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Abstract

For the development of new piezoelectric devices computer simulations have become

an essential part of the process. In order for the computer simulations to give correct

predictions it is of grave importance to know the correct material parameter values

for the material that is simulated. However, material parameter values provided

by the manufacturer or by common characterization methods are error-prone with

errors ranging up to 20%. Many of these methods are based on a solution of an

inverse problem where simulations of the electrical impedance and measurements

thereof are compared in an iterative process to find the correct values. A common

complaint for these methods is that the sensitivity of impedance with respect to

certain material parameters is low or zero.

In this thesis the possibility to increase the sensitivity of impedance with respect

to material parameters using a triple-ring electrode setup is analyzed. Theoretical

results concerning existence, uniqueness and regularity of solutions to the governing

equations are given. The sensitivity is increased in an optimization problem where

the optimization method is supplemented with accurate derivatives computed via

Algorithmic Differentiation. Numerical results are presented. An optimized elec-

trode geometry for a triple-ring electrode piezoceramic was developed in this thesis

and is currently used for real physical measurements leading to novel material pa-

rameter characterization methods.

Keywords: Optimization, Piezoelectricity, Material Parameter Characterization,

Sensitivity, Algorithmic Differentiation





Zusammenfassung

Für die Entwicklung neuer piezoelektrischer Geräte sind Computersimulationen un-

umgänglich geworden. Damit die Simulationen korrekte Vorhersagen treffen können

ist es wichtig, dass diese mit den korrekten Materialparameterwerten des zu simulie-

renden Materials instanziiert werden. Materialparameterwerte werden üblicherweise

durch den Hersteller oder durch neuere Methoden der Materialparametercharakte-

risierung quantisiert. Diese Werte sind häufig fehleranfällig mit Fehlern von bis zu

20%. Viele dieser Methoden basieren auf der Lösung eines sogenannten Inversen Pro-

blems bei dem Messungen und Simulationen der elektrischen Impedanz iterativ ver-

glichen werden, um auf die ursächlichen korrekten Materialparameter zu schließen.

Eines der Probleme dieses Ansatzes ist jedoch, dass die Sensitivität der Impedanz

bezüglich einiger Materialparameter sehr klein oder gar Null beträgt.

In dieser Dissertation wird die Möglichkeit der Steigerung der Sensitivität bezüglich

der Materialparameter unter Verwendung von Piezokeramiken mit drei Elektroden-

ringen erörtert. Theoretische Aussagen bezüglich der Existenz, Eindeutigkeit und

Regularität von Lösungen von Partiellen Differentialgleichungen, die das Verhal-

ten der Piezokeramik vorhersagen, werden gegeben. Die Sensitivität wird in ei-

nem Optimierungsproblem gesteigert. Verwendete Optimierungsverfahren werden

durch präzise Ableitungen ergänzt welche mit Algorithmischem Differenzieren be-

rechnet wurden. Dies wird auch anhand zahlreicher numerischer Resultate darge-

stellt. Schließlich wurde im Rahmen dieser Dissertation eine optimale Geometrie für

Piezokeramiken mit drei Elektrodenringen ermittelt. Diese Piezokeramik wird zur

Zeit für reale Messungen, die zu neuen Materialparametercharakterisierungsmetho-

den führen, genutzt.

Stichworte: Optimierung, Piezoelektrizität, Materialparameterbestimmung, Sensi-

tivität, Algorithmisches Differenzieren
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1
Introduction

1.1 Piezoelectric Applications

Piezoelectric devices are an essential component for a vast number of electrical

appliances and have been hugely important for technological advancement in the

past century. Multiple piezoelectric devices can be found in almost all households

where the nearest piezoelectric device is often located only a couple of millimeters

away from a person. Examples for such appliances using piezoelectrical devices are

mobile telephones, headphones or hearing aides, electrical igniters or more critical

medical devices such as heart rate monitors or drug delivery micropumps. The

fundamental property of piezoelectric devices as used in these appliances is that they

can transform electrical energy into kinetic energy and vice versa. This property

will be further explored and explained in the upcoming chapters. In Fig. 1.1 some

popular areas of application for piezoelectrics are given.

Industrial: Engine Knock Sensors, Pressure Sensors, Sonar Equipment, Diesel Fuel Injec-
tors, Fast Response Solenoids, Optical Adjustment, Ultrasonic Cleaning, Ultrasonic Weld-
ing, Piezoelectric Motors, Stack Actuators, Stripe Actuators, Piezoelectric Relays, . . .

Medical: Ultrasound Imaging, Ultrasonic Procedures, . . .

Consumer Electronics: Piezoelectric Printers, Piezoelectric Speakers, Piezoelectric
Buzzers, Piezoelectric Humidifiers, Electronic Toothbrushes, . . .

Musical Applications: Instrument Pickups, Microphones, . . .

Defense Applications: Micro Robotics, Course-changing Bullets, . . .

Other Applications: Piezoelectric Igniters, Electricity Generation, Microelectronic Me-
chanical Systems (MEMS), Tennis Racquets, . . .

Figure 1.1: Popular uses for piezoceramics according to [4].

1



1 Introduction

1.2 Motivation and Existing Methods

When designing new piezoelectrical devices it is fundamental to be able to predict the

behavior of the device. An increasingly important means of prediction is a computer

simulation based on a simulation model. However, for the model to give valid

predictions it is essential that the material parameters of the piezoelectric material

are accurate or the device may behave differently than expected. These material

parameters are usually supplied by the manufacturer of the material in data sheets

and are oftentimes acquired by deploying variations of approaches based on the 1987

IEEE Standard On Piezoelectricity [69]. However, for piezoelectric materials some

material parameter data provided by manufacturers may be inaccurate with errors

of up to 20% [54]. Hence, for the accurate simulation of new piezoelectrical devices

it is important to also have an alternative source for these material parameters.

Let us assume we are handed a specimen of a piezoelectric ceramic e.g. by a manu-

facturing company or an entity aiming to utilize the ceramic in some fashion. Then,

in order to predict the behavior of the ceramic in its desired area of application all

relevant material parameters of this specimen are required. It is possible to directly

measure some material parameters like the size or weight of the specimen, however,

this is not possible for all parameters. Hence, if some material parameters cannot

be directly measured then they must be reconstructed in a different manner. Some

existing methods rely on determining the material parameters by solving a so-called

inverse problem. In this inverse problem the aim is to fit a measured quantity (such

as the frequency dependent electrical impedance curve) and a simulation of this

quantity varying the material parameters. If the simulated and measured curves fit

to a certain degree then it is assumed that the material parameters of the specimen

are identical to the material parameters of the simulation. However, often this may

not be the case.

We consider an example for a disk-shaped piezoelectric ceramic such as displayed

in Fig. 1.2. By varying one material parameter value in a simulation we obtain two

impedance curves as a result. These impedance curves are displayed in Fig. 1.3.

These curves were obtained by two simulations of a piezoceramic with fully covering

electrodes on top and bottom (see also Fig. 3.1 for exact setup). Furthermore, the

only difference in the simulation configurations is that in the second simulation the

2



1.2 Motivation and Existing Methods

parameter εS11 was modified to be 10% larger than in the first simulation. We note

that there is barely any difference in the impedance curve even though the material

parameters are significantly different. This poses a serious problem when trying to

identify material parameters by fitting curves: If the curves already fit with wrong

parameter values then we cannot hope to retrieve the correct values or at least have

little confidence in the result.

(a) Representation of typical disk-shaped
piezoelectric ceramic.

(b) Representation of typical disk-shaped
piezoelectric ceramic with front quarter
cut out.

Figure 1.2: Piezoelectric ceramic (brown) with attached electrodes (metallic gray)
fully covering top and bottom.

A different interpretation of this issue and a common complaint in the literature

for such parameter identification methods in piezoelectricity is the fact that some

material parameters display a sensitivity of the measurable quantity (such as the

electrical impedance) which is small or close to zero (e.g. [63]). Most authors then

exclude these material parameters from their material parameter characterization

methods as they cannot be identified reliably.

In order to overcome this issue some authors have suggested methods to increase

the sensitivity:

• Lahmer and coauthors have multiple publications in this area. In e.g. [40] the

sensitivity is increased by selecting measurement frequencies which are used

to compare the simulated and measured impedance curves as part of an opti-

mization problem. Additional in [41] the sensitivity is increased by optimizing

the excitation frequencies. These approaches use ideas from classical opti-

mal experiment design. In [39] an efficient strategy to measure the sensitivity

globally for many different material parameters is presented which could be

3



1 Introduction

50 100 150 200 250 300 350

10
2

10
3

10
4

Figure 1.3: Simulation of impedance curves for different values of εS11. It is very hard
to visually find a difference in the two curves.

combined with different local sensitivity optimization strategies.

• Work in [45] and related articles use additional ultrasonic acoustical measure-

ments to enhance the sensitivity.

• In [28] and related articles ten different specimens with varying diameter to

thickness ratios and a method based on harmonic overtones was used.

• In [7] and related articles the method of moving asymptotes (MMA) was ap-

plied to determine the material parameters based on differences in electrical

conductance and electrical resistance.

• Methods proposed by e.g. Rupitsch, Lerch, Ilg and Weiß in e.g. [61],[62] and

related articles use multiple differently shaped piezoceramic specimens and

additional measurements of the surface displacement as opposed to only using

impedance measurements. Sensitivities based on additional information such

4



1.2 Motivation and Existing Methods

as the surface displacement are generally higher than those solely based on

impedance measurements.

• The author also refers to Perez [54],[55] and the recent contribution of Rupitsch

[61] for an overview of current developments in the area of material parameter

characterizations of piezoceramics which are not necessarily directly related to

increasing the sensitivity of the measurable quantity.

Some of the previous methods raise issues: Many of the approaches mentioned utilize

multiple differently shaped specimens. However, this may lead to inconsistent data

as the material parameters could vary from specimen to specimen. Furthermore,

some of the approaches use additional surface displacement measurements. These

measurements are usually made by laser vibrometers. However, as the surface dis-

placements are comparatively small, measurements made by laser vibrometers may

be wrongfully influenced by surrounding vibrations such as cars passing by. As some

material parameters commonly have very low to zero influence small changes due to

even small measurement errors could lead to incorrectly identified material param-

eters. Furthermore, the equipment required to make such additional measurements

is often very expensive compared to equipment required for only impedance mea-

surements. Thus, this method could only be applied by entities that can afford such

equipment.

As a consequence, one goal of the joint research project MoMeCha is to identify the

material parameters of piezoceramics using only a single specimen and only using the

electrical impedance which can be measured comparatively cheaply. This is achieved

by attaching a triple-ring electrode setup onto the disk-shaped piezoelectric ceramic

as shown in section 3.2. Note that for the following it is only assumed that the

ceramic is disk-shaped. However, we do not prescribe specific ratios to the geometry

of the ceramic itself (e.g. ratio of height to width etc.). This is in contrast to e.g.

[43] where the piezoceramics are exactly multiple specifically prescribed sizes and

shapes. Furthermore, note that the assumption of disk-shaped ceramics is given

here only to reduce computation time for solving the partial differential equations.

Hence, in future it is planned to generalize the triple-ring electrode setup to a more

general electrode geometry. In Fig. 1.4 a possible parametrization for the triple-ring

setup is displayed.

5



1 Introduction

r2

r1

R = const.

r3

r4

1

Figure 1.4: Parametrization of triple-ring electrodes.

1.3 Contributions of this Thesis

In this thesis the possibility of increased sensitivity in parameter identification prob-

lems for piezoelectrics, especially for triple-ring electrode piezoceramics, using only

a single piezoceramic specimen and only impedance measurements is investigated.

Some of the novel contributions of this thesis are:

• Revised, enhanced and novel theorems and proofs for existence, uniqueness

and regularity of partial differential equations governing piezoceramics

• Computation of (mixed higher order) derivatives within the simulation tool

CFS++ using the Algorithmic Differentiation tool ADOL-C

• Modeling and parametrization of triple-ring electrode piezoceramics

• Definition, computation, comparison and analysis of accuracy of sensitivity of

impedance with respect to material parameters for triple-ring electrode piezo-

ceramics

• Thorough optimization of sensitivity of impedance

• Proof of concept results for inverse problems in piezoelectrics using enhanced

sensitivity

• A novel extension of the current triple-ring case which guarantees any pre-

scribed sensitivity

Parts of this thesis have been previously published by the author of this thesis as

the main or one of the main authors in the following [17, 29, 30, 37]. As part of this

6



1.4 Structure of this Thesis

Figure 1.5: Triple-ring electrode geometry of piezoceramic developed in this thesis.
Photograph by S. Olfert.

thesis a real triple-ring electrode piezoelectric ceramic with optimized sensitivity was

designed which is now used for real measurements (see Fig. 1.5).

1.4 Structure of this Thesis

The thesis is structured as follows. In chapter 2 we will investigate the governing

partial differential equations for piezoceramics. Therein, theoretical results con-

cerning existence, uniqueness and regularity of solutions of the governing partial

differential equations are presented. Furthermore, some aspects of finite element

methods (FEM) for solving the partial differential equations (PDE) are given.

In chapter 3 the use of triple-ring electrode piezoceramics are motivated and dis-

cussed. A method to compute the overall impedance and the derivatives thereof

is given. Moreover, a novel approach that can guarantee arbitrary sensitivity of

7



1 Introduction

impedance for triple-ring electrode piezoceramics is stated.

Chapter 4 is focused on the sensitivity of impedance with respect to the material

parameters. Here, the definition and computation of sensitivity are given. Addi-

tionally, interesting and unusual issues and solutions of computing the sensitivities

are discussed.

Chapter 5 is dedicated to the optimization of sensitivity. Here solution methods and

optimization results are given.

In chapter 6 solution methods for inverse problems in piezoelectrics are focused on.

A proof of concept solution method for material parameter characterization of triple-

ring electrode piezoelectric ceramics using the optimized sensitivity is discussed.

In the last chapter a conclusion and future research directions are stated.

1.5 Piezoelectrics From a Mathematical Point of

View

This thesis was developed within the joint research project MoMeCha, funded by the

German Research Foundation (DFG), between the research group Mathematics and

its Applications of Prof. Dr. A. Walther and the Measurement Engineering Group of

Prof. Dr.-Ing. B. Henning both at Paderborn University. Hence, this thesis is based

upon prior work especially by C. Unverzagt (see e.g. [75]). Though this work has

some similarities to work by Unverzagt, most notably the use and development of a

triple-ring electrode geometry on a piezoceramic disk as well as the electrical network

required to operate the piezoceramic, this work was developed and written from a

mathematical point of view instead of an engineering viewpoint and is independent

of work of Unverzagt.

Moreover, this work is independent with respect to most concepts, even as basic as

the definition of sensitivity itself, and results gained as well as all code developed

and used in this thesis unless stated otherwise.

8



2
Partial Differential Equations of

Piezoelectricity

2.1 Physical Background, Notation, and Derivation

In this section the fundamental piezoelectric equations are derived from fundamental

physical laws and the notation used is explained. These equations have been derived

by numerous authors in numerous publications and are by no means novel. However,

an introduction to the topic and an explanation of the notation are essential for a

better understanding of later chapters.

As mentioned in the introduction, the piezoelectrical effect relates mechanical energy

with electrical energy. However, it is also true that temperature plays an important

role. For example, the pyroelectrical effect converts thermal energy into electrical

energy. For the applications considered here there is little to no change in tempera-

ture. Hence, the pyroelectrical effect can be neglected for this thesis. Similarly, other

temperature related effects such as the piezocaloric effect, the thermoelastic effect,

thermal expansion, thermoelectricity, and the electrocaloric effect are neglected.

This is done so to keep the equations as simple as possible without too much loss

of generality, and later on to keep the number of variables in the inverse problem

as low as possible. However, the approach of this thesis could easily be extended to

also incorporate temperature dependent material parameters. An overview over the

related effects is given in the so-called Heckmann’s diagram, see Fig. 2.1.

In this thesis we will not go into the history of piezoelectricity. However, a compelling

article about the history of piezoelectricity can be found in [47].

9



2 Partial Differential Equations of Piezoelectricity

The following is based on [34, 35, 38, 43, 69] and also recently [74].

Following [34], the mechanical and electrical quantities are related to each other by

thermodynamic equilibrium. According to [60, p. 207], the first law of thermody-

namics states ‘that the time rate of change of the total energy is equal to the sum

of the rate of work done by the external forces and the change of heat content per

unit time’. Hence, with heat change dq, change of total energy dU and work dw one

gets

dq = dU − dw ⇔ dU = dq + dw.

For this thesis the temperature is assumed to be constant. Thus, dq = 0 and thereby

dU = dw holds. As the temperature is constant, the work in piezoelectric solids is

given by the mechanical work dwmech and the electric work welec, hence

dw = dwmech + dwelec.

The work is given [46, 34] by the sum of work per unit volume done by the stress

σij and the electric work caused by an electric field En

dU = dwmech + dwelec = σij dSij + En dDn

where S is the mechanical strain and D the electric induction.

According to [34], in practice it is easier to work with σ and E than with S and D.

Therefore, a Legendre transformation is performed to obtain the Gibbs free energy

density G

G = U − σijSij − EnDn

with the total differential [25, p. 11]

dG = −Sij dσij −Dn dEn.

Considering the electrical field En to be constant (and thus dEn = 0) gives the

relationship

Sij = − ∂G

∂σij

∣∣∣∣
E=c

(2.1)

10
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Figure 2.1: Heckmann’s diagram showing the relations of physical quantities (cf.
[72]). Adaptation based on [68]. As displayed in gray, due to low exci-
tation loads we can neglect thermal effects in this work.

and conversely for constant σij one obtains

Dn = − ∂G

∂En

∣∣∣∣
σ=c

(2.2)

where the notation X|y=c refers to the value of X while keeping the variable y

constant. Following the argument in [38, p. 10, p. 108], a truncated Taylor series

expansion of the functions Sij(σkl, Ek) and Di(σkl, Ek) gives

Sij = Sij(σ
0
kl, E

0
k) +

∂Sij
∂σkl

∣∣∣∣
E=c

(σkl − σ0
kl) +

∂Sij
∂Ek

∣∣∣∣
σ=c

(Ek − E0
k) (2.3)

and analogously

Dn = Dn(σ0
kl, E

0
k) +

∂Dn

∂σkl

∣∣∣∣
E=c

(σkl − σ0
kl) +

∂Dn

∂Ek

∣∣∣∣
σ=c

(Ek − E0
k). (2.4)

11



2 Partial Differential Equations of Piezoelectricity

Without loss of generality let σ0
kl = 0, E0

k = 0 and S(σ0
kl, E

0
k) = 0, Dn(σ0

kl, E
0
k) = 0.

Now, Eq. (2.1) and Eq. (2.2) are substituted in the last equations in order to obtain

Sij =
∂2G

∂σij∂σkl

∣∣∣∣
E=c

σkl︸ ︷︷ ︸
Hook’s law

+
∂2G

∂Ek∂σij

∣∣∣∣
σ=c

Ek︸ ︷︷ ︸
Inverse piezoelectric effect

,

Dn = − ∂2G

∂En∂σkl

∣∣∣∣
E=c

σkl︸ ︷︷ ︸
Piezoelectric effect

− ∂2G

∂En∂Ek

∣∣∣∣
σ=c

Ek︸ ︷︷ ︸
Dielectric behavior

.

These second order derivatives define the material tensors [34]: sEijkl the mechani-

cal compliance tensor given by Hook’s law [50, p. 130] at a constant electric field

intensity E

sEijkl :=
∂2G

∂σij∂σkl

∣∣∣∣
E=c

=
∂Sij
∂σkl

∣∣∣∣
E=c

,

εσnk the constitutive relation for dielectric materials at constant mechanical stress σ

εσnk := − ∂2G

∂En∂Ek

∣∣∣∣
σ=c

= − ∂Dn

∂Ek

∣∣∣∣
σ=c

,

and the piezoelectric coupling between mechanical and electrical quantities

dnij := − ∂Sij
∂En

∣∣∣∣
σ=c

= − ∂2G

∂En∂σij

∣∣∣∣
σ=c

= − ∂2G

∂En∂σij

∣∣∣∣
E=c

= − ∂Dn

∂σij

∣∣∣∣
E=c

where subcripts indicate which entity is held constant. This gives the so-called

d-form of the linear piezoelectric relations:

Sij = sEijklσkl + dkijEk

Di = diklσkl + εσikEk
(2.5)

The occurring tensors can make the equations seem harder to handle than they

actually are. In fact, the occurring tensors are symmetrical.

Thus this structure can be exploited by using Voigt notation [77] to reorganise the

equations in matrix-vector form. In Voigt notation the indices of the tensors are

reordered and combined using occurring symmetry, e.g. σij = σji, i ∈ {1, 2, 3}. In

Table 2.1 the required substitutions are displayed. Hence, e.g. cE1123 can be rewritten

12



2.1 Physical Background, Notation, and Derivation

Tensor indices ij Replacement p
11 1
22 2
33 3

23 or 32 4
31 or 13 5
12 or 21 6

Table 2.1: Voigt Notation

as cE14.

The d-form can thus be reformulated using Voigt notation

Sp = sEpqσq + dkpEn

Dn = dnqσq + εσnkEk

or more compact in matrix/vector notation where ·T denotes transposition

S = sEσ + dTE

D = dσ + εσE.
(2.6)

By rearranging terms in Eq. (2.6) this d-form can be transformed into a variety

of different forms [25, p. 16], e.g. the h-form or the g-form, but most notably the

e-form

σ = cES − eTE (2.7)

D = eS + εSE (2.8)

where the following relations [34, p. 378] were used for the transformation

sE =
(
cE
)−1

, d = e
(
cE
)−1

, εσ = εS + e
(
cE
)−1

eT .

The e-form description and its parameters cE, e and εS are used for the remainder

of this work.

13



2 Partial Differential Equations of Piezoelectricity

Definition 2.1. The real-valued material parameters cE, e, εS are said to fullfill

symmetry and non-negativity conditions, respectively, if

cEijkl = cEjikl = cEklij, εSij = εSji, eijk = ejik

and

∃c0, ε0 > 0 ∀1 ≤ i, j, k, l ≤ 3 : cEijklXijXkl ≥ c0X
2
ij, εSijyiyj ≥ ε0y

2
i

for tensorial quantities X and y where Einstein summation convention is used.

We will assume the material parameters are given in the following matrix form and

with the following sparsity pattern

cE :=



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 1
2
(c11 − c12)


∈ R6×6

εS :=

 ε11 0 0

0 ε11 0

0 0 ε33

 ∈ R3×3

e :=

 0 0 0 0 e15 0

0 0 0 e15 0 0

e13 e13 e33 0 0 0

 ∈ R6×3.

This assumption is said to be correct for many piezoelectric ceramics [34] and cor-

responds to the assumption of a transversely isotropic solid [11].

Remark 2.2. By the non-negativity conditions 2.1 it also follows that cE and εS

have (strictly) positive eigenvalues.

14



2.1 Physical Background, Notation, and Derivation

Following e.g. [43], using Newton’s second law, Gauss’ law and Faraday’s law the

e-form can be transformed into a partial differential equation: Let

B :=



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0


with x, y, z referring to Cartesian coordinates. By linearized elasticity, the me-

chanical strain S can be computed as the symmetric gradient of the mechanical

displacement u ∈ R3:

S =



S1

S2

S3

S4

S5

S6


=



Sxx

Syy

Szz

2Syz

2Sxz

2Sxy


= Bu

Newton’s second law of motion for mechanical behavior [60] is given by

BTσ = ρ
∂u

∂t2
. (2.9)

Piezoelectric ceramics are insulating. Gauss’ law [50] gives

∇ ·D = 0. (2.10)

By Faraday’s law, the electrical field E is given by the negative gradient of the

electrical potential φ, hence

E = −∇φ. (2.11)
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2 Partial Differential Equations of Piezoelectricity

These physical laws can be now processed in Eq. (2.7)

σ = cES − eTE

⇒BTσ = BT
(
cES − eTE

)
= ρ

∂u

∂t2
= ρü

⇒BT
(
cEBu+ eT∇φ

)
= ρü

and Eq. (2.8)

D = eS + εSE

⇒0 = ∇ ·D = ∇ ·
(
eS + εSE

)
⇔0 = ∇ ·

(
eBu− εS∇φ

)
.

Consequently:

ρü− BT
(
cEBu+ eT∇φ

)
= 0

∇ ·
(
eBu− εS∇φ

)
= 0

(2.12)

However, these equations are not yet suitable to describe real physical behavior.

In real physical applications friction is expected. Hence, the amplitude of φ and u

should decline in time. This is achieved by integrating a Rayleigh damping model

[23],[64] to the first equation ρü−BT
(
cEBu+ eT∇φ

)
= 0 by adding two parameters

α and β and one further term for each parameter to the equation. Thus, the equation

is finally modified to

ρü+ αρu̇− BT
(
cEBu+ βcEBu̇+ eT∇φ

)
= 0

∇ ·
(
eBu− εS∇φ

)
= 0.

(2.13)

Remark 2.3. Adding second, third or even higher order terms to the truncated

Taylor series Eq. (2.3) and Eq. (2.4) gives a nonlinear piezoelectric model, see e.g.

