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Kurzfassung

Kissenplatten-Wärmeübertrager (KPWÜ) bestehen aus einem Paket von Kissenplatten,

welche durch ihre wellige “kissenförmige” Oberfläche und vollständig verschweißte Konstruktion

gekennzeichnet sind. Sie stellen eine vielversprechende Alternative zu konventionellen Apparaten

für die Prozessindustrie dar, jedoch verhindert der Mangel an veröffentlichten Auslegungsgrund-

lagen ihre verbreitete Anwendung. Das Ziel dieser Arbeit ist es daher, diesen “Engpass” durch

die Bereitstellung neuer Dimensionierungsgleichungen für die thermohydraulische Auslegung

von KPWÜ zu überwinden.

Insbesondere werden die Fluiddynamik und der Wärmeübergang in KPWÜ im Detail mit-

tels Computational Fluid Dynamics (CFD)-Methoden untersucht. Die komplexe Geometrie

der Kissenplattenkanäle wird mit Hilfe von Verformungssimulationen, welche auf der Finite-

Elemente-Analyse (FEA) basieren, erzeugt. Mit dieser Methode ist es möglich die reale

wellenförmige Oberfläche von Kissenplatten genau nachzubilden. Im nächsten Schritt wird

eine umfangreiche CFD-Studie zur Fluiddynamik und Wärmeübertragung in den inneren sowie

in den äußeren Kanälen von KPWÜ durchgeführt. Die CFD Simulationen werden mit Hilfe

von drei Versuchsanlagen, zwei für die Untersuchung der Strömung im inneren Kanal und eine

für die Untersuchung der Strömung im äußeren Kanal, validiert. Die validierten numerischen

Ergebnisse werden verwendet, um Auslegungsgleichungen für den Druckverlustbeiwert sowie

für die Nusselt-Zahl für erzwungene turbulente Strömung in KWPÜ zu entwickeln.

Abstract

Pillow-plate heat exchangers (PPHE) comprise a stack of pillow plates characterized by their

wavy “pillow-shaped” surface and fully welded construction. They represent a promising alter-

native to conventional equipment for the process industry; however, the lack of published design

methods hinders their widespread application. This work aims at overcoming this “bottleneck”

by providing new equations for the thermo-hydraulic design of PPHE.

In particular, fluid dynamics and heat transfer in PPHE is investigated in detail using Compu-

tational Fluid Dynamics (CFD) methods. The complex geometry of the pillow-plate channels

is generated using forming simulations based on Finite Element Analysis (FEA). This method

provides an accurate reconstruction of the real wavy surface of pillow plates. In the next step, a

comprehensive CFD-study of fluid dynamics and heat transfer in the inner and outer channels

of PPHE is performed. The CFD simulations are validated using three experimental facilities,

two for the investigation of flow in the inner channel and one for the investigation of flow in

the outer channel. The validated numerical results are then used to develop design methods for

pressure loss and heat transfer for turbulent forced convection in PPHE.
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strömungen und Wärme- und Stoffübertragung, Fulda, 2014.
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1 Introduction

Increasing the energy efficiency of production processes in the process industry (energy, chem-

ical, pharmaceutical, steel, etc.) represents one of the key measures to reduce anthropogenic

greenhouse gas emissions, especially of carbon dioxide (CO2). According to a report from the

German federal environment agency (www.umweltbundesamt.de), in the year 2014, the energy

sector was responsible for about 39% and the industrial sector for about 21% of the total CO2

emissions in Germany. The total energy demand of the German chemical industry amounted to

185 TWh in 2009, which corresponded to approximately 8% of the national energy consumption

and to approximately 30% of the consumption of the manufacturing industry (Fig. 1.1 (right)).

An estimated 44% of this demand was related to evaporation processes. Consequently, thermal

processes can be considered as the most energy-intensive. Therefore, an increase in heat transfer

efficiency in such processes has a high saving potential for energy and resources.

Figure 1.1 shows a photo of a typical chemical production plant. It consists of a number of

so-called “unit operations”, which represent the building elements of such a plant. These units

may be distillation columns, reactors, membrane modules and so on, but most of them are heat

exchangers. The latter account for 30 − 60% of all apparatuses in thermal production plants.

Figure 1.1: Photo of a chemical production plant (photo: www.quora.com/what-jobs-do-
chemical-engineers-do, accessed 26.09.2018) and breakdown of energy usage accord-
ing to the different industry sectors in Germany for the year 2014 (adjusted from
[1]).



2 1 Introduction

Consequently, improvement of thermal efficiency through, e.g. innovative equipment designs,

offers an enormous potential for increasing the energy efficiency in the process industry.

Many new heat exchanger types have been proposed over the years, whereas pillow-plate heat ex-

changers (PPHE) represent one of the most promising designs for the future. The problem most

new technologies, such as PPHE, face when entering the market is the lack of proven (thermal)

design methods as well as reference applications proving their performance. The development

of such design methods requires knowledge (data) of fluid flow and heat transfer in the new

equipment for a large range of operating conditions and geometrical variations. While such data

is commonly obtained by experimental methods, experiments are costly, time consuming and

potentially dangerous in cases where measurements must be performed at high temperatures,

high pressures or with hazardous media. An alternative to experiments are numerical methods

involving Computational Fluid Dynamics (CFD) simulations. CFD is faster, more flexible and

cheaper than experiments and provides detailed information on flow fields not easily obtainable

experimentally. It is a method that can tackle complex flows in complex geometries, such as in

the channels of PPHE. This insight led to the topic of this work, namely, the utilization of CFD

methods for the study of fluid dynamics and heat transfer in PPHE, with the aim of developing

accurate design methods for this promising equipment.

1.1 Motivation and structure

A major part of this work was performed during the joint project InnovA2 (www.innova2.de)

funded by the German Federal Ministry of Education and Research. It was focused on the

promotion of innovative heat exchanger technologies with a high energy saving potential, such

as PPHE and finned tubes. The project involved 17 partners, from 5 universities (including

Paderborn University) and 12 industrial partners (Bayer AG, Linde AG, Evonik AG and Lanxess

AG, just to name a few). The Chair of Fluid Process Engineering at Paderborn University

was responsible for the experimental investigation of the thermo-hydraulic characteristics of

pillow-plate condensers (used as top condensers in distillation columns). The aim of these

studies was the development and dissemination of first design methods for PPHE. As mentioned

above, experimental methods are often time consuming, costly and inflexible. Therefore, CFD

simulations were used complementary to the experiments to expand the acquired knowledge

(from the experiments) over a greater range of operating conditions and geometrical variations.

Since the chapters in this thesis are strongly coupled, it is not recommended to skip sections and

start reading somewhere in the middle. The reader is advised to read the thesis from beginning to

end. A short overview of the structure of the chapters is given below for the readers convenience.

Chapter 2 presents a literature review on PPHE, which shows the state of the art and the

motivation for this work. Background information needed for understanding the CFD methods

used in this thesis are shown in Chapter 3.

Since the prerequisite for the realistic description of the fluid dynamics in pillow-plates is an

accurate reconstruction of the complex pillow-plate channel, Chapter 4 deals with the genera-

tion of the wavy PPHE surface using forming simulations. In Chapter 5, fluid flow and heat
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transfer in the inner channels of PPHE are investigated for a wide range of geometrical pa-

rameters, Reynolds numbers and Prandtl numbers, while the CFD simulations are validated

against experiments. In Chapter 6, the fluid dynamics and heat transfer in the outer channels

of PPHE are discussed, while again validating the CFD simulations against experiments. The

results gathered in Chapters 5 and 6 are used in Chapter 7 to develop design equations for the

determination of pressure loss and heat transfer coefficients in PPHE.





2 State of the art

This chapter provides an outline of the state of the art in heat transfer equipment. This is

followed by the introduction of pillow-plate heat exchanger (PPHE), including a short literature

review concerning the most important findings preceding this work.

2.1 Heat exchanger construction

Heat exchangers form the basis of most thermal process; they are encountered in many different

industry sectors, such as, energy, chemical, pharmaceutical, food, transportation etc. Many

different types of heat exchangers are available on the market. Some of them are summarized

in Fig. 2.1 according to their construction.

The most common designs found in process industry are: tubular and plate-type heat exchangers.

From the tubular-type constructions, shell-and-tube heat exchangers (STHE) represent the most

popular design. They have been the “work-horse” of the process industry for decades. Figure

2.2 shows a cross-section of a simple STHE, and illustrates the flow configuration.

Shell-and-tube heat exchangers are built of a bundle of tubes, which are inserted into a cylindrical

mantle. The tubes are fixed by welding in a tube sheet. One fluid flows through the tubes (tube

Figure 2.1: Classification of heat exchangers with respect to construction [2].
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Figure 2.2: Photo of a cross-section of shell-and-tube heat exchanger showing the tubes, baffles
and inlet and outlet ports. Photo: www.vdldelmas.com (accessed on 28.06.2017).

Figure 2.3: Illustration and operating principle of plate heat exchangers [3].

side), while the other flows across and along the tubes (shell side). A front- and a rear-end head

is used for evenly distributing the tube-side fluid over all tubes. The shell-side fluid enters and

exits the mantle via shell ports, while the fluid is commonly distributed using baffles. STHE

are versatile; they are used for a wide range of applications, from single-phase heat transfer

(e.g. fluid/fluid, gas/fluid) to heat transfer with phase change (e.g. condensation, falling-film

evaporation and pool boiling).

Various different internals are employed in STHE. They are used to influence heat transfer and

pressure drop, to reduce thermal stresses, to facilitate cleaning, to improve fluid distribution,

to protect the tube bundle from abrasion, etc. STHE have a simple design, they are easy to

manufacture and very robust, especially for high pressure and temperature applications.

The second major heat exchanger construction in process industry is the plate heat exchanger

(PHE) with cross-corrugated channels (Fig. 2.3). PHE can be classified as gasketed, welded or

brazed. They consist of multiple thin rectangular metal plates with corrugated surface patterns

(e.g. chevron pattern). These patterns are shaped into the plates using an embossing tool. The

plates are stacked together to a “sandwich”, whereby the corrugations of opposing plates contact

and cross each other. Each plate has four corner ports; in pairs, they provide access to the flow

passages on either side of the plate. The flow passages between the plates, which contain the

hot-side or cold-side fluid, are very narrow and highly interrupted, leading to intensified fluid

mixing. In gasketed PHE, the metal plates are sealed around the edges by gaskets, while in

welded or brazed PHE, the edges are welded or brazed to ensure leak tightness. Consequently,
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Table 2.1: Assessment of shell-and-tube (plain tubes) and plate heat exchangers (cross-
corrugated channels) (cf. [2, 10]).

Criterion STHE PHE

Compactness (m2/m3) up to 200 up to 600
U -valuea(W/m2K) 150-1200 b 1000-4000 b

Pressure loss low high
Temperature range (◦C) limited only by −35 < T < 200

materials used
Maximum pressure (bar) 300 25
Design experience; extensive less than for STHE;
Proven design methods available less accurate than for STHE
Scale-up (flexibility) costly simplec

(new design required)
Cleanability good only possible for

gasketed PHE
Leak tightness good poor for gasketed PHE
Cost ($/(UA) = $/(W/K)) 0.18d 0.054d

a Heat transfer coefficient.
b Liquid to liquid.
c Numbering-up of channels to reach desired heat transfer area.
d Valid for UA = 6.3x104(W/K).

gasketed PHE can be disassembled to add or remove metal plates, thus varying the heat transfer

area, or to facilitate cleaning. Welded-type and brazed-type PHE are less flexible, and cannot be

cleaned once assembled. Similar to STHE, PHE can be used for numerous applications ranging

from single-phase heat transfer to heat transfer with phase-change.

Table 2.1 summarizes some key aspects of standard shell-and-tube and plate heat exchangers. It

shows that the latter are more compact with higher overall heat transfer coefficients U . However,

the very narrow and highly interrupted channels in PHE lead to higher pressure losses, compared

to STHE. Furthermore, PHE are far less robust than STHE. Especially gasketed PHE cannot

be used for high operating pressures, because of leak tightness problems. Moreover, materials

commonly used for the gaskets (e.g. rubber) have low resistance to high temperatures and

aggressive chemicals. This problem can be avoided in welded or brazed PHE; however, this

construction cannot be disassembled, hence, cleaning of the plates is not possible. Also scale-up

flexibility is an important aspect. Since fluid flow and heat transfer characteristics are the same

in every channel of a PHE, regardless of the number of successive channels used, a variation of the

heat transfer area of PHE can be achieved by simply adding or removing plates. Enlarging heat

transfer area in STHE requires increasing number or length of the tubes, which consequently

involves a new design calculation. Also, PHE are usually significantly cheaper than STHE. The

manufacturing of PHE is largely automated. In contrast, STHE are custom made equipment

manufactured to specification. Their production includes numerous steps, which are difficult to

automate, such as the welding of each individual tube into the tube sheet.

Along with constructive aspects of STHE and PHE, design experience and the availability of

proven design methods play an important role regarding costs, efficiency and reliability of the
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Figure 2.4: Photo (www.lob-gmbh.de, accessed on 08.01.2016) of a pillow-plate heat exchanger
(a) and representation of the characteristic geometry parameters (b). Adjusted from
[4].

equipment. These aspects reduce the risk of under-sizing, help to avoid unnecessary over-sizing

and allow for efficient design. Design experience is more extensive for STHE than for PHE,

since the former represent one of the oldest and most frequently used heat exchanger types in

process industry. Also design methods available in literature (e.g. [2] and [10]) are generally

more accurate for STHE compared to PHE.

2.2 Pillow-plate heat exchangers (PPHE)

Pillow-plate heat exchangers (PPHE) have gained increased attention in the process industry

as a promising alternative to conventional heat transfer equipment. They are assembled as a

stack of pillow plates arranged in parallel (Fig. 2.4(a)), whereas the term pillow originates

from the characteristic three-dimensional wavy surface. The channels formed between adjacent

pillow plates are denoted as outer pillow-plate channels and the channels inside pillow plates as

inner pillow-plate channels. The inner channels commonly facilitate the cold fluid (e.g. cooling

water) of the heat exchanger, while the outer channels contain the hot fluid (e.g. hot steam). In

situations where the fluid in the inner channels has a low heat capacity rate, “baffle weldings”,

which guide the flow (cf. Fig. 2.5(a)) are introduced, leading to increased mean stream velocity

and improved flow distribution.

Figure 2.5 illustrates the broad range of applications areas and geometrical constructions of

pillow-plate equipment. They can be used as top condensers in distillation columns (Fig. 2.5(b)),

they can be arranged concentrically in a tank (Fig. 2.5(c)), and they can be used for cooling

the mantle of stirred tanks (Fig. 2.5(d)), e.g. in dairy industry.

Pillow plates are manufactured by an “inflation” process. It involves superimposing two sheets

of metal, which are sealed at the edges by welding (laser welding or resistance welding), while the

inner faces of the sheets are joined by spot-welding. The sheets are then expanded (“inflated”)

and separated between the spot welds by hydro-forming (cf. [12]). The spot pattern is regular,

commonly triangular or equidistant. Figure 2.4(b) shows the most important characteristic
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Figure 2.5: Illustration of the geometrical flexibility of PPHE. Plate stack arrangement (photo:
www.lob-gmbh.de, accessed on 28.06.2017) (a), top-condenser (photo: www.lob-
gmbh.de, accessed on 28.06.2017) (b), concentric pillow-plate rings (photo: www.deg-
engineering.de, accessed on 28.06.2017) (c) and mantle cooling of tank (photo:
www.keppels.nl, accessed on 26.06.2017) (d).

geometry parameters of PPHE: the welding spot diameter dSP , the transversal welding spot pitch

sT , the longitudinal welding spot pitch 2sL, the maximum inflation height δi of the inner pillow

plate channels, the maximum distance between adjacent pillow plates δP , and the thickness of

the metal sheets δp. These parameters can be varied according to requirements on thermo-

hydraulic performance and on structural stability. Table 2.2 summarizes some key features of

PPHE.

Pillow plates offer several design advantages, such as a fully welded and hermetically sealed

construction, a high structural stability, compactness and light weight. The manufacturing is

simple and cheap. Overall heat transfer coefficients in PPHE lie between those in STHE and in

PHE. However, PPHE can operate in a much wider temperature and pressure range than PHE.

Considering costs, it is currently difficult to obtain representative values.

Some important reasons for using PPHE are listed below.

• High geometrical flexibility. In principal, they can be adapted to any geometry to form

double-walls for cooling or heating.

• Use in applications concerning high viscosity fluids, gas cooling (where the gas has a high

heat capacity rate) and condensation. PPHE offer low pressure loss in the outer channels.

• Use in applications concerning dirty media. PPHE offer easy cleaning of the outer channels.

• Use in applications concerning large differences between the heat capacity rates of the hot

and cold fluids. PPHE allow a variation of the distance between adjacent pillow plates δP
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Table 2.2: Assessment of pillow-plate heat exchangers.

Criterion PPHE

Compactness (m2/m3) up to 400e

U -value (W/m2K) higher than for STHE but lower than for PHE
Pressure loss low in the outer channels
Temperature range (◦C) up to 800f

Maximum pressure (bar) > 100 barg

Design experience moderate
proven design methods not available in literature
Scale-up (flexibility) similar to PHE
Cleanability good in the outer channels
Leak tightness very good (fully welded)

e Theoretical consideration based on the equations shown in Chap. 4.
f According to [13].
g According to [14].

(independent of the inner channels). The distance δP can be adapted to accommodate the

fluid with the larger heat capacity rate, so as to avoid extreme flow velocities and excessive

pressure loss.

A key problem with PPHE today is the lack of publicly available, reliable design methods and

the absence of reference applications in industry. This hinders their wide spread application. In

contrast to conventional equipment, literature on PPHE is scarce.

Mitrovic and Peterson [15] were the first to publish experimental results on forced convection

heat transfer in a pillow plate. Based on the measured data, they developed an empirical

Dittus-Boelter type correlation (cf. [16]) for heat transfer coefficients. This correlation rested

on measurements of only one pillow-plate geometry. However, variability of the characteristic

geometry parameters of pillow plates shown in Fig. 2.4 is practically unlimited.

Mitrovic and Maletic [17] tried to develop more universal design methods for pillow plates and to

gain a more detailed understanding of fluid dynamics and heat transfer in pillow-plate channels.

They performed a comprehensive CFD study over a wide range of pillow-plate geometries.

Similar to [15], they developed an empirical Dittus-Boelter type Nusselt correlation, which was

able to approximate their numerical data with an accuracy of ±10%. However, they used certain

simplifications regarding both the geometrical representation of the wavy pillow-plate surface

based on trigonometric functions, and flow description.

Furthermore, in [17] a laminar model was used for the investigation of fluid flow and heat

transfer, even at Reynolds numbers at which the flow was turbulent. As mentioned by Maletic

[18], the use of the laminar model resulted in an underestimation of pressure loss and especially

heat transfer coefficients, as compared to the measurements carried out in [15]. Maletic [18] also

performed simulations with the standard k − ε turbulence model; however, this resulted in a

significant over-prediction of heat transfer coefficients. Moreover, the Prandtl number was kept

constant in the simulation studies in [17], and thus, the dependency of the Nusselt number on

the Prandtl number in pillow plates could not be captured.
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2.3 Conclusions and objectives

While STHE have been treated intensively and their design methods are freely available in

literature, PPHE represent an innovative heat exchanger design, for which many open questions

exist. The lack of design principles is a major obstacle for the widespread application of PPHE

in process industry. In fact, it acts as an obstacle to innovation, since engineers in process

industry are not able to estimate the potential benefits of PPHE compared to conventional heat

exchangers. This forces them to almost automatically prefer the “safer”, more conventional

solution. Although manufacturers are capable of designing PPHE, their knowledge is a company

secret not available to the public. Furthermore, it is estimated that PPHE are currently being

over-sized by as much as 30% − 50%, due to uncertainties in the design methods. A more

accurate design would lead to considerable savings in energy, resources, weight and costs, thus

revealing the true potential of PPHE.

