leads to the result that for each inner class

104 A Communication-Efficient Data Structure for Top-k and k-Select Queries

there exists a data item in the data structure, and each inner class is well-shaped with
probability at least 1− logκ−2(n) (by simply applying the union bound).

Communication Bounds. In the following we show the second part of Lemma 9.2.2,
i.e., that the number of messages used by INIT is upper bounded by O(log n) and the
same bound holds for the number of rounds. We start by analyzing the bound on the
total communication.

We show an upper bound on the communication used by the COFASEL protocol
analyzing the expected value of a mixed distribution: Intuitively speaking, consider the
path from the root to the maximum in a non-binary searchtree. For each node i on the
path consider the number of siblings j with a smaller data item, i.e., dj < di. To bound
the expected number of such siblings j, we first consider on a fixed height h the number
of tries Gh until the first node j′ has drawn a height hj′ > h (for each height h this
results in the geometric sequence, Definition 9.3.7). On the basis of Gh, we consider
the number of nodes that have drawn precisely the height hj′ = h (for each height h,
the geocoin experiment, Definition 9.3.8).

Note that this analysis turns out to be very simple since independence can be ex-
ploited in a restricted way and leads to a proper analysis with respect to small constants.
Furthermore, note that we used this notation to analyze the number of messages used
by the TOP-kPROTOCOL and present it here for the reason of self containment.

Definition 9.3.7. We call a sequence G = (G1, . . . , Gm) of m random experiments a

geometric sequence if eachGh is chosen from a geometric distribution with pgeoh := φh.

We denote its size(G) :=
∑
hGh and say it covers all nodes if size(G) ≥ n.

For the analysis, we choose a fixed length of m := log1/φ(n) and modify G to
G′ = (G1, . . . , Gm−1, n) such that G′ covers all nodes with probability 1.

On the basis of a given geometric sequence, we define a sequence describing the
number of messages sent by the nodes on a given height. We take the number of nodes
Gj as a basis for a Bernoulli experiment where the success probability is the probability
that a node sends a message on height hj . This is Pr[h = hj | h ≤ hj] = φh−1(1−φ)

1−φh .

Definition 9.3.8. We denote a geocoin experiment by a sequence C = (C1, . . . , Cm)

of random variables Ch which are drawn from the binomial distribution Binom
(
n =

Gh, p
bin
h = φh−1(1−φ)

1−φh
)
; i.e., Ch out of Gh successful coin tosses and each coin toss is

successful with probability pbinh .

We are now prepared to prove the second part of Lemma 9.2.2, i.e., a bound on the
total communication for CFS and thus for INIT.

9.4 Update 105

Theorem 9.3.9. Let hmax ≥ log1/φ(n) hold. The COFASEL protocol uses an expected

number of 1−φ
φ log1/φ(n) + 1

φ messages in total.

Proof. The number of messages sent is upper bounded by a geocoin experimentC. Let
H := log1/φ(n). For h < H we use that the geometric distribution is memory-less and
hence

E[Ch] = (1− pgeoh) · (pbinh + E[Ch]) = (1− φh) ·
(
φh−1(1− φ)

1− φh
+ E[Ci]

)
.

This can simply be rewritten as E[Ch] = 1−φ
φ .

For h ≥ H = log1/φ(n) we bound the number of messages by the total num-
ber of nodes with height at least H. These can be described as the expectation of a
Bernoulli experiment with n nodes and success probability φH−1 and hence we can
bound E[C≥H] ≤ φH−1 · n = 1

φ .

In total, we get

∑
h

E[Ch] =

(H−1∑
h=1

E[Ci]

)
+ E[C≥H] ≤ 1− φ

φ
log1/φ(n) +

1

φ
,

concluding the proof.

We conclude the proof for the first lemma by this simple observation on the number
of rounds. By the definition of the protocol it is easy to see that the server simply sends
a broadcast message for each height h and receives a message by those nodes which
fulfill a specific rule. Since the server can process each received message in the same
round, hmax is obviously a strict upper bound for the number of rounds.

Observation 9.3.10. The INIT operation uses at most hmax = log n rounds.

9.4 Update

To keep the data structure up to date we apply the following simple straightforward
strategy: As long as there are fewer than logc n updates processed since the last call
of INIT, the precision of the approximated ranks can also only differ by an additional
O(logc n) (for a predefined constant c > 1). We apply a simple standard counting
technique to verify that the current number of processed UPD operations is O(logc n)

in expectation. If more UPD operations are identified, the current data items in the data
structure are discarded and the Sketch(t) is built from scratch.

106 A Communication-Efficient Data Structure for Top-k and k-Select Queries

Algorithm 14 UPD(i, d) [Executed by node i]

1. Update dti by dt+1
i := d.

2. Flip a coin with probability pcnt = c
logκ(n) · log n.

3. if the coin flip was successful then
4. send a message to the server; increase cnt.
5. if cnt = c · log n holds then [Executed by Server]
6. restart the protocol, i.e., call INIT()

Consider the protocol for the UPD operation as presented in Algorithm 14. It ap-
plies a randomized counting technique to identify that there are more than Θ(logκ n)

updates since the last INIT operation. It is easy to verify by applying standard Cher-
noff bounds that the protocol identifies cnt ≤ 2 c log n with high probability. Thus,
and applying a Chernoff bound again, it follows that the number of UPD operations
that took place since the last INIT operation is upper bounded by 2 log2c n with high
probability. With this, we can show the first part of Lemma 9.2.3.

Lemma 9.4.1. After the last call of INIT, there are at most Θ(logκ n) UPD operations

processed with high probability.

The UPD operation sends a message with probability pcnt, so it is easy to verify
that the expected number of messages sent is upper bounded by pcnt.

Now consider a sufficiently large instance (i.e., sufficiently many UPD operations).
Assume that for a time step t at which INIT is called, t′ denotes the next time step at
which INIT is called to rebuild the data structure. Observe that O(log n) messages
where sent during [t, t′] by UPD and INIT operations in total. Since Ω(logc/2 n) UPD
operations where called with high probability, the amortized bound for one single UPD
operation follows.