[38, p. 108]. In this case, instead of only being constants one can interpret the

material parameters to be functions depending e.g. on strain S and the electric field

E, see e.g. [67, 24]. The possibility that the material parameters could be functions

instead of constants is of special significance for the instrumentation of Algorithmic
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2.2 Weak Formulation, Existence, Uniqueness, and Regularity of Solutions

Differentiation into the simulation code CFS++ as will be pointed out in chapter

4. The extension of the work of this thesis to a generalized model is of interest for

future undertakings.

2.2 Weak Formulation, Existence, Uniqueness, and

Regularity of Solutions

The following considerations were developed in cooperation with V. Schulze at the

research group ‘Mathematics and its Applications’.

Before we can begin to solve any partial differential equation we must first establish

an exact setup - the geometry Ω, the boundary ∂Ω, the boundary conditions, and

initial values of the partial differential equations in question. Furthermore, the

notation of the remainder of this chapter is introduced.

Setup, Notation and Weak Formulation

We consider the case of a mechanically unclamped piezoceramic which is excited

by prescribing a voltage on part of the boundary. Let Ω ⊆ R3 be an open domain

describing the piezoelectric ceramic and let ∂Ω =: Γ be the nonempty boundary of

Ω. The boundary is divided into nonempty, disjunct, covering subsets of Γ (see also

Fig. 2.2) which are assumed to have a positive 2D measure. Let Γe be the section of

the boundary which is electrically excited, Γg the section of the boundary which is

grounded, and Γr = Γ \ (Γe ∪ Γg) the remaining boundary section. For the reader’s

convenience the usual definitions of common function spaces which will be required

later on are stated here. Let d, k ∈ N be integers and let α be a multiindex. Then

17



2 Partial Differential Equations of Piezoelectricity

Figure 2.2: Domain and boundaries of a piezoceramic.

we define

Ck(Ω) :=
{
σ : Ω→ Rd : σ is k-times continuously differentiable

}
L2(Ω) :=

{
σ : Ω→ Rd : ‖σ‖2

L2(Ω):=

∫
Ω

σTσ dΩ <∞
}

H1(Ω) :=
{
σ : Ω→ R : ‖σ‖2

H1(Ω):= ‖σ‖2
L2(Ω)+‖∇σ‖2

L2(Ω)<∞
}

H1
0 (Ω) :=

{
σ ∈ H1(Ω) : σ|Γ = 0 with ‖σ‖H1

0 (Ω):= ‖σ‖H1(Ω)

}
H1

0,Γ(Ω) :=
{
σ1 + σ2 : σ1 ∈ H1

0 (Ω) and σ2 ∈ H1(Ω)
}

H1
B(Ω) :=

{
σ : Ω→ R3 : ‖σ‖2

H1
B(Ω):= ‖σ‖2

L2(Ω)+‖Bσ‖2
L2(Ω)<∞

}
H−1(Ω) :=

{
f continuous linear functional on H1

0 (Ω) :

sup
‖σ‖

H1
0(Ω)
≤1

|〈f, σ〉| <∞
}
.

Let σ : [0, T ]→ X be Bochner-measurable. Then

L2(0, T ;X) :=

{
σ : [0, T ]→ X :

∫
[0,T ]

‖σ(t)‖2
X dt <∞

}

18



2.2 Weak Formulation, Existence, Uniqueness, and Regularity of Solutions

L∞(0, T ;X) :=

{
σ : [0, T ]→ X : ess sup

0≤t≤T
‖σ(t)‖X<∞

}
H1(0, T ;X) :=

{
σ : [0, T ]→ X :

∫
[0,T ]

‖σ(t)‖2
X+‖σ̇(t)‖2

X dt <∞
}

H2(Ω) :=
{
σ : Ω→ R3 :

‖σ‖H2(Ω):=

∑
|α|≤2

‖D(α)σ‖L2(Ω)

1/2

<∞
}
.

We denote derivatives with respect to time by the dot symbol e.g. σ̇ and derivatives

with respect to space by the nabla or B symbol e.g. ∇σ or Bσ. All derivatives in

the above are understood in the distributional sense. In addition, the dual space of

a Hilbert space X is denoted by X ′. In particular, H−1(Ω) denotes the dual space

of H1
0 (Ω). Note that in order to simplify the notation superscripts indicating the

dimension of u or Bu, which are 3 and 6 respectively, are omitted. This is reasonable

as the vectorial scalar product inside
∫

Ω
σTσ dΩ always returns a scalar no matter

what dimensions σ has.

Let ~n := (nx, ny, nz) be the normal vector and

N :=



nx 0 0

0 ny 0

0 0 nz

0 nz ny

nz 0 nx

ny nx 0


.

The three dimensional transient linear piezoelectric equations with Rayleigh damp-

ing parameters α, β > 0 chosen sufficiently large (so that the PDE is parabolic)

and density ρ > 0 describing the mechanical displacement u ∈ R3 and the electrical

19



2 Partial Differential Equations of Piezoelectricity

potential φ ∈ R for given boundary conditions are stated as:

ρü(t) + αρu̇(t)− BT
(
cEBu(t) + βcEBu̇(t) + eT∇φ(t)

)
= 0 in Ω× [0, T ]

−∇ ·
(
eBu(t)− εS∇φ(t)

)
= 0 in Ω× [0, T ]

φ(t) = 0 on Γg × [0, T ]

φ(t) = φe(t) on Γe × [0, T ]

~n ·
(
eBu(t)− εS∇φ(t)

)
= 0 on Γr × [0, T ]

N T
(
cEBu(t) + βcEBu̇(t) + eT∇φ(t)

)
= 0 on ∂Ω× [0, T ]

u(0) = u0

u̇(0) = u1

The weak form of the equations above can be obtained [38] by testing with appropri-

ate functions v ∈ R3 (for the first line) and w ∈ R (for the second line), integration

by parts and using boundary conditions:∫
Ω

(
BTσ

)T
v dΩ = −

∫
Ω

σTBv dΩ +

∫
∂Ω

(
N Tσ

)T
v dΩ

First, we use a Dirichlet lift ansatz to homogenize the Dirichlet boundary condition

for φ(t): Let t ∈ [0, T ] and let χ ∈ H1(Ω) where χ|Γg= 0 and χ|Γe= 1. Such a χ

exists if we assume that Ω is at least a Lipschitz domain. Let φ(t) consist of two

parts φ(t) = φ0(t) + φφe(t) where φ0(t) ∈ H1
0 (Ω) and φφe(t) ∈ H1(Ω). We then

rewrite φφe(t) = φe(t)χ. We now set φ0(t) := φ(t) − φe(t)χ. As φe(t) is a given

value, φe(t)χ can be taken out of the left hand side of the weak form and added to

the right hand side. The weak form of the piezoelectric system is given by

∀t ∈ [0, T ] a.e., ∀(v, w) ∈ H1
B(Ω)×H1

0 (Ω) :∫
Ω

ρüTv dΩ + α

∫
Ω

ρu̇Tv dΩ +

∫
Ω

(
cEBu

)T Bv dΩ + β

∫
Ω

(
cEBu̇

)T Bv dΩ

+

∫
Ω

(
eT∇φ0

)T Bv dΩ +

∫
Ω

(eBu)T ∇w dΩ−
∫

Ω

(
εS∇φ0

)T ∇w dΩ

=φe
∫

Ω

−(eT∇χ)TBv + (εS∇χ)T∇w dΩ.

(2.14)
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Note that in light of [15, Thm. 2 in section 5.9.2] it makes sense to demand u(0) = u0

and u̇(0) = u1. See also the only remark in [15, section 7.2.1].

Existence, Uniqueness and Regularity of Solutions

Before we attempt to show existence, uniqueness and regularity of solutions some

additional tools are required:

Lemma 2.4. (Young inequality)

Let 1 < p, q <∞, 1
p

+ 1
q

= 1. Then for a, b > 0 the following inequality holds:

ab ≤ ap

p
+
bq

q

Proof. See [15, Appendix B.2].

Lemma 2.5. (Hölder inequality)

Let 1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1. Then for u ∈ Lp(Ω), v ∈ Lq(Ω) the following inequality

holds: ∫
Ω

|uv| dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω)

Proof. See [15, Appendix B.2].

Remark 2.6. The latter two inequalities are especially true for p = q = 2. In that

case the last inequality is also known as Cauchy–Schwarz (CS) inequality.

Lemma 2.7. (Gronwall inequality, integral form)

a) Let η : [0, T ] → R≥0 be a non-negative, summable function on [0, T ], which

satisfies for almost every t the integral inequality

η(t) ≤ C1

∫ t

0

η(s) ds+ C2

for constants C1, C2 ≥ 0. Then

η(t) ≤ C2

(
1 + C1te

C1t
)
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2 Partial Differential Equations of Piezoelectricity

for a.e. 0 ≤ t ≤ T .

b) In particular, if

η(t) ≤ C1

∫ t

0

η(s)ds

for a.e. t ∈ [0, T ], then

η(t) = 0 a.e.

Proof. See [15, Appendix B.2].

Lemma 2.8. .

Let u ∈ C1([0, T ]) and t ∈ [0, T ]. Then the following holds:

‖u(t)‖2
L2(Ω)≤ 2‖u(0)‖2

L2(Ω)+2T

∫ t

0

‖u̇(s)‖2
L2(Ω) ds.

Proof. This inequality can be seen via Young and Cauchy–Schwarz inequalities.

Remark 2.9. (Sufficiently smooth boundary)

We say the boundary ∂Ω is sufficiently smooth if it permits application of the trace

theorem (cf. [15]). Thus, a C1−boundary is sufficient.

However, it is possible to utilize a variation of the trace theorem under less strict

requirements (cf. [12]). We note that the boundary for our specific application (see

Fig. 2.2) satisfies the special Lipschitz condition stated in Definition 5 of [12] and

thus it appears that it can also be considered sufficiently smooth.

A proof for the following theorem was first given in [38]. The proof given there is also

heavily oriented on work of [2] which itself is based on [49]. Here we present a proof

with similar essential steps as in the other given proofs, but with more technical

details and necessary exact descriptions. In order to overcome these issues a refined

version is presented. The proof follows the usual guideline as seen for many partial

differential equations (e.g. [15, p. 353]): We get existence and uniqueness of a weak

solution by the usual procedure:
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2.2 Weak Formulation, Existence, Uniqueness, and Regularity of Solutions

1. Discretization via Galerkin approximation of infinite dimensional function

spaces

2. Energy estimates via Gronwall inequality in discretized space which provide

finiteness of the discretized solution

3. Weak limit of discretized solution provides existence of a weak solution in

infinite dimensional function space

4. Uniqueness of the solution is shown by applying estimates to the difference

w := w1 − w2 of two solutions w1 and w2

Theorem 2.10.

Let Ω ⊆ R3 be a bounded domain with sufficiently smooth boundary as specified in

Remark 2.9 and let the real valued material parameters cE, e and εS satisfy the non-

negativity conditions specified in Def. 2.1. The Rayleigh coefficients α and β are

assumed to be non-negative. Let T > 0 and ρ > 0.

Then there exists a C > 0 such that for any u0 ∈ H1
B(Ω),u1 ∈ L2(Ω) and φe ∈

H1(0, T ;H1/2(Γe)) there exists a unique solution

(u, φ) ∈ L∞(0, T ;H1
B(Ω))× L∞(0, T ;H1

0,Γ(Ω)) (2.15)

with

u̇ ∈ L∞(0, T ;L2(Ω)) and ü ∈ L2(0, T ; (H1
B(Ω))′) (2.16)

to Eq. (2.14) satisfying the initial conditions

u(0) = u0, u̇(0) = u1 on Ω

and the following estimate holds:

‖u‖L∞(0,T ;H1
B(Ω))+‖u̇‖L∞(0,T ;L2(Ω))+‖ü‖L2(0,T ;(H1

B(Ω))′)+‖φ‖L∞(0,T ;H1
0,Γ(Ω))

≤C
(
‖u0‖H1

B(Ω)+‖u1‖L2(Ω)+‖φe‖H1(0,T ;H1/2(Γe))

)
.

(2.17)

Proof. Note that many concepts of this proof are taken from [15, chapter 7] and

information regarding involved spaces can be found in [1].
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2 Partial Differential Equations of Piezoelectricity

In the following constants denoted by the letters C or C̃ are used. Unless explicitly

specified otherwise we note that all these constants are positive Ci > 0 , i ≥ 1.

Weak solutions are functions u, u̇, ü and φ0 as in (2.15) and (2.16) where φ = φ0+φφe

such that for almost all t ∈ [0, T ] for all (v, w) ∈ H1
B(Ω) × H1

0 (Ω) the following

equation holds:

〈ρü(t), v〉+ α 〈ρu̇(t), v〉+
〈
cEBu(t),Bv

〉
+ β

〈
cEBu̇(t),Bv

〉
+
〈
eT∇φ0(t),Bv

〉
+ 〈eBu(t),∇w〉 −

〈
εS∇φ0(t),∇w

〉
= 〈f(t), v〉+ 〈g(t), w〉

(2.18)

with

〈f(t), v〉 := −φe(t)
∫

Ω

(eT∇χ)TBv dΩ

and

〈g(t), w〉 := φe(t)

∫
Ω

(εS∇χ)T∇w dΩ.

Note that by Riesz representation theorem there exists a unique representation for

the latter functionals as an inner product, i.e. 〈f, ·〉 and 〈g, ·〉. As is common in

the field of partial differential equation for convenience we will also use the same

symbols f and g to refer to the Riesz-representative as well as the functionals 〈f, ·〉
and 〈g, ·〉. Furthermore, we remember that χ ∈ H1(Ω) and that εS, e are con-

stant. The integrals
∫

Ω
(eT∇χ)TBv dΩ and

∫
Ω

(εS∇χ)T∇w dΩ are finite, their values

c1(Ω), c2(Ω) < ∞ depend e.g. on Ω but do not depend on t. Thus, by integrating

this constant value over time we can estimate the Bochner-space norm of f by

‖f‖H1(0,T ;(H1
B(Ω))′)≤ c1(Ω)‖φe‖H1(0,T )

and analogously we get

‖g‖H1(0,T ;H−1(Ω))≤ c2(Ω)‖φe‖H1(0,T ).

Phase 1: Galerkin approximation

The weak form is tested with test functions vj ∈ H1
B(Ω) and wj ∈ H1

0 (Ω), j ∈ N,
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with

u(t) ≈ um(t) =
m∑
j=1

ujm(t)vj

and

φ0(t) ≈ φm(t) =
m∑
j=1

φjm(t)wj,

where ‘≈’ is to be understood in the sense of an orthogonal projection in the ap-

propriate spaces. The finite dimensional spaces spanned by the test functions are

defined as

Vm := span{v1, . . . , vm} and Wm := span{w1, . . . , wm}.

Note that we can assume the dimensions dim(Vm) = dim(Wm) = m, for Vm in each

vectorial component, as the test functions can be selected to be linearly indepen-

dent. Furthermore, the functions can be chosen such that
⋃∞
m=1 Vm = H1

B(Ω) and⋃∞
m=1Wm = H1

0 (Ω).

Then via standard theory for ordinary differential equations (see e.g. [15] or [44])

for all m ∈ N and for all (vm, wm) ∈ Vm ×Wm there exists a unique solution

(um, φm) ∈ C2([0, T ];Vm)× C([0, T ];Wm)

to the discretized version of Eq. (2.18) that fulfills the initial conditions um(0) =

(u0)m, u̇m(0) = (u1)m. For more information on Sobolev spaces involving time see

also [15, section 5.9.2].

Phase 2: Energy estimates

The aim of this phase is to use Gronwall inequality to show an energy estimate from

which the finiteness of the finite dimensional solutions

(um(t), φm(t)) ∈ L∞(0, T ;H1
B(Ω))× L∞(0, T ;H1

0 (Ω))

u̇m ∈ L∞(0, T ;L2(Ω)), üm ∈ L2(0, T ; (H1
B(Ω))′)

can be deduced: Let

η(t) :=
(
‖u̇m(t)‖2

L2(Ω)+‖um(t)‖2
H1
B(Ω)+‖φm(t)‖2

H1
0 (Ω)

)
.
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2 Partial Differential Equations of Piezoelectricity

In order to use Gronwall inequality we must show that there are constants p, q ≥ 0

such that η(t) ≤ p
∫ t

0
η(s) ds+q holds. If this condition is true, then it can be shown

that

‖u̇m(t)‖2
L2(Ω)+‖um(t)‖2

H1
B(Ω)+‖φm(t)‖2

H1
0 (Ω)

≤
(
1 + ptept

) (
‖u̇m(0)‖2

L2(Ω)+‖um(0)‖2
H1
B(Ω)+‖φm(0)‖2

H1
0 (Ω)

+ ‖f‖2
L2(0,T ;(H1

B(Ω))′)+‖g‖2
H1(0,T ;H−1(Ω))

) (2.19)

holds almost everywhere in [0, T ]. Thus, this must also be true for the essential

supremum over 0 ≤ t ≤ T and we will get finiteness in the L∞(0, T ;X) norm for

the appropriate sub-spaces X. In order to show the requirement we consider the

following:

First, the discretized version of the weak form Eq. (2.18) is supposed to hold for all

test functions (vm, wm). Thus, it should also hold for (u̇m(t), 0):

〈ρüm(t), u̇m(t)〉+ α 〈ρu̇m(t), u̇m(t)〉+
〈
cEBum(t),Bu̇m(t)

〉
+β
〈
cEBu̇m(t),Bu̇m(t)

〉
+
〈
eT∇φm(t),Bu̇m(t)

〉
= 〈f(t), u̇m(t)〉

By transposing the inner product and direct computation it is easy to see that one

can swap the placement of constant scalars or matrices such as ρ, εS, cE etc. (which

are symmetric) in this bilinear form, e.g. the following holds:

〈
cEBum(t),Bu̇m(t)

〉
=
〈
(cE)TBu̇m(t),Bum(t)

〉
=
〈
cEBu̇m(t),Bum(t)

〉
Thus, by bilinearity of the inner product

2
〈
cEBu̇m(t),Bum(t)

〉
=

d

dt

〈
cEBum(t),Bum(t)

〉
.

Hence, the above equation simplifies to

1

2

d

dt

(
〈ρu̇m(t), u̇m(t)〉+

〈
cEBum(t),Bum(t)

〉)
+ α 〈ρu̇m(t), u̇m(t)〉

+β
〈
cEBu̇m(t),Bu̇m(t)

〉
+
〈
eT∇φm(t),Bu̇m(t)

〉
= 〈f(t), u̇m(t)〉 .

(2.20)

Now, taking into account that the test functions vm, wm do not depend on time t
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the weak form Eq. (2.18) is first differentiated with respect to t and it is taken into

account that v̇m, ẇm ≡ 0.

Finally, the resulting equation is tested with (0, φm(t)):

〈eBu̇m(t),∇φm(t)〉 − 1

2

d

dt

〈
εS∇φm(t),∇φm(t)

〉
= 〈ġ(t), φm(t)〉 (2.21)

A subtraction of Eq. (2.20) and Eq. (2.21) gives

1

2

d

dt

(
〈ρu̇m(t), u̇m(t)〉+

〈
cEBum(t),Bum(t)

〉
+
〈
εS∇φm(t),∇φm(t)

〉)
+α 〈ρu̇m(t), u̇m(t)〉+ β

〈
cEBu̇m(t),Bu̇m(t)

〉
= 〈f(t), u̇m(t)〉 − 〈ġ(t), φm(t)〉

(2.22)

The last equation Eq. (2.22) is integrated with respect to t.

Fl(t) :=
(
〈ρu̇m(t), u̇m(t)〉+

〈
cEBum(t),Bum(t)

〉
+
〈
εS∇φm(t),∇φm(t)

〉)
+2α

∫ t

0

〈ρu̇m(s), u̇m(s)〉 ds+ 2β

∫ t

0

〈
cEBu̇m(s),Bu̇m(s)

〉
ds

=
(
〈ρu̇m(0), u̇m(0)〉+

〈
cEBum(0),Bum(0)

〉
+
〈
εS∇φm(0),∇φm(0)

〉)
+2

∫ t

0

〈f(t), u̇m(s)〉 ds− 2

∫ t

0

〈ġ(t), φm(s)〉 ds =: Fr(t)

(2.23)

For convenience the left hand side of Eq. (2.23) is referred to as Fl(t) and the right

hand side is referred to as Fr(t). Hence, in short one can write

Fl(t) = Fr(t).

We now aim to use this equation to show that the requirements for Gronwall in-

equality are met. We start by showing that the left hand side Fl(t) has a lower

bound. With λ1,mech the smallest eigenvalue of cE (which is strictly positive) one
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estimates∫
Ω

(Bum(t))T cEBum(t) dΩ ≥ λ1,mech

∫
Ω

(Bum(t))T Bum(t) dΩ

= λ1,mech‖Bum(t)‖2
L2(Ω)

= λ1,mech

(
‖um(t)‖2

H1
B(Ω)−‖um(t)‖2

L2(Ω)

)
.

(2.24)

With λ1,elec the smallest eigenvalue of εS (which is strictly positive) one estimates∫
Ω

(∇φm(t))T εS∇φm(t) dΩ ≥ λ1,elec

∫
Ω

(∇φm(t))T ∇φm(t) dΩ

= λ1,elec‖∇φm(t)‖2
L2(Ω)

From Poincaré inequality (see e.g. [66]) we obtain c1, c2 ∈ R such that∫
Ω

(∇φm(t))T εS∇φm(t) dΩ ≥ λ1,elec‖∇φm(t)‖2
L2(Ω)

=(1 + c2)c1‖∇φm(t)‖2
L2(Ω)= c1

c2‖∇φm(t)‖2
L2(Ω)︸ ︷︷ ︸

≥‖φm(t)‖2
L2(Ω)

+‖∇φm(t)‖2
L2(Ω)


≥Celec‖φm(t)‖2

H1
0 (Ω).

(2.25)

By non-negativity of ρ, α, β and the two inequalities Eq. (2.24) and Eq. (2.25) one

can now estimate

C1

(
‖u̇m(t)‖2

L2(Ω)+‖um(t)‖2
H1
B(Ω)+‖φm(t)‖2

H1
0 (Ω)−cmech‖um(t)‖2

L2(Ω)

)
≤ Fl(t) (2.26)

with a positive constant C1 > 0. Furthermore, by the inequalities Eq. (2.24) and

Eq. (2.25) and Cauchy–Schwarz and Young inequalities the right hand side Fr(t)
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2.2 Weak Formulation, Existence, Uniqueness, and Regularity of Solutions

can be estimated from above with c, c̃ > 0:

Fr(t) = 〈ρu̇m(0), u̇m(0)〉︸ ︷︷ ︸
=ρ‖u̇m(0)‖2

L2(Ω)

+
〈
cEBum(0),Bum(0)

〉︸ ︷︷ ︸
≤c‖um(0)‖2

H1
B(Ω)

+
〈
εS∇φm(0),∇φm(0)

〉︸ ︷︷ ︸
≤c̃‖φm(0)‖2

H1
0(Ω)

+2

∫ t

0

〈f(s), u̇m(s)〉 ds− 2

∫ t

0

〈ġ(s), φm(s)〉 ds

≤Ĉ2

(
‖ u̇m(0)‖2

L2(Ω)+‖um(0)‖2
H1
B(Ω)+‖φm(0)‖2

H1
0 (Ω)

)
+2

∫ t

0

|〈f(s), u̇m(s)〉| ds+ 2

∫ t

0

|〈ġ(s), φm(s)〉| ds

≤Ĉ2

(
‖ u̇m(0)‖2

L2(Ω)+‖um(0)‖2
H1
B(Ω)+‖φm(0)‖2

H1
0 (Ω)

)
+

∫ t

0

‖um(s)‖2
H1
B(Ω)+‖u̇m(s)‖2

L2(Ω)+‖φm(s)‖2
H1

0 (Ω)︸ ︷︷ ︸
≥0

ds

+2‖f‖2
L2(0,T ;(H1

B(Ω))′)+2‖g‖2
H1(0,T ;H−1(Ω))

Hence, we get

Fr(t) ≤C2

(
‖u̇m(0)‖2

L2(Ω)+‖um(0)‖2
H1
B(Ω)+‖φm(0)‖2

H1
0 (Ω)

)
+

∫ t

0

(
‖u̇m(s)‖2

L2(Ω)+‖um(s)‖2
H1
B(Ω)+‖φm(s)‖2

H1
0 (Ω)

)
ds

+‖f‖2
L2(0,T ;(H1

B(Ω))′)+‖g‖2
H1(0,T ;H−1(Ω))

(2.27)

with a positive constant C2 > 0. As Fl(t) = Fr(t) it is now clear that

C1

(
‖u̇m(t)‖2

L2(Ω)+‖um(t)‖2
H1
B(Ω)+‖φm(t)‖2

H1
0 (Ω)−cmech‖um(t)‖2

L2(Ω)

)
≤C2

(
‖u̇m(0)‖2

L2(Ω)+‖um(0)‖2
H1
B(Ω)+‖φm(0)‖2

H1
0 (Ω)

)
+

∫ t

0

(
‖u̇m(s)‖2

L2(Ω)+‖um(s)‖2
H1
B(Ω)+‖φm(s)‖2

H1
0 (Ω)

)
ds

+‖f‖2
L2(0,T ;(H1

B(Ω))′)+‖g‖2
H1(0,T ;H−1(Ω)).