The aim of this work is to close the current knowledge gap on PPHE design, by developing

accurate methods for the thermo-hydraulic design of such equipment. Since the variability

of the geometry parameters of PPHE shown in Fig. 2.4 is extremely high, an experimental

investigation of the thermo-hydraulic characteristics of PPHE could be too costly and time

consuming. Computational fluid dynamics (CFD) offer an efficient and flexible alternative for

studying flow and heat transfer in PPHE.





3 Theoretical background

In this work turbulent fluid dynamics and heat transfer in the channels of pillow-plate heat ex-

changers are investigated mainly using Computational Fluid Dynamics (CFD) methods, whereas

CFD is accompanied by experimental studies. Therefore, background information related to

CFD and turbulent heat transfer is presented in this chapter elucidating the concepts utilized

in this thesis.

3.1 Governing equations of fluid mechanics

Consider an arbitrarily shaped volume of fluid V with a closed surface A subjected to a velocity

field u with a fluid density ρ, as illustrated in Fig. 3.1. Further, consider some extensive quantity

Φ (e.g. mass, momentum or energy), which is defined in V and can vary with time t. The rate

of change of Φ in V is represented by [19]:

dΦ

dt
=

d

dt

∫
V (t)

ρϕdV = Q (3.1)

Figure 3.1: Arbitrary control volume of fluid V subjected to a velocity field u.
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Equation (3.1) represents a conservation equation for Φ, in which Q denotes its sources. The

“density” of Φ is represented by ϕ (e.g. ϕ = 1 for mass and ϕ = u for momentum), which is

continuous in time and space (see [7]). The source Q generally comprises of surface and volume

sources. Hence, Eq. (3.1) leads to the following balance (see [20] for sign convention):

d

dt

∫
V (t)

ρϕdV = −
∮
∂V (t)

(ρϕu) · ndA−
∮
∂V (t)

(−Γϕ∇ϕ) · ndA+

∫
V (t)

SϕdV (3.2)

The first and second terms on the right-hand-side (RHS) of Eq. (3.2) represent the net convective

and diffusive transport of ϕ across the surface A of the fluid volume V . The volume source of

ϕ is denoted by Sϕ.

Equation (3.2) applies to a material control volume of fluid, which can move in space (Lan-

grangian framework), as can be seen by the derivative d/dt in the left-hand-side (LHS) of Eq.

(3.2). In fluid mechanics, it is more convenient to describe flow using fixed coordinates in space

(Eulerian framework). Hence, consider now that V in Fig. 3.1 represents a control volume fixed

in space, then by applying Leibniz integral rule to the time derivative on the LHS of Eq. (3.2),

one obtains:

∫
V (t)

∂ (ρϕ)

∂t
dV+

∮
∂V (t)

(ρϕub)·ndA = −
∮
∂V (t)

(ρϕu)·ndA+

∮
∂V (t)

(Γϕ∇ϕ)·ndA+

∫
V (t)

SϕdV

(3.3)

In case the control volume V is fixed in space, the velocity of its boundary is ub = 0, thus

leading to:

∫
V (t)

∂ (ρϕ)

∂t
dV = −

∮
∂V (t)

(ρϕu) · ndA+

∮
∂V (t)

(Γϕ∇ϕ) · ndA+

∫
V (t)

SϕdV (3.4)

Furthermore, the surface integrals in Eq. (3.4) can be rewritten as volume integrals by applying

Gauss’s theorem:

∫
V (t)

∂ (ρϕ)

∂t
dV = −

∫
V (t)
∇ · (ρϕu)dV +

∫
V (t)
∇ · (Γϕ∇ϕ)dV +

∫
V (t)

SϕdV (3.5)

Eq. (3.5) can also be written as follows:

∂ (ρϕ)

∂t︸ ︷︷ ︸
Transient term

+ ∇ · (ρϕu)︸ ︷︷ ︸
Convetion term

= ∇ · (Γϕ∇ϕ)︸ ︷︷ ︸
Diffusion term

+ Sϕ︸︷︷︸
Source term

(3.6)
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Equation (3.6) represents the differential form of the generic transport equation ([7]), which

forms the basis of most CFD software tools. Using Eq. (3.6) it possible to derive the conservation

equations of mass, momentum and energy in a straightforward way, by replacing ϕ by the

corresponding quantity.

3.1.1 Mass conservation

The mass conservation equation is obtained by implementing ϕ = 1 into Eq. (3.6):

∂ρ

∂t
+∇ · (ρu) = 0 (3.7)

The RHS of Eq. (3.7) is equal to zero since total mass cannot be created or destroyed. In many

engineering applications the fluid velocity is significantly lower than the speed of sound. The

ratio of these two velocities is expressed by the Mach number Ma = u/uc. If Ma < 0.3, then

the flow can be assumed to be incompressible (ρ = const), and Eq. (3.7) simplifies to:

∇ · u = 0 (3.8)

Equation (3.8) is commonly referred to as the continuity equation, and it states that the velocity

field u is divergence-free.

3.1.2 Momentum conservation

The conservation equation for linear momentum of incompressible fluids1 is obtained by inserting

ϕ = u, Γϕ = µ (Newtonian fluid) and Sϕ = ρg −∇p in Eq. (3.6):

ρ

(
∂u

∂t
+ (u · ∇) u

)
= ∇ · (µ∇u) + ρg −∇p (3.9)

Equation (3.9) is the known Naviers-Stokes equation. It is useful to transform Eq. (3.9) into

dimensionless form. This is done by choosing appropriate scales for the variables in the Navier-

Stokes equation:

x∗ =
x

L
, u∗ =

u

U
, t∗ =

t

L/U
, p∗ =

p

ρU2
, g∗ =

L
ρU2

g (3.10)

1Only incompressible flows of Newtonian fluids are considered in this work
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where L and U represent characteristic length and velocity scales, respectively. Inserting the

normalized variables into Eq. (3.9), assuming µ = const, and rearranging, gives:

∂u∗

∂t∗
+ (u∗ · ∇) u∗ =

1

Re
∇2u∗ +

1

Fr2
g∗ −∇p∗ (3.11)

The dimensionless parameters Re and Fr in the RHS of Eq. (3.11) are the well-known Reynolds

and Froude numbers2, respectively. The Reynolds number, which is given by:

Re =
UL
ν

(3.12)

represents the ratio of inertial to viscous forces. As Re increases, inertial effects cannot be

damped out effectively by viscous forces, thus causing the flow to become unstable and eventually

turbulent.

3.1.3 Energy conservation

The energy equation can be written in various forms, depending on the choice of the physical

variable ϕ. The total energy of a fluid is defined as the sum of internal energy, kinetic energy

and gravitational potential energy. The last term can be neglected in closed systems or systems

with no change in potential energy due to altitude differences. The most useful form of the

energy equation is the one in which the temperature appears. Its basis is the equation of change

for internal energy. It is obtained by subtracting the mechanical energy equation from the

equation for the total energy [21]. Assuming incompressibility, the temperature form of the

energy equation is given by:

ρcp

(
∂T

∂t
+ (u · ∇)T

)
= ∇ · (λ∇T ) + Sh (3.13)

The first term in the right-hand side of Eq. (3.13) represents transport of energy by heat

conduction, i.e. Fourier’s law [5] (cf. Eq. (3.17)). The source term Sh includes different

contributions, such as dissipation (conversion of mechanical energy to inner energy through

viscous dissipation). By introducing the dimensionless temperature [8],

T ∗ =
T − Tref
Tw − Tref

(3.14)

2The Froude number is not discussed, since it was not relevant for this thesis.
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in addition to the dimensionless quantities given by Eq. (3.10), the dimensionless form of the

energy equation can be obtained (assumption λ = const).

∂T ∗

∂t∗
+ (u∗ · ∇)T ∗ =

1

RePr
∇2T ∗ (3.15)

Here, the dissipation term Sh is omitted for simplicity. The dimensionless parameter Pr in the

right-hand side of Eq. (3.15) is the well-known Prandtl number,

Pr =
cpµ

λ
=
ν

ã
(3.16)

It expresses the ratio of momentum and thermal diffusivities in a fluid. The Prandtl number is

of great importance in turbulent boundary layers with heat transfer; this will be shown later in

Sec. 3.3.3.

3.2 Heat transfer

Heat is energy, which is transferred across the boundary of a system due to a temperature

difference between the system and its surroundings. Heat is always transferred in the direction

of falling temperature, as stated by the second law of thermodynamics. Two basic mechanisms

are responsible for heat transfer, namely, heat conduction and heat radiation. The latter involves

transport of thermal energy by electromagnetic waves. Further information on heat radiation

can be found in [5].

In heat conduction, energy is transferred between neighboring molecules in a substance due to

a temperature gradient. The rate at which this heat is transferred is described by Fourier’s law

[21]:

q̇ = −λ∇T (3.17)

Equation (3.17) states that the heat flux q̇ is proportional to the temperature gradient ∇T ,

whereby the thermal conductivity λ represents the constant of proportionality. In gases and

liquids heat conduction can be accompanied by convection, which describes energy transfer

by the macroscopic movement of the fluid. This combined effect is known as convective heat

transfer ; it generally leads to higher heat transfer rates compared to pure heat conduction in a

static fluid (cf. Eq. (3.17)).

Figure 3.2(left) shows the velocity profile in a fluid as a function of the wall distance y. Because

of friction, the fluid directly at the wall (y = 0) has a velocity u = 0 (no-slip condition). With

increasing distance from the wall the fluid velocity rises rapidly eventually reaching the velocity
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Figure 3.2: Schematic velocity (left) and temperature (right) profiles in a fluid in a wall-bounded
(turbulent) boundary layer [5].

of the bulk fluid. Close to the wall there is a region where the change in velocity is greatest. This

region is the well-known boundary layer (cf. [22]). The boundary layer thickness is represented

by δ. The shape of the temperature profile (Fig. 3.2)(right) largely results from the shape of

the velocity profile. Similar to the fluid velocity, the fluid temperature increases rapidly from

the wall temperature Tw (y = 0) to the bulk temperature of the fluid Tf far from the wall. The

greatest temperature increase occurs within the thermal boundary layer δT . A more detailed

description of velocity and temperature profiles in boundary layers is given in Sec. 3.3.3.

The boundary layer represents the main resistance to heat transfer in wall-bounded flows. There-

fore, the correct description of this layer is key in heat transfer calculations. Equation (3.17)

can be used to determine the heat flux q̇w transferred through the boundary layer normal to the

wall surface, but it requires the evaluation of the wall-normal temperature gradient (∂T/∂y)w,

as shown in Fig. 3.2(right). In many complex flows the determination of (∂T/∂y)w poses a great

challenge, because it requires detailed knowledge of the temperature profile. The heat flux q̇w

can also be calculated by Newton’s law of cooling [5],

q̇w = h (Tw − Tf ) (3.18)

which is subsequently used to define the heat transfer coefficient h:

h ≡ q̇w
(Tw − Tf )

(3.19)

Equation (3.18) relates q̇w linearly with the driving temperature difference (Tw − Tf ) using the

heat transfer coefficient as the proportionality constant. Basically, h carries all complex physical

information regarding the temperature profile in the thermal boundary layer. Combining Eq.

(3.17) with Eq. (3.18) gives:

h = −λ

(
∂T
∂y

)
w

(Tw − Tf )
(3.20)
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Equation (3.20) shows that the heat transfer coefficient represents the ratio of the wall-normal

temperature gradient to the driving temperature difference for heat transfer. It shows that

with increasing h, the deviation of the temperature profile in the thermal boundary layer from

linearity (e.g. pure heat conduction in static fluid over plane wall) increases.

The magnitude of the heat transfer coefficient depends on physical properties, wall-surface ge-

ometry and flow regime. It is usually determined using Nusselt number correlations commonly

developed using either experiments or CFD simulations (as was done in this work). The Nus-

selt number Nu (cf. [5]) is a dimensionless number in heat transfer resulting from dimensional

analysis:

Nu =
hlchar
λ

(3.21)

In Eq. (3.21), lchar represents some characteristic length of the flow/geometry (in theory it

is the thermal boundary layer thickness). The Nusselt number is a function of different other

dimensionless numbers. In fully developed turbulent forced convection heat transfer, Nu is a

function of the Reynolds number and of the Prandtl number:

Nu = f (Re, Pr) (3.22)

Numerous researchers have published various forms3 of this functionality. The most famous one

is the power-law form proposed by Nusselt [23]:

Nu = cRemPrn (3.23)

The coefficient c and the exponents m and n are functions of geometry and flow regime; they

are evaluated empirically (e.g. regression analysis) using experiments or CFD simulations. For

fully developed pipe flow during forced convection heat transfer, Nusselt [23] (cf. [24]) suggested

the values c = 0.024, n = 0.786 and m = 0.45. Kraussold [25] determined the values c = 0.024,

n = 0.8 and m = 1/3 and Dittus and Boelter [16] found c = 0.024, n = 0.8 and m = 0.3

(for cooling). In summary, the exponent of the Reynolds number is commonly represented by

n ≈ 0.8 and of the Prandtl number by m ≈ 1/3. In comparison, for laminar fully developed

flow, Nu = const.

Steimle [26] compared the exponents n and m in Eq. (3.23) for turbulent forced convection

heat transfer for numerous different geometries, and found that the exponent of the Reynolds

3The focus here lies on Nusselt number correlations for turbulent forced convection heat transfer in hydro-
dynamically and thermally fully developed boundary layers.
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number is often twice that of the Prandtl number:

Nu = c
(
Re2Pr

)n
(3.24)

Although empirical, power-law type correlations, such as Eq. (3.23) are quite simple, there is

still some scepsis concerning their validity. Churchill [27] and Petukhov [28], demonstrated that

the typical Nusselt power-law relation lacks physical background. Experimental data tend to

scatter around this relationship, implying that there might be another functional interdepen-

dence between dimensionless numbers, Nu = f(Re, Pr). This is in accordance to Gnielinski

[29], who mentioned that in turbulent flow, the exponent of the Reynolds number depends on

the Prandtl number.

The drawbacks of power-law type correlations can be overcome by utilizing the analogy between

momentum and heat transfer to derive semi-analytical expressions for the heat transfer coefficient

from solutions of the turbulent boundary layer equations. The great advantage of such analogies

is that h can be determined directly from the Fanning friction factor ζf without the need of heat

transfer experiments.

According to Prandtl, the turbulent boundary layer can be sub-divided into a thin, viscous

sub-layer adjacent to the wall and a turbulent layer, where the turbulent fluctuations dominate

momentum transfer (cf. Sec. 3.3.3). By integrating the boundary layer equations (cf. [22]) over

these two layers, Prandtl derived his two-layer heat transfer model known as the Prandtl-Analogy

[30]:

Nu =
(ζf/8)RePr

1 + uδ
um

(Pr − 1)
=

(ζf/8)RePr

1 + y+
δ

√
ζf/8 (Pr − 1)

(3.25)

In Eq. (3.25), uδ
um

represents the ratio of the flow velocity at the boundary of the viscous sub-

layer to the velocity outside the boundary layer. This ratio is equivalent to y+
δ

√
ζf/8, whereby

y+
δ represents the dimensionless distance (in inner coordinates; see Sec. 3.3.3) from the wall

surface, where the viscous sub-layer and the turbulent layer intersect. A common value for

y+
δ,u = 10.8.

In deriving Eq. (3.25), Prandtl assumed the thickness of the sub-layers for heat and momentum

to be equal. This assumption holds only for Pr ≈ 1, however, for large Pr > 1, e.g. oils,

the thermal sub-layer lies deep within the viscous sub-layer (cf. Sec. 3.3.3). In such a case,

(molecular) heat conduction is only significant in the conductive layer but not in the rest of the

viscous sub-layer. In order to rectify this short-coming more accurate continuous models of the

eddy diffusivity (cf. Sec. 3.3) were adopted by other researchers. A very popular continuous

model is that of Petukhov and Popov [31]:

Nu =
(ζf/8)RePr

1.07 + 12.7
√

(ζf/8)
(
Pr2/3 − 1

) (3.26)
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Figure 3.3: Plot of Darcy friction factor ζ∆p against the Reynolds number for flow in pipes
covering the laminar and fully turbulent regime.

Notice the similarity of Eq. (3.25) and Eq. (3.26). The major difference lies in the exponent

of Pr2/3 compared to Pr in the denominator. With the exponent 2/3, the dependency of Nu

from Pr is corrected for large Prandtl numbers. Equation (3.26) is generally derived for fully

developed turbulent boundary layers on solid walls and hence is not restricted to pipe flow.

As could be seen so far, the accurate determination of the heat transfer coefficient in turbu-

lent boundary layers requires detailed information on turbulent transport mechanisms in the

boundary layer. Such information can be gained by CFD simulations using sophisticated tur-

bulence models. Therefore, the next sections involve background information on turbulence and

turbulence modeling.

3.3 Turbulence

The majority of flows encountered in industrial applications are turbulent flows and are, there-

fore, of particular interest in engineering. When the Renyolds number substantially exceeds a

critical threshold value, e.g. Recrit = 2300 in technically smooth pipes, inertia becomes the

dominating force. Consequently, perturbations in the flow caused by, e.g., pressure fluctuations,

lead to instabilities in the flow, which cannot be damped by viscous forces. If these instabilities

prevail, the flow becomes highly intermittent and chaotic. Turbulence is generally characterized

by highly irregular and rotational fluid motion. It is inherently transient and 3-dimensional.

Moreover, turbulent flow reveals a wide spectrum of spatio-temporal fluctuations and vortex

dimensions. These fluctuations lead to rapid mixing in the fluid thus generating rates of mo-

mentum transfer far higher than those due to molecular diffusion.

The importance of turbulence in engineering can be illustrated by the example of pressure loss

in a pipe. In Fig. 3.3, pressure loss is represented by the dimensionless Darcy friction factor
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Figure 3.4: Illustration of the Kolmogorov energy cascade [6] and popular strategies for simu-
lating turbulent flows.

ζ∆p, which is defined by the following expression:

ζ∆p =
2d

ρu2
m

∆p

L
(3.27)

In Eq. (3.27), d denotes the diameter of the pipe, L represents its length and um is the mean

stream velocity in the pipe.

According to Fig. 3.3, the relation between ζ∆p and Re in laminar flow regime is ζ∆p ∼ Re−1,

whereas in the turbulent regime, this relation changes to ζ∆p ∼ Re−0.25. In terms of pressure

loss (cf. Eq. (3.27)), the relation between ∆p and the mean stream velocity um is linear in

laminar flow, ∆p ∼ um, and follows the power law, ∆p ∼ u1.75
m , in turbulent flow. Hence,

pressure loss increases far stronger with rising velocity in turbulent flow than in laminar flow,

due to turbulent mixing, which increases momentum transfer to the pipe wall by shear stress.

The simulation of turbulent flows poses a great challenge to engineering. Although it is possible

to simulate any turbulent flow by solving the Navier-Stokes (NS) equations together with the

continuity equation (Direct Numerical Simulation (DNS)), the computational effort required

for such a simulation is enormous (cf. [6]), especially for widespread high-Reynolds number

flows. This is because all scales must be resolved, from the smallest, Kolomogorov microscale,

η ∼
(
ν3/ε

)1/4
[6], corresponding to dissipative motions, to the largest, corresponding to the

dimensions of the physical domain. In addition, the time step chosen for the simulations, which

depends on the Courant number [7], must be sufficiently small to resolve the fastest fluctuations.

