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1

1 Introduction

In today’s globally acting supply chains, fully automatic transportation systems are
necessary to overcome the amount of transporting goods worldwide. In 2014, the total
air freight and mail volume were 14.3 million tonnes, with a growth of up to 40% for
Denmark since 2013, and average growth of 6.4% for intra-EU and 3.3% for extra-EU
transportation.1 To overcome this amount of transportation volume, distribution centers
are using more automation. In Germany alone, there was a production volume of 18.6
billion euro2 in intralogistics3 in 2013. In 2004 14% of the total production volume in
Germany (that total being 12.8 billion euro) comprised IT software for machine control
and communication only.4 IT projects, in particular, tend not to meet the project
schedules. Moreover, on average 45% run over budget and 7% over time. Even worse, if
initially estimated with over $15 million, they massively surpass their budget.5

The above studies unsatisfactory results and the overall increase in transportation volume
have led to a focused research and industry interest in automatizing IT software for
transportation systems. Transportation systems are modularized on the machine level,
which increases the reusability of one transportation unit considered isolated from the
system. On a higher level, the material flow control, which is done by a routing method,
is a highly complex project-specific solution based on the transportation system and
client requirements.6 However, a solution based on a “Plug and Play”7 concept for
decentrally organized transportation system is needed.8 It provides the generalization of
material flow control as well, such that project-specific implementations are deprecated

1See [Ee11, p. 117].
2See [Sta17].
3Intralogistics cover all local transportation systems. A more detailed explanation follows in section

2.1
4See [Arn06, p. 7].
5See [BBL12].
6See [GH10, p. 15].
7Also known as reconfigurable manufacturing system.
8See [GH10, p. 44].



2 1 Introduction

and the system automatically recognizes the transportation structure and can operate on
it. This leads to reductions in software construction and -commissioning, and provides
stability to meet the project deadlines, in contrast to the results of the studies mentioned
above. This material flow control needs to adopt advantages in scalability and flexibility9

and provide robustness10 for industrial automation to prevent blocking and deadlocks
during transportation. By adopting the “Plug and Play” idea, the material flow methods
must be able to react to system changes and still provide the possibilities of deadlock-free
transportation.11

All these restrictions are being affected by the modules of the material flow control: system
structure for operation; evaluation of the transportation unit; and path determination,
selection, and execution. Since all these modules operate in a decentralized environment,
no global state knowledge is present. Every task within the control has to be coordinated
with other transportation units within the system. Otherwise, blocking or a deadlock
occurs, and a system break-down is unpreventable. Therefore, it is clear that developing
a method for material flow control in a decentralized environment is a complex task and,
as previously mentioned, a project-specific solution results in a project failure in time
and or in the budget. A fully automatic and project-independent solution that recognizes
the system structure can operate automatically after manual installation, minimizes the
time spend on software development and commissioning, and significantly reduces the
risk of project failure.

1.1 Purpose of this work

This work develops a routing method for material flow control for automated decentralized
structured complex transportation systems under the restrictions of it being scalable,
flexible and robust with regard to an intralogistics supplier. Fully automated containers
have to be transported between the source- and destination hand over units. The method
has to provide, after an initial system recognition, fully automated transportation. It has
to scale linearly with the number of used transportation units and must be flexible by

9See [Vya13, pl. 1237].
10See [Arn06, p.225].
11See [FSG10].
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properly reacting if a unit is being added12 or removed13 from the system. In addition, the
method is called robust if no deadlock occurs during the execution of the transportation
itself, and blocking has to be minimized.

These restrictions - scalability, flexibility, and robustness - ensure a reduction in software
development and later commissioning for transportation systems for an intralogistics
system supplier in Germany. This supplier‘s specialization is the planning, design,
manufacturing, installation, and commissioning of tailor-made transportation systems.
Based on standardized transportation units, systems are planned and individually
designed to reflect the client‘s needs. This individualization is a specific system design,
adapting the transportation unit design and amount to assembly. Since on a low level of
control, the transportation units are well defined and reusable14, the system design is still
developed manually and in relation to the project. Especially the material flow control
differs from project to project; therefore, the goal of this work is to provide routing for
material flow control for complex15 transportation systems. To evaluate the method, a
real-life system under planning is used. It consists of several thousand transportation
units for one of the world‘s leading parcel and expresses delivery companies. In an
agreement, all used data have been anonymized.

All in all, this work develops a method that enables scalable, flexible, and robust routing
by decentralizing the computational overhead by optimizing the communication on a low
level at each machine. This enables computation on a small scale by distributing complex
tasks to a defined number of computational units, such that in a collective manner
a solution, here a robust transportation path, can be determined and subsequently
executed.

1.2 Structure of this work

This work is structured as follows: Section 2 explains the domain of automatic transporta-
tion, along with interfaces and their subdomains. The reader is given a broad overview

12This could be by extending the system with additional transportation unit in the big scale or in
small scale by repairing a unit.

13E.g. break down of a transportation unit, shutdown for maintenance, etc.
14A change in length or capability in handling special kind of container types does not affect

significantly the low level control of motors.
15Complex in the sense of size, number of transportation units, and considering changes over time,

e.g. break-down, extending and reducing the system structure.
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of material handling at machine-, low-, and high-level control. Standardized machines16

are introduced as an example to form a transportation system. Low-level control is
needed to perform local actions by controlling the motor by parametrization based on
sensor data. Later, the section introduces high-level control, which is responsible for the
material flow in intralogistics systems. Broadly, the section covers high structures such
as enterprise resource planning components to introduced its interfaces to the material
flow level. Finally, an overview of other domains related to transportation, such as graph
routing, is provided to complete the picture.

Section 3 presents an overview of current existing methods with a focus on transportation
systems, in particular, the domain defined in the previous section with its specific
characteristics. To broaden the discussion, domains with similar or close characteristics
are considered too. The methods in those broader domains are being explained and later
used for concept finding to solve the issues and tasks explained in section 2.

Subsequently, section 4 summarizes the open topics of interest to solve the issues and
tasks presented in section 2. Then, section 5 first introduces the protocol used as a basis
for the method. The section then discusses the local behavior of one transportation
unit depending on every functionality of the protocol, followed by the routing method
responsible for the material flow. Next, section 6 explains the implementation of the
methods and the simulation environment and section 7 introduces the experimental
design and outcome. Finally, section 8 concludes the work and proposes open points for
future research to optimize the introduced methods.

16Later called transportation units and positional units.
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2 Problem description

To provide a deeper insight into the object of study, this section is split into three parts.
First, section 2.1 presents the basic terminology to ensure an understanding of the domain
of logistics, in particular, “intralogistics” and its highly complex material flows providing
local transportation. Afterwards, section 2.2 covers the resulting specialties, which lead
to system boundaries in routing within this domain. Finally, section 2.3 describes the
resulting challenges, which lead to specific issues that must be addressed to provide a
feasible method.

2.1 System description

No unified, world-wide accepted definition of logistics17 exists. One short description is
provided by Rushton et al.:18

Logistics = Materials management + Distribution

For a broader scope, the author defines supply chain as:

Supply Chain = Supplier + Logistics + Customers

A more detailed definition of logistic by Rushton et al.19 is:

. . . the efficient transfer of goods from the source of supply through the
place of manufacture to the point of consumption in a cost-effective way
whilst providing an acceptable service to the customer.

17See generally [AIK+09, p. 3], [RCB17, pp. 4–5], [GBS13, p. 2]. Commonly, the definitions distinguish
themselves by additionally restrictions to specific logistic oriented systems or objects according to
[AIK+09, p. 4].

18See [RCB17, p. 4].
19See ibid., p. 6.
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Intralogistic
Both the logistics and supply chain, are concerned with the physical and information
flows from the raw material to the final distribution of the finished product. Material- and
supply management considering the storage and flows into and through the production.
On the other hand, distribution considers the storage and transportation of the final good
to the customer.20 Also, Arnold et al.21 defines the storage and flows as material flow,
whereas transportation in the material- and supply management or within distribution
centers. Material flow is defined as the structured and organized movement between two
points considering the efficient use of space and cost as energy and personal savings.22

This work uses Tempelmeier‘s23 definition of material-logistics for both material and
supply management as summarized. To further distinguish the material flow within the
supply chain management, Arnold24 introduces the term “intralogistics”25 as follows:

“Die Intralogistik umfasst die Organisation, Steuerung, Durchführung und
Optimierung des innerbetrieblichen Materialflusses, der Informationsströme
sowie des Warenumschlags in Industrie Handel und öffentlichen Einrichtun-
gen.”

which can be translated into:

“Intralogistics covers the organization, control, execution and optimization
of the internal material flow, information flow, as well as the turnaround of
goods in industry, commerce, and public societies.”

Material-Flow
In this work, it is assumed that the production beforehand and the final customer delivery
are optimized and not considered. Therefore, the focus is on internal material flow only.
Thus, Gudehus26 makes an abstraction based on source, sink, stations, and connection
with the terminology (n,m), with n as the amount of input and m as the amount of
output of one elemental station27. This leads to the following used definitions:

20See [RCB17, p. 4].
21See [AIK+09, pp. 4–5].
22See [MS02].
23See [Tem05].
24See [Arn06, p. 1].
25Gudehus (see [Gud13, p. 550])
26See ibid.
27An elementstation, short station, is one transportation node or element within the transportation

network, e.g. conveyor.
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• Source: A station (0,m) whereas entry flows are not considered.28

• Sink: A station (n, 0) whereas exit flows are not considered.29

• Station: (n,m) with n entry and m exit flows.30

• Transportation connection: a connection31 for transporting goods that are moved
without stop; the only possibilities for a stop are goods with higher transportation
priority, backlog, or malfunction.32

Based on these definitions a logistic network33 can be formed, e.g. as a graph34 with
vertices and edges, representing stations and connections. This work uses the term
transportation unit (TU) instead of station. All stations in this work are TUs capable of
moving goods from a source s to a destination d. In [Gud13, pp. 457-475], stations are
also working places.

Complex networks are a specific classification of networks. They are distinguished from
regular networks by their irregularity, complexity, and evolution over time,35 such that
edges and vertices are added and removed over time.36 Adapting this network definition
to transportation networks it leads to the possible adding and removing37 of elements,
e.g. conveyors. Such a dynamic in networks can be caused by machinery failures such as
break-down of one conveyor in small scale, or of a part of the network on a large scale.

Fig. 2.1 shows possible flows of goods caused by transportation. Gudehus introduces
in [Gud13, pp. 463-472], the continuous, discontinuous, forking and joining capable
connections. Continuous connections are TUs able to move a good from the entrance to
the exit without stopping. They only stop when a backlog or malfunction occurs. Such
units are conveyors, e.g. belt-, roller- and skid conveyors. Discontinuous connections are
units that transport capacity of goods separately before executing the next transportation.
This separation of the transportation task is the result of a specific mechanical/electronic

28See [Gud13, p. 459].
29See ibid., p. 460.
30See ibid., p. 457.
31For sake of simplicity, by the use of connection a transportation connection is meant.
32See [Gud13, pp. 462–463].
33A logistic network is an amount of sources and sinks which are connected by connections. (see

ibid., p. 550)
34See sec. 3.2.
35See [BLM+06, p. 177].
36See [PRD03, p.2].
37Adding and/or removing will be summarized as dynamic in network.
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Figure 2.1: Possible flows of goods in a transportation system represented by graphs.

condition. An example is a right angle deck with the terminology of (1, 1), where a goods
direction of transportation will be changed by, e.g. lifting it and then moving it by 90
degrees. More complex discontinuous transportation units with (n,m) enable the forking
(fig. 2.1c) and joining (fig. 2.1d) of connections. A right angle deck can be extended
by additional connections, its operational basis increases by distributing container in
several connections.

In addition to Gudehus‘s work, three further subdivisions are used in this work: all
transportation units can transport unidirectionally, bidirectionally, or in parallel. These
three additional possibilities allow more detailed planning to find additionally paths.
Unidirectional transportation (fig. 2.1a) allows the movement of goods only in one
previously38 defined direction. On the other hand, bidirectional transportation (fig.
2.1b) allows the transportation of a good in the opposite direction respectively in time39.
Here, blocking or deadlock can occur if two connected conveyors transport in opposite
directions. Then, in a worst-case scenario, two goods would collide, or at least blocked.
Parallel transportation (fig. 2.1e) occurs when more than one transportation route exist
between two TUs.

In the transportation of containers, fluid transportation is intended to reduce the
transportation time. The overall amount of blocking should be reduced; blocking leads
to a higher transportation time, and further could result in deadlocks. Blocking occurs

38e.g. during system planning.
39One example are conveyors which can change their direction in transport to forward or backwards.
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Figure 2.2: Example of a complex network evolving over time from τi to τi+1 by a breakdown
of n.

when one container‘s travel path is being blocked by another container. Blocking is
the stumbling of another container such that a detour has to be considered before the
transportation path planning or online during transportation execution.

As mentioned previously, transportation systems are more complex. During run-time,
TUs can break-down or specific parts of the system have to be shut down. Fig. 2.2 shows
a complex graph over time. At time τi two parallel routes exists to the destination d.
The TU n has to be shut down and the flows (s, n) and (n, d) are no longer possible.
Also, in complex networks with time slots a transportation unit s status from a source
can be switched to a destination. Therefore, respectively to a time τk s can switch its
roles.

A routing method40 consists of three steps:41 a path request, a path determination,
and selection. Path execution must also be considered. Path request is the initial
notification that a path is needed from s to d. The determination requires the possibility
to compare TUs for later selection. Many comparison methods have been used in the
literature, but a common is a cost model. Costs are not restricted to monetary costs,
e.g. operational costs, other variables are considered too, e.g. distance, transportation
speed or transportation quality, and fault probability. New models consider a dynamic
change in costs for a model to represent the changes over time of one running system.
Furthermore, the routing, is the path selection based on the previously evaluated TUs
with the given cost model. If more than one path exists from s to d, an evaluation must
be conducted based on these paths to select the final path for execution. A dynamic

40Also called protocol.
41See [Cha15, p.3].
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model allows load balancing during runtime. This ensures that one specific region is
not overloaded with transportation execution if a static or insufficient dynamic model
defines it as the fastest42 one. Finally, the execution of the transportation during the
determined path must ensure a synchronization such that no blocking occurs. Especially
in decentrally organized environments without a centralized unit knowing the global
state, each TU must communicate with its neighbors and exchange statuses and future
steps.

All these steps rely on synchronization of TUs. Therefore, a unified communication
is needed at each unit. During each step, information has to be shared for state
information collection and decisions that have been or will be made. Each network has its
communication limitation given by the bandwidth43. When the bandwidth is exceeded,
all additional data are delayed in arriving at the destination. The result is crucial and in
industrial applications dangerous, particularly when a hard real-time system is given, as
described later in section 2.1. Two data types need to be shared: first, status collecting
data for decision making; and second, the results of made decisions. The first type is also
called information collecting. A minimum is a simple check of whether a TU n can reach
a destination d. To improve the flows within one system the cost model additionally
has to be applied to n to enable comparability of units. Secondly, if a decision has been
made, e.g. units have been dropped because of the cost comparability, this information
has to be shared by informing other units using a pull44 or push45 functions.

Current Industrial Systems
The majority of current material flow systems are structured and controlled in a
centralized way, by few servers collecting world state information and computing, based
on this information, the next steps within the material flow.46 Fig. 2.3 shows the
structural layers to enable material flow in a centralized manner. The lowest level, field

42Fast in terms of throughput. [DSL14] reveals that even methods able to handle dynamic envi-
ronments inspired by biologic tend to overload a specific region caused by a static cost model or by
insufficient load balancing model.

43Bandwidth in the domain of computer science. It refers to the data rate measured in bits/sec. In
contrast, for electrical engineers bandwidth describes the quantity in Hz, see [TW13, p. 93]. Here, the
definition for computer science of data rate is used.

44Request an information by the unit itself. When requesting it cannot be guaranteed that the
information exists.

45Other units will be updated automatically at bandwidth expense.
46See [GH10, p. 17].
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Figure 2.3: Simplified controls-pyramid for centralized material-flow systems (cf. [GH10], p.17)

level, covers the machinery actions and information collecting of sensors. It can be
imagined as a pipeline from the control level to the direct machine to execute defined
orders, whether continuous47 or discontinuous48. The next level transforms the high-
level orders into a machine-understandable format and the sensor data for higher levels.
Distributed control cabinets including the programmable logic controllers (PLCs)49 with
their extensions50. Also, the PLC is responsible for safety and security functions.51 This
level communicates with the next higher level, the process control, which is responsible
for the material flow within the system. Process control coordinates machine movement
based on understandable tasks for the PLC. Above this level the operations management
level coordinates tasks that will be organized and executed by the material flow, e.g.
commissioning, breaking and building of containers. Finally, the highest level, the
enterprise resource planning (ERP), represents the higher-order business processes.52

An example of a hardware configuration is given in fig. 2.4. Controls are responsible
for machine behavior by parameterized speed and directions for converters. The speed
of motors, status and other system relevant statuses are determined by sensors. Both
converters and sensors can be distributed within the system. Therefore, Remote I/Os are
used to increase the accessibility range of PLCs. PLCs and human-machine-interfaces

47A continuous task will be executed until a hold/stop order is sent.
48Discontinuous tasks are specific timely defined tasks, e.g. start and end time.
49A PLC (Prommable logic controller) is a special microcontroller storing instructions and functions,

e.g. logic, sequencing and timing, to control machines and processes. (see [Bol09, p.3])
50e.g. digital / analog converters or communication units.
51See [GH10, p.17].
52See ibid., pp. 16-18.
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Figure 2.4: Hardware architecture at factory floor automation systems (see [Vya13], p. 1235)

(HMIs) are used for low-level control; visualization and interaction are done by the HMI.
One level above, the server with further system control is installed and running, e.g.
material flow software, for control and optimization.

Centralized structured systems use project-specific optimization. Because all information
is collected in a centralized way and is specifically configured53. A design change in the
layout of the material flow has the consequence that all layers in the controls pyramid
have to be adapted.54

53In PLCs, each input and output to an hardware, e.g. motor or sensor, is hard coded in the Remote
I/Os (Input / Output) reference table connecting one input or output at a PLC with a real-world sensor
or motor. This hard coding is tested while checking the commissioning phase of each I/O to determine
whether the correct hardware is being hard-wired.

54See [GH10, p. 19].
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Figure 2.5: Comparison of current centralized systems (left side) and decentralized systems
(right side) (cf. [GH10], p.24)

Decentralized structured systems
Current design requirements for manufacturing and logistic systems are rapid recon-
figuration55, easy integration56 and hot backup redundancy57.58 To manage and meet
these requirements inside and outside of an assembly system, several concepts have been
introduced. The most famous are the flexible manufacturing (see, e.g. [JKB03]) and
reconfigurable manufacturing (see, e.g. [KHJM99]) for the hardware part, and holonic
(see, e.g. [WO05]) and biological manufacturing (see, e.g. [UVO97]) systems on the
software side. All systems share the same ideology, subdividing the assembly systems
into stations, cells, buffers and transport systems in subsystems. These subsystems and
modules received defined degree of freedom in autonomous.59 Fig. 2.5 shows the current
structure of a decentralized structured system with intelligent devices compared to a
centralized system.

From the hardware perspective, reconfigurable manufacturing is considered as the future
paradigm.60 Since flexible manufacturing only considers software reconfiguration on

55Also known as automatic reconfiguration, it describes the possibility of performing proactive or
reactive adaptation to specific processes as stated by [WHM13, p. 82]. In [RSAV16, p. 133] the concept
of reconfiguration is split into connection, communication and interaction of loosely coupled system
units, e.g. conveyors, which have to be organized to provide a system functionality as transportation.

56Integration in terms of enabling the possibility by implementing control of decentrally organized
systems. Industrial standard programmable languages have to be used as IEC 61131-1 (see [JT10]) or
its successor the event-driven architecture defined in IEC 61499 (see [Thr06, pp. 115]) which covers
interoperability, portability and reconfiguration as stated by [DV10, p. 1]

57A hot backup is a fully duplicated backup. Current industrial techniques is backup-in-depth , see
[Com14, p. 5-18].

58See [DV12, p. 390].
59See [SF07, p.712].
60See [DTOJ14, p. 1].
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an existing hardware basis, the reconfigurable manufacturing focuses on exchangeable
hardware as well.61 Intelligent devices are prior capable of reconfiguring themselves62

such that a valid network exists for future decentralized operations and methods. Such
devices are field devices which include a part of the control logic from the controller.
This enables processing of signals directly at the place where they occur.63 Intelligent
devices communicate with each other if higher-level64 decisions have been made. To
make a higher level decision, each intelligent device is composed of several levels within
the controls pyramid.65 The level of composition is determined by the modules and its
tasks. When considering a composition from field level to process control, the motors,
sensors and at least one PLC is required. As mentioned earlier, in a centralized structure
the motors and sensor are directly interacting with the environment, whereas the PLC is
directly mounted to the intelligent device. It is hard-wired with the sensors and motors
without bridging a certain geological distance. Up to a certain degree, each device is
capable of decision-making without interacting with other devices, e.g. status reporting.
For more complex tasks such as material flow, however, the devices have to communicate
to find a sophisticated solution66.

Communication is crucial to enable a proper material flow with intelligent devices
operating in decentralized structured systems. To determine a better solution, each must
share their current status in a real-time computer system manner67. Further, real-time
is being classified as hard or soft real-time. If a system must meet at least one hard
deadline68, then it is called a hard real-time system or safety-critical real-time computer
system.69 Since missing a deadline in transportation systems causes damage of goods,

61See [ElM08, p.4].
62For reconfiguration of manufacturing systems several higher-level methods enable communication

to provide higher lever methods to operate in a decentralized manner. For example [DTOJ14] proposes
a service oriented architecture for reconfiguration of manufacturing systems, [ABH+13] presents recon-
figuration at the network level, [OLBH12] introduce new self-recognizing drivers, [TKHP02] focus on
identifying automatic field devices, and [SMA+03] introduce a multi-layer for establishing communication
and interaction between robots in manufacturing systems.

63See [GH10, p. 24].
64An higher level is one of the possible levels above the field-level in the controls-pyramid from fig.

2.3
65See [GH10, p. 25].
66A sophisticated solution could be in means of transportation time, e.g. minimizing the time to

move one container from s to d.
67A real-time computer system is also a computer system (analogous to a PLC, which is a computer

system as well) that depends on the correctness of the computations in logical and physical on time.
(see [Kop11, p. 2]).

68When the consequences of missing the deadline is sever, the system is called hard.
69See [Kop11, p. 3].
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Figure 2.6: The program and memory organization of a PLC, see [ML85, p. 16.12].

or in the worst case harm to employees, those systems are classified as hard real-time
systems70.

Structure of intelligent devices
PLCs are industrially accepted intelligent devices.71 The left side of fig. 2.6 displays a
PLC‘s action. One action is called a program scan. At its start, all inputs signals are
read and its status transferred to the internal input-memory. Based on the signal‘s value
within the memory, the program is executed, and its solutions for each output signal is
stored inside the output memory. At the end of the scan, the output-memory is mapped
into all outputs.72 As shown in fig. 2.6 on the right side, the memory of the PLC is split
into four areas. The input and output memory areas mimic the input and output signals,
respectively. Furthermore, there is a restricted memory area that is not connected to the
outside, e.g. storage bits, timers, counters. Finally, the last area is the place where the
program itself is situated.73 This structure is used in classic PLCs and soft-PLCs74. A
PLC is based on a special defined programming language defined in IEC 6149975 and
simple data-structures.76 Several additional functions are being provided, e.g. counters,

70A more detailed classification can be found in [Kop11], p. 14.
71See [GH10, p. 25].
72See [ML85, p. 16.11].
73See ibid., pp. 16.11-16.12.
74Soft-PLCs are industrial computers (IPCs) with a specific restricted computational area, in

computational unit as well as memory, providing classic PLCs functionalities.
75See [Thr06, p. 115].
76See [Arn06, p.217].
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timers, etc., as well as communication units offering an interface to other units within
the system.

Communication in decentralized systems
Since each intelligent device77 has to make decisions that affect other intelligent devices
in a decentralized system, system state information has to be collected, decisions of
other TUs must be considered, and own decisions need to be spread across the system.
Firstly, on the field-bus level, as the connection between the PLC and the sensors and
motors, the Ethernet78 standard could not be established. This is because it was designed
with different Quality of Service (QoS) since a high determinism and real-time data
transfer are needed compared to commercial networks.79 Therefore, Profibus80is still
mostly used for communication between a PLC, sensors and motors.81 Since existing
communication methods in industrial automation were developed two decades ago, they
lack data throughput. There was a need to upgrade speed and performance of existing
non-real-time networks, mainly Ethernet networks.82 Today, communication in industrial
networks is being classified in three categories, which are differentiated by network update
times83. To provide a reduced update time, the regular Ethernet MAC - layers84 must
be interfered with. Fig. 2.7 shows the network stack configuration. On the left, the
open system interconnection (OSI) reference model is shown. It was developed in 1983
as a first step to international standardization of protocols defined in difference layers
for open communication with other systems.85 Each layer is responsible for the following
layer, as defined by Tanenbaum in [TW13, pp. 43-45]:

77One intelligent device is mounted on one TU.
78Ethernet is a group of standards for network communication for local networks as well as for huge

networks and is standardized by Institute for Electrical and Electronics Engineers (IEEE), see [Spu00, p.
11].

79See [G013, p.876].
80Defined in [DIN11, pp. 118-201], which is a communication standard for exchanging data between

devices.
81See [TKHP02, p.143].
82See [Dec05, p. 1102].
83Scheduled information transferred with one rotation within the network. It consists of scheduled

traffic, unscheduled traffic and maintenance traffic, see [Dun05, pp. 369-370]
84MAC - Layers define the protocols accessing the Ethernet system, see [Spu00, p. 18].
85See [TW13, pp. 41-45].
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Figure 2.7: Differences between the network stack configuration of conventional networks and
industrial networks, see [G013, p. 868].

• The physical layer: This layer is responsible for ensuring that bits are sent and
received as the correct value and in the right order by an electrical signal represen-
tation.

• The data link layer: Its main task is to transform a raw transmission into a stream
free of errors.

• The network layer: It determines the routes for packets from device s to d.

• The transport layer: In this layer, received packets are accepted or rejected as well
as split into smaller units if needed.

• The session layer: This layer enables the establishment of different sessions (e.g. di-
alog control, token management, synchronization, . . . ) between different machines.

• The presentation layer: Here the layer is concerned with the syntax and semantics
of the transmitted information.

• The application layer: A variety of protocols needed and used by the users/device
are containing within this layer, e.g. Hyper Text Transfer Protocol (HTTP).

Most communication protocols do not face all the problems defined in the OSI-reference
model, such as the reduced model TCP/IP (see fig. 2.7 center). It merges several layers
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into one for the sake of simplicity; this layer is still fully functional, widely used in the
Internet, and is the basis of real-time Ethernet.86 Similar to the TCP/IP model, enhanced
performance architecture (EPA)87 is a reduced layer model; it consists of three layers only
(fig. 2.7 right side), one more less than TCP/IP and is still functional. All missing layers
are merged with existing layers, to speed up the throughput of communication. Therefore,
merging of layers is based on the specific system, e.g. the size of the application layer in
relation to data link layer is depending on the system.88

2.2 Requirements description for routing

As mentioned previously, decentrally organized systems lack the possibility of one
centralized unit with global state knowledge organizing each TU distributed in the
transportation network. This leads to decentralized TUs being controlling by themselves
and therefore relying on correct and on-time information for decision making. This
results in local self-management to reach a global goal: the transportation of containers
through the transportation network.

Based on the described domain in section 2.1, the following describes the practical
requirements with regard to an intralogistics system supplier, a worldwide turnkey
supplier in the domains of air cargo, automatic car parking and industrial transportation
systems. All three domains include complex transportation systems for moving goods.
They depend on safe and on-time transportation to fulfill the given time requirements.
Whereas, unit load device (ULD)89 in air cargo terminals, cars in automatic car parking
systems, and materials in industrial transportation systems all require a transportation
system with high availability90 and a predefined throughput requirement to reduce
waiting times for goods.

86See [G013, p.869].
87Developed in MAP-project (Manufacturing Automation Protocol) by General Motors and Boeing

as a standard communication protocol within CIM (computer integrated manufacturing) hierarchy, for
a detailed history background see [G013, pp. 860-876].