(2.28)

Utilizing Lemma 2.8 we can remove cmech‖um(t)‖2
L2(Ω) from the left hand side of the
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2 Partial Differential Equations of Piezoelectricity

inequality to obtain:

C1

(
‖u̇m(t)‖2

L2(Ω)+‖um(t)‖2
H1
B(Ω)+‖φm(t)‖2

H1
0 (Ω)

)
≤C3

(
‖u̇m(0)‖2

L2(Ω)+‖um(0)‖2
H1
B(Ω)+‖φm(0)‖2

H1
0 (Ω)

)
+C4

∫ t

0

(
‖u̇m(s)‖2

L2(Ω)+‖um(s)‖2
H1
B(Ω)+‖φm(s)‖2

H1
0 (Ω)

)
ds

+‖f‖2
L2(0,T ;(H1

B(Ω))′)+‖g‖2
H1(0,T ;H−1(Ω))

(2.29)

where C4 > 0 now also depends on the fixed value T .

Let

η(t) := ‖u̇m(t)‖2
L2(Ω)+‖um(t)‖2

H1
B(Ω)+‖φm(t)‖2

H1
0 (Ω)

and let

C̃2 :=
1

C1

(
C3η(0) + ‖f‖2

L2(0,T ;(H1
B(Ω))′)+‖g‖2

H1(0,T ;H−1(Ω))

)
≥ 0.

Then the above inequality simplifies to

η(t) ≤ C4

C1

∫ t

0

η(s) ds+ C̃2.

Hence, all requirements for Gronwall inequality have been shown to hold and it can

now be safely applied and the result simplified to:

‖u̇m(t)‖2
L2(Ω)+‖um(t)‖2

H1
B(Ω)+‖φm(t)‖2

H1
0 (Ω)

≤
(
C̃3

C1

+
C4C̃3

C2
1

te
C4
C1
t

)(
‖u̇m(0)‖2

L2(Ω)+‖um(0)‖2
H1
B(Ω)+‖φm(0)‖2

H1
0 (Ω)

+ ‖f‖2
L2(0,T ;(H1

B(Ω))′)+‖g‖2
H1(0,T ;H−1(Ω))

) (2.30)

holds almost everywhere in [0, T ].

We will return to this inequality shortly after considering the bilinear form

A : H1
0 (Ω)×H1

0 (Ω)→ R, A(φm(t), w) :=
〈
εS∇φm(t),∇w

〉
(2.31)
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and the continuous linear functional on H1
0 (Ω) for a fixed um(t)

b(w) := 〈eBum(t),∇w〉 − 〈g(t), w〉

which together form the weak form Eq. (2.18) tested by (0, w). This bilinear form

A is coercive (inequality Eq. (2.25)) and continuous:∣∣〈εS∇φm(t),∇w
〉∣∣ ≤λmax |〈∇φm(t),∇w〉| ≤ λmax‖∇φm(t)‖L2(Ω)·‖∇w‖L2(Ω)

≤λmax‖φm(t)‖H1
0 (Ω)·‖w‖H1

0 (Ω)

Hence, using Lax–Milgram lemma we get the estimate for A(φm(t), w) = b(w)

∀w ∈ H1
0 (Ω):

‖φm(t)‖2
H1

0 (Ω)≤M̃‖b‖2
H−1(Ω)= M̃ sup

‖w‖
H1

0(Ω)
≤1

‖b(w)‖2
H1

0 (Ω)

=M̃ sup
‖w‖

H1
0(Ω)
≤1

|〈eBum(t),∇w〉 − 〈g(t), w〉|2

≤M̃ sup
‖w‖

H1
0(Ω)
≤1

(|〈eBum(t),∇w〉|+ |〈g(t), w〉|)2

Y oung

≤ M̃ sup
‖w‖

H1
0(Ω)
≤1

2 |〈eBum(t),∇w〉|2︸ ︷︷ ︸
C.S.
≤ ‖eBum(t)‖2

L2(Ω)
·‖w‖2

H1
0(Ω)

+2 |〈g(t), w〉|2


≤2M(‖eBum(t)‖2

L2(Ω)+‖g(t)‖2
H−1(Ω))

(2.32)

Furthermore, in the case t = 0 we get

‖φm(0)‖2
H1

0 (Ω)≤2M
(
‖eBum(0)‖2

L2(Ω)+‖g(0)‖2
H−1(Ω)

)
. (2.33)

Hence, we obtain

‖φm(0)‖2
H1

0 (Ω)≤ C5

(
‖(u0)m‖2

H1
B(Ω)+‖φe(0)‖2

H1/2(Γe)

)
.
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Finally, from Gronwall inequality we can thus deduce

‖u̇m‖2
L∞(0,T ;L2(Ω))+‖um‖2

L∞(0,T ;H1
B(Ω))+‖φm‖2

L∞(0,T ;H1
0 (Ω))

≤ C6

(
‖(u1)m‖2

L2(Ω)+‖(u0)m‖2
H1
B(Ω)+‖φe‖2

L∞(0,T ;H1/2(Γe))

)
.

(2.34)

Furthermore, now knowing that all these values are finite we can deduce from

Eq. (2.23) that also

β‖Bu̇m‖L2(0,T ;L2(Ω))<∞. (2.35)

It now remains to show that ‖üm‖L2(0,T ;(H1
B(Ω))′) is finite. We follow the general

guideline given in e.g. [15, p. 355]. Fix any ṽ ∈ H1
B(Ω) with ‖ṽ‖H1

B(Ω)≤ 1 and

ṽ := ṽ1 + ṽ2 with ṽ1 ∈ span{vi}mi=1 and 〈ṽ2, vi〉 = 0 for all 1 ≤ i ≤ m. Since

{vi}mi=0 can be assumed orthogonal in H1
B(Ω), ‖ṽ1‖H1

B(Ω)≤ ‖ṽ‖H1
B(Ω)≤ 1. Now with

um =
∑m

i=0 u
i
m(t)vi the following holds almost everywhere in [0, T ]:

〈üm(t), ṽ〉H1
B(Ω) = 〈üm(t), ṽ〉 =

〈
üm(t), ṽ1

〉
=
〈
f(t), ṽ1

〉
−
〈
cEBum(t),Bṽ1

〉
−
〈
eT∇φm(t),Bṽ1

〉
− α

〈
ρu̇m(t), ṽ1

〉
− β

〈
cEBu̇m(t),Bṽ1

〉
where the subscript H1

B(Ω) denotes the duality pairing between (H1
B(Ω))

′
and H1

B(Ω).

Using Cauchy–Schwarz inequality we can deduce

|〈üm(t), ṽ〉|H1
B(Ω)

≤ C7

(
‖f(t)‖(H1

B(Ω))′+‖um(t)‖H1
B(Ω)+‖u̇m(t)‖L2(Ω)+‖Bu̇m(t)‖L2(Ω)

)
+
∣∣〈eT∇φm(t),Bṽ1

〉∣∣ .
(2.36)

Using Lax–Milgram lemma again on the form Eq. (2.31) for a general t ∈ [0, T ] we

can further deduce with analogous arguments as in Eq. (2.32) that

∣∣〈eT∇φm(t),Bṽ1
〉∣∣
H1
B(Ω)
≤M

(
‖Bum(t)‖2

L2(Ω)+‖φe(t)‖2
H1/2(Γe)

)
.
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Thus by repetitive application of Young inequality we get for the norm

‖üm(t)‖2
(H1
B(Ω))′= sup

‖v‖
H1
B(Ω)

≤1

|〈üm(t), v〉|2H1
B(Ω)

≤C8

(
‖f(t)‖2

(H1
B(Ω))′+‖um(t)‖2

H1
B(Ω)+‖u̇m(t)‖2

L2(Ω)

+ ‖Bu̇m(t)‖2
L2(Ω)+‖Bum(t)‖2

L2(Ω)+‖φe(t)‖2
H1/2(Γe)

)
.

Now we have finiteness for all components, hence we can finally integrate inequality

Eq. (2.36) over [0, T ]. We rearrange the terms and apply the estimates Eq. (2.34)

and Eq. (2.35).∫ T

0

‖üm(s)‖2
(H1
B(Ω))′ds

≤C9

∫ T

0

‖f(s)‖2
(H1
B(Ω))′+‖um(s)‖2

H1
B(Ω)+‖u̇m(s)‖2

L2(Ω)+‖Bu̇m(s)‖2
L2(Ω)

+ ‖φe(s)‖2
H1/2(Γe) ds

≤C10

(
‖(u0)m‖2

H1
B(Ω)+‖(u1)m‖2

L2(Ω)+‖φe‖2
H1(0,T ;H1/2(Γe))

)
(2.37)

Thus, it is now clear that

(um, φm) ∈ L∞(0, T ;H1
B(Ω))× L∞(0, T ;H1

0 (Ω))

u̇m ∈ L∞(0, T ;L2(Ω))

üm ∈ L2(0, T ; (H1
B(Ω))′).

(2.38)

Phase 3: Weak limit

Following e.g. [15, p. 384], [66, p. 239] from the energy estimates Eq. (2.34) and

Eq. (2.37) we get the boundedness of the sequence (um, φm)∞m=1 in L∞(0, T ;H1
B(Ω))×

L∞(0, T ;H1
0 (Ω)), the boundedness of (u̇m)∞m=1 in L∞(0, T ;L2(Ω)) and the bound-

edness of (üm)∞m=1 in L2(0, T ; (H1
B(Ω))′). Thus there exist subsequences

(uml
, φml

)∞l=1 ⊆ (um, φm)∞m=1, (u̇ml
)∞l=1 ⊆ (u̇m)∞m=1, (üml

)∞l=1 ⊆ (üm)∞m=1
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2 Partial Differential Equations of Piezoelectricity

with
(u, φ) ∈ L∞(0, T ;H1

B(Ω))× L∞(0, T ;H1
0,Γ(Ω)),

u̇ ∈ L∞(0, T ;L2(Ω))

ü ∈ L2(0, T ; (H1
B(Ω))′)

such that
uml

⇀ u weakly-* in L∞(0, T ;H1
B(Ω))

φml
⇀ φ0 weakly-* in L∞(0, T ;H1

0 (Ω))

u̇ml
⇀ u̇ weakly-* in L∞(0, T ;L2(Ω))

üml
⇀ ü weakly in L2(0, T ; (H1

B(Ω))′).

(2.39)

We now proceed to show that the weak limit is a solution of the weak form. Following

[15, p. 384] we fix a N ∈ N and choose functions v ∈ C1(0, T ;H1
B(Ω)) and w ∈

C1(0, T ;H1
0 (Ω)) having the form

v(t) :=
N∑
k=1

ukm(t)vk, w(t) :=
N∑
k=1

φkm(t)wk. (2.40)

We choose m ≥ N , multiply the discretized versions for each pair (vk, wk) of the

weak form Eq. (2.18) with (ukm(t), φkm(t)), sum over k = 1, . . . , N , integrate with

respect to t and obtain∫ T

0

(∫
Ω

ρüm(s)Tv dΩ + α

∫
Ω

ρu̇m(s)Tv dΩ +

∫
Ω

(
cEBum(s)

)T Bv dΩ

+ β

∫
Ω

(
cEBu̇m(s)

)T Bv dΩ +

∫
Ω

(
eT∇φm(s)

)T Bv dΩ

+

∫
Ω

(eBum(s))T ∇w dΩ−
∫

Ω

(
εS∇φm(s)

)T ∇w dΩ
)
ds

=

∫ T

0

〈f(s), v〉 ds+

∫ T

0

〈g(s), w〉 ds.

(2.41)

Fixing m = ml and using Eq. (2.39) we obtain in the limit m → ∞ along the
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2.2 Weak Formulation, Existence, Uniqueness, and Regularity of Solutions

subsequence ml∫ T

0

(∫
Ω

ρü(s)Tv dΩ + α

∫
Ω

ρu̇(s)Tv dΩ +

∫
Ω

(
cEBu(s)

)T Bv dΩ

+ β

∫
Ω

(
cEBu̇(s)

)T Bv dΩ +

∫
Ω

(
eT∇φ0(s)

)T Bv dΩ

+

∫
Ω

(eBu(s))T ∇w dΩ−
∫

Ω

(
εS∇φ0(s)

)T ∇w dΩ
)
ds

=

∫ T

0

〈f(s), v〉 ds+

∫ T

0

〈g(s), w〉 ds.

(2.42)

Noting that all functions of form Eq. (2.40) are dense in the according spaces this

equality holds for all functions v ∈ L2(0, T ;H1
B(Ω)), w ∈ L2(0, T ;H1

0 (Ω)). In partic-

ular it follows that also∫
Ω

ρüTv dΩ + α

∫
Ω

ρu̇Tv dΩ +

∫
Ω

(
cEBu

)T Bv dΩ + β

∫
Ω

(
cEBu̇

)T Bv dΩ

+

∫
Ω

(
eT∇φ0

)T Bv dΩ +

∫
Ω

(eBu)T ∇w dΩ−
∫

Ω

(
εS∇φ0

)T ∇w dΩ

= 〈f, v〉+ 〈g, w〉

(2.43)

almost everywhere t ∈ [0, T ] for all v ∈ H1
B(Ω) and w ∈ H1

0 (Ω).

Following [38] and [15, section 7.2.2 Thm. 3, p. 385] we confirm that the initial

conditions are also met. Choose any function (v, 0) with v ∈ C2([0, T ];H1
B(Ω)) and

v(T ) = v̇(T ) = 0. By integrating by parts twice with respect to t of Eq. (2.41) we

get

∫ T

0

(∫
Ω

ρum(t)T v̈ dΩ− α
∫

Ω

ρum(t)T v̇ dΩ +

∫
Ω

(
cEBum(t)

)T Bv dΩ

− β
∫

Ω

(
cEBum(t)

)T Bv̇ dΩ +

∫
Ω

(
eT∇φm(t)

)T Bv dΩ
)
dt

=

∫ T

0

〈f(t), v〉 dt− 〈ρum(0), v̇(0)〉+ 〈ρu̇m(0), v(0)〉

+ α 〈ρum(0), v(0)〉+ β
〈
cEBum(0),Bv(0)

〉
(2.44)
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2 Partial Differential Equations of Piezoelectricity

and analogously using Eq. (2.42) we get∫ T

0

(∫
Ω

ρu(t)T v̈ dΩ− α
∫

Ω

ρu(t)T v̇ dΩ +

∫
Ω

(
cEBu(t)

)T Bv dΩ

− β
∫

Ω

(
cEBu(t)

)T Bv̇ dΩ +

∫
Ω

(
eT∇φ0(t)

)T Bv dΩ
)
dt

=

∫ T

0

〈f(t), v〉 dt− 〈ρu(0), v̇(0)〉+ 〈ρu̇(0), v(0)〉

+ α 〈ρu(0), v(0)〉+ β
〈
cEBu(0),Bv(0)

〉
.

(2.45)

For Eq. (2.44) we set m = ml and recall Eq. (2.39) to deduce∫ T

0

(∫
Ω

ρu(t)T v̈ dΩ− α
∫

Ω

ρu(t)T v̇ dΩ +

∫
Ω

(
cEBu(t)

)T Bv dΩ

− β
∫

Ω

(
cEBu(t)

)T Bv̇ dΩ +

∫
Ω

(
eT∇φ0(t)

)T Bv dΩ
)
dt

=

∫ T

0

〈f(t), v〉 dt− 〈ρu0, v̇(0)〉+ 〈ρu1, v(0)〉

+ α 〈ρu0, v(0)〉+ β
〈
cEBu0,Bv(0)

〉
.

(2.46)

By equating coefficients of Eq. (2.45) and Eq. (2.46) (set either v(0) or v̇(0) to zero)

we conclude u(0) = u0 and u̇(0) = u1.

Phase 4: Uniqueness

Following e.g. [15, p. 385] it suffices to show that the only weak solution with

f ≡ 0, g ≡ 0, φe ≡ 0, u0 = u1 ≡ 0

is

u ≡ 0, φ ≡ 0.

Notice that by property Eq. (2.35) ‖Bu̇m‖L2(0,T ;L2(Ω)) is finite. Hence, the remark in

[15, remark below Thm 4, section 7.2.2 c), p. 385] does not apply to our case and we

can continue in the fashion of [15, Thm. 4, section 7.1.2c), p. 358] instead. Passing

to limits, we substitute v = u and w = φ0 in the original weak form. This is not

prohibited as by property Eq. (2.35) all components exist also in the limit. Hence,
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2.2 Weak Formulation, Existence, Uniqueness, and Regularity of Solutions

we can deduce that the following non-discretized inequality holds

C1

(
‖u̇(t)‖2

L2(Ω)+‖u(t)‖2
H1
B(Ω)+‖φ0(t)‖2

H1
0 (Ω)

)
≤C3

(
‖u̇(0)‖2

L2(Ω)+‖u(0)‖2
H1
B(Ω)+‖φ0(0)‖2

H1
0 (Ω)

)
+C4

∫ t

0

(
‖u̇(s)‖2

L2(Ω)+‖u(s)‖2
H1
B(Ω)+‖φ0(s)‖2

H1
0 (Ω)

)
ds

+‖f‖2
L2(0,T ;(H1

B(Ω))′)+‖g‖2
H1(0,T ;H−1(Ω)).

In the case t = 0 we get from Eq. (2.33) that ‖φ(0)‖2
H1

0 (Ω)
= 0. Hence, we now note

that

C̃2 =
1

C1

(
C3η(0) + ‖f‖2

L2(0,T ;(H1
B(Ω))′)+‖g‖2

H1(0,T ;H−1(Ω))

)
= 0.

Finally, we can apply the second part of Gronwall inequality to conclude that

η(t) = ‖u̇(t)‖2
L2(Ω)+‖u(t)‖2

H1
B(Ω)+‖φ0(t)‖2

H1
0 (Ω)= 0 a.e. t ∈ [0, T ].

Thus, the only solution can be the trivial solution.

Now that we know unique solutions to the weak form exist we can investigate what

conditions are necessary for higher regularity. The following theorem is inspired by

Thm. 5, chapter 7.2 in [15]. The proof uses ideas from [44] adapted for additional

Rayleigh damping.

Theorem 2.11. Let all requirements of Thm. 2.10 hold. If additionally u0 ∈ H2(Ω),

u1 ∈ H1(Ω), βu1 ∈ H2(Ω), φe ∈ H2(0, T ;H1/2(Γe)), then

u ∈ L∞(0, T ;H1
B(Ω)), u̇ ∈ L∞(0, T ;H1

B(Ω)), ü ∈ L∞(0, T ;L2(Ω))

φ ∈ L∞(0, T ;H1
0,Γ(Ω)), φ̇ ∈ L∞(0, T ;H1

0,Γ(Ω)).
(2.47)

Proof. We differentiate the weak form Eq. (2.18) once with respect to time t and

test the result first with (üm(t), 0) to obtain

1

2

d

dt

(
〈ρüm(t), üm(t)〉+ 〈cBu̇m(t),Bu̇m(t)〉

)
+ α 〈ρüm(t), üm(t)〉

+β
〈
cEBüm(t),Büm(t)

〉
+
〈
e∇φ̇m(t),Büm(t)

〉
=
〈
ḟ(t), üm(t)

〉
.
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We differentiate the weak form Eq. (2.18) twice with respect to time t and test the

result first with (0, φ̇m(t)) to obtain〈
eBüm(t),∇φ̇m(t)

〉
− 1

2

d

dt

〈
εS∇φ̇m(t),∇φ̇m(t)

〉
=
〈
g̈(t), φ̇m(t)

〉
.

Analogously to the proof of Thm. 2.10 we subtract these two results and integrate

with respect to t to obtain in analogy to Eq. (2.23)(
〈ρüm(t), üm(t)〉+

〈
cEBu̇m(t),Bu̇m(t)

〉
+
〈
εS∇φ̇m(t),∇φ̇m(t)

〉)
+2α

∫ t

0

〈ρüm(s), üm(s)〉 ds+ 2β

∫ t

0

〈
cEBüm(s),Büm(s)

〉
ds =(

〈ρüm(0), üm(0)〉+
〈
cEBu̇m(0),Bu̇m(0)

〉
+
〈
εS∇φ̇m(0),∇φ̇m(0)

〉)
+2

∫ t

0

〈
ḟ(s), u̇m(s)

〉
ds− 2

∫ t

0

〈
g̈(s), φ̇m(s)

〉
ds

(2.48)

or, again, abbreviated as Fl = Fr. Analogously to inequality Eq. (2.29) we then can

obtain

C1

(
‖üm(t)‖2

L2(Ω)+‖u̇m(t)‖2
H1
B(Ω)+‖φ̇m(t)‖2

H1
0 (Ω)

)
− cmech‖u̇m(t)‖2

L2(Ω)

≤C3

(
‖üm(0)‖2

L2(Ω)+‖u̇m(0)‖2
H1
B(Ω)+‖φ̇m(0)‖2

H1
0 (Ω)

)
+C4

∫ t

0

(
‖üm(s)‖2

L2(Ω)+‖u̇m(s)‖2
H1
B(Ω)+‖φ̇m(s)‖2

H1
0 (Ω)

)
ds

+‖f‖2
H1(0,T ;(H1

B(Ω))′)+‖g‖2
H2(0,T ;H−1(Ω))

(2.49)

for some C1, C3, C4 > 0. Note that by differentiating the weak form which we then

test by (0, φ(t)) we additionally obtain a bilinear form similar to Eq. (2.31) and can

analogously deduce with Lax–Milgram lemma that

‖φ̇m(0)‖2
H1

0 (Ω)≤2M
(
‖eBu̇m(0)‖2

L2(Ω)+‖ġ(0)‖2
H−1(Ω)

)
.

This is only possible because of the added requirement of increased regularity of

u̇(0) and ġ. Furthermore, by the additional requirements on um(0) ∈ H2(Ω) we also

obtain (estimating the H2 norm by the norm of the Laplacian, see e.g. [70])

‖φm(0)‖H2(Ω)≤ C
(
‖um(0)‖H2(Ω)+‖g(0)‖H−1(Ω)

)
.
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2.2 Weak Formulation, Existence, Uniqueness, and Regularity of Solutions

In order to utilize Gronwall lemma we are left to show finiteness of ‖üm(0)‖2
L2(Ω).

Notice that by the increased regularity of um(0) ∈ H2(Ω) and φm(0) ∈ H2(Ω) the

weak solution is also a strong solution (not quite a classical solution but solves the

classical equations in t = 0 almost everywhere, see e.g. [42, section 2.3 and 3.5 ]).

Thus, by evaluating the strong system in t = 0 using the initial data and previously

deduced inequalities we obtain

‖ρüm(0)‖L2(Ω) = ‖αρu̇m(0)− BT
(
cEBum(0) + βcEBu̇m(0) + eT∇φm(0)

)
+ f(0)‖L2(Ω)

≤ ‖αρu̇m(0)‖L2(Ω)+‖BT cEBum(0)‖L2(Ω)

+ ‖BTβcEBu̇m(0)‖L2(Ω)+‖BT eT∇φm(0)‖L2(Ω)+‖f(0)‖L2(Ω).

Note that this f is given by the Dirichlet Lift ansatz for the strong system. Therefor

we choose χ ∈ H2(Ω) where χ|Γg= 0 and χ|Γe= 1. With this requirement the right

hand sight of the above inequality is bounded independently of m.

Now that all components are finite, analogously to inequality Eq. (2.30) with

η(t) := ‖üm(t)‖2
L2(Ω)+‖u̇m(t)‖2

H1
B(Ω)+‖φ̇m(t)‖2

H1
0 (Ω)

we can apply Gronwall lemma to obtain

‖üm(t)‖2
L2(Ω)+‖u̇m(t)‖2

H1
B(Ω)+‖φ̇m(t)‖2

H1
0 (Ω)

≤
(
C̃3

C1

+
C4C̃3

C2
1

te
C4
C1
t

)(
‖üm(0)‖2

L2(Ω)+‖u̇m(0)‖2
H1
B(Ω)+‖φ̇m(0)‖2

H1
0 (Ω)

+ ‖f‖2
H1(0,T ;(H1

B(Ω))′)+‖g‖2
H2(0,T ;H−1(Ω))

)
holds almost everywhere in [0, T ].

Using results from Thm. 2.10 it is now clear that

u ∈ L∞(0, T ;H1
B(Ω)), u̇ ∈ L∞(0, T ;H1

B(Ω)), ü ∈ L∞(0, T ;L2(Ω))

φ ∈ L∞(0, T ;H1
0,Γ(Ω)), φ̇ ∈ L∞(0, T ;H1

0,Γ(Ω)).
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Remark 2.12. Intuitively one may think that in order to achieve ü ∈
L∞(0, T ;L2(Ω)) it is only required that u̇(0) = u1 ∈ H1(Ω) instead of βu1 ∈ H2(Ω)

(or more precisely ‖BTβcEBu1‖L2(Ω)< ∞). However, this is not the case. The

condition βu1 ∈ H2(Ω) is required to show that ‖üm(0)‖L2(Ω) is finite. This is

essential in order to apply Gronwall inequality.

Remark 2.13. In e.g. [15, p. 390, Eq. (59)] a H2(Ω) regularity for u is achieved

by selecting the test functions for u to be the complete eigenfunction sequence of

−∆u which, indirectly, allows an estimation of ‖u‖H2(Ω). A similar argument should

also be possible for BTB (or more precisely the operator that works on the solution

vector ( u
φ ) and contains BTB ).