However, the details of turbulent motion provided by DNS are not particularly usefull for design

purposes; rather, they influence gross (statistical) properties of the flow, such as time-averaged

velocity field u(x), pressure field p(x) and temperature field T (x). Moreover, the properties of

the instantaneous velocity field u(x, t) are highly disorganized, while its statistical properties

are reproducible. Consequently, for the prediction of turbulent flows, statistical methods with

different modeling depth have been developed. These are essentially Large-Eddy Simulation
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(LES) and turbulence modeling using the Reynolds-Averaged Navier-Stokes (RANS) equations.

Figure 3.4 shows a plot of energy spectrum over the wave number (frequency of fluctuating

quantity). The curve is a schematical representation of the Kolmogorov energy cascade [6]. It

shows the existence of large scale, energy-carrying eddies at low frequencies, and very small

dissipative eddies at high frequencies. The different strategies for describing turbulent flows are

also illustrates in Fig. 3.4. In DNS, all scales must be resolved. In LES, only the large scale

eddies are resolved, while the small ones are modeled. In RANS, all scales are modeled.

LES simulations are always unsteady because low-frequency, energy containing fluctuations are

resolved. Moreover, the computational effort required for LES is significantly larger than for

RANS. Hence, LES simulations are commonly applied in situations where RANS turbulence

models fail.

3.3.1 Reynolds Averaged Navier-Stokes equations (RANS)

An arbitrary instantaneous variable ϕ(x, t) in turbulent flow can be decomposed into a time-

averaged quantity ϕ(x) and a fluctuating component ϕ′(x, t), whereby this kind of decomposition

is commonly referred to as Reynolds decomposition.

ϕ(x, t) = ϕ(x) + ϕ′(x, t) (3.28)

For a statistically steady-state flow (Fig. 3.5(a)) the time-averaged value ϕ(x) can be determined

by:

ϕ(x) = lim
T →∞

1

T

∫ T
0
ϕ(x, t)dt (3.29)

where the time scale, T , is large compared to that of turbulent fluctuations.

In transient problems (Fig. 3.5(b)), also referred to as Unsteady-RANS (URANS ), time aver-

aging cannot be used and must be replaced by ensemble averaging :

ϕ(x, t) = lim
N→∞

1

N

N∑
n=1

ϕn(x, t) (3.30)

where N is the number of elements of the ensemble which must be large enough to eliminate

the effects of the fluctuations. The equations of the mean motion (RANS) are obtained by

substituting the definitions of the instantaneous quantities Eq. (3.28) into the equations of

the instantaneous motion (e.g. Eq. (3.8) and Eq. (3.9)), which are then averaged. For an

incompressible turbulent flow, the averaged equations are [19]:
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Figure 3.5: Time averaging for a statistically steady-state flow (a) and ensemble averaging for
an unsteady flow (b) [7].

∇ · u = 0 (3.31)

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+∇ ·

(
τ − ρu′u′

)
(3.32)

Equation (3.32) is similar to Eq. (3.9) apart from the last term ρu′u′ in the RHS of Eq. (3.32).

Through the statistical averaging new unknown turbulent correlations appear in the mean flow

equations. These new terms couple the mean flow to the turbulent fluctuations; they represent

the well known Reynolds stresses:

τR = −ρu′u′ (3.33)

Viscous stresses are represented by τ in the RANS equations and can be determined by:

τ = 2µS = µ
[
∇u + (∇u)T

]
(3.34)

In principle, it is possible to determine the unknown Reynolds stresses by multiplying the deter-

ministic Navier-Stokes equations for u′i and u′j and then time-averaging this product to obtain an

expression for u′iu
′
j [6]. However, this procedure leads to yet another set of unknown quantities,

namely, u′iu
′
ju
′
k, leading to an underdetermined system with more unknowns than equations.

This is the well-known closure problem of turbulence [6]. Alternatively, it is possible to close the

system of equations by modeling the Reynolds stresses rather than determining them rigorously.

Since the fluctuating quantities ρu′u′ represent stresses and it has been found that they tend

to increase as the mean rate of deformation increases, Boussinesq (cf. [6]) suggested that the
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Reynolds stresses be proportional to gradients of the mean flow:

τR = −ρu′u′ = µtS−
2

3
ρkδij (3.35)

Equation (3.35) represents the eddy-viscosity theory with µt being the turbulent or eddy viscosity

and k the turbulent kinetic energy:

k =
1

2

(
u′
)2

=
1

2

(
u′xu

′
x + u′yu

′
y + u′zu

′
z

)
(3.36)

Boussinesq assumed that the turbulent fluxes are transported along the gradients∇u of the mean

flow in analogy to viscous transport. Since µt is a scalar, the conclusion is that turbulence is

isotropic everywhere in space, while, in reality, turbulence is mostly anisotropic, thus, µt should

have been a tensor. Nevertheless, the concept of a simple scalar eddy-viscosity has worked

surprisingly well in numerous types of flow and has proven to be very useful in engineering

applications. Basically, with the introduction of the eddy viscosity concept, the focus has shifted

from the determination of the Reynolds stresses to the determination of the eddy viscosity and

the turbulent kinetic energy. From dimensional analysis, µt can be expressed by:

µt = ρCVsLs (3.37)

where C is an empirical constant, and Vs and Ls are turbulent velocity and length scales which

characterize the large-scale turbulent fluctuations. In the majority of turbulence models, the

velocity scale is preferably represented by k1/2 and the length scale by k3/2/ε (cf. [6]), where ε

denotes the turbulence dissipation rate. This leads to:

µt = ρCµ
k2

ε
(3.38)

Consequently, the aim of turbulence modeling is to develop appropriate equations (turbulence

models), which link µt and k with quantities characterizing the mean flow only. The most com-

mon RANS turbulence models are classified on the basis of the number of additional transport

equations that need to be solved alongside the RANS equations (Tab. 3.1).

Unfortunately, to the present day, there is no generic turbulence model applicable to all situa-

tions. The number of eddy viscosity models available in literature is large and Tab. 3.1 presents

only some of the most popular eddy viscosity models used in engineering. Each turbulence

model has its benefits and drawbacks, depending on the modeling depth, quality and the type of

flows it has been developed for. Hence, the choice of the turbulence model to be used strongly

depends on the type of flow under study.
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Table 3.1: Classification of eddy viscosity models (cf. [11]).

Additional transport equations Example Ref.

Zero Mixing length model
One Wolfshtein k − l model [32]

Spalart-Allmaras model
Two Standard k − ε model

Wilcox’s k − ω model
Realizable k − ε model [33]
SST k − ω model

(Three) k − ε− v2/k model [34]
Seven Reynolds stress model

In zero-equation (algebraic) models, µt is determined directly from the mean flow variables by

algebraic expressions. While such models are computationally economical, they are often re-

stricted to one-dimensional shear flows and thus too simple for general situations. In contrast,

one-equation models solve one turbulent transport equation, usually for the turbulent kinetic

energy (e.g. Wolfshtein’s [32] one-equation model). Their main advantage over algebraic models

is the inclusion of turbulence history effects (e.g. convection and diffusion of turbulent energy),

however, they are also limited to relatively simple flows. Two-equation models solve two trans-

port equations, e.g. for k and ε. They are very popular in engineering, because they successfully

predict a wide range of complex flows with acceptable computational effort. Reynolds stress

models (RSM) are the most advanced eddy-viscosity models; they solve seven additional trans-

port equations (six for the individual Reynolds stresses and one for the dissipation rate ε). They

are capable of accurately capturing anisotropy of turbulence, e.g. in boundary layers. However,

RSM are computationally very expensive. The focus in this work lied mainly on the application

of two-equation turbulence models (with the exception of the k− ε− v2/k model) for capturing

turbulence effects in PPHE.

The first and most widely used two-equation eddy viscosity model is the standard k−ε model of

Jones and Launder [35]. Two additional transport equations, namely one for k and one for ε, are

solved alongside the RANS equations. The eddy viscosity is evaluated according to Eq. (3.38),

where k is used to represent the turbulence velocity scale and ε the length scale. The standard

k − ε model is very popular, partially because it is simple to use and provides reliable results

for simple shear flows. However, it fails in more complex configurations such as: stagnation-

point flows [36], flows with large extra strains, boundary layers with strong adverse pressure

gradient or large curvature, and highly anisotropic turbulence [6]. Moreover, it is known to be

too dissipative, e.g. the turbulent viscosity in recirculations tends to be too high, thus damping

out vortices.

Since the suggestion of the k − ε model, there have been countless attempts to improve it. A

very popular and successful alternative is the realizable k − ε model by Shih et al. [33], which

will be discussed in the following section.
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3.3.2 Realizable k − ε model

The realizable k−ε model by Shih et al. [33] was the turbulence model of choice for studying fluid

dynamics in the inner pillow-plate channels. This model is numerically robust and substantially

better than the standard k−ε model (see [33]). In contrast to the standard model, the realizable

k−εmodel satisfies realizability. This means that the normal Reynolds stresses (u′i)
2 must always

be positive and Cauchy-Schwarz inequality for turbulent shear stresses must be satisfied. These

conditions can be violated by the standard k − ε model in flows with large mean strain rate.

For example, taking the normal Reynolds stresses in the x-direction obtained by Eq. (3.35) and

Eq. (3.38) gives:

(
u′
)2

= −Cµ
k2

ε

(
2
∂u

∂x

)
+

2

3
k ≥ 0 (3.39)

Realizability is only satisfied if:

k

ε

∂u

∂x
≤ 1

3Cµ
≈ 3.7 (3.40)

Hence, if the velocity gradient ∂u/∂x exceeds a threshold value, Eq. (3.40) is no longer satisfied

and realizability is violated. This happens because in the standard model Cµ is a constant. This

assumption is not consistent with experimental observations, in which for example Cµ = 0.09 in

the inertial sub-layer of a channel boundary layer and Cµ = 0.05 in homogeneous shear flow. In

the realizable model, however, the critical coefficient Cµ (Eq. (3.38)) is expressed as a function

of mean flow and turbulence properties (strain rate S and the rotation rate Ω).

Moreover, while the transport equations for the turbulent kinetic energy k are identical in the

standard and in the realizable models, the latter contains an improved transport equation for

the turbulent dissipation rate ε [33]. As mentioned in [33], the difference between the dissipation

rate equation of the standard model and the realizable model is the “source” term (production of

turbulent kinetic energy). The Reynolds stresses do not appear in the dissipation rate equation

of the realizable model. Consequently, this model will be more robust than the standard model

when it is used in conjunction with second-order closure schemes, since S is easier to handle

numerically than the Reynolds stresses, especially for cases with poor initialization.

Shih et al. [33] tested the realizable k− ε model for different cases (rotating homogeneous shear

flows, boundary-free shear flows including a mixing layer, planar and round jets, channel flow,

and flat plate boundary layers with and without pressure gradient) and found that this model

performed significantly better or at least as good as the standard k − ε model in all studied

situations.
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3.3.3 Near-wall treatment

Many linear eddy viscosity models, including the realizable k − ε model presented above, are

high-Re models; they are valid for high Reynolds numbers (fully turbulent flow), when it can be

assumed that the eddy viscosity is isotropic. However, in the near-wall region of wall-bounded

turbulent flows, the Reynolds stresses become highly anisotropic. The wall normal (u′n
2
) and

shear (u′nu
′
t) stresses are reduced stronger than the components tangential (u′t,iu

′
t,j) to the wall,

which is caused by the blocking/damping effect of the wall. Consequently, high-Re turbulence

models can not readily be applied near the wall, but require the so-called near-wall treatment.

These treatments are based on flow physics in turbulent boundary layers; an introduction to

this topic will be given in the following sections.

Universal velocity and temperature profiles in turbulent boundary layers

In wall-bounded shear flows, the turbulent boundary layer represents the main resistance for

momentum and heat transfer. Friction losses depend on the wall shear stress, which is a function

of the wall-normal velocity gradient. Heat transfer is determined by the wall heat flux, which is

a function of the wall-normal temperature gradient. Hence, these gradients need to be evaluated

accurately in order to obtain the correct values for pressure loss and heat transfer coefficient.

Consequently, when using CFD analysis to study transport phenomena in wall-bounded shear

flows, it is necessary to properly resolve the turbulent boundary layer.

Figure 3.6(a) shows a typical velocity profile in a turbulent boundary layer. In principle, this

profile can be subdivided into two regions:

• Inner region (ηw = y/δ < 0.2)

Close to the wall, turbulent fluctuations are damped; hence, the influence of viscosity on

momentum transfer is significant. The variation of total shear stress is negligible: τ tot =

(τ+τR) 6= f(y); consequently, it can be assumed that τ tot ≈ τw [6]. The relative contributions

of viscous and turbulent stresses to τ tot vary with the distance from the wall. This distance

is commonly expressed by the dimensionless wall coordinate4 y+ [6]:

y+ =
uτy

ν
(3.41)

The parameter uτ =
√
τw/ρ represents the friction velocity.

• Outer region (ηw = y/δ > 0.2)

Far from the wall, viscous stresses are negligible. Momentum transfer is dominated by tur-

bulent fluctuations (τR � τ) originating from large scale eddies. The velocity increases only

4The “wall coordinate” is used for scaling the inner region. The outer region usually scales with ηw = y/δ.
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Figure 3.6: A typical velocity profile in a turbulent boundary layer (a); a universal velocity
profile in “inner coordinates” for the inner region of a turbulent boundary layer
(b); Typical temperature profiles in a turbulent thermal boundary layer for different
Prandtl numbers (c); Temperature profiles in inner coordinates for the inner region
of a turbulent, thermal boundary layer, for different Prandtl numbers (d).
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gradually in this region and asymptotically approaches u∞ (= center-line velocity in pipe

flow).

The inner region can be subdivided into three further sublayers: the viscous sublayer, the buffer

layer and the logarithmic layer (Fig. 3.6(b)).

• Viscous sublayer (y+ < 5; µ� µt)

Turbulent stresses are negligible in this layer (τ � τR), since u′ falls to zero at the wall.

Considering that τ tot ≈ τw and that viscous transport is the dominating momentum transport

mechanism in the viscous sublayer, the velocity profile is almost linear [6] and can be expressed

by:

u+ =
u(y)

uτ
≈ y+ (3.42)

Although this sublayer is extremely thin, e.g. ηw ≈ 0.005 (see Fig. 3.6(a)), it represents

the dominating resistance to momentum transfer. Hence, it is very important to adequately

resolve this layer in CFD simulations, in order to obtain the correct wall-normal velocity

gradient and, consequently, the correct wall shear stress.

• Buffer layer (5 < y+ < 30; µ ≈ µt)

In this transition region, the damping effect of the wall is not very strong. Turbulent fluctu-

ations increase and reach the order of viscous stresses τ . Hence, Eq. (3.42) is no longer valid

and does not follow the true velocity profile, as shown in Fig. 3.6(b). The transition region

holds up to a distance of y+ = 30.

• Logarithmic layer (y+ > 30 and ηw < 0.2; µt � µt)

Far enough from the wall, but still in the inner region (where τ tot ≈ τw) of the boundary layer,

turbulent stresses become dominant (τR � τ); hence, momentum transfer is significantly more

effective in this region compared to the viscous sublayer. As it is clear from the name of the

layer, the velocity profile can be represented by a logarithmic function:

u+ =
1

κ
ln(y+) +B (3.43)

Equation (3.43) is the famous log-law of the wall [6]. The constant κ is von Kármán’s constant.

The parameter B in Eq. (3.43) represents the intercept on the u+-axis and commonly has a

value of 5.5.
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Instead of using three separate functions for representing the complete inner region of a turbulent

boundary layer, it is also possible to describe the universal velocity profile by one continuous

function, as was done by Reichardt [37]:

u+ =
1

κ

(
1 + κy+

)
+ 7.8

[
1− exp

(
−y+

11

)
− y+

11
exp

(
−y+

3

)]
(3.44)

The trend of Equation (3.44) is shown in Fig. 3.6(b).

Analogous to the arguments leading to the universal velocity profile, a universal temperature

profile can be developed. However, in contrast to momentum transfer, which depends on µ and

µt, heat transfer is also influenced by the Prandtl number. This is a very important aspect when

dealing with heat transfer in turbulent boundary layer, because the appropriate resolution of the

thermal boundary layer in CFD simulations depends on the magnitude of the Prandtl number.

Consider Fig. 3.6(c), where typical temperature profiles for a turbulent, thermal boundary layer

are shown for three different Prandtl numbers. While for Pr = 1, the shape of the temperature

and velocity profiles is identical, with increasing Prandtl number, they deviate stronger. For

Pr = 20, the centerline-temperature T∞ is retained over almost the entire boundary layer

height (analogous to plug flow). Consequently, the region in which the largest temperature

variation occurs (inner region) becomes extremely thin; and much thinner than that of the

velocity profile. Hence, the Prandtl number can be seen as a measure of the ratio of the

thickness of the momentum boundary layer to the thickness of the thermal boundary layer.

The temperature profile can also be subdivided into three regions (Fig. 3.6(d)):

• Conduction layer (ã� ãt)

Heat conduction is the dominant transport mechanism in this layer, since ãt becomes negligi-

ble. Hence, the conduction layer represents the main resistance to heat transfer in the thermal

boundary layer. The temperature profile can be described by a linear function [6]:

Θ+ =
Tw − T (y)

T ∗
≈ Pry+ (3.45)

The denominator T ∗ = q̇w/ (ρcpuτ ) in Eq. (3.45) has the units of temperature.

In contrast to the thickness of the viscous sublayer (y+ < 5), the thickness of the conduction

layer depends on the value of Pr. For Pr ≈ 1, the thicknesses of the two layers are roughly

equal (cf. Fig. 3.6(a) and (c), or (b) and (d)). However, for Pr < 1, the near- wall conduction

zone is thicker than the viscous sublayer, the ratio of the two thicknesses being Pr−1. When

Pr � 1, e.g. for liquid metals, the conduction layer spreads from the wall to the region where

the logarithmic velocity distribution is valid, so that turbulence has little impact on the bulk

heat transfer (see Fig. 3.7). Conversely, when Pr � 1, the heat conduction layer is deeply

immersed in the viscous sublayer (cf. Fig. 3.7), the ratio of the two thicknesses being Pr−1/3.
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While Eq. (3.45) is valid up to y+ ≈ 5 for Pr = 1, as shown in Fig. 3.6(d), for Pr = 20, it is

only valid up to y+ ≈ 3.5.

• Buffer layer (ã ≈ ãt)

This transition region is similar to that of the momentum boundary layer. Turbulent heat

transfer reaches the order of conduction. As for the conduction layer, the thickness of the

buffer layer depends on the Prandlt number.

• Logarithmic layer (ãt � ã)

In the logarithmic region of the thermal boundary layer, turbulent heat transfer dominates

over heat conduction. The temperature profile in this region can be described by:

Θ+ =
1

0.48
ln(y+) +AT , AT ≈

5

3

(
3Pr1/3 − 1

)2
(3.46)

The temperature profile in the inner region, however, can also be approximated by a continuous

function over the entire y+-range, as was done by Kader [38]:

Θ+ = Pry+ exp (−Γ) +

{
2.12ln

[(
1 + y+

) 2.5 (2− ηw)

1 + 4 (1− ηw)2

]
+ β (Pr)

}
exp

(
− 1

Γ

)
(3.47)

The terms Γ = 0.01 (Pry+)
4
/
(
1 + 5Pr3y+

)
and β (Pr) =

(
3.85Pr1/3 − 1.3

)2
+ 2.13lnPr are

both functions of the Prandtl number.

Wall functions approach

Wall functions use algebraic expressions, such as Eqs. (3.42) and (3.43) to describe the velocity

profile near walls [7]. They relate wall surface boundary conditions with the flow field far from

the boundaries. Consequently, it is not necessary to resolve the turbulent boundary layer in fluid

dynamics simulations, which consequently leads to a significant reduction of computational cost.