For the number of communication rounds, consider the same interval [t, t′] as de-
scribed above. Since one execution of UPD uses a constant number of rounds (exclud-
ing the call of INIT) and the INIT operation is called a constant number of times, each
UPD operation only uses an amortized constant number of rounds. These observations
conclude the argumentation for the second part of Lemma 9.2.3:

Lemma 9.4.2. The UPD operation uses O(1/polylogn) messages in expectation and

amortized O(1) number of rounds.

9.5 Weak Select 107

9.5 Weak Select

For the sake of a complete presentation we shortly describe how the Sketch(t) is used
to answer a weak approximate k-Select request.

The WEAK SELECT operation simply identifies the class ` in which the data item
d with rank k is expected (see Algorithm 15). Then, the representative r in the class on
level `+ 1 is chosen.

Algorithm 15 WEAK SELECT(k)

1. Determine ` such that k ∈ C` holds.
2. output representative r ∈ I`+1.

Note that by the correctness of INIT and its analysis on the precision the correctness
of the protocol follows. It is also easy to see that the protocol is executed by the server
and thus does not need any further communication to the sensor nodes. Since no further
argumentation is needed, we restate the following observation for completeness:

Observation 9.5.1. Given a correct Sketch(t), WEAK SELECT can be executed with-

out any communication. It is correct with probability 1− 1/polylogn.

108 A Communication-Efficient Data Structure for Top-k and k-Select Queries

9.6 Strong Approximate k-Select

In this section we present an algorithm which gives an (ε, δ)-approximation for the
k-Select problem; i.e., a data item d is identified with a rank between (1 − ε)k and
(1 + ε)k with probability at least 1 − δ. In other words, we propose an algorithm and
analyze its performance guarantee as claimed in Lemma 9.2.5.

Algorithm 16 STRONG SELECT(φ, k, ε, δ)

1. call WEAK SELECT(k) and
denote by (d′, h′) the returned data item and its height.

[Phase 1]
2. Determine `′ such that k · logc n ∈ C`′ holds.
3. repeat until a data item d′′ is found (i.e., d′′ 6= nil)
4. Each node i with di ≤ d′ executes:
5. Call CFS(φ, h, k · logc n) and let (r, hr) be the data item and height.
6. if hr ∈ h(C`′) then d′′ := r.

[Phase 2]
7. for j = 1, . . . , c log 1/δ′ do in parallel
8. Each node i with di ≤ d′′ executes:
9. call COFASEL(φ, hr, k) on the active nodes and let (d∗j , h

′
j) the output.

10. d∗ := Median(d∗1, . . . , d
∗
c log 1/δ′)

[Phase 3]
11. Each node i with di < d∗ executes:
12. Toss a coin with p := min

(
1, ck · Sε,δ

)
.

13. On success send di to the server.
14. The server sorts these values and outputs dk̃, the p · k-th smallest item.

Algorithm Description. We apply a standard sampling technique to select a data
item as required. However, the data item given by the WEAK SELECT operation is
too weak to directly be followed by a sampling technique (cf. Phase 3 in Algorithm 16).
Thus, we add the following two phases:

1) A data item d′ is identified, such that a polylogarithmic error bound holds with
high probability. It might be that a large number of sensor nodes (i.e., ω(k ·

9.6 Strong Approximate k-Select 109

polylogn)) ‘survive’ till the last phase and apply the costly sampling technique.
With this step the event only occurs with probability at most 1/n.

2) The second phase applies c log 1
δ′ calls of CFS to identify data items that have a

rank between k and 42 k with constant probability each. This number of calls is
to amplify the (success) probability that the final data item d∗ has a rank between
k and 42 k to at least 1− δ′.

Note that the internal probability δ′ will be defined as 1/polylogn which is a result
of the analysis. Important is that the calls of CFS do not change the information of
Sketch(t) stored in the data structure. Here, they are only used ‘read-only’ and are not
overwritten.

Analysis Outline. We split our analysis and consider each phase separately. First,
we show that Phase 1 determines a data item d′ with a rank which is by a polylogarith-
mic factor larger than k with high probability. This needs O(log log n) messages and
O(log log n) rounds in expectation.

Afterwards, we consider Phase 2 which determines a data item d′′ with a rank only
a constant factor larger than k with probability at least 1 − δ′, where δ′ can be chosen
arbitrarily small.

Finally, Phase 3 applies a sampling technique to determine the final data item d

which yields the property as required by Lemma 9.2.5.

We use the notation as given in the protocol and use d′ to denote the data item given
by the WEAK SELECT operation, d′′ the data item determined by Phase 1, and d∗ the
data item given by Phase 2. We do not need any further analysis for the property of
data item d′ since we analyzed its precision (and the given success probability bounds)
in the past sections.

Analysis of Phase 1. We consider Phase 1 of the STRONG SELECT operation and
analyze the precision of the rank of item d′′, the expected number of messages and the
number of communication rounds.

Lemma 9.6.1. For a given constant c, there exist constants c1, c2, such that Phase 1

as given in Algorithm 16 outputs a data item d′′ with a rank between 7k · logc1(n) and

7k · logc2(n) with probability at least 1− n−c.

Proof. We use a simple argument to argue on the probability to obtain a data item
within a multiplicative polylogarithmic precision bound:

110 A Communication-Efficient Data Structure for Top-k and k-Select Queries

Consider the event that the rank is strictly smaller than 7k · logc1 n. Thus, one
node i of the 7k logc1 n − 1 nodes has drawn a height hi ≥ log(7k logc n). We show
(by applying Chernoff bounds) that this probability is upper bounded by n−c

′
, where

c′ depends on c and c1. For the remaining case (i.e., the rank is strictly larger than
7k · logc2 n) the same argument is applied.