88See [Pat98, p.279].
89ULDs are loading units for aircraft’s, see [AIK+09, p. 763].
90Availability of the system in terms of ability to provide specific operations in predefined conditions

failure-free over time, see [AIK+09, pp. 865-869].
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2.2.1 Segmentation of the requirements

Since hierarchical structures are currently being used for transportation systems, central-
ized monolith software has to be written to coordinate the material flow. This is due to
project specific transportation systems resulting in a new project specific transportation
network representation on which algorithms operate on to find proper routes. Practically,
this material flow software differs from project to project, resulting in new software
development in each project realization phase, which later needs testing in the commis-
sioning phase as well. In addition, adaptions to the material handling system are made
when requirements change, due to the need to adapt to the market. Then, as Furmans
et al. stated in [FSG10], current automatic material handling systems are inflexible;
changes are cumbersome and expensive once the system is installed. As mentioned earlier,
the intralogistics system supplier being used as a reference is specialized in complex
material flow systems. Complexity arises from the number of sources, sinks, and their
interconnections given by equipment. Still, according to Mayer,91 a time-discrete routing
for such complex systems for reconfigurable manufacturing 92 is missing. Even though
this seems outdated, still current systems are not able to provide sufficient solutions for
such complex material flow systems, as shown in chapter 3.

Vyatkin93 points out that the modularity, integrability, flexibility, scalability, convertibility
and diagnosability are main concerns for reconfigurable manufacturing systems. In
addition, El Maraghy94 states that routing has to be mainly flexible and reconfigurable to
switch and react to changes. Moreover, a major concern for industries is robustness too,
as stated by Arnold.95 Therefore, this work will focus on developing a routing method
to provide material flow in complex intralogistics decentrally organized systems96 with
the following attributes:

• scalability: handling of complexity as the number of components arises.

• flexibility: the capability of adding and removing components.

• robustness: ensuring system stability during transportation.

91See [May11, p. 75].
92This work only focuses on transportation systems within reconfigurable manufacturing.
93See [Vya13, p. 1237].
94See [ElM08, p. 13].
95See [Arn06, p. 225].
96For the sake of simplicity, in the following this is referred to complex intralogistics systems unless

otherwise stated.
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Analogues, these are the major concerns in current research in routing according to
Boukerche,97 Chakchouk,98 Guenther,99 and Furmans.100 Scholz-Reiter and Freitag101

also refer to self-adaption, self-optimization and self-organization. This work focuses on
self-organization only in so-called autonomous manufacturing systems102. Interest is in an
intralogistics system supplier who operates in several areas; however, only air-cargo and
automatic carpark material flows are considered. Several prestige automatically car park
systems have been realized, from 300 to 1,000 fully automatically handled parking spaces.
In the domain of air cargo, one of the world‘s largest fully automatic cargo-terminal has
been planned and realized. Here, material flows of standardized equipment have been
consolidated into one system. Still, a major part is the software development regarding
material flow. Therefore, the main concern is the reduction of effort in development of
material flow systems. Since the field-level has been standardized, the next level, the
process-level, is currently under investigation to be automated as well.

2.2.2 Requirements for routing

The main requirement for routing in complex intralogistics systems can be defined as
follows: a container c103 has to be moved from s to d, where, the arrival of c at s
is ensured by an upper-level control104. To provide transportation, each component
on the hardware and software side in one system, have to operate together. Since a
PLC operates in a hard real-time environment, the routing method has to cope with
restrictions too. These are fixed cycles times that have to be ensured, and a restriction
in data management, as described in the subsequent paragraphs.

97See [BD15].
98See [Cha15].
99See [GH10].

100See [FSG10].
101See [SF07, p.725].
102Scholz-Reiter and Freitag describe this kind of manufacturing system as the next generation system

after reconfigurable manufacturing system. The difference between these systems relies in an external
force used for decision making, which other authors still see as reconfigurable manufacturing system,
since here the external force can be an computer program as well, e.g. ERP system.

103In reference to the air cargo domain, containers are the goods that are being moved within an
transportation system.

104This could be a warehouse management system to define s and d and a guidance system, e.g.
forklift-guidance system, to ensure the arrival of c at s at a specific time, which is out of the scope of
this work.
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Scalability
Individual solutions for container transportation which consisting of a large number
of TUs are cope of complex transportation systems. In such systems, a routing path
has to be found in a proper amount of time105 to avoid congestion at the source due
to the container arriving at the source s for routing to the destination d before the
routing method determines the path. High scalability of the routing method allows
the supplier to provide larger systems with a reduced amount of software development
and commissioning. Since, in industry, project-specific routing based on the system
characteristics is developed; this software has to be programmed and tested in the
commission phase for its running capability before handing over. In decentrally controlled
environments, each TU is equipped with an intelligent device able to compute an action,
based on retrieved or stored information. As previously shown in fig. 2.6 previously,
scalability and additionally determinism are important. Since each program is executed
between the reading of inputs and writing of outputs, its execution time affects the
reaction time of transportation units too. More critically, if safety functions106 are also
executed on the same PLC as well, several safety standards107 have to be ensured. Finally,
a TU and the system need a CE certification108 separately, to be allowed for operation.

The described restrictions in the design and operation of TUs affect the possible compu-
tation time of the routing method. Independent of the size of the system, the method has
to find a proper path in an acceptable time. Therefore, the method cannot use excessive
algorithms to compute a path and or sub-path if it blocks the PLC cycle for too long.
Since a safety function should be executed in a cycle first, the blocking of a complex109

algorithm would result in an input skip110. In hard real-time environments, the execution
of a (part of a) program must be ensured to be finished within the defined cycles times
to enable the next execution of the cycle, including reading inputs and writing outputs.

105At least before the container arrives at the source.
106E.g. emergency stop when a specific point has been passed that could be hazardous for the building

structure, containers move to a point they should not, such as walls, building columns, etc. It is more
hazardous if a TU‘s execution is connected to safety equipment such as lightning barriers which ensure
the immediate stopping if a person enters an automatic operating system.

107See ISO 12100 in [Sta10] defining design possibilities and risk assessment of machines overall
including TUs.

108See machine directive 2006/42/EG in [Uni06] defines safety aspects a machine has to fulfill before
operation and is a basis for the CE certification as defined in the regulation 765/2008 of the European
Parliament in [Uni08].

109Complex in terms of time.
110When in a program execution the input value changes,e.g. bit-flip from 0 to 1 and then 1 to 0,

before the program has been executed. These bit-flips would never be recognized by the PLC, since due
to the excessive algorithm the cycle time is extended.
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Furthermore, restrictions based on the DIN EN 61499-1111 apply. The most restricting
one is the possibility of allocating memory for storing data. To keep determinism in
control logic, the allocation of dynamic arrays and pointers is impossible. If arrays or
pointers are used, they have to have a fixed data size, and a pointer has to point to a
fix data in memory. To overcome this restriction soft-PLCs112 have been introduced.
A query for a dynamic allocable memory is an asynchronous communication to the
non-real-time executing part of the soft-PLC. Therefore, a result cannot be expected in
the same cycle which the query for the information is triggered.

Besides the restriction in asynchronous communication within one soft-PLC, restrictions
to the global communication also apply, given by a decentralized environment with
distributed intelligent devices operating transportation units. First, no global knowledge
exists. In a hierarchical architecture, one unit that is powerful in computation and suffi-
cient memory administrates all information and the orders of each TU. Current existing
PLCs cannot cope with the huge amount of data given by the collected information
from each device. Therefore, expensive industrial servers are being used in this kind
of architecture. They execute monolith programs developed and parameterized for one
specific project. Here, in a decentralized environment with a heterarchy, each device has
to collect information in a period of time to compute each step, whereas the synchronized
transportation of a container requires status exchange between intelligent devices to
compute a feasible path for routing. Even if a device requests all possible information, it
has to cope with the blurriness of time, invariant of the requested data. Any information
is not being received instantaneously, network errors, such as jamming113 and dropping
can occur in industrial networks. A resending of the data results in a time delay. Several
computation cycles could already be passed, and therefore, the requested data could be
outdated. If it was requested before the state change of a unit, the new state could be
unknown to the current devices which are computing the next actions.

Finally, the intelligent device faces the execution of a computed path. Since no central
device exists to control the current device and its TU, it has to store and administrate its
own execution plans. To increase the throughput, the devices have to operate together in

111See [DIN05].
112See [Dun05] pp.94-96. A soft-PLCs is a personal or industrial computer with the capability of

reading and writing I/Os from machines. To enable real-time capabilities in a multi-core CPU system, one
CPU only executes the PLC-controller logic only, while the other CPUs operate the other non-real-time
methods.

113Synonym for blocking in the network domain.
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a synchronized way. A stop-and-go solution114 would dramatically reduce the throughput,
since a container would be stopped before a synchronization with the next TU happens.

In summary, scalability of intelligent devices for routing faces several issues:

• Hard real-time capabilities in cycle execution during run-time.

• Computational and data storage restriction for soft-PLCs.

• Collection of other devices state for decision-making.

• Execution of transportation and synchronization with other devices for fluid trans-
portation.

Flexibility
Flexibility allows the possibility to react or change with little penalty in time, effort, cost
or performance.115 In production or logistics, companies face new products to being able
to be moved between two places for e.g. intermediate storage, further production or to
ship. Therefore, TUs have to be added, removed or exchanged. Furthermore, Terkaj116

defines four basic dimensions:

• Capacity: the execution of similar functionalities independent of system size.

• Functionality: different kinds of operations can be executed.

• Process: capable of operation diversity117 to find one solution.

• Production planning: the system is able to change the order of operations to find
the same result.

As described previously, capacity can refer to scalability in this work. Similar to the
referenced intralogistics supplier, the other three dimensions have to be adapted to the
domain in intralogistics routing. Functionality describes the operations one TU is able
to execute, e.g. forwards or backwards transportation, or changing of the orientation

114This kind of transportation solution is a purely sequential transporting container. During execution,
a specific state is provided before further execution or decision making. This ensures that the device
only operates in specified, well-defined states. When an error occurs the device is in a proper and safe
state.

115See [ElM08, p. 50].
116See ibid., p.52.
117By means of different kinds of operations in type and order.
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of the container. Process refers to the possibility of finding different routes that can
be compared to each other for selection. Finally, production planning is the reaction
to changes during route execution, e.g. reroute to increase throughput, avoid blocking,
deadlocks.

A flexible system has an additional advantage during run-time. The possibility of
flexibility in the process and production planning helps to avoid issues by break-down or
scheduled maintenance. If the break-down of a TU occurs, the method has to reroute
containers by finding a detour to the destination based on the current position in the
system. On the other hand, during scheduled maintenance, employees access the fully
automatic system, which results in the shut-down of a transportation system or a
partial part of the system. Still, the rest of the system should be functional to keep its
availability118 high.

Robustness
In transportation systems, units can go off-line for numerous reasons. On the field level
most predictable one is a scheduled shut-down to access an automatically restricted area
for restrictions vary regionally, e.g. Europe the ISO 12100119 applies. On the other hand,
unscheduled shut-downs can be caused by a failure of the machine itself in the sensor
or motor and resulting in maintenance of a TU. For both, scheduled and unscheduled
shutdowns, a part of the system is unavailable for an amount of time, or in a total
shut-down.

At the PLC-level, the execution itself can cause a failure of a transportation system too,
when routing is scheduled and the path distributed and scheduled at each intelligent
device. In a fully decentralized system, a failure in synchronization can cause a deadlock
when inverse flows occur at bidirectional transportation paths in the systems. This is
when two movements from TU ni to nj at time τk are scheduled and executed, but at
τk+1 an inverse flow from nj to ni is also scheduled. When the first flow arrives later, e.g.
due to blocking in its previous transportation, it interferes with the other flow, and a
deadlock occurs because the first container for transportation at τk arrives at time τk+1

when the other container has to be transported in the opposite direction. As a result of

118Availability of transportation systems is the derived quantity of the switched-on time and the down
time, see [VDI04, p. 2].

119See [Sta10].
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the deadlock, ni and nj are not available for any further transportation as long as the
deadlock has not been resolved.

On the process-control level, another factor that can result in a non-usable part of the
system is the material flow control itself. The minimum requirement for a routing method
is to find a path between ni and nj when one exists. When parallel and bidirectional
flows exists, a deadlock-free routing, time-slots120 and detours additionally have to be
considered. Furthermore, considering complex material flow systems, especially regarding
the intralogistics supplier, huge networks with many TUs have to be considered as well.
Given by the computational limitation of PLCs the routing method has to find a path in
an acceptable amount of time121 without global state knowledge.

In summary, a routing method is robust if the following applies:

• Proper reaction to partial system failure (field-level): If a path exists when a part
of the system is down, it will be found.

• Reliable route finding: Planning of time-slots and flows for transportation, such
that no deadlock can occur, in an acceptable amount of time.

• Synchronization of decentralized transportation units (PLC-level): During exe-
cution, the order of tasks planned locally at one intelligent device will prevent
deadlocks.

2.3 Challenges for routing

Based on the previously described requirements in transportation in automated decen-
trally structured complex intralogistics material flows, the following section defines the
challenges for a routing method to provide a transportation path for a container.

In summary, the routing method has to provide the following functionalities to operate:
operational basis, evaluation of transportation units, path determination, path selection,
and finally path execution. All five components are affected by the restrictions given by
the introduced intralogistics material flows. Three main properties have to be considered,

120A time-slot is a defined period of time between τk and τk+1.
121Acceptable is when the container does not have to wait for route execution at a source s when

arriving. A delay caused by the computation is not acceptable by any means because this would result
in a blocking of s which could be a destination d for another good.
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which are scalability, flexibility, and robustness. The interdependence between the
functionalities and properties are given below.

2.3.1 Challenges for protocol structure for routing

The protocol structure needs to be the operational basis for the routing. Therefore the
following properties have influences:

• Scalability: The structure has to have the ability to increase linearly when new
TUs are being connected.

• Flexibility: Adding or removing a TU has to be done with a small effort such that
other TUs are not blocked by any computation for too long.

• Robustness: When adding or removing a TU, the system has to be stable, and
undefined states must be avoided.

2.3.2 Evaluation of transportation units

Since a routing is dependent on a cost model, this to developed model must have the
following properties:

• Scalability: The model has to provide a linear complexity in computation such
that the computational time can be estimated based on the size of the system.

• Flexibility: Adding and removing of TUs must be possible and being considered in
the model.

• Robustness: The model has to reflect the transportation; otherwise, the computed
values differ too much from the real times, and blocking or deadlock can occur.
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2.3.3 Routing with local information

Since global information is missing, each TU must be able to collect and spread informa-
tion through the system to provide proper transportation for containers. As previously
noted, the routing itself consists of three parts. The first part is the path determination,
where one or more paths should be found. Then, one path is selected, and subsequently
executed.

• Scalability: The model for path determination and selection has to scale linearly
to ensure a proper path for a container in an acceptable time.

• Flexibility: The routing should react to changes during run-time.

• Robustness: While routing multiple containers, a blocking has to be resolved.

The next chapter introduces methods that cover parts of the introduced attributes. Their
advantages and drawbacks are also covered, such that the new method proposed in this
work builds on the advantages while considering or resolving the drawbacks.
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3 State of the art

So far, research has handled decentrally organized environments using a centralized unit
for organization and control (see section 3.1.1) and fully decentralized control (see sec.
3.1.2). However, all proposed methods122 lack the ability to handle fully decentralized
environments with bidirectional flows simultaneously without explicitly transforming one
bidirectional transportation unit into a unidirectional one to reduce complexity.

This chapter discusses current techniques to solve partially the problems described in
section 2. First, section 3.1 introduces techniques in the same domain of decentrally
controlled material flows. However, these lack the possibility to find routes and react to
changes in an acceptable time for the highly complex system. Further, some lack the
possibility to route, or even worse to handle inverse flows, so that they block flows until
one routing is completely finished in the transportation system.

Afterwards, section 3.2 covers representation techniques used as an operational basis.
Specifically, an overview of formalization is given, allowing an operational basis in
transportation by routing.

Then, section 3.3 focus on the local evaluation of one transportation unit. It distinguishes
by local metrics and end-to-end metrics.

Finally, section 3.4 discusses routing methods from other domains. The focus is in
particular on the domain of high complex routing in networks, which is analogous to
container transportation, with a few exceptions. One exception is that a data package
can be deleted and/or duplicated. Therefore, such methods do not focus on a reliable
and robust data transmission by invoking deletion or duplicating data packages. Similar
to the previous section, a classification and evaluation of these methods are given.

122To the best knowledge and belief researched.
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3.1 Research projects for decentrally controlled
transportation

This section introduces current and past research projects regarding transporting con-
tainers in decentrally controlled transportation systems. It distinguishes between partial
and fully decentrally control. The main concept relies on a control unit that has global
or partial global information and computes decisions based on collected information in a
master and slave manner.123 In fully decentralized control, each entity124 computes its
own decision before execution. Therefore, they depend on collecting information in the
system.

3.1.1 Partially decentralized control

Partially decentralized control focuses on few decision-makers which generally have higher
computation power compared to other computation units (e.g. PLCs, industrial server).
This results in a strict monolith hierarchy when each decision-maker‘s solution is used
for the overall system strategy. In comparison, in a strict monolith hierarchy, each
computation unit‘s decision making is independent of other units, and each solution is
propagated to a computation unit with higher order.

MATVAR

In MATVAR125 (German:"Materialflussysteme für variable Fertigungssegmente im dy-
namischen Produktionsumfeld; English translation:"Material flow system for variable
production segments in the domain of dynamic production), developed at the Technical
University of Munich, introduces a partially decentralized control. Its aim is to structure
the segmentation or so-called islands in the domain of production and to define a variable
material flow system considering practical situations. This is based on the structure
requirements which has been determined for intralogistics physical and informational
logistics to realize components for the material flow system.

123Master and slave manner based on the PLC concept. Master computes the decision and slave
executes them.

124An entity is a material handling equipment with an processor unit, e.g. PLC.
125[GR00].
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To realize the introduced working packages in [GR00], a prototype of MATVAR has
been built, as shown in fig. 3.1.

Figure 3.1: MATVAR lab at FML at the technical university of munich.

The prototype consists of a discontinuous conveyor for transporting units from storage,
and between in and outfeed positions and productions units. The transportation system
for finding and executing routes is defined in the working package 4. Its goal is to control
in a decentralized way each transportation unit in the system and the organization of
tasks in the system related to transportation.

The intralogistics material flow used at MATVAR discontinuously organizes and executes
material flow computed at each PLC responsible for one cell. This is done by defining
the logic for each cell at a low level of control, and an agent-based structure for the
high-level control responsible for coordinating the communication between cells. Then,
a local entity, a so-called environmental model server, computes each parameter for
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local execution126 by collecting the information representing the current system status.
Therefore, a partial distribution organized by cells is used with a server unit to compute
the execution steps for each cell. Thus, this method does not enable a fully decentralized
control because the central server is needed. Furthermore, it lacks in scalability, and the
bottleneck is the computation power of the server computing the single steps for each
cell.

KARIS

Karis127 is an autonomous vehicle capable of providing continuous and discontinuous
transportation. By picking and driving from the source to the destination alone or in a
cluster, different kinds of structural containers can be moved. Thereby, it acts like an
autonomous guided vehicle. For higher throughput, the cluster can form a conveyor line
for continuous movement. To enable operational transportation its structure is split into
three layers mechanically and electronically. The lowest layer is responsible for moving
on the floor based on one engine and four wheels; the second layer scans the environment
for scouting and decision-making; and the third layer is equipped with a conveyor to
move the container on top of the vehicle or for continuous transportation in a cluster.

To find a proper routing for transportation, two algorithms are implemented in com-
petition. The first one is called Partial Build on Exploration (BonE), and the second
one dRandom. BonE128 operates by choosing one vehicle as a master element. This
master-element computes the fastest route with the heuristic A*. Then, the master
moves next to the source and records all obstacles on its way. Afterwards, the master
calls a worker element which is at the farthermost visible position to the master element.
It then drives next to the master and records all obstacles on its way as well. This calling
and driving to the latest element is done repeatedly until the first element reaches the
sink. If an obstacle occurs during planning, the master element recalculates the route
from the source to the sink.

The second algorithm dRandom129 is a decentralized method to establish a transportation
between a source and one sink. Hereby, the last requested element requests the next
element until a transportation line has been formed. If an obstacle blocks the way to

126Local in terms of each cell respectively.
127[Sto14].
128Ibid., p. 72.
129Ibid., p. 85.
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form a line each element transmits its collected information about the environment back
to the previous one in line. This is done until the first element is capable of redirecting
the transportation line on a different path.

This method scales linearly in mechanical equipment regarding to the distance. Given
by the size of the transportation unit as a square l2 the number of elements needed for
one route is minimum d

l
with d as the distance between the source and the sink.

There are several disadvantages to using one or both routing algorithms with fixed sized
transportation units. First, is that one central unit (master-element) computes the route
based on uncertainty in knowledge of the environment. Parallel, time windows, and fork
or join operations are not considered in route finding. Therefore, several sources or sinks
have to be handled during one time window, and a new transportation route has to
be formed. Furthermore, it is highly unlikely that there exists no no gap between the
transportation lines, which would result in breaking the continuous transportation with
at least one discontinuous transportation of one element to fill that gap. Secondly, a
transportation unit mounted on one autonomous transportation vehicle results in higher
investment, operational, and maintenance costs compared to regular transportation
units.

Multi-agent for transportation systems

A multi-agent approach for a real transportation system is evaluated in [LGM13]. The
transportation system consists of several robots, machines for production, an automatic
storage system, and 45 conveyors, 32 intersections and grippers for holding pallets. The
main task of this system is delivering parts from the storage system to the manufacturing
components. Each intersection is equipped with one controller managing the conveyors,
intersections and grippers for transporting pallets. This method takes partial advantage
of the decentralized configuration of the system in two layers. The low-level layer is
decentrally organized and controls the input and output of the sensors and motors
locally at each intersection. On top, the high-level layer is a centralized multi-agent
method operating a transportation task on a routing table previously determined by
the Dijkstra algorithm. The routing path is determined by the high-level layer and
proposed for execution on the low-level layer. When a breakdown occurs, the low-level
layer notifies the high-level layer‘s agents to reassign the direction of conveyors, such that
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the underlying graph representing the transportation system is a connected graph.130

This method lacks the dynamically use of bidirectional transportation of conveyors, such
that a possible parallel transportation (ni, nj) from one node ni to another node nj
would not be used, because a redirection is only be considered during breakdown but
not congestion between two nodes caused by high traffic. Furthermore, the method
takes no advantage of the decentralized control structure, and its scalability relies on the
computation power of the system operating the high-level layer.

3.1.2 Fully decentralized control

In contrast to partially decentralized systems, fully decentralized controlled systems
distribute tasks among intelligent devices for control or decision-making. Thus, no central
unit observes, controls, or makes decisions regarding tasks during system run-time, and
therefore these systems do not rely on global state information. This shifts the problem
state from central decision-making, which results in a proportional need for computational
power regarding the complexity given by the algorithm and the number of entities needed
for decision-making, to a lower need for computational power distributed throughout the
system.

Development of a completely decentralized control system for modular
continuous conveyors

[May11] introduces a decentralized routing for continuous conveyors. It splits each
component into modules and defines a specific task for a period of time. Tasks are
unidirectional transport or redirection of a container at one module based on a predefined
route.

To determine routes, each module stores a matrix representing the complete transporta-
tion system. This matrix is determined using the distance vector algorithm131 by first
creating a matrix with all reachable targets and the total costs by using a determined
successor in each step, respectively. Afterwards, this local matrix is shared with the
neighbors and if a path to a destination by a different successor exists, the matrix is

130Such that each node can reach another node by a path.
131Distance vector algorithm operates in decentralized controlled system and is based on the Bellmann-

Ford-Algorithm to determine the shortest path from a source, see [MD01, pp. 14-23].
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updated at each successor module. This initial local matrix computation ensures system
operation during run-time by providing the ability of route finding for one container at
arrival.

In operation mode, during the arrival of one container at one module, a route reservation
algorithm starts. Based on the local matrix, the route from the current module (source)
to a predefined destination is selected. Afterwards, each module on the path from the
source to the destination is triggered for route reservation. If all modules accept the
reservation, the route is blocked for this container and the transportation can start. If at
least one module rejects the reservation because a different container is reserved in the
opposite direction, the source module computes an alternative route based on the local
matrix.

Because the local matrix is fixed after the initial phase, each container is transported
on the shortest path. This results in an overload of transportation at this one specific
path. A parallel path p2 to a shortest path p1 with costs cost(p1) = cost(p2) is never
be used for path stabilization and transportation path splitting. This is due to the
deterministic behavior of path selection in the local matrix. The first shortest path is
always selected.

Secondly, due to the behavior of continuous transportation, instead of time-discrete
transportation, an occurrent transportation of containers with a path p1 for container c1

and p2 for c2 with an inverse flow given in p1 and p2 is not considered. This results in a
blocked path p1 for c2, and for c2 a path with higher costs is chosen. Otherwise, if no
path p2 exists, the transportation is blocked until p1 is available.

Thirdly, considering the control hardware described in section 2.1, a dynamic non-
deterministic array has to be used to store the local matrix in a general manner (so that
all possible systems can be represented). Therefore, specialized hardware enabling such
an array must be used, which would not conform to [DIN05] 132.

132Considering a regular transportation unit with a specialized hardware fulfilling the regulation to
provide the necessity of commissioning will costs around 1

4 of the mechanical costs of the transportation
unit.
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GridStore

The GridStore133 method is a rule-based decentralized algorithm to find and execute a
route for a container. It basis operates on a chess-based structure and is split into two
methods: one for north-south and one for west-east movement.

The first method finds an orientation and alignment in a north-south manner, and the
second one in a west-east manner. To this end, each element in the grid uses its own
status and that of its neighbors. The routing itself is done by defining a home grid such
that a container enters one element in the north and needs to be moved to one element
in the south. First, the north-south manner elements send a request for moving to the
element holding the container close by. If the element‘s status allows a movement, the
container is moved in a tandem manner by sending a commit message. If the destination
row is different to the source row, the west-east method checks whether an element can
be moved in a similar way as the north-south manner, but column-wise.

This method prompts the routing by executing directly when possible. Therefore, no
global or neither local optimization is done, since each element will transport the container
when possible. As a result, containers with inverse flows are not rerouted beforehand and
can, therefore collide at adjacent elements. They have to be moved in a costly zig-zag
manner to avoid this.

Plug and produce policies for reconfigurable transport systems

[CCOR14] Introduces an approach that follows the bidder and auctioneer pattern.134

After determining the connectivity graph, each node n operates as a bidder and one as
the auctioneer. The bidder n with the highest utilization factor wins the auction and is
allowed to execute its transportation task. Each bidder‘s utilization factor is computed
based on the distance to the destination, a conflict detection flag and local cost value.
The distance to the destination is a straightforward factor considering the geological
distance between the node n to the destination d. A conflict detection flag represents
the possibility of a conflict and results in a deadlock. It is a binary flag checking for a
current existing inverse flow, and additionally whether a container has visited a node n
more than once without any further processing. The last value is the local cost value

133[GFSU14].
134[KTL+06, pp. 1625–1629].
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representing the local costs of accepting the container in terms of energy and time. When
a container arrives at a node ni, an auction begins and each node nj in the system bids.
It is differentiated between a group and a single bid. A single bid is a bid done by only
one node nj whereas a group bid is a summarization of single bids in a previously formed
group of nodes.

Similar to the previously introduced methods, this approach does not take into account
time windows and therefore does not maximize flows when parallel flows would be
possible. Instead, a binary flag, the conflict detection flag, sets a path to a specific
direction only. Hence, two containers cannot move in inverse directions on one path even
if the time difference is large enough to make it possible without a deadlock. Furthermore,
this method would cause a network collapse in systems with a high number of nodes
and containers being simultaneously handled. Each node ni that becomes an auctioneer
floods the system for a bidding request in the system. Finally, each node nj in the system
responds to this request, which causes additional network traffic and the necessity of
computational power to handle each request.

3.2 Protocol structures for routing

All previously introduced methods lack the ability to represent the system status and its
changes over time. Therefore, they are not able to dynamically determine routes based
on occurrences like blocking, break-downs, and inverse flows. This leads to the need for
an operational basis able to represent changes over time and allow a prediction of future
states to handle such occurrences.

A wide variety of well-known representation bases exists, e.g. regular graph,135 Petri-
Nets,136 UML,137 Z,138 etc. as well as more specific mathematically models that enable
the fulfillment of specific operations.

With a formalization basis, as stated in [WIIA12], main concerns are efficiency/perfor-
mance and reliability, whereas security and scale-ability are rarely considered. A formal
basis, compared to an informal one, provides the ability for prior system analysis and

135[Wal10].
136[SV88].
137[SKH07].
138[Spi92].
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evaluation. Therefore, a formal basis provides system correctness by mathematical proof,
thus enabling correctness and eliminating ambiguity, as stated in [Hog02, p. 3].

3.2.1 Transportation system representation

First, the following provides an overview of existing formal methods which enable a
modeling of a system for later operational. [BCDW04] divides formal specifications,
which provide a basis, into four categories:

• Graph - Graph grammar provides the capability of graph representation, and the
graph itself the system architecture.