However, wall functions are inappropriate for complex three-dimensional flows and unsteady and

separated flows, as those encountered in PPHE.

Damping functions approach

With the damping functions approach (see Patel et al. [39]), the transport equation for ε

is modified using algebraic “correction” functions to damp certain terms. These (empirical)

functions are designed to correct the behavior of the eddy viscosity near the wall, e.g. µt =

ρfµCµk
2/ε (fµ: damping function). Hence, they allow the transport equations for k and ε to be

integrated to the wall without assuming a universal law for the velocity profile and equilibrium
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Figure 3.7: Illustration of the structure of the near-wall region depending on the Prandtl number
[6].

conditions for k and ε, as is done for wall functions. However, as stated by Durbin [40], it is

unreasonable to use a model (the k − ε model) which is fundamentally incorrect near the wall,

and then correct it by introducing an arbitrary function. The problem is that the k− ε formula

is isotropic, while near-wall turbulence is strongly anisotropic.

Two-layer approach

The two-layer approach [41, 42] is an alternative to the damping functions approach and it

represented the wall-treatment of choice for the realizable k − ε model used in this thesis. It

allows the k − ε model to be applied in the viscosity affected region near the wall. The whole

domain is subdivided into a viscosity-affected region and a fully-turbulent region. The separation

between the two regions is defined in terms of a wall-distance-based turbulent Reynolds number:

Red =
d̃
√
k

ν
(3.48)

where d̃ is the distance normal to the wall.

In the fully turbulent region (Red > 200), the full k−ε model (e.g. realizable k−ε) is employed.

The viscosity-affected near-wall region (Red < 200) is resolved using the one-equation model of

Wolfshtein [32]. In this model, the k equation is retained, however, the dissipation rate ε is
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determined from a prescribed length-scale distribution:

ε =
k3/2

lε
(3.49)

where the length scale lε in Eq. (3.49) is computed according to Chen and Patel [43]:

lε = d̃Cl

(
1− exp−Red/2Cl

)
(3.50)

Also the eddy-viscosity relation is changed to:

µt,2L = ρCµlµ
√
k (3.51)

while the length scale lµ in Eq. (3.51) is evaluated using

lµ = d̃C∗l

(
1− exp−Red/Aµ

)
(3.52)

In contrast to the van Driest damping function [44], Eq. (3.52) does not involve the friction

velocity uτ and hence is applicable to separated flows too.

The values of the eddy viscosity determined in the near-wall region µt,2L are smoothly linked

with those computed far from the wall µt,kε (Eq. (3.38)), as proposed by Jongen [45]:

µt = λεµt,kε + (1− λε)µt,2L (3.53)

The blending function λε is defined in such a way that it is equal to unity away from walls and

to zero in the vicinity of walls (see STAR-CCM+ User Guide [46]).

3.3.4 Elliptic blending k − ε model

The elliptic blending k− ε model (EB-k− ε) is the turbulence model of choice for studying fluid

dynamics in the outer pillow-plate channels, because of its capability for accurately predicting

boundary layer separation over curved surfaces, and consequently, the correct pressure loss.

In contrast to the concepts discussed above in Secs. 3.3.2 and 3.3.3, the EB-k − ε represents

a general low-Re k − ε type turbulence model, that does not require using wall functions or

damping functions, because it is valid up to solid walls.
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Classical wall treatments are computationally efficient and sufficiently accurate for many engi-

neering applications. However, they employ empirical, algebraic expressions for describing the

reduction of eddy viscosity near walls. Moreover, they assume µt to be isotropic, whereas this

assumption is rarely valid in complex flows. Consequently, these near-wall treatments are not

generic and they fail in physical flows involving strong turbulence anisotropy.

Most near-wall treatments assume that damping of eddy viscosity near the wall is a local (vis-

cous) effect. However, as discussed by Durbin [40], this suppression is not really a viscous effect,

but is a result of the near-wall reduction of the normal fluctuations un
2 (simply denoted as v2)

due to a pressure-strain mechanism, which must be accounted for globally.

Durbin [40] discusses that the standard k − ε model fails near the wall because the function-

ality between k2/ε (in Eq. (3.38)) and y+ does not correspond to experimental observations.

Moreover, he realizes that k/ε is the correct turbulent time scale in the flow, but k is not the

appropriate turbulent velocity scale. The correct velocity scale is represented by v2; accordingly,

the eddy viscosity is given by

µt = ρCµv
2k/ε (3.54)

Thus, if v2 is modeled satisfactorily, the need for a damping function (correcting the profile of

k/ε) can be avoided.

In [40], Durbin also discusses that the blocking effect of the wall is largely a kinematic rather

than dynamic (viscous) effect, which brings the velocity component normal to the wall to zero

without the action of viscosity. In fact, this inviscid blocking has an effect at significant distances

from the wall (y+ ≈ 100) and can be described using an elliptic partial differential equation (i.e.

Poisson’s equation). Consequently, non-local effects in strongly non-homogeneous turbulent flow

should be introduced by an elliptic relaxation.

Considering the above, Durbin developed a general low-Re k − ε type turbulence model, that

does not require using wall or damping functions, because it is valid up to solid walls. The

popular v2 − f turbulence model, which is based on Durbin’s model, solves transport equations

for v2 and for f together with the k and the ε equations. In principle, the v2 − f model is

based on the Reynolds stress transport models, but retaining only the wall-normal fluctuating

velocity variance v2 and its source f , the redistribution of pressure fluctuations. Hence, the

v2 − f model recovers turbulence anisotropy in turbulent-boundary and free shear-layers, and

is capable of accurately capturing complex flow effects, such as boundary layer separation over

curved surfaces, and heat transfer.

Unfortunately, most v2−f variants suffer from numerical stiffness, which makes them unpractical

for industrial or unsteady RANS applications. Furthermore, a key problem associated with eddy

viscosity models near walls is posing the correct boundary conditions at the wall. In order to

overcome these drawbacks, Billard and Lawrence [34] proposed a new, robust and more code-

friendly version of the v2−f model, which they called the BL-v2/k (in STAR-CCM+ it is called

the EB-k−ε model). Instead of v2 and f , this new model uses the variables ϕ = v2/k and α. The
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variable v2/k represents the ratio of wall normal Reynolds stress to turbulent kinetic energy (thus

being a measure of the near-wall turbulence anisotropy). The wall-proximity sensitive quantity

α takes the value of 0 at a wall and 1 far from it (simple Dirichlet boundary conditions), thus

alleviating the stiffness associated to the boundary condition of the elliptic variable f in the

v2 − f model. Therefore, the choice of these variables yields and improved robustness.

In the EB-k − ε, the eddy viscosity is defined by:

µt = ρCµkϕT (3.55)

while T represents the turbulent time scale (see [34, 46]). The elliptic blending factor α is

determined using the following relationship:

α− L2∂j∂jα = 1 (3.56)

The inclusion of α in the definition of f allows a blending between the near-wall and the homo-

geneous form in the ϕ equation [34].

The superior performance of the EB-k − ε model in complex flows involving boundary layer

separation over curved surfaces is shown in [34].

3.4 Computational fluid dynamics (CFD)

The governing differential equations and models presented so far are used to describe the trans-

port of mass, momentum and energy in fluid flows. In principle, these equations can be solved

analytically, but, only for simple physical systems (e.g. flows exhibiting smooth regular stream-

lines) with simple geometrical boundaries (e.g. such that align with Cartesian or polar coordinate

systems, which allow a convenient definition of boundary conditions). For efficiently handling

more complex flows (e.g. flow in the channels of PPHE), modern and advanced CFD (numerical)

methods are required.

In CFD, the continuous, differential transport equations of fluid mechanics are solved for discrete

points in time and space by methods of numerical analysis. The exact differential equations are

discretized resulting in algebraic expressions, which represent only approximate solutions of the

original equations. The system of algebraic expressions can then be solved by typical matrix

operations. However, the process of discretization is accompanied by loss of information and,

thus, accuracy.

Figure 3.8 shows an overview of standard discretization methods used in CFD based on their

flexibility and accuracy. The Finite-Difference-Method (FDM) yields high accuracy, but because

discretization is commonly limited to simple, orthogonal grids, its application to complex ge-

ometries is problematic. The Finite-Element-Method (FEM) on the other hand is very flexible
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Figure 3.8: Classification of discretization methods with respect to flexibility and accuracy [8].

with regard to complex geometries, but lacks accuracy compared to FDM. The Finite Volume

Method (FVM) offers a good balance between flexibility and accuracy, while also being simple

and robust (for further details see also [7, 11]). It represents the method most often used in

CFD solvers.

In FVM, the computational domain is sub-divided into a finite number of non-overlapping control

volumes (CV). The differential conservation equations are integrated over the CV, whereas the

computational node, at which the independent variables (ρ, v, p, T , etc.) are calculated, is

located at the centroid of such a CV [7, 11]. Taking the diffusion term in Eq. (3.5), for example,

and integrating it over a volume V with surface area A, gives:

∫
V
∇ · (Γϕ∇ϕ)dV =∮

∂V=A
(Γϕ∇ϕ) · ndA =∑

i

∫
A

(Γϕ∇ϕ) · ndA ≈∑
i

(Γϕ∇ϕ · n)i,cf Ai (3.57)

In the first step, Gauss’s theorem is applied to transform the volume integral to a closed surface

integral. In the second step, the closed surface integral is represented by the sum of a finite

number of surface integrals. This sum is then approximated by a finite number of discrete

surfaces Ai, whereas the values of (Γϕ∇ϕ · n) are valid at the center-point of these faces, by using

the mid-point rule. Hence, Equation (3.57) requires the values of ∇ϕ at the CV-faces cf . These

values can be expressed in terms of the nodal values (of neighboring cells) by using interpolation

(discretization scheme). The type of interpolation used strongly influences accuracy and stability

of the solution.

In order to obtain high quality results with FVM, care must be taken regarding the mesh,
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Figure 3.9: Illustration of a block-structured mesh (top) and a structured body-fitted mesh (bot-
tom).

discretization schemes and matrix operations5. Flow in PPHX involves complex geometries and

flow physics. In such cases, mesh quality is critical for reducing discretization errors. Therefore,

in the discussion below only mesh-related aspects, which were considered during meshing of

PPHX channels in this work, are described. They can be classified as follows:

• mesh resolution

The mesh must be refined adequately in areas, where the solution varies rapidly, in order

to properly resolve large gradients in ρ, v, p, T , etc. Typical examples of such areas include

wall-bounded layers and free-shear layers.

If computational cost becomes a limiting factor, it is also sometimes possible (e.g. in

turbulent boundary layers) to use sub-grid models, such as wall functions [7, 11], for the

evaluation of the required quantities (e.g. wall shear stress).

• mesh structure

The grids used in FVM can be classified as: structured (Fig. 3.9 (top)), unstructured and

block-structured (Fig. 3.9 (bottom)). Structured grids can be Cartesian or curve-linear

(body-fitted, as in Fig. 3.9 (top)). They commonly consist of hexahedral cells, which can

be orthogonal or non-orthogonal. When properly constructed, structured meshes provide

several advantages over unstructured ones, such as straightforward numerical implementa-

tion, simple cell-connectivity and matrices of fixed band-width. Their main disadvantage

is related to lower adaptability to complex geometries.

In contrast, unstructured meshes use polyhedral cells with typically 10 faces (i.e. 10 neigh-

boring cells). They are far more flexible with respect to geometrical topology. However,

5Discretization schemes and matrix operations are not further discussed here and can be found in [7, 11].
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Figure 3.10: Typical criteria for assessing mesh quality. Non-orthogonality (a), skewness (b),
aspect ratio (c) and volume ratio (d).

more neighbors means more storage and computing operations per cell, as compared to

hexahedral cells. Moreover, cell quality is usually lower for polyhedral cells than for hex-

ahedral ones; this consequently leads to larger numerical errors.

Block-structured meshes combine the advantages of the mesh structures mentioned above.

They allow structured meshes to be used efficiently with complex geometries. The grid

is sub-divided into different regions, while each region has a different type of mesh struc-

ture (Fig. 3.9 (bottom)) and can also have a different coordinate system. Hence, the

most appropriate mesh can be applied to the corresponding geometrical topology (curve-

linear mesh with curved surfaces, Cartesian mesh with rectangular geometries). Moreover,

different blocks can be handled with required mesh refinement levels.

• cell quality (e.g. non-orthogonality, skewness, aspect ratio, volume ratio)

In addition to the mesh resolution and mesh structure, the type and shape of cells used with

FVM strongly influence the stability and accuracy of the solution. Typical criteria used to

evaluate cell quality include: non-orthogonality (3.10(a)), skewness (3.10(b)), aspect ratio

(3.10(c)) and volume ratio (3.10(d)).

Non-othogonality error involves the angle between the center-to-center vector PN of adja-

cent cells and the normal vector nf of the face that connects these cells. Equation (3.57)

requires that ∇ϕcf , which is obtained by interpolation using the nodal values P and N ,

is multiplied by the face normal vector nf . Both vectors must be co-linear, otherwise,

solution accuracy is reduced or even un-boundedness can arise [47].

Skewness error is a more serious numerical diffusion-type error. Considering Eq. (3.57), it

requires the calculation of ∇ϕcf at the mid-point of the cell face. However, with skewed

cells (according to Fig. 3.10(b)), an approximation of ∇ϕcf by linear interpolation using

the points P and N will give the value of the gradient at a point on the face, which does

not coincide with its mid-point. The result is again loss of solution accuracy (cf. [47]).

Even orthogonal cells, which do not suffer from non-orthogonality or skewness error, can

produce numerical errors. Examples are cells with high aspect ratios (Fig. 3.10(c)), i.e.
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large length l1 to height l2 ratio, or also when the volume ratio VN/VP (Fig. 3.10(d))

between adjacent cells becomes to large.



4 Determination of PPHE geometrical

design parameters

The thermo-hydraulic design of heat exchangers commonly involves geometrical design param-

eters, such as the heat transfer area, mean cross-sectional area and hydraulic diameter. For

conventional equipment, determination of such parameters is usually straightforward; their sim-

ple geometry can be defined by basic forms, such as squares, circles, triangles and sine curves.

The exact geometry of the wavy pillow-plate surface, however, cannot be fully pre-defined, since

it results from the hydroforming process. Therefore, the prediction of geometrical parameters

for PPHE is more challenging. Whereas they could be determined experimentally for existing

pillow plates, a method for accurately predicting these parameters a priori was not available.

As mentioned in Sec. 2.2, Mitrovic and Maletic [17] were the first to publish a determination

method for the geometrical design parameters of pillow plates. They adopted a three-dimensional

trigonometric function for the description of the wall waviness and used a circular surface for the

welding spots. As a consequence of this simple approach, the maximum channel height always

appears at the intersection point between the longitudinal and transversal pitch of the welding

spots, regardless of the welding spot pattern used. For a non-equidistant pattern, this results in

channels with a local cross-section different from reality, where a local narrowing of the channel

is observed (Fig. 2.4(b)). In [17], a method was proposed to calculate the inner hydraulic

diameter of the pillow plate using an approximation of the wavy channel by a plane duct (plane

parallel plates). This was done based on a representative channel height, selected in such a way

that the flat channel volume is the same as the volume of a corresponding pillow-plate channel.

The channel volume can be determined experimentally with an existing pillow plate; however,

such an approach lacks predictiveness. Hence, a predictive method for the determination of the

channel volume is required. Mitrovic and Maletic [17] calculated this volume by integrating

their three-dimensional trigonometric function.

In this work, an alternative approach is presented, which is based on forming simulations pro-

viding accurately determined geometrical parameters required for the design of PPHE. This

A part of the material presented in this chapter has been published in Piper et al. [48].
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“virtual manufacturing” method is flexible, predictive and capable of capturing all important

geometrical features of pillow plates.

4.1 Definition of the geometrical design parameters

The evaluation of the geometrical design parameters - hydraulic diameter, heat transfer area

and cross-sectional area - for pillow plates is not a straightforward task, because of their complex

geometry. Since the cross-sectional areas of pillow plates are small, even insignificant calculation

errors can cause large discrepancies in the mean stream velocity. Due to the waviness of the

inner pillow-plate channel, the cross-section Acs,i and the wetted perimeter Pw,i depend on the

spacial coordinates. Hence, the local hydraulic diameter dh,i (= 4Acs,i/Pw,i) varies periodically

along the flow direction. A volumetric-mean hydraulic diameter is obtained by integrating the

local hydraulic diameter over a periodic element of the pillow plate of length sL (see Fig. 4.1):

dh,i =
4

sL

sL∫
0

Acs,i (y) dy

sL∫
0

Pw,i (y) dy

=
4Vi
Aw,i

(4.1)

The quantity Vi represents the inner volume of the periodic element of the pillow-plate channel

and Aw,i the wetted wall area. According to Eq. (4.1), the mean hydraulic diameter is indepen-

dent of the flow direction. This means, that for a geometry with the same inflation height and

subsequent rotation of the welding spot pattern by 90◦, i.e. when sL and sT are interchanged,

the hydraulic diameter remains the same.

As follows from Eq. (4.1), the calculation of the mean hydraulic diameter of the pillow plate

requires the evaluation of only two geometrical quantities, Vi and Aw,i. An experimental deter-

mination is costly and time consuming due to the large number of possible geometrical variations

of the pillow plate. Hence, an accurate and predictive method for the evaluation of these pa-

rameters is required.

Inner parameters

The mean hydraulic diameter of the inner pillow-plate channel is determined by Eq. (4.1).

The inner mean cross-sectional area is evaluated by dividing the inner channel volume of a

characteristic element (Fig. 4.1) by the longitudinal pitch:

Acs,i =
Vi
sL

(4.2)
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Figure 4.1: Characteristic periodic element of a PPHE for the evaluation of Vi and Aw.

The heat transfer area is assumed to be equal to the wetted area of the inner wall:

AHT,i = Aw,i (4.3)

The welding spot area is not considered within AHT,i. Heat conduction in the welding spots

possibly leads to an enlargement of the inner heat transfer area; however, their contribution to

overall heat transfer is expected to be marginal. Furthermore, they cover usually only about

3−10% of the pillow-plate surface area, and thus, neglecting the welding spots from AHT,i seems

reasonable.

The equations for the inner parameters are derived for the periodic element shown in Fig. 4.1.

The total cross-sectional area of the pillow plate is calculated by multiplying Acs,i by the number

of periodic elements disposed across the pillow plate width B (Fig. 4.2(a)):

Acs,i,tot = Acs,i4

(
B − 2lE
sT

)
(4.4)

The term B − 2lE in Eq. (4.4), indicates that the edges lE of the pillow plate (cf. Fig. 4.2(a))

are to be subtracted from the total width. The total inner heat transfer area is obtained in a

similar way:

Aw,i,tot = Aw,i4

(
B − 2lE
sT

)(
L− 2lE
sL

)
(4.5)

In Eq. (4.5), the edges of the pillow plate are subtracted from both the total width B and total

length L of the pillow plate. The edges are not considered in the inner heat transfer area for

the same reason as for the welding spots.

Outer parameters

The geometrical parameters for the channel between adjacent pillow plates can be determined

directly from the inner parameters. The necessary information is extracted from a characteristic

periodic element of a PPHE, as illustrated in Fig. 4.1.
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(a)

(b)

Figure 4.2: Global geometrical parameters of a pillow-plate stack (a) and additional cross-
sectional area caused by the edges (b).