Let X denote the rank of the data item d′′ which is identified by STRONG SE-
LECT. Now let X1 be drawn from Binom(n = 7k logc1 n, p = (1/2)log(7k logc n)),
and let X2 ∼ Binom(n = 7k logc2 n, p = (1/2)log(7k logc n)). Observe that it holds
γ1 = E[X1] = logc1−c n and γ2 = E[X2] = logc2−c n. Thus, Pr[X < 7k logc1 n] ≤
Pr[X1 > (1 + (1/2) logc−c1 n) · logc1−c n] ≤ exp(− 1

12 (logc−c1 n)) ≤ n−
c−c1−1

12 .
We obtain by the same argument similar results for the probability of the event that

the rank is larger than the claimed bound.

Lemma 9.6.2. Phase 1 uses an amount of O(log log n) messages in expectation.

Proof. We apply the law of total expectation and first consider the event that WEAK
SELECT is successful. Afterwards, the number of messages for a failed call is consid-
ered.

First, consider the case that the WEAK SELECT operation is successfully within
the precision bounds. Then, O(log log n) messages on expectation are used in this
phase. On the other hand, consider the number of messages used if the number of nodes
that take part in this phase is n. Then, the protocol needsO(log n) messages. However,
the probability that WEAK SELECT is not within these bounds is 1/polylogn which
concludes the proof.

To upper bound the time needed for Phase 1, simply determine the range of h and
observe that this range is bounded by O(log log n). Since one data item is found with
probability at least 1 − 1/polylogn, in expectation after the second repetition a data
item is found.

Observation 9.6.3. Phase 1 of Algorithm 16 uses O(log log n) number of rounds.

Analysis of Phase 2. Now consider one execution of the lines 7 to 10 as given in
Algorithm 16 (and restated in Algorithm 17).

Lemma 9.6.4. One execution of lines 8 and 9 of Phase 2 in Algorithm 16 outputs a

data item d with rank(d) ∈ [k, 42k], with probability at least 0.6.

Proof. The algorithm outputs the (1/φ)α smallest data item d∗j the server is as a re-
sponse on height h = hmin. To analyze its rank, simply consider the random number

9.6 Strong Approximate k-Select 111

Algorithm 17 STRONG SELECT [Phase 2 restated]

7. for j = 1, . . . , c log 1/δ′ do in parallel
8. Each node i with di ≤ d′′ executes:
9. call COFASEL(φ, hr, k) on the active nodes and let (d∗j , h

′
j) the output.

10. d∗ := Median(d∗1, . . . , d
∗
c log 1/δ′)

X of nodes i that observed smaller data items di < d. The claim follows by simple
calculations: (i) Pr[X < k] ≤ 1

5 and (ii) Pr[42k > X] ≤ 1
5 .

The event that X is (strictly) smaller than k holds if there are at least (1/φ)α out of
k nodes with a random height at least hmin. Let X1 be drawn by a binomial distribution
Binom(n = k, p = φhmin−1). It holds E[X1] = k · φhmin−1 = 1

7 · (1
φ)α. Then,

Pr[X < k] ≤ Pr[X1 ≥ (1
φ)α] = Pr[X1 ≥ (1 + 6) 1

7φα] ≤ exp(− 1
3

1
7φα 62) ≤ 1

5 .

On the other hand, the event that X is (strictly) larger than 42k holds if there are
fewer than (1/φ)α out of 42k nodes with a random height of at least hmin. Let X2 be
drawn by a binomial distribution Binom(n = 42k, p = φhmin−1). It holds E[X2] =

(42k)φhmin−1 = (42k)(7k)−1φ−α = 6
φα . Then, Pr[X > 42k] ≤ Pr[X2 <

1
φα] =

Pr[X2 < (1− (1− 1
6)) 6

φα] ≤ exp(− 1
2 (6
φα (1− 1

6)2) ≤ exp(− 25
12) ≤ 1

5 .

Note that we apply a standard boosting technique, i.e., we use O(log 1
δ′) indepen-

dent instances, and consider the median of the outputs of all instances to be the overall
output (cf. Algorithm 17). Thus, an output in the interval [k, 42 k] is determined with
probability at least 1− δ′.

Observation 9.6.5. Phase 2 of Algorithm 16 outputs a data item d∗ with

rank(d∗) ∈ [k, 42k] with probability at least 1− δ′.

Lemma 9.6.6. Assume δ′ ≥ n−c for a constant c > 1. The second phase of Algo-

rithm 16 uses O(log 1
δ′ · log log n

k) messages in expectation.

Proof. Consider one instance of Phase 2 and applying arguments from Theorem 9.3.9,
the algorithm uses O(log log n

k) messages in expectation for each iteration of Steps 8
and 9. This number of messages is multiplied byO(log 1

δ′), since we apply this number
of executions in parallel.

It remains to show that the parallel execution does not need further messages to
separate each execution from the others: In more detail, each instance of Steps 8 and
9 has to be executed with an additional identifier. Since δ′ ≤ n−c holds, the identifier
has a range of integer numbers between 1 and O(log n) and thus needs additional
O(log log) bits. Since a machine word has a size of O(B + log n) the identifier can be

112 A Communication-Efficient Data Structure for Top-k and k-Select Queries

Algorithm 18 STRONG SELECT [Phase 3 restated]

11. Each node i with di < d∗ executes:
12. Toss a coin with p := min

(
1, ck · Sε,δ

)
.

13. On success send di to the server.
14. The server sorts these items and outputs dk̃, the p · k-th smallest item.

added to the message (or sent as a separate message such that the number of messages
has a constant overhead). This concludes the proof.

Since we run the O(log 1
δ′) instances in parallel, and the server is able to process

all incoming messages within the same communication round, the number of commu-
nication rounds does not increase by the parallel executions.

Observation 9.6.7. Phase 2 of Algorithm 16 uses O(log log n) rounds.

Analysis of Phase 3 We are now prepared to propose the last phase of the algorithm
which fulfills the required precision as stated in Lemma 9.2.5.

We consider the final phase of the algorithm, i.e., we apply a standard sampling
technique (cf. Algorithm 18): The server broadcasts the value d∗ which (as a result
of the analysis of Phase 2) has a rank between k and 42 k with probability at least
1−1/polylogn. Each node i compares its data item dti with d∗ and only takes part in the
sampling process if and only if dti ≤ d∗ holds. Then, with probability p = c

k
1
ε2 log 1

δ

node i sends its data item to the server. In turn, the server sorts each data item and
outputs the p · k-th smallest item, which has a rank of k in expectation.