• Process algebra - This kind of formalization is specialized to analyze concurrency
in a system.

• Logic - This is a formal basis for dynamic software architecture specification, e.g.
Z,139 VDM,140 PVS,141 to define a systems architecture and its behavior for later
analysis.

• Other - Formalization which do not fit in the three previous categories.

It can be concluded that the well-studied graph grammars are advanced in reconfiguration,
operational, and still enable a high expressiveness and scalability. Each different class
within the categories is specifically designed for some tasks142

3.2.2 Graph representation

Graphs are widely researched ([Wil96], [Wal10], [Büs10], [Ruo13] or [GR14]), accepted,
and used as a system representation for routing. In short, a graph G is a tuple G = (V,E)
with a non-empty finite set V of vertices or nodes143 and E as a set of edges. An edge ei
is a tuple ei = {vj, vk} connecting two vertices vj and vk. A walk wi in G is a sequence
wi = {v1, v2, . . . , vi}, if ∀vi ∈ wi@vj ∈ wi : vi = vj is true the walk is called a trail, and
otherwise a path. If only v0 = vi is fulfilled, wi is called a cycle.

139[Spi92].
140[RAA11].
141[AR02].
142For a more detailed explanation see .([BCDW04]).
143Both definitions are interchangeable, such there exists no difference as stated in ([Wil96, p. 8]).
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Regular graphs (or static graphs) are not capable of capturing the dynamic behavior
of transportation systems, as stated in section 2.1, such as vertices not connectable to
a function and dynamically changeable edges weights representing the current system
connection status. Such extensions to the regular graph provide additional functionalities
as listed in [HSS15] and [BBD16]. [BBD16] classifies graphs as follows:

• (un) directed - as stated above.

• weighted - adding E × R+

• compound ET
i forming a hierarchical tree

• multivariateG = (V,E,W ) with E as weighted edges andW as a function retrieving
the weight for each v ∈ V .

• dynamic Γ := (G1, G2, . . . , Gn) with Gi as static graphs and i referring to time
steps t.

Each element within the classification can be combined such that e.g. a weighted
multivariate dynamic directed graph, is still a valid and operable graph. In particular,
dynamic graphs are able to handle and provide the possibility of changes over time.
These changes could reflect weights and removable and/or addable connections, which
represent the previously occurrences.

3.2.3 Network structures

The evolution of routing methods has been mainly driven by the network field in
IT.144 Methods like distance vector routing using the Bellman-Ford algorithm and link
state routing based on Dijkstra represented first attempts at routing. Subsequently,
hierarchical routing was introduced to meet the need for a network structure to represent
the Internet. Because of their flexibility, low cost, and ease, wireless networks became
dominant compared to wired networks, e.g. Wifi-based WLANs, ad-hoc networks.
The following considers ad-hoc networks by comparing the needs described in section
2.1, like connectivity and especially the need for dynamic handling of project specific
network structures. Ad-hoc networks enable communication but lack a fixed network
structure.145 To overcome this lack, new research fields have been created, such as

144[Cha15, p. 2].
145[KM07, pp. 324–339].
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network configuration, device discovery, topology maintenance, ad-hoc addressing, and
self-routing.146

3.3 Evaluation of transportation units

After defining an operational basis147, as described in the previous section, each node in
the graph needs to be evaluated to enable a comparison. In a later stage, this enables
a definition of a cost model such that a path can be evaluated and compared to other
determined paths if they exist.

3.3.1 Local metrics

The main task of local metrics is too evaluate one node during path finding. Several
approaches exist, by focusing on one node i only and its local characteristics, which could
be the distance to another node j, its local costs for transportation and estimating costs
for future transportation. This section investigates all three possibilities for evaluating
one node i.

Local Routing Metrics

In [ZR03a], the distance from a current investigated node to the destination is evaluated.
The result of path finding, when only considering the geological position, is the shortest
path in terms of physical distance of the node to the destination. Routes in between are
unobserved. The transportation-specific variables, e.g. transportation time, disturbances,
are not considered. Thus, a short route is selected in terms of geological distance of
the node to the destination, but not the fastest one. Especially in a highly dense
transportation network, the overload of one path is neglected, and future transportation
tasks are executed on this specific overloaded path.

A simple approach is given in [YYWL05]: a mesh is made of possible paths, prior system
run-time, and stored at each node. The mesh stores the hop count to each reachable node
and link weight characterizing the link transmission speed. To establish a route, each

146[WS04, pp. 29–31].
147In this case the dynamic graphs.
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next hop is chosen opportunistically with the highest link weight possible in reaching
the destination. Paths with a lower initial link weight are not considered during route
finding. Therefore, if a faster route starts with a lower link weight, it is not considered
because the concurrent link with a higher link weight is preferred.

Metrics based on expected distance to destination

This category of metrics describes methods using an approximation for packages transmis-
sion. In [DC12], each link between nodes is given a probability of reaching the destination.
By combining the geographical position of the node and the evaluation of each link
between nodes, a more robust routing can be achieved. This is given by considering
the link with the highest probability only. Analogous to container transportation, the
probability reflects the robustness of one link in terms of downtime. Similar to the
previous method, this one does not consider the overload of a specific path for one
route.

Expecting one-hop throughput

As an advancement to the two previous methods,[ZLYB07a] introduces link evaluation
between two nodes. Besides the evaluation of the node in terms of geological distance to
the destination and the probability of transmission, the delay in local transportation is
also considered. This is given by, e.g. the transportation time on one node itself, and
preparation to enable a transportation. Only a static local delay is considered, hence a
delay due to environmental changes is not depicted.

3.3.2 End-to-End Metrics

In contrast to local metrics, end-to-end metrics evaluated the route between the node
and the desired destination of the container. A simple method is OPRAH,148 whereby
the network is flooded by broadcasting a route request message RREQ from the source s
until the destination d has been reached. Each node ni in the network, when it receives
the message RREQ, increases the hop count hs + 1 with hs = 0 beginning at s, creating
a duplicate message mi+1, and broadcasts mi+1 to its neighbors. Every receiver nj of

148[Wes06, pp. 570–573].
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a duplicated message stores this information in his local routing table with the hop
count hs from the source s to itself nj. Because of the nature of broadcasting and its
resulting flooding, a duplicated message RREQi+n is highly likely to arrive at a node ni
if a connection exists. If several connections exist, several messages with different paths
from s to the current node ni may arrive. Then, the old hop count hs from s is compared
with the alternative path‘s hop count h′s. If h′s > hs then the routing table is updated
and the costlier path is dropped149 from the routing table. When a message arrives at
destination d similar steps are executed. A route reply message RREP is created and
broadcast until received by s. Each node n receiving RREP updates its route table and
marks the route as valid. If hs > γ, where γ is a predefined threshold, is true, then
RREP is dropped to reduce the maximum length of a path and infinite loops in the
system. When RREP arrives at s the message can be sent in the sense of RREP. Thus
it is broadcast through the network.

Similar to the previously introduced work by [LZS08] adaptions have been made to
reduce the number of messages being created and forwarded to reduce the length of the
route itself. In addition, the closest neighbor to the destination is chosen. Instead of
only monotonously counting the hops, this method measures the ping150 at one link n to
n+1.

This methods rely on broadcasting and therefore flooding the network with messages. A
network with a high density of sent data would collapse due to the nature of broadcasting.
Instead of taking advantage of the generated routing tables and forwarding the data
in a message directly based on the knowledge stored in the routing tables, the data is
broadcast as well.

This method operates as follows: The first step is storing a routing table with hn which
is a simple table with all reachable nodes nm. In addition, γ is network specific when
γ < hsd with hsd as the minimal hop count from s to d no message would arrive because
RREP would be dropped beforehand. A high γ would cause a high flooding of the
network because messages would roam in the network before being dropped.

[ZR03b] uses a similar approach to [Wes06] and the same contention-based routing
approach as [LZS08], a geographical analytic analysis firstly in terms of an average

149Dropped in the sense of being removed from the system and not further distributed in the network.
150Measured time between sending and receiving a message.
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number of hops to the destination. This is done by defining a lower and upper bound of
hops which is characterized as a statistical evaluation.

In addition to taking the ping of a link into account, in [ZLYB07b] the time to the
destination is measured as well. Therefore, to determine the route a metric is used
weighting the distance and travel time between nodes s and d.

MGOR151 extends the metric used in [LZS08] by considering the transmission time next
to the delay at one link between two nodes n and n+1. Furthermore, it uses a heuristic
to determine the route to d. The node selection is done by computing the current state
of n and time to the destination d by the mentioned metric.

3.4 Routing with local information

Routing has been widely researched, and insight on this topic is therefore adapted
to container transportation in complex dynamic environments such as an automated
decentrally structured highly complex material flow with thousands of conveyors. In
[May11], a differentiation between network routing and routing in material flow is given,
as described in section 3.1.2.

In table 3.1, [May11] compares regular data transmission with material flow. This
table has been extended to provide a current view of state of the art. Similar packet
splitting approaches exist in material flow e.g. build-up and break-down of existing
containers in warehouses integrated into shift planning,152 and order picking in automatic
warehouse-systems.153 Moreover, especially in air cargo terminals, these operations are a
standard solution for packing ULDs.154 Speed is limited mostly if people are interacting
with machines during runtime: then, it is limited to 0.1m

s
and further safety restrictions

apply, as stated in [MK11]. Furthermore, if two packages collide, a deadlock is not
conclusively given in network routing. Current routing methods with a detour ability
reacting online are able to remove the edge in a network graph Gn such that a new
graph Gn+1 is created and plan new routes for both deadlock-causing containers. Such
methods are introduced in section 3.4.1. Buffering nodes during routing are comparable

151[ZYL09].
152[RG09, pp. 725–739].
153[AGA99, pp. 501–515].
154[VT93, pp. 159–166].
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Attribute Data transmission Material flow State of
the art

Packet splitting possible not possible build-up &
break-down

Speed approx.
300.000.000

m
s

approx. 1m
s

0.1-5m
s

Consequence
of a collision

low:
resend the data

high:
system is blocked

detour has
to be planned

Simultaneous
path occupation not possible possible in the same

transport direction

Buffering in nodes possible not possible short-time
buffering possible

Focus of
optimization

utilization
of the ether

minimization of
path distance

project-specific
utilization.

Network size internet approx.
half a billion

usually less than
100 nodes several thousands

Table 3.1: Extended comparison of electronic data transmission and material flow based on
[May11].

in routing to just-in-time delivering as explained in [Wat95] and an example is given in
[OKMS16]. Similar to an edge representation155 that could shortly store containers as
evaluated in network routing in [PKP13]. Such methods are widely used for securing
the network against attacks.156 The network size depends on the domain in which the
routing operates. Small networks exist for small warehouses, semi-automated operating
warehouses, or terminals. In contrast, large, fully automated terminals exist, e.g. British
Airways World Cargo Centre, which is fully automated or as a further example the
system for evaluation with several thousand intersections and conveyors as explained in
sec. 7.1 given by an industrial intralogistics supplier.

3.4.1 Opportunistic Routing

All previous introduced routing protocols rely on global state knowledge. Whereas, its
provided by a central unit, e.g. a node n with “god-like”157 knowledge and behavior.
Transferring the routing paradigm to container transportation, a network overflow would

155E.g. bidirectional conveyors connecting intersections.
156[CAG15, pp. 1807–1812].
157In the sense of global state knowledge of every n and instantaneous state updates of each n during

run-time.
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cause a container overflow at specific nodes n. Thus, robust methods must be found
that can firstly decentralize this “god-like” knowledge, such that it becomes possible
to receive status updates from a specific number of nodes n for decision making, for
route finding. Secondly, these methods should allow load balancing during run-time to
overcome unforeseen situations, e.g. blocking. Thirdly, these methods should be able to
determine the failure of a node n in transportation such that in real-time a detour can
be computed and being executed.

N. Chakchouk‘s survey158 provides an extensive historical background of routing paradigms.
Highly complex material flows in industrial environments are characterized by their
higher degree of requirements in safety and therefore reliability and robustness compared
to enterprise networks as stated in section 2.1. Still, dynamic and decentralized routing
is needed to enable scale-ability and therefore a reduction in cost in software and electri-
cal construction, installation and commissioning of mechanical equipment. Therefore,
according to Chakchouk,159 the opportunistic routing advantage lies in reduced topology
information and maintenance. In addition, benefits compared to traditional routing
paradigms are flexibility and easy adaption to topology changes, since a node n itself
stores only partial global state information to enable at least a forwarding to a successor
capable of reaching the destination by forwarding or direct access. Therefore, oppor-
tunistic routing is the ideal candidate for a fully decentralized routing method capable
of finding routes for containers and ensuring deadlock-free transportation between the
source and the destination. The following sections present an overview of the current
state of the art in different categories of opportunistic routing.

Geographical routing

These sections review current work in opportunistic routing mainly relying on geographical
information for routing. Therefore, their optimization goal is to minimize the traveled
distance, which authors mostly assume to be strongly related to transportation time.
Especially in container transportation in industrial environments, the transportation
distance and transportation time are highly coherent. This is because a physically
element is bounded to the machinery transportation specifications.

158[Cha15, pp. 2214–2241].
159Ibid., p. 2216.
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A robust approach to opportunistic routing is done in ROMER,160 explained in section
3.3.1. Based on this, further methods have been developed, such as SRSNR,161 BLR162

and DTRP.163 Both, BLR and DTRP methods relay on sending duplicated packets
(multihop) to increase the reliability of message parsing in the network. SRSNR uses
so-called beacon nodes to determine the route from s to d. Each beacon node holds the
traveled path from s to d as route rsd, and hdn as the hop count from d to a connected
beacon node ni. Thus, connected beacon nodes receive periodical updates by each d

with current hop counts hdn. The update period time is parameterizable and therefore
tunable to the specific network. Each ni stores the information inside the beacon node
for route finding. Therefore, based on hdn, each ni knows the distance to d and the path
rsd by determining the subpath rnd ∈ rsd. Similar to OPRAH, only hsd is considered,
and not the link status or performance. Thus it is assumed to be homogeneous through
every node in the network.

BLR is one of the first methods to use the current position of ni to compute and execute
rsd. It uses three modes to reach d. The first mode is a so-called greedy-mode, which
determines the neighborhood of ni within a diameter. In contrast to the previously
introduced methods, BLR uses the real position164 of ni instead of a fictive position
represented by a hop count. The second mode is a backup mode, which is triggered
when no neighbor is reachable within the diameter. Then, the next reachable nodes
ni will receive the duplicated data package. The most effective way is to execute the
transmission in the third mode, the unicast-mode, where the closest neighbor to the
destination is used. This mode is repeated at each ni+1 until d has been reached.

DTRP is based on BLR, and each ni is aware of its real position as well. Instead of only
taking advantage of that position, a metric is used to evaluated ni and the link between
ni and nj. Based on this information, the next node nj is selected and receives the data
packages. The link is evaluated by a metric that takes into account radio irregaluation.
Each reachable node nj from ni is evaluated by its distance in terms of real position.
In addition, the reliability of nj with regard to forwarding the package is evaluated
by considering its available power and possible energy consumption for further data
forwarding. The last element in the metric is to evaluate the movement of one node ni

160[YYWL05].
161[NJE+07, pp. 670–678].
162[BHR10, pp. 96–107].
163[ZRBC14, pp. 2138–2143].
164Real position in means of world position e.g. determined with a GPS-like device.
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in real positioning. It is assumed that a node ni can be moved through the environment,
e.g. a mobile phone.

A drawback of this methods is that it does not consider load balancing. Therefore, a
specific route rsd with a high current load of data transmission is used extensively until,
in the worst case, a collapse occurs.

Link state aware routing

Compared to geographical routing, where the focus is on fast transmission between the
source s and the destination d based on geographical position, link state aware routing
considers and evaluates the links from one node ni to choose the most sophisticated165

neighbor nj . Due to the nature of opportunistic routing in determining sub-paths between
s and d during run-time, the current status of ni is considered to be more up to date
compared to conventional routing in determining a route before routing. Therefore, the
method of evaluating the link between ni and is neighbors is able to react to status
changes.

One of the first link state aware routing methods is ExOR.166 This method operates and
makes its decision based on a matrix reflecting the approximation of the loss rate between
a pair167 e = (ni, nj) of nodes. The matrix itself is built by broadcasting the current
state of a pair e through the network. Afterwards, the candidate set168 is determined by
the hop count beginning with s and d. If several routes to d have the same hop count,
the route with the lowest loss rate is chosen. This method‘s disadvantages mainly occur
during the forwarder set169 selection. First, this method relies on flooding the network
to determine the candidate set that occupies the network; and second, only received link
states received prior to the system start for a pair e are used without triggering a state
update, meaning that the route is selected based on an outdated status.

A different approach is introduced in MORE:170 it divides the network into segments;
each fulfilling communication tasks, e.g. data transmission and receiving. As a basis, each
node ni in the network is considered to be a fully functionally PC enabling the transfer

165sophistication in means of e.g. reliability, transportation speed.
166[BM04, pp. 69–74].
167A pair are two directly connected nodes ni and nj . In graph domain called edges.
168Set of nodes capable of reaching the destination d.
169Set of neighbors at ni capable of reaching d.
170[CJKK07, pp. 169–180].
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of small, medium, and large sizes of data as well as specific control data. This control
data is used to keep the network structure updated at each ni. Hereby, each package is
divided into chunks and later merged together at the destination d. However, MORE
only considers coding171 and transmitting separately, which increases the overall network
communication. Therefore, CodeOR172 introduces the ability to transfer windows and
to sending and receive multiple chunks. In SlideOR,173 this is improved by increasing
the number of chunks being encoded, sent, and decoded online by introducing sliding
windows. Such windows enable the handling of different chunks with different requests
to be handled during run-time. A further improvement is introduced in [KWH10] by
using overhearing and reduced overhead in sending duplicated messages. This is done
using an acknowledgment structure in which the node first synchronizes itself with its
neighbor before sending and receiving messages.

All introduced methods compute the link state status during pre-processing once and use
this static value during route determination. Therefore, all lack the possibility of status
changes during run-time. To overcome this structural issue, O3174 has been introduced.
O3 splits the network into two layers, called the overlay and underlying network. The
underlying network is the physical representation of the network itself. Thus, one node
ni in the underlying network is exactly one physical device capable of message handling.
Based on this underlying network, the overlay network; it is a subset of the underlying
network. Each ni in the overlay network represents one ni in the underlying network,
but they do not have to be connected physically. Therefore, the underlying network
optimizes itself on the physical level, and the overlay network independently computes
the route of the current physical structure. Thus, both network operations are split and
independently optimized.

Load balancing

Besides route finding based on the local state of nodes, the current flow situation must also
be evaluated as well to ensure a robust routing, thereby preventing blocking of containers
and, as the worst case scenario, deadlocks in the system. Congestion-aware opportunistic

171Here in the sense of splitting the data package into chunks.
172[LLL08, pp. 13–22].
173[LLL10].
174[HBQR11].
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routing utilizes the flows based on information at ni and links between ni and it neighbors
nj. This utilization is used in route selection and subsequent execution.

The previously mentioned methods lack in load balancing. Each is capable of finding a
route rsd, but when it comes to mass transportation, they do not consider the advantage of
parallel paths. Wherever a parallel path takes longer for transportation but harmonizes
in terms of overall transportation time. Therefore, the following section focuses on
detouring a container and considering parallel paths if existing.

Reactive balancing
One of the first congestion-aware opportunistic routing methods is ORCD.175 It is based
on a network model with time-slots t ∈ {0, 1, 2, . . . n} for a time interval [t, t+ 1]. During
each time-slot t the routing decision is made in a three-step manner: first, transmitting
one data package to check whether a neighbor node nj of ni is alive; second, sending an
acknowledgment message to show that node nj is alive; and third, transmitting the data
itself. All three steps are done once during a time interval t. The nodes replaying to the
acknowledgment message are sorted by a cost method utilizing distance to the destination
d, transmission delay, queue backlog176 and optimal throughput. The drawbacks of this
method are relying on a centralized scheduling algorithm managing the time-slots t for
computing the cost methods for each ni.

E-WLBR177 was introduced to overcome the load balancing issue in networks with
several paths. Using an energy-cost-model, each node‘s energy is estimated online, along
with its link cost in the distance to d. When a specific node ni is extensively used, its
energy value is being reduced such that when a threshold λ is reached, a parallel path is
used instead. Besides the energy value, the threshold also considers next to the energy
value the distance too, to select the next shortest path to d. To enable the routing and
determine its connectible neighbors, a routing table for each ni is created by broadcasting
and flooding the network from each d until s receives the flooding messages and drops it.
This first approach is reactive instead of proactive. It reacts to the diminishing energy
during transmission instead of evaluating it first, and thus reacts to this possible critical
future situation.

175[NJ10].
176If a transmission request arrives within a time-slot t it will be postpone to t+ 1
177[BU12, pp. 31–37].
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Proactive balancing
A decentralized approach is the enhanced congestion aware adaptive routing protocol.178

Each node ni performs a self-evaluation first before publicizing its availability and
buffer for further data transmission. Self-evaluation tries to predict future flows and
connections with other nodes, thus estimating a willingness factor for receiving messages
from neighbors has been estimated. This factor is broadcast to each neighbor nj of ni.
To avoid congestion because several neighbors select ni for transmission simultaneously,
a safety margin has been introduced based on the same factor, e.g. 10% from the buffer.
The advantage of this routing protocol lies in the routing of ni with a small buffer; by
increasing buffer size, the congestion-aware method is not useful due to overloading the
network by broadcasting. One disadvantage is the reactive evaluation of each ni and
high dependency of the future prediction method which has not been introduced yet.

In ORW,179 a pro-active load balancing is done by duty cycles. To ensure a power
safe transmission, each device is intended to sleep for a specific period, wake up to
communicate with its neighbor, and then sleep again. ORW‘s main focus is energy
efficiency and reliability instead of network throughput. The load balancing is done by
sending the data packages to the first node waking up and receiving the package ready
for transmission. They introduce EDC for the wake-up and sleep procedure which is
based on ETX180 and its successor ECTX181 by estimating the expected time to reach
a potential forwarder, the estimated time to travel to the destination and a constant
value for forwarding the message to the next node. If there are more reachable neighbors,
the sleeping time is shortened to increase the reachability and therefore the throughput.
Load balancing is done by sending the first reachable neighbor the data package. A
disadvantage is that there is no direct control of the load balancing: instead, the first
reachable node will receive the data package.

Based on ORW, the ORR182 method has been developed. Instead of randomly sending
messages to neighbors, it manages a forwarder set of neighbors for package forwarding
only. The forwarder set is controlled by only allowing a maximal number of neighbors
nmax to decrease the number of multiple messages in the network and the resulting
flooding of one specific message. Afterwards, each potential forwarder is evaluated based

178[KR14].
179[LGDJ12, pp. 185–196].
180[DABM03, pp. 419–434].
181[SGZJ12, pp. 1–9].
182[SB16, pp. 1–16].
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on average waiting time for sending, the average number of packet transmissions and
energy consumption to the destination d by estimating the future path to d. By using
these mentioned estimations, ORR has a longer lifetime by load balancing the traffic
within its neighbor set. A disadvantage is that ORR does not directly forward a message:
instead, it multi-casts a message within its neighbor set and relies on duplicate messages
to reach d which is not possible in container routing because a container cannot be
duplicated.

A different approach is taken in DLBR,183 SALR,184 CAM,185 and RBOLSR,186 which
proactively evaluate nodes and determines online detours. DLBR uses the shortest path
technique to compute the path with the maximum throughput. This is done by using
a metric to select high-quality links with lower congestion. The metric for one flow
CF (ni, nj) between node ni and nj is CF (ni, nj)) = C(ni, nj) − f(ni, nj) with the link
capacity C(ni, nj) and flow f(ni, nj). Afterwards, to determine the route, the minimum
end-to-end delay (EED) is considered and second CF (ni, nj). If a tie exists between two
routes, the route with the lowest hop count is selected.

The secure adaptive load-balancing route protocol (SALR187) consists of three parts,
namely: adaptive load balancing, security based on node strength, route Prediction
based on previously chosen routes. During congestion detection, each node ni is being
observed to estimate future congestion. If congestion is being predicted the dynamic
load balancing of SALR takes action to prevent ni from switching to congestion mode.
This is done by recording its capacity Cn and going from an availability state to tending
towards a congestion state. If ni goes into the second state due to a high network traffic,
it notifies all its neighbors about its state change. This triggers the determination of the
node strength of the neighbors of ni to compute a detour over a node nj that is capable
of handling the high traffic of ni. To predict that a node ni will go towards a congestion
state, training data is collected during run-time. Therefore, each route is assigned a
weight, which enables a comparison. During route determination, the weight of one route
is taken into account and selected for network routing.

183[HBD15, pp. 450–454].
184[LSS15, pp. 1–5].
185[AP16, pp. 1–8].
186[YNA16, pp. 102–107].
187[LSS15, pp. 1–5].
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In CAM,188 similar to SALR, each node ni is observed by a central party.189 This central
party evaluates the current status of ni which contributes to a utilization function u(ni)
for route selection. The utilization function to determine the route considers the distance
from a subpath within the route instead of links only like in SALR. Furthermore, it
evaluates the competition and therefore the current data load at one node ni. This is
done by defining the congestion level of ni and its relative success rate of receiving a
message. In addition, the buffer occupancy for ni is computed and used for path finding
by the utility function. Disadvantageously, this method uses a push-based protocol190

periodically notify all nodes of its current status. This message broadcasting leads to
overhead in message parsing. Furthermore, this method prioritizes a message mi and
drops mi if its priority is lower than a message mj and the buffer of ni is depleted.

The final method introduced is RBOLSR191 it is based on OLSR.192 OLSR uses a routing
table previously generated based on the Dijkstra-algorithm.193 During run-time, each
node ni periodically broadcasts transmission control messages to update the routing
tables of all other nodes in the network. Routes for traffic are categorized into “MAIN”
route and “BG” route. The “MAIN” route defines the path which will be used for data
transmission between a source s and a destination d in the network. The “BG” route is
used for background messages, e.g. route table updating. RBOLSR uses a binary method
to define whether the load on a node ni is high or not. Therefore, prior to network
run-time, a threshold δ is defined and determines a flag if a node ni is currently facing a
high load. To properly compute the route, the control message and routing table which
are based on OSLR are extended by another field representing the flag. During run-time,
this flag is locally computed by ni itself and broadcast in the network. A disadvantage is
that a binary flag does not represent the behavior over time; thus if the load of node
ni drops below δ it will be considered for future routing without having the ability to
recover. Therefore, it is considered again for routing, which could trigger shortly δ, which
could, in turn, result in another broadcasting of the current status of ni as well, thereby
also leading to increased traffic.

188[AP16, pp. 1–8].
189e.g. Server, Computer with global state knowledge.
190In a push-based protocol, the information source notifies all subscribers (ni interested in this

information) automatically and independently if this information is needed. In contrast a pull-based
protocol node ni will proactively ask a node nj for new information; see [SCC07].

191[YNA16, pp. 102–107].
192[JMC01, pp. 62–68].
193[Dij59, pp. 269–271].
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Each introduced reactive and proactive load balancing method is capable of route finding.
In general, the proactive load balancing methods outperform the reactive ones. This is
given due to proactively controlling the routes during the system run-time: while reactive
methods react by rerouting when an overload situation is about to happen, proactive
methods try to avoid this situation by evaluating nodes or links during run-time, and
determining a detour, and rerouting when needed prior before the overload occurs, or is
imminent.
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4 Required actions

To develop a scalable, flexible, and robust method capable of finding and to execute
transportation in decentrally structured highly complex material flow, several modules
have to be provided.

First, a flexible elementary basis must be developed that is capable of reflecting the
system graph respectively to its current status in time. Dynamic graphs have been
shown to be able to alternate their structure in time such that nodes and edges can be
changed, added, or removed. In addition, changeable weights and directed edges also
have to be introduced as well to represent the transportation task, and especially to
block a transportation direction on bi-directional conveyors to prevent deadlocks with
the allowance of inverse flows.

Despite the currently used routing methods in material flows in decentrally organized
transportation, the new introduced method must take advantage of the decentralized
organization of transportation units and its intelligent devices to enable scalability and
fast reaction due to graph changes online. This is archived by three main modules.

The first module is a flexible and scalable decentralized scheduler that takes into ac-
count time invariants and their resulting flaws into account to represent transportation
tasks. Each task has to be able to be synchronized with n possible nodes for later
transportation. Changes, e.g. time switches, task adding, or cancellation have to be
automatically distributed in the network to specific nodes which are affected, in a way
to keep communication overhead to a minimum.

Secondly, a realistic, robust cost representation has to be determined that accounts for
dynamic operational duration times into account. This has to be split into a fixed and a
dynamic cost representation. The fixed costs is an assumption based on linear machine
time models, while the dynamic cost model considers blurring in time as well as blocking
and a transportation route overflow. Therefore, the dynamic model‘s cost reflect change
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over time such that the online routing is capable of rerouting the transportation based
on flows, resulting in extending the transportation time on the current route to ensure
robustness.