This would directly increase the regularity of φ so that not only u ∈ L∞(0, T ;H2(Ω))

but also φ ∈ L∞(0, T ;H2(Ω) ∩H1
0,Γ(Ω)).

However, this argumentation was not followed here. Note that the here occurring

differential operators are slightly different from the Laplacian. Hence, this leads to

rather unpleasant changes (due to the now very technical arguments and spaces).

In that case, it would be possible to reduce the regularity requirements, however, at

the cost of a more technical proof.

Corollary 2.14. Let all requirements of Thm. 2.10 hold and let α, β > 0 strictly.

If additionally there exists a t0 ∈ R, t0 ≥ 0 such that φe(t) = 0 for t ≥ t0, then

‖u̇m(t)‖L2(Ω)→ 0, ‖Bum(t)‖L2(Ω)→ 0, ‖φm(t)‖H1
0 (Ω)→ 0

and

‖um(t)‖L2(Ω)→ c ∈ R

for t→∞.

Proof. The right hand side Fr(t) of the energy balance Eq. (2.23) is constant for

t ≥ t0 as no new energy is given into the system starting from time t0, i.e. Fr(t) =

c1 ∈ R≥0 for t ≥ t0. Let

γ(t) := 2α

∫ t

0

〈ρu̇m(s), u̇m(s)〉 ds+ 2β

∫ t

0

〈
cEBu̇m(s),Bu̇m(s)

〉
ds,
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and let

η̃(t) := 〈ρu̇m(t), u̇m(t)〉+
〈
cEBum(t),Bum(t)

〉
+
〈
εS∇φm(t),∇φm(t)

〉
.

Then Eq. (2.23) implies that η̃(t) + γ(t) = c1 for t ≥ t0. As γ(t) is monotoni-

cally increasing, it follows that η̃(t) is monotonically decreasing. Both η̃(t), γ(t) are

bounded below and above by zero and c1, respectively. Hence, η̃(t) and γ(t) must

converge. From this we can already deduce the following.

• Note that all summands of η̃(t) and γ(t) are non-negative. Thus, the non-

negative integrands in γ(t) must converge to zero as otherwise γ(t) would be

unbounded. Especially, we get 〈ρu̇m(t), u̇m(t)〉 → 0.

• From the last point we note that ρ is a positive constant. This implies that

u̇m(t) → 0 and therefore Bu̇m(t) → 0. Hence,
〈
cEBum(t),Bum(t)

〉
must

converge to some unknown limit.

• We are aware that η̃(t) converges. As all other summands of η̃(t) converge

the last remaining summand
〈
εS∇φm(t),∇φm(t)

〉
must also converge to some

unknown limit.

Thus, all summands in η̃(t) converge to currently unknown values for t → ∞. In

order to identify these values we test the weak form Eq. (2.18) first with (um(t), 0)

and get

〈ρüm(t),um(t)〉︸ ︷︷ ︸
→0

+α 〈ρu̇m(t),um(t)〉︸ ︷︷ ︸
→0

+
〈
cEBum(t),Bum(t)

〉
+ β

〈
cEBu̇m(t),Bum(t)

〉︸ ︷︷ ︸
→0

+
〈
eT∇φm(t),Bum(t)

〉
= 〈f(t),um(t)〉︸ ︷︷ ︸

=0

(2.50)

to obtain

lim
t→∞

〈
eT∇φm(t),Bum(t)

〉
= lim

t→∞
−
〈
cEBum(t),Bum(t)

〉
≤ 0. (2.51)

We now test a second time with (0, φm(t))

〈eBum(t),∇φm(t)〉 −
〈
εS∇φm(t),∇φm(t)

〉
= 〈g(t), φm(t)〉︸ ︷︷ ︸

=0
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to obtain

lim
t→∞
〈eBum(t),∇φm(t)〉 = lim

t→∞

〈
εS∇φm(t),∇φm(t)

〉
≥ 0. (2.52)

Combining Eq. (2.51) and Eq. (2.52) we get

lim
t→∞

〈
εS∇φm(t),∇φm(t)

〉
= 0 and lim

t→∞

〈
cEBum(t),Bum(t)

〉
= 0.

From Eq. (2.32) we can deduce with the knowledge that ‖Bum(t)‖L2(Ω)→ 0 that

also ‖φm(t)‖H1
0 (Ω)→ 0. Thus, we have shown that all summands of η̃(t) converge to

zero.

Lastly, as the time and space derivative of um(t) converge to zero, we finally obtain

‖um(t)‖L2(Ω)→ c ∈ R for t→∞.

2.3 Special Cases and Variations

Depending on the application at hand, oftentimes it is advantageous or necessary to

solve a more specialized version of the partial differential equation. In this section

the rotationally symmetric case, which can be used to simulate many disk-shaped

piezoceramics, as well as the time-harmonic formulation of the partial differential

equation are given.

As there are many different areas of application there are many other special cases

which are not considered here. Hence, especially tailored theory would be required

for these cases. For an example the author refers to [18, 19] where piezoelectric

composites are considered which cannot be handled by the simpler model given

here.

2.3.1 Rotationally Symmetric Case

In the case of disk-shaped piezoceramics with rotational symmetrical electrodes a

full 3D simulation with coordinates (x, y, z) can be avoided by transforming into

cylindrical coordinates (r, z). Following the notation of [35, p. 38] the differential
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operators are defined as

B :=


∂
∂r

0
1
r

0

0 ∂
∂z

∂
∂z

∂
∂r


and

∇ :=

(
∂
∂r
∂
∂z

)
where the material tensors are then reduced to

cE =


cE11 cE12 cE13 0

cE12 cE11 cE13 0

cE13 cE13 cE33 0

0 0 0 cE44

 ,

e =

(
0 0 0 e15

e31 e31 e33 0

)
,

εS =

(
εS11 0

0 εS33

)
.

More details of the transformation can be found in [71]. Note that all ten material

parameters of the full 3D simulation are still present in the rotational symmetric

case. However, in the rotational symmetric case not all material parameters have

the same potential of achieving a high sensitivity as influence of some parameters is

severely limited, see also [31] or [38, p. 19].

2.3.2 Harmonic Formulation

In some situations it is advantageous from a numerical point of view to deal with a

time-harmonic formulation of the partial differential equation Eq. (2.12) which, for

example, would not require a time-stepping scheme to solve. The variant given here

has been adapted from [34, 38].

The harmonic formulation can be deduced from the transient formulation Eq. (2.12)

over the time domain t ∈ [0, T ] by applying a Fourier-transform resulting in a partial
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2 Partial Differential Equations of Piezoelectricity

differential equation in frequency domain ω ∈ F :

−ρω2û− BT (c̃EBû+ ẽT∇φ̂) = 0

−∇ · (ẽBû− ε̃S∇φ̂) = 0
(2.53)

Here, the mechanical displacement û and electrical potential φ̂ now depend on the

(angular) frequency ω = 2πf instead of time t. Furthermore, by shifting into fre-

quency domain, û and φ̂ as well as the material parameters in c̃E, ẽ and ε̃S are now

complex-valued. These complex-valued parameters now, however, allow a general-

ization of the Rayleigh damping model. The conventional Rayleigh damping can be

introduced by setting (e.g. [38])

c̃E =
1 + jβ0

1− jα0

cE, ẽ =
e

1− jα0

, ε̃S =
εS

1− jα0

with cE, e and εS being the real valued material parameters as in Eq. (2.13) and

j =
√
−1 the imaginary unit and considering the damping to now be a function of

frequency

α(ω) := α0ω, β(ω) :=
β0

ω

with α0, β0 ∈ R≥0 the Rayleigh coefficients from the transient case. As some nu-

merical packages cannot deal with complex valued partial differential equations the

real and imaginary parts of the material parameters are stated here separately:

c̃E =
1− α0β0

1 + α2
0

cE + j
α0 + β0

1 + α2
0

cE, ẽ =
e

1 + α2
0

+ j
α0e

1 + α2
0

, ε̃S =
εS

1 + α2
0

+ j
α0ε

S

1 + α2
0

Analogously, the partial differential equation Eq. (2.53) can also be stated in terms

of real and imaginary parts. Due to the lengthy details these equations are given in

Appendix A.2.

Existence and uniqueness of weak solutions of Eq. (2.53) have been discussed in [31].
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2.4 Finite Element Method (FEM) for the

Piezoelectric Equations

For numerical packages like FEniCS [3] the weak form Eq. (2.18) can be directly used

for the finite element formulation. Otherwise, from the weak formulation Eq. (2.18)

a finite element scheme can be deduced, see e.g. [34, 35, 38, 43, 71, 82].

Let the following matrices be Rm×m, where

Muu := [〈ρvj, vk〉]kj , 1 ≤ j, k ≤ m

Kφφ :=
[〈
εS∇wj,∇wk

〉]
kj
, 1 ≤ j, k ≤ m

Kuu :=
[〈
cEBvj,Bvk

〉]
kj
, 1 ≤ j, k ≤ m

Kuφ :=
[〈
eT∇wj,Bvk

〉]
kj
, 1 ≤ j, k ≤ m

Kφu := [〈eBvj,∇wk〉]kj , 1 ≤ j, k ≤ m.

Then φm can be given by the electrostatic second part of the equation

φm := (Kφφ)−1(gm −Kφuum)

and with Rm vectors given as

fm := [f, vk]k , 1 ≤ k ≤ m

gm := [g, wk]k , 1 ≤ k ≤ m

we obtain

üm + αu̇m + βM−1
uuKuuu̇m +M−1

uu

(
Kuu +KuφK

−1
φφKφu

)
um = M−1

uu

(
fm +K−1

φφ gm
)
.

Disregarding damping terms (a variation including damping terms can be found in

e.g. [34, p. 395]) this can be restated in a convenient and compact matrix-vector

notation [38]

M ü +Ku = F
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2 Partial Differential Equations of Piezoelectricity

with

M :=

(
Muu 0

0 0

)
, K :=

(
Kuu Kuφ

Kφu −Kφφ

)
where

u :=

(
um

φm

)
and F :=

(
fm

gm

)
Analogously, for the harmonic case the following compact matrix-vector notation

can be given: (
−ω2Muu +Kuu Kuφ

Kφu −Kφφ

)(
ûm

φ̂m

)
=

(
f̂m

ĝm

)
.

2.5 Practical Aspects of Solutions and CFS++

In this section we will take a closer look at the aspects of practical solving of these

partial differential equations. For this, we will look into common and practical

boundary conditions as well as the software CFS++ used in this thesis.

2.5.1 CFS++

The research simulation software (see [33]) Coupled Field Simulation (CFS++)

written in C++ is hosted by Prof. Dr. Manfred Kaltenbacher at the Technical Uni-

versity of Vienna. It is mainly developed and maintained by research groups in

Vienna and Erlangen-Nuremberg. The simulation capabilities of CFS++ specifi-

cally include, but are not limited to, advanced handling of piezoelectric systems

(such as handling hysteresis effects not considered here). This does not come as a

surprise as many authors in and around the involved research groups have worked

on or are strongly related to piezoelectrics. Though CFS++ is not open-source it

can in some sense be considered ‘source-accessible’ for academic purposes.

Thus, the main motivation behind choosing this software package is that its sources

can be altered to feature the capability of computing derivatives using Algorithmic

Differentiation tools like ADOL-C (which is the subject of chapter 4). This would

otherwise not be possible as most alternative software packages capable of handling

piezoelectrics are commercial and thus usually not source-accessible.
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2.5.2 Types of Excitation and other Practical Aspects

Previously in this chapter we have only considered the excitation of the piezoceramic

by means of Dirichlet boundary conditions of the potential φ(t) = φe(t) on Γe and

φ(t) = 0 on Γg for the excited electrode Γe and grounded electrode Γg. This is

certainly the most important and most used form of excitation. However, in practice

there are many other possibilities in which a piezoceramic can be excited which can

be reflected in conditions set to the partial differential equations. An overview over

possible variations is given e.g. in [82, p. 25-26]. In the practical part of this thesis,

unless specified otherwise, a charge pulse Q(t) is used as a means of excitation

(similar to [34, p. 407], see also [74, section 4.3]). For an arbitrary charge Q this

can be achieved [82, p. 25] by applying a so-called ‘weak constraint’∫
Γe

(
eBu− εS∇φ

)
· n dΓe = Q

for a prescribed charge Q (which may depend on time t or frequency ω). As the

electrodes are conductive (and thus the charge is distributed equally on the loaded

electrode) this specifies exactly one degree of freedom similarly to setting strong

Dirichlet boundary conditions. Although the author of this thesis has not found

documentation related to how this is achieved in CFS++ this could be integrated

into the weak formulation and the solution method of such e.g. by means of addi-

tional Lagrange multipliers or by utilizing a Nitsche method e.g. [52].

Many other practical aspects of simulations with and around CFS++ and piezoce-

ramics can be found in [34].
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3
Simulation and Measurement of

Impedance of Piezoceramics

One idea which arose as a result of the joint project of the research group Mathemat-

ics and its Applications and the Measurement Engineering Group was to increase

the sensitivity of impedance with respect to material parameters by deploying a

triple-ring electrode setup on the piezoceramic specimen. The aim of this chapter is

to derive the fundamental equations for the electrical circuit which is needed to mea-

sure a combined impedance curve for this setup. The network equations presented

here have been adapted from [74].

In real-world applications piezoelectric ceramics come in many shapes and sizes.

The ceramics are usually geometrically processed in such a way that the geometry

fits the specific requirements for the application at hand. In this thesis we focus on

disk-shaped ceramics. However, the methodology can easily be extended or adapted

to deal with different shapes.

3.1 Electrical Impedance for Piezoelectric Ceramics

with Fully Covering Electrodes

In electrical circuits the resistance R describes the ratio of voltage V across and

current I through an object using direct current (DC). Hence, Ohm’s law states

R =
V

I
.
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3 Simulation and Measurement of Impedance of Piezoceramics

This concept can be extended to electrical circuits driven by alternating current

(AC). When alternating current is used, the sinusoidal voltage V and current I can

be given by their amplitude and phase e.g.

V (t) = vmax · cos(ωt+ ϕv)

where vmax ∈ R+ is the amplitude, ω ∈ R+ is the angular frequency and ϕv is the

phase shift. For computations with these values it is convenient to use a complex

representation, e.g.

V (t) = Re
(
vmax · ej(ωt+ϕv)

)
with j := (−1)

1
2 the imaginary unit.

The electrical impedance of a component is defined as the ratio of the complex

voltage and complex current

Z =
vmax · ej(ωt+ϕv)

imax · ej(ωt+ϕi)
=
vmax
imax

ej(ϕv−ϕi).

Hence, the electrical impedance Z ∈ C describes the complex valued resistance when

alternating current is applied.

For measuring and simulating the electrical impedance of a piezoceramic specimen

it is common to fully cover the top and bottom of the (non-conductive) piezoelectric

ceramic with conducting material (electrodes). The electrodes are then electrically

excited by an AC current source. In Fig. 3.1 such a setup is displayed.

In order to compute the electrical impedance from the solutions of the PDE (2.14)

only values derived from the mechanical displacement u and electrical potential φ

can be used.

One possibility which will be used here has been suggested in e.g. [34, p. 406]. It

makes use of a prescribed electrical charge q(t) on the excited electrode as described

in section 2.5.2. Hence, given a prescribed charge q(t), the flow of charge q̇ (the

time derivative of charge q) is the electrical current I at the electrode. Thus, the

electrical impedance can be computed as the quotient

Z(t) =
V

I
=
φe(t)

q̇(t)
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3.1 Electrical Impedance for Piezoelectric Ceramics with Fully Covering Electrodes

(a) 3D representation of a piezoceramic and electrodes

(b) Applied electrical network

Figure 3.1: Piezoelectric ceramic (brown) with attached electrodes (gray) fully cov-
ering top and bottom.
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3 Simulation and Measurement of Impedance of Piezoceramics

where φe(t) is the computed potential solution of the partial differential equation at

the charged electrode Γe. As the circuit is AC driven we are interested in how the

impedance behaves dependent on frequency instead of time. Hence, these signals

are converted into frequency domain by applying a Fourier transform ·̂. We obtain

Z(ω) =
φ̂(ω)̂̇q(ω)

=
φ̂(ω)

jωq̂(ω)
.

Note that the mechanical displacement u is not needed here for the impedance com-

putation but would be required (for computing the charge) if a Dirichlet boundary

condition of the potential was used instead of a charge load.

As the impedance is a complex value, it is often convenient and/or necessary for

further usage to keep only the (real-valued) absolute value |Z(ω)| and to disre-

gard the phase of the impedance. Taking this into account, the piezoceramic disk

resonantes at specific frequencies which can be seen in the frequency dependent

impedance curve. Hence, the impedance curve, or more precisely the absolute value

of the impedance curve, has a very distinct appearance where resonance and an-

tiresonance appear in characteristic pairs at certain frequencies (see Fig. 3.2). For

example, according to e.g. [22] for a disk-shaped piezoceramic (as seen in Fig. 3.1)

the so-called thickness modes fn, n ∈ N can be estimated to be at

fn = n
c

2T
, n ∈ N

where T is the thickness of the ceramic disk and c is the speed of sound depending

on the material used. More detailed estimates on the location and types resonances

can be found e.g. in [22].

3.2 Triple-ring Electrodes

A common issue with the identification of material parameters of piezoelectric ce-

ramics using the impedance curve is that the sensitivity of impedance with respect

to some material parameters is very low and may be close to zero.

In order to explain this behavior consider the field lines of the electrical field for
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Figure 3.2: Typical impedance curve for a piezoelectric ceramic. Real measurement
data provided by N. Feldmann of the Measurement Engineering Group.

a piezoceramic disk with electrodes fully covering top and bottom of the disk. In

Fig. 3.3 the field lines are shown.

Notice that the field lines only point in the direction top to bottom or bottom to

top (depending on which electrode has been charged). In this case the material

parameters describing the behavior of the electrical field in horizontal direction do

not have any influence on the field lines. Hence, the electrical impedance of the

specimen does not change if these specific parameters had different values. However,

for parameter identification via the impedance curve this has the consequence that

these parameters cannot be reconstructed by such measurements. The behavior of

the impedance curve for such material parameters can also be stated alternatively:

the sensitivity of impedance with respect to these material parameters is zero.

Motivated by this behavior the authors of [76], [37] developed the idea to circumvent

the homogenous field lines of the electrical field by deploying a triple-ring electrode

setup on the piezoceramic. This setup generates non-homogenous field lines that now
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3 Simulation and Measurement of Impedance of Piezoceramics

(a) Electrical field in a piezoceramic.

(b) 3D representation of a piezoceramic.

Figure 3.3: Electrical field lines for a usual piezoceramic with fully covering elec-
trodes on top and bottom.

point in multiple directions instead of only one. This way, the electrical impedance

of the specimen now is actively influenced by material parameters that work in other

than the vertical direction.

As the piezoceramic has three electrode rings (as opposed to two full faced elec-

trodes covering top and bottom), the calculation of impedance of the whole device

requires an intermediate step: We electrically excite via pulse charge q(t) one of the
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3.2 Triple-ring Electrodes

(a) Electrical field in a piezoceramic.

(b) 3D representation of a piezoceramic and electrodes.

Figure 3.4: Electrical field lines for the three triple-ring setup cases.
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3 Simulation and Measurement of Impedance of Piezoceramics

three electrodes and ground another electrode by imposing an appropriate boundary

condition to the partial differential equation. We calculate the impedance between

the electrode where the charge was imposed and the single remaining ungrounded

electrode by dividing the electric potential at the rings φ by the current q̇ flowing

at the rings. An additional Fourier transform ·̂ gives the impedances

Zi(ω) =
φ̂i(ω)̂̇q(ω)

∈ C. (3.1)

This is done by using each possible combination of electrically excited and grounded

electrodes, hence i ∈ {1, 2, 3}. Furthermore, as there are three possible combinations

we also need to solve Eq. (2.14) three times separately with according boundary

conditions.

3.3 Equations of Network and Derivatives

By applying an additional network of electrical components (see Fig. 3.5) to the

three electrodes and using a delta-star conversion (or solving Kirchhoff’s laws e.g.

[9]) these three impedances are finally combined to a total impedance Z. This allows

for a single measurement to be used for comparison with the simulation results.

Resistance and capacitance of the resistors and capacitors used in the electrical

network have been pre-optimized in prior work by Unverzagt [75]. This was done to

further increase the sensitivity of the impedance measurement. However, this step

could/should also be repeated after an optimal ring geometry has been determined.

Given the previously mentioned three impedances Zi, i ∈ {1, 2, 3}, obtained by

either solving the PDE (2.14) with different boundary conditions and using the

formula Eq. (3.1) or by direct physical measurements we now aim to compute the

overall impedance. The reader may also consult Unverzagt [75] for more details on

the very similar procedure.

We first consider a delta-star or delta-Y transformation (see, e.g., [9]) of only the

three inner impedances

Z∆
a :=

2
1
Z1
− 1

Z2
+ 1

Z3

, Z∆
b :=

2
1
Z1

+ 1
Z2
− 1

Z3

, Z∆
c :=

2

− 1
Z1

+ 1
Z2

+ 1
Z3

.
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Piezoceramic
𝐾0

𝐾2𝐾1

𝑉
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𝑍𝑏𝑍𝑎

𝑅0

𝑍𝑐

Figure 3.5: Network of electrical components for triple-ring electrodes. Adaptation
from Unverzagt [75].

The resulting star-circuit values are given by

ZY
a :=

Z∆
b · Z∆

c

Z∆
a + Z∆

b + Z∆
c

, ZY
b :=

Z∆
a · Z∆

c

Z∆
a + Z∆

b + Z∆
c

, ZY
c :=

Z∆
a · Z∆

b

Z∆
a + Z∆

b + Z∆
c

.

Now, we also add the external resistor R0

Z̃Y
a :=

Z∆
b · Z∆

c ·R0

Z∆
a · Z∆

b + Z∆
b · Z∆

c +R0 · (Z∆
a + Z∆

b + Z∆
c )

Z̃Y
b :=

Z∆
a · Z∆

b · Z∆
c + Z∆

a · Z∆
c ·R0

Z∆
a · Z∆

b + Z∆
b · Z∆

c +R0 · (Z∆
a + Z∆

b + Z∆
c )

Z̃Y
c :=

Z∆
a · Z∆

b ·R0

Z∆
a · Z∆

b + Z∆
b · Z∆

c +R0 · (Z∆
a + Z∆

b + Z∆
c )
.

And lastly, we add the resistors and capacitors R1, R2, C1, C2

Zv1 :=
R1

1 + 2πjf ·R1 · C1

, Zv2 :=
R2

1 + 2πjf ·R2 · C2

, Zvp :=
1

1
Z̃Y
b +Zv1

+ 1
Z̃Y
c +Zv2

.

57



3 Simulation and Measurement of Impedance of Piezoceramics

Hence, the overall impedance can be computed as

Zges := Z̃Y
a + Zvp.

Remark 3.1. The derivatives of these network equations are required for gradient

based optimization. As these network computations are done outside the scope of

the FEM tool the derivatives are not automatically computed. The first deriva-

tive was computed by hand and is given in Appendix A.1. It was not possible to

compute the second derivative by hand. Even more: the derivative computed by a

popular computer algebra software produced a huge formula with more than 4 mil-

lion elemental commands which would require an unpractical amount of runtime to

evaluate (i.e. infeasible for all practical purposes). As analytical derivatives increase

exponentially in length this behavior does not come as a surprise. The author then

applied the Algorithmic Differentiation tool ADiMat [6] to the first derivative com-

puted by hand and was able to retrieve the short (relative to the computer algebra

solution) and correct second derivatives. As the derivative formulas for the second

derivatives are still fairly lengthy they are not given in this thesis.

In Algorithm 1 the complete algorithm to evaluate the overall impedance for a

triple-ring electrode setup is displayed.

Algorithm 1: Compute overall impedance

Input: material parameters p, radii geometry r, equidistant discrete time
points Tn = {0,∆t, . . . , n∆t}

Output: overall impedance Z
1 q(t) = Compute excitation pulse charge for t ∈ Tn as in [34, p. 406]

2 Compute current I(t) = ∂q(t)
∂t

3 {ω0, . . . , ωn} = compute frequency points from discrete time steps Tn
4 Compute Fourier transform Î(ω)= fft(I(t))
5 for i = 1, . . . , 3 do
6 φi(t) = solve PDE case for given i, p, r, Tn

7 Compute Fourier transform φ̂i(ω)= fft(φi(t))

8 Zi = φ̂i(ω)/Î(ω)

9 end
10 Z = compute the overall impedance as in section 3.3 for Z1, Z2, Z3

11 Return Z

58



3.4 A Novel Extension

3.4 A Novel Extension

While in the process of writing this thesis the author had an idea for a novel extension

of how the single impedance measurements in the triple-ring electrode case can be

used. This approach allows directly prescribing any sensitivity. As this is slightly

outside of the set scope of this thesis only the basic idea and some basic results

are presented. However, in future the author plans to investigate the following

phenomenon further. The author is not aware of any similar approaches at least in

the field of piezoelectricity.