For the sake of readability we introduce the notation Sε,δ := 1
ε2 log 1

δ and are now
prepared to show Lemma 9.2.5:

Theorem 9.6.8. Define δ′ := 1/polylogn. The STRONG SELECT operation (as

presented in Algorithm 16) selects a data item dk̃ with a rank in [(1 − ε) k, (1 + ε) k]

with probability at least 1− δ using O(Sε,δ + log2 log n) messages in expectation and

O(log1/φ log n) communication rounds.

Proof. From Lemma 9.6.6 we obtain that Phase 2 of the protocol uses an amount of at
most O(log log n

k log 1
δ′) messages in expectation and runs for O(log log n) commu-

nication rounds. The remaining steps of Algorithm 16 need only one additional com-
munication round and thus the stated bound on the communication rounds follows. We
omit the proof for the correctness of the algorithm; i.e., with demanded probability the
k-th smallest data item is approximated, since it is based on a simple argument using
Chernoff bounds.

9.6 Strong Approximate k-Select 113

It remains to show the upper bound on the number of messages used. Formally, we
apply the law of total expectation and consider the event that Phase 2 of Algorithm 16
determined a data item d∗ with rank k ≤ rank(d∗) ≤ 42k and the event rank(d∗) >

42k.
Observe that the sampling process in steps 2 and 3 yields O(rank(d∗)

k Sε,δ) mes-
sages in expectation. Consider the event that Phase 2 determined a data item d∗ with
rank k ≤ rank(d) ≤ 42k. Then, Phase 3 uses O(Sε,δ) messages in expectation.
Now consider the event that Phase 2 determined a data item d∗ with d > 42 k. It uses
O
(

logc n
k Sε,δ

)
messages in expectation. Since the probability for this event is upper

bounded by δ′, the conditional expected number of messages is O
(

logc(n)
k Sε,δ · δ′

)
.

Defining δ′ := log−c n the bound follows as claimed.

9.6.1 One-Shot Approximate k-Select

For the sake of self-containment we propose a bound which considers all nodes to take
part in the protocol.

Corollary 9.6.9. Let c be a sufficiently large constant. Furthermore, let N = n,

φ := 1
2 , hmax := log n, and δ′ := 1

logc(n) . The protocol uses an amount of at most

O(Sε,δ + log n) messages in expectation and O(log(nk)) expected rounds.

This represents the case (with respect to the choice of φ) that a small number of
messages and a large number of communication rounds are used. This observation is
complemented by a lower bound of Ω(log n).

114 A Communication-Efficient Data Structure for Top-k and k-Select Queries

9.6.2 Top-k

In this section we shortly discuss algorithms which identifies all k smallest data items
currently observed by the sensor nodes, i.e., at a fixed time step t.

Note that by applying the MAXIMUMPROTOCOL k times and using the Sketch(t)

from our data structure, the problem can be solved using O(k · log log n) messages in
expectation and O(k · log log n) rounds. By applying the STRONG SELECT opera-
tion from the previous section (denote the output by dK) and selecting all of the nodes
i with a data item di ≤ dK , a bound of O(k + log2 log n) expected messages and
O(log log n) rounds in expectation follows. These bounds are subject to be improved
toO(k+log log n) expected messages andO(k+log log n) expected rounds. Without
our Sketch(t) the algorithm needs k + log n+ 2 expected messages and O(k + log n)

expected rounds, which might be of independent interest. We show a more general re-
sult which allows to trade-off between number of messages and number of rounds. This
translates to k+ 1−φ

φ log1/φ n+ 1
φ expected total communication andO(φ·k+log1/φ n)

expected rounds for an arbitrarily chosen 1/n ≤ φ ≤ 1/2.

Analysis. To prove that there is a protocol which uses O(k + log log n) messages in
expectation simply observe that the probability to send a message for a sensor node
within the Top-k is 1. Consider the remaining nodes; i.e., consider the set V ′ of nodes
that are not in the Top-k. To bound the number of messages, we simply upper bound
the number of messages used to find the maximum within V ′. Since WEAK SELECT
gives a data item such that k · logc2 n nodes remain, and by the arguments in Theo-
rem 9.3.6, it holds:

Lemma 9.6.10. The TOP-k operation usesO(k+ log log n) messages in expectation.

We consider the number of rounds, which concludes the proof for Lemma 9.2.6.

Lemma 9.6.11. The TOP-k operation uses at most O(k + log log n) exp. rounds.

Proof. We structure the proof in two steps: First, we analyze the number of rounds used
to determine the minimum (i.e., the data item with rank 1), and second, the number of
communication rounds used to determine the Top-k.

Observe that the algorithm uses a linear amount of steps (linear in h), until it
reaches hmin = 1, after which the minimum is found. Afterwards, in each step the
algorithm recursively probes for nodes successively smaller than the currently largest
values that are added to the output set S. Note that by the analysis in Theorem 9.3.9,
the number of nodes that send a message in expectation in each round is (1−φ)/φ (for

9.6 Strong Approximate k-Select 115

h < log1/φ(n)). Thus, in each communication round there are Ω(1
φ) nodes in expec-

tation that send a message, such that after an expected number of O(φ · k) rounds the
TOP-KPROTOCOL terminates.

CHAPTER 10

FULLY DYNAMIC & FILTER-BASED

APPROXIMATE COUNT DISTINCT

In the previous chapters we analyzed the designed protocols which exploited similari-
ties between consecutive time steps. In the first part, filter-based protocols are analyzed
using competitiveness and the goal was to identify filters to verify the output. In the
second part, the number of sensor nodes which observe new values are bounded.