The third main module covers the route finding and execution. To overcome the size
and dynamically changes of the system, an opportunistic online partial routing seems
promising for finding a route while considering graph changes and time invariants.
This is first done by determining feasible candidates, and subsequently by selecting a
candidate. The determination and selection, compared to other methods, has to be
scalable while operating in a decentralized structure. Therefore, an autarchic method
has to be developed that successively determines feasible candidates and finally selects
the most promising routes. Each route does not have to reach the destination, such that
partial routes are determined during transportation to overcome time invariants causing
graph changes.

During execution, a robust online method needs to ensure a deadlock-free routing,
especially when inverse flows occur. The dynamic changes in arrival and transportation
times of containers cause time-shifts during movement, meaning that the schedule cannot
be adhered to. The route execution is a local route synchronization based on an online
schedule synchronization of neighbors, sequentially updating sequential its affected
neighbor based a unicast method.

Because to the decentralized organization results in a lack of global state knowledge,
a robust routing table must be implemented to ensure a straightforward route finding
without requiring high communication or computation effort by considering graph parts
that cannot lead to a successful route. Therefore, initially, each reachable node initially
receives a message containing the static costs to the destination and the destination
id for every destination. During run-time, the real transportation time is tracked and
postponed unicast to each affected node ni with real caused cost when the sink has been
reached. This value is later used to determine the dynamic costs for route finding.
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5 Concept for routing

This chapter describes the routing protocol for transportation of an arbitrary number
of containers in an automated and decentrally controlled complex material flow system
independent in size. The requirements are finding a feasible path in linear time (scalabil-
ity), ensuring a deadlock-free transportation time (robustness), and considering system
changes over time (flexibility) of containers.

To ensure scalability of route finding in linear time and ensure a flexibility by quickly
reacting to changes, the routing protocol operates opportunistically by determining
partial paths online until the container has reached the destination. This is done by first
determining a candidate set of all possible partial paths based on the current position of
the container. Afterward, it uses a context- and congestion-aware metric to determine the
candidate in the candidate set for routing. Finally, a time-slot is scheduled responsible
for container handling at the intelligent device (PLC, see section 2.1)194 at each TU. If
during planning or executing a partial path system changes occurs that negatively affects
this path negatively, e.g. blocking or possible deadlock, a rerouting is done to ensure
system stability by planning and routing.

Deadlock-free transportation for all containers in the system is realized by considering the
transportation task at each TU during candidate set determination. Each time-slot uses
meta information for transportation cost calculation, which changes dynamically during
the system operation. Furthermore, to ensure transportation during critical situations, a
online deadlock detection and resolving method ensures a robust routing.

The overall transportation time is optimized by a load-balancing and knowledge-based cost
function with forecasting, which reflects the dynamic behavior of containers during run-
time. This is done by a stochastic model representing, determining possible transportation

194The type of PLC is irrelevant, e.g. IPC, SoftPLC, SlotPLC
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Figure 5.1: Exemplary operation visualization for executing container transportation.

blocking and deadlocks in the near future. Based on the computed cost, the shortest
route in terms of time or distance is selected.

Fig.5.1 shows the three phases of determining a partial path and executing the trans-
portation by the method to conduct a deadlock-free decentralized routing in a complex,
decentralized network to provide scalability, flexibility, and robustness, as defined in
section 2.3. The first phase is creating an operational basis that enables route finding
and determination (see 5.1a). This is done by flooding the network from each possible
sink and storing the hop count from each destination d to each intelligent device ni.
This generates a reachability matrix at each ni as an initial route feasibility check to
see whether d can be reached. Afterwards, the knowledge-based learning mechanism
updates during run-time, based on existing and past flows and a future estimation of
the costs between two devices ni and nj as ci,j and estimation to d as shown in fig. 5.1b.
Finally, after a route has been chosen and starts being executed, each pair of ni and nj
starts a handshake to secure deadlock-free transportation when an inverse flow from nj

to ni exists. Prioritization for a container is done decentrally and executed as shown in
fig. 5.1c.

This chapter is structured as follows. Section 5.1 describes the protocol structure
which is used as an operational basis to reflect the system, to store the container, and
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to execute the order. The used metric for load-balancing and knowledge-based cost
computation is explained in section 5.2. Section 5.3 presents the opportunistic routing
with forecasting to determine the candidate set of feasible routes based on the introduced
metric. Subsequently, the chapter introduces the robust route execution is introduced
which ensures a deadlock-free routing.

5.1 A flexible protocol structure for routing

A protocol structure is needed to ensure an error-free communication for route determi-
nation based on candidate set identification. Therefore, the protocol consists of a graph
representation, a local task organization for container transportation-execution, and a
well-formed structure for communication. The graph representation at each intelligent
device consists of information to enable a proper routing. The local task representation
is done by an encoded decentrally organized scheduler storing the necessary tasks for
transportation on each TU. Finally, the well-formed structure for communication en-
ables proper communication between intelligent devices for information collecting and
spreading with a focus on routing.

5.1.1 Graph representation

To enable an operation to solve a specific issue with one algorithm, a fundamental
basis is needed to represent the system. Particularly in the domain of a highly complex
transportation system, a dynamic basis is necessary. It must represent changes over time
which enable a reaction to improving the overall throughput in a dynamical manner
during the system run-time.

Transportation system

The significant impact on the transportation time for one or more containers in a highly
complex transportation system can be split into two elements: first, their physical,
mechanical, and electrical wiring; and second, the organizational structure of TUs in
a system. The physical structure is not considered in this work. It includes the motor
organization, wiring, type selection, the electrical components, and their arrangement in
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the wiring. The organizational structure is specified by the connection of TUs arranged
to form a transportation system. As mentioned in section 2.1, to arrange the TUs, three
main processes have to be considered. The first one is the bidirectional transportation of
a container, which describes the ability to move the containers from one end to another
and vice versa. The second process is the use of a fork for distributing containers over
several conveyor lines. The third is the union, responsible for concatenating various
conveyor lines into one. Positioning equipment (PE, a subset of TU) is able to provide
the processes of fork and union respectively in time. This is given for example by a sorter
distributing containers to different lines supplied by more than one line.

In a complex transportation system advances in time are crucial due to the dynamics
in container movement. Each container position changes during runtime based on the
planned route. This future position has to be considered in current route planning for
incoming containers. Especially for bidirectional transportation, a TU is blocked in
one direction for a period of time. To find a better195 route, this fixed transportation
direction in that specific period of time must be considered.

A time-varying graph196 reflects the changes in the system over time by enabling structural
dynamics in the model. This type of graph has its focuses on two operations: update
and query. The update operation enables the insertion and deletion of vertices and edges
during execution. In adaption to transportation systems, a bidirectional TU that moves a
container in one direction over a period of time will change the edge orientation between
two vertices. Querying focuses on finding a path for the container by determining a route
during run-time considering the changes over time in edges and vertices. These changes
impact the number of edges and vertices.

The following definition is used to determine a dynamic graph for container transportation
in complex systems. Time marches in discrete time steps and is defined by τ = 0, . . . T
with τ referring to the current time in the system. A dynamic network197 G[0, T ]198:=
{Gτ = (Vτ , Eτ )}Tτ=0 is a set of snapshots199 Gτ ∈ G[0, T ] with discrete time steps τ 200

and an underlying graph defined as Gu = (Vu, Eu). The finite set Vτ contains all vertices

195Better in terms of shorter transportation time.
196Further called dynamic graph.
197A network is a weighted digraph.
198Adapted from [BYJB14], who define this type of graph for packet routing in complex networks

without weights.
199One snapshot is one graph for a specific time.
200Subsequently, mathematical annotations related to time are written in Greek letters.
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respectively to the time τ representing the PEs in the system capable of the fork and
join processes and Eτ = (ei, ej, . . . , en) as the set of edges at time τ with ei = (Vi, Vj)
as an edge connecting two vertices Vi and Vj. Each bidirectional TU between two
TUs which is able to fork and join containers is summarized201 in one edge defined
by ei = (Vu × Vu). An edge ei is a 2-tuple describing a flow by the underlying time
independent, undirected graph. For ei = (Vi, Vj), the tail is defined as tail(ei) = Vi and
the head as head(ei) = Vj. Furthermore, in dynamic directed graphs, ei is an ordered
pair (2-tuple) (i, j) := {i, j | i 6= j} representing a directed vertex from edge Vi to Vj.
An inverse edge202 (transportation flow) is defined as e−1

τ = (i, j)−1 for an edge eτ with
the opposite direction from edge Vj to Vi. This leads to the definition of a deadlock in
time-varying directed graphs. Each edge ei is assigned a weight wi. Weights are values
defined as wi ∈ R≥0 for edge i. A transportation system configuration203 for one snapshot
Gτ is deadlock free when eq. 5.1 is satisfied, notated by free(Gτ ).

free(Gτ ) := ∀e ∈ Eτ : e ∈ Eτ ⊕ e−1 ∈ Eτ (5.1)

Thus, no inverse flow exists for one edge eτ (i, j) from one vertex i ∈ Vi to vertex j ∈ Vj
for a specific time τ . If all snapshots in G fulfill eq. 5.1, the whole system is free of local
deadlocks, illustrated in eq. 5.2.

∀τ ∈ T : free(Gτ ) (5.2)

Analogous to transportation systems, a deadlock occurs when two containers are scheduled
on one or more connected TU for container transportation in opposite directions during
one specific period of time.

Figure 5.2 shows a transportation system with six TUs and six PEs (turn tables) are
shown. Both TUs are summarized to one edge Eτ = (u, v) for time τ between the nodes
u, v ∈ Vτ representing the PE. The equivalent snapshot for fig. 5.2 is Gτ = (V,E) with
Vτ = {v1, v2, v3, v4, v5, v6} and Eτ = {{v1, v2}, {v3, v2}, {v2, v4}, {v5, v4}, {v4, v6}}. As
illustrated in fig. 5.3, the edge direction differs in time based on the transportation

201Bidirectional TUs degree of freedom is restricted to transporting a container forwards or backwards.
Therefore, for the sake of simplicity a simple logic is sufficient as long as the input and output vertices
control the flow of such TUs .

202As defined in [BL95]
203A configuration is a characteristic composition of different TUs to enable transportation tasks.
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Figure 5.2: Example for a transportation system and its related nodes and edges in one graph.
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Figure 5.3: Two graphs Gτ and Gτ+1 representing one transportation system in two discret
time steps.

tasks for containers currently in the system. An update on the graph Gτ leads to a
new graph Gτ+1 with the edge set Eτ+1 = {{v1, v2}, {v2, v3}, {v4, v2}, {v5, v4}, {v6, v4}}.
This enables enough flexibility to represent physically changes over time in the system.
Therefore, a path formalization is needed to represent a path with different graphs
successively advancing in time.
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Utility based route representation

Besides the local control of TUs, enabling transportation physically for a container, a
route has to be selected on the material flow level to control each TU in fully automated
material handling systems. Due to their adaptive and decentralized structure, TUs require
at least the information about the next target (TU) for one specific arriving container to
handle properly.204 Knowing the next TU for one container enables feasible transportation
based on a prior route determination. Thus, decentralized route representation reduces
the communication effort for transportation execution. Therefore, each TU stores the
next hop for each passing container. This leads to hop-to-hop transportation without
communicating with neighbors based on a previously determined route.

Each transportation task at one TU is a unique mapping between a route and one
container. A route for one container consists of several trails205 in a graph with edges
advancing in time to represent a transportation task for one container. To enable routing
in dynamic graphs, timed trails206 are needed. Timed trails distinguish themselves from
regular trails by mapping edges with a time respective to the dynamic graph describing
the expected arrival time of the container at the TU. A timed trail rc as in eq. 5.3 is
a set of 3-tuple s = E × T × T for a container c and rc expressed as a set of 3-tuple
rc := {(ei, α, β), (ej, γ, δ), . . . , (ek, ψ, ω)}.

rc = {(e, α, β) | e ∈ E,α ∈ T, β ∈ T, α < β} (5.3)

A triple s = (e1, α, β) is called a transportation slot in a trail rc, and stores a transporta-
tion direction e1 ∈ E with the starting time alpha and an ending time β. Due to the
consecutive execution of discrete time steps, every edge in a transportation slot in rc
has to advance in time. Each subsequently edges ei ∈ Eτ and ej ∈ Eτ in rc have to be
connected such that eq. 5.4 is fulfilled.

{e1, . . . , en} := {ei 6= ej, head(ei) = tail(ei+1),∀1 ≤ ij < n} (5.4)

204Properly in terms of deadlock-free transportation to the target.
205As defined in ([Wil96, p. 27]) determined during runtime of the system (as explained in 5.3). Each

trail in one route defines the sequential transportation task such there is a fluent transition between two
connected trails. A trail itself defines the executional task for one TU with an expected arrival time of
the container.

Each MHS can be considered as a dynamic graph as explained previously. In dynamic graphs the set
of vertices and/or edges can differ during runtime respectively to the time. Therefore, the goal is to find
a trail. A trail or sometimes called simple walk, is a walk without duplicate vertices.

206Further called trail.
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Figure 5.4: Time trail example.

Fig. 5.4 shows a trail intersecting two snapshots. In the time period [τ, τ + 1] edge
e2 changes its direction and enables deadlock-free transportation for container c. This
direction change of edge e2 is caused by the routing algorithm, explained later in section
5.3, querying to find the shortest path by using an update function on dynamic graphs
to redirect edges by possibly inverting their direction from ei = (ni, nj) to ej = (nj, ni),
such that at time τ , ei is removed and ej injected and usable. The stored information in
the trail is used to identifying the transportation task for one container. Therefore, the
trail rc consists of two direct subsequently time steps, which is not necessary as long as
the time restriction in eq. 5.3 is valid.

To increase the throughput of a transportation system, the simultaneous transportation
of one or more container must be considered. Each container c is mapped to one trail
rc representing the transportation path. To secure deadlock-free transportation, each
trails have to be checked for inverse flows. Therefore, a trail rk towards rl for container
k, l ∈ C is safe for transportation when no edge exists with an inverse flow during
transportation.

safe(rk, rl) := ∀eα ∈ si ∈ rk ∪ rl : e⊕ e−1 ∈ sj ∈ rl (5.5)

Eq. 5.5 determines whether an inverse flow exists between two trails by comparing each
edge in each slots to see whether they are safe for transportation. This equation is
derived from eq. 5.1.
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The waiting time between two slots r1 = (e1, α, β) and r2 = (e2, γ, δ) is computed by the
function

wait((e1, α, β), (e2, γ, δ)) := γ − β (5.6)

and transportation time for one slot is computed by the function

trans(ei, α, β) := β − α (5.7)

By combining both equations the overall transportation time is computed as follows

duration(rc) :=
n−1∑
i=0

(trans(si) + wait(si, si+1)) (5.8)

For current continuous transportation systems, eq. 5.5 is sufficient to enable a deadlock-
free transportation. Each snapshot Gτ is valid until all transportation tasks are executed.
This decreases the flexibility in creating new snapshots with higher transportation through-
put. Consider transportation for container c with trail rc = {(e1, α, β), (e2, . . .), (e4, . . .)
, (e6, . . .)} in fig. 5.3 and a trail ri = {(e−1

5 , . . .), (e−1
4 , . . .)} for container i. If rc is

scheduled for transportation first the snapshot Gτ will be frozen207 until the trans-
portation has been executed. Even if container i with trail ri transportation time is
shorter, thus duration(rc) < duration(ri), and no deadlock is given, ri has to wait until
c transportation has been executed.

To enable transportation with time-windows without considering a deadlock handling
mechanism, and without resolving or preventing deadlocks during run-time, a trail has
to be checked against all trails in the same time period. If an inverse flow exists in
an overlapping time window, a deadlock situation is likely to occur during run-time of
the system. Let rc = {(e1, α, β), . . . (en, ψ, ω, )} be a new trail for a container c to be
considered for transportation. Then a time collision between rc and ri is defined as:

timeColl(rc, ri) := ∀((ei, α, β) ∈ rc)∃((ej, γ, δ) ∈ ri)
: (α ≤ γ ≤ β) ∨ (α ≤ δ ≤ β)

(5.9)

207A frozen snapshot is a graph which cannot be changed and no advances in time are possible.
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safe(rc, ri) ¬ timeCol(rc, ei) timedSafe(rc)
0 0 0
0 1 1
1 0 1
1 1 1

Table 5.1: Trail constellation for deadlock occurrence.

Afterwards, each edge e ∈ rc has to be checked against inverse flows respective to their
time such that:

timedSafe(rc) := ∀((ei, α, β) ∈ rc)∀(rj ∈ R)@((e−1
i , γ, δ) ∈ rj)

: (c 6= i) ∧ (safe(rc, ri) ∨ ¬ timeCol(rc, ei))
(5.10)

In summary, when adding a trail rc to the system, all other trails ri : (c 6= i) must be
checked for a possible deadlock.

The system is deadlock-free when trail rc is safe to all other trails already in the system.
As displayed in table 5.1, a deadlock occurs only when a trail ri is not safe, such that
the inverse flow occurs in the same time period. A container can only be added to
the transportation system when its representing trail fulfills the requirement of being
time-safe, such that no deadlock will occur. Once a trail in one route has been found
each TU stores the needed part to enable hop-to-hop transportation for one container.
Each transportation slot si ∈ rc is transformed into a task for the local scheduler, as
explained in the next section.

5.1.2 Local job representation with decentralized scheduler

A decentralized scheduler is the fundamental data structure on which all further algo-
rithms will operate on. It organizes the requests and information to control containers
and handles the transportation process of one iID 208 as a time-restricted resource.

208Each TU holds one intelligent device, e.g. PLC, see section 2.1.
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Local Information for Behavior Representation

Local information is required for fast decision-making without the need for state synchro-
nization between IDs. The structure consists of one scheduler organizing jobs to execute
transportation tasks by using operations in a specific order. A transportation task on one
ID is the movement of one container over the TU to another TU by executing specific
operations. Specific operations are TU related, e.g. bidirectional conveyor: starting the
belt with parameters to determine the belt speed. Operations are TU specific and not
considered further; instead, they are assumed as given.

Each ID at TU mi
209 runs a scheduler210 Sm with jobs on TU m. Each TU holds one

ID211 in the system. A TU or PE mi is folded to one edge Ei ∈ Gτ such that a connection
between two PEs mj and mk exists on the field level. Furthermore, a node Ni is mapped
to one PE mj by an ∼. This mapping is then written as Ni ∼ mj.

A job jc,m for a container c executed on TU mi is executed on one TU in the order of the
container‘s release time with the following related attributes:

• The release date ρc,m defines the time when the job is expected212 to arrive and be
ready for processing by TU m for container c.

• The due date δc,m is the completion date for transporting a container c on TU
m. Processing the job after its due date is possible but can result in system
inconsistency. This system inconsistency is given when the next TU transports a
container in the opposite direction towards the current operating TU.

• The expected processing time ψc,m describes the estimated time the TU m needs
for transporting the container c.

• A flow fc,m is a 2-tuple with an inbound ei and outbound ej with ei ∈ Eτ and
ej ∈ Eτ for a container c on a TU m.

209The fraktur alphabet is used for variables and functions related to tasks and operationson on one
ID.

210A scheduler S for a TU is a chain (totally ordered set, see (see [Sta11, pp. 280 sq.])
211E.g. PLC executes the software with the implemented operations, whereas TU executes the

physically task e.g. for a conveyor belt: The energy is transformed from electric to kinetic energy by
the motor. Afterwards the belt transmits the energy from the belt to the container (energy loss, e.g.
friction, is not considered), which causes the container movement.

212(see [Pin12, pp. 14 sq.]) defines ρ as the date on which the job can be computed. Due to the
dynamic behavior of transportation, this time cannot be strictly adhered to, e.g. because of congestions
during transportation.
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Figure 5.5: Example of tasks with operations for container transportation.

• ei is the inbound handing over a container to the current TU. If ei is a summarized
edge of several TUs, ei is unfolded and split across all bidirectional TUs such that
(i, j) = ((Mi,Mk), (Mk,Ml), . . . , (Mm,Mj)) with i ∈ N and j ∈ N .

• The outbound ej refers to the next TU the container will be handing over. Like ei
if ej is a summarized edge, it is unfolded to point to the neighbor to simplify the
operation.213

Fig. 5.5 shows three time-discrete jobs for executing three transportation tasks. Each
job jc,m has an idle time:

idleTime(jc,m) = δc,m − ρc,m − ψc,m (5.11)

in which the execution of the job jc,m can be delayed without violating the due date.
Furthermore, a job‘s release date ρc,m can be reduced safely to a minimum as the
completion date δi,m of the predecessor, and the completion date δc,m can be extended
up to the release date ρj,m of the successor.

A time violation of one job occurs when the due date is missed. This can cause a time shift
for all successive tasks until the violated time can be neutralized. The completion time

213Thereby, each ID only needs to point to the transportation direction.
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for one job jc,m is κc,m. The lateness214 is noted by the function: late(jc,m) = kc,m − δc,m
for job jc,m. If late(jc,m) > 0, a violation has occurred. A time shift of a future task
appears if κc,m > ρi,m because the current task is not finished before the start-time of
the next task. The buffer time between two succeeding jobs jc,m and ji,m is defined by:
buffer(jc,m, ji,m) = ρji,m

− δjc,m .

Direct neighbor information for coordination

Due to the dynamics in complex systems, the meeting of one due date for a container‘s
transportation on one TU can not be guaranteed. Therefore, coordination between
direct neighbours is needed to ensure a proper transportation without causing deadlocks
and invoking or reducing congestions between containers. Besides the trivial case of
searching and executing the related job for the container, congestion awareness has to be
considered. Moreover, local deadlock avoidances between two or more TUs is crucial to
ensure an operating transportation system. To overcome these problems, the TU has
to provide the operations “Wait” and “Move” and the possibility to handshake with its
direct neighbors.

The Wait operation on one container invokes the transportation over the TU and lets the
container wait in front of it. This operation on one TU gives the freedom to choose another
container to transport first to solve a possible deadlock. Transporting one container
over a TU is done by the Move operation. This essential operation is responsible for
transporting the container based on the previously defined route.

To enable the Move operation, the information concerning in which direction to move
must be stored locally in the scheduler. Therefore, a transformation and split operation
are needed to distribute the defined trail over the TUs . Each element in the trail holds
one job for one container on one TU, which reduces the communication overhead for
routing to a local search on the scheduler for the specific job related to the container.
When a container arrives at one TU, a search is triggered to determine the related job
for that specific container. The search for the correct job for the container is a linear
search in the set of all jobs and is done in O(n) with n as the number of jobs stored in
the scheduler.

214See [Pin12], when positive the job is late and negative it finished earlier.
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Consider a trail rc for a container c as rc = {(e1, α, β), (e2, ψ, ω)}. The underlying graph
Gu = Vu, Eu consists of three vertices and two edges. Assume no vertex Vi ∈ Nu is
considered to be error-prone, so no breakdown for one TU exists. Thus N [0, T ] := {Nu}T0
is given. The transportation system consists of at least three TUs defined as: m1,m2,m3

Each transportation slot in rc has to be split and transformed into one job on each
decentralized scheduler executed on one TU. Therefore, every slot si ∈ rc is transformed
into two jobs: one for each TU represented by the node.

Algorithm 1 Split trail and convert to a job for scheduler at mi

Require: rc 6= ∅ ∧ ∃!el ∈ sj : (tail(el) = mi ∨ head(el) = mi)
1: function split(rc,mi)
2: jc,mi

← (ρc,mi
, δc,mi

, ψc,mi
= 0, ein, eout) . Empty job with cost 0

3: for all 〈ei, α, β〉 ∈ rc do . Linear search for transportation slot affecting mi

4: if head(ei) = mi then
5: ein ← tail(ei)
6: ρc,mi

← β
7: else if tail(ei ∈ s) = mi then
8: eout ← head(ei)
9: δc,mi

← α
10: ψc,mi

← cost(ein, eout) . For cost function see sec. 5.2
11: return jc,mi

12: end if
13: end for
14: return jc,mi

. Source or target have a cost(ein, eout) = 0
15: end function

By successively splitting every transportation slot si ∈ rc with the function split(rc,mi)
for each TU in the trail (see algorithm 1), every TU in the trail is connected to execute
the transportation of the container c. Every TU in the trail can be reached by the
communication protocol explained in the next section.

Because of the dynamics in transportation (see section 2.1), meeting the due date of
job jc,mi

for moving one container over one TU cannot be guaranteed. To overcome a
possible deadlock situation, a handshake is made between TUs related to vertex v, u. If
the edge e1 = (v, u) for the execution time τ exists in e ∈ Eτ it is blocked and can not
be changed until the transportation is finished. Otherwise, if e−1 ∈ Eτ exists up to a
specific time τ + 1, the current job and all future tasks are rescheduled by the function
late(jc,m). The prioritization of the container, which is being transported first, is done in
a first-come, first-severed order.
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5.1.3 Communication structure for synchronization

In decentrally organized transportation systems communication215 plays a crucial role.
It allows state notification for synchronization for a specific task and finding a feasible
route for transportation in a network. The main purpose of state notification is the
coordination of transportation tasks, e.g. handshake to avoid deadlocks. A feasible route
can be found by propagating one route-finding task message. Each TU contributes its
local part for path finding. This allows a more dynamic route finding with heterogeneous
types of TU, because each TU provides its possible operations for transportation, instead
of having one central unit that has to be extended with every new operation entering
the transportation system. Furthermore, hard real-time communication is needed in
industrial environments. Each data package has to arrive during each hop on one TU
in a specific amount of time. If the time cannot be met, the TU can be considered
as off-line.216 On the other hand, a high waiting time for a message (e.g. with route
information) causes the container to wait at the source,217 which can cause congestion
for future containers entering the system.

To enable hard real-time communication a package structure is needed that allows
periodical communication. Therefore, the data packages are expandable or reducible
during each hop. Furthermore, the waiting time has to be specified until a response can
be considered. Especially in complex systems with many communication entities, it is
difficult to decide when no response exists to an inquiry for e.g. a trail. A decision has to
be made whenever a trail can be expected, when there is communication failure, or when
many entities cause a delay in communication. Fixed waiting times, like in related work,
tend to cause unnecessary waiting time when the fixed time is set too high, or do not
considering different trails when setting too low because some trail‘s communication takes
longer. By using a dynamic waiting time, there is a trade-off between communication
speed and reliability.

In the following, the protocol structure is first introduced to enable communication
between each TU. Afterwards, the section explains the different communication operations

215See section 2.1. For better readability, data packages are being communicated or forwarded and
only containers are being transported. Forwarding describes one or more hops to the destination, and
communicated the whole process, from the source to the destination.

216No communication is possible with an off-line TU.
217E.g. at a handover position to the system, which results in an unloading stop of the truck.
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for sending messages in the system between other TUs. Finally, it proposes a function
for calculating the dynamic waiting time for a response.

Transportation unit and package structure for communication

To enable communication between different TUs, syntax and semantic is needed as
well as the physical ability to send messages. The physical ability is already given by
several techniques in the network domain and can be divided into hard-wired by cable,
and wireless communication with industrial wifi. Characteristics for communication in
industrial environments are reliability and communication speed. Each TU has to provide
a communication interface to send and receive messages. The interface transforms the
message into chunks and sends it over a communication device218 to the next TU until the
target is reached (hop-to-hop communication). Hardware219 for sending and receiving is
assumed as given. Further, the syntax used to structure the message is the open standard
OPC UA.220 To enable communication between different TUs, a communication protocol
that defines the semantic is needed. This protocol defines the structure of information
and its meaning given by defined types and their variables. The data package structure
is dynamic in size, which enables specific messages to be added or removed during hops
without losing information from other messages.

The transmitting of messages operates at the undirected graph Gu (as shown in section
5.1.1), which is the completely unfolded graph of G[0, T ]. Gu is defined as Gu = (Vu, Eu)
with Vu as the set of all TUs and Eu = Vu × Vu as a pair representing a connection
between two TUs and is in relation with the dynamic graph for routing by ∀Gτ ∈ G[0, T ] :
Gτ ⊆ Gu. Due to the much longer transportation time of a container in relation to the
communication time for one hop, the latter can be neglected.

The synchronization between two TUs mi and mj is done by messages. A message from mi

to mj holds a set of information I and a trail tk describing the path to mj. Transmission
of messages is done asynchronously, which in turn leads to asynchronous execution of
messages. To reach the destination mj from the source mi, every TU mi, . . . ,mj in the
trail tk receives and forwards the message. One forwarding to the next direct neighbor is
called a hop. By forwarding the message successively to the next direct neighbor in tk a

218Hardware capable of sending and receiving (See [G013, pp. 869 sq.]) messages.
219Regardless of whether it is hard-wired or wireless for communicating.
220OPC UA described in [HSK08] is an industrial standard for a message structures for communication

in industrial environments, and can be executed on IDs.
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hop-to-hop transmission is done. The message arrives as long as mi is connected by the
elements in tk to mj. A recalculation of tk is not considered, therefore if mk ∈ s ∈ rk goes
off-line, the message can not arrive at mj and being executed.