The outer channel volume is determined by subtracting the volumes of the metal sheet and the

inner channel from the total volume:

Vo = Vtot − Vi − VP

=
1

2
sLsT

(
1

2
δP + δp

)
− Vi −Aw,oδp (4.6)

The volume of the metal sheet is calculated by multiplying the outer surface area Aw,o by the

wall thickness. The outer surface area is equal to the inner surface area plus the surface area of

the welding spots:

Aw,o = Aw,i +ASP (4.7)

The heat transfer area of the outer channel is set equal to the outer wall area:

AHT,o = Aw,o (4.8)

The mean hydraulic diameter of the outer channel is determined in the same manner as that of

the inner one:

dh,o =
4Vo
Aw,o

(4.9)



4.2 Geometry generation by forming simulations 45

The mean cross-section of the outer channel is given by:

Acs,o =
Vo
sL
. (4.10)

The equations for the outer parameters are valid for the periodic element shown in Fig. 4.1. For

the total cross-sectional area of the channel between two pillow plates, Acs,o is multiplied by the

number of elements along the total channel width B, including the cross-sectional areas of the

edges (see Fig. 4.2(b)):

Acs,o,tot = Acs,o4

(
B − 2lE
sT

)
+ 2lEδP (4.11)

In most cases, the contribution of 2lEδP to the total cross-sectional area is negligible, e.g. for

pillow-plate stacks of industrial dimensions. However, for smaller equipment, neglecting 2lEδP

can result in an incorrect mean flow velocity. The total heat transfer area is obtained in a similar

way:

AHT,o,tot = 4AHT,o

(
B − 2lE
sT

)(
L− 2lE
sL

)
(4.12)

Notice that also in Eq. (4.12), the surface area of the edges is excluded. This is justified by the

fact that in most cases, the edges contribute only marginally to overall heat transfer. Besides,

in contrast to the welding spots, the edges have no characteristic dimensions, which may bring

a larger uncertainty in their size evaluation. Similar to shell-and-tube heat exchangers, where

the outer surface area of the tubes is used as the equipment characteristic area, here the use of

AHT,o,tot is proposed as the characteristic heat transfer area for the thermo-hydraulic design of

pillow plates.

4.2 Geometry generation by forming simulations

Forming simulations offer several important benefits. First, they imitate the hydroforming

process during the real manufacturing of pillow plates and thus allow an accurate and predictive

reconstruction of the wavy pillow-plate channels. This method can be used for all possible

variations of the geometrical parameters. Second, information on local stresses and strains acting

in the structure can be obtained. This permits the maximum allowable forming of the structure

and subsequently the maximum height of the pillows to be determined for a given geometry

and material properties. Structural changes in the material due to the manufacturing process

are not accounted for by this method. The simulations were performed using the commercial

Finite-Element-Analysis (FEA) tool Abaqus [49].



46 4 Determination of PPHE geometrical design parameters

Since pillow plates represent a “shell-type” structure and it can be assumed that the stresses

tangential to the pillow-plate surface are significantly larger than those in the direction normal

to the wall, a thick shell approach was applied (Mindlin-Reissner-Theory, see Timoshenko [50])

to simulate the forming. Fig. 4.3(a) shows the choice of an appropriate periodic simulation

element. In the shell approach, only the two-dimensional mid-surface (z = 0) is discretized by a

numerical grid (cf. Fig 4.3(b)), while the stresses normal to this plane are modeled by a linear

(first order) displacement variation according to the Mindlin-Reissner-Theory. Consequently,

using the shell approach, the computational effort could be reduced by a factor of 8 compared

to a full discretization (continuum approach) of the metal sheet in all three dimensions. As

illustrated in Fig. 4.3(c), a structured grid was used in the vicinity of the welding spots and

an unstructured grid in the remaining region. Local grid refinement was performed where

necessary in order to resolve large gradients, e.g. in the vicinity of the welding spots. The

total number of cells was approximately 10000. General purpose S4R large-strain elements were

used, which are available in the Abaqus element library. These are quadrilateral elements with

four integration points. These points are shifted using a linear displacement law. Furthermore,

uniformly reduced integration is used to avoid shear and membrane locking. The simulation

results obtained with the shell approach were compared with those obtained with the continuum

approach; the differences in shear distribution and displacement were negligible.

The computational cost was further reduced by choosing the periodic simulation element in such

a way that all possible planes of symmetry of the local stresses are utilized. Since the welding

spots are fixed in space, a clamped support boundary condition with zero degree of freedom

was applied (Fig. 4.3(c)). Symmetry boundary conditions were set at the edges. The forming

is achieved by an evenly distributed area load, which imitates the hydroforming pressure. This

load is applied to the surface of the simulation element, as indicated in Fig. 4.3(c).

In order to achieve quasi-steady-state and thus neglect visco-plastic effects, a very gradual slope

was applied regarding the function of surface load vs. time. Consequently, the material behavior

is modeled as elasto-plastic and isotropic. Hence, structural changes of the material, e.g. due to

the welding process, were neglected. For the plastic part, the flow curves of various austenitic

stainless steels (1.4301, 1.4404, 1.4541, 1.4571) were used. Differences in the forming behavior

of the investigated materials proved to be negligible. This can be attributed to the fact that

these alloys have the same elastic module and that their true stress-strain curves differ only

slightly. Fig. 4.3(d) shows an example of a deformed pillow-plate element with the corresponding

displacement magnitude in the z-direction.

4.3 Method validation and manufacturing limits

A validation of the method was carried out by comparing the simulated profiles at the symmetry

planes with those of a real pillow-plate (see Fig. 4.4). The latter were measured using a contour

gauge Contura G2 by Carl Zeiss AG. The deviation between the simulation and the measurement

was less than 4%. The pillow profile at x = 0 in Fig. 4.4 illustrates the fact, that the maximum

inflation height does not lie at the intersection between the longitudinal and transversal pitches

(i.e. at x = 0, y = 0), but it is rather shifted towards the welding spot (y-direction) by a distance
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(a) (b)

(c) (d)

Figure 4.3: Choice of a periodic element for the forming simulations (a); illustration of the mid-
surface for the shell approach (b); boundary conditions and grid types used in the
simulations (c) and an example of the simulation result (d).

Figure 4.4: Comparison of numerical and measured cross-sectional profiles of the pillow-plate
channel. Geometry: sT = 55 mm, 2sL = 95 mm; dSP = 10 mm and δi = 9 mm.

of ≈ sL/3 (center point of an equilateral triangle). The maximum inflation height of the pillows

is limited by the value at which the metal sheets rupture. A crack in the pillows will be located

in a region, where the local strain in the metal sheet exceeds the fracture strain.

To analyze the maximum allowable inflation height of pillow plates, forming simulations were

performed using a continuum approach, instead of a shell approach, with second order shape

functions and a clamped support boundary condition at the bottom surface (z = −δ/2) of the

welding spots. The result of these simulations is presented in Fig. 4.5. Fig. 4.5(a) shows the
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(a)
(b)

Figure 4.5: Local maximum principal strain field in the metal sheets of a pillow plate made of
austenitic stainless steel (1.4301) for the pillow plate from the validation study with
δi = 9 mm (a) and with δi = 20 mm (maximum inflation before rupture) (b).

field of the local strain in the metal sheets of the pillow plate, with the same geometry as the

one used for the validation of the forming simulations (cf. Fig. 4.4). The pressure required to

reach an inflation height δi of 9 mm was approximately 16 bar. The largest strain is located in

the vicinity of the welding spots, which indicates the region, where the pillow plate could most

likely rupture. This strain does not reach the fracture strain (= 0.55); however, it exceeds the

uniform strain thus causing a necking of the metal sheet.

In Fig. 4.5(b), the pillow plate was further inflated up to the point of rupture, which occurred

at the welding spots. The required pressure was approximately 24 bar, and the resulting critical

inflation height δi was equal to 20 mm.

4.4 Geometrical design parameters

In this work, the essential parameters Vi and Aw,i were determined based on forming simulations.

These parameters are functions of the characteristic geometrical parameters dSP , δi, sT and sL.

In order to determine the dependence between Vi and Aw,i and the characteristic parameters, a

comprehensive numerical analysis was performed.

First, the influence of the inflation height δi was considered. In order to quantify the enlargement

of the surface area due to the formation of pillows, the relative difference between the wetted

wall area Aw,i and the projection area A0 = 0.5sT sL − πd2
SP /8 (plane surface) was considered.

In Fig. 4.6 the inner volume and the wetted surface area enlargement are plotted against the

inflation height, for different welding spot patterns. The simulation results show that the inner

volume increases linearly and the wetted wall area increases quadratically with δi:

Vi ∼ δi (4.13)
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(a) (b)

Figure 4.6: Inner volume (a) and inner wetted surface area enlargement (b) as functions of the
inflation height for various welding spot patterns.

(
Aw,i
A0
− 1

)
∼ δ2

i (4.14)

Fig. 4.6(b) shows that the surface area enlargement due to the surface waviness is marginal

compared to the plane surface; it reaches values of only 7% even for large inflation heights.

In Fig. 4.6(a), the slope of the lines (aV ) depends on sL, sT and dSP . This dependence can

be represented in a more convenient way by introducing dimensionless variables, such as the

ratio sT /2sL. However, since this ratio delivers no information about the absolute value of the

welding spot pitch, a further variable is required. This variable must account for up-scaling or

down-scaling of pillow-plate geometries, i.e. in the case that sT and sL increase while the ratio

sT /2sL remains constant. A convenient scaling factor is represented by the diagonal welding

spot pitch:

sD =

√
(0.5sT )2 + sL2 (4.15)

The influence of the welding spot diameter can be represented by:

φA =
APE −ASP

APE
=

0.5sT sL − 0.125πd2
SP

0.5sT sL
= 1−

πd2
SP

4sT sL
(4.16)

The quantity φA expresses the ratio of the base area of the periodic element in Fig. 4.7 excluding

the welding spot areas (APE −ASP ) to the total base area APE .

The relationship between the inner volume Vi and sD is derived by considering an example,

in which a reference pillow plate with a volume Vi,ref , an inflation height δi,ref , as well as a
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Figure 4.7: Illustration of the variable φA in Eq. (4.16)

welding spot arrangement sL,ref , sT,ref and dSP,ref , is up-scaled (stretched by central dilation)

to a pillow plate with a volume Vi, an inflation height hi and a welding spot arrangement sL,

sT and dSP . A central dilation yields:

Vi
s3
D

=
Vi,ref
s3
D,ref

(4.17)

δi
sD

=
δi,ref
sD,ref

(4.18)

Combining Eq. (4.17) and (4.18) gives:

Vi =
Vi,ref

δi,refs
2
D,ref

s2
Dδi = αV n,refs

2
Dδi (4.19)

Eq. (4.19) shows that Vi ∼ s2
D. The dimensionless coefficient αV n,ref is defined by αV,ref/s

2
D,ref .

A similar analysis is also possible for the surface area enlargement:

(
Aw,i
A0
− 1

)
=

(
Aw,i,ref
A0,ref

− 1

)
(4.20)

δ2
i

s2
D

=
δ2
i,ref

s2
D,ref

(4.21)
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(a) (b)

Figure 4.8: “Conventional” type I (a) and “untypical” type II (b) pillow-plate geometries.

The square of the inflation height is taken in Eq. (4.21), since the surface area enlargement is

proportional to the square of δi (cf. Eq. (4.14)). Combining Eq. (4.20) and Eq. (4.21) gives:

(
Aw,i
A0
− 1

)
=

((
Aw,i,ref
A0,ref

− 1

)
s2
D,ref

δ2
i,ref

)
δ2
i

s2
D

= αwn,ref
δ2
i

s2
D

(4.22)

From Eq. (4.22) it follows that the surface area enlargement is inversely proportional to the

square of the scaling variable. For the factors αV n,ref and αwn,ref , expressions can be derived

as functions of the welding spot ratio sT /2sL. The influence of the welding spot diameter in

these functions is excluded by keeping φA constant. Furthermore, the limits of the ratio sT /2sL

should be considered while deriving the expressions for αV n,ref and αwn,ref . These limits are

defined by the following conditions:

dSP
2sL

<
sT
2sL
≤ 1 (4.23)

dSP
sT

<
sT
2sL
≤ 1 (4.24)

The left inequality in Eqs. (4.23) and (4.24) follows from the condition at which the welding

spots touch (sT = dSP ), while the right inequality mirrors the symmetry condition (sT /2sL = 1).

The range of the conditions in Eqs. (4.23) and (4.24) can further be reduced by considering Fig.

4.8.

Fig. 4.8(a) shows a typical pillow-plate section with a triangular welding spot pattern. On the

other hand, Fig. 4.8(b) shows a pillow-plate section with an “untypical” surface waviness, which

appears when the welding spots are moved too close to each other (in x-direction). In this case,

the difference in the maximum and minimum inner inflation heights δi and δi,min becomes large.

As a consequence, the variation of the cross-section along the y-coordinate is large, whereas it

is almost constant along the x-direction. Technically relevant pillow-plate geometries are close

to the type shown in Fig. 4.8(a). In order to identify the transition point between pillow-plate

geometries of typical and untypical surface waviness, the factors αV n,ref and αwn,ref were plotted

over the welding spot ratio sT /2sL (Fig. 4.9).
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Figure 4.9: Identification of the critical ratio sT /2sL, where the pillow-plate geometry varies
from type I to type II waviness. The diagram is valid for constant φA.

Figure 4.10: Influence of the welding spot diameter (represented by φA) on the inner volume Vi.

Notice the change in the curves at sT /2sL ≈ 0.57, which corresponds to a triangular welding

spot pitch. This change indicates the transition in the waviness of the pillow-plate surface from

type I to type II, as can be seen in Fig. 4.8. When the ratio of sT /2sL becomes smaller than that

of the triangular pitch, the waviness of the pillow-plate surface becomes untypical. The range

of interest is thus reduced to 0.57 ≤ sT /2sL ≤ 1. This technically relevant range is described

by the following polynomials obtained by fitting the factors αV n,ref and αwn,ref to the results

of the forming simulations:

αV n,ref = 0.1

(
sT
2sL

)2

− 0.18

(
sT
2sL

)
+ 0.19 (4.25)

αwn,ref = 3.12

(
sT
2sL

)2

− 5.74

(
sT
2sL

)
+ 3.08 (4.26)

Now only the influence of the welding spot diameter on Vi and Aw,i must be determined. This

is done by plotting Vi/
(
αV n,refs

2
Dδi
)

against φA (cf. Fig. 4.10).
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The best fit of the data is given by the following power law:

fSP = 1.37φA
2.58 (4.27)

The factor fSP is used in the following Equation to account for the welding spots:

Vi = αV n,refδis
2
DfSP (4.28)

The simulation results show that variations in the welding spot diameter affect the ratio

Aw,i/A0 − 1 only marginally, so that the surface area enlargement can be evaluated from Eq.

(4.22).

In summary, the inner hydraulic diameter of pillow plates can be determined by Eqs. (4.1),

(4.22) and (4.28). The outer hydraulic diameter is evaluated by Eqs. (4.6), (4.7), (4.9), (4.22)

and (4.28). The inner and outer hydraulic diameters determined using the above equations,

show a maximal deviation of 5% from the values obtained by the forming simulations.

4.5 Conclusions

In this chapter, a novel method for accurately reconstructing the complex pillow-plate surface

was presented. It is based on forming simulations (FEA), which imitate the hydroforming process

during the real manufacturing of pillow plates. A validation of the method was carried out by

comparing the simulated wavy profiles of the pillow plates with those of a real pillow plate,

measured using a contour gauge. The deviation between the simulation and the measurement

was less than 4%. Furthermore, the numerical results showed, that the surface area enlargement

caused by the surface waviness is marginal compared to a plane surface (2− 7%).

The results from the forming simulations were then used to develop simple equations for the

predictive, accurate determination of the geometrical design parameters: mean hydraulic diam-

eter, mean cross-sectional area and heat transfer area for the inner channel of a pillow plate and

for the channel between adjacent pillow plates.





5 Fluid dynamics and heat transfer in

pillow plates

The study of the flow in the inner channels of pillow-plate heat exchangers is divided into two

parts, namely, an experimental and a numerical (CFD simulation) part. The latter formed the

bulk of this work, whereas the experiments were mainly used for validation purposes and for the

investigation of flow regimes not easily resolvable with CFD (e.g. transitional flow regime).

5.1 Experimental study

The experimental study deals with two different aspects. The first focuses on flow visualization

in pillow-plate channels. It enables a comparison between the flow patterns observed experi-

mentally and obtained by CFD simulations. The second considers the measurement of pressure

loss and heat transfer coefficients. With these experiments it becomes possible to validate the

numerical model both qualitatively and quantitatively.

5.1.1 Flow visualization in a transparent pillow-plate channel

Flow visualization in heat exchangers by setting-up transparent replicas has been widely reported

in literature. However, there are no publications on flow visualization in pillow-plate channels

or even in some comparable geometry. Therefore, in this work, a unique experimental rig was

developed, facilitating a transparent pillow-plate channel.

Fabrication of the transparent pillow-plate channel

The transparent test section of the experimental facility (Fig. 5.1 (top)) was composed of

two-halves (Fig. 5.1 (middle)), which are combined to form a transparent pillow-plate channel.

Each of these channel halves was fabricated by casting a resin into a specially designed aluminum

A part of the material presented in this chapter has been published in Piper et al. [51].
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Figure 5.1: Photo of the transparent pillow-plate test-channel (top) and of the aluminum mold
(middle and bottom) used to cast the transparent section.

mold. This mold is depicted in Fig. 5.1 (bottom). It was manufactured using a high precision

CAD/CAM milling machine, which produced an accurate surface corresponding to the original

geometry of the CAD image. The average surface roughness was Rz = 3.2µm (peak-to-valley

height). The CAD image was created using forming simulations (cf. Chap. 4) to accurately

reproduce the real pillow-plate surface.

The wavy section of the channel has a length of 689 mm (= 19sL) and a width of 293 mm (= 7sT ),

as shown in Fig. 5.1 (bottom). It was chosen long enough to guarantee hydrodynamically fully

developed flow, and wide enough to reduce the influence of side effects. The dimensions of the
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Table 5.1: Physical properties of the saturated NaSCN aqueous solution (ca. 55 Mass%) at
20◦C.

ρsol (kg/m3) 1340
µsol (Pas) 0.0075
refractive index 1.48 (same as polyurethane resin)

characteristic geometrical parameters of the transparent pillow-plate channel are: sT = 42 mm,

2sL = 72 mm, dSP = 10 mm and δi = 6 mm. At the channel inlet and outlet, the surface

smoothly transitions from wavy to plane. The channel height at the inlet and outlet regions was

chosen in such a way that the resulting cross-sectional area is equal to the mean cross-sectional

area of the wavy channel section. Extrusions were incorporated along the sides of the wavy

section of the mold in order to create grooves in the cast resin. These grooves accommodate

rubber gaskets for sealing the transparent channel at the sides.

The following requirements specification were chosen for the cast resin:

• full transparency

• high structural stability

• molding accuracy, i.e. high degree of reproducibility of geometrical features

• negligible contraction (volume reduction) after solidification

• low refractive index (favorable index-matching properties)

• thermal and chemical stability

• Resistance to ultraviolet light (UV)

All requirements were met by the polyurethane-based resin Crystal Clear 204 (www.smooth-

on.com). Its refractive index has a value of 1.48.

Experimental set-up

The closed-loop experimental facility used for flow visualization in a pillow-plate channel is

shown in Figs. 5.2 and 5.3.

A NaSCN aqueous solution (Tab. 5.1) is promoted through the thermostat (TS), followed by

the Coriolis flow meter (F; Emerson Micro Motion R© CMF050), then the manual needle valve

(NV) and finally to the flow distribution channel (DC), by the centrifugal pump (P). The

specific working fluid was chosen because it had the same refractive index as the polyurethane

resin, and also because it’s viscosity was low enough for reaching high Reynolds numbers. The

TS is used to keep the temperature of the solution at T = 20◦C, while the NV is used to

adjust the volumetric flow rate. The optimal angle γ of the DC was determined using CFD

simulations. The DC is followed by the entry length channel (EC), in which the flow develops

hydrodynamically before entering the transparent test section (TC). The width and height of

the EC were perfectly adapted to the width and height of the plane entry section of the TC (cf.
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Figure 5.2: Process flow diagram of the experimental set-up housing the transparent test channel.