Since we applied both techniques to the Top-k problem we see that the concern of
these techniques are orthogonal and might be potentially combined. Intuitively speak-
ing, we understand the filter-based protocols for the Top-k problem as finding a new
certificate (filter) which verifies the output (the k nodes which observed the Top-k)
to be correct. The improved communication bounds stem from the fact that finding
a new filter is less communication intense in comparison to calculating each output
from scratch. This way of applying competitiveness yields a worst-case instance in
which the output does not change within a phase such that an optimal offline algorithm
does not need to communicate within this phase. On the other hand, our maintaining
protocols concentrate on instances which change the output in every time step.

In this chapter we consider the Approximate Count Distinct problem and apply
both a filter-based protocol which is analyzed using competitive analysis on the one
hand and is a maintaining protocol on the other hand.

118 Fully Dynamic & Filter-Based APPROXIMATE COUNT DISTINCT

10.1 Introduction & Contribution

Variant Expected communication costs

One Shot O
(

1
ε2 log 1

δ

)
Multiple Time Steps O

(
T 1
ε2 log 1

δ

)
O
(

(σ + δ) log(n)·R∗
|Dt| · T 1

ε2 log 1
δ

)
We start the presentation of the protocol for the Approximated Count Distinct prob-

lem for multiple time steps by considering only one time step. Again, this approach
can be applied at each of the T time steps (similar to the previous chapters).

In contrast to the previous chapters the multiple time step case consists of two
parts in the stated bound. On the one hand we reduce the communication by applying
the analysis similar to the analysis of the frequencies (cf. Chapter 8) which results in
the factor of O(σ + δ) and, on the other hand, we apply competitive analysis which
introduces the factor of O

(
log(n)·R∗
|Dt|

)
. Note that the factor introduced by the filter-

based approach does not introduce an overhead (up to constant factors).

A Short Overview The essential idea of the approach in this chapter is very sim-
ple: First, consider the values {1, . . . ,∆} which can be observed by the nodes and
determine a sample S∆ of these values (where value v is iid. within S∆ with prob. p).

Given S∆ we apply the Domain Monitoring strategy: That is, we aim at finding a
representative which witnesses that this value is both sampled and observed.

However, the information whether vi is within S∆ and thus, the node that takes
place in the protocols afterwards has to be determined ’efficiently’; i.e., each node has
to determine the answer without sending the value to the server and waiting for an
answer. For this situation we apply the public coin schema: each node can determine
S∆ consistently without the need to transmit S∆ itself.

Chapter Basis.

• Bemmann, Biermeier, Bürmann, Kemper, Knollmann, Knorr, Kothe, Mäcker,
M., Meyer auf der Heide, Riechers, Schaefer, Sundermeier. Monitoring of Do-
main Related Problems in Distributed Data Streams. In: Structural Information

and Communication Complexity - 24th International Colloquium (SIROCCO

2017), [BBB+17].

10.2 Count Distinct Monitoring – One Shot 119

10.2 Count Distinct Monitoring – One Shot

In this section we present an (ε,δ)-approximation algorithm for the Count Distinct
Monitoring Problem. The basic approach is similar to the one presented for monitor-
ing the frequency of each value. That is, we first estimate |Dt| up to a (small) constant
factor and then use the result to define a protocol for obtaining an (ε, δ)-approximation.

Assuming that, at any fixed time t, each value was observed by at most one node, it
would be possible to solve this problem with expected communication cost of at most
O(1

ε2 log 1
δ) (per time step t and per value v ∈ Dt) using the same approach as in

the previous section. Since this assumption is generally not true, we aim at simulating
such behavior that for each value in the domain only one random experiment is applied.
We apply the concept of public coins, which allows nodes measuring the same value
to observe identical outcomes of their random experiments. To this end, nodes have
access to a shared random string R of fully independent and unbiased bits. This can
be achieved by letting all nodes use the same pseudorandom number generator with
a common starting seed, adding a constant number of messages to the bounds proven
below. We assume that the server sends a new seed in each phase by only loosing at
most a constant factor in the amount of communication used. However, we can drop
this assumption by checking whether there are nodes that changed their value such
that only in rounds in which there are changes new public randomness is needed. The
formal description of the algorithm for a constant factor and an ε-approximation are
given in Algorithm 19 and Algorithm 20, respectively.

We consider the access of the public coin to behave as follows: Initialized with a
seed, a node accesses the sequence of random bits R bitwise; i.e., after reading the j’th
bit, the node next accesses bit j + 1. Observe the crucial fact that as long as each node
accesses the exact same number of bits, each node observes the exact same random
bits simultaneously. Algorithm 19 essentially works as follows: In a first step, each
node draws a number from a geometrical distribution using the public coin. By this,
all nodes observing the same value v obtain the same height hv . In the second step we
apply the strategy as in the previous section to reduce communication if lots of nodes
observe the same value: Each node i draws a number gi from a geometrical distribution
without using the public coin. Afterwards, all nodes with the largest height gi among
those with the largest height hv broadcast their height hv .

Note that only (at most n) nodes that observe value v with hv = maxv′ hv′ may
send a message in Algorithm 19. Now, all nodes observing the same value observe
the same outcome of their random experiments determining hv . Hence, by a similar

120 Fully Dynamic & Filter-Based APPROXIMATE COUNT DISTINCT

Algorithm 19 FREQUENCYCONSTANTFACTORAPPROXIMATION

(Node i, observes value v = vi)
1. Draw a random number hv as follows:

Consider the next ∆ · log n random bits b1, . . . , b∆·logn from R. Let h be the
maximal number of bits bv·logn+1, . . . , bv·logn+1+h that equal 0. Define hv :=
min{h, log n}.

2. Let g′i be a random value drawn from a geometric distribution with success-
probability p = 1/2 and define gi = min(g′i, log n) (without accessing public
coins).

3. Broadcast drawn height hv in round r = log2 n− (hv − 1) · log n− gi unless a
node i′ has broadcasted before.

(Server)
1. Receive a broadcast message containing height h in round r.
2. Output d̂t = 2h.

reasoning as in Lemma 8.2.1, one execution of the algorithm uses O(1) messages.
Using the algorithm given in Algorithm 19 and applying the same idea as in the

previous section, we obtain an (ε, δ)-approximation as given in Algorithm 20: Each
node tosses a coin with a success probability depending on the constant factor approxi-
mation (for which we have a result analogous to Corollary 8.2.2). Again, all nodes use
the public coin so that all nodes observing the same value obtain the same outcome of
this coin flip. Afterwards, those nodes which have observed a success apply the same
strategy as in the previous section; that is, they draw a random value from a geometric
distribution, and the nodes having the largest height send a broadcast.