If no trail tk exists, a multi-cast is done by flooding the network. Each direct neighbor
receives a duplicate of the message expect the source to ensure a loop-free trail. Receiving
the message, the TU adds itself to the trail and broadcasts a new duplicate to each direct
neighbor except the source. When the target is reached, an acknowledge message is sent
back by iterating the found trail backwards.

Dynamic waiting and response time

The waiting time for an answer is difficult to estimate in complex transportation systems
by using hop-to-hop transmission. It relies on the computation time of the TU and the
distance to other TUs . Hereby, distance is the number of hops the message takes to
reach the target and is defined as distance(mi,mj) := |tk| with tk as the trail between mi

and mj. Industrial networks compared to commercial networks221 focus on the quality
of the service and on hard real time capabilities, and are assumed to transmit data
between 250µ and 10ms. Therefore, the transmission time between two TUs mi and mj

is assumed as constant and defined in the variable TransTime. Further, the computation
time for handling a message is assumed to be constant too and defined in CompTime.
The waiting time for one expected answer can be computed as follows:

duration(mi,mj) = (distance(mi,mj) ∗ (TransTime + CompTime)) ∗ 2 (5.12)

To reduce the number of considerable paths, a hop limit HopLimit and HopCounter is
used. It limits the maximum size of tk because HopCounter = HopLimit in the beginning,
the decreases with every hop until it reaches zero. In this situation HopLimit ≤ 0, the
message is discarded and not further duplicated. A maximum waiting time MaxWaiting is
used to react if the destination is off-line. If MaxWaiting is too small, e.g. MaxWaiting ≤
duration(mi,mj), the path between mi and mj is never found. In contrast, if MaxWaiting is
too high222, the TU used as a source is blocked for MaxWaiting before the system can react
to an off-line TU. Due to the flooding, several answers for one request are possible, e.g.

221 (See [G013, p. 281])
222High is project specific and depend on the used transmission technique and structure of the

transportation system.
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mimi

mjmj

Figure 5.6: Repercussions on solution area (striped area) and evaluable solutions (gray area)
controlled by MaxWaiting and HopLimit.

.

when requesting for a route, due to the broadcast, several possible routes are determined.
To decrease the waiting time and reducing the number of answers, WaitingTime is used.
After the arrival of the first answer, the TU waits SolutionWaitingTime time units for
further answers. The set of answers is then evaluated, and one candidate is chosen for
execution.

Fig. 5.6 shows the repercussions on the number and characteristics of the solutions
considered for routing are shown. The cloud represents the transportation system. First,
the reduction is done by limiting the path length with HopLimit, represented by the
stripped area. Because a path search message is dropped when the HopCounter reaches
zero, paths with greater lengths can not be found. The second reduction is given by the
MaxWaitingTime such that no waiting time for off-line elements exists. It is assumed
that shorter paths to the destination respond more quickly than longer paths, because of
the assumption of static communication time between the TUs . Shorter paths consider
fewer TUs in for communication.
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5.2 Transportation Unit evaluation under global state
uncertainty

TU evaluation and selection to determine a path have a high impact on the overall
transportation times and efficiency of the system. On a high level, few selections are
needed to create a respective path for each container. If intersections exist, paths may
interfere and result in blocking, which can lead to a system with parts not capable of
moving because TUs are in a deadlock - state. Overloaded areas in the system result in
blocking and longer transportation time than estimated during route finding. At the low
level, the transportation time at each TU for one specific container has to be estimated.
This time is defined by the physically model approximating the TU‘s transportation
capabilities. Therefore, the metric is capable of load balancing to overcome blocking, and
of estimating future inverse flows by synchronizing schedulers with current information
at a vertex when a path finding message is triggered.

This is done by determining and evaluating each element. The determination is based
on the communication abilities of TUs. Every reachable TU based on the dynamic
waiting and response time is considered and evaluated. The evaluation considers the
local scheduler information only and synchronizes the TUs after a route has been selected.
Based on the evaluation a path can be selected, and the routing for one container
triggered. The evaluation of one TU is done in two steps. The first is a static cost
model approximating the mechanical capabilities based on a physical model for each
TU type in the transportation system. The second is a dynamic model deriving short
future transportation time by considering historical data and future jobs stored in the
scheduler.

5.2.1 Static cost model

The static cost model allows a prompt computation and evaluation of a TU for path finding
when no historical data exists. Particularly, in the starting phase of the transportation
system, assumptions must be made about the transportation time of each TU. These
assumptions are split into a fixed processing time for each possible operation and a
learning approach based on historical data to estimate future waiting times.
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(a) Initial TU State (b) Local Path with c entering
left and leaving top exit

Figure 5.7: Exemplary visualization of initial state (left) and one local path for moving c from
left to top side.

As a basis, each TU is a local state machine.223 A TU can only be in one state at one
point in time and for a given duration. After this duration, a state transition can occur,
or the same state can be executed again. This state representation is based on the state
modeling and programming of TU motor control, which executes states by receiving
sensor data and sending motor control data in the prescribed order given by the PLC
program (see section 2.1). A set of ordered states with a predefined order of execution is
called an operation.

Processing-time

Each transportation task has to be executed physically. This is done by transforming
electrical into kinetic energy using a motor. The motor control is done by the engineering
programming the PLC, which sends analog or digital (depending on the motor interface)
parameters. When the parameters are sent to the motor, it starts transforming data into
a specific amount of voltage, which produces the kinetic energy. The processing time for
one TU mi is defined by pij executing the operation oj.

To compute pi linked points are used. A set of linked points is one local transportation
path l for TU mi and represents one transportation task from one end to the other end
on one TU. Each operation is related to one transportation job as displayed in fig. 5.7.

223Local in adaptation to local control and, from a smaller point of view, in the entire system.
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Therefore, the static processing time on TU mi with operation oj is computed by:

dj
vi

+ vi
ai

(5.13)

with dj as the transportation distance for one operation oj by:

dj =|
n∑

m=0
lm | (5.14)

and vi as the velocity and ai as the acceleration representing the motors capabilities on
TU mi to move a container c.

Due to the dynamic behavior in transportation caused by blocking, the transportation
time can not be simplified by dj only. Therefore, an empirical method is used to store
and evaluate with a maximum of 1, 000224 samples on one TU for each operation. Every
operation oi has to be evaluated separately because large time differences can occur
(peaks), e.g. in fig. 5.7 shows that straightforward transportation is much faster than
around-the-corner transportation. A more feasible way to compute the processing time
pij is:

pij =


dj

vi
+ vi

ai
if|Mi| = 0

Mijk, k = n
2 , n = |Mi| if|Mi|mod 2 = 1

Mijk, k =
⌊
n
2
⌋
, n = |Mi| if|Mi|mod 2 = 0

(5.15)

with Mi as the set of all samples for operation oi. A sample is created by recording the
transportation time of one container over the TU with one operation. The waiting-time is
excluded to distinguish between transportation and waiting time. Waiting time is caused
by other transportation tasks in the system and can be avoided by detours. On the other
hand, transportation on TUs is mandatory, and a selection of TUs must be made for
transportation based on their execution time to find a proper path. By distinguishing
between processing time and waiting time, the path finding method is able to identify
slow TUs due to overloaded paths, and can therefore able to react with a detour to
reduce the load at specific paths.

224After 1,000 data points the 95 % confidence level does not change significantly, see [Isr09].
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Waiting-time

When blocking occurs, a state must be interrupted because it can not be executed
further. Waiting time relates to ordered historical data Wi with the order ≤. Waiting
time is measured during run-time because blocking is difficult to estimate without any
transportation knowledge. Therefore, when |Wi| = 0, the median waiting time w at
TU mi is w = 0. During system run-time, each waiting time duration is recorded and
evaluated, such that w is the median of the set of recorded values. This leads to the
following definition:

wi =


0 if|Wi| = 0

Wij, j = n
2 , n = |Wi| if|Wi|mod 2 = 1

Wij, j =
⌊
n
2
⌋
, n = |Wi| if|Wi|mod 2 = 0

(5.16)

Because of the restrictive usage of storage225 in PLC programs |Wi| is limited to 1, 000.
The median is used due to its low sensitivity to peaks produced by few containers with
possible long waiting times.

Intermediate-state times

For a more precise evaluation of container handling on one TU, the processing times
of intermediate states are considered. Such states ability the necessity to enable an
error-prone execution of the successor state, e.g. lowering a lifter to receive a container.
Intermediate states can be a precondition for executing one operation, and a postcondition
for future states such that the TU has to be in a specific state. Pre- and postconditions
are regular intermediate states except that they are executed before (precondition) or
after (postcondition) one operation. In contrast to the states considered for computing
the processing times, intermediate-states are not always considered if an TU is already
in a proper state such that transportation can be executed immediately.

Intermediate-states are classified in terms of their urgency within execution as either
mandatory or optional. Mandatory intermediate states always have to be executed during
an operation to enable proper transportation. Such states are defined by a constant value

225See section 2.1. An array has to be fixed in size; dynamic allocation is not possible due to the
determinism restriction defined for PLCs.
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si = τ for operation i, with τ as the execution time for the intermediate-state. Optional
intermediate-states are states which can be executed prior to transportation, between two
transportation tasks, or the TU can only be in this state due to previous transportation.
To compute their times, the previous job in the scheduler must be considered. Let pre(oi)
be the precondition and post(oi) be the postcondition for one operation oi for one job i.
Thus oi−1 is the operation of the previous job and oi+1 the operation of the successive
job. Afterwards si can be computed as follows:

si =

0 if post(oi−1) = pre(oi)

τ − buffer(i− 1, i) else
(5.17)

When the postcondition of the previous operation is equal to the precondition of the
current operation, the TU is capable of transporting immediately. Otherwise, the TU has
to execute an intermediate state to be able to properly transport the current container.
The amount of time is therefore given by the available buffer time between the previous
job and the current job representing the operation.

Static cost-model

The static cost model covers costs for operations possible without communication with
the neighborhood and is therefore based on local information. To determine the static
costs for transporting one container over one TU, the operation is evaluated to be capable
of transporting the container over a possible path. The costs sijk for container i using
the operation oj on TU mk is computed as follows:

sijk = pkj + wk + sj (5.18)

Therefore, sijk describes the time cost of transporting one container over the TU. This
cost model does not cover the path-specific costs like the time to the destination and the
likelihood of blocking during the transportation.

5.2.2 Dynamic cost determination

Besides the TU evaluation to determine the time needed to transport the container, the
future path length and its costs also have to be estimated. Especially in dynamic systems
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with partial information, a future path is difficult to determine. This occurs when
transporting many containers in large systems with many intersections, which enables a
larger degree of freedom in finding different paths from one source to a destination.

First, the following introduces an approach to estimated future paths by assuming costs
for successive partial paths from the current TU to the destination. Afterwards, the first
possible scheduling slot for the transportation on a TU is estimated to determine the
transportation job. Finally, in synchronization with the slot search at TU, validation is
done to ensure that transportation does not violate the system state.

Future path estimation

As described in section 3.4, the opportunistic routing algorithm at least needs the
information concerning whether the current path is a dead-end or whether a exists a
further path to the destination exists. The introduced approach uses a dynamically
changing update function estimating the duration of one TU transportation task to
every reachable destination. This is in contrast to current methods which using a fixed
cost estimation, which does not reflect dynamic changes in transportation and tends to
overload a specific path. This overloaded path is most likely the shortest path.226 To
determine whether a path is a dead-end or whether a further path to the destination
exists, a routing table is created prior to the system start, as explained in section 5.3.1.
During transportation, the time needed to transport a container c over the TU is stored.
When a container c arrives at its destination, an update message is triggered, refreshing
all times from each reachable TU to the current target by back-warding227 the routing
path. Each TU receiving the message computes the cumulative transportation time
from the destination to its current position and stores the new time in the routing table
to that specific destination. After computing the new transportation time, the local
scheduler removes the job.

Consider a trail rc for container c that has already been deployed at the destination.
Each time c has been executed on TU mi and moved forward to the next TU mi+1, a

226See [DSL14]
227Inversing the routing path, going from the destination to the source.
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sample sm has been created. Then, the routing table for one m is updated by the time
ti,j,k,n:

ti,j,k,n = sijk +
n∑
l=k

sl (5.19)

with n as the destination in rc with sn = 0 and a routing table Rmi
at mi as a set of

2-tuple (n, τ) with n as the destination at TU n and the estimated time τ from mi to
TU mn by a previous evaluated trail rk, k ∈ C. If the entry (n, τ) already exists, it is
overwritten with the new value. It is assumed that the new value represents the current
system state more accurately than to the old one.

The overall estimated transportation cost done by a trail rc is then:

estCost(rc) := {k = tail(f) | f ∈ rcEjc, E : rc → jc} :
n∑
i

ti,j,k,n (5.20)

with the bitotal228 relation E assigning one transportation slot in rc to one transportation
job jc on the scheduler. The real costs, the container transportation time, can only be
calculated after transportation when the sampling has been done which is given by:

cost(rc) := {k = tail(f) | f ∈ rcRsk, R : rc → sk} :
n∑
k

sk (5.21)

Hereby, the bitotal relation R maps one TU mi in the trail given by the flow f to one
sampling.

Furthermore, it is assumed that between n parallel paths to one destination, an equi-
librium229 in transportation time will occur. Assume n containers exist with the same
destination mn and have to be split at m parallel paths at the same time in the routing
tables. Because of the sequential operation order was given by computational units like
the industrial PLC, each determination of each trail is executed sequentially. In the
beginning, the first container c is assigned the fastest trail rc. Afterwards, the routing
table is updated based on the determined samples sm. The second container c+ 1 is then
assigned a trail rc+1 with the lowest transportation time. If the updated sample results
in lower values in the routing tables estimatedCost(rc+1) ≤ cost(rc) then the same trail
rc+1 = rc is used. This trail is utilized until the values in the routing table are higher

228Every element in rc has at least one or more partners in jc and vice versa.
229n parallel paths will split the container load equally if they have the same transportation time.
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than the current values at the parallel paths given by estimatedCost(rc+1 > rc), which
is caused by the increasing waiting time the trail is overloaded. In this case, the next
container c + k is assigned a different trail rc+k because it holds a lower time to the
destination. Afterwards, the routing tables of the newly used parallel path with trail rc+k
are updated. Because the length and the processing time are equal, the only difference
between the previous path and the new one is given by the higher waiting time, because
the first one is overloaded. This path switching is done every time a parallel path is
lower than the previous one until estimatedCost(rc + 1) ≈ cost(rc). Then, the following
load balancing holds: if n <= m every container c uses a different parallel path; if n > m

the containers are being split equally between all parallel paths.

Linear time-slot determination

Based on the local costs ti,j,k,n and flows defined in rc utilized by the future path costs
cost(rc), the trail is transformed to jobs jc,mi

respectively on each TU mi ∈ s ∈ rc.230

The transformation process interacts with other already transformed processes waiting
for execution and deletion on the scheduler. This interaction results in time-shifts in the
start- and end-times. Start-time is influenced by previous jobs processing a container,
and end-time by the successive TU mi+1 still processing a different container. To schedule
the transportation of a container c the bitotal relation E : rc → jc transforms every
transportation slot s ∈ rc into one job jc,mi

on one TU mi successively. This ensures
deadlock-free scheduling by considering inverse flows during planning before fixing one
job in each scheduler on every TU m used in rc by finding feasible transportation slots.

Let Gu = {V,E} with V = {V1, V2, V3, . . . , Vn, Tt} be a graph (see top fig. 5.8). And a
trail ri from V1 to Vt and a trail rj from Vn to V1 for containers i, j ∈ C already scheduled.
Due to the inverse flow between ri and rj for e1 two snapshots Gτ , Gτ+1 are needed to
represent the flows. Then a trail rc = {s1, . . . , st} from V1 to Vt is scheduled (transformed
to jobs on every required TU mk ∈ s ∈ rc ) by E using algorithm 2 with the parameters
(rc,md, α) with md as the next TU for handover, α as the earliest starting time, and has
the amount of jobs at mi as follows:

• The earliest scheduled time α is set to the current system time τ ∈ [0, T ].

230s as a transportation-slot, defined in eq. 5.3
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Figure 5.8: Changing snapshots during scheduling (top), scheduled jobs for one transportation
task on three MHEs (bottom).

• When n = 0 (alg. 2 line 5) jobs exists on mk then the job starts at α as the first
considerable time.

• If n > 0 (alg. 2 line 7-13), a free slot with at least buffer(ji, jj) ≤ ψk between two
jobs ji and jj will be searched and scheduled in between.

• Otherwise, when no free slot with buffer(ji, jj) ≤ ψk exists (alg. 2 line 14), the job
will be scheduled last (δn, δn + ψk, ψk) with δn as the deadline of the last job.

• Last, α = δk and algorithm 2 will operate on the next TU mk+1 ∈ s ∈ rc until the
last job jn on mk+n have been scheduled.

Fig. 5.8 shows the effects of the scheduling for three TUs . The trail rc has been split
into three jobs, each job on one TU fulfills the transportation for container c. For TUs
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Algorithm 2 First possible execution on TU mk for container c
1: function FindTimeSlot(rc,md, α)
2: ρk, δk, ψk . Not scheduled job
3: ψk ← tc,j,mk,md

4: if n = 0 then . n as the amount of jobs at mk

5: return (α, ρk + ψk, ψk)
6: end if
7: for all δl ≥ α do
8: if ρl+1 ≥ ρk + ψk then
9: ρk ← δl
10: δk ← ρk + ψk
11: return (ρk, δk, ψk)
12: end if
13: end for
14: return (δn, δ + ψ, ψ)
15: end function

m1 and m2, the buffer between two jobs is high enough so that a job can be scheduled
in between. On TU m3, the earliest execution time α is too high, causing a time shift
of the third job jc,m3 . This results in a waiting time of container c in front of m3. The
waiting time of c causes a time shift of job jj,m2 on TU m2.

The scheduling of jobs influences the amount and characteristics of snapshot Gτ . Each
job is linked to an operation by the defined transportation flow. This leads to updating
the current snapshot Gτ , which represents the current state of the flows. E.g. by the
necessity of an inverse flow e−1

1 for a specific amount of time, as shown in fig. 5.8 for job
jj,m2 , which leads to the snapshot Gτ+1.

5.3 Decentrally controlled routing

A path for routing is needed to transport containers in decentralized highly complex
transportation systems. Each path has to be found fast and without system status
violation. Based on the protocol structure presented in section 5.1 for receiving and
sending messages between TUs for state exchange a search for a path can be reserved
and executed. The metric used in section 5.2 allows an evaluation of each TU, and later
a selection to determine a path.
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The structure of the used opportunistic routing first determines the reachability of the
destination at each promising TU in the starting phase of the system. Based on the
reachability data a candidate set is created storing all possible trails to the destination.
Each candidate in the candidate set is evaluated and the most promising trail selected.
Afterwards, the trail is split and scheduled on each TU involved by transporting one
container based on the trail. During transportation, unforeseen dynamics can occur, e.g.
container blocking. These occurrences result in time-shifts in the systems which have
to be taken care of. Therefore, the execution of transportation uses a safety handshake
method to ensure deadlock-free transportation when such occurrences occur.

This section first introduces the reachability table to determine dead-ends and estimate
future path costs to the desired destination. Second, the section presents a candidate set
creation method with feasible routes to the destination. Afterwards, the selection of the
candidate is introduced, along with the decentralized route reservation method, which
allows a parallel route reservation. Finally, the route execution is presented with local
handling of deadlock occurrence and resolving based on unforeseen dynamics.

5.3.1 Opportunistic path exploration

In highly complex and dynamic transportation systems, the goal is to find a feasible and
reliable trail rc for a container c, such that c arrives at the desired destination with less
blocking. The validity of the system then has to be guaranteed by avoiding deadlocks
such that every subsystem is reachable. Furthermore, the routing method must be able
to run in a fully decentralized way without full knowledge of the system and be able to
be executed in parallel on distributed TUs .

Fig. 5.9 shows the processes operating on one TU to find partial trails to transport c to
the destination. An opportunistic path exploration and routing method is used to find
feasible partial trails rc to the destination. First, a reachability analysis is conducted
in the initialization phase, which computes the routing table Ri for each TU. Next,
the routing phase starts by executing the computation cycle in steady state. This first
executes the transportation operations stored in the scheduler and afterwards searches
for rc when a new container is about to arrive in the system or needs a further route.
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Figure 5.9: Processes from one mi to compute and execute a trail tc.

Each route consists of one trail rc which is computed during the transportation process
such that changes in the system state231 can be reacted to.

Initial static reachability determination

To ensure that the candidate set only includes feasible candidates that are able to reach
the destination, a reachability method is used to create the initial routing table Ri for

231Like overloaded paths
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each TU mi in the system. Furthermore, based on the routing table, the approximated
time to the destination can be estimated prior to the transportation based on Ri.

Each mi can be marked as an interface at the system boundary. This means that mi

can be a source, target, or transportation unit at a specific time τ . During one time
period [τ, T ],mi can only enable the operation for one type, such that mi can not be
a source- and target unit at the same time. In addition, a source, or target can hold
more than one incoming or outgoing edge defined in a snapshot Gτ . If mi becomes a
source , the current snapshot Gτ has to have at least one outgoing edge ei. In contrast,
if mi is a target , then Gτ it has to have at least one incoming edge ej. By switching
from a source to a target at Gτ to Gτ+1, at least one edge has to be inverted such that
ej = e−1

i , ei ∈ Gτ → ej ∈ Gτ+1. Furthermore, a transportation unit has to have at least
one incoming and one outgoing edge during one period [τ, T ] at Gτ .

A cumulative, parallelized broadcasting method is used to compute the routing table on
every mi storing the initial estimated transportation time to every possible target mj.
This method is in the class of distance vector routing by updating the current system
status on TUs during run-time. Instead of all TUs, only selected TUs are updated to
reduce the communication overhead. Distance vector routing is more light-weight than
link state routing232 because it does not consider and hold the whole network state,
which is unnecessary for the used routing method explained later in section 5.3.2 for
route selection. The introduced method stores only the time to the destination without
the path and resolves the count to infinity error233 compared to distance vector routing.
The routing table Rmi

at mi holds only one entry for each target unit mi and is updated
during run-time. Instead of updating all mj in the system, only mj ∈ s ∈ rc is updated
to reduce the communication overhead. To compute the routing table at one mi to a
destination mj, a specific message structure is used to synchronize the times at which
the method operates on.

The message to determine the times to one destination is a 2-tuple (md, τ) and stored
in the routing table Rmi

for mi. The first element md is the destination and the second
element τ the cumulative time to the destination. To compute the routing table for one
mi to a destination md the decentralized algorithm 3 is used. Computing the routing
table is triggered by a destination md on startup itself. It starts the message with the

232Link state routing holds the whole system statuses at one node, which is not feasible for storing at
PLCs due to the limitation in storage size and static array definition (see section 2.1).

233Ending in an endless loop while sending and broadcasting.
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parameters (md, 0) on every neighbor TU in N with source md. The triggered source md

is needed to compute the costs sijk and to ensure a loop-free message parsing.234 Each
TU mi computes its routing table Rmi

on its own, which enables a parallel computation
in decentrally controlled TUs . First (line 2), the routing table Rmi

is checked to see
whether an entry for destination md already exists. If not (line 3), an entry is created,
with the cumulative costs τ based on the costs of the previous TU ms. Thus, τ represents
the costs from the destination md to the last TU ms. By adding the costs to the source
ms the current operation costs are included in the routing table Rmi

to reach the next
element ms during transportation. This enables a distinction between different reachable
TUs with heterogeneous costs. To overcome the excessive use of one specific mi, the
source ms is not linked in the routing table. This forces a computation during runtime
which updates costs, such that τ can be interpreted as an indicator during run-time
for reachability of the destination md. The start value of τ based on the computation
in the initial phase represents the costs in the best-case scenario.235 If an entry in Rmi

for md exists (line 5), it is replaced (line 8) with the new costs if the costs are smaller.
Otherwise, the execution is terminated (line 6) because a shorter path has already been
found. Afterwards, the set N with the local neighbors except the source ms is determined,
and each element mj ∈ N receives a duplicate of the message with the new costs to
compute its routing table Rmj

. The source ms is excluded in N to avoid recalculation,
which can only result in higher costs 236.

Message structure for path determination

A well-defined message structure is needed to find several trails rc for a container c.
These trails are stored in the candidate set, evaluated, and the most promising trail rc
for c is selected for routing The aim of the message structure is to reduce the overall
communication overhead in the network and ensure a loop-free trail finding. Therefore,
a message m in the feasible candidate set F is a quadruple (rc,md, τ, ε) with:

• rc as the current trail associated to the candidate; rc is expanded during the graph
traversal.

234This ensures a cancellation with negative edge costs of the algorithm and reduces the number of
created messages in the system.

235There exists no blocking and deadlock, such that a flawless transportation exists.
236A transportation forth and backward on two elements makes no sense in continuous transportation.
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Algorithm 3 Compute costs at TU mk to destination mj and add to Rmk

Require: mi,ms, c . Current TU and computation trigger
Input: (md, τ) . Possible TU destination and cumulative costs.
1: function ReachableDestination(md, τ)
2: if @md then
3: Rmi

= Rmi
∩ {(md, τ + sc,md,mi

)}
4: else if ∃ (mj, α) ∈ Rmi

: (mi = mj ∧ α ≥ τ) then
5: return . A Shorter path already exists in Rmi

6: else
7: Rmi

= (Rmi
\ {(md, τ)}) ∩ {(md, τ + sc,md,mi

)}
8: end if

9:
N = {vi | vi ∈ Vu, ei ∈ Eu,

(head(ei) = vi ∧ tail(ei) = A−1 (mk))
⊕ (tail(ei) = vi ∧ head(ei) = A−1 (mj))}

10: for all {mi = A (vi) | vi ∈ N ∧ vi 6= A−1 (ms)}} do
11: mi.ReachableDestination(md, τ + sc,md,mi

)
12: end for
13: end function

• md as the destination of c.

• τ as the costs in time for the trail rc.

• ε is the maximal length of rc for a candidate.

During exploration, |rc| increases and therefore τ does. Furthermore, when two or more
messages mi, . . . ,mj arrive at one TU they can be evaluated earlier by comparing their
times τ . The message with the lowest τ is assessed further, while the other messages are
dropped. If two or more messages have the same value τ , the message that arrived first
is chosen.237 During exploration, ε is decremented by 1 until it reaches 0. Afterwards,
the evaluation of the remaining trails can begin.

Sequential candidate set computation

A decentralized method is used to compute the candidate set F with feasible trails rc;
its processes are visualized in fig. 5.10. First, the message m to compute F is initialized
and multi-casted to all direct neighbors. Afterwards, a reachability check is conducted

237It is assumed that this mi is able to react faster, because it was able to answer faster than the
other messages.
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Figure 5.10: Concept to compute trail rc.

based on Rmi
. Each promising neighbor receives the updated message m and adds its

information to compute rc. This updating and multi-casting of m to promising neighbors
are done until the maximum length of rc has been reached, or the destination has been
found. Then, m is sent back to the sender and validated each time with local system
state information until it reaches the source ms. The source ms evaluates all rc computed
by mi and chooses the most promising one. Finally, the routing of c begins based on the
chosen rc.

The multi-cast method is used to determine trails and to drop dead-ends or unpromising
trails beforehand. The message structure m is used and multi-casted to every direct
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neighbor except the sender238 of m to compute F . A neighborhood selection for multi-
casting and a premature withdrawal method are used to reduce |F |. The same multi-cast
method, as in algorithm 3 line 10, for N is used. Every neighbor receives m except
the previous source of m. When receiving m for rc to destination md, the premature
withdrawal method drops the message when at least one of the following circumstances
is given: mi ∈ s ∈ rc ∨md /∈ Rmi

∨ ε ≤ 0 ∨mi = md (see algorithm 4, lines 2 and 4). The
first term mi ∈ s ∈ rc ensure a loop-free computation of rc, because if the current mi is
already in one s ∈ rc the computation is withdrawn, since mi has already been visited.
Second, md /∈ Rmi

means the destination md for c is not reachable by mi. When ε ≤ 0,
the maximum length for rc has been reached and the currently computed rc is sent back
to the sender of m. If the last term mi = md holds the final destination for c is found,
nd no further computation is needed.