Because the impedance computation via a network is motivated by real physical

measurements it is a ‘natural choice’ as the measurable quantity of the inverse prob-

lem. One of the main benefits of this choice is that the resulting impedance curve

and the influence of the parameters may be interpreted (e.g. it is well known that

some material parameters mainly influence specific resonance frequencies). More-

over, it is expected that this type of influence is valid even for varying material

parameters (i.e. the specific influence of some of the material parameters is ex-

pected to be valid globally instead of only locally). As solution methods for inverse

problems are usually very problem specific, this can help while designing a concrete

inverse scheme.

By sacrificing this problem knowledge, it is, in fact, possible to achieve any pre-

scribed sensitivity for a given set of material parameters. However, this prescribed

sensitivity then may hold only locally.

Consider the case where we have a more general electrode geometry. This especially

could mean applying more than three electrodes, i.e. n ∈ N electrodes, on the

piezoceramic. However, the simple delta-Y conversion then cannot be applied. For

more than three components there is no conversion formula for a star circuit with

n components to a fully-connected circuit with n nodes. Hence, in this case a

more general approach e.g. by using Kirchhoff’s laws on each node could make

it possible to compute the overall impedance and it’s derivatives. Note that in

this case the resulting linear system of equations generated by Kirchhoff’s laws is

underdetermined and further conditions determined by the exact setup are required.

In this context it seems wise to define a simpler combination of single impedance
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3 Simulation and Measurement of Impedance of Piezoceramics

measurements as the measurable quantity for the inverse problem instead of the over-

all impedance. A simple alternative could be the weighted sum of single impedance

measurements

Z(ω) := γ1(ω)Z1(ω) + · · ·+ γm(ω)Zm(ω) =
∑

1≤i≤m

γi(ω)Zi(ω)

for a fixed frequency ω, fixed weights γi ∈ R and m different impedance measure-

ments Z1, . . . , Zm. For convenience we will also call this weighted sum impedance

though it is not technically correct. Let us assume for the moment we use 5 rings

(as max0≤k≤4

(
4
k

)
< 10) and obtain 10 measurements curves Zi. Then, the derivative

of Z with respect to the material parameters is given by

∂Z

∂pj
=
∑

1≤i≤10

∂Zi
∂pj

γi.

Using matrix-vector notation this can be rewritten in terms of a matrix vector

product with Aij := ∂Zi

∂pj
and γ := [γi]1≤j≤10. We obtain

Aγ =

[
∂Z

∂pj

]
1≤j≤10

.

As we are using a multiple ring electrode setup based on this thesis none of the

derivatives are zero, linear dependent or badly scaled in relation to eachother and

we can safely assume that A is a full rank matrix with relatively low condition

number. In this case we can prescribe arbitrary values for the derivatives e.g. b =

(b1(ω), . . . , b10(ω))T by instead solving the linear system of equations for γ:
∂Z1

∂p1

∂Z1

∂p2
. . . ∂Z1

∂p10

∂Z2

∂p1

∂Z2

∂p2
. . . ∂Z2

∂p10

. . . . . . . . . . . .
∂Z10

∂p1

∂Z10

∂p2
. . . ∂Z10

∂p10


︸ ︷︷ ︸

=A


γ1

γ2

...

γ10


︸ ︷︷ ︸

=γ

=


b1

b2

...

b10


︸ ︷︷ ︸

=b

In fact: in order to create a full rank matrix A we do not necessarily require 5

electrodes. We can also generate 10 linear independent measurements from a triple
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ring setup by dividing the measurements we already have into 10 segments. There

are many possible ways to achieve this. One option will be given here. In order to

avoid confusion we will denote the 10 final measurement curves by Z̃1, . . . , Z̃10.

First, the amount of measurements can be doubled by combining measurements of

neighboring discrete frequency points ωi, ωi+1. We obtain from the discrete frequency

points {ω0, . . . , ω2N} the set {ω̃0, . . . , ω̃N} (calling the new domain the combined

frequency domain).

Second, as the impedance measurements are complex valued we can separate some

of the single impedance measurements into their real and imaginary parts:

Z1 = ReZ1 + j ImZ1, Z2 = ReZ2 + j ImZ2, Z3 = ReZ3 + j ImZ3

Thus we obtain for 0 ≤ i ≤ N the following 10 measurements curves

Z̃1(ω̃i) = ReZ1(ω2i), Z̃2(ω̃i) = ImZ1(ω2i), Z̃3(ω̃i) = ReZ2(ω2i),

Z̃4(ω̃i) = ImZ2(ω2i), Z̃5(ω̃i) = ‖Z3(ω2i)‖,
Z̃6(ω̃i) = ReZ1(ω2i+1), Z̃7(ω̃i) = ImZ1(ω2i+1), Z̃8(ω̃i) = ReZ2(ω2i+1),

Z̃9(ω̃i) = ImZ2(ω2i+1), Z̃10(ω̃i) = ‖Z3(ω2i+1)‖.

Using this setup we can prescribe any arbitrary values for the derivatives.

In Fig. 3.6a the derivative with respect to c13 was chosen to be a sine curve, the

other derivatives have integer values ranging from 0 to 9. This example was selected

to show that any arbitrary sensitivity can be reached.

In Fig. 3.6b for each point ω̃i it was chosen to have only one derivative with the

value of 1, all other values are zero. After 20 frequency points the parameter with

derivative 1 is replaced by a different one. This example was selected to demonstrate

that it is possible that each parameter can be assigned a fixed bandwidth where no

other parameter shows any sensitivity.

Obviously this approach can also be used to set all the derivatives of the impedance

Z with respect to the material parameters to 1.0. Hence, each parameter would

have the same influence on the new impedance.

However, currently not enough data has been gathered to show if and how material
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parameter identification methods can benefit from this approach.

Remark 3.2. Under the assumption of an impedance function that is at least once

continuously differentiable with respect to the material parameters the derivatives

of the new overall impedance function with respect to material parameters are at

least continuous. The author is unaware of any cases where the derivatives were not

at least continuous. Thus, this assumption seems to be reasonable.

Furthermore, under this assumption it can be guaranteed that the derivatives locally

do not change too much from the prescribed values when evaluating for different ma-

terial parameters. This may or may not be true globally and may vary for different

prescribed values. For future research it may be worthwhile to identify variations

of this method which guarantee a desired level of sensitivity for all parameters si-

multaneously for a large subset of all possible material parameters. One possible

approach could be combining this idea with work from e.g. [39].

Remark 3.3. This idea is based on the fact that the matrix A containing the

derivatives is a full rank matrix with a relatively low condition number. This is

only possible because the triple-ring electrode geometry developed in this thesis

already provides optimized sensitivities that are not too small and not badly scaled

in relation to eachother. Otherwise, if the matrix A had a large condition number

(e.g. a nearly singular matrix) small measurement errors could be amplified by this

procedure. Hence, this idea is a novel extension firmly based on the current work

rather than an entirely different approach.

However, the author does not see any reason why this idea would not work with

different approaches to increased sensitivity such as using multiple differently shaped

ceramics or using additional surface displacement measurements. Furthoremore, it

seems that this idea could also be used for different inverse problems that need not

be related to piezoelectrics where low sensitivity also is a prevailing issue.
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Combined frequency domain
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Figure 3.6: Different examples for prescribed derivatives.
63





4
Computing Sensitivity

The aim of this chapter is to define and compute the sensitivity of impedance with

respect to material parameters. These sensitivities predominantly consist of deriva-

tives that need to be computed. Hence, one essential technique used and developed

on for this thesis is Algorithmic Differentiation (AD). Parts of this chapter have

been published in [29].

4.1 Algorithmic Differentiation

Algorithmic Differentiation or Automatic Differentiation is a technique which en-

ables the computation of derivatives of ’arbitrary’ computer programs. AD is neither

symbolic differentiation nor numerical differentiation (in the sense of finite difference

schemes). Some main advantages of using AD over other differentiation techniques

are:

• The computed derivatives are provable accurate up to machine precision under

almost all practical circumstances.

• Low provable runtime and memory consumption. Derivatives can be computed

in a small multiple of the runtime of one function evaluation. For example for

scalar valued functions this constant ≤ 5/2 is independent of the number of

variables (inputs) the function has.

A comprehensive introduction as well as advanced topics on AD can be found in

e.g. [21]. As there are already numerous publications dealing with the basic concepts

of Algorithmic Differentiation there is no need to provide yet another introduction

here. Thus, for this thesis it is assumed that the reader is already familiar with the

basic concepts.
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4.2 Instrumentation of ADOL-C in CFS++

Parts of the following sections containing more detailed information have been pub-

lished by the author in [29].

For this work the AD software tool ADOL-C (Algorithmic Differentiation via Oper-

ator Overloading in C++) was applied. ADOL-C (see e.g. [80, 81]) is developed and

maintained at the research group Mathematics and its Applications of Prof. Dr. An-

drea Walther. In order to apply ADOL-C some preparations of the target code

are necessary. The aim of this section is to outline some of the unusual challenges

which arose while adapting CFS++ for derivative computation. Due to the techni-

cal nature of the details we will focus here only on string operation related issues.

Furthermore, as it is central to some important decisions made in this thesis some

issues regarding the choice of a so-called traceless AD mode, instead of a traced AD

mode, are given in Appendix A.3. However, much more details are given in [29].

ADOL-C introduces the data type adouble which manages and keeps track of deriva-

tives. The data type is used by replacing the usual double data type by an adouble

in the target code. Then, in the target code if an operation is called of which the

derivative is to be computed the adouble data type prevents that the usual oper-

ation is called. Instead an adouble operation with the same name is called which

also takes care of the derivative computation. The concept of implicitly replacing

an original operation by a second operation with the same name is called opera-

tor overloading. Operator overloading based AD tools are one of two major classes

of AD tools. The other major class uses a technique called source transformation

where the target code is analyzed and augmented by the tool.

For an example some C++ code, say the function double f( double a, double

b) is considered. It is necessary to change the data type of all variables directly

involved and relevant to the derivative computation (this is referred to as an ac-

tive variable) to the data type adouble. Hence one could overload the function

double f(double a, double b) to adouble f(adouble a, double b) assuming

that only a is directly involved and b is not. We refer to the selective change of

data type at exactly the locations where a change is required for correct derivative

computation as type-insertion.
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Conversely, a ‘brute-force’ approach is to define the data type double to in fact be

an adouble in all parts of the C++ code. This is usually done by including code

similar to the line #typedef adouble Double in the main include file and using

Double instead of double throughout all the code. Thus, this approach is also

known as the typedef approach.

Type-insertion clearly results in a faster program code: The custom adouble data

type has larger overhead compared to the double data type. If an adouble is used

where it is not needed the resulting code will not run at the optimal speed. However,

in large and complicated code bases it is usually very demanding to implement

operator overloading based AD with type-insertion as the type change of interface

parameters (i.e. type change in method signatures) will render the interface unusable

(signature mismatch) without also adapting the callers interface parameters. In large

and complicated code bases this manual adaptation might be necessary for nearly

every method, object property, temporary variable, etc.

In the latest implementation of ADOL-C into CFS++ we used a mix of both ap-

proaches: We used the typedef approach as a general guideline and type-insertion

for handling more specific implementation issues of which one important aspect for

CFS++ will be discussed in the next subsection.

The changes made for this thesis in the local CFS++ implementation of the au-

thor have been made available to anyone with access to CFS++. Furthermore, an

enhanced version which is not limited to piezoelectric problems has already been

or will shortly be added to the main development branch of CFS++ so that this

adaptation can be utilized by anyone with access to CFS++ for their simulation.

Arithmetic Expressions with Strings .

To allow non-constant, i.e., temperature dependent material parameters, among

other entities, are incorporated into CFS++ via scalar, vectorial or tensorial func-

tions called CoefFunction defined on the computational domain. As an example,

consider the following method declaration:

1 static PtrCoefFct

2 Generate( MathParser * mp, Global :: ComplexPart type , UInt numRows , UInt numCols ,

const StdVector <std::string >& realVal , const StdVector <std::string >& imagVal

= StdVector <std::string >() );

67



4 Computing Sensitivity

which returns a PtrCoefFct, a pointer to a CoefFunction. This method has the

following usage (marked gray, line 6):

1 if (xpr.GetDimType () == CoefFunction :: TENSOR )

2 {

3 StdVector <std::string > real , imag;

4 UInt numRows , numCols;

5 xpr.GetTensorXpr( numRows , numCols , real , imag );

6 ret = Generate( mp, part , numRows , numCols , real , imag );

7 [...]

8 }

Note that the method depends on a MathParser mp and vectors of std::string

for the real and imaginary parts real and imag of the CoefFunction (marked gray,

line 3). It is emphasized that the material parameters are handled as CoefFunction

and thus mostly as strings and not via double or complex<double>. The strings

containing the material data, but also other computations, are then also combined

into larger strings via composition. Hence, large string formulas can be created

by this process. Consider the following example where the unary operation sqrt is

performed on a CoefFunction (see lines marked in gray):

1 void CoefXpr :: ApplyUnaryFunc( std:: string& retReal , const std:: string& argReal ,

OpType op ) {

2 StdVector <std::string > args;

3 switch( op )

4 {

5 [...]

6 case OP_SQRT:

7 args = "sqrt(", B(argReal), ")";

8 retReal = B(args.Serialize(’ ’));

9 break;

10 [...]

11 }

12 }

where

1 inline std:: string B(const std:: string& xpr ) {

2 return "(" + xpr + ")";

3 }

is a helper function returning the same string surrounded by brackets. Hence, let

argReal be "123456.0" which, for the sake of this example, could be one of the

material parameters considered. Then retReal would be returned as the string

"sqrt( (123456.0) )". A subsequent reapplication would thus lead to the string
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"sqrt( (sqrt( (123456.0) )) )". Whatever formula was written inside argReal

would be surrounded by the operation "sqrt( )". These generated string formulas,

which can also contain variables (see below), are then parsed and evaluated by the

MathParser. Although in our case only constant material parameters are used,

these values are obligatorily evaluated by this MathParser mp - a wrapper for the

mathematical string parser external library MuParser [5].

MuParser is a bitcode generating parser for mathematical formulas. According to [5],

the speed of frequent evaluations of a specific formula with varying variable values

can be significantly increased by saving and reusing constant parts of generated

bitcode for the evaluation to disk thus avoiding future overhead for multiple similar

formula evaluations.

Since ADOL-C only operates on numerical types, currently, both operations in the

string data type and bitcode cannot be differentiated in CFS++. An approach to

differentiate string formulas in MuParser is presented in the next section. However,

due to the requirement of an additional external package as well as the consent of

the main CFS++ developers, this has not yet been implemented in CFS++.

Instead, in order to have matching interface data types (i.e. matching method sig-

natures in adouble data type) in CFS++, MuParser is compiled using the adouble

data type despite custom data types not officially supported by MuParser. We ver-

ified that this does not change the primal results. Furthermore, this also has no

noticeable impact on runtime as there is only a relatively small number of string

formulas parsed compared to the main code. Despite the adouble data type it does

not, however, have the functionality to compute derivatives using AD. Hence, the

use of MuParser breaks the differentiation chain at any point it is used.

Fortunately, for these specific cases of sensitivity evaluation for piezoelectric trans-

ducers we were able to identify special locations in CFS++ where we could find

workarounds for these issues: Special case conditionals circumvent these issues and

custom values are set to correct the values computed by CFS++. However, this

only works for this one specific case of sensitivity evaluation and does not replace

general case solutions.
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4.3 Computing Derivatives in MuParser Applications

In this subsection a method to handle MuParser usage under certain assumptions is

presented. In order to achieve this, no changes to the MuParser package are required.

Note that even if the MuParser issues are fully dealt with, this does not imply that all

string related issues within CFS++ have been resolved. However, string operations

unrelated to MuParser (such as used in CoefFunction) could probably be dealt with

in a similar fashion.

As the assumptions discussed below have currently not been implemented in CFS++

we will instead work, for the reader’s convenience, on a slightly simplified version of

the default example given on the MuParser homepage:

1 #include <iostream >

2 #include "muParser.h"

3

4 // Function callback

5 double MySqr(double a_fVal)

6 {

7 return a_fVal*a_fVal;

8 }

9

10 // main program

11 int main(int argc , char* argv [])

12 {

13 using namespace mu;

14

15 try

16 {

17 double fVal = 1;

18 Parser p;

19 p.DefineVar("a", &fVal);

20 p.DefineFun("MySqr", MySqr);

21 p.SetExpr("MySqr(a)");

22

23 for (std:: size_t a=0; a <100; ++a)

24 {

25 fVal = a; // Change value of variable a

26 std::cout << p.Eval() << std::endl;

27 }

28 }

29 catch (Parser :: exception_type &e)

30 {

31 std::cout << e.GetMsg () << std::endl;

32 }

33 return 0;

34 }
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This program computes the squares of the numbers 0, . . . , 99 by means of MuParser

calls. The functionality of MuParser is the same as mentioned in the last section:

We register expressions containing preregistered functions and variables with the call

to SetExpr(string) (see lines 19 to 21). Variables in MuParser, once registered,

automatically change their values if their counterpart in the original code changes

(by using pointers). This has the effect that registered functions can be called with

different arguments without explicitly calling the function in the original code (see

also line 25 and line 26, note that in line 26 no function argument is provided).

In order to keep the MuParser package unaltered for the derivative computation

process all function calls and variables of MuParser must be given in double data

type. For simplicity we will now use the function MySqr from above as an example.

We can abide by this condition by defining a double function double dMySqr which

has the purpose of computing the derivative of the function while having only double

arguments. In fact, any function registered to MuParser of which derivatives are

required can have the following very general form:

1 double dMySqr(double a_fVal , double adval)

2 {

3 adtl:: adouble tmp;

4 tmp.setValue(a_fVal);

5 tmp.setADValue (0,adval);

6 adtl:: adouble ret;

7 ret=ADMySqr(tmp);

8 return ret.getADValue (0);

9 }

Inside of this function a temporary adouble is created which calls the AD variant

ADMySqr of the original function MySqr:

1 adtl:: adouble ADMySqr(adtl:: adouble a_fVal)

2 {

3 return a_fVal*a_fVal;

4 }

Hence, if the seed value adval is known to MuParser when calling the function MySqr

then the derivative of MySqr could thus easily be computed. However, notifying the

seed to MuParser can be achieved by registering a second variable e.g. dx for each

variable x at its registration.

Now that we could easily compute derivatives of functions registered in MuParser
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this leaves us with the issue of actually calling the function dMySqr. In MuParser

this is done by evaluating the expression set in SetExpr(string). Hence, the as-

sumption we have to make is that a second expression containing the analytical

derivative of the first expression is provided. This second expression can contain

abstract references to derivatives of functions contained in the first expression. For

example a legitimate second expression to the first expression "f*g" can be the

very abstract expression "df*g + f*dg" as all the functions f,g,df,dg have been

previously registered to MuParser in the methodology from above. This assumption

is reasonable as many software packages, including any popular computer algebra

system or, for example, the freely available package SymPy [51], can easily compute

these abstract derivatives at runtime as long as the expressions are not too long.

Note that these software packages do not need any knowledge of the specifics of

the functions f or df. In fact, as the length of formulas for analytical derivatives

increases exponentially the author recommends keeping the expressions provided to

these packages as short and simple as possible.

The required changes to the original code are simple and could easily be automated

for a larger number of functions.

4.4 Higher Order Differentiation

For the use of gradient-based optimization methods at least the first derivatives of

the objective function with respect to the optimization variables are needed. In our

case (see next chapter) this means we also need the second order mixed derivatives

of impedance with respect to material parameters and geometry variables. However,

at the beginning of this work this could not be handled by ADOL-C in the traceless

variant (which we are limited to in this thesis, see Appendix A.3). Hence, some ex-

tensions to preexisting code [36] was necessary. In this section we will briefly discuss

Taylor coefficient arithmetic and the application to computing (mixed) higher order

derivatives.
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4.4.1 Taylor Coefficient Arithmetic

The following is based upon [21]. One possible way to reduce runtime when com-

puting derivatives compared to full symbolic differentiation is to use the concept of

Taylor coefficient arithmetic. We start with Taylor polynomials S and T of order

N ∈ N. Let x, a ∈ R as well as f, g : R → R smooth and let t := (x − a), then we

choose S, T with

S(t) :=
N∑
k=0

f (k)(a)

k!
tk = f(a) + f (1)(a)t+

f (2)(a)

2!
t2 + · · ·+ f (N)(a)

N !
tN

T (t) :=
N∑
k=0

g(k)(a)

k!
tk = g(a) + g(1)(a)t+

g(2)(a)

2!
t2 + · · ·+ g(N)(a)

N !
tN .

Following the notation of [21, chapter 13] the n-th coefficient denoted by a subscript

Sn :=
f (n)(a)

n!
, 0 ≤ n ≤ N (4.1)

is called a Taylor coefficient.

Then for the sum of S and T we have

(S + T )(t) =
N∑
k=0

f (k)(a) + g(k)(a)

k!
tk.

We notice that
∂f

∂x

∣∣∣∣
x=a

= f ′(a) = S1

and, consequently,

∂(f + g)

∂x

∣∣∣∣
x=a

= f ′(a) + g′(a) = S1 + T1.

More generally by comparing the coefficients we note for 0 ≤ n ≤ N the following

rule for additions
∂n(f + g)

∂xn

∣∣∣∣
x=a

= n! (Sn + Tn)
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or more compact

(S + T )n = Sn + Tn.

For a more interesting example we furthermore consider the product f ·g and obtain

using the general Leibniz rule

∂n(f · g)(x)

∂xn
=

n∑
k=0

(
n

k

)
∂(n−k)f

∂x(n−k)
(x) · ∂

kg

∂xk
(x)

and thus evaluated at x = a we get the following rule for products

∂n(f · g)(a)

∂xn
=

n∑
k=0

n!

k! (n− k)!

∂(n−k)f

∂x(n−k)
(a)︸ ︷︷ ︸

=(n−k)!·Sn−k

· ∂
kg

∂xk
(a)︸ ︷︷ ︸

k!·Tk

=n!

(
n∑
k=0

Sn−kTk

)
.

Or, again, more compact

(S · T )n =
n∑
k=0

Sn−kTk. (4.2)

There are three main points to take notice of:

• By adding more rules for arithmetic operations of Taylor polynomials (see

e.g. [21, Table 13.1, Table 13.2]) it is similarly easy to compute higher order

derivatives of other arithmetic operations (e.g. +,-,*,/,log,exp,sin,cos,. . . ).

• The functions f, g from above are chosen arbitrarily. Hence, they can also be

chosen to be compositions of the form h(x) = g(f(x)). Thus, any combination

of arithmetic operations can be handled in the same manner.

• In order to make use of the rules some initial Taylor coefficients are assumed

to be given. These initial coefficients are usually referred to as seeds.

In fact, we can make direct use of the seeds for our computation: By defining the

Taylor coefficients of the differentiation variable (i.e. the Taylor coefficients of the

identity function f(x) = x) prior to computation we specify which derivatives we

choose to compute.
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Example 4.1. In this short example we aim to use the method from above to

compute the first and second derivatives of the function

f(x) = x · exp(x)

for x = 2.0. First, we note that the analytical derivatives of this function are given

by

f (n)(x) = (x+ n) · exp(x).

We continue by creating a partition of f into its elemental operations

z1(x) := x, z2 := exp(x), z3(x) := z1(x) · z2(x) ⇒ f(x) = z3(x).

In order to reduce confusion the following notation is introduced for 0 ≤ i ≤ n = 2:

• Let Ai denote the Taylor coefficients of x (and thus also z1),

• let Bi denote the Taylor coefficients of z2 and

• let Ci denote the Taylor coefficients of z3.

For our computation we must specify all values Ai for 0 ≤ i ≤ n: Let

Ai :=


2.0 for i = 0

1.0 for i = 1

0 else

which can be interpreted as directly setting the derivative ∂x
∂x

= 1.0.

The Taylor coefficient arithmetic rule for multiplication is given in Eq. (4.2) and the

rule for the application of the exponential function is given by [21]

(expS)n :=
1

n

n∑
k=1

k · (expS)n−k · Sk.
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Then by direct and successive application of the rules we obtain

A =

2.0

1

0

 , B =

 exp(2.0)

exp(2.0)
1
2

exp(2.0)

 , C =

 1.3 · exp(2.0)

(2.0 + 1) exp(2.0)
1
2

(2.0 + 2) exp(2.0)

 .

Finally, we obtain the correct derivatives by remembering that Taylor coefficients

are derivatives divided by the factorial of their index (see Eq. (4.1)).

Hence, in a computer program it is possible to construct a data type e.g. adouble_ho

that, instead of running the usual operations (like +,-,*,/,log,exp,. . . ) evaluates the

Taylor coefficient arithmetic version of those operations. If this data type is used

throughout the code and the user has initially specified the desired seed values the

computer program can easily compute the desired derivatives.

Remark 4.2. .

Note that one main benefit of this method is a reduced amount of required operations

(and thus runtime). This is especially true when the above is used to compute

adjoints. However, in this thesis we are limited to the use of only the traceless

variant of ADOL-C (and thus only the forward mode, see also section A.3). Hence,

faster versions involving adjoints cannot be utilized in this thesis. For more detailed

analysis of runtime the author refers to [21, chapter 13].