Algorithm 20 FREQUENCYEPSILONFACTORAPPROX

(Node i)
1. Flip a coin with success probability p = 2−q = c log 1/δ

ε2d̂t
, q ∈ N as follows:

Consider the next ∆ · q random bits b1, . . . b∆·q . The experiment is successful if
and only if all random bits bv·q+1, . . . , bv·q+q equal 0. The node deactivates (and
does not take part in Steps 2. and 3.) if the experiment was not successful.

2. Draw a random value h′i from a geometric distribution and define hi =
min(h′i, log n) (without accessing public coins).

3. Node i broadcasts its value in round log n − hi unless a node i′ with vti = vti′
has broadcasted before.

(Server)
1. Let St be the set of received values.
2. Output d̃t := |St|/p

Using arguments analogous to Lemmas 8.2.3 and 8.2.4 and applying FREQUEN-
CYEPSILONFACTORAPPROX for T time steps, we obtain the following theorem.

10.3 Approximate Count Distinct Monitoring 121

Theorem 10.2.1. There exists an (ε, δ)-approximation algorithm for the Count Dis-

tinct Monitoring Problem for T time steps usingO(T · 1
ε2 log 1

δ) messages on expecta-

tion.

10.3 Approximate Count Distinct Monitoring

In this section we consider the problem for multiple time steps and parameterise the
analysis with respect to instances in which the domain does not change arbitrarily be-
tween consecutive time steps. Recall that for monitoring the frequency from a time step
t− 1 to the current time step t, all nodes that left and all nodes that entered toss a coin
to estimate the number of changes. However, to identify that a node observes a value
which was not observed in the previous time step, the domain has to be determined
exactly.

We apply the following idea instead: For each value v ∈ {1, . . . ,∆}we flip a (pub-
lic) coin. We denote the set of values with a successful coin flip as the sample. After-
wards, the algorithm only proceeds on the values of the sample, i.e., in cases in which
a node observes a value with a successful coin flip and no node observed this value
in previous time steps, this value contributes to the estimate d̃+

t at time t. Regarding
the (sample) of nodes that leave the set of observed values, the DOMAINMONITORING

algorithm is applied to identify which (sampled) values are not observed any longer
(and thus contribute to d̃−t). Analogous to Lemma 8.3.1, we have the following lemma.

Algorithm 21 CONTINUOUSFREQUENCYEPSILONAPPROX(ε, δ)
1. Compute δ′ = 2 δ2

2. Broadcast a new seed value for the public coin.
3. Compute an (ε, δ′)-approximation d̃1 of |D1| using Algorithm 20. Furthermore,

obtain the success probability p.
4. Repeat for each time step t > 1:

(a) Each node i applies Algorithm 2 (EXISTENCEMONITORING) if the ob-
served value vi is in the sample set. Let d̂−t be the number of values (in
sample set) which left the domain and d̂+

t the number of nodes that join the
sample.

(b) Server computes d̃t = d̃1 +
∑t
i=2 d̂

+
i /p−

∑t
i=2 d̂

−
i /p.

(c) Break if t = 1/δ or
(∑t

i=2 d̃
+
i +

∑t
i=2 d̃

−
i

)
/p exceeds d̃1/2.

5. Set t = 1 and go to Step 2.

Lemma 10.3.1. CONTINUOUSFREQUENCYEPSILONAPPROX yields an (ε,δ)-apprx.

of |Dt| in any time step t.

122 Fully Dynamic & Filter-Based APPROXIMATE COUNT DISTINCT

For the number of messages, we argue on the basis of the previous section. How-
ever, in addition the DOMAINMONITORING algorithm is applied. Observe that the size
of the domain changes by at most n/2, and consider the case that this number of nodes
observed the same value v. The expected cost (where the expectation is taken w.r.t.
whether v is within the sample) is O(log n · R∗ · p) = O

(
logn·R∗
|Dt|ε2 log 1

δ

)
. Similar to

Theorem 8.3.3, we then obtain the following theorem.

Theorem 10.3.2. CONTINUOUSFREQUENCYEPSILONAPPROX provides and (ε, δ)-

approximation for the Count Distinct Monitoring Problem for T time steps using an

amount of Θ
(

(1 + T ·max{2σ, δ}) log(n)·R∗
|Dt|·ε2 log 1

δ

)
messages on expectation, assum-

ing σ ≤ 1/2 holds.

Assuming the instance is not too short, i.e., T is large enough, the bounds follow
as stated at the beginning of this chapter.

CHAPTER 11

FUTURE RESEARCH PERSPECTIVES

In this very last chapter we sketch some ideas which follow up on the results shown in
this part of the thesis.

More Research on the Distributed Data Structure

We see further applications of the sketch in our data structure in Chapter 9. Among
others, one (direct) application is to output an (axis-aligned) bounding box for the
given data points. An interesting problem to consider is as follows: Each sensor node
observes its position in the plane and our task is to output the (sensor nodes that form
the) convex hull. The sensor nodes are mobile; i.e., they can move between two time
steps by a bounded speed. Let nh denote the number of nodes on the convex hull and
observe that Ω(nh) messages are needed to determine the output. With the algorithms
in this paper the convex hull can be computed using O(nh · log n) messages. We
ask whether we may apply (some variant of) our sketch such that O(nh · log log n)

messages are sufficient to determine the points on the convex hull.
Revisiting the analysis of our data structure we observe that we reduce the commu-

nication especially if the adversary changes only a few data items at a time. Addition-
ally, we analyze a worst-case adversary who changes data items with a small rank, i.e.,
with a polylogarithmic rank. It might be of interest to consider restrictions of the ad-
versary to prove stronger bounds: The node which observes a new data item is chosen
uniformly at random, or the new data item observed is close to the old value.