Algorithm 4 Compute rc at mi

Require: mi,ms . Current and source TU
1: function ComputeTrail((rc,md, ε))
2: if mi ∈ s ∈ rc ∨md /∈ Rmi

then
3: return . Withdraw further computation
4: else if ε ≤ 0 ∨mi = md then
5: F = F ∧ rc
6: return mi EvaluateTrail (rc) . See algo. 5 for evaluation of rc
7: end if
8: for all mj ∈ Nmi

do
9: t = FindTimeSlot(rc,mj, cost (rc))

10: s = ((mi,mj) , t1, t2) . t1 as release date and t2 as due date
11: rc = rc ∩ s
12: mj.ComputeTrail (rc,md, ε− 1)
13: end for
14: end function

Algorithm 4 is the decentralized method to compute F . During every multi-cast, the
message m is duplicated and the new duplicates are treated as a new trail. Every new
trail rc distinguishes itself from the previous one by a newly added TU mj (line 11).

238Source and sender are differentiated. A Source ms is the origin of m, while a sender mj is the
previous TU multi-casting m to the current mi. In the beginning, ms = mj holds and during computation
ms ∈ s1 ∈ rc.
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5.3.2 Path selection

After the decentralized computation of F a metric is needed to select the most promising
candidate rc ∈ F as a route for c. The goal is to minimize the transportation time of c
and causes as little blocking with other containers in the system as possible. Therefore,
each mi in the system receiving F selects one promising rc and forwards its candidate
back to the source. This reduces the amount of |F | and the computation time to compute
one rc, because during each forwarding a set of trails is further removed. Moreover, due
to communication insecurity239 an assumption is made regarding the waiting time: if an
mi can not respond in a certain period of time, it is assumed to be off-line.

Decentralized promising candidate selection

As previously mentioned, each mi recursively selects one candidate of the received
candidate set F to the source, which selects the candidate rc to use for routing. It is
assumed that this last candidate was able to win against the other candidates in Fmi

.
Despite a global F , each mi holds a local set Fmi

with the feasible local trails computed
by its children in the communication graph Mc. During iteration, the parent merges the
local sets Fmi

. . . Fmj
of its children by selecting the most promising trail rc in each set.

The newly merged set holds then all promising trails rc at mi. This recursive merging is
done up to the source of route computation, which selects the trail rc for execution.

Algorithm 5 shows the method running on each TU mi respectively. Each mi goes into
a waiting mode (line 2), waiting for selected trails rc. It uses a dynamic waiting time
computation which differs depending on the depth of mi in M . The most promising
local trail ri (line 3) is used. It is compared to each receiving trail rc (line 6) during
the waiting time. When cost (ri) > cost (rc) the new receiving trail rc is selected and
assumed to be dominant240 over ri. When the waiting time is over (line 9), the most
promising trail ri is sent to the parent (line 11) in M for further evaluation. If mi is the
root in M , the last remaining trail ri is used for routing c because it dominated in the
evaluation. Therefore, it is assumed that ri is the route with the lowest cost.

239It can not be assumed that a mi answers in a proper time, e.g. the global waiting time for an
answer has been exceeded. Due to failure or exhausting computation cause by other operations oi on mi.

240Faster in transportation time.
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The auxiliary functions HasParent(mi,Mc) and GetParent(mi,Mc) are defined as:

HasParent(mi,Mc) =

0 if mi is root in Mc

1 elsemi has parent Mc

(5.22)

GetParent(mi,Mc) =

0 if mi is root in Mc

1 elsemi has parent Mc

(5.23)

Both functions need the communication graph Mc as a second parameter because
searching for a trail for n containers generates n communication graphs. This enables a
parallel search for trails.

Algorithm 5 Evaluate F at mi

Require: mi . mi as the current TU.
1: function EvaluateTrail(rc)
2: if NotWaitingForEvaluation then
3: ri = rc . Most promising trail.
4: δ = τ + EvalWaitingTime() . See algo. 5.24
5: WaitForEvaluation(δ)
6: else if cost (ri) > cost (rc) then
7: ri = rc
8: end if
9: if δ > τ then . τ as the current system time.

10: if HasParent(mi,Mc) then
11: return GetParent(mi,Mc).EvaluateTrail(ri)
12: else
13: ReservateRoute(rc) . See algo. 6
14: end if
15: end if
16: end function

Waiting time for computing most promising trail

In decentralized transportation systems, communication between TUs is crucial. It can
not be assumed that the requested data will arrive on time or worse, at all. Furthermore,
in highly complex systems, one TU does not know the size of the system and is therefore
not able to estimate a waiting time for a response. Especially with the introduced
method of searching for new trails with multi-casting, the maximum waiting time differs
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based on the found trails and their current communication workload, which can cause a
delay in responding to a request. The dynamic waiting time for promising trails uses a
similar technique as the waiting time at one mi in section 5.2.1 and is restricted by the
communication waiting and response time defined in section 5.1.3. The used waiting
time is computed by evaluating historical data and changes during run-time while new
data is added to the set of historical data at one mi.

The waiting time ω describes the maximum waiting time for a response using the search
method for new trails rc for a container c. In the beginning ω = 30s based on the
usual default waiting time in network communication. During each trail search, the
real waiting time based on the remaining maximal path length ε is stored in the set Hε

at each mi. The differentiation between the remaining ε is crucial due to the expected
waiting time. It can be assumed that a lower ε will respond faster because fewer TUs
are considered compared to a higher ε.

EvalWaitingTime =


30 if H = ∅
1
2 (Hn∗p +Hn∗p+1)) if |H| mod 2 = 0

Hdn∗pe else

(5.24)

Eq. 5.24 shows the computation of the maximum waiting time for trails during evaluation.
The auxiliary variable n = |H| is used to compute the p-quantile. Choosing p in the
preprocessing directly affects F and its trails. A lower p causes a withdrawal of feasible
trails rc not responding in time, which could be caused by overloaded communication
interfaces at one mi.241. If the chosen p is too high, trails are considered that are valid
but not feasible. This causes unnecessary computation and waiting time at one mi by
evaluating unfeasible trails. Therefore, p has to be chosen such that feasible trails are
considered while unfeasible trails are withdrawn, thus reducing the computation and
waiting time.

Path cost identification and path selection

Finally, the trail rc has to be selected and marked for reservation for one container c. As
already explained in section 5.3.2 with algorithm 5, the candidate is selected by using

241For example multiple search for different trails or routing synchronization explained in section 5.3.3
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the remaining trails in F at the source mi of m for trail search. This is done by choosing
rc with the lowest costs described by the following equation:

min cost (rc) , rc ∈ F (5.25)

Afterwards, every mi ∈ s ∈ rc is notified and s is transformed into a fixed job in the
scheduler at every mi, which is called route reservation.

Route reservation

After a trail rc is selected for routing by the source ms which triggered the decentralized
search method, each mi ∈ s ∈ rc has to be notified. Every mi related to Vi from the
source ms to the destination md is notified. During the notification, each mi transforms
local trail information into a job for the local scheduler. After the transformation, mi is
capable of routing c with local information with minimum communication effort.

Algorithm 6 Evaluate F at mi

Require: mi, φ
1: function ReservateRoute(rc)
2: if A−1(mi) ∈ Vu then
3: j = Split(rc,mi) . See algo. 1
4: Smi

= Smi
∩ {j}

5: phi−−
6: if φ = 0 then
7: mi.TriggerPartialRouteComputation
8: end if
9: end if

10: if mi = md then
11: return
12: end if
13: mi+1.ReservateRoute(rc) . mi+1 as the subsequent TU of mi

14: end function

Algorithm 6 shows the sequential job reservation after a trail rc is chosen by ms from ms

to md. Each mi including ms and md executes algorithm 6 in chronological order given
by rc. In line 2, a check is made to see whether the current mi is related to a Vi ∈ Vu to
reduce the number of schedules in the system. Thus, A−1(mi) ∈ Vu is only given if mi
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is connected to at least three more TUs (see section 5.1.1). Afterwards, a job j for the
scheduler Smi

at mi is created (line 3) and stored (line 4). Storing j finally blocks the
time window in Smi

and can cause a new snapshot Gτ+1 (see fig. 5.10), which affects
future searches for trails. If md is reached (line 6), the route reservation for rc finishes
and all jobs for each mi have been created. Finally (line 9), the successor mi+1 receives
the message with the same parameters to compute its job to block the time window to
transport the container on arrival.

Furthermore, to begin a new partial route computation before reaching the end of rc, the
attribute φ is used. It defines the unit mi to calculate a new route from the destination
d ∈ rc as a starting point for future routes to reach the final destination of container c.

After all three steps (candidate set computation, candidate selection, and rc reservation),
the preprocessing phase for transporting c ends and the system is in a stable state and
can provide the necessary information to take action242 to transport c.

5.3.3 Route execution

After a trail rc for container c is found, and every TU mi transforms each s ∈ rc into a
job jmi

, the routing for c can be executed. The information concerning c is communicated
sequentially during transportation, which is triggered by a sensor logic implemented
at a low control level.243. Simple route executions are folded into edges in Gτ and are
controlled by A(Vi) = mi by passing c to them. Therefore, the direction is given by the
handover of c from mi to the first mj ∈ Unfold (ei).

Several cases can occur for one container during transportation:

• Arrives on time: When c arrives at mi, on time and the path to the next TU is
empty, c can be transported to the next mj.

• Arrives too early: The path between mi and mj is checked, if it is free then c s
transported.

242E.g. information to control the motors in a feasible way such that the container is moved in the
right direction to the destination.

243PLC control level. The triggering of sensors is caused by c moving over them. Currently, simple
binary photoelectronic sensors are used as exemplary reference. When c passes, a binary signal is sent
to the PLC, which is capable of computing whether c enters or leaves the mi.
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• Arrives too late: The same steps occur as when the container arrives too early; c is
transported when the route is free.

If only one container exists for transportation at every mi ∈ s ∈ rc it can be forwarded
easily. Therefore, these cases are trivial.

When other containers have to be considered, the system stability has to be ensured.
This is done using an online decentralized deadlock check to fetch others mj statuses for
coordination at mi and storing them in the set Bji with ji related to one c at mi as jc,mi

.
Its concept is to find online and in real-time inverse flows by searching for and analyzing
other flows based on local information. Afterwards, synchronization is done with mj,
that may cause deadlocks. Finally, a deadlock resolving method enables future secure
transportation.

Congestion determination at container arrival

An inverse path finding procedure is used to ensure local deadlock-free routing between
two TUs during transportation. When a scheduled container c follows a trail rc and
is about to arrive at mi, A(Vi) = mi with an edge from ei = (Vi, Vj) , A(Vj) = mj, a
deadlock check is conducted for ei using a handshake between mi and mj . The handshake
procedure blocks ei in Gτ for a time α such that Gε cannot change from ei to e−1

i until
ε > α.

Before actions to avoid deadlock can be taken, the set Bji must be determined. If Bji = ∅,
the container c can be forwarded to the next mj ∈ s ∈ rc. Otherwise, c is blocked in
front of mi at mk such that every c with ei = (Vi, Vj), Vj 6= Vk transportation can be
executed. In summary, Bji is related to one job ji at mi to block the execution of ji at
mi for c. The first step is to recognize whether a handshake must be made between two
mi and mj. This is done using a linear inverse flow search on the local scheduler at mi

by evaluating each job jc,mi
before the arrival of c.

Algorithm 7 shows the computation of Bji . This is done right before the arrival of c
at mi, such that if an inverse flow exists it can be resolved by mi. Afterwards, once no
inverse flow exists, c is accepted for handling and the waiting time ends for the previous
mk blocked by mi with c. To compute Bji , an inverse flow e−1

i is searched for comparing
every edge ej to ei (line 2). When ej = e−1

i (line 3), an inverse flow exists; a check is
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Algorithm 7 LinearInverseFlowSearch for c,miג
at mi

Require: mi

1: function LinearInverseFlowSearch(jc,mi
)

2: for all j ∈ Jmi
do

3: if e−1
i = ej, ei ∈ jc,mi

∧ ej ∈ j then
4: rpart := rc \ {s1, . . . , (mi, α, β)}
5: rpart = rpart \ {mj+1, . . . ,mn}
6: if τ + cost(rpart) ≥ ρc,mj

then
7: Bji = Bji ∩ {ej}
8: end if
9: end if
10: end for
11: return Bji

12: end function

conducted to see if ej and e−1
i interfere with other in time (line 4 and 6). If an interference

occurs (line 6), the edge ej is added to the set Bji (line 7) for further resolution. The
used auxiliary variable rpart stores the route between mi and mj , and is used to compute
the time needed for this part of the route to check whether a deadlock may occur.

Inverse flow handling and resolving

To avoid deadlocks, a handshake method is used. At each arrival of a container c at
mi, the inverse flow is computed by algorithm 7 and the edges ei, . . . , ej from to vertices
Vi, Vj are blocked until c arrives at mj. This is done as follows.

First, when ci arrives at mi with ei and c2 arrives at mj with ej such that ei = e−1
j ,

a decision must be made concerning container, ci or cj, must be handled first and
transported between mi and mj the direction of ei or ej. This is done in a first-come,
first-server manner.244 The first arriving container ci will trigger a message from mi to
check for inverse flows at Jmi

and find the flow ej for cj with algorithm 7. Then, mi

notifies mj and stores all containers c in Hjc,mj
.245 Hjc,mj

represents the set of containers
holding cj from further executing on mj . Afterwards, mj adds ci to Hjc,mj

on arrival of the
notification from mi and mj . mj replies with an acceptance message. When the acceptance

244If two messages occur simultaneously, the message that arrives first at the destination will be
chosen. Thus, it depends on the underlying communication structure.

245The difference between the sets B and H is that B holds containers that could cause a possible
deadlock, while H stores the containers that will cause a deadlock if transported any further.
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message arrives at mi and Hjci,mi
= ∅ is given ci transportation is executed based on rci

.
Finally, when ci arrives at mj, ci is removed from Hjcj ,mj

and cj transportation can be
executed.

Blocking can occur between n containers in the system. As long as a part of a trail rpart
is given and no time is violated, a container c can move when its current holding list
Hjci,mi

= ∅.
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6 Implementation

This chapter discusses the implementation of the introduced method for routing containers
in a decentralized complex transportation system presented in section 5. As a basis,
the method and the environment are being implemented in Unity3D.246 It provides the
capability in decentralized computation, which is used as a basis to represent decentrally
structured transportation units. As an advantage, a visual evaluation is also possible by
mapping the abstract structure of graphs to visual representation, e.g. conveyors and
containers.

6.1 Decentralized complex System implementation

This section provides an overview of the implementation of TUs m ∈ M, the moving
container c ∈ C and the environment on field level, as well as a WMS Client controlling
the arrival of c at a time τ ∈ T . This includes the field level implementation by simulating
motors and sensors and the communication between TUs at communication level. This
enables local control and global control of c by moving it from a source ms to a destination
md.

Intelligent device representation
As a basis, three main TUs have been implemented which can switch roles depending
on evaluation parameters. Based on these units, the containers are transported from s

to d during run-time. Each TU is equipped with one intelligent device controlling its
behavior.

Each component has the following similarities:

246www.unity3d.com
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• Max speed: A triple-vector defining the transportation speed (x, y, z).

• Interfaces: Connection to other transportation units. Defines a direct communica-
tion to other units, which can be a wireless or a wired connection.

• Initial costs: The first cost value assumed for the dynamic cost model.

• φ: Threshold before a new path is computed.

• ε: The maximum size of a trail rc.

• Scheduler: Local scheduler storing all containers and their arrival, destination, and
next hop.

The first TU is a unit with one connection only; it switches roles between a source
and a sink. In industrial application, it is an interface between automatic systems and
its environment. During a time τ , a unit m ∈ M can switch roles, but m can only
have one role during a time-slot [τ, τ + 1]. In addition to the previous parameters, this
component, arrival rate, when a source, can be set. Like a sink, no further attributes can
be set. Its main task is to remove the container from the simulation environment. The
second TU is a conveyor for continuous transportation with the capability of bidirectional
transportation. It consists of one motor and two sensors. The motor represents the
forces transmitted to the rollers for moving the containers in one direction. One sensor
at each end is used to determine the arrival and departure of one container. The arrival
or departure is derived by the motor status and the sensors. When the motor moves the
container to the left, and the left sensor determines a rising edge followed by a falling edge,
it can be assumed that the container has left the TU and has been arrived at the next
one. This TU‘s main task is the transportation of containers between the discontinuous
units only. This unit is restricted to moving the container forwards, backwards, or
stopping it. The third TU is a discontinuous TU enabling forking and joining within the
transportation system. In contrast to the conveyor unit, this one can have more than
two interfaces. Its main task is to computing rc since it has control over distributing the
container within the system.

Fig. 6.1 shows a small implemented system for evaluating the functionalities of TUs.
The small squares in the middle are right angle decks able to connect several TUs and
to form a path. Each is connected with a conveyor for continuous transportation of
containers. At the left and right ends, TUs are placed that are able to switch between a
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source and a sink. Routes can be formed from the left to the right, from right to left, or
on one side only. A source cannot be a sink for one container.

Figure 6.1: Implemented simulator for decentralized organized transportation systems.

Implementation of communication layer
Each TU is equipped with decentralized control logic. There exists no access to global
state information. Furthermore, to provide time-invariant, there exists no global scheduler
controlling the local time of each TU. To provide field-level control, each TU has a logic
based on the restrictions given in industrial systems to intelligent devices, which are
limitations in computational speed and memory (see section 2.1). In addition, every TU
is equipped with a communication unit (in the simulation and a software layer). Since
a control logic works in cycles, the communication also considers this with periodical
communication.247

The messages are divided into route planning (described in the next section) and route
execution. Messages of the route execution type have higher priority than planning,
since they include local synchronization between TUs m to enable a fluid transportation
of a container c ∈ C. It is assumed in the implementation that c triggers the sensor of
mi ∈M with the front face and some seconds are still available until it reaches the next

247At the beginning of a cycle, the buffer/memory storing the arrived message is read and at the end
of the cycle, the message to be sent is written to the buffer before being sent after the cycle ends.
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mj ∈M. During this time, the synchronization between mi and mj is done. Every m

manages a blocked list in a first-in, first-out (FIFO) 248 order with all blocked C. Once
an mj is free, it handles the next ci in the blocked list. If a c from mi is being blocked by
mj , and receives a blocking answer, then it stops the moving of c until mj receives a free
message to mi. Then the movement of c starts and is handed over to mj.

Every message additionally stores the path it has been transmitted, by adding itself to
the path. When m appears in the path, the message is dropped and removed from the
system. This ensures a loop-free messaging.

6.2 Implementation of the opportunistic routing
method

This section introduces the implementation of the identification and representation of
the underlying graph Gu, the message structure for the planning of Rc, and the storing
of the values for later transport execution.

Protocol structure for routing
To identify the underlying graph Gu, it is assumed that each mi is connected by a
wired communication solution249. During the startup of the system, each mi checks its
communication interfaces to see whether they are alive. If so, a message with information
is pushed back to mi and will be stored. Otherwise, after a specified amount of time,
mi assumes there is no connection at one interface. The next step is to transform every
mi to a vertex Vi or an edge Ei depending on the number of communication interfaces
for later route planning. The transformation by the number of interfaces is defined as
follows:

• 1: The mi obtains the ability to be a source or sink, respectively of τ , if not
specifically defined to be one type only. In the underlying graph, it will becomes
an vertex Vi.

248The element that enters the list first is removed first.
249E.g. RJ45. Wireless solutions are possible as well but not investigated; if interested, see [PLM02],

pp. 112-118, which introduces solutions capable of identifying Gu by a wireless connection.
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• 2: Every connected mi, . . . ,mj with two interfaces only will form an edge Ei between
two vertices (Vi, Vj).

• > 2: These mi are able to join and fork the transportation flow. They are also able
to define a route by determining a direction; therefore they will become a vertex Vi.

Based on the created Gu, the first snapshot in the dynamic network G[0, T ] at T0 is
defined as G0 = (V0, E0).

To enable a quick feasibility check if a specific direction given by Vi is able to reach a
destination Vd a flag is being used indicate the reachability of Vd at each v ∈ V . This is
initiated by every possible destination by flooding the network with a simple message
storing the destination Vd.

MHE evaluation
Every mi ∈M evaluates itself without global state knowledge. As explained in section
5.2.1, the static cost model is computed locally during one cycle. Based on the parameters
defined previously for one m the static cost model is derived upon the startup of the
system. The dynamic part is determined by evaluating trails passing through. Every
time, the necessary values described in section 5.2.2 are stored during one computational
cycle.

Decentralized path finding
A route is determined based on Gu as explained in section 5.3. To enable this operation
in a decentrally organized transportation system, a message handling independent of
the cycles must be implemented. Therefore, sub-message types are used, defining one
specific operation for one cycle at one mi. These are the following:

• ORStartNodeFinding: Initializes all needed data structures as preparation for path
finding.

• ORExploration: Used to find the destination or at least come close to the destination
for future rc finding.

• ORBack: Traverses back and spreads the collected information among the visited
nodes.
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A message time-out reflects the dynamics of complex networks that an mi can break-down.
If it cannot be contacted for an adjustable amount of time, it is assumed that mi is not
longer operable. On the other hand, if a new mi appears in the system, it will collect the
information from connected mj ∈M, and afterwards adds it to Gτ . During run-time,
the underlying graph Gu is of no use and is, therefore being removed from the memory.
All operations are done on the complex graph G only.
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7 Experimental design

This chapter shows the validation of the method proposed in chapter 5 and is based
on the implementation described in section 6. It checks whether the protocol enables a
proper system representation with considering changes over time whether the evaluation
of transportation units is able to reflecting the current and future status of transportation
units, and whether the routing method finds and executes routes without causing
deadlocks.

The data which has been used as parameters for the validation are real planning
transportation data. They were provided by an intralogistics supplier that has been
anonymized such that no conclusion can be made. The usage of real planning data
should give insight into the real capability of the method in an operative environment.

Finally, the last sections evaluate the proposed assumptions from section 2.3 respectively.
Each element noted as a challenge is analyzed, and it is shown that the introduced
method addresses each of these challenges.

7.1 System description

First, the section explains the parameters, which are based on real planning transportation
data given by an intralogistics supplier. These parameters are globally used to validate
each of the three sub-methods providing a proper system running by routing a set C
of containers through the system. First, the section covers the parameters used for the
simulation described in chapter 6 will be explained. This is done by providing first an
overview of each unit type, and then of the system as a whole. Based on the parameters
in the simulation, the evaluation of each of the three modules is then explained in
consideration of its scalability, flexibility, and its robustness.
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7.1.1 Transportation units

As proposed in section 5.2, the system consists of containers, which are moved between a
predefined source and destination250, at TUs, whereas simple bidirectional TUs and PEs
for positioning a container c in the system for distribution, e.g. join or fork transportation
lines.

In the evaluation, the system‘s environment consists of the ability to provide communi-
cation within each TU, to give information from the upper logic defined in WMS Client,
and on the field level the simulation of the sensor and motor data for enabling movement
of a container. The communication is being assumed to operate instantaneously and
perfectly between two TUs such that no network errors, e.g. blocking, is considered.
At the WMS Client level, the arrival of a container is parameterized at the source and
follows a distribution. Sensor and motor data are simulated as being processed in one
PLC. A separate memory collects and provides the information at the beginning of each
process cycle of one PLC, and the motor parameters are written at the end of each cycle.
Afterwards, when the parameters have been set, the motor reacts to these values, by
running faster / slower, or changing directions.

Containers
A container c ∈ C in the system is a construct which that is moved from a source ms

to a destination md = d. Its arrival time τ , its source ms, and destination d ∈ D are
transmitted by the upper logic operating in the WMS-Client organizing the material flow
within the intralogistic system. Homogeneous containers are moved and have rectangle
dimensions of 1.5m in length, width, and height. When generated at the source, it is
assumed that the source is notified about the existence of c and is, therefore, able to
start the process of finding a proper route rc.

Bidirectional TUs
In this evaluation, bidirectional TUs are roller conveyors with two sensors following the

250This information and its arrival are provided by the upper logic processing in the WMS Client, as
defined in the controls pyramid in section 2.1.
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Legend:

MTR

SNSRs

Figure 7.1: Exemplary picture of one transportation unit (TU, left) and one positioning
equipment (PE, middle) including the placement of motors (MTR) and sensors (SNSR).

creep-speed paradigm251 to control the movement of one or more c ∈ C. In the following
sections, one TU can handle at most three containers at the same time. Because of the
continuous movement, when one container c1 ∈ C is moved, a second c2 ∈ C and third
c3 ∈ C are moved as well. This is due to the motor structure at one TU: it is assumed
when turned on that all rollers move simultaneously, e.g. one belt connects all rollers
with the motor. Two sensors (sensor block, see fig. 7.1 left side, SNSRs) are placed as
a group in the front and two at the back of the TU, such that the entry of one c can
be determined while the two sensors on the other side recognize the arrival at the end
of the TU and are able to stop c. Every bidirectional TU m ∈M is parameterized as
follows:

Neighbors : Nm := {mj,mk},mj ∈M,mk ∈M (7.1)

Operations : Om := {move_left,move_right} (7.2)

Sequences : l1 = {o1}, l2 = {o2} (7.3)

States : Sm = {Idle,WorkingLeft

WorkingRight,Waiting} (7.4)

Preconditions : ∀o ∈ Om : pre(o) = S1 = Idle (7.5)

Postconditions : ∀o ∈ Om : post(o) = S1 = Idle (7.6)

Velocity : ∀o ∈ Om : vo = 0.4ms (7.7)

Acceleration : ∀o ∈ Om : ao = 0.2ms2 (7.8)

Distance : ∀o ∈ Om : do = 4.5m (7.9)

251The creep-speed paradigm describes the control of a c by slowly reducing its speed when arriving
at the first sensor, e.g. 0.1m/s, and stopping c when arriving at the second sensors. Its advantage is
that the position of c can be better controlled by invoking a slip by slowly reducing the speed instead of
suddenly stopping.
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StaticProcessingTime : φm,l = do
vo

+ vo
ao

= 13.25s (7.10)

Every bidirectional TU mi has two neighbors (see eq. 7.1) that are directly connected to
form the dynamic graphs edges ei ∈ Eτ ∈ G{0, . . . , T} later. Based on the two operations
(see eq. 7.2) {move_left,move_right}, a container c can be moved from one end to the
other, defined by the route rc, and its stored jobs j represented by a transportation
sequence l (see eq. 7.3) at each local scheduler Sm. At the beginning τ = 0 and at
the initialization of the system structure, all information is absent such that the data
structure of m is as follows:

Scheduler : Sm = ∅ (7.11)

ReachableDestinations : Rm = ∅ (7.12)

TimeSamples : ∆m = ∅ (7.13)

Figure 7.2: Exemplary visualization of a bidirectional transportation unit used within the
system simulation.

Fig. 7.2 shows one bidirectional TU used in the simulation visualization. Physically,
a roller conveyor continuously and simultaneously moves the containers c. One motor
creates the needed momentum to rotated the rolls which move the containers. Each roll
is connected by a fan belt either to the motor or in sequence to an already connected
roll.
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Position equipment
Next to bidirectional TUs, PEs (see fig. 7.1, middle) serve to position a container
c to provide operations like fork and join for distribution within the system. PE‘s
operations enable a movement in a maximum of four directions: north, east, south and
west. For security reasons and to identify the exact position of a container c at each
connection, a sensor block monitors the current movement. Physically, it consists of
rollers for longitudinal movement (west and east directions) and roller balls for lateral
movement (north and south directions). To enable a container movement in longitudinal
transportation of c, roller balls have to be lowered to have direct contact with c. c is then
moved in one of the two directions, in a forwards of backwards movement. In contrast,
for lateral movement, the roller balls have to be raised such that the container c has
direct contact with the rollers that enable this lateral movement. The movement change
from forwards to backwards can be executed immediately, independent of longitudinal
or lateral movement. For a corner movement, e.g. from longitudinal to lateral, an
intermediate state must first lower or raise the roller balls when c is at the center of the
PE.