4.4.2 Higher Order Mixed Derivatives

Using the Taylor coefficient method above it is also possible to compute higher order

derivatives with respect to multiple variables. However, setting seed values for this

case is not as straightforward as before. A minimal introduction to this topic is

given here. However, for a more detailed version the reader may consult [21] or [79].

Let us assume we have two mulitdimensional Taylor polynomials and an analytical

function f : Rn → Rm where, for simplicity, n = 2, m = 1, d ∈ N the desired degree
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of differentiation and a small ε > 0 such that

S : ]−ε, ε[→ Rn, S(t) :=
d∑

k=0

Skt
k, Sk ∈ Rn

U : ]−ε, ε[→ Rm, U(t) :=
d∑

k=0

Ukt
k, Uk ∈ Rm

with the local representation

U(t) = f(S(t)).

Then we have e.g. U0 = U(0) = f(S(0)) = f(S0). Moreover, we get by the chain

rule for the first few coefficients of U (see [21, p. 303]):

U0 = f(S0)

U1 = f ′(S0)S1

U2 = f ′(S0)S2 +
1

2
f ′′(S0)S1S1

U3 = f ′(S0)S3 + f ′′(S0)S1S2 +
1

6
f ′′′(S0)S1S1S1

. . .

Bear in mind that when using vectorial valued functions this representation is ac-

tually a misuse of notation [21, p. 303]. This is useful so high readability can be

maintained of now tensorial quantities.

In order to calculate the second derivative of f with respect to two variables, e.g.

x1, x2, we select U3 as this is the first term which contains two different coefficients

S1, S2. Let Hf denote the Hessian of f . Then the second order mixed derivative

could be computed e.g. via ∂2f
∂x1∂x2

= ( 1
0 )T Hf ( 0

1 ) = ST1 HfS2 = f ′′(S0)S1S2

However, if we compute U3 by setting S1 = ( 1
0 ) , S2 = ( 0

1 ) and S3 = 0 and

store the result in a temporary variable τ1 then τ1 additionally contains the term
1
6
f ′′′(S0)S1S1S1 instead of only f ′′(S0)S1S2 (as S3 = 0 the first term vanishes).

Thus, the required derivative can be obtained by subtracting 1
6
f ′′′(S0)S1S1S1 from

τ1. This can be achieved by recomputing U3 this time setting S1 = ( 1
0 ) , S2 = S3 = 0

and storing the result into the temporary variable τ2. Then, the desired mixed
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derivative is the result of τ = τ1 − τ2.

Remark 4.3. Note that this procedure requires two function evaluations with Tay-

lor polynomials of order 3. However, in e.g. [20] a method that computes second

order mixed derivatives by computations of order 2 was suggested (requiring three

function evaluations of order 2, see equation (8) in [20, p. 1123]). For this thesis

this method is not utilized for several reasons:

First, the second function evaluation on the last page stored in τ2 also computes

U1 = f ′(S0)S1. This is calculated as a byproduct of the computation of U3 which

indirectly requires the computation of the terms U2, U1 and U0 (analogously to the

computation in section 4.4.1). For the computation of the second order derivative

of the overall impedance with respect to a material parameter p and a ring radius

r the first derivatives ∂Zi

∂p
, ∂Zi

∂r
as well as the second order mixed derivatives ∂2Zi

∂p∂r

for i = 1, 2, 3 are required seperatly, see Remark 3.1. Thus, this byproduct can be

directly used to obtain ∂Zi

∂r
while computing ∂2Zi

∂p∂r
.

Second, the current implementation of the method is based on a trace evaluation

that is currently not feasible for the sensitivity optimization problem here. Thus,

further adaptation of its implementation to allow application to the problems here

would be necessary.

As a result it seems questionable that the method of [20] would give a faster overall

runtime for all required derivatives in this specific case and that the development

time necessary for reimplementation is probably better invested in different aspects

of this thesis.

4.4.3 Increasing Accuracy of Very High Derivatives

While implementing and testing a (traceless) higher order derivative variant of

ADOL-C the author noticed that higher order derivatives could be computed cor-

rectly only up to a specific degree and that the error would rapidly increase with

the degree. To explain this behavior we note the following.

To retrieve the i-th derivative of a function f , we need to multiply the i-th coefficient

by i!

Si :=
f (i)(a)

i!
⇔ f (i)(a) = i! ·Si.
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4.4 Higher Order Differentiation

However, for high values of i the value of i! increases extremely fast. This can lead

to numerical accuracy issues.

Example 4.4. Let f(x) = x · exp(x).

Then

f(2) = 2 exp(2) ≈ 14.77

and with

f (n)(x) = (n+ x) · exp(x)

we get

f (170)(2) = (170 + 2) · exp(2) ≈ 1270.91.

Note that these values are within the usual range of double variables. However,

in order to retrieve the n-th derivative from the n-th Taylor coefficient we need to

compute and multiply by n!. In this case we have 170!≈ 7.257416 · 10306 which is

barely inside the range of values of a double (the maximal value for a usual IEEE

754 64-bit double is ≈ 1.8 · 10308). In order to obtain the correct value of ≈ 1270.91

the corresponding coefficient must be of the magnitude 10−303. The author’s faith

in the correctness of the result of that computation is quite limited. We conclude

that the numerical accuracy of very high order derivatives is severely limited by the

multiplication with the factorial of the degree of differentiation.

In order to achieve a smaller error for very high derivatives the usual arithmetic

rules used by the AD community were adapted with focus on numerical accuracy.

The reader may note that the following considerations are not required for the

optimization of sensitivity of piezoelectric ceramics. The following was adapted

together with Nora Irene Ghartey who was a summer student at the research group

Mathematics and its Applications in July 2017. Do note that some of the arithmetic

rules are not novel (see e.g. [59, p. 40]). However, the author has no knowledge of

any considerations of these rules in the context of increased numerical accuracy of

very high derivatives.

In order to eliminate the final multiplication with the factorial (of the degree of the

derivative) we try to include this operation stepwise during the evaluation of the

Taylor coefficients. Thus, in contrast to the common usage in the AD community
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4 Computing Sensitivity

we now directly define

Si := f (i)(a).

We now aim to include the missing multiplication stepwise by instead adding the

binomial coefficient
(
n
k

)
as an additional factor back into the summation in each

Taylor arithmetic rule.

For illustration we continue the example Ex. 4.4 where multiplication and appli-

cation of the exponential function to Taylor polynomials are considered. For the

multiplication of two Taylor polynomials by the general Leibniz rule we directly

obtain for an n ≤ d with d the degree of the polynomials that

(S · T )n(t) =
n∑
k=0

(
n

k

)
S(n−k)(t)T (k)(t)

For the exponential function we recursively get

en := (exp(T ))n(t) =
n∑
k=1

(
n− 1

k − 1

)
T (k)(t)en−k(t).

Analogously, the binomial coefficient can be integrated into the summation for all

other operations.

We can now analyze what improvement we expect: We note that e.g. for an even

n = 2m we have argmax0≤k≤n
(
n
k

)
= m. Hence,

max
0≤k≤n

(
n

k

)
=

(
n

m

)
=

n!

m! (n−m)!
=

n!

(m! )2
.

For the ratio we can compute (
n
m

)
n!

=
1

(m! )2
� 1.

This implies that these intermediate binomial coefficients are very much smaller

than n! which is the factor we previously were forced to compute and multiply with.

Example 4.5. For n = 1000 we have max0≤k≤n
(
n
k

)
≈ 2.70288 · 10299. Using the

adapted formulas we get f (1000)(2) ≈ 7403.83 which is the correct value of the 1000-

th derivative.
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4.5 Definition and Computation of Sensitivity of Impedance

Hence, it is now possible to practically compute much higher derivatives within a

C++ code (here the maximum is 1028). We can now compute 1028/171 ≈ 6.01

times more derivatives than before. The accuracy is, in any case, still limited by the

numeric value of
n!

bn
2
c!2 .

Remark 4.6. In [21, p. 302 ] it is directly noted that ”the binomial weights occurring

in Leibniz’s formula for the derivatives of a product are avoided, and overflow is a

little less likely” when the k-th Taylor coefficient is rescaled with the factor k!. In

the simple examples considered here, however, substantial error was introduced into

the Taylor coefficients due to underflow, which also get rescaled by k!.

4.5 Definition and Computation of Sensitivity of

Impedance

Now that all preliminaries have been dealt with, we can finally go ahead and first

define, then compute and finally optimize the sensitivity of impedance with respect

to material parameters. In the following sections we will discuss interesting aspects

which arose during this process and give the optimization results. Parts of the

following sections have been published by the author of this thesis in [29].

As a first step we must define what exactly we mean by the term sensitivity. There

have been various approaches to this in the context of piezoceramics which we will

discuss later on. In this work we will focus on a local sensitivity definition based on

derivatives of the measurable quantity.

4.5.1 Definition of Sensitivity

We start by assuming the complex valued impedance Z to be a given function

Z : F ×P×R → C

depending on frequency ω ∈ F , the material parameters p = [p1, . . . , p10] ∈ P ⊆ R10

as well as the ring radii r ∈ R, for the set of feasible electrode configurations
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4 Computing Sensitivity

R representing the ring geometry and defining the boundary regions on Ω. This

impedance can be computed e.g. by methods derived in section 3.3.

We define the partial sensitivity of impedance with respect to a specific material

parameter pi, i ∈ {1, . . . , 10} as the L2-norm of the curve

∂Z(·; p, r)
∂pi

∈ {F → C} (4.3)

and denote

‖∇piZ(·; p, r)‖:=
∥∥∥∥∂Z(·; p, r)

∂pi

∥∥∥∥
L2(F)

=

(∫
F

∥∥∥∥∂Z(ω; p, r)

∂pi

∥∥∥∥2

2

dω

) 1
2

. (4.4)

Here, the last integral can be computed by discretizing the frequency domain F
and applying a numerical quadrature scheme (usually Newton-Cotes formulas, e.g.

trapezoidal rule, Simpson’s rule or polcherima rule, see e.g. [10]). As an example,

in Fig. 4.1 the complex valued and frequency dependent partial derivative of the

impedance Z with respect to the material parameter ε11 is displayed.

Because of the form of these curves they have often been refered to as ‘bumblebee

curves’.
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Figure 4.1: Derivative of impedance with respect to the material parameter ε11.

At this point it is important to note that these partial sensitivities have very different

numerical values for the different parameters pi. This is partly because some SI

units may be much too largely defined for the context they are used in. For example
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4.5 Definition and Computation of Sensitivity of Impedance

distances are measured in meters, however the occurring mechanical displacements

operate on a much smaller scale. Hence, in order to avoid numerical errors and make

the partial sensitivities comparable they need to be scaled to a similar magnitude.

This is partly achieved by setting the adouble seed values of the material parameters

in CFS++ to the magnitude of the specific material parameters, instead of choosing

the default value 1. For example using ADOL-C the seed values can be set by using

code similar to the following.

1 double eps_11_scale =1e-09;

2 material_param_eps11.setADValue (& eps_11_scale);

This has the benefit that not only have the partial sensitivities received some scaling

but also we expect the derivatives to be numerically more stable while they are

computed. Alternatively, and mathematically equivalently one could divide the

resulting partial sensitivities by the magnitude of the specific material parameters

and scale them in this way if Algorithmic Differentiation is not applied. Do note

that this may have an impact on numerical accuracy.

Note that even by scaling with the magnitude of the specific material parameter nu-

merical values the partial sensitivities still have very different magnitudes. The par-

tial sensitivities for the case of an optimized triple-ring setup are shown in Fig. 4.2.
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Figure 4.2: Pre-scaled partial sensitivity for different material parameters.

For the identification of all material parameters as part of an inverse problem all
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4 Computing Sensitivity

sensitivities (of the overall impedance) would ideally globally have a sensitivity of

approximately 1.0. However, this does not seem to be possible using this specific

type of triple-ring setup, at least when using the physically motivated definition of

impedance. One reason for this behavior is that the sensitivities also depend on

the overall geometry of the ceramic itself and not only on the electrode geometry

placed onto the ceramic. The overall geometry of the ceramic is fixed and cannot

be modified as it would usually be provided by the manufacturer. Hence, in this

work it is the goal to make best use of the sensitivities that can be gained by any

given ceramic geometry. Motivated by this fact we furthermore introduce a weight

wi for each material parameter pi. These weights aim to make sure that those

material parameters, which have a low sensitivity associated with, are prioritized

in the optimization over those material parameters that have a high sensitivity.

These weights could then easily be adapted for a given ceramic geometry or also

be specifically adapted to ignore material parameters which are not of interest for a

specific case.

Hence, the overall sensitivity is defined by the (weighted) Euclidean norm

J1(r) :=
∥∥∥WS [‖∇piZ(·; p, r)‖]i=1,...,Np

∥∥∥
2

with [‖∇piZ(·; p, r)‖]i=1,...,Np
∈ RNp the vector containing all partial sensitivities, the

diagonal weight matrix W ∈ RNp×Np which in the easiest case is the unit matrix and

a diagonal scaling matrix S ∈ RNp×Np which scales the very different contributions

of each parameter to a common level. These matrices are stated here separately to

emphasize the importance of scaling in this context. However, they can be unified

in a single diagonal matrix instead. For future reference we also note J1(r) as the

objective function for optimization which we seek to maximize with r ∈ R the set

of feasible electrode configurations.

4.5.2 Comparison to Alternative Sensitivity Definitions

Some alternative definitions have also been suggested in this context:

First, do note the strong similarity between the definition given here and classical

methods in the context of optimal experiment design. Especially note that Eq. (4.4)
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4.5 Definition and Computation of Sensitivity of Impedance

is a different interpretation of the Fisher information matrix (see e.g. [58]). One

distinction from classical methods is that for the Fisher information matrix the

frequency points are permitted to be chosen arbitrarily. In light of the L2-norm

defined here, however, it makes sense to choose these in the context of error theory

for numerical quadrature schemes. As the definitions are slightly different e.g. in

the operation order but also in other aspects the method suggested here could be

interpreted only similar to a classical optimal design method. For future research it

may be worthwhile to unify both definitions in order to benefit from the rich research

results on classical optimal experiment design. This includes a more statistical

interpretation of the sensitivities incorporating noise distribution assumptions which

is not explicitly handled in this thesis.

Second, there is the concept of global sensitivity. The sensitivity defined here is based

on a local interpretation of sensitivity. This means that increasing the sensitivity

only does so for this specific set of material parameters. An optimization does

not necessarily cover all other values for the material parameters but one hopes

that it also simultaneously increases for all other values of the material parameters

(which is in general true only locally). In [39] a method is suggested to evaluate

the local sensitivities for many different values of the material parameters. In light

of the inverse problem where the material parameters are the unknowns it seems a

very good idea to also account for changing material parameter values. However,

note that this comes at the cost of a huge amount of function evaluations and thus

huge computational cost for each evaluation of the global sensitivity. For this work,

where each sensitivity evaluation can run from a couple of seconds to multiple hours

(depending on the refinement of the computational grid, see [29]) this idea seems

good but not practical in the context of this thesis.

Third, there are methods motivated by other regions of research. For example in

the Ph.D. thesis of Unverzagt [75] a cross-correlation method is used to define a

quantitative sensitivity measure. This method seems to be partially motivated by

an approach from signal theory. In this thesis a comparison to this method is not

given. However, the optimized electrode geometry of the piezoceramic developed in

[75] is used as an initial point to some of the optimization presented later on.
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4 Computing Sensitivity

4.6 Accuracy of Derivatives

Parts of this section have been published in [29], especially section 4 of that arti-

cle. The accuracy of the derivatives is of central importance for the optimization

process: the cost function nearly entirely consists of derivatives that need to be

calculated. We have validated the derivatives of CFS++ produced by ADOL-C by

comparing them directly with derivatives produced by applying a finite difference

(FD) scheme. This shows good accuracy. The post-processing steps (i.e. network

computations and I/O, see Fig. 5.3) written in MATLABTM [48] have been differ-

entiated symbolically. An independent comparison with finite differences also shows

good accuracy.

One major problem in the application of finite differences is choosing a step width.

Numerical error theory of finite differences (see e.g. [53, section 9.1] or [21]) states

that step widths too large generally provide a poor approximation. Conversely,

an approximation with a step width too small accumulates large round-off errors

and also provides a poor approximation. The optimal step width is not known

a-priori (without a reference value this is also true a-posteriori) and depends on

the evaluation point. However, it is also fairly simple to construct functions (e.g.

f(x) = sin(1/x) for x > 0 small or f(x) = x sin(x) for large x) where for some

points x no step width h can be identified where the error is sufficiently small (see

e.g. magenta coloured line in Fig. 4.3).

For our application it is, thus, also important to note that the optimal step width

depends on the concrete electrode configuration used.

Let

∇ad
pi
z(ωdiscr; p, r) ≈

∂Z(ωdiscr; p, r)

∂pi

be the partial sensitivity computed using Algorithmic Differentiation at discrete

frequency points ωdiscr. This is an approximation as FEM simulation tools only

compute an approximate solution to a partial differential equation. Analogously, for

a given small h > 0 the approximation to the partial sensitivity gained by applying

(first order) finite differences to the CFS++ simulation is defined as

∇fd
pi,h
z(ωdiscr; p, r) :=

Z(ωdiscr; pi,h, r)− Z(ωdiscr; p, r)

h
≈ ∂Z(ωdiscr; p, r)

∂pi

86



4.6 Accuracy of Derivatives

Figure 4.3: Relative error of finite differences using different step widths h and dif-
ferent points of evaluation x for the function f(x) = x · sinx.

with pi,h := [p1, . . . , pi + h, . . . , p10].

In Fig. 4.4 we compare the relative difference1

rel diff(h, x) :=
∇fd
pi,h
z(x)−∇ad

pi
z(x)

∇ad
pi
z(x)

of sensitivity for four different electrode configurations x calculated by AD and

FD for a single material parameter by varying the step width. We show this for

different feasible electrode configurations x ∈ R. First, we focus on the blue and

green lines indicating the relative differences of AD and FD with respect to i) a

default electrode configuration (reference configuration we also physically possess

for measurement purposes, ‘x’ markers, blue line) and ii) one where we set the first

radii r1 to 3.3 mm (square markers, green line). In the first case choosing a normed

step width size of γ = x+h
x
− 1 = h

x
= 5.995 · 10−5 gives a small relative difference

1As AD methods usually yield derivatives with working accuracy [21] we may carefully refer to
the relative differences as relative errors.
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Figure 4.4: Relative differences (‘error’) of finite differences vs. Algorithmic Differ-
entiation over step width.

of 0.1916 %. In the second case this situation is now very different. The relative

difference is now 39.76 %.

Similar discrepancies can also be found for the other configurations given (‘*’ mark-

ers, yellow line, r1 = 1.6 mm; diamond markers, magenta line, r1 = 0.4 mm). As

each of the datapoints shown takes approx. one hour to compute (cf. [29, Tab. 4])

we do not show more configurations. However, it is our experience that it is very

challenging to find an appropriate differentiation step width for one specific configu-

ration and even more so to identify a step width sufficient for any arbitrary electrode

configuration provided by an optimizer.

This is very troubling for the optimization of sensitivity with the electrode config-

uration as optimization variables via finite differences: The relative differences are

of the same magnitude as some of the achieved gains by optimization in [37]. Even

more: the goal of the optimization is to increase overall sensitivity. This may also

be interpreted as increasing a measure of nonlinearity. In this case we expect finite

differences generally to yield increasingly poorer approximations.
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4.6 Accuracy of Derivatives

In the second plot Fig. 4.5 we see the effect finite differences have on the cost

function for a possible optimization. For Fig. 4.5 we fix the step width and now plot

the (unscaled) sensitivity of impedance with respect to ε11 computed either by AD

(blue line) or by finite differences (red line) on the y-axis. For the x-axis we vary the

first radii of the configuration from 0.15 mm to 3.8 mm. We note that the blue line

(AD) is very smooth and the red line (FD) has many zig-zag features, however, they

seem to describe some common function. While it is possible to use the red curve

(FD) for optimization purposes due to the zig-zagging we expect optimizers to only

find very locally optimal points. On the other side with the blue line (AD), we expect

an optimizer to not have too many difficulties to even find a globally optimal point.

We tested this hypothesis on this small example with only one variable radius and

found it to be precise. In the next section we will see that this also has a significant

effect on the optimization.
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Figure 4.5: Sensitivity of impedance with respect to ε11 for the first radii r1 between
minimally and maximally feasible values.

Naturally, the author also experimented with a higher order finite differencing

scheme to increase the accuracy. As each FEM solution is runtime intensive this

89



4 Computing Sensitivity

comes at the cost of an overall much higher runtime. Nevertheless, one still faces

the issue of choosing a differencing step width h suitable not only for one specific

electrode configuration but all electrode configurations so we have low confidence in

the quality of the results computed this way. Practical experiments were conducted

in [37] to test this and the author was unable to find any substantial improvement

on the behavior of the optimizer and the resulting solution.

As a consequence the author has even less confidence in mixed second order deriva-

tives ∂2Z
∂p∂r

computed solely by finite differences which would be required for gradient

based optimization.

Remark 4.7. The author did verify correctness of second order mixed derivatives

computed by the higher order traceless variant which was adapted for this thesis

(discussed in section 4.4). The author found that the results of the previous analysis

presented in this section are analogously valid for second order derivatives. Thus,

the verification results are omitted for brevity.
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5.1 Optimization Problem and General Procedure

First, we need to establish the optimization problem itself. As mentioned earlier,

the objective function we aim to increase is

J1(r) :=
∥∥∥WS [‖∇piZ(·; p, r)‖]i=1,...,Np

∥∥∥
2

where we are permitted to modify the ring radii parametrized by r. The parametriza-

tion used for the later parts of this thesis on is shown in Fig. 5.1. However, the choice

r2

r1

R = const.

r3

r4

1

Figure 5.1: Parametrization of triple-ring electrodes.

of parametrization leads to some restrictions on what kind of triple-ring electrode

can be described by the specific parametrization. For instance, using this specific

parametrization the top outer electrode always ends at the outer perimeter of the

piezoceramic - it is not possible to have a gap between the outer perimeter of the

ceramic and the electrode. Though in principle it would not be hard to add an
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5 Optimization of Sensitivity

extra variable that parametrizes this gap, however, the extra variable would signif-

icantly increase the runtime of the optimization procedure. Hence, the choice of

parametrization is a trade-off between the importance of a general description of all

possible triple-ring electrodes and the amount of parameters needed to do so.

Furthermore, a very important aspect in the choice of parametrization is also the

question of scalability of parameters - in other words: Can we prevent choosing a

parametrization where large changes of the parameters have a small impact on the

objective function near the optimum? It is common for many algorithms to not

gracefully handle parameters that are nonlinear and badly scaled in combination.

An example of this behavior is the Rosenbrock-function (see also remarks in e.g. [73,

p. 27-28], [53, p. 26-28]) which is used as a popular benchmark for many optimization

algorithms as it incorporates a badly scaled region near the optimum (large changes

in some of the optimization variables have only a small impact on the objective

function).

In a first attempt of parametrization we did not consider this scalability issue and

subsequently did not gain any satisfying results from the optimization. Results are

shown in section 5.3.1.

In summary, the aspects of practical runtime, generalization and scalability went into

consideration for the choice of the parametrization developed in this thesis. This

leads to a parametrization using four variables r = (r1, r2, r3, r4) ∈ R4 as shown in

Fig. 5.1. This selection was developed exclusively for this thesis by the author and

was not used in other work e.g. [74].

Now that a parametrization has been chosen we must now establish which config-

urations r are deemed feasible: First, for obvious physical reasons the ring radii

cannot be negative. Furthermore, in the resulting configuration the electrodes may

not overlap - there must always be a gap otherwise we do not have a triple-ring

setup. For physically building these configurations we furthermore face some tech-

nical restrictions: A laser with a fixed width is used to create the gaps. Hence,

the gap also must have a minimal width of the same size as the laser. Second, for

physically affixing the electrodes in an experimental measurement setup similar to

[75] the electrode rings must have a minimal width.

Thus, we can describe the feasible triple-ring electrode setup parametrized as in
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Fig. 5.1 by the set

R := {r = (r1, r2, r3, r4) ∈ R4 : Ar ≤ b}

with

A :=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 −1 0 0

0 0 1 −1



∈ R10×4, b :=



3.7 · 10−3

4 · 10−3

5 · 10−3

5 · 10−3

−0.5 · 10−3

0

−0.15 · 10−3

0

−0.3 · 10−3

−1 · 10−3



∈ R10.

This gives us 10 linear constraints for 4 variables. Each variable ri is bounded from

below and above by a box constraint and furthermore r1 and r2 as well as r3 and

r4 share a linear constraint, respectively, assuring that there is no overlap for the

top electrodes and a minimal width for the bottom electrode. Because of the mild

linear constraints coupling only two variables in each constraint we can easily show a

graphical representation of the 4 dimensional feasible domain R (see Fig. 5.2). Here,

each small blue line indicates a single constraint and the interior of the two green

triangles indicates the feasible domain. Finally we can state the full optimization

problem:

min
r∈R4
−J1(r) s.t. Ar ≤ b (5.1)

The optimization of sensitivity is not straightforward from an implementation point

of view due to many file I/O operations and overall long runtime of simulations. In

fact, much time was dedicated to set up an environment in which sensitivity opti-

mization problems can be handled as efficiently as possible. In Fig. 5.3 a flowchart

of the general procedure is displayed. More information and details e.g. concerning

runtime and memory consumption but also more technical details on the implemen-

tation of the scheme as displayed in Fig. 5.3 are given in [29].
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Figure 5.2: Feasible domain for ring radii.