Figure 5.3: CAD image of the transparent test section (left) and photo of the experimental
facility (right).
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Table 5.2: Range of Reynolds numbers and corresponding volumetric flow rates and mean stream
velocities, which were used in the experiments.

Re V̇ um
- m3/h m/s

50 0.128 0.029
100 0.256 0.059
200 0.512 0.118
500 1.28 0.295
1000 2.56 0.59
1500 3.84 0.884

Fig. 5.1 (bottom)). Consequently, EC and TC have the same cross-sectional areas, thus avoiding

flow acceleration. Subsequently, the flow passes through an outlet channel (OC) followed by the

pressure equalization vessel (PEV), which is designed to damp any flow disturbances. After the

PEV the flow goes back to the centrifugal pump, thus closing the loop.

The flow was visualized by adding Polymethylmethacrylate (PMMA) tracer particles with a

mean diameter of 40µm to the NaSCN aqueous solution. Photos of the flow in the transparent

test section were taken at a position 12sT from the channel inlet using a digital, single-lens reflex

camera. The exposure time of the camera was adjusted according to the fluid velocity, so that

it was possible to capture streamlines of the flow. The range of Reynolds number used in the

experiments is given in Tab. 5.2.

Results and discussion

Figure 5.4 shows a photo of the flow in the transparent pillow plate channel for Re = 1500. The

flow pattern is sub-divided into two distinct regions, namely, recirculation zones, which arise

in the wake of the welding spots, and a core flow, which follows a meandering path as it is

deflected by the welding spots. The recirculation zones consist of two counter-rotating vortices,

which together form a large, flame-like shaped region, approximately 4dSP long and 3dSP across.

Boundary layer separation from the welding spot occurs at an angle of about β ≈ 50◦.

The development of the flow pattern in pillow plates with increasing Reynolds number is shown

in the series of photos in Fig. 5.5. At the lowest Reynolds number, Re = 50, the flow is

in the creeping regime. It fully follows the contours of the pillow-plate channel. The rise of

recirculation zones in the wake of the welding spots is first observed at Re = 100. These

zones grow in size with further increase of Re; they reach their final form and dimensions at

Re = 1500. Up to Re < 500, the flow remains largely laminar, i.e. no strong fluctuations (high

frequency) of the tracer particles lateral to the flow could be observed. A transition from laminar

to turbulent could be seen around Re = 500, which was characterized by stronger oscillations

of the recirculation zones as compared to the flow at other Reynolds numbers.
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Figure 5.4: Photo of the flow in the transparent pillow-plate channel for Re = 1500.

5.1.2 Pressure loss and heat transfer measurements

Two different experimental facilities were used to measure pressure loss in pillow plates. The

first one was described in Sec. 5.1.1 (Fig. 5.3). The second one is shown in Fig. 5.6(a).

Its detailed description is given in [52, 9]. The pillow-plate used in the second test-rig (Fig.

5.6) has the characteristic dimensions 72/42/3/10 (cf. Tab. 5.3). It shares the same welding

spot arrangement as the transparent channel in Sec. 5.1.1, but only half the inner inflation

height. It was manufactured from austenitic stainless steel plates of material 1.4541 (AISI 321),

with a surface finishing of quality 2B (DIN EN 10088-2), which has a typical mean roughness

Ra ≈ 0.1− 0.5µm. This surface is technically smooth, hence the effect of surface roughness on

frictional losses is assumed to be negligible.

In both experimental set-ups, pressure loss was measured between two measuring ports (ports 1

and 2 in Fig. 5.3 and 5.6) using differential pressure transmitters (DP; Emerson Rosemount 3051

CD2 and CD3). The measuring ports were placed far enough from the inlet and outlet. In this

way, only the fully developed flow region was considered. The ports were made by drilling bore

holes of 1 mm (2 mm for the test-rig in Fig. 5.6) in diameter through the pillows, directly at the

center-point of the equilateral triangle formed by three neighboring welding spots in triangular

arrangement (cf. Fig. 5.6(b,c)). The distance between the two ports was equal to twelve-fold

the longitudinal welding spot pitch (i.e. 432 mm) for the test-rig described in Sec. 5.1.1, and

288 mm (8sL) for the facility shown in Fig. 5.6. The pressure loss measurement was performed

under isothermal conditions using water at T = 25 ◦C as a working fluid in both facilities.

Heat transfer coefficients were evaluated using the experimental set-up shown in Fig. 5.6. The

procedure for evaluating the heat transfer coefficients is described in [9]. The total relative

uncertainties for pressure drop are below 2% and for the heat transfer coefficients below 3%, at

a confidence level of 95% (cf. [52]). Systematic uncertainties in temperature, pressure and flow

measurements were minimized by calibration of the measuring chains, covering the whole range

of operation.
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Figure 5.5: Photos of the flow in the transparent pillow-plate channel showing the development
of the flow pattern with growing Reynolds number.
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Figure 5.6: Flow sheet of the second experimental facility used for the measurement of pressure
loss and evaluation of heat transfer coefficient inside pillow plates (a) (see also [9]).
Photo of the pressure measurement ports (b), and ideal location of these ports as
determined by CFD (c).

5.2 CFD study

Fluid flow and heat transfer in the inner pillow-plate channels was studied in detail using CFD

simulations. They provide comprehensive flow information, which cannot be readily obtained

in experiments. As mentioned in Sec. 3.4, CFD simulations also require significantly less time

and costs compared to experiments, especially when considering that the variability of the

characteristic geometry parameters (Fig. 2.4) of pillow plates is practically unlimited.

For the CFD simulations, a digital image of the pillow-plate geometry that defines the boundaries

of the simulation domain is required. The prerequisite for the realistic description of the fluid

dynamics in pillow plates is an accurate reconstruction of the pillow-plate channel. This was

done by forming simulations described in Sec. 4.2.

The pillow plates generated and investigated in this work are summarized in Table 5.3. The

welding spot pattern can be characterized in dimensionless form by the following parameter:

sr =
2sL − dSP
sT − dSP

(5.1)

This parameter is equal to one for an equidistant welding spot pattern (2sL− dSP = sT − dSP ),

smaller than one for a transversal pattern (2sL − dSP < sT − dSP ) and greater than one for a

longitudinal pattern (2sL − dSP > sT − dSP ).

The hydraulic diameter dh is determined according to the method proposed in Sec. 4. The

pillow-plate 72/42/3/10 (cf. Tab. 5.3), used in the experimental set-up (see Fig. 5.6) represents

the reference geometry in this work. It has a typical triangular welding spot arrangement, with

arctan(2sL/sT ) ≈ 60◦, which is a pattern commonly found in industry. All other values of sT ,
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Table 5.3: List of investigated pillow-plate geometries

2sL sT δi dSP dh sr Abbreviation
mm mm mm mm mm -

42 72 3 10 4.43 0.52 42/72/3/10
42 72 4.5 10 6.55 0.52 42/72/4.5/10
42 72 6 10 8.57 0.52 42/72/6/10
42 72 6 8.6 8.89 0.53 42/72/6/8.6
42 72 6 7.2 9.13 0.53 42/72/6/7.2
42 57 3 10 3.84 0.68 42/57/3/10
42 57 6 10 7.31 0.68 42/57/6/10
42 42 3 10 3.37 1.0 42/42/3/10
42 42 6 10 6.32 1.0 42/42/6/10
42 42 6 7.2 7.18 1.0 42/42/6/7.2
50 42 6 10 6.72 1.25 50/42/6/10
57 42 6 10 7.31 1.47 57/42/6/10
60 42 3 10 3.99 1.56 60/42/3/10
60 42 6 10 7.52 1.56 60/42/6/10
64 42 3 10 4.24 1.69 64/42/3/10
64 42 6 10 8.07 1.69 64/42/6/10
68 42 3 10 4.38 1.81 68/42/3/10
68 42 6 10 8.36 1.81 68/42/6/10
72 42 3 10 4.43 1.94 72/42/3/10
72 42 4.5 10 6.55 1.94 72/42/4.5/10
72 42 6 10 8.57 1.94 72/42/6/10
72 42 6 8.6 8.89 1.90 72/42/6/8.6
72 42 6 7.2 9.13 1.89 72/42/6/7.2
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Figure 5.7: Periodic computational domain of the pillow-plate channel.

sL, dSP and δi presented in Tab. 5.3 are systematic variations of 72/42/3/10, e.g. sT and sL

are interchanged or the inflation height δi is doubled.

5.2.1 CFD simulation

The CFD simulations were performed using the commercial solver STAR-CCM+ (see Sec. 3.4).

The computational domain for the inner channel is illustrated in Fig. 5.7. The computational

effort was reduced by exploiting all existing symmetries of the flow. A similar domain was

used in [17]; however, in the present work the domain could be further reduced by utilizing the

flow periodicity. This was accomplished by applying periodic boundary conditions at the inlet

and outlet boundaries of the channel. In this way, the velocity field is repeated after twice the

longitudinal pitch (2sL), which offers the advantage of limiting the investigation to the (peri-

odically) hydrodynamically developed region. In industrial-scale pillow-plate heat exchangers,

such regions usually occupy a major part of the channels.

Thermally developed flow is characterized by a constant heat transfer coefficient in flow direction

(h = f(y) = const). In STAR-CCM+, this is achieved by scaling the self-similar temperature

profiles at the inlet and outlet boundaries (only), in such a way that the heat transfer coefficient

at these boundaries is the same. At the walls, a no-slip boundary condition (u = 0) was applied

and a constant wall temperature (Tw = const) was assumed. The latter appears reasonable,

because a major application area of PPHE is condensation, e.g. as top condensers in distillation

columns, for which this boundary condition is nearly fulfilled.
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Figure 5.8: Example of structured body-fitted grid used in the simulations. The grid here is
extra coarse for illustration purposes.

The flow considered was single-phase, incompressible, steady-state, three-dimensional and turbu-

lent, with constant physical properties. Turbulence was described statistically by the Reynolds-

Averaged-Navier-Stokes (RANS) equations (cf. Sec. 3.3.1). The Reynolds stresses were com-

puted using the realizable k− ε model described in Sec. 3.3.2 and available in STAR-CCM+. It

has been applied successfully to complex geometries, such as structured packings (e.g. [53, 54])

as well as plate [55] and shell-and-tube heat exchangers [56]. This choice was beneficial, as

shown later in Sec. 5.2.3, where pressure loss and heat transfer coefficients obtained using this

model agreed well with experiments.

Since flow separation was expected to occur in the pillow-plate channel, it was necessary to

resolve the boundary layers appropriately. This was accomplished by using a two-layer formula-

tion (cf. Sec. 3.3.3), which allows the application of the turbulence model also in the viscosity

dominated region.

Figure 5.8 shows an example of the mesh used in this work for the simulation of fluid flow

and heat transfer in the inner pillow-plate channels. It is a structured body-fitted mesh with

hexahedral cells. This grid type is most suitable for wavy geometries, since the cells align with

the geometry contours, e.g. in the vicinity of the welding spots (in the x− y−plane in Fig. 5.8)

and close to the wavy channel wall. This leads to good cell quality, which shows substantially

better numerical accuracy and convergence than block structured or even unstructured grids.

A grid-independence study was considered in order to ensure an adequate grid resolution. This

study was always performed for the highest Reynolds number (Re = 8000) in each geometry.

It was assumed that the grid resolution sufficient for Re = 8000 would also be sufficient for

the lower Reynolds numbers. Depending on the geometry, the total cell number could reach 15

million cells.

For properly resolving the boundary layers (cf. Sec. 3.3.3), the following steps were undertaken

when constructing the grid:

• The distance between the wall and the grid node closest to it was estimated using the
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dimensionless wall coordinate z+ (Eq. (3.41)) of the inner region of the turbulent boundary

layer. The grid node adjacent to the wall had a value z+ < 1.

• At least 3-4 cells are present in the viscous sub-layer (0 ≤ z+ ≤ 5), in order to resolve this

region properly, ensuring a smooth transition to the buffer layer.

• The cell thickness (∆z̃k) increased linearly (“stretched”) in direction normal to the wall.

The stretching factor (= ∆z̃k+1/∆z̃k) was set to a value of about 1.1.

Also the ratio of the length of cell edges in flow direction (∆x̃k) to the thickness ∆z̃k (cell aspect

ratio: ∆x̃k/∆z̃k) was kept low in the simulations, to avoid excessive numerical diffusion.

In the simulations of heat transfer with Pr � 1, the conduction layer is thinner than the viscous

sub-layer (cf. Sec. 3.3.3). Hence, a smaller z+ value for the grid node adjacent to the wall was

used. For large Prandtl numbers, the thickness of the conduction layer (z+
ϑ,δ) was approximately

determined by the following relation [6]:

z+
ϑ,δ = 15Pr−1/3 (5.2)

5.2.2 Process parameters definitions

For the evaluation of thermo-hydraulic characteristics of the flow in pillow plates, several process

parameters are introduced. The mean Reynolds number of the flow in the pillow-plate channel

is defined using the following expression:

Re =
ucharlchar

ν
≡ umdh

ν
(5.3)

The characteristic velocity uchar is represented by the y-component of the mean velocity in the

channel. As the characteristic length lchar, the hydraulic diameter of the channel determined by

the methods proposed in Sec. 4.4 is taken.

The pressure loss coefficient is evaluated by the Darcy-Weisbach equation (see Eq. (3.27)):

ζ∆p =
2dh∆p

ρu2
m2sL

(5.4)

Pressure loss is calculated from the difference between the surface-averaged pressure values at

the inlet and outlet boundaries. The hydraulic Fanning factor is determined using the surface-

averaged wall shear stress:

ζR =
8τw
ρu2

m

(5.5)
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The form drag coefficient is obtained by subtracting Eq. (5.5) from Eq. (5.4):

ζD = ζ∆p − ζR (5.6)

The Nusselt number is defined by,

Nu =
hmdh
λ

(5.7)

where hm represents the surface-averaged heat transfer coefficient:

hm =
q̇m

Tw − Tm
(5.8)

In Eq. (5.8), q̇m is the heat flux in the direction normal to the wall and Tm is the adiabatic mean

temperature in the channel evaluated under the assumption of constant physical properties as

follows:

Tm =

∫
Acs

uT dA∫
Acs

udA
. (5.9)

Here Acs denotes the cross-sectional area. In order to consistently compare computed and

measured heat transfer coefficients, Tm was used instead of the temperature Tsym at the channel

axis (symmetry plane (x, y, 0)), since usually only Tm is experimentally accessible, especially in

complex geometries.

5.2.3 Method validation

Figure 5.9 shows a comparison of the flow pattern in pillow plates obtained experimentally (cf.

Sec. 5.1.1) and by CFD simulations for Re = 1500. The simulations are capable of accurately

predicting the size and shape of the recirculation zones. This demonstrates that the CFD model

is able to capture the complex fluid dynamics in the pillow-plate channel properly.

In Fig. 5.10(a), specific pressure loss determined by CFD simulations for two different pillow-

plate geometries is compared with experimental values obtained in [52] and in this work using

the experimental set-up housing the transparent pillow-plate channel, as described in Sec. 5.1.1

and 5.1.2. The numerical and experimental results agree well over the entire studied Reynolds

numbers range (1000 ≤ Re ≤ 8000) for both geometries (72/42/3/10 and 72/42/6/10 (cf. Tab.

5.3)). The relative deviation is below 8%.
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Figure 5.9: Comparison of flow patterns obtained by CFD and by flow visualization in the trans-
parent channel (Sec. 5.1.1).

For the comparison of Nusselt numbers, a constant wall heat flux boundary condition (q̇w =

const) was used instead of the constant wall temperature mentioned above. This was done,

because in the experiments the pillow-plate wall was heated electrically (cf. [52]). Nusselt

numbers determined using q̇w = const are approximately 6% higher than those determined with

Tw = const. For fully developed turbulent flow in pipes and other simple channel geometries, no

difference in Nusselt numbers determined either with constant heat flux or constant temperature

at the walls could be found (see, e.g., [57]); in contrast, in pillow plates, the deviation possibly

originates from the recirculation zones, which are heated up more strongly when q̇w = const

applies. This is illustrated later in Fig. 5.12(a).

In Figs. 5.10(b) and 5.10(c), a comparison of simulated and experimentally determined Nusselt

numbers is shown. Fig. 5.10(b) gives it for Pr = 6 and varied Reynolds number, whereas Fig.

5.10(c) for Re = 4000 and varied Prandtl number. In both figures, a good agreement is visible.

5.2.4 Results and discussion

Fluid dynamics and heat transfer in pillow plates

The presence of welding spots in pillow-plate channels and the waviness of the channel walls

lead to a strong deflection of the flow and to the rise of pronounced secondary-flow effects, as

shown in Fig. 5.11.

In the immediate vicinity of the spots, the channel is narrowest, leading to a large flow resistance.

As the result, the fluid is directed away from the welding spots in radial direction, thus producing

large regions of recirculating fluid behind them. The primary flow is strongly deflected by the

welding spots and reciruclation zones and follows a nearly sinusoidal path.
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(a) (b)

(c)

Figure 5.10: Comparison of numerical and experimental results for turbulent pressure loss (a),
Nusselt numbers for Pr = 6 and Re = 1000; 2000; 4000; 6000; 8000 (b), Nusselt
numbers for Re = 4000 and Pr = 5; 20; 50; 100 (c).

Figure 5.11: Illustration of the characteristic flow pattern in pillow plates represented by stream-
lines. The upper wall of the channel is transparent while the bottom wall is not for
the sake of visualization.
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(a) (b)

(c) (d)

Figure 5.12: Vortex structures in the wake of the welding spots (a), developed velocity field (b),
field of normalized wall heat flux (c) and temperature field (d) for turbulent flow in
a pillow-plate channel for Re = 2000 and Tw = 30◦C = const. Geometry: sT = 42
mm, sL = 36 mm, dsp = 10 mm and δi = 6 mm.
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In Fig. 5.12(a), the steady vortices in the wake of the welding spots are shown in detail. They

have a weak “tornado-type” character. Fluid near the wall is captured by the vortex core and

transported normally to the wall, up to the symmetry plane (z = 0). The unit vectors of the wall

shear stress (τw/|τw|) in Fig. 5.12(a) and the streamlines adjacent to the wall (blue) elucidate

the inward fluid flow (near the wall) towards the recirculation zones.

Fig. 5.12(b) shows, based on the scalar velocity field, the characteristic two-zone flow pattern

encountered in pillow plates. Zone 1 is represented by the meandering core flow and zone 2 by

the recirculation areas. The size and shape of these zones depends on the pillow-plate geometry

(e.g. welding spot pattern and inflation height) and is discussed further. Flow separation is

caused by an adverse pressure gradient; it appears downstream of the stagnation point of the

welding spot at an angle of approximately 50◦ (cf. Fig. 5.4). Furthermore, in Fig. 5.12(b),

large velocity gradients are observed at the boundary between the meandering core and the

recirculation zones, where the local velocity increases abruptly by a factor of about 11.

The influence of the flow phenomena shown in Fig. 5.12(b) on heat transfer is reflected by the

field of the normalized wall heat flux in Fig. 5.12(c). Heat transfer in the recirculation zones is

clearly poor; this results in hot spots in the temperature field shown in Fig. 5.12(d), especially

at the eddy centers and in the immediate vicinity of the welding spots. Consequently, heat

is transferred mainly in the meandering core region, where the local velocity is approximately

twice the mean velocity in the channel flow. The periodic acceleration of the flow in stream-wise

direction of the meandering core (visible in Fig. 5.12(b)) leads to a local increase of the wall

heat flux (cf. Fig. 5.12(c)), caused by local reduction of the boundary layer thickness.