Combination of Filter-Based and Dynamic Algorithms

For this aspect, we consider the Top-k-Position Monitoring problem. We elaborated
on this problem in great detail; however, we did not combined the techniques into one

124 Future Research Perspectives

algorithm with one analysis. We are convinced that both (filter and dynamic algo-
rithms) are potentially combinable and propose that it is possible to show a result of
O(k+logm+log ∆), wherem denotes the number of nodes that the adversary is able
to update between two time steps. Note that this result on the competitiveness is not
strict; that is, there are still O(k + log n) messages needed on expectation to identify
the k largest positions (and their respective values). The data structure from Chapter 9
can be extended to lead to this result.

Sticking to the same problem, a combination could also be in the next perspective:
In Chapter 9 we assumed that the entire Top-k is changed from one time step to the next
one. However, if there is an overlap of the ’old’ Top-k and the ’new’ one we can use
the old set to filter out unnecessary communication: intuitively speaking, if there is at
least one node which stays in the Top-k set than withO(log k) messages in expectation
to identify the largest and smallest values within the old Top-k.

We leave the Top-k-Position example and turn to a general perspective. Combina-
tions of the two techniques might lead to interesting approaches and results: especially
for problems which need large filters, e.g. the SUM problem, in which every node
needs a specific filter. For such problems a sampling technique and a filter technique
only with respect to the sample can be applied in combination. This might lead to
significantly smaller bounds which are comparable to the results in Chapter 10.

Structure on the Input

In this thesis we did not assumed any structure on the input. The overall goal was
to generate insights in the setting and have results which are independent of specific
applications. The assumption that an adversary changes the k largest values (to name
the standard example) might be too pessimistic. There is a large potential of other
instance generation processes which still lead to valuable insights without performing
just simulations alone.

One possibility is to model the adversary as a completely random process which
chooses m sensor nodes uniformly at random to change its value. In fact, we expect
significant better bounds in comparison to the worst-case analysis. However, it is un-
clear how large the effect on the bounds are. Furthermore, it seems unlikely that in a
sensor network the sensors change their values in such a ’smooth’ manner. Consider
the case in which a fire starts to burn: The sensors which start to sense larger and larger
values might come up with larger values in the next time step. These considerations
yield an analysis framework in which we mix worst-case analysis with a randomized
proportion: The adversary defines the sensor nodes to observe an update and by a ran-

125

dom process these positions become perturbed. We expect to see a transition between
the bounds for the worst-case and the pure random process.

BIBLIOGRAPHY

[ABC09] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Func-
tional monitoring without monotonicity. In Susanne Albers, Al-
berto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and
Wolfgang Thomas, editors, Automata, Languages and Programming,
pages 95–106, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[Agg07] Charu Aggarwal. Data streams: models and algorithms, volume 31.
Springer, 2007.

[BBB+17] Pascal Bemmann, Felix Biermeier, Jan Bürmann, Arne Kemper, Till
Knollmann, Steffen Knorr, Nils Kothe, Alexander Mäcker, Manuel
Malatyali, Friedhelm Meyer auf der Heide, Sören Riechers, Johannes
Schaefer, and Jannik Sundermeier. Monitoring of domain-related
problems in distributed data streams. In Structural Information

and Communication Complexity - 24th International Colloquium,

SIROCCO 2017, Porquerolles, France, June 19-22, 2017, Revised

Selected Papers, pages 212–226, 2017.

[BFMM17] Felix Biermeier, Björn Feldkord, Manuel Malatyali, and Friedhelm
Meyer auf der Heide. A communication-efficient distributed data
structure for top-k and k-select queries. In Approximation and Online

Algorithms - 15th International Workshop, WAOA 2017, Vienna, Aus-

tria, September 7-8, 2017, Revised Selected Papers, pages 285–300,
2017.

128 BIBLIOGRAPHY

[BO03] Brian Babcock and Chris Olston. Distributed top-k monitoring. In
Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, pages 28–39. ACM, 2003.

[CMY08] Graham Cormode, Muthu Muthukrishnan, and Ke Yi. Algorithms for
distributed functional monitoring. In Proceedings of the 19th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’08), pages
1076–1085. SIAM, 2008.

[CMY11] Graham Cormode, Muthu Muthukrishnan, and Ke Yi. Algorithms
for Distributed Functional Monitoring. ACM Transactions on Algo-

rithms, 7(2):21:1–21:20, 2011.

[Cor13] Graham Cormode. The continuous distributed monitoring model.
ACM SIGMOD Record, 42(1):5–14, 2013.

[DEI06] Sashka Davis, Jeff Edmonds, and Russell Impagliazzo. Online algo-
rithms to minimize resource reallocations and network communica-
tion. In Proceedings of the 9th international conference on Approx-

imation Algorithms for Combinatorial Optimization Problems, and

10th international conference on Randomization and Computation,
pages 104–115. Springer-Verlag, 2006.

[DMadHR+03] Valentina Damerow, Friedhelm Meyer auf der Heide, Harald Räcke,
Christian Scheideler, and Christian Sohler. Smoothed motion com-
plexity. In European Symposium on Algorithms, pages 161–171.
Springer, 2003.

[DMMadH+12] Valentina Damerow, Bodo Manthey, Friedhelm Meyer auf der Heide,
Harald Räcke, Christian Scheideler, Christian Sohler, and Till Tantau.
Smoothed analysis of left-to-right maxima with applications. ACM

Transactions on Algorithms (TALG), 8(3):30, 2012.

[FFG+18] Björn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guru-
ganesh, Amit Kumar, Sören Riechers, and David Wajc. Fully-
dynamic bin packing with little repacking. In LIPIcs-Leibniz Inter-

national Proceedings in Informatics, volume 107. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[FMM18] Björn Feldkord, Manuel Malatyali, and Friedhelm Meyer auf der
Heide. A dynamic distributed data structure for top-k and k-select

BIBLIOGRAPHY 129

queries. In Adventures Between Lower Bounds and Higher Altitudes

- Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th

Birthday, pages 311–329, 2018.