The parametrization of one m ∈M as PE is the following:

Neighbors : Nm := {mj, . . . ,mk},mj ∈M,mk ∈M,

3 ≤ |Nm| ≤ 4 (7.14)

Operations : Om := {move_north,move_east,

move_south,move_west

lower_rolls, raise_rolls} (7.15)

Sequences : l = Om × {RollsUp,RollsDown} ×Om

{RollsUp,RollsDown} ⊆ Om (7.16)

States : Sm = {WorkingNorth,WorkingEast,

WorkingSouth,WorkingWest,

RollsUp,RollsDown,Waiting} (7.17)

Preconditions : O1,O3 : pre(O1) = pre(O2) = S6 = RollsUp

O2,O4 : pre(O2) = pre(O4) = S7 = RollsDown

O5 : pre(O5) = S6 = RollsDown
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O6 : pre(O6) = S5 = RollsUp (7.18)

Postconditions : O1,O3 : post(O1) = post(O2) = S6 = RollsUp

O2,O4 : post(O2) = post(O4) = S7 = RollsDown

O5 : post(O6) = S6 = RollsUp

O6 : post(O5) = S5 = RollsDown (7.19)

Velocity : ∀o ∈ Om : vo = 0.4ms (7.20)

Acceleration : ∀o ∈ Om : ao = 0.2ms2 (7.21)

∀{move_east,move_west} ⊆ Om : do,0 = 2.1m, in longitudinal

∀{move_south,move_north} ⊆ Om : do,1 = 2.8m, in lateral

corner movement : dm,2 = 2, 45m (7.22)

Inter. time : {RollsUp,RollsDown} : τ = 10s (7.23)

Static Processing Time : φm,l = do
vo

+ vo
ao

= 7s, for longitudinal only

= 9s, for lateral only (7.24)

for corner movement : φm,l : 18.125s (7.25)

As shown in eq. 7.14, each PE has at least three neighbors with a maximum of four. If
it has two neighbors it is classified as a bidirectional TU, and if it has one neighbor, as a
source or sink. The equipment in this evaluation enables only a four-sided movement,
and therefore the maximum number of neighbors is limited to four. To move a container
c between two neighbors, the intermediate states RollsDown,RollsUp lift or lower balls
enable a 90 degree lifted movement of c. Switching costs 10s between the intermediate
states to enable the longitudinal or lateral movement. Having more than two neighbors
gives PEs the ability to fork and join paths by able to have more than 2 neighbors.

Similar to a bidirectional TU the PE starts with an empty set of the following sets:

Scheduler : Sm = ∅ (7.26)

ReachableDestinations : Rm = ∅ (7.27)

TimeSamples : ∆m = ∅ (7.28)
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Figure 7.3: Exemplary visualization of a position equipment used within the system simulation.

Fig. 7.3 shows an exemplary PE used as a visualization during the simulation. The used
rolls, similar to the bidirectional TU, are capable of longitudinal bidirectional movement.
For lateral movement, the balls in the center can be raised and lowered such that they
will move the container c when lifted. On field level, a total of three motors are being
used to realize the movement.

Sources and sinks
Both equipment types, sources and sinks, are either bidirectional TUs or PEs with one
neighbor only.

A source container arrival time can be parameterized by defining the maximum number
of arriving containers c in a one-time interval. The arrival is uniformly distributed within
the time interval. Either every c is randomly assigned a sink, or a fixed sink can be set.

The sink is responsible for removing a container c from the system and triggering the
decentralized evaluation of the transportation of c through the system based on its path
rc and initial static reachability determination. First, each destination d propagates its
existence by notifying its neighbors Nd, which triggers a decentralized cost estimation
based on the static processing time φmi,l, as explained in section 5.3.1. In summary,
recursively the costs from the sink to each reachable source are recursive, cumulatively
computed by adding each static processing timeφmi,l at each visited mi. Every mi receiving
the reachability messages from one destination d from one of its neighbors mi checks
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whether an entry in the reachable destination set Rmi
already exists. If not, it is added

with the cumulative static processing times from d to mi; otherwise, a check is done
to determine which path has the shortest time, and the one with the higher costs is
suppressed.

7.1.2 System composition

This section provides an overview of the used transportation system for the evaluation
based on the TUs and PEs explained in the previous section 7.1.1. First, the trans-
portation system and its parameters are introduced and based on this introduction, the
specific characteristics in transportation are shown; these are deadlock and blocking
caused by a container c and its route rc. Next, the section discusses the characteristic of
the system by adding and removing of TUs and PEs. The used system is an existing
planned system given by an intralogistic supplier to analyze its feasibility. All data have
been anonymized such that no interference with the original project can occur.

As already mentioned in the previous section, the system consists of the following four
transportation types: bidirectional TUs, PEs, sources, and sinks. In short, the system
model holds 909 bidirectional TUs between the sources, sinks, and PEs. In addition, 553
PEs are used to distribute the containers created by one of the 45 sources through the
system to one of the 44 sinks. On average, 1,400 containers are created per hour, and
randomly assigned a source and a sink.

Fig. 7.4 shows the upper part of the system. The lower part is the upper part horizontally
and then vertically mirrored. Each line, line 1 to line 8, can be interpreted as a highway
that allows line switching at each PE. The outer parts with their sources and sinks can
only be accessed by the PEs at line 1 or line 8 in the left or right part of the system,
respectively. Each outer part consists of several PEs to connect the sources and sinks
with the highway in the center to reach other sinks or to be reached by other sources.
Lines can only be switched between PEs such that a crossing of other containers can
occur.

Fig. 7.5 displays a part of the highway with its eight lines for container distribution and
the connection to one outer part. Bidirectional TUs exists between the PEs to connect
them. The TUs between two PEs are folded and organized by the PEs as described in
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Figure 7.4: The underlying graph Gu displaying the left part of the system being evaluated.

section 5.1.1 to form the underlying graph Gu, and afterwards the first snapshot Gτ of
the dynamic graph G{0, . . . , T} with τ = 0.

As explained in section 2.1, blocking is the stumbling of one container c1 by another
container c2 such that a detour has to be considered previously or planned during
path execution of c1. To overcome blocking, the simulation model provides several
transportation lines with flow direction that can be adjusted. This degree of freedom
allows the switching of directions to reduce the amount of blocking. If two inverse flows
occur at one PE a distribution of container c to another line has been done, which can
result in longer transportation time. A deadlock in the model is the blocking of one
partial part of the system such that two or more containers cannot move through the
previously computed path rc ∈ Rc and no other route exists in Rc. On the other hand,
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Figure 7.5: Screenshot of a part of the system model in the simulation program before start of
the simulation.

the transportation of one c with rc is called successful when c arrives at the destination
d. During run-time, rc is open for changes which can result in route changes.

During run-time, system changes occur by simulating the maintenance of machines.
These changes are characterized by break-downs of TUs and PEs such that the lines
are fully or partially inaccessible. Therefore, a break-down of one or more TUs or PEs
results in the removal of possible paths and leads to the computation of a detour. Sources
and sinks are always accessible by at least one route rc. Otherwise, due to the high
needed throughput, a blocking of the whole system is likely to occur because the blocked
containers cannot be moved. In addition, TUs and PEs are added after an defined
amount of time. These machines are then accessible for transportation again and should
be considered in route computation.

7.1.3 Test environment

Each simulation has been run on the same computer in the same test environment. This
environment comprises the operating system MacOS Sierra on an iMac late 2015 edition,
running Unity 3D 5.6.1. The iMac has the following specification:

Processor 3,3 GHz Intel Core i5
Memory 8 GB 1867 MHz DDR3
Graphics AMD Radeon R9 M395 2 GB

Table 7.1: Specification of the computer used for simulation.
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7.2 Validation of the Protocol

The following section will focus on the validation of the protocol for decentralized
opportunistic routing protocol with regard to scalability, flexibility and robustness. The
scalability part demonstrates the behavior in initializing the underlying graph Gu of
the system dependent on the size of sources, sinks, TUs, and PEs of the previously
introduced system. Gu is used as a communication graph to compute the reachability
of each PE and source / sink to ensure a correct path finding. On the other hand, the
flexibility part concerns reactions based on different occurrences during the run-time.
Such occurrences are the addition and removal of PEs and TUs. The method has to
stabilize Gu in such a way that vertices and edges are correctly added or removed based
on the occurrence. The last part focuses on robustness. Here the protocol must detect
system changes and react properly to ensure a correct Gu representing the system.

7.2.1 Used parameters

The following parameters are used to validate the protocol:

• While validating the protocol, the communication layer with a ping of 20ms is
simulated as a delay.

• It is assumed that if a sink d breaks (is not functional anymore during a time
window ti, ti+1), a container c will still be moved to it. An manual removal at one
TU or PE where c is currently being handled is not considered.

• An equal number of sources and sinks are set during the initialization.

• No container is created during the initialization process to avoid a communication
overhead while measurements are done.

7.2.2 Behavior with focus on scalability

This section focuses on the protocol‘s behavior in terms of scalability during the initial
phase of creating the underlying graph Gu and its attributes as the initial costs and
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Figure 7.6: Communication time to distribute a reachable sink to a possible source.
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Figure 7.7: Initial static costs SC(c,m, l) to reach a sink by a source.

reachability of sinks. As partially shown in fig. 7.4, 42 elements are used that can be
switched to a source or sink respectively to τ . Each measurement ignores double pairs
of a source ms and a sink md such that if (ms,md) is being considered, then (md,ms) is
ignored. Therefore, double values are not considered in the visualization of the results.
The difference of a double pair is so minimal that it is considered as noise.

Fig. 7.6 shows the transmission time between a pair of a source mi and sink mj in
milliseconds. During this exploration phase, the underlying graph Gu is also created
by flooding the network for later efficient communication. The more closely a pair is
physically connected, the faster the communication is. The left lower part represents this
pairs by the sources and sinks closely connected to each other. The farther away, in terms
of numbers of TUs and PEs, the sink is away from the source, the longer it takes for
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exploration. Clusters, separated by the time jumps,252 are a result of the TUs and PEs
forming a highway by lines in the middle part, as shown in fig. 7.4. Each transmission
between a source and sink has to go through at least one line. The clusters scale linearly
within themselves. This is due to the grouping of the sources and sinks shown in the
left and right parts in fig. 7.4. Breaks between the clusters show a switch between the
groups. The farther away the groups are, the longer it takes for the communication and
there the overall cluster communication.

initTime = argmax
i∈M,j∈M

transTime(i, j) (7.29)

The maximum time for the startup is shown in eq. 7.29. To compute Initτ ,all possible
pairs of sinks and sources (mi,mj) are evaluated by flooding the network with an initial
route finding message notifying each PE of its sink existence, and computing the static
costs SC from the sink mj to the source mi. Each PE mk between (mi,mj) contributes
its static costs SC. If an additional message with the same sink mj arrives at mk, it is
dropped if the current path costs from the sink mj to the current PE mk are higher.
Therefore, the initial phase ends with initTime, and afterwards, the system is operable.
Based on the readability knowledge created by Gu, the initial costs for transportation can
be estimated by computing the static costs only. The sum of the static transportation
cost SC within a possible route rc between a source mi and mj , is used as an first indicator
for route decision making during run-time. Fig. 7.6 shows the initial computed static
costs between pairs (mi,mj) of a source mi and a sink mj. It is the cumulative cost of
each mk between the pair (mi,mj). During the exploration and computing of Gu each
mk stores the cumulative costs from (mk,mj) as an first indicator for the costs to reach
the target mj.

The pairs in fig. 7.29 are equal to those in fig. 7.6. The distributions of the static costs
SC and a source and sink pair (mi,mj) are alike. This is because the communication time
depends on the number of TUs and PEs for parsing a message and for transportation.
Since no other container is currently in the system and the dynamic costs are not
considered, the shortest path is selected. The scattering is a result of the changing
number of needed PEs, which have a significantly higher transportation time compared
to TEs.

252A time jump is a time distance where no transmission has been done, in figure 7.6 a break without
communication.
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7.2.3 Behavior with focus on flexibility

The protocol for generating the underlying graph Gu and its future snapshots Gτ provides
the flexibility to add or remove of vertices and edges and to change the direction of an
edge. Thus, during run-time, a proper dynamic graph represents the status of the system
as a snapshot Gτ . Each of the three possibilities adding, removing, and changing, is
evaluated separately in the following.s

Adding
Adding means appending a vertex or edge in the system. This can occur in transportation
systems by extending the current running system with additional TUs and PEs or
repairing existing parts of the transportation system that is able to run again. If a
TU, e.g. a regular bidirectional TU, registers its neighbors to the system via a message
notifying the system of their existence, then the first PE checks whether a connection
between another PE is being established, such that new paths and therefore detours
can be considered. Finally, an edge is established between the two PEs mi and mj by
the new TU mk. Where mi and mj are two vertices i ∈ Vu, j ∈ Vu in Vu ∈ Gu and mk

represents the edge (i, j) ∈ Eu.

On the other hand, if mk does not result in connecting two PEs mi and mj then no edge
(i, j) ∈ Eu is being created. Then mk is being considered to be a dead-end and therefore
ignored during route finding. Theoretically speaking, mk forming a loop for a node i
with e = (i, i). For routing a container, this would mean in an unnecessary movement of
a container back and forth such that mi,mk,mi.

Since PEs are directly linked to vertices in Gu and later Gτ , they form the network when
enabling a connection to more than two neighbors. If one connection to one PE is being
linked, it is assumed that this PE is either a source, a sink, or varies between the two
over time. When connecting two neighbors, a PE is being considered as a regular TU
and is not transformed into one vertex vi ∈ N ∈ Gu. If a PE mi is being created with a
connection to at least three neighbors (mj, . . . ,mn), it first contributes its existence in
the system to its neighbors, similar to a TU, as previously explained. Afterwards, the
neighbors share their connections to sinks. The PE mi contributes its local costs and
distributes its new costs to the received accessible sinks. If the neighbors already have
a connection to the sinks distributed by mi, the message is ignored and not forwarded.
Otherwise, if a new source/sink is being reachable, the information message is spread
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through the network, as explained previously in the initial system process of establishing
Gu. Regardless of the outcome, if a neighbor already knows the existence of the sinks
spread by mi, they will store the possible connection to mi for transportation. Then,
after notifying, its neighbor, mi is being added to Gu and is being considered in future
route finding processes.

Removing
Removing a TU or PE in the system can be either planned and or an unplanned
occurrence. The planned occurrence entails informing its neighbors that a disconnect
will follow. This occurs, e.g. during scheduled maintenance or shut-down due to other
reasons. An unplanned occurrence is a state switch in which it must first be determined
that a TU or PE cannot be reached, e.g. for transportation from an specific point in
time τ which cannot be foreseen.

A planned occurrence of removing an TU or PE that relates to an edge ei ∈ Eu ∈ Gu or
vertex vi ∈ Vu ∈ Gu always affects Gu and therefore future snapshots Gτ , which has a
direct impact on future routes rc. Removing, either ei or vi results in a reduced number
of possible investigated paths for routes. This is because if mi ∈ M is being planned
for e.g. maintenance at τ + n,253 mi will be removed from Gu at τ + n. Future planned
occurrences are being considered in route planning. If a route cannot be executed at mi

before τ + n, the route finding message is dropped. The execution time is being locally
calculated at mi by using the static and dynamic costs, as explained previously. Therefore,
a planned occurrence of shutting down of mi can have an impact on throughput since a
potential route becomes unavailable.

On the other hand, an unplanned occurrence as a result of machine break-down, or
improperly handling of machines or containers results in an immediate or prompt shut-
down of the TU or PE. In contrast to a planned occurrence, an unplanned occurrence
is not being considered during route finding if the occurrence at mi happened after
proposing its costs to a feasible route rc. If during route selection based on feasible routes
Rc, a route rc is selected with mi /∈ Rc, the route can be executed properly. Otherwise,
if mi ∈ rc the route cannot be executed since the container c cannot be transported over
mi. Periodically PEs (mj,mk) check the existence of neighbors. Whether, a new route
has to be found or there is a systematic check of its existence, the occurrence of a missing

253The notation τ + n is used to show that a future event occurs at the time τ + n with the current
time τ .
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mi will be noticed. The latest possible time is the transmission of container data before
c is moved from its neighbor to mi. When the missing existence of mi is being noticed,
Gu is updated, and a detour is planned, as described later in sec. 7.4.4.

The removal of one TU or PE differs in whether a vertex or an edge in Gu is being
removed. This has as a consequence that all future snapshots Gτ have no information
about this vertex or edge. When the removal of one mi is noticed, the following steps
are taken:

• Every neighbor mj removes mi as a neighbor in its neighborset Nj.

• If no other route to a destination di except mi exists, the destination di is removed
at mj.

• After removing a destination di, every neighbor mj notifies its neighbor that it
cannot reach the destination.

• This destination removal is propagated as long as a detour exists at one mk to di.

• If a source receives the destination removal, it will no longer considers the destination
as accessible.

Since every neighbor mj of mi has mi removed, the newly generated Gu no longer holds
mi either.

7.2.4 Behavior with focus on Robustness

As mentioned in section 2.3 robustness of the protocol structure is defined as ensuring a
stable structure by adding and removing TUs and PEs without resulting in an undefined
state. A stable structure is a Gu that reflects the current system characteristics by
representing its mi either as a vertex vi ∈ Vu ∈ Gu or by folded as an edge ei ∈ Eu ∈ Gu.
On the other hand, an undefined state is a Gu that is missing mi or where mj still
exists as a vertex vi or within an edge ei that no longer exists, due to either planned or
unplanned occurrence.

As described previously with regard to flexibility in section 7.2.3, adding or removing of
mi affects the amount of |N |, N ∈ Gu and |E|, E ∈ Gu and an updated underlying graph
Gu. Since Gu is the basis for communication, the snapshot Gτ is affected. Therefore,



7.3 Validation of the evaluation of transportation units 123

new routes can be established by adding mi and routes are not considered anymore when
removed.

7.3 Validation of the evaluation of transportation units

This section assesses the local behavior of each TU and PE mi by validating the self-
evaluation of each mi. The self-evaluation is a direct input to the static costs SC, and
dynamic costs based on a future path estimation estCosts as described in section 5.2.
As mentioned earlier in section 2.3, the evaluation focuses on scalability, flexibility, and
robustness in terms of changes in dynamic graph G{0, . . . , T}. Since in every snapshot
Gτ ∈ G{0, . . . , T} differs from its predecessor Gτ−1 and successor Gτ+1 this dynamic
will be analyzed in terms of its effects on the static costs SC and dynamic costs estCosts.
Then, section 7.4 draws a conclusion about global behavior from the local behavior.

First, the following explains the parameters and assumptions used for the subsequent
validation. Afterwards, the behavior of the local scalability is analyzed to show that
a linear computation can be ensured independently of the size of the dynamic graph.
Then, the flexibility is validated to analyze the effects on local and dynamic costs of
adding and removing additional mj. Finally, the robustness of the costs is examined to
check the feasibility of the local Scheduler Si at mi.

7.3.1 Used parameters

The following parameters are used to evaluate the local behavior of TUs and PEs:

• While validating the local behavior, a ping of 20ms is simulated as a communication
delay between two mi and mj.

• If a sink d breaks-down, the container c is moved on to it, to ensure that no dead254

containers exists.

• During initialization, the number of sources and sinks is equal.

• φ = 1000 as the maximum value for route length

254Dead containers are containers without a destination.
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• ε = 1000 as the triggering value for calculating partial routes

Due to the high value of φ and ε, no partial routes are considered. Every route rc points
directly between the source mi and the destination d. The focus is on the analysis of the
local unit considering the effects of long routes.

7.3.2 Behavior with focus on Scalability

As mentioned in section 2.2.1, complex intralogistics systems have to handle the complex-
ity as the number of components rises. Since every mi lacks global system information, it
must to confide in a reaction to a query, e.g. route finding. Otherwise, it has to assume
a break-down when another mj does not respond in time. The response is being affected
by the distance between mi and mj and the local computation time of mj and every mk

in between of mi and mj.

Two main computations are done at mi: the first one is the local static cost SC de-
termination and the second one the dynamic cost estCost, which is an estimation of a
route from mi to the destination d. During both computations, it must be ensured that
the transportation of a container c can be executed. This transportation results in a
coordination effort between direct neighbors where the container will be handed over
from the predecessor mj to mi, and afterwards to the successor mk of mi. In addition,
coordination of the underlying graph Gu can arise due to changes in the dynamic graph,
as evaluated in the previous section 7.2.

First, the computation time for the static cost SC is analyzed, followed by the computation
time for the dynamic cost estCost. The static costs SC are evaluated by running several
routes with first increasing and secondly decreasing the amount of mj. Since TUs are
folded to an edge between PEs, it is shown that the complexity of the static cost SC
is independent of the amount of |M|. Instead, it depends on the complexity of the
underlying graph Gu and its number of vertices |Vu|, Vu ∈ GU .

The static costs, as explained in section 5.2.1, are defined as SC(c,m, l), with c as the
container to be transported at m with the operation sequence l. Assume a container c
has to be moved over a PE mi to a successor mj. Furthermore, l connects mi and mj by
a sequence of operations at mi. Since l = (o1, . . . , on) and every oi ∈ l a processing time
φmi,o is assigned, the sum

∑n
i=1 φmi,o is the constant time c needs to be moved to mj at

mi. Next to the constant time the median waiting time Ω̃m, is considered. Then, the time
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for computing the static costs SC is dominated by the sum of operations oi ∈ l which is
O(n), and the second term representing the median waiting time Ω̃m with a time of O(1).
This results in the overall time O(1 +N). Since a static computation time O(1) can be
neglected, the overall time is the sum of all times φ for each operation oi ∈ l, which is
O(n) for moving one container c over mi. Since the static costs SC are independent of
the size of Gu and its changes Gτ , a computation can be done and stored in the initial
phase for each neighbor. Then, the computation time during run-time is a search for the
stored static time SC for a neighbor mi and can be interpreted as a search for the correct
time. Search algorithms have been studied widely in computer science; for the sake of
simplicity and easy implementation here, the linear search is used with a run-time of
O(n) with n as the number of SC, which is equal to the number of neighbors |Nmi

| for mi.
Furthermore, since each neighbor has to be either folded to an edge eτ , e.g. bidirectional
TUs connecting PEs, or a vertex vi at snapshot Gτ , the number of neighbors at time
τ is |Nmi

| = |E|, E ⊂ Eτ , Eτ ∈ Gτ , E = (Ni, Nj), Ni ∼ mi ∨Nj ∼ mi, Ni ∈ Gτ , Nj ∈ Gτ ,
and therefore the complexity of searching for the static costs SC is the search task with
the worst case defined by the number of edges connected to the PE mi with maximum of
O(|Eτ |).

After the static cost SC, the dynamic costs estCost are computed to estimate the
duration of transporting c from the current investigated mi to its desired destination
di. This is done in two steps: the first step is to estimate the future costs from current
vi, vi ∈ Vτ ∈ Gτ , vi ∼ mi to vd, vd ∈ Vτ ∈ Gτ , vd ∼ d and the second is to use linear-time
slot determination to define the earliest starting time for transporting c. Therefore,
both vi ∈ Vτ ∈ Gτ ∧ vd ∈ Vτ ∈ Gτ have to be existing vertices in the current snapshot
and assigned to a PE vi ∼ mi and a sink vd ∼ d. The first step, the estimation of the
costs from the currently investigated mi to the destination d, is split in a lookup in the
stored experienced values which will be shared after successful transportation from mi

to d. Therefore, this lookup is done by a local search in the local routing table Rmi
in

O(log|Rmi
|). Similar to the lookup, if a destination d is reached by a container c on a

route rc, the update function is done in O(log|Rmi
|). This is because the value of the

destination d ∈ Rmi
is updated by pastCosts(rc) when mi ∈ rc. In addition, the current

mi passes the message with the costs pastCost(rc) to the neighbor mj with mj ∈ rc.

In summary the costs for computing the costs from mi to d for the static costs SC in O(E)
and in O(log|Rmi

|) for the dynamic costs estCost(rc,mi) . Since O|E| > O(log|Rmi
|),
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the amount needed to calculate the costs is O(|Eτ |) depending on the number of edges
Eτ ∈ Gτ .

7.3.3 Behavior with focus on flexibility

The local validation of the behavior in terms of the flexibility of one mi is split into the
following:

• Reacting to a changing surrounding such that other mj are being added, mk are
being removed.

• The behavior of mi is validated when entering the system by, e.g. being repaired
and afterwards added to the transportation network. This case starts the execution
of the initial entering protocol, as explained in section 7.2.3.

• The behavior of mi being removed from the system is not validated; it is assumed
that the future local behavior is not relevant, since mi does not contribute to any
future action in the system.

In addition, mi, with vi ∼ mi is assumed to be a PE, a bidirectional transportation unit
TE is folded to an edge ei and being controlled locally by the connecting PEs as vertices
vi and vj as ei = (vi, vj). Therefore, their behavior is limited in establishing a proper Gu

resulting in a functional snapshot Gτ , as described in section 7.2.3.

The first validation is the analysis of the behavior of mi and its counterpart vi ∼ mi in a
changing environment. Therefore, it is assumed that two sequential snapshots Gτ and
Gτ+1 represent a system change that directly affects vi ∈ Vτ which leads to Vτ * Vτ+1

with at least one vi ∈ Vτ ∧ vi 6∈ Vτ+1 or a connected edge ei = (vi, vj), ei ∈ Eτ * Eτ+1.
Adding one mj wherever as an edge ej ∈ Eτ+1 or a vertex vj ∈ Vτ+1 results in a change
done by the protocol as described in section 7.2.3, and results in an updated Gu by
establishing a communication between vi ∼ mi and vj ∼ mj. On the other hand, if the
newly added mj is a bidirectional TU that cannot connect an edge (vi, vk) with another
vj , then mj is ignored since this TU results in a dead-end for transportation. Since Gu is
established and a connection exists to vj ∼ mj by an edge ei = (vi, vj), mj is considered
along with its dynamic costs for reaching a destination d. All routes rc for a container c
are scheduled at Si and Sj in a subsequent order, as explained in section 5.1.2. On the
other hand, by removing an mk where an existing connection exists ek = (vi, vk) with
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vk ∼ mk, transportation is no longer possible. Furthermore, lets assume mi is the current
PE where the container c is positioned at the current time τ . Then, mi will delete all
its knowledge on mk and starts a reroute for c. In addition, the existing route rc is
removed from the scheduler Si and all future time-slots are representing other routing
are untouched. This is because that it cannot be assumed that a container will arrive
earlier if a route rc can be executed when an mk breaks down.

7.3.4 Behavior with focus on robustness

This section focus on the computed local transportation time and its difference to the
actual transportation time during run-time. To this end, the proposed system shown
in section 7.1.2 is simulated based on a random distribution on arrival and destination
selection. In total, 2,800 containers are simulated, which is the throughput of two hours
in the simulation model. To measure the robustness of local cost estimation from the
current mi to the destination d, one container moves at a time during evaluation such
that no blocking blurs the transportation time cost(rc) of container c when comparing
the previously estimated time estCost(rc) and its local static costs SC at each mi.

To measure the robustness, a metric is needed to represent the difference between the
real transportation time and the estimated transportation time. The following metric
expresses the difference between the two:

DiffCosts(rc) = estDuration(rc)− pastCost(rc) (7.30)

With estDuration(rc) as the previously estimated time for the route rc for container c
and pastCost(rc) as the real transportation time. The outcome is as follows:

estDuration(rc) = 0 : Estimation is equal to transportation.

estDuration(rc) < 0 : Transportation is higher than estimation.

estDuration(rc) > 0 : Estimation is higher than transportation.

Furthermore, if:
100

pastCost(rc)
∗ estDuration < 5% (7.31)
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the estimation is handled as correct. The 5% 255 threshold covers blurriness based on
waiting times. Such times are shorter waiting times due to minor blocking or caused by
unfinished state switches at mi for container c handling.
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Figure 7.8: Measured transportation time for one container c during simulation.
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Figure 7.9: Distribution of the transportation time cost(rc) of one container c at route rc.

Figure 7.8 shows the transportation times of each c respectively without any collision
between two container ci ∈ C and cj ∈ C. Figure 7.9 shows the distribution of the
transportation time. It is visually noticeable that the greater the distance |rc| between a
source mi and a destination d is, the fewer routes are created. The distribution suggests
that the transportation time is normally distributed among all distances |rc| by all routes
R. Then, the hypothesis is:

2555% is chosen based on the acceptance as a significance level from [QK02], pp. 46-69 and [Fun16],
pp. 1-13.
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bucket: 1 2 3 4 5 6 7
range: < 174 < 238 < 302 < 366 < 430 < 494 < 558
real: 22 139 246 293 303 280 251

expected: 128 132 144 190 233 268 288
quantities: 88.1 0.3 71.76 55.73 20.4 0.46 4.89

bucket: 8 9 10 11 12 13 14
range: < 622 < 686 < 750 < 814 < 878 < 942 < 1006
real: 249 222 146 174 121 111 92

expected: 289 270 236 193 147 105 69
quantities: 5.6 8.8 34.8 1.94 4.76 0.34 7

bucket: 15 16 17 18 19 20
range: < 1070 < 1134 < 1198 < 1262 < 1326 >
real: 81 33 14 11 5 7

expected: 43 25 13 7 3 1
quantities: 32 2.37 0.01 2.4 0.91 21.36

Table 7.2: Chi Square Test.

The transportation time is normally distributed.

This is based on the following assumption:

Every pair of sources and destinations (mi, d) has fixed trans-
portation time similar to the sum of n,m sided dice and should
be uniformly distributed.256 Pairs and their transportation costs
represent the number of dices and the cost the value one dice can
reach.