The simulations showed that the mean heat transfer coefficient in the pillow-plate channel with

the geometry presented in Fig. 5.12, was proportional to Re0.79. The exponent of the mean

Reynolds number is mainly determined by the meandering core and is close to the value 0.8,

which is typical for turbulent heat transfer in smooth pipes (see, e.g., [25]). Consequently, from

the thermo-hydraulic point of consideration, the meandering region resembles a typical channel

flow, which is bounded by the pillow-plate walls and the recirculation zones.

Furthermore, the simulations revealed that the heat transfer coefficient for the geometry shown

in Fig. 5.12 is proportional to Pr0.38, which is close to the exponent 1/3 typical for turbulent

heat transfer in channels. Steimle [26] analyzed the exponents of the Reynolds and Prandtl

numbers in correlations for turbulent forced convection heat transfer in numerous geometries

and found that in most cases, the exponent of the Reynolds number is twice that of the Prandtl

number, i.e. Nu = C(Re2Pr)n. The factor C and the exponent n depend on the specific

geometry. Considering the exponents for Re and Pr obtained from the simulations in this work,

the expression of Steimle [26] also holds for pillow plates.

Influence of pillow-plate geometry on flow characteristics

The two-zone character of the flow pattern shown in Fig. 5.12 is characteristic for the flow in

pillow-plates; however, depending on the particular pillow-plate geometry, the size and shape

of the recirculation zones can vary. In the simulations three sub-categories of the characteristic

flow pattern were observed, namely for pillow plates with sr > 1.56 (longitudinal type), sr ≤ 1
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(a) (b)

Figure 5.13: Dimensionless two-zone variables (a) and friction coefficients (b) as functions of the
Reynolds number for Pr = 6. Geometry: sT = 42 mm, sL = 36 mm, dsp = 10 mm
and δi = 3 mm.

(transversal type) and 1 < sr ≤ 1.56 (mixed type). Both the two-zone character of the flow and

the differences between the flow patterns of these categories can be quantified with the help of

the following parameters:

ψR =
ζR
ζ∆p

(5.10)

ψA =
ARZ
Atot

(5.11)

ψQ =
Q̇RZ

Q̇tot
(5.12)

ψRe =
Remc
Retot

(5.13)

The parameter ψR is used to represent skin friction ζR; it gives the ratio of frictional losses to

total pressure loss. The size of the recirculation zones is characterized by ψA, which is defined

as the ratio of the wall area covered by the recirculation zones to the total area of the wall.

The thermal activity of the recirculation zones is quantified by ψQ and is defined as the ratio of

the rate of heat transferred only in the recirculation zones to the total rate of heat transferred

normal to the wall. The parameter ψRe represents the ratio of the Reynolds number defined for

the meandering core only (Remc = um,mcdh,mc/ν) and the mean Reynolds number in the pillow

plate channel.

• Heat and fluid flow characteristics of longitudinal-type pillow plates (sr ≥ 1.56)

The results presented in Fig. 5.12 are obtained for longitudinal-type pillow plates. They

are characterized by recirculation zones, which have a “flame-like” shape and have a length

close to sL. Due to this shape, the primary flow is deflected significantly and follows a

“meandering-like” path.
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(a) (b)

Figure 5.14: Vortex structures in the wake of the welding spots (a) and developed velocity field
(b) for turbulent flow in transversal-type pillow plates for Re = 2000. Geometry:
sT = 72 mm, sL = 21 mm, dsp = 10 mm and δi = 6 mm.

The profile of ψA in Fig. 5.13(a) shows that the flow pattern in pillow-plates with sr > 1.56

is only weakly dependent on the Reynolds number. Thus, the area of the recirculation

zones varies only slightly with Re and occupies approximately 45% of the total wall area.

These regions cause the major portion of the form drag, which is responsible for more than

50% of pressure loss in the pillow-plate channel, as can be confirmed by the ψR profile in

Fig. 5.13(a). The larger the Reynolds number is, the larger is the size of the recirculation

zones and, hence, the contribution of form drag to the total pressure loss. Note that the

form drag coefficient in longitudinal-type pillow plates is almost constant for all Reynolds

numbers (Fig. 5.13(b)), so that the trend of the pressure loss coefficient is similar to the

trend of the Fanning friction factor (cf. Fig. 5.13(b)).

The rate of heat transferred normal to the wall in the recirculation zones is only 15% of

the total, even at the highest Reynolds number, although almost 50% of the wall area is

covered by recirculation zones. This confirms the poor thermal activity in the recirculation

zones and that, conversely, the meandering core dominates heat transfer.

• Heat and fluid flow characteristics of transversal-type pillow plates (sr ≤ 1)

The flow pattern shown in Fig. 5.14 is characteristic for transversal-type pillow plates with

sr ≤ 1. In contrast to the longitudinal-type, the recirculation zones in transversal-type

pillow plates extend to the next downstream welding spot and thus occupy a larger portion

of the channel. The shape of the recirculation zones affect the flow path of the meandering

core; the latter is deflected less significantly by the welding spots and follows a more linear

path.

The flow pattern in transversal-type pillow plates is also largely independent of the

Reynolds number, as can be seen from the ψA curve in Fig. 5.15(a). In contrast to

longitudinal-type pillow plates, here the values of ψA show that the recirculation zones

in transversal-type pillow plates are larger. However, the contribution of the form drag

coefficient to the overall pressure loss coefficient is smaller than for longitudinal-type

pillow plates and, moreover, smaller than the contribution of the Fanning friction factor

(ψR > 0.5; cf. Fig. 5.15(b)). This is related to the shape of the recirculation zones,
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(a) (b)

Figure 5.15: Dimensionless two-zone variables (a) and friction coefficients (b) as functions of the
Reynolds number for Pr = 6. Geometry: sT = 72 mm, sL = 21 mm, dsp = 10 mm
and δi = 3 mm.

which occupy less channel cross-section. As the consequence, the meandering core is less

deflected and, hence, the resistance to flow is smaller.

The thermal activity of the recirculation zones in transversal-type pillow plates is poorer

than in longitudinal type. Whilst the recirculation zones in the former are larger in size,

the portion of heat transferred in these zones (ψQ) is similar to that of the longitudinal

type. The mean Reynolds number in the meandering core is larger than in longitudinal-

type pillow plates (cf. Fig. 5.15(a)), because of the more homogeneous velocity profile

related to the larger channel cross-section.

• Heat and fluid flow characteristics of mixed-type pillow plates (1 < sr ≤ 1.56)

The flow patterns in longitudinal-type and transversal-type pillow plates are largely in-

dependent of the Reynolds number, i.e. ψA varies only slightly with Re. In mixed-type

pillow plates, however, the flow pattern varies substantially with Re. As can be seen in

Fig. 5.16, at small Reynolds numbers (Re ≤ 2000) the flow pattern resembles that of

longitudinal-type pillow plates. At larger Reynolds numbers (Re > 2000), the recircu-

lation zone increases substantially in size until it reaches the next downstream welding

spot.

The variation of the flow pattern with the Reynolds number can be followed by the trend

of ψA in Fig. 5.17(a). Up to Re = 4000, ψA increases strongly and thereafter only weakly

with the Reynolds number. A similar behavior of ψQ is visible, since this parameter is

directly related to the size of the recirculation zones.

The dependency between the size of the recirculation zones, i.e. ψA, and form drag are

shown in Fig. 5.17(b). Due to the strong increase in the size of the recirculation zones

for Re < 4000, a large increase in the form drag coefficient ζD is observed. The variation

of the pressure loss coefficient ζ∆p with the Reynolds number shown in Fig. 5.17(b) is

characteristic for mixed-type pillow plates. The profile of ζ∆p in Fig. 5.15(b) can be

understood from its definition: ζ∆p = ζR + ζD. The aforementioned increase of the form
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Figure 5.16: Developed velocity field of turbulent flow in mixed-type pillow plates for different
Reynolds numbers (at symmetry plane (x, y, 0)). The red “x” indicates the end of
the recirculation zone. Geometry: sT = 42 mm, sL = 30 mm, dsp = 10 mm and
δi = 3 mm.

(a) (b)

Figure 5.17: Dimensionless two-zone variables (a) and friction coefficients (b) as functions of the
Reynolds number for Pr = 6. Geometry: sT = 42 mm, sL = 30 mm, dsp = 10 mm
and δi = 3 mm.
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drag coefficient at small Reynolds numbers causes a sudden increase in ζ∆p, which then

gradually becomes constant towards larger Re values.

Thermo-hydraulic efficiency of pillow-plates

The thermo-hydraulic efficiency is represented by the ratio between the benefit (the transferred

heat) and the effort (the pumping power) required:

ε =
Q̇

Ẇ
=
hAw∆T

V̇∆p
(5.14)

The choice of characteristic geometrical parameters of pillow plates, e.g. the welding spot

pattern and the channel height, strongly influences their thermo-hydraulic efficiency. When

designing pillow plates, it is important to quantify this efficiency in order to (a) obtain the

optimal geometry and (b) guarantee the most economical operation of the heat exchanger for a

given task.

Eq. (5.14) is used to quantify the efficiency of the pillow-plate geometries investigated in this

work. For a more convenient comparison with other geometries, the efficiency ε is normalized,

ε∗ =
ε

εref
(5.15)

so that it ranges from 0 to 1. Normalization is performed by dividing Eq. (5.14) by the efficiency

of the geometry 42/72/6/10 (εref ) at Re = 1000. The latter showed the highest efficiency of all

pillow plates investigated in this study.

Fig. 5.18(a) shows an example of the variation of ε∗ with the Reynolds number for the geometry

42/72/6/10. All other pillow plate geometries demonstrated a similar trend.

The largest efficiency is obtained at the lowest Reynolds number Re = 1000; it decreases asymp-

totically thereafter. This is generally due to the different dependencies of the heat transfer co-

efficient and pressure loss on the Reynolds number. For example, the pillow plate 42/72/6/10

showed that h ∼ Re0.76 and that ∆p ∼ Re1.63. Hence, compared to the heat transfer coeffi-

cient, pressure loss increases more significantly with the Reynolds number and thus decreases

the efficiency.

Fig. 5.18(b) shows how the welding spot pattern and the channel height influence the efficiency.

From left to right, i.e. from transversal-type towards longitudinal-type pillow plates, a minimum

in the efficiency, attributed to the equidistant pattern sr = 1, is observed. Hence, equidistant

pillow plates show the smallest efficiency of all pillow plates studied. Considering that each

welding spot represents a resistance to flow, in the case of sr = 1, the number of welding spots

per square meter is largest and so is the resistance to flow. In the case of longitudinal-type

pillow plates, the efficiency is higher than for sr = 1 (for the same sT ), because the number
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(a) (b)

Figure 5.18: Thermo-hydraulic efficiency as a function of the Reynolds number for the tranversal
type pillow-plate 42/72/6/10 (a), and as a function of sr for Re = 2000 (b).

of welding spot rows in stream-wise direction is lower. For sr � 1, the efficiency ε∗ seems to

approach a constant value. Hence, welding spot patterns, whose ratio sr exceeds that of the

typical triangular arrangement with sr > 1.9, do not seem to yield further advantages.

On the other hand, approaching more “transversal” geometry (i.e. with decreasing sr) results

in better efficiency. This is because the portion of form drag (“bad pressure loss”) to overall

pressure loss is reduced compared to longitudinal-type pillow plates. Form drag increases overall

pressure loss more significantly without contributing to heat transfer. For example, taking

geometry 42/42/6/10, the heat transfer coefficient shows that h ∼ Re0.74 and that ∆p ∼ Re1.9.

The difference in the exponents of the Reynolds number for h and ∆p is larger than for e.g.

the transveral type pillow plate 42/72/6/10. Thus, the increase in ∆p with Re compared to

the increase of h with Re, is stronger than for pillow plates with smaller sr. For sr → 0, the

efficiency should asymptotically approach the value of a plane channel.

Furthermore, the efficiency grows with the channel height (see Fig. 5.18(b)). The latter increases

the mean channel cross-section, and, consequently the mean stream velocity decreases at a

constant Reynolds number. As the result, pressure loss is lower. In summary, the optimal

design can be obtained with a pillow plate having a small sr, a large channel height and operating

at “lower” Reynolds numbers. Although the smallest Reynolds number results in the highest

efficiency, it gives the smallest heat transfer coefficient. This means, that the heat exchanger

will be large in size (large heat transfer area) to compensate for the small h, thus resulting in

high equipment cost. A reasonable compromise between the thermo-hydraulic efficiency and

heat transfer coefficient is achieved by setting the Reynolds number at the intersection between

the two tangents, as illustrated in Fig. 5.18(a).

Geometry optimization

As discussed above, the recirculation zones observed in the wake of the welding spots increase

pressure loss and are less effective for heat transfer compared to the meandering core. Conse-
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Figure 5.19: Pillow plate with round welding spots (a) and with elliptical welding spots (b).

Table 5.4: List of investigated pillow-plate geometries for the optimization study.

2sL sT δi dSP lSP /dSP Comments Abbreviation
mm mm mm mm mm Abbreviation

72 42 6 10 1 - 72/42/6/10
72 42 6 10 2 - 72/42/6/D
72 42 6 7.07 2 Around = Aoval 72/42/6/A
72 42 6 7.2 1 - 72/42/6/7.2
42 72 6 10 1 - 42/72/6/10
42 72 6 10 2 - 42/72/6/D
42 72 6 7.07 2 Around = Aoval 42/72/6/A
42 72 6 7.2 1 - 42/72/6/7.2

quently, by reducing the size of these zones, an improvement of the thermo-hydraulic perfor-

mance of pillow plates can be achieved. For this reason, the development of recirculation zones

was investigated for oval-shaped welding spots, which are more streamlined.

Fig. 5.19 shows an example of two pillow-plate geometries, which have the same welding spot

pattern and inflation height, but different welding spot shapes. In this example, the transversal

welding spot diameters dSP of both geometries are equal; however, the longitudinal diameter

of the oval welding spots is two times the transversal diameter. This changes both the shape

of the welding spots and the waviness of the channel walls (Fig. 5.19); hence, also the local

cross-sectional areas of the channel is changed. Tab. 5.4 summarizes the pillow-plate geometries

investigated in this optimization study.

The letter “D” at the end of the abbreviation in Tab. 5.4 denotes pillow plates with oval welding

spots, which have the same transversal diameter as the round ones. Accordingly, the letter “A”

represents pillow plates with oval welding spots, which have the same surface area as those with

round spots.

The effect of the welding spot shape on the size of the recirculation zones in longitudinal type

pillow plates is presented in Fig. 5.20. The use of oval welding spots clearly reduces the size

of the secondary flow (cf. Fig. 5.20(b)(c)). Although the shape of these welding spots is more

streamlined, they do not lead to a shift of the separation point. Rather the reduction in the

size of the recirculation zones is caused by the channel waviness. The latter is notably different

compared to a pillow plate with round welding spots. The width (bD,E) for pillow plates with

elliptical welding spots, as shown in Fig. 5.19, is smaller than bD,C for pillow plates with
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Figure 5.20: Developed velocity field in a pillow plate with the geometry 72/42/6/10 (a),
72/42/6/D (b), 72/42/6/A (c) and 72/42/6/7.2 (d).

round spots. This leads to an earlier redirection of the meandering core, due to the opposing

action of the next (diagonally placed) downstream welding spot on the flow. Consequently, the

recirculation regions are “squashed” and thus restricted in size. This results in the meandering

core following a more linear path with less deflection, compared to behavior shown in Fig.

5.20(a).

In Fig. 5.21, the simulation results for the optimization of longitudinal-type pillow plates are

summarized. As can be seen, the geometry 42/72/6/D brings a reduction in ψA by 23%, which

indicates a significant decrease in the size of the recirculation zones. As a result, the portion

of form drag on total resistance is also reduced (cf. increase in ψR), which leads to a decrease

in pressure loss of up to 12%. On the other hand, the product hAw drops by almost the same

amount, thus reducing the improvement of the thermo-hydraulic efficiency ε∗. The product hAw

is more informative than just h, since the heat transfer area in 42/72/6/D is reduced by 5%,

due to the larger surface of the oval welding spots compared to round ones. Therefore, the use

of oval welding spots, which have the same surface area as the round ones in 42/72/6/10, was

also investigated. The flow pattern in such pillow plates is seen in Fig. 5.20(c), and it is similar

to that in Fig. 5.20(b). The geometry 42/72/6/A results in a significant reduction in pressure

loss of up to 35%, while hAw decreases by only 9%. The combined result is an improvement

in efficiency ε by as much as 37%. Since the transversal diameter of the smaller oval welding

spot in 42/72/6/A leads to a smaller form drag, the use of round welding spots with a smaller

diameter than in 42/72/6/10 was also analyzed. The flow pattern of this case is shown in Fig.

5.20(d). The small-diameter round welding spots in 42/72/6/7.2 are even more efficient than

the small oval welding spots (42/72/6/A). They lead to an efficiency improvement by as much

as 43% (cf. Fig. 5.21).

Since the use of oval welding spots and small round ones improves the overall thermo-hydraulic

performance of longitudinal-type pillow plates, their impact on transversal-type pillow plates

was also studied. The results of this study are presented in Figs. 5.22 and 5.23.

In contrast to longitudinal-type pillow plates, the flow pattern in transversal-type pillow plates

with oval welding spots does not change notably. The size of the reciruclation zones is reduced

(cf. Fig. 5.22(b)); but this time mainly due to the smaller distance lR between successive welding
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Figure 5.21: Thermo-hydraulic characteristics of longitudinal type pillow-plates with different
welding spot geometries, compared to the reference pillow plate 72/42/6/10. The
results are based on the same volume flow rate in all geometries.

Figure 5.22: Developed velocity field in a pillow plate with the geometry 42/72/6/10 (a),
42/72/6/D (b), 42/72/6/A (c) and 42/42/6/7.2 (d).

Figure 5.23: Thermo-hydraulic characteristics of transversal type pillow-plates with different
welding spot geometries, compared to the reference pillow plate 42/72/6/10. The
results are based on the same volume flow rate in all geometries.

spots.

The efficiency in the transversal-type geometry 42/72/6/D is reduced by 5%, compared to the

reference geometry 42/72/6/10. On the other hand, by using oval welding spots with the same

surface area as the round ones in 42/72/6/10, i.e 42/72/6/A, the thermo-hydraulic perfor-

mance is improved by 22%. Similar to longitudinal-type pillow plates, the best improvement

in transversal-type pillow plates is achieved by using small round welding spots (42/72/6/7.2),

with an efficiency of up to 25% (cf. Fig. 5.23).
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In summary, the use of oval welding spots or small round ones can significantly improve the

thermo-hydraulic efficiency of pillow plates, especially of the longitudinal type. Oval-shaped

welding spots are simple to manufacture when using automated laser welding technology.

5.3 Conclusions

This chapter focused on fluid dynamics and heat transfer in the inner channels of PPHE investi-

gated both experimentally and by CFD simulations. Two different experimental facilities were

used to validate the CFD simulations. The first one contained a unique experimental set-up

encompassing a transparent pillow-plate channel. This facility provided the first flow visual-

ization in pillow plates. A comparison with the flow pattern obtained by CFD showed that

the simulations can reproduce the complex fluid dynamics in pillow-plate channels with a good

accuracy. Both facilities were used to measure pressure loss in pillow plates, while the second

experimental set-up was used to also measure heat transfer coefficients in pillow plates. The

CFD simulations proved to accurately capture these quantities as well.