Figure 5.3: Flowchart of optimization procedure.
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5.2 Computational Mesh Settings

Before we can go into the details of the optimization methods used and results gained

we need to take a moment to affirm that the computational mesh is adequate for

simulation and optimization. This is usually achieved by demonstrating that the

simulation results converge for decreasing mesh granularity. As the start and end

points of the electrodes move for different ring electrode configurations, regenera-

tion of the mesh (with negligible runtime) is important especially when computing

derivatives with respect to the ring radii. Thus, it makes sense to also verify con-

vergence for different electrode settings. In Fig. 5.4 this behavior is shown to be

true for various ring electrode settings. Furthermore, it can also be observed that

the sensitivity computed on meshes that are too coarse do not seem to be smooth

and thus unsuitable for optimization (e.g. mesh size 0.07 mm). As increasing the

number of vertices in the mesh drastically increases the runtime of the computations

a trade-off between runtime and accuracy must be made. For results presented in

section 5.3.2.1 a mesh with element size 0.01 mm is used. In order to thoroughly test

the results obtained by IPOPT by testing more initial electrode configurations than

before (shown in section 5.3.2.2) a coarser mesh with mesh element size 0.03 mm was

selected as a trade-off with full knowledge that a coarser mesh could affect accuracy.

Runtimes resulting from the mesh selection are given in [29].

Mesh element sizes, typical values for the number of vertices and elements (which

vary slightly for different electrode geometries) for mesh element sizes between

0.06 mm and 0.01 mm are given in Tab. 5.1. In Fig. 5.5 the meshes used for this

Mesh element size in mm 0.06 0.05 0.04 0.03 0.02 0.01
Vertices 1729 2494 3958 7230 16008 64428
Elements 1832 2618 4112 8356 16315 65040

Table 5.1: Mesh information.

thesis are displayed. Note that due to the radial symmetry of the piezoceramic a

simple rectangular geometry in cylindrical coordinates can be chosen as the domain.
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5.2 Computational Mesh Settings

(a) Mesh size 0.06 mm (b) Mesh size 0.05 mm

(c) Mesh size 0.04 mm (d) Mesh size 0.03 mm

(e) Mesh size 0.02 mm (f) Mesh size 0.01 mm

(g) Mesh of full domain, mesh size 0.06 mm (h) Mesh of full domain, mesh size 0.01 mm

Figure 5.5: Meshes used in this thesis.
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5.3 Optimization Methods and Results

Practically solving the optimization problem (5.1) proved to be a very challenging

undertaking and work leading to a solution procedure is one of the major drivers

of this thesis. There have been two major approaches in this thesis to solve this

problem: derivative free optimization and gradient based optimization.

5.3.1 Derivative Free Optimization

A first attempt to solve this problem was made as part of [37]. Initially the run-

time for each objective function evaluation was approximately 30 hours. Hence, any

global optimization strategy based on cheap function evaluations (such as evolution-

ary algorithms like genetic optimization, e.g. [27], or machine learning techniques) is

infeasible due to the expected high runtime. Furthermore, in the setting of [37] any

gradient-based optimization strategy was also infeasible due to the fact that in [37]

only finite differences were available in order to compute the sensitivities. Gradient

based optimization would have required second order mixed derivatives computed by

finite differences which cannot be considered reliable for this work, as demonstrated

in the last chapter. Hence, we experimented with various gradient-free optimization

algorithms.

In [37] the simulations were carried out using a closed source commercial simulation

tool and not CFS++. Note that due to licensing restrictions with the simulation

software and computation server the author is unable to recompute the results in

this exact setting and thus only limited data on the optimization results can be

provided here.

First, as a standard derivative-free approach the well-known Nelder-Mead method

[26, p. 453] was applied to the problem. However, as the Nelder-Mead method

does not allow for constraints the constrained optimization problem Eq. (5.1) was

reformulated into a slightly different unconstrained optimization problem:

min
[x1,x2,x3,x4]∈R4

−J1(r(x))
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5.3 Optimization Methods and Results

where

r(x) := [r1, r2, r3, r4]

and

r2 :=

(
0.5 +

arctan(x2)

π

)
· (R− ε1 − ε2) + ε1 + ε2

r4 :=

(
0.5 +

arctan(x4)

π

)
· (R− ε1 − ε2) + ε1 + ε2

r1 :=

(
0.5 +

arctan(x1)

π

)
· (r2 − ε1 − ε2) + ε1 + ε2

r3 :=

(
0.5 +

arctan(x3)

π

)
· (r4 − ε1 − ε2) + ε1 + ε2

The constant R denotes the radius of the entire ceramic and the constants ε1, ε2

guarantee a minimal gap between the electrodes. It is important to observe that

this reparametrization always yields a feasible electrode configuration. This is of

special relevance as the simulation tool cannot handle any unphysical electrode

configurations. Note that this parametrization does not scale well near the boundary

of feasibility as arctan(x) converges only very slowly to ±π
2

for x→ ±∞. Ultimately,

the results of the optimization using the Nelder-Mead method were not satisfying.

As a next approach it was decided to investigate other well known derivative-free

optimization methods that can handle constraints. For this purpose the well known

optimization routines of M. J. D. Powell (available at [56]) were chosen.

From the suite of the optimizers provided there, the optimization methods NEWUOA

(unconstrained optimization), BOBYQA (box constraints) and LINCOA (linear con-

straints), all written in FORTRAN, were chosen for further investigation. These

optimizers were first tested on benchmark problems and the satisfying results con-

cerning the benchmark problems also observed in [8] are confirmed here. After these

promising results it was decided to further investigate LINCOA [57] for the purposes

of [37]. This comes with the benefit that the newer ring parametrization as depicted

in Fig. 5.1 can be applied.

In Tab. 5.2 some of the optimization results obtained in [37] are given. The objective

function was configured with a uniform weight matrix W = diag(1, . . . , 1) and the

initial electrode configurations are given for the case in (a): r = [0.3, 0.6, 4.4, 4.7],

for the case in (b): r = [2.0, 2.3, 0.3, 4.7] and finally for the case in (c): r =
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[0.3, 4.68, 2.05, 2.35]. Note that a slightly different objective function and constraints

are used in [37]. Hence, the achieved objective function values are not given here.

Param. Gain ratio SROR∗

c11 1.2434 0.0849
c33 1.4205 0.1292
c44 5.3202 0.3028
c12 1.0125 0.2835
c13 1.0978 0.0855
ε33 1.3629 0.3185
e31 1.1556 0.0947
e33 1.8522 0.1520
ε11 2.8385 0.2002
e15 3.2481 0.3084

(a) Initial configuration:
r = (0.3, 0.6, 4.4, 4.7)mm

Param. Gain ratio SROR∗

c11 0.9293 0.2234
c33 0.8531 0.3203
c44 1.1749 1.2426
c12 0.5684 1.1232
c13 0.8933 0.2433
ε33 0.6659 0.7925
e31 1.0677 0.1759
e33 0.9212 0.2585
ε11 1.2864 0.5104
e15 1.4586 0.9625

(b) Initial configuration:
r = (2.0, 2.3, 0.3, 4.7)mm

Param. Gain ratio SROR∗

c11 1.1830 0.0068
c33 2.3508 0.0271
c44 4.3539 0.2084
c12 2.6384 0.0748
c13 1.3414 0.0073
ε33 2.5290 0.0877
e31 1.2714 0.0109
e33 2.4383 0.0705
ε11 2.0128 0.1069
e15 1.8070 0.0977

(c) Initial configuration:
r = (0.3, 4.68, 2.05, 2.35)mm

Table 5.2: Optimization results using derivative free method LINCOA. The abbre-
viation SROR stands for sensitivity ratio to optimized reference. More
details available in [37].

It can be seen that the partial sensitivities are significantly increased by the optimiza-

tion (up to a factor of 5.3). However, the sensitivity ratio to optimized reference

(SROR∗) indicates that the overall sensitivity results after optimization are very

low compared to a reference configuration (r = [3.5, 3.8, 2.05, 3.55] mm) developed

in [75]. Note that the resulting optimized electrode configurations vary in each op-

timization case presented in [37]. This indicates that there are many only locally

optimal configurations. This observation is consistent to results of section 4.6.
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5.3.2 Gradient Based Optimization

Motivated by the unsatisfying optimization results in [37] Algorithmic Differentia-

tion was implemented into the simulation code CFS++. By comparing the sensi-

tivities (see Fig. 4.5) computed either via finite differences or Algorithmic Differ-

entiation it is noted that the many locally optimal points can be explained by the

lack of accuracy of finite differences schemes for this specific function. Furthermore,

we also note that the objective function computed via Algorithmic Differentiation

seems much smoother and thus much easier to optimize.

This conclusion leads to reconsider gradient-based optimization methods for this

optimization problem. When applicable, gradient-based methods are preferable to

derivative-free methods for many optimization problems. In general they usually

have a pre-existing convergence theory with high convergence rates and thus a lower

expected runtime in comparison to many derivative-free optimization methods.

In the following, the results of the two gradient based optimizers fmincon and

IPOPT are presented in section 5.3.2.1 and section 5.3.2.2, respectively. In order

to independently verify the findings of section 4.6 in the case of fmincon (section

5.3.2.1) results where both the objective function and the gradient of the objective

function are computed using the best possible settings for finite differences known

to the author for this case are given. In contrast, in this case we will also give results

where the objective function is computed using Algorithmic Differentiation. This

will show much improved results. In any case the gradient of the objective function

is computed using finite differences.

In the case of IPOPT (section 5.3.2.2) the objective function is computed using

Algorithmic Differentiation and the gradient of the objective function is computed

either by finite differences or by Algorithmic Differentiation (second order mixed

derivatives).

Two test cases are considered: First, the optimization of sensitivity with respect

to only ε11. Thus the weight matrix only has a single nonzero entry for ε11. This

test case is interesting as ε11 typically is a critical parameter with low sensitivity.

Second, the optimization of sensitivity with respect to all material parameters (the

weight matrix is now the unit matrix). An overview of the different settings and

optimization cases is given in Tab. 5.3 and Tab. 5.4.
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Method FD AD
Objective function method X∗ X
Gradient X 7

General test cases 2
Different starting points for single parameter test case 2
Different starting points for all parameter test case 1
Mesh element size 0.01 mm
Runtime per function evaluation approx. 4 hours

Table 5.3: Overview of optimization tests and settings for fmincon (section 5.3.2.1).
.∗FD for objective function only in single parameter case.

Method FD AD
Objective function method 7 X
Gradient X X
General test cases 2
Different starting points for single parameter test case 10
Different starting points for all parameter test case 10
Mesh element size 0.03 mm
Runtime per function evaluation approx. 15 minutes

Table 5.4: Overview of optimization tests and settings for IPOPT (section 5.3.2.2).

5.3.2.1 Optimization Results Gained by fmincon

The optimization method fmincon is an optimizer provided inside the software tool

MATLABTM. It can handle constrained optimization. The objective function is

computed at first using finite differences and in a second run using Algorithmic Dif-

ferentiation. The gradient of the objective function is computed by finite differences.

Parts of this subsection have been published in [29].

Optimization ith Respect to the Single Parameter ε11 .

In the following figures we show the maximization of sensitivity of impedance with

respect to ε11. We will show two optimization cases and compare the optima com-

puted for both cases either with the help of FD or AD, respectively. In the first case

we will start from the reference configuration [3.5, 3.8, 2.05, 3.55] mm, in the second

case we will start from a different ‘custom’ configuration [0.7, 3, 0.5, 4] mm chosen

randomly as a configuration in the interior of the feasible domain. In Fig. 5.6 the
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(a) Progress of electrode radii evaluation in op-
timization using the default reference elec-
trode configuration.
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(b) Progress of electrode radii evaluation in op-
timization using a changed electrode con-
figuration.
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for the two FD-based optimization cases
presented.

Figure 5.6: Optimization via FD using two different starting points.

optimization using finite differences is shown. There, small black ‘+’ symbols de-

note configurations that were evaluated, a large circular green and a smaller ‘x’ red

marker indicate the start point and endpoint of the optimization, respectively. We

provide the best possible conditions for this optimization: We use a fine mesh with

element size 0.01 mm and also the best possible step width known to us γ = 10−3

based on Fig. 4.4 and experience we made with the many optimization cases we

have already run. In Fig. 5.6a we start the optimization with the reference config-

uration and an initial cost function value of −92.92. The optimization halts with
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the final configuration [2.78, 3.082, 1.594, 2.974] mm and the optimized cost function

value of −94.19. This gives an increase of sensitivity by a factor of 1.0137. In

Fig. 5.6b we start the optimization with the ‘custom’ configuration and an initial

cost function value of −61.76. The optimization halts with the final configuration

[1.716, 3.344, 0.378, 3.009] mm and the optimized cost function value of −84.31. This

gives an increase of sensitivity by a factor of 1.37, however, with a lower sensitivity

than our already known reference configuration. A representation of the electrode

configuration optimized using finite differences can be found in Figure 5.6d.

Now, we consider the same two optimization cases, however, using AD instead of

FD (Figure. 5.7). In Fig. 5.7a we start the optimization with the reference con-

figuration and a slightly different initial cost function value of −94.0 which is due

to the different computation of sensitivity (AD instead of FD). The optimization

halts with the final configuration [0.5, 3.963, 3.99, 4.99] mm and the optimized cost

function value of −162.3. This gives an increase of sensitivity by a factor of 1.73. In

Fig. 5.7b we start the optimization with the ‘custom’ configuration and the initial

cost function value of −61.77 which, again, is slightly different to the cost function

computed via FD. However, this time the optimization returns nearly exactly the

same optimized configuration [0.5, 3.977, 3.99, 4.99] mm and the optimized cost func-

tion value of −158.8. This gives an increase of sensitivity by a factor of 2.57. In

Figure 5.6c and Figure 5.7c we see the corresponding values of the cost function at

each iteration step for both simulation cases computed by FD and AD respectively.

We note that the start configurations in both optimization cases give nearly the same

values respectively for AD and FD. A representation of the electrode configuration

optimized using AD can be found in Figure 5.7d.

In conclusion, for both optimization cases the AD variant gets optimization results

with a higher sensitivity value than the FD variant which even seem to be indepen-

dent of the choice of the starting point.
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(a) Progress of electrode radii evaluation in
optimization using the default reference
electrode configuration. The optimizer
fmincon finds an optimal configuration in
[0.5, 3.963, 3.99, 4.99] and searches the r2
and r3 boundary axis for better solutions.
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(b) Progress of electrode radii evaluation in
optimization using a changed electrode
configuration. Similarly to Fig. 5.7a the
optimizer also finds an optimal configura-
tion in [0.5, 3.977, 3.99, 4.99] and searches
the r2 boundary axis for better solutions.
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Figure 5.7: Optimization via AD using two different starting points. Markings anal-
ogous to Figure 5.6.

Optimization with Respect to All Parameters .

Here we show the optimization of sensitivity with respect to all material parameters.

We scale the partial sensitivities by the magnitude of the corresponding material

parameters and use the identity matrix as weight matrix, thus treating each material

parameter equally. In Fig. 5.8 we see the progress of electrode radii evaluation in the
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optimization process and the values of the cost function at each iteration. The initial

cost function value at the reference starting point is −883.13 which is optimized to

−1501.96. This resembles an increase in sensitivity by a factor of 1.7. The optimized

configuration is [3.68, 3.99, 3.97, 4.97] mm.
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(a) Progress of electrode radii evaluation in op-
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trode configuration.
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Figure 5.8: Optimization for all material parameters via AD using the reference
starting point. Markings analogously to Figure 5.6 and Figure 5.7.

5.3.2.2 Optimization Results Gained by IPOPT

The optimization method IPOPT [78] is an optimizer based on an interior point

method written in C++ and can be called from within MATLABTM via a sep-

arately available interface. It can directly handle constrained optimization. The

objective function is computed using Algorithmic Differentiation. The gradient of

the objective function is computed either by finite differences or by Algorithmic Dif-

ferentiation. Here, one explicit goal is to test more initial configurations than before

which allows us to broaden and verify previous results. However, for brevity not all

details can be given. Hence, only the iterates and other interesting values are given

here explicitly.

Starting Points for the Optimization .

Ten different electrode geometries were selected as starting points for the optimiza-
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tion. Nine of the ten geometries were selected in the interior of the feasible domain

but close to locations where multiple constraints meet, i.e. corners of the constraint

triangles. The tenth geometry was chosen to be approximately central of the domain.

A graphical representation is given in Fig. 5.9.
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Figure 5.9: Starting geometries for optimization.

Optimization with Respect to the Single Parameter ε11 .

Optimization results for an objective function incorporating only the sensitivity

of ε11 are shown in Fig. 5.10 and Fig. 5.11. In all cases except for case 7 using

Algorithmic Differentiation to compute the gradient of the objective function (second

order derivatives) gives much better optimization results than using finite differences.

The best objective function value was obtained in case 1 with a value of −164.48

using the configuration r := [0.5, 3.99, 4.00, 4.99] mm. This is (nearly) exactly the

same objective function value and configuration as achieved by fmincon in Fig. 5.7.

The second best objective function value was gained in case 2 with a value of−161.90

using the configuration r := [0.83, 3.97, 4.0, 4.99] mm.
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In both cases the sensitivity was approximately quadrupled when compared with

the starting configuration.

Optimization with Respect to All Parameters .

Optimization results for an objective function incorporating the sensitivity with

respect to all parameters are shown in Fig. 5.12 and Fig. 5.13. In all cases except

for case 3 and case 9 using Algorithmic Differentiation to compute the gradient

of the objective function gives much better optimization results than using finite

differences. However, regardless of how the gradient was computed we note that the

iterates for this optimization are not as smooth as we would expect from benchmark

problems.

The best objective function value was obtained in case 1 with a value of −1643.67

using the configuration r := [0.5, 3.99, 3.99, 4.99] mm. Interestingly, this is (nearly)

exactly the same configuration as in the case for the single material parameters ε11.
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Figure 5.10: Iterates for IPOPT optimization for single parameter objective function.
Cases 1-5.
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Figure 5.11: Iterates for IPOPT optimization for single parameter objective function.
Cases 6-10.
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Figure 5.12: Iterates for IPOPT optimization for all parameter objective function.
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Figure 5.13: Iterates for IPOPT optimization for all parameter objective function.
Cases 6-10.
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5.3.3 Discussion

Before we focus on the improvement of the objective function values for the differ-

ent cases we should take a moment to discuss the unexpected behavior of some of

the iterates. When examining the results gained by IPOPT we notice that there are

few cases where using finite differences for the computation of the second deriva-

tives provides better results than when using Algorithmic Differentiation (using a

first order FD scheme applied to an objective function computed by Algorithmic

Differentiation). Some additional review and debugging shows that the likely cause

of this behavior is that the function is almost entirely a smooth function, but not

everywhere. While the objective function does look very smooth from a macro per-

spective there are some exceptions where the function has very small (micro-)areas

where the function slightly but suddenly drops in comparison to values surrounding

this area. As finite differences have a regularizing effect, this drop in function value

is not noticed by the FD scheme. In contrast, Algorithmic Differentiation gives the

exact derivatives of the objective function. Hence, in these (micro-)areas the deriva-

tives computed by AD can significantly vary from values computed by FD. Thus,

the behavior of results gained by AD are in line with expectations.

Furthermore, we notice that IPOPT sometimes requests function evaluations outside

of the feasible domain. The author verified that all settings especially concerning the

definition of constraints were correct. As mentioned above, the author also verified

that the derivatives of the objective function are also exactly as expected. Thus, it

seems likely that this behavior is also caused by the tiny areas mentioned above.

A possible explanation for the existence of such areas could be that the mesh may

have been selected too coarse. In Fig. 5.4 it is shown that the sensitivity curves con-

verge for decreasing mesh granularity for various electrode configurations. However,

in some locations the convergence is faster than in others. Hence, it seems plausible

that deviations in the gradients for different mesh granularities may also vary locally

and consequently converge at different paces. This was a known risk and part of

the trade-off between runtime and accuracy. This explanation is consistent with the

observation that none of the cases run with fmincon, where a very fine mesh was

selected, had similar issues.

As simulations with a finer mesh require much more runtime (optimization cases
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5 Optimization of Sensitivity

run with fmincon had a runtime of approx. two weeks each) further parallelization

of the code would be necessary. This is currently not possible with the simulation

code used here in the exact case considered.

Now that the behavior has been addressed we can focus the achieved improvements

which were gained nevertheless. First, it is reassuring that the best configurations

obtained by both optimization methods fmincon and IPOPT for the single parameter

case are given by the configuration r1 = 0.5, r2 = 3.99, r3 = 3.99, r4 = 4.99 even

while using a different set of starting points. By using many different starting points

this indicates that this configuration is likely to be one of the best, or perhaps the

best configuration possible. Due to the fact that configurations, which yield close to

the best values obtained, only vary in the first variable it seems that configurations

along the values of r2 = 3.99, r3 = 3.99, r4 = 4.99 generally give very good results.

When optimizing the sensitivity with respect to all material parameters the best

results obtained by the optimizers vary. Here, IPOPT finds the objective function

value −1643.67 with the configuration r1 = 0.5, r2 = 3.99, r3 = 3.99, r4 = 4.99

which is approx. 10% larger in magnitude than the best value −1501.96 obtained

by fmincon. Without testing more starting configurations than before it is likely

that this configuration may have been missed. Consequently, this gain in sensitivitity

was only feasible because of the trade-off mentioned earlier.

Furthermore, it is interesting that the best configuration for the single parameter and

complete parameter cases give nearly the same result. The author hypothesizes that

there must be a comprehensive physical explanation why exactly this configuration

gives the best results. The author, however, cannot give an explanation.

Moreover, these results presented in here indicate that using AD instead of FD

for gradient calculation and IPOPT instead of the standard approach fmincon have

been beneficial for this specific optimization: For optimization cases regarding only

one material parameter it confirms the previous results obtained via standard ap-

proaches. In almost all optimization cases considered here better results were ob-

tained when additionally AD was used for second order derivatives. In cases where

AD was not used at least for the computation of the objective function the achieved

optimization results were not as good in comparisson.
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Inverse Problems in Piezoelectricity

In the last chapters much effort was put into the ability to reliably increase the

sensitivity of impedance with respect to the material parameters e.g. selectively for

specific material parameters. In this chapter we want to reap the benefits of the work

and apply this to the problem of identifying material parameters of piezoelectric

ceramics. It is not the goal of this chapter nor of this thesis to present a fully

functional and reliable inverse scheme to compute all material parameters using only

one single piezoceramic. This would require much more effort and more specialized

handling such as special estimators for initial values and more specialized methods

etc. An example for this is given in [17] where the triple-ring electrode geometry

developed in this thesis is used for material parameter identification based on real

measurements. However, the author of this thesis may well conduct future research

on this topic more thoroughly from a mathematical and algorithmic point of view.

Instead this chapter should be interpreted more as a ‘proof of concept’: The goal is

to demonstrate that the optimization of sensitivity has had a positive impact and

that it now is at least easier to solve these still very demanding inverse problems

than before, especially when using only a single piezoceramic and only impedance

measurements.

As mentioned in the introduction, in the 1987 IEEE Standard on Piezoelectricity

[69] there are some methods described in what manner the material parameters of

piezoelectrics could and should be retrieved. However, following this and similar

methods there may be a very significant error of up to 20% in the reconstructed

material parameters [54]. This large error is unacceptable if a computer simula-

tion is to successfully predict the correct physical behavior of devices containing

piezoceramics. Hence, work that can help decrease the error of estimated material

parameters is directly related to the ability to design and construct better devices
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involving piezoceramics. As piezoceramics are a very widespread technical compo-

nent, in principle, a better method to determine the correct material parameters

would have a large impact.

As there is no direct way of measuring some of the material parameters a common

method is to reformulate the identification problem as a so-called inverse problem

and solve the latter.

6.1 Ill-posed and Inverse Problems

We begin by explaining what an inverse problem is and what properties of common

inverse problems are. In order to distinguish inverse problems from other problems

we introduce the notion of a direct problem. Given cause, the task of a direct

problem is to compute the effect the cause has had. We can interpret this more

mathematically by assuming a cause x ∈ X. The task is now to find the effect f(x)

a given cause x has had. Or simpler: given an x ∈ X evaluate f(x) = y ∈ Y where

it is common to assume Hilbert spaces (X, ‖·‖X), (Y, ‖·‖Y ).

Conversely, the inverse problem is to identify the cause x from a given effect y = f(x)

also illustrated in Fig. 6.1. This problem has some straightforward properties:

X

X̃

Y

Ỹ

direct problem

f : X → Y

f−1
y : Ỹ ⊆ Y → X̃ ⊆ X

inverse problem

Figure 6.1: Direct and inverse problem.

• Obviously, if the function f is surjective then for every y ∈ Y there exists at

least one x ∈ X such that we get y = f(x). In other words, if f is surjective

then the inverse problem has a solution.
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• On the other hand, if f is injective then each cause leads to a different effect

∀x1, x2 ∈ X : x1 6= x2 ⇒ f(x1) 6= f(x2). If f is not injective, then multiple

causes can have the same effect. In other words, if f is injective then solutions

to the inverse problem are unique.