Therefore, a chi square test257 is conducted to test if the transportation time is normally
distributed. As shown in fig. 7.9, 20 buckets are used to summarize the transportation
time in 1 min bucket steps. To compute the respective expectancy values in seconds,
the arithmetical mean of x̄arithm = 560, the standard deviation sd[x̄arithm] = 244, the
minimum transportation time τmin = 127.5 and maximal transportation time τmax =
1434.25 are used.

256As investigated in [Gm199], [Con07], and [SR2]
257Pearson published the statistical hypothesis test in [Pea00] to check whether there is a significant

difference between two distributions.
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Then χ2 = 363 and with a degree of freedom df = 19 and significance level p = 0.05,
the critical value is 30.144. Since 363 > 30.144, the hypothesis that the transportation
time is normally distributed can be rejected, and no further assumptions can be made
comparing a normal distribution and the transportation time, such that no distribution
alone can represent a transportation task.
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Figure 7.10: Estimated times estDurationrc for a container c for a route rc.
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Figure 7.11: Distribution of estimated times for one container c prior routing.
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Figure 7.12: Difference between estimated time and simulation time.
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Figure 7.13: diffCosts in relation to transportation time.
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Figure 7.14: Distribution of estimated time estCost for one container c prior to routing.
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Furthermore, fig. 7.10 shows the estimated time of transportation estDuration(rc) in
relation to the container c. It consists of the static costs SC representing the local
movement of c at mi and its duration estCost to the destination d.

Fig. 7.12 shows the difference diffCosts(rc) while fig. 7.13 shows the difference respective
to the transportation time and fig. 7.14 its distribution. As previously mentioned,
a correct value statement is that if the difference diffCosts(rc) is below 5% of the
transportation time, the estimated time estDuration(rc) is being assumed to be correct.
In total, 1,089 estimated transportation times are correct, representing 38.89% of all
transportation tasks. It can be seen that the longer the transportation is, the greater
the difference between the real transportation time pastCost(rc) and estDuration(rc) is.
It can also be seen that the difference diffCosts(rc) increases with the transportation
time pastCost(rc) which is directly related to the transportation duration |rc|, with a
minimum of −2.76 and a maximum of 0.71 minutes. This is due to the cumulative
waiting time caused at mi ∈ rc and state switches. Since only one container ci at a time
τ exists, it can be ruled out that any blocking by other containers cj occurs.

Table 7.3 provides a summary of the simulation. The next part of the analysis serves to

Description Mean Median Std. Deviation
route length |rc| 47.23 44 23.99

transportation Time [min] 9.3 8.73 4.02
estCost [min] 9.9 9.33 4.42
diffCosts [min] -0.6 -0.52 0.5

diffCosts in percentage
to transportation time -6.43 % -5.91 % 12.39 %

Table 7.3: Summary of transportation times in the simulation to evaluate the robustness of
local transportation costs.

determine the blurriness of the transportation time pastCost(rc) which influences the
estimation time estDuration(rc).

Every transported container c at one mi has to pass several states combined in one flow
fi to reach the next step mj defined in the corresponding route rc. A flow fi consists
of a sequence l with states representing the low-level operations at one mi to move a
container c to the next mj. Therefore, the assumption is that a waiting time occurs
during movement in front of mj at mi because of the current state of mj does not allow
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a proper movement of c, e.g. the current state of mj is an intermediate state that is
needed for preparation before handling a container c.
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Figure 7.15: Waiting time of c during transportation with rc.

The waiting time of c during transportation at rc is given in fig. 7.15. Every container
has to wait at least once in front of one mj. The mean waiting time is 1 min and the
median 0.91 min, and the standard deviation was 0.42 min. On average, the waiting time
is 10.7% of the transportation time. As shown in fig. 7.16, the waiting time increases
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Figure 7.16: Route length |rc| in relation to the overall waiting time of c during transportation.

with the route length. This leads to the assumption that the longer the route is, the
more unpredictable it becomes. The longer the route |rc| is, the larger the difference
diffCosts becomes. This is due to the state switches of mj before it is able to handle c at
its predecessor mi. Therefore, an improvement can be established by a self-optimizing
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method locally, which triggers the switching to the right handling state before c arrives.258

In addition, fig. 7.17 shows the increasing of diffCosts in relation to the waiting time. It
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Figure 7.17: diffCosts in relation to the overall waiting time of c during transportation.

can be seen that clusters are formed and manifested as lines. Each cluster represents one
group of sources and sinks in the simulation model. Both diffCosts and the waiting time
grow linearly.

This section has shown that each independent transportation unit is able to evaluate itself
during run-time and to contribute its knowledge to find a route. All route queries result
in one route rc which is used to transport c. However, the longer the route |rc| becomes,
the more unreliable the transportation becomes. This can lead to potential blocking when
inverse flows exist at one specific route. Therefore, the next section considers multiple
transported containers ci during one times-slot τ . Then, the introduced method must
show that inverse flows can be handled by dissolving the situation with valid actions.

7.4 Validation of routing with local information

Having evaluated the protocol‘s functionality and the local cost estimation method, this
section now assesses the routing itself. Similar to the previous sections, the focus is on
scalability, flexibility, and robustness. To enable a routing, the core methods to select
and execute a route rc are first path determination, the path selection, and subsequently

258This low-level optimization is out of the scope of this work; which would optimize every local mi

on the field level.
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the execution itself. As mentioned previously, the path determination finds possible
routes Rc for a container c which is evaluated among all PE vi ∼ mi such that the overall
available computational power is used. Each vi reduces the number of |Rc| of possible
routes in Rc for c to one candidate rc, which represents the route (mi, d) from its current
position to the destination. This decision is spread to the next neighbors mj ∈ N and
mj /∈ rc, such that no recursive path exists. Each vi to the source where the container c
arrives for transportation repeats this procedure until the source makes the final decision
to determine the final route rc ∈ Rc to use for transportation.

This section is split into three subsections. The first provides an overview of the used
parameters. Afterwards, the scalability is evaluated. This is followed by a discussion
of flexibility by adding and removing mi during run-time. Finally, the robustness is
evaluated by analyzing the behavior of the method when transporting multiple containers
C in one time-slot τ .

7.4.1 Used Parameters

To evaluate the routing, the following parameter are used:

• While validating, the local behavior a ping of 20ms is simulated as a communication
delay between two mi and mj.

• If a destination d breaks down, the container c is moved to the destination, to
ensure that no dead containers exists.

• During initialization, the number of sources and sinks is equal.

7.4.2 Scalability

Scalability of the routing is needed if highly complex networks are considered. An
old-fashioned approach of storing and distributing all necessary information to each
entity would result in either information collapse or endless storage capacity. To reduce
and even improve the scalability of the necessary information for proper routing without
deadlocks and with reduced blocking, two attributes have to be defined prior to system
run-time. Each unit mi stores the value of both attributes and uses it to determine the
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amount of spread information in the network and distance in the network relative to its
position vi ∼ mi.

These attributes are ε and φ as described in algorithms 3 and 6 for route determination
and route reservation. Shortly, ε defines the maximum route length of rc for all possible
routes in the system during run-time, and φ sets the triggering point to start computing
the next partial route at vi ∼ mi when container c is at mi. The assumptions are:

• ε =∞, so the route rc covers the whole length from the source mi to the destination
d for c.

• ε < 1 is illegal because then only routes of length 0 would exists and no routing
would be possible.

• 0 < ε < ∞ to find an optimal value that is not too high, such that a newly
calculated route mostly the current status of the partial system affecting the route,
and not small enough to create an high overhead in route determination.

• φ < 1; after the first transportation of c at rc, the next partial route is calculated.

• φ = ε, when c arrives at the end of rc the next partial route is calculated.

• φ > ε, is illegal as then no additional partial route would exists and c would be
stand still at the end of rc.

These assumptions are the basis for evaluation.

To evaluate the effects of ε and φ three simulations are run. The first one is based
on Dijkstra to determine the underlying costs to a destination d from every mi, and
afterwards, A* to determine the route from a source mj to a destination d. Since A* is
defined as f(x) = g(x) + h(x) it is parameterized by x = ni ∼ mi with g(ni) as the costs
from the source mj to mi and h(mi) as the costs to the destination estCosts(rc), with rc
as the estimated costs for the route from mi to d. Since A* cannot react to changes over
time in the graph Gτ a weighted transformation is previously defined by assigning each
line in the simulation model (see fig. 7.4) a fixed direction.

The second evaluation for comparison is almost the same as the previous simulation in the
previous section 7.3.4, with the difference that a fixed combination of ε and φ is evaluated.
Since only one container is transported during one time-slot τ , the transportation time,
estimated time, and route length are determined. Especially the route length is of interest
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since it has a direct effect on the transportation time and is controllable by ε with the
maximum route length for a partial route rc and φ as the starting point at ni ∼ mi to
compute the next partial route.

The last part has the same setup as the second one, with the difference that 100 containers
for each fixed combination of ε and φ are been simulated. Therefore, blocking has an
influence on transportation as well.

The result of all three experiments are shown in table 7.4.

Evaluation A* Single
Container

Multi
Container

Transportation
Time

Mean 9.44 9.27 9.63
Median 9.03 8.73 8.99

Std. Deviation 4.1 4.04 4.5

Estimation
Mean 8.94 9.48 15.94
Median 8.55 8.83 10.04

Std. Deviation 4.25 4.17 27.37

diffCosts
Mean 0.5 -0.22 -6.31
Median 0.54 -0.44 -0.62

Std. Deviation 0.37 1.45 26.37

Delta in %
to Trans Time

Mean 5.27 -2.33 -65.47
Median 5.98 -5.06 -6.85

Std. Deviation 9.02 36 585
Table 7.4: Summary of the comparison between A*, single- and multi-container simulation

with best value highlighted.

In almost all cases (marked as gray), the introduced method outperforms an A* routing
based on an initial Dijkstra distance computation. Mainly the standard deviation is
significant lower for the delta between the estimated time and the actual transportation
time, which leads to the conclusion that A* as a reference is more stable that the
introduced method in terms of a prior estimation of the behavior in transportation to
the introduced method.

On the other hand, the average transportation time is on average 1.8% shorter for a
single container and 2.01% longer for multiple containers in average compared to A*.
This higher average transportation time for multiple containers is due to the waiting
estimation, which influences the costs for one route rc to a destination d during run-time.
Whereas A* only takes static routes from one source mi to a destination d, the introduced
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method varies the route rc from similar sources to a destination based on prior waiting
time at rc. Especially the multi-container simulation shows a high standard deviation,
resulting in a large difference between the average and median time estimations prior to
run-time. This result is caused by high ε and low φ as a setup prior to system run-time. A
high ε results in long routes |rc| and more unpredictability as seen in the larger difference
between the transportation time and estimated time. This unpredictability is a cause of
long routes that are defined once before routing. Afterwards, during routing, no changes
are made to rc as long as no mi breaks down. Thus, new containers enter during run-time
and are routed along existing routes; and in a few cases, a blocking is forced to avoid
deadlocks. Secondly, a low value for ε results in a faster computation for the additional
partial paths to the destination d. Since ε is the index limiting the maximum length of
rc, the additional partial path will be computed when ε = 1 at the first mi in rc. Section
7.4.4 offers a deeper insight into container c blocking correlation and transportation
based on existing rc, even at fixed routes, and why a blocking resolving method is needed
to ensure a deadlock-free routing. Nevertheless, this method results in additional waiting
times for this kind of ε and φ constellation. Table 7.5 provides an overview of the number
of partial paths in relation to ε and φ, and in addition, the transportation time can be
found in table 7.6. As shown in table 7.5, with a ε ≥ 45 on average two partial routes rci

and rcj
for a container c to arrive at d.

ε\φ 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00
10,00 4,82
15,00 3,71 3,43
20,00 2,76 2,74 2,82
25,00 2,40 2,38 2,36 2,51
30,00 2,18 2,28 2,32 2,20 2,23
35,00 2,06 2,14 2,10 2,08 2,06 2,06
40,00 2,02 2,00 2,00 2,00 2,00 2,00 2,00
45,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00
50,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00
55,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00

Table 7.5: Average number of partial routes needed from a source mi to a destination d in
relation to ε and φ.

It has been shown that the scalability in route determination is determined by the
combination of ε and φ which varies from project to project. There is no overall
project-independent optimum for a real project, a decision must be made in terms of
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ε\φ 5 10 15 20 25 30 35 40 45
10 10.07
15 10.30 10.01
20 9.33 9.56 9.38
25 9.43 8.94 8.92 10.04
30 9.32 9.57 10.50 10.00 9.60
35 9.82 10.02 9.69 10.06 9.56 9.35
40 9.68 10.05 9.17 9.30 9.60 9.86 9.63
45 9.73 9.60 9.84 9.20 9.15 10.46 9.92 9.09
50 9.74 8.89 10.08 9.74 9.72 9.76 9.56 9.23 10.00
55 9.19 9.16 9.94 9.72 9.68 9.62 8.92 9.42 10.01
Table 7.6: Measured mean transportation time for φ and ε combination.

communication effort and transportation time, which are inversely proportional. Next,
section 7.4.3 analyzes the route rc in terms of its behavior in a dynamic system and its
effects on the transportation time by adding and / or removing mi and interfering with
containers during run-time.

7.4.3 Flexibility

To enable flexibility, bypasses are used when a path is exhausted, which results in a load
balancing within the transportation system. During the evolving time τ , the method
learns, based on the current waiting time, which partial routes not to consider until the
bypass has reached a specific amount of waiting time that is higher than to the previous
one.

Let two routes rc1 and rc2 for c1 ∈ C, c2 ∈ C exist. As shown in the previous section,
if ε259 has a high value such that fewer partial routes are needed, then the probability
increases that an overlapping rc1 ⊂ rc2 exists, with an additional likelihood, that inverse
flows occur. During routing, three scenarios cause a waiting time at mi ∼ vi:

• mi is not ready for container c1 handling; it has to switch to a certain state first.

• mi has to handle a previously arrived container c1.

• mi operates a container c1 moving in the opposite direction, in an inverse flow e−1

to e.

259Since ε defines the maximum length of all existing and future routes |rc|
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In the first two cases, the container c2 waits in front of mi and can be operated in a
queued manner.260 It is assumed that the waiting time is short compared to the third
case. In the latter, where an inverse flow e−1 exists such that e−1 ∈ rc1 ∧ e ∈ rc2 , the
partial route between the current position of c2 at mj and mi is being blocked for c1

and its flow direction such that c2 cannot move. Therefore, it is assumed that this
waiting time is the longest since all operational times at each mk between mi and mj are
cumulative as waiting time for c2 before it can be transported.

Based on the insight obtained in the previous section, the constellation of ε and φ with
ε = 50 and φ = 10 is set for the next simulation run. The results are shown in table 7.7.
Similar to the previous multi-container simulation, a high standard deviation is measured

Mean Median Std. Deviation
Transportation Time 9.53 8.81 4.37

diffCosts -3.64 -0.81 8.55
Waiting Time 1.21 0.94 1.3
Table 7.7: Simulation results for flexibility analyses.

in transportation time and diffCosts. This is a result of the flexibility of the introduced
method to dissolve inverse flows e−1 by determining the route while considering time-slots
of other containers c during route determination. The consideration of every time-slot is
a local optimization by determining the local static costs SC as described in section 5.2.1.
First, the costs of the flow e as inbound and outbound at mi are calculated and the local
scheduler S analyzed by checking any inverse e−1 of e. If e−1 exists, a check is made
to see whether e can be scheduled first by checking buffer(jc1,mi

, jc2,mi
) of the jobs jc1,mi

for e and jc2,mi
for e−1. If so, the job is scheduled before if a free time-slot exists, and

otherwise it is scheduled afterwards. In addition, the load balancing is being controlled
by the waiting time Wi at mi and route time estimation estCost to the destination d

based on previous routing‘s pastCosts. The simulation shows that four types of load
balancing occurred based on Wi and estCost.

In fig. 7.18a, only the partial example route rc1 = (m1,m2,m3,m6) is being used only.
This happens because estCost(rc1) is the smallest for c1 and all future containers cn that
need to be transported between m1 and m6. If route rc1 is overloaded due to an arbitrary
number of containers causing an increase in a higher SC at m2 or m3, the parallel route

260e.g. waiting list of containers at mi.
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Figure 7.18: Possible flow arrangements during transportation.

rc2 = (m1,m4,m5,m6) is used when estCost(rc2) < estCost(rc1) while time τ increases
the waiting time at each partial route rc1 and rc2 changed until it harmonizes such that
during each time switch τ + 1, the routing switches between rc1 and rc2 . In more complex
transportation systems, inverse flows exists, as shown in fig. 7.18c. Here, the previously
introduced partial routes become equal in terms of their transportation path but not
transportation time. Whether route rc1 or rc2 is served first depends on its arrival time
at m1. The third route with an inverse flow from m6 to m1 through, e.g. m5 and m4

causes the partial path to be blocked for the time-slots ti, . . . ti+j from the start-time
α ∈ ti and end-time β ∈ ti+j. Afterwards, newly arrived routes rci

are able to redirect
the path respective to their transportation path. The case in fig. 7.18d is handled almost
identically to the case in fig. 7.18c, except that because there is only one existing path,
each container c is handled in a first-come first-server manner, which causes high waiting
time, since no convoys are being considered. Here, one path is not accessible due to a
break-down of, e.g. m3. If a handled container c exists from m2 to m3, it is rerouted
through the existing path through m1,m4,m5 and finally arrives at m6. This rerouting
causes a significant increase in transportation time.

In the simulation run, the average waiting time is 1.21 minutes with a standard deviation
of 1.3 minutes. The higher waiting times are caused by inverse flows or sequential flows
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respectively to their transportation path due to a break-down. The minimum waiting
time is 0.01 minutes, caused by a unidirectional flow and a few state switches at mi. The
maximum of 20.19 minutes is caused by a break-down and cost-intensive rerouting at
mj.

Since the introduced method has the flexibility to react to certain situations such as
inverse flows and break-downs of transportation units, a robustness check within inverse
flows must be made to ensure a deadlock-free movement. Therefore, the next section
analyzes the behavior in communication and conflict resolving when two containers c1

and c2 arrive at mi and mj and form an inverse flow situation and potential deadlock.

7.4.4 Robustness

Since inverse flows and break-downs exists in complex transportation systems, a part
of the introduced method is responsible for transportation robustness. As introduced
earlier, robustness means ensuring a deadlock-free routing while both situations, inverse
flows and break-downs, occur. This is done by partial blocking of paths such that no
edge can be shifted in the dynamic graph extracted from the underlying communication
graph. Therefore, a part of the network is blocked for one direction only during a time
slot τ .

In the simulation run, introduced in the previous section, in total 14.22% of containers
were blocked due to potential deadlocks caused by regular inverse flows or break-downs.
The effect was an inverse flow to dissolve the dead-end at the break-down of mi. The
simulation gave the insight that a distinction can be made between planned and unplanned
inverse flows. Both have to be treated as the highest priority during run-time to ensure
a deadlock-free system. The introduced method handles both cases as follows:

• Planned inverse flows: The containers at the partial path are moved in a first-in,
first-out manner.

• Unplanned inverse flows: A rerouting occurs when mi has been investigated and a
new route has been planned and new inverse flows are treated as planned inverse
flows.
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Figure 7.19: Cases of inverse flows handled by the introduced method.

Fig. 7.19 visualizes the two cases, planned and unplanned are visualized. First, in fig.
7.19a, the southern route (m6,m5,m4,m1) is being defined in the graph Gτ within the
time-slot t = (ei, τ, β) such that the flow direction for the partial graph from m6 to
m1 through m5 and m4 is available at least until time β. Therefore, Gβ with τ < β is
particularly unchanged. It is very likely that future containers c will be moved from
m6 to m1 through this route. This is because the static costs SC for these four TUs
are reduced since they are already in a state that allows the movement in the correct
direction. Furthermore, the estimated costs to the destination d from m6 are smaller
compared to the northern route (m6,m3,m2,m1) which considered inverse flow with the
consequences in a higher waiting time Wm6 . In addition, in fig. 7.19b time is advanced
to τ + 1 and no transportation is made from the east m6 to the west m1. Therefore, the
south partial route edges are redirected to reduce the flow in the northern route. This is
triggered by the transportation costs estCosts for routing at the northern route which is
higher compared to the southern route. This happens when a specific path, e.g. northern
route, is overloaded with transportation tasks. The waiting time Wi then increases at
each mi and the overall costs for a route increase as well. Since the southern route is not
used, a break-even point is reached such that the waiting time Wj < Wi is higher.
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Unplanned inverse flows behave in a similar way as planned inverse flows. The main
difference is their occasion. It is not possible to foresee when they will occur. Fig. 7.19c
illustrates regular transportation selection tasks. Here, during route determination, the
northern route rc is selected as the shortest route in Rc. The container c is moved
until it reaches m2. At this location, its successive neighbor Ni the connected TU m3

breaks down such that c cannot be transported at rc. The neighbor m3 is removed
from the underlying communication graph Gu and dynamic graph Gτ+1 so that it is not
being considered in any route determination, as shown in fig. 7.19d. Now, the existing
container c is treated as a new arriving container c + 1 arriving at m2 at time τ + 1,
which is the current time, or in other words, the container c+ 1 arrives immediately and
has to be routed directly. The newly determined set of potential routes Rc+1 contains at
least one less route compared to the previously determined set due to the break-down of
m3, which formed the previously shortest route rc. The newly determined route in rc+1

uses the southern route, but first the edge e = (m2,m1) is formed in Gτ+1 by planning
the newly inverse flow. Further actions are being similar to the planned inverse flows,
since due to the break-down the unplanned inverse flows are scheduled at each mi as a
new route with their new times-slots for the invalid route through m3 are deleted.

7.5 Evaluation conclusion

The following discusses the insight obtained from the evaluation of the introduced method
regarding each sub-module in terms of scalability, flexibility, and robustness. The first
part of the evaluation focused on the underlying protocol, which serves as a basis for
the routing determination and execution. Afterwards, the local determination was
analyzed to validate its behavior based on partial information computed without any
communication to neighbors. Then, experience about local states have been estimated
based on experience values, collected after successful routings. Finally, the third section
focused on the final route determination by selecting the most promising candidate of
feasible routes without global state knowledge of the system. The three parts are directly
connected. Therefore, this section provides insight into the whole system considering the
local observations in the previous sections.

Scalability
Since current transportation has become larger and more complex, a method is needed
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that does not rely on centralized computational power. This monolithic concept is
reaching its bottleneck in computational power and investment costs. The method
introduced in this work is capable of linear scalability based on the number of used TUs
for transporting a container c within the system. After the initial needed underlying
graph Gu is created, the communication between mi and mj is established, and both can
organize the route finding, transportation, and resolving of conflicts independently of the
other part of the system. In addition, the proposed method provides the possibility of
parallel computations not related to one central unit. This computation can be used for
transportation and route determination separately from the rest of the system. Therefore,
each unit stores its own status and information needed for these two specific tasks.

The decentralized approach leads to local optimization by only considering a partial view
of the system. This optimization does not need to lead to global optimization since each
mi is only interested in its local transportation execution.

Flexibility
Break-downs occur in modern transportation systems due to their high level of automation
controlled by, e.g. PLCs that directly influence the motor by sensor data and high-level
material-flow systems. These motors, sensors, and software are fault-prone and can
cause the break-down of a whole transportation unit mi. Nevertheless, the real cause
of a break-down is that mi is not usable and therefore the transportation operation
not executable. The introduced method handles a break-down as a new starting point
for route determination and execution. All past routing information in rc is deleted
by distributing the information of a break-down and corrupt transportation path.261

Then, the current mj where the container c is currently located triggers a new route
determination, collecting all candidates Rc by acting as a new source while keeping the
previous destination d of c. Afterwards, in a similar way, a new route rc+1 is selected
and being executed.

On the other hand, due to the learning mechanism based on the waiting time Wi at each
mi, the method reacts to overloaded paths by using parallel paths when the waiting time
Wj reaches a break-even point such that Wj < Wi. This causes the usage of parallel
paths by using the internal load balancing method.

261A corrupt transportation path, is a path that cannot be handled, e.g. due to a break-down.
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Robustness
While scalability makes it possible, independently of size, to provide an acceptable set of
routes Rc for a container to select the most promising candidate, the flexibility enables
the reaction to changes during run-time by providing a detour by load balancing and
rerouting if a break-down occurs. Still, especially when considering inverse flows and
break-downs, each unit must react robustly when handling a solution by detouring or
rerouting based on the system‘s current status. This robustness ranges from stabilizing
the underlying graph Gu to extracting it to a new dynamic graph Gτ and proper execution
of transportation tasks without the occurrence of deadlock. The results of this robustness
is higher transportation times, as shown in section 7.4.4 in average 14% higher compared
to regular transportation with a high standard deviation. Therefore, it is difficult to
estimate the transportation time beforehand, without knowledge of the break-down
times, which are not considered in this method.



147

8 Conclusion

The goal of this work was to provide a methodology to decentralize the computation and
execution of dynamic transportation networks so that parts of the network‘s TUs can
compute and execute routes independently based on local computation. This localized
computation, which is detached from global state knowledge, enables a scalable, flexible,
and robust features. The object of reflection and basis for the evaluation was a globally
acting intralogistics supplier, specialized in custom-tailored transportation networks.
The proposed method makes it possible to reduce the overhead in software development
and to commissioning on material-flow, such that each TU is organized decentrally and
operates one program only, enabling the system structure detection and operations.

8.1 Summary of the work

As introduced in sec. 2.3, a special focus was placed on the scalability, flexibility, and
robustness of the decentrally operating and computing routing method. Each of the
three attributes were defined and investigated for each of the three parts of the routing
method. These parts are the underlying protocol as a basic structure, as defined in
section 5.1; local information collecting and self-evaluation, as described in section 5.2;
and finally, the determination of a set of routes, candidate selection for routing, and the
execution itself, as described in section 5.3.

It was shown, that compared to the existing methods reviewed in section 3.1, the
introduced method not only operates on a decentralized transportation network but is
also able to operate in a decentralized manner. Thus, compared to other methods, a
single unit is not responsible for information collection and decision-making which is
the opposite of a centralized approach. A part of the system makes a singular decision
in a decentralized manner and provides the information to affected decentralized units,
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which are a part of the route determination. Later, when routing is executed, each
transportation unit handles tasks independently to its responsibility such that other
parts are unaffected.

8.2 Limitations

The goal of the proposed methods is to provide a decentralized computation and execution
of routing in a decentrally organized dynamic transportation system. As mentioned in
section 2.1, there is a heterogeneous structure of possible constellations with motors,
sensors and their interactions exist. Therefore, in the introduced method the static costs
SC at each mi represent the costs in a broad, abstract way such that specific peculiarities
are not being reflected and causing waiting time Wi at each mi. These peculiarities
are the cause of waiting time when only one container is being routed at a time τ , as
shown in section 7.3.4. Furthermore, the introduced method does not consider a local
optimization based on future operations, such that no tasks are reorganized to increase
the transportation time. The time-slot at each mi is scheduled in a first-come first-serve
manner. If an available time-slot is being found it is blocked for the transportation of c
without considering other transportation except inverse flows, as introduced in section
5.1.2.

Global optimization of the communication overhead is not considered. The communi-
cation and the route length which are defined with ε and φ as introduced in section
5.3.1. The results in section 7.4.3 showed that a global setting for ε and φ does not cover
peculiarities of subnetworks within the dynamic network. The combination of ε and φ
may be near optimal for the network as a whole for a specific time but does not have to
be a local optimum in time for specific parts of the network.

The overall throughput of the system is not optimized since the scope of this work is to
provide a method that enables feasible routing in a decentralized computational manner
in a decentralized dynamic transportation network. In the worst-case scenario, at an
edge e with an inverse flow e−1, every container c is transported respectively in a zig-zag
manner, such that first the container at e, then e−1, e, etc. is moved. Convoys are not
being considered, as shown in section 7.4.4.
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8.3 Future work

Future work should examine and resolve the limits introduced in section 8.2, with a focus
on optimization in terms of throughput of the method. This work has introduced the first
step for a fully decentralized operating routing; in a second step, the optimization and
further generalization can be built on. A further specialization would not be expedient
since it would result in a specific transportation system focused on one project. Therefore,
an examination of other insight of other transportation domains should provide insight
into a broader generalization.

The local optimization at one TU should be an optimization of the local scheduler such
that a rearrangement of tasks, e.g. to form convoys, enables higher throughput. Still,
inverse flows and neighbor‘s schedulers must be considered, since parallel routes can
exist. Therefore, a local optimization can be increased to partial network optimization
instead.

To increase the overall throughput, a dynamic arrangement of the maximum route length
and its trigger for rerouting can be localized. Each different TU could optimize its
combination of length and trigger such that local peculiarities are being considered. It
could be identified that this combination varies depending on the situation of the partial
network being influenced by the TU. The overhead of the paths is particularly crucial.
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