[FMS93] Esteban Feuerstein and Alberto Marchetti-Spaccamela. Dynamic al-
gorithms for shortest paths in planar graphs. Theoretical Computer

Science, 116(2):359–371, 1993.

[GK12] Yiannis Giannakopoulos and Elias Koutsoupias. Competitive anal-
ysis of maintaining frequent items of a stream. In Proceedings of

the 13th Scandinavian Conference on Algorithm Theory, SWAT’12,
pages 340–351, Berlin, Heidelberg, 2012. Springer-Verlag.

[GT01] Phillip Gibbons and Srikanta Tirthapura. Estimating simple func-
tions on the union of data streams. In Proceedings of the 13th annual

ACM Symposium on Parallel Algorithms and Architectures (SPAA

’01), pages 281–291. ACM, 2001.

[HYZ12] Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for
tracking distributed count, frequencies, and ranks. In Proceedings of

the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems (PODS ’12), pages 295–306. ACM, 2012.

[LLT10] Tak Wah Lam, Chi-Man Liu, and Hing-Fung Ting. Online Track-
ing of the Dominance Relationship of Distributed Multi-dimensional
Data. In Proceedings of the 8th International Workshop on Approxi-

mation and Online Algorithms (WAOA ’10), volume 6534 of Lecture

Notes in Computer Science, pages 178–189. Springer, 2010.

[LPPSP03] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. Mst
construction in o (log log n) communication rounds. In Proceedings

of the fifteenth annual ACM symposium on Parallel algorithms and

architectures, pages 94–100. ACM, 2003.

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Con-
tinuous monitoring of top-k queries over sliding windows. In Pro-

ceedings of the 2006 ACM SIGMOD international conference on

Management of data, pages 635–646. ACM, 2006.

130 BIBLIOGRAPHY

[MG85] John M Marberg and Eli Gafni. An optimal shout-echo algorithm for

selection in distributed sets. University of California (Los Angeles).
Computer Science Department, 1985.

[MMM15] Alexander Mäcker, Manuel Malatyali, and Friedhelm Meyer auf
der Heide. Online Top-k-Position Monitoring of Distributed Data
Streams. In Proceedings of the 2015 IEEE International Parallel

and Distributed Processing Symposium (IPDPS ’15), pages 357–364.
IEEE, 2015.

[MMM16] Alexander Mäcker, Manuel Malatyali, and Friedhelm Meyer auf der
Heide. On Competitive Algorithms for Approximations of Top-k-
Position Monitoring of Distributed Streams. In Proceedings of the

2016 IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS ’16), pages 700–709. IEEE, 2016.

[MP80] James Ian Munro and Mike Stewart Paterson. Selection and sorting
with limited storage. Theoretical computer science, 12(3):315–323,
1980.

[Mut05] Muthu Muthukrishnan. Data streams: Algorithms and applications.
Foundations and Trends in Theoretical Computer Science, 1(2):117–
236, August 2005.

[RSS86] Doron Rotem, Nicola Santoro, and Jeffrey Sidney. Shout echo selec-
tion in distributed files. Networks, 16(1):77–86, 1986.

[SF13] Robert Sedgewick and Philippe Flajolet. An introduction to the anal-

ysis of algorithms. Pearson Education India, 2013.

[WZ12] David Woodruff and Qin Zhang. Tight bounds for distributed func-
tional monitoring. In Proceedings of the 44th Symposium on Theory

of Computing (STOC ’12), pages 941–960. ACM, 2012.

[YZ12] Ke Yi and Qin Zhang. Multidimensional online tracking. ACM Trans-

actions on Algorithms, 8(2):12, 2012.

[ZCPT09] Zhenjie Zhang, Reynold Cheng, Dimitris Papadias, and Anthony KH
Tung. Minimizing the communication cost for continuous skyline
maintenance. In Proceedings of the 2009 ACM SIGMOD Interna-

tional Conference on Management of data, pages 495–508. ACM,
2009.

	A Short Introduction
	Background
	Basis of the Thesis
	Outline

	A Monitoring Problems using Filters
	Introduction to Filter-Based Algorithms for Distributed Streams
	Model Description
	Problems Description
	Description of Filter-Based Algorithms
	Competitive Algorithms
	Related Work

	Node Existence & Domain Monitoring
	Introduction & Contribution
	Existence – One-Shot Computation
	Existence Monitoring
	Domain – One-Shot Computation

	Exact & Approximate Top-k Monitoring
	Introduction & Contribution
	Preliminaries
	Top-k-Value Monitoring
	Exact Top-k-Position Monitoring
	Discussion on Approx. Top-k-Position Monitoring

	Maximum – One-Shot Computation
	Top-K – One-Shot Computation
	Exact Top-k-Position Monitoring
	Lower Bound
	Allow the Online Algorithm to Err
	Lower Bounds for the Approx. Top-k-Monitoring Problem

	Top-k-Position Monitoring against an Approximate Offline Algorithm
	Introduction & Contribution
	Lower Bound for Competitive Algorithms
	Upper Bounds for Competitive Algorithms
	The DenseProtocol
	The SubProtocol

	Error Augmentation

	Future Research Perspectives

	B Dynamic Algorithms
	Introduction to Dynamic Algorithms
	Model Description
	Problems Description
	Related Work

	Fully Dynamic Algorithm for the Frequency Problem
	Introduction & Results
	Frequencies – A One-Shot Computation
	Constant Factor Approximation of Frequencies
	Arbitrary Approximation of Frequencies

	Maintaining Frequencies over Multiple Time Steps

	A Communication-Efficient Data Structure for Top-k and k-Select Queries
	Introduction & Results
	Outline of the Data Structure
	Initialization of the Data Structure
	Update
	Weak Select
	Strong Approximate k-Select
	One-Shot Approximate k-Select
	Top-k

	Fully Dynamic & Filter-Based Approximate Count Distinct
	Introduction & Contribution
	Count Distinct Monitoring – One Shot
	Approximate Count Distinct Monitoring

	Future Research Perspectives