• Lastly, the solution depends continuously on the data, i.e. f−1 is continuous

(also referred to as stability).

If for an inverse problem there does not exist a stable and unique solution then

the problem is called an ill-posed problem in the sense of Hadamard. In fact, many

real physical problems are ill-posed problems. The most prominent reason is that

real measurement data is never perfectly accurate and always holds some quantity

of measurement uncertainty (e.g. Heisenberg’s uncertainty principle or round-off

errors when using measurement data on a computer).

6.2 Solution Methods for Inverse Problems in

Piezoelectricity

First, a reminder of the goal of the inverse problem is stated: Let us assume we

have measured the frequency dependent impedance curve for a triple-ring electrode

piezoceramic, in order to keep to the usual notation of the literature we will call the

measurement yd.

We now aim to reconstruct the material parameters p. Then, this can formally be

interpreted as finding p ∈ R10 such that the error between the measurement and the

simulation

E(p) := ‖Z(ω, p)− yd(ω)‖2

is minimal for the simulated impedance curve Z(p). As usual, perfectly accurate

measurement data yd cannot be guaranteed. In Fig. 1.3 it is also demonstrated that,

using a fully-covering electrode setup, a small (or sometimes even zero) error E can

be achieved for incorrect material parameters. If we combine the latter two facts we

can deduce that it is very likely that we are dealing with an ill-posed problem.

There are a variation of tools we can apply in order to deal with specific aspects of

ill-posed problems: If, due to low or zero sensitivity of some material parameters, we
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6 Inverse Problems in Piezoelectricity

do not have an injective function we can try and increase the sensitivity. This was

the goal of this thesis. In Fig. 6.2 we can now see that this situation has changed.

However, this does not deal with the fact that the function still may not be con-

tinuous or surjective. The usual procedure in this case is to transform the original

problem into a well-posed problem by using regularization techniques e.g. [14, 32].

One category of regularization methods (so-called Tikhonov methods) is based on

adding some variation of a penalty term e.g. γ‖p−p0‖2 to the original problem, e.g.

min
p∈R10

E(p) := ‖Z(ω, p)− yd(ω)‖2+γ‖p− p0‖2.

This penalty term can be chosen in such a way that the problem now has much

better theoretical or practical properties. Depending on the choice of the penalty

term different regularization methods arise. However, this category of methods can

also be combined with other categories such as using nonlinear iterative methods

and stopping the process early, or by using coarse discretization.

Some of the classical methods include [14, 32]

• Nonlinear Landweber iteration

• Newton type methods such as the Levenberg–Marquardt method or iteratively

regularized Gauss–Newton methods

• Multilevel methods

In the area of piezoelectrics there exists a vast amount of publications relating to

material parameter identification methods. Some of the main works from a mathe-

matical perspective are given in [31, 38] and references therein. An overview of the

current state of the art for material parameter identification methods for piezoce-

ramics is given in the recent [61].

Remark 6.1. Clearly one could try to use ‘normal’ optimization algorithms to

minimize the error. However, due to the nature of ill-posed problems this usually

converges to an incorrect local minimum, fails to converge or is impractical due

to excessive runtime. This is due to the fact that the unregularized minimization

problem minp∈R10 E(p) for γ = 0 suffers from the same ill-posedness as the original

problem Z(p) = yd.
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6 Inverse Problems in Piezoelectricity

6.3 Results

In this section we will test some available solution algorithms for inverse problems

but also give some practical results for our own approaches. The methods used here

are

1. Landweber iteration,

2. Iteratively regularized Gauss-Newton method,

3. Iteratively regularized Gauss-Newton method applied to subsets of material

parameters and

4. Block coordinate descent iteratively regularized Gauss-Newton method applied

to all material parameters.

Due to the fact that we only want to provide a proof of concept here we will not go

into details of the methods but instead outline interesting aspects. The reader may

refer to [14], [32] or [38].

As a test setup a measurement of the impedance curve was generated via simulation.

In order to overcome the so-called inverse crime a much finer computational mesh

for the generation of the artificial measurement of the impedance curve is used than

is used for the simulations. For convenience of the reader the material parameters

are all normalized. Hence, ideally we hope that all curves converge to the value 1.

In all test cases a 5% deviation for all parameters from the correct parameters was

chosen as a start point.

Landweber Iteration

We start with the Landweber iteration which is known to converge in a very stable

fashion under some assumptions. Do note that the convergence rate can be agoniz-

ingly slow. In Fig. 6.3 the results for the Landweber iteration are shown. In the

first plot the development of the material parameters are shown. In the second plot

the error E is displayed. We note that the error steadily decreases. However, after

300 iterations the Landweber method has not yet fully converged and the material

parameters seem to diverge from the correct solution.
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Figure 6.3: Landweber iteration.
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Iteratively Regularized Gauss-Newton Method

By deploying a Newton type method we can now increase the convergence rate

significantly.
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Figure 6.4: Gauss-Newton method for inverse problem.

In Fig. 6.4 we see that all parameters seem to have converged after approx. 100

iterations. However, we note that we did not find the correct material parameters.

Iteratively Regularized Gauss-Newton Method Applied to

Subsets of Material Parameters

By analyzing the last case we noticed that some material parameters with com-

paratively low sensitivity are ‘dominated’ by other material parameters with high

sensitivity. Hence, in the next test, see Fig. 6.5, we try to reconstruct these two
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groups separately and independently assuming the other group already has the cor-

rect values.

We note that each group can be quickly (under 10 iterations) and correctly recon-

structed.

Block Coordinate Descent Iteratively Regularized Gauss-Newton

Method Applied to All Material Parameters

The former test motivates us to partition material parameters with similar sensitivi-

ties into groups and apply the iteratively regularized Gauss-Newton method on these

separately while holding the other (possibly incorrect) parameters constant. This

procedure, see Fig. 6.6, is repeated until the resulting error is sufficiently low. As

we are applying our solution methods onto variable blocks this method is formally

a block coordinate descent method with an iteratively regularized Gauss-Newton

method as the submethod.

We notice that all parameters seem to converge to the correct material parameter

values but more iteration steps ultimately would be necessary. Finally, in Fig. 6.7

the measured and reconstructed impedance curve are shown. We note that we have

a very good match between these two curves.

The author notes that he is unaware of any similar results gained by other authors

using only a single piezoceramic and only impedance measurements. Hence, it is

concluded that it seems feasible to gain all correct material parameter values with

this or more specialized methods. However, there is definitely room for further

improvement especially concerning convergence rates.
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Iteration

0 2 4 6 8 10 12 14 16 18 20

N
o
rm

e
d
 p

a
ra

m
e
te

r 
v
a
lu

e

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07
Inverse problem

c11

c33

c44

c12

c13

eps33

e33

eps11

(a) Restriction to 8 out of 10 parameters.

Iteration

1 2 3 4 5 6 7 8 9 10

N
o
rm

e
d
 p

a
ra

m
e
te

r 
v
a
lu

e

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05
Inverse problem

e31

e15

(b) Restriction to the remaining 2 out of 10 parameters.

Figure 6.5: Separated reconstruction.
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Outer iteration steps
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Figure 6.6: Block coordinate descent iteratively regularized Gauss-Newton.
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7
Conclusion

7.1 Summary

In this thesis the possibility of increased sensitivity in parameter identification

problems for piezoelectrics, especially for triple-ring electrode piezoceramics, us-

ing only a single piezoceramic specimen and only impedance measurements was

investigated. Partial differential equations governing the piezoceramics were de-

rived, existence, uniqueness, and regularity results are stated and proved. Further-

more, the impedance of triple-ring electrodes was defined and computed. Sensitivi-

ties of the impedance were then defined, computed, analyzed and accuracy thereof

was increased. Then, by optimizing the ring electrode geometry the sensitivity of

impedance with respect to all material parameters was significantly increased. This

lead to a proof of concept parameter identification method for triple-ring electrode

piezoceramics that shows that the parameter identification problem is now easier

to solve. Additionally, a novel extension based on the optimized electrode geom-

etry was developed which allows directly prescribing arbitrary derivatives for the

measurable quantity of the inverse problem.

7.2 Future Research Directions

Based on this thesis many more possible research directions open:

First, the work in this thesis is based on triple-ring electrode geometries parametrized

by four variables. In future this could be extended to incorporate more general

electrode geometries. This could be achieved by applying shape and/or topology

optimization.
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7 Conclusion

Related to this, one possible improvement could be the use of the software pack-

age FEniCS instead of CFS++. This is especially interesting as the newest version

of FEniCS already incorporates shape optimization packages without the tedious

requirement of manipulating the piezoelectric equations for shape gradient calcu-

lus. The other benefit is that this software already has the capability to compute

derivatives with the AD package dolfin-adjoint [16]. This should make it possible

to compute adjoints in reverse mode AD which was not possible in this thesis due

to reasons presented in Appendix A.3. Furthermore, this software package was de-

signed to run in the context of high performance computing (HPC). This is not the

case for CFS++ where parallelization of the code cannot be achieved easily (see also

[29]). Some effort by the author and his colleagues has been put into rebuilding the

current simulation and optimization capabilities for the software package FEniCS.

However, currently some additional work is still required.

The author is also excited about the novel approach presented in section 3.4 which

allows manipulating the impedance in such a way that it is possible to directly

set any arbitrary sensitivity desired. This has the potential to greatly improve

the quality of material parameter identification methods in piezoelectrics. As this

approach came up while writing this thesis it has not yet been fully researched.

Hence, investigations on how this can be exploited are ongoing.

Furthermore, the work presented here was done in a simplified setting of linear

piezoelectric equations excluding thermal effects. Hence, in future this could be

expanded to incorporate nonlinear effects and/or other piezoelectric materials with

different crystal structures such as quartz. As common piezoceramics currently

contain lead (e.g. PZT) this is of direct interest as the EU is restricting the use of

lead in appliances. Currently, some piezoelectrics are exempt from the restrictions

(by e.g. REACH Article 58 (2)). However, this may change in future if and when

other piezoelectric materials have been developed which can replace current lead-

based piezoceramics.
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A
Appendix

A.1 Derivatives of Network Equations

Now, let d(·) denote the partial derivative ∂(·)
∂ξ

for a quantity (·) and for a dependent

variable ξ. Then by using the chain rule we can also compute the following formal

derivatives:

dZ∆
a =

−2 · (−dZ1

Z2
1

+ dZ2

Z2
2
− dZ3

Z2
3

)

( 1
Z1
− 1

Z2
+ 1

Z3
)2

dZ∆
b =

−2 · (−dZ1

Z2
1
− dZ2

Z2
2

+ dZ3

Z2
3

)

( 1
Z1

+ 1
Z2
− 1

Z3
)2

dZ∆
c =

−2 · (dZ1

Z2
1
− dZ2

Z2
2
− dZ3

Z2
3

)

(−1
Z1

+ 1
Z2

+ 1
Z3

)2

dZY
a =

Z∆
b · (Z∆

a · dZ∆
c − Z∆

c · dZ∆
a ) + Z∆

c · (Z∆
a + Z∆

c ) · dZ∆
b + (Z∆

b )2 · dZ∆
c

(Z∆
a + Z∆

b + Z∆
c )2

dZY
b =

Z∆
b · (Z∆

c · dZ∆
a + Z∆

a · dZ∆
c ) + (Z∆

c )2 · dZ∆
a − Z∆

a · Z∆
c · dZ∆

b + (Z∆
a )2 · dZ∆

c
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dZY
c =

Z∆
b · (Z∆

c · dZ∆
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a · dZ∆
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b )2 · dZ∆
a + Z∆

a · (Z∆
a + Z∆

c ) · dZ∆
b

(Z∆
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c )2

Let dZabc := dZ∆
a + dZ∆

b + dZ∆
c , Zabc := Z∆
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c and PZ∆
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Remark A.1. The variable of which respect the derivative should be computed is

intentionally left as general as possible. Usually, this variable will be one of the

material parameters. However, for gradient based optimization the variable could

also be a variable describing the electrode geometry.
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A.2 Prerequisites for a Comparison to FEniCS

FEniCS [3] is an open-source finite element tool for python which allows handling

and solving PDEs with relative ease. Moreover, with dolfin-adjoint [16] a built-in

AD tool, it is also possible to compute derivatives in forward and reverse mode

(i.e. tangents and adjoints) whereas in this thesis only tangents can be computed,

see Appendix A.3. A comparison and verification of the simulation results of a

piezoceramic obtained by FEniCS using dolfin-adjoint and CFS++ using ADOL-C

is interesting and worthwhile. In the following section some important prerequisites

for a comparison are given.

A.2.1 Real and Imaginary Equations

The weak formulation of the piezoelectric PDE in time domain can be solved nu-

merically by using time-stepping schemes such as the Crank-Nicolson or Newmark

method. The implementation of these time-stepping methods in FEniCS have been

investigated in [65]. Current implementations in FEniCS for the transient formula-

tion are based on collaboration between V. Schulze, N. Feldmann, and the author of

this thesis and results will be part of future publications. Note that some additional

work is still required especially with regard to use of dolfin-adjoint analogously to

issues raised in A.3.

However, the time-harmonic formulation requires some more intermediate steps be-

fore it can be implemented. The time-harmonic reformulation comes at the cost

that the partial differential equation is now complex-valued and needs to be solved

as such. In FEniCS it is currently not possible to directly handle complex-valued

equations, hence Eq. (2.53) needs to be separately stated and solved in both real

and imaginary parts while only using real valued quantities

Re
(
−ρω2û− BT (c̃EBû+ ẽT∇φ̂)

)
= 0 in Ω

Im
(
−ρω2û− BT (c̃EBû+ ẽT∇φ̂)

)
= 0 in Ω

Re
(
−∇ · (ẽBû− ε̃S∇φ̂)

)
= 0 in Ω

Im
(
−∇ · (ẽBû− ε̃S∇φ̂)

)
= 0 in Ω
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where û = ûr + jûi and φ̂ = φ̂r + jφ̂i designate the real and complex parts of û and

φ̂. In order to achieve this, these equations need to be separated into their real and

imaginary parts.

Using the notation 〈u, v〉 :=
∫

Ω
uTv dΩ the weak form of Eq. (2.53) (see [38])∫

Ω

(
−ρω2uTv + (c̃EBu)TBv + (ẽT∇φ)TBv + (ẽBu)T∇η − (ε̃S∇φ)T∇η

)
dΩ = 0

with test functions v and η can be abbreviated as

W :=
〈
−ρω2u, v

〉
+
〈
c̃EBu,Bv

〉
+
〈
ẽT∇φ,Bv

〉
+ 〈ẽBu,∇η〉 −

〈
ε̃S∇φ,∇η

〉
.

We now expand all summands by their real and imaginary parts. For two complex

quantities w = wr + jwi, y = yr + jyi we have

〈w, y〉 = wTy = 〈wr, yr〉+ 〈wi, yi〉+ j (〈wi, yr〉 − 〈wr, yi〉) .

Hence, we get

Re
〈
−ρω2u, v

〉
=
〈
−ρω2ur, vr

〉
+
〈
−ρω2ui, vi

〉
Im
〈
−ρω2u, v

〉
=
〈
−ρω2ui, vr

〉
−
〈
−ρω2ur, vi

〉
For three complex quantities c = cr + jci, w = wr + jwi, y = yr + jyi we have

Re 〈cw, y〉 = Re
(
(cw)Ty

)
= crwryr + crwiyi + ciwryi − ciwiyr

Im 〈cw, y〉 = Im
(
(cw)Ty

)
= −crwryi + crwiyr + ciwryr + ciwiyi

Analogously we get for the remaining summands e.g.

Re
〈
c̃EBu,Bv

〉
=
〈
c̃Er Bur,Bvr

〉
+
〈
c̃Er Bui,Bvi

〉
+
〈
c̃Ei Bur,Bvi

〉
−
〈
c̃Ei Bui,Bvr

〉
Im
〈
c̃EBu,Bv

〉
= −

〈
c̃Er Bur,Bvi

〉
+
〈
c̃Er Bui,Bvr

〉
+
〈
c̃Ei Bur,Bvr

〉
+
〈
c̃Ei Bui,Bvi

〉
Hence, the weak form W can be rewritten as

W = Wr + jWi
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with

Wr :=
〈
−ρω2ur, vr

〉
+
〈
−ρω2ui, vi

〉
+
〈
c̃Er Bur,Bvr

〉
+
〈
c̃Er Bui,Bvi

〉
+
〈
c̃Ei Bur,Bvi

〉
−
〈
c̃Ei Bui,Bvr

〉
+
〈
ẽTr∇φr,Bvr

〉
+
〈
ẽTr∇φi,Bvi

〉
+
〈
ẽTi ∇φr,Bvi

〉
−
〈
ẽTi ∇φi,Bvr

〉
+ 〈ẽrBur,∇ηr〉+ 〈ẽrBui,∇ηi〉+ 〈ẽiBur,∇ηi〉 − 〈ẽiBui,∇ηr〉
−
〈
ε̃Sr∇φr,∇ηr

〉
−
〈
ε̃Sr∇φi,∇ηi

〉
−
〈
ε̃Si ∇φr,∇ηi

〉
+
〈
ε̃Si ∇φi,∇ηr

〉

Wi :=
〈
−ρω2ui, vr

〉
−
〈
−ρω2ur, vi

〉
−
〈
c̃Er Bur,Bvi

〉
+
〈
c̃Er Bui,Bvr

〉
+
〈
c̃Ei Bur,Bvr

〉
+
〈
c̃Ei Bui,Bvi

〉
−
〈
ẽTr∇φr,Bvi

〉
+
〈
ẽTr∇φi,Bvr

〉
+
〈
ẽTi ∇φr,Bvr

〉
+
〈
ẽTi ∇φi,Bvi

〉
−〈ẽrBur,∇ηi〉+ 〈ẽrBui,∇ηr〉+ 〈ẽiBur,∇ηr〉+ 〈ẽiBui,∇ηi〉
+
〈
ε̃Sr∇φr,∇ηi

〉
−
〈
ε̃Sr∇φi,∇ηr

〉
−
〈
ε̃Si ∇φr,∇ηr

〉
−
〈
ε̃Si ∇φi,∇ηi

〉
Some further work is now required to break down terms involving the differential op-

erator B into elemental statements using only basic algebraic operations. However,

as the resulting terms are very lengthy (approx. 2500 characters for each the real

and imaginary parts) a computer algebra system was used. Alternatively, in [13]

the differential operator was defined as a basic operator for the differential equation.

In this case the separation W = Wr + jWi with Wr,Wi as above is sufficient for

implementation of the variational problem into FEniCS.

Remark A.2. The time-harmonic formulation allows the evaluation of impedance

at discrete frequencies. Whereas the transient formulation only permits evaluations

on a predetermined frequency bandwidth. Hence, for the solution of the inverse

problem it could be advantageous to utilize this harmonic formulation instead of

the transient one. Note that the ten complex-valued material parameters could still

be transformed back into ten real valued parameters. Thus, in this case there may

not be more computational effort required to solve the inverse problem than when

utilizing a transient formulation. However, this case is not considered in this thesis

and will be part of future investigation.
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A.3 ADOL-C Traced Versus Traceless Mode

The author first used ADOL-C’s traced forward mode for derivative calculation.

The trace process with trace on was started simultaneously with setting the first

material parameter as dependent (as opposed to setting this in a different location

i.e. the main class) and stopped with trace off after the PDE has been solved for

the last time step. However, a first test was canceled after about 10 h runtime and a

400 GB trace file as only very few time steps of the tracing process were completed.

The tracing process is clearly influenced by available memory and memory consump-

tion can only increase even more for the vast amount of remaining to be computed

time steps. We then experimented with only tracing single time steps and reusing

the created trace but ultimately could not yet find a suitable solution. Consider the

following main time stepping loop for this simulation case: Firstly, note that the

1 for (actTimeStep_ = startStep; actTimeStep_ <= endStep_;

2 actTimeStep_ += 1, count ++)

3 {

4 mathParser_ ->SetValue( MathParser :: GLOB_HANDLER , "t", actTime_ );

5 mathParser_ ->SetValue( MathParser :: GLOB_HANDLER , "dt", dt );

6 mathParser_ ->SetValue( MathParser :: GLOB_HANDLER , "step", actTimeStep_ );

7 [...]

8 ptPDE_ ->GetSolveStep ()->PreStepTrans ();

9 ptPDE_ ->GetSolveStep ()->SolveStepTrans ();

10 ptPDE_ ->GetSolveStep ()->PostStepTrans ();

11 [...]

12 }

current time step is set as a variable for later usage in string formulas parsed by

the MathParser also mentioned earlier. Secondly, in the lower part we notice the

solution step methods PreStepTrans(), SolveStepTrans() and PostStepTrans()

marked in gray. We point out that they are all invoked by the object ptPDE con-

taining information of the partial differential equation. As there are many possible

partial differential equations which could be considered for this time stepping scheme

and thus be solved by CFS++, ptPDE is a base class object - it’s real object type

is only known at runtime. Therefore these methods are (non-callable) pure virtual

methods in the base class, they have their callable implementation in their special-

ization only known at runtime. Moreover, we also note that all these methods do

not take any arguments. To trace single time steps and/or reuse prerecorded traces

we face the following issues:
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• For tracing single steps we need to set the dependents again. However, in the

first time step the material parameters are included in many computations of

the initialization phase. These costly initializations, i.e., the LDL-factorization

of the main system matrix would have to be repeated for every time step.

Hence, further adjustments to decrease the cost of the initialization phase

would be necessary.

• Reusing a previously recorded trace for a single time step is in principle a great

idea: We record the operations of solution process on the trace and reevaluate

this for a different input value - in our case for a different time step. However,

this input value needs to be set in such a way that all objects depending on this

value also are updated when a new input value is set. Unfortunately, none of

the solution step methods mentioned above take any arguments. The current

time step is stored implicitly in various other objects in the containing class

and its related objects, i.e. ptPDE or in the Mathparser object. Hence, there

may be many objects which are influenced by the current time step which then

also need to be updated.

It is possible to solve this issue by updating all variables influenced by the updated

time step. However, as there is an unknown amount of those variables it was decided

to save development time and use ADOL-C’s traceless mode instead.

A.4 MuParser Applications

A full example C++ file which demonstrates a solution to handling MuParser ap-

plications is given:

1 #include <iostream >

2 #include "muParser.h"

3 #include "adolc/adtl.h"

4

5 // Both variants in double and adouble are required!

6 adtl:: adouble ADMySqr(adtl:: adouble a_fVal)

7 {

8 return a_fVal*a_fVal;

9 }

10 double MySqr(double a_fVal)

11 {

12 return (ADMySqr(adtl:: adouble(a_fVal))).getValue ();
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13 // We can call the adouble variant! It is not necessary to convert all

14 // dependencies of the MySqr method to double. The typedef approach

15 // is still feasible.

16 }

17 // If we could not have called this method in adouble datatype variant

18 // from the double variant then we would have needed to convert all

19 // dependencies to double.

20 // In a typedef approach this can be extremely demanding as any

21 // dependency can be/is part of the original codebase.

22 // This would have given a huge amount of datatype mismatches in

23 // all parts of the codebase.

24 //

25 // We just need to define the double variant caller for the AD method:

26 double dMySqr(double a_fVal ,double adval)

27 {

28 adtl:: adouble tmp; // define temporary adouble

29 tmp.setValue(a_fVal);

30 tmp.setADValue (0,adval);

31 adtl:: adouble ret;

32 ret=ADMySqr(tmp); // call the AD version of the method

33 return ret.getADValue (0);

34 }

35

36 int main()

37 {

38 using namespace mu;

39

40 try

41 {

42 adtl:: adouble adtest =1.0;

43 adtest.setADValue (0 ,1.0);

44

45 // Get the pointer of the primal and derivative values.

46 // Note: Not part of standard ADOL -C 2.6.3.

47 double* tmp=adtest.getValuePtr ();

48 double* tmp2=adtest.getADPtr (0);

49

50 // Make sure everything is setup correctly.

51 std::cout << "My test adouble is: "<< adtest << std::endl;

52

53 // And initialise:

54 adtl:: adouble test =1.0;

55 double test2;

56 test2=( double)test;

57

58 double* fVal=tmp;

59 double* dfVal=tmp2;

60

61 Parser p;

62 p.DefineVar("a",fVal);

63 p.DefineFun("MySqr", MySqr);

144



A.4 MuParser Applications

64 p.SetExpr("MySqr(a)");

65

66 // Every time a parser registers an entity , then also register a second

’derivative ’ version for AD purposes:

67 Parser dp;

68 dp.DefineVar("a",fVal);

69 dp.DefineVar("da",dfVal);

70

71 dp.DefineFun("dMySqr", dMySqr);

72 dp.SetExpr("dMySqr(a,da)"); // <-------- This critical string needs to be

provided externally.

73

74 // Print the solution.

75 for (std:: size_t a=0; a <10;++a)

76 {

77 std::cout << "Primal:  " ;

78 std::cout << p.Eval() << std::endl;

79 std::cout << "Tangent  " ;

80 std::cout << dp.Eval() << std::endl;

81 }

82 }

83 catch (Parser :: exception_type &e)

84 {

85 std::cout << e.GetMsg () << std::endl;

86 }

87 return 0;

88 }

89
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