In the next step, a comprehensive CFD analysis of fluid dynamics and heat transfer in pil-

low plates was performed. The simulations showed that the fully developed turbulent flow in

pillow plates is characterized by two distinctive regions, namely, (a) recirculation zones aris-

ing in the wake of the welding spots, and (b) the core flow, which is bounded by the walls

and the recirculation zones. The latter produce form drag, which increases pressure loss in

the channel. Depending on the geometry, three sub-categories of the characteristic flow pat-

tern, a longitudinal-type, a transversal-type and a mixed-type could be identified. They differ

mainly in the size and shape of the recirculation zones. While the characteristic flow pattern in

longitudinal-type and transversal-type pillow plates is only weakly dependent on the Reynolds

number, in mixed-type pillow plates, the recirculation zones increase significantly in size with

growing Reynolds number.

Furthermore, the thermo-hydraulic efficiency of pillow plates was studied. The largest efficiencies

were observed at the lowest Reynolds number; they decreased rapidly at larger Reynolds num-

bers. The lowest efficiencies were found for pillow plates, in which the longitudinal and transver-

sal welding spot pitches were equal. The highest efficiencies were obtained for transversal-type

pillow plates with the larger inflation height.

Finally, a geometry based optimization study for improving the thermo-hydraulic efficiency of

pillow plates was performed. It was found that by using “oval-shaped” welding spots, which

are more streamlined than round ones, the efficiency can be increased by as much as 37% for

longitudinal-type pillow plates and by 22% for transversal-type pillow plates. Even greater

improvements in the efficiency were found for reduced size of the welding spots.





6 Fluid dynamics and heat transfer in outer

pillow-plate channels

Design of PPHE requires knowledge of overall heat transfer coefficients, and thus, fluid flow and

heat transfer in the outer channels must be governed. The geometry of the channels between

adjacent pillow plates differ from that of the inner channels, as illustrated in Fig. 2.4. While

fluid in the inner channels is forced to flow around welding spots, they are missing in the outer

channels. Therefore, the flow approximately follows a linear path and pressure loss in the outer

channels is significantly lower. Furthermore, two additional geometrical parameters related to

the outer channels can be varied, namely, the distance between the neighboring pillow plates δP

and the relative shift between these plates. Thus, the development of generic design methods

for the outer side requires a more extensive CFD study than for the inner side. In this work, the

fluid dynamics and heat transfer in the outer channels is studied only for a single configuration

of the characteristic geometry parameters of pillow plates.

6.1 CFD simulation

CFD simulations for the outer channel were carried out, again, using the commercial solver

STAR-CCM+. In Fig. 6.1, the computational domain for the outer pillow-plate channel is

illustrated.

In contrast to the flow in the inner channels, here, the flow was largely transient and periodic.

This made the use of flow symmetry planes not possible for the outer channels, as was done

for the inner channels (cf. Fig. 5.7). As a result, the domain for the outer channels is larger.

Nevertheless, it was possible to reduce the computational effort by utilizing the flow periodicity,

both for the inlet (y = 0) and for the outlet (y = 2sL) as well as for the side boundaries

(x = −0.5sT and x = 0.5sT ). Periodicity for x = −0.5sT and x = 0.5sT was used by directly

mapping these boundaries, while for the inlet and outlet, it was done in such a way that the

velocity field was repeated after twice the longitudinal pitch (2sL). This offers the advantage of

A part of the material presented in this chapter has been published in Piper et al. [4].
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Figure 6.1: Periodic computational domain of the outer pillow-plate channel with staggered weld-
ing spots.

reduced calculations within the (periodically) hydrodynamically developed region, which usually

occupies the major part of the channels in industrial-scale pillow-plate heat exchangers.

The type of boundary conditions used for the energy equation were similar to those described in

Sec. 5.2.1. Constant temperature walls were used in the simulations for both the inner and outer

channel. As a matter of fact, the use of this boundary condition is common practice, although,

in reality, the wall temperature is not constant; rather, it varies spatially, in line with thermal

coupling between the inner and outer channel. Such coupling can be captured if conjugated

heat transfer models are used. However, the computational expense in this case is very high.

Nevertheless, it is expected that the deviation between heat transfer coefficients determined with

constant temperature wall boundary condition and the condition in reality, is marginal.

The flow in the outer channels was considered under similar assumptions as for the inner channels

(cf. Sec. 5.2.1), namely: single-phase, incompressible, three-dimensional, turbulent and with

constant physical properties. Turbulence was described by the EB-k − ε model (Sec. 3.3.4)

instead of the less computationally expensive realizable k − ε model used for inner channels.

Both models provided similar results for the inner channel, however, for the outer channel the

EB-k− ε model was superior, as will be discussed later in Sec. 6.3. In contrast to the realizable

k − ε model, the EB-k − ε model accounts for turbulence anisotropy in shear layers, which

makes it more capable of accurately predicting boundary layer separation and re-attachment

over smooth curved surfaces, which are met in the outer pillow plate channel.

For the simulation of the outer channel, a structured body-fitted grid, shown in Fig. 6.2 was

used. This grid type is ideal for wavy surfaces, since the cells align with the geometry contours,
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Figure 6.2: Example of structured body-fitted grid used in the simulations of the outer pillow
plate channel. View on the (x,0,z)-plane.

and this property leads to high-quality cells favorable for numerical accuracy and convergence.

Satisfactory resolution of the boundary layers was achieved with the same techniques as pre-

sented in Sec. 5.2.1.

6.2 Experimental set-up

The experimental facility used to measure pressure loss between two adjacent pillow plates is

shown in Fig. 6.3. Water is directed from a feed tank (FT) to the test channel (PP) by means

of a centrifugal pump (P). The mass flow of water is measured downstream of the pump using

a Coriolis flow sensor (Emerson Micro Motion R© CMF050) and is adjusted by the manual valve

(V). Subsequently, water flows in the channel between two adjacent pillow plates (PP) and is

then collected again in the feed tank (FT). The test channel (PP) was built by two adjacent

pillow plates. The constant distance between the pillow plates was achieved by two 12 x 12 mm

stainless steel rods placed on the flat edges of the pillow plates. When considering the additional

sealing strips, the maximum channel height δP of the channel was equal to 13 mm. The fluid

was distributed at the channel inlet via the distributor (D1) and collected at the channel outlet

D2. The channel had a length of 1000 mm and a width of 270 mm. The pillow plates used in

the experiments have industrially relevant characteristic dimensions: sT = 42 mm, 2sL = 72

mm, dSP = 12 mm and δi = 7 mm. They were manufactured from austenitic stainless steel

plates of material 1.4541, with a surface finishing of quality 2B (DIN EN 10088-2), which had a

typical mean roughness Ra ≈ 0.1− 0.5 µm. This surface is technically smooth, hence the effect

of surface roughness on frictional losses is assumed to be negligible.

For the measurement of pressure loss in the wavy channel, two bore holes with a diameter of

2 mm were drilled through the center of the welding spots of one of the pillow plates. Burrs

created from the drilling were fully removed to eliminate measuring uncertainty caused by flow

disturbances around the burrs. Bushings were then brazed onto these welding spots in order

to accommodate hose sockets (cf. Fig. 6.3), which were used to attach the pressure measuring

lines. Brazing was used instead of welding in order to reduce heat input into the heat affected

zone, which could cause a deformation of the pillow plate at the welding spot. The measuring

ports were placed far enough from the inlet and outlet and the channel edges. In this way, only

the fully developed flow region was considered and the influence of edge effects could be reduced.

Moreover, the distance between the measuring ports was large (429 mm = 12sL), thus reducing

measuring uncertainty. Pressure loss was measured using a digital differential pressure sensor
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Figure 6.3: Experimental facility used for the pressure loss measurements in outer pillow-plate
channel.

(Emerson Rosemount R© 3051 CD3), while the experiments were performed under isothermal

conditions (T = 25◦C).

6.3 Method validation

Figure 6.4 shows a comparison of measured and calculated (with CFD) pressure loss values

in the outer pillow-plate channel. Two sets of data are shown, namely, those obtained using

the realizable k − ε model and those using the EB-k − ε model. As mentioned in Sec. 6.1,

both models yielded similar results for the inner channels, however, for the outer channel the

realizable k− ε model leads to an underprediction of pressure loss by as much as 20%, while the

EB-k − ε model agrees quite well with the experiments (deviation < 5%). For this reason, the

EB-k − ε model was adopted for all simulations of the outer pillow-plate channel.

6.4 Results and discussion

In the outer pillow-plate channel, the cross-section varies periodically and significantly in stream-

wise direction. The channel is narrowest, where the inflation height of the pillow plates is largest

(hill-to-hill); it is widest in the vicinity of the welding spots (trough-to-trough). As a result, the

flow is accelerated and slowed down periodically. This leads to an adverse pressure gradient and

causes boundary layer separation.

Fig. 6.5 shows an example-result of the CFD simulation of the flow in the outer pillow-plate

channel. The fields shown here represent time-averaged values of the transient simulations. They
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Figure 6.4: Parity plot of numerical and experimental results for pressure loss in the outer pillow-
plate channel for 7000 ≤ Re ≤ 14000 and Pr = 6. Black circles – simulations with
the elliptic blending k−ε model; white circles – simulations with the realizable k−ε
model.

Figure 6.5: Illustration of characteristic vortex structures (represented by streamlines) arising in
the vicinity of the welding spots in the outer pillow-plate channel (Re = 5000). Size
of recirculation zones is represented by τw,y ≤ 0 (a). The effect of fluid flow on heat
transfer is represented by the 2D-field of the normalized wall heat flux (b).
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have been averaged over 10 periodic cycles in time. In Fig. 6.5 “tornado-like” vortex structures

arising upstream of the welding spots can be seen. The size of these vortices can be evaluated

more clearly by the regions of negative wall shear stress in Fig. 6.5(a), indicating recirculation

of the flow. The fluid located in the vortices is transported spirally outwards away from the

troughs; it is then directed diagonally into the next downstream trough. The recirculation zones

cause form drag, which contributes approximately 50% of the Darcy friction factor. These zones

occupy roughly 30% of the wall area, making them less effective for heat transfer, as can be seen

in Fig. 6.5(b). After boundary layer re-attachment, the flow is re-accelerated out of a trough.

This leads to steep temperature gradients and thus to high heat transfer rates.

6.5 Conclusions

The flow in the outer channels differs significantly from that in inner channels, mainly because the

fluid is not forced to flow around the welding spots. Moreover, boundary layer separation in the

outer channels occurs over the smooth curved surface of the pillow plates. Failure to accurately

predict the location of boundary layer separation and reattachment would result in the a wrong

estimation of the size and shape of the recirculation regions and, hence, of pressure loss and heat

transfer. Therefore, the use of more advanced eddy viscosity models, which consider turbulence

anisotropy, is necessary. The turbulence model used in this work was the elliptic-blending k− ε
model, which was able to predict pressure loss in turbulent flow in the outer channels of PPHE

with a maximum relative deviation of 5%, compared to the experiments performed in this work.

The CFD simulations show, that boundary layer separation occurs upstream of the welding

spots, leading to large but flat recirculation zones, which occupy roughly 30% of the wall area.

These zones are the main cause of form drag, which contributes approximately 50% of the Darcy

friction factor.
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The development of accurate design methods for pillow-plate heat exchangers represents the

main goal of this work. The data on fluid dynamics and heat transfer in PPHE necessary for

the development of these methods were obtained largely by CFD simulations (cf. Secs. 5 and

6). A more comprehensive CFD study was accomplished for the inner channels, and thus, their

design equations are more generic.

7.1 Design methods for the inner channels of PPHE

For the determination of heat transfer coefficients, two different approaches are presented. The

first approach is based on the method typically suggested in literature, whereby the well-known

Dittus-Boelter type power law function (cf. [16]) for the Nusselt number is applied and fitted

to numerical data obtained in Sec. 5.2. The second approach is based on the characteristic flow

pattern in pillow plates suggested in Sec. 5.2.

7.1.1 Design equation for pressure loss

Pressure loss is commonly represented by the dimensionless Darcy friction factor ζ∆p, which

is defined by Eq. (5.4). Often, ζ∆p is a function of the Reynolds number and is represented

by a curve with asymptotic behavior, as shown in Fig. 7.1. This curve is valid for turbulent

forced convection in a typical pillow-plate channel. The characteristic flow in such a pillow-plate

channel is shown in Fig. 7.2.

Such a curve can be approximated with a power-law function:

ζ∆p = n1Re
n2 (7.1)

A part of the material presented in this chapter has been published in Piper et al. [58].
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Figure 7.1: Darcy friction factor ζ∆p as a function of the Reynolds number for turbulent, single-
phase flow in a longitudinal-type pillow plate (cf. Sec. 5.2).

Figure 7.2: Characteristic flow pattern in pillow-plate channels represented by streamlines col-
ored by the velocity magnitude (left half) and by the normalized wall heat flux
2D-field (right half).

This asymptotic behavior can be explained if different contributions of the two constitutes of

the Darcy friction factor, namely the friction drag coefficient and the form drag coefficient, are

considered. While the coefficient of form drag depends only weakly on Re in most pillow plate

geometries (cf. Sec. 5.2), the friction drag coefficient shows an asymptotic trend resulting in an

asymptotic behavior of ζ∆p (cf. Eq. (7.1) for n2 < 1).

The trend shown in Fig. 7.1 does not correspond to all welding spot arrangements. In mixed-type

pillow plates (cf. Sec. 5.2), the recirculation zones grow in size with the Reynolds number, thus

strongly influencing the form drag coefficient. This results in a complex dependency between

the Darcy friction factor and Reynolds number (Figs. 5.16, 5.17 and 7.3). Therefore, a more

complex description for ζ∆p = f(Re) than by Eq. (7.1) is necessary.

Equation (7.1) has two adjustable parameters, which represent functions of the pillow-plate

geometry parameters sT , sL, dSP and δi. These can be used to build the following dimensionless
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Figure 7.3: Darcy friction factor ζ∆p as a function of the Reynolds number for turbulent, single-
phase flow in a mixed-type pillow plate (cf. Sec. 5.2).

Figure 7.4: Main types of welding spot arrangements of pillow plates.

combinations:

a =
2sL
sT

(7.2)

b =
dSP
sT

(7.3)

c =
δi
sT

(7.4)

The range of possible variation of a, b and c is very broad. Therefore, in this work, the in-

vestigation was limited to a practically relevant range, which includes the three main types of

welding spot arrangements of pillow plates available on the market. These arrangements are

represented by type-L (a =
√

3), type-E (a = 1) and type-T (a = 1/
√

3) patterns shown in

Fig. 7.4. Patterns with other ratios are hardly encountered in industry. In Sec. 5.2, a similar

classification was used and related to the flow patterns observed in the pillow-plate channels,

namely, type-L corresponds to “longitudinal-type” pillow plates (sr = (a − b)/(1 − b) ≥ 1.56),

while type-T and type-E correspond to “transversal-type” (sr ≤ 1).



92 7 Design methods for PPHE

Figure 7.5: Influence of the dimensionless welding spot arrangement (left), welding spot diame-
ter (middle) and inflation height of the pillows (right), on the Darcy friction factor
in pillow-plate channels. The results are shown for some representative sets of geo-
metrical parameters.

The influence of the characteristic geometry parameters on the Darcy friction factor (obtained

from the CFD simulations presented in Sec. 5.2) was analyzed using Fig. 7.5, where ζ∆p is

plotted against a (Fig. 7.5 (left)), b (Fig. 7.5 (middle)) and c (Fig. 7.5 (right)).

It is visible that the geometry parameters have a large influence on ζ∆p, which results in a strong

variation of the values of n1 and n2 in Eq. (7.1). Fig. 7.5 (left) shows that the relation between

ζ∆p and the welding spot pattern is quite complex. There is a maximum in ζ∆p for type-E

welding spot patterns when 2sL = sT . Furthermore, an approximation of the value of ζ∆p for

mixed-type pillow plates (a ≈ 0.75 and a ≈ 1.37) by interpolating linearly between the values

for pillow-plates with a triangular (type-L and type-T) and equidistant welding spot pattern

is not recommended (cf. Fig. 7.5). This can lead to a deviation of up to 75%, compared to

the value of ζ∆p from CFD simulations. As was demonstrated in Sec. 5.2, triangular welding

spot patterns lead to the highest thermo-hydraulic efficiency, while type-E patterns provide the

largest heat transfer coefficient at equal pumping power. Mixed-type geometries do not seem to

offer any specific advantages. In order to reduce complexity of the design equations developed

in this work, mixed-type geometries were excluded from considerations.

The dependence of ζ∆p on the welding spot diameter (Fig. 7.5 (middle)) and on the infla-

tion height of the pillows (Fig. 7.5 (right)) is almost linear. Consequently, an approximation

of ζ∆p for intermediate values of b and c by linear interpolation is possible. The adjustment

parameters n1 and n2 in Eq. (7.1) were estimated by plotting ζ∆p (evaluated from CFD sim-

ulations presented in Sec. 5.2) over the Reynolds number for different geometry parameters a,

b and c. As mixed-type geometries were not considered, no continuous function for ζ∆p with

the welding spot arrangement was developed. Moreover, a continuous function would lead to

complex mathematical expressions, which are rather difficult for practical use. Instead, separate

design equations were developed for triangular (type-L and type-T) patterns and for equidistant

(type-E) patterns. These equations are discussed in the following sections.
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Figure 7.6: Influence of the dimensionless welding spot arrangement (left), welding spot diameter
(middle) and inflation height of the pillows (right), on the Nusselt number in pillow-
plates channels. The results are shown for some representative sets of geometrical
parameters.

7.1.2 Design methods for heat transfer

In this work, two different approaches for the thermal design of pillow plates were developed and

tested. The first approach is based on a simple Dittus-Boelter type power-law function, while

the coefficients of this expression are determined by regression analysis using the heat transfer

coefficients obtained from the detailed CFD simulations presented in Sec. 5.2. This is the most

common procedure in literature to represent heat transfer coefficients. However, as already

mentioned in Chap. 3.2, there is still some scepsis concerning the validity of Dittus-Boelter type

correlations.

In order to overcome the drawbacks of Dittus-Boelter type functions, a second approach was de-

veloped, which is based on the analysis of the characteristic flow pattern in pillow-plate channels.

This approach has a stronger connection to the actual flow structure in pillow-plate channels and

it can be extended to other complex flows. Such methods could not easily be developed in the

past; today, available advanced CFD methods are capable of providing detailed flow information,

which opens the path for new modeling strategies.

Following the analysis performed with Fig. 7.5 for pressure loss, in Fig. 7.6, the Nusselt

number was plotted over characteristic geometry parameters of pillow plates. The conclusions

drawn from the analysis of Fig. 7.6 are qualitatively similar to those from Fig. 7.5. However,

compared to ζ∆p, a linear interpolation of Nu for intermediate welding spot patterns (a ≈ 0.75

and a ≈ 1.37) leads to a smaller deviation (less than 12%). Furthermore, the influence of the

welding spot diameter b on Nu is marginal (Fig. 7.6 (middle)).

The power-law approach

Following Dittus-Boelter [16], the Nusselt number can be represented by a power-law type

equation (cf. Eq. (3.23)):

Nu = n3Re
n4Prn5 (7.5)
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Figure 7.7: Basic idea to represent the characteristic flow pattern in pillow-plate channels into
two separate zones.

In Eq. (7.5), the parameters n3, n4 and n5 are functions of the pillow-plate geometry and need

to be fitted to the numerical data provided by CFD in Sec. 5.2. Equation (7.5) is simple and

easy to use, however, as already mentioned above, it lacks physical background.

Development of the flow-pattern oriented approach: the “2-zone-model”

CFD simulations presented in Sec. 5.2 show that the flow in pillow-plate channels can be

subdivided into characteristic zones, namely, a meandering core flow (zone 1), which dominates

heat transfer, and recirculation zones (zone 2), which are formed in the wake of the welding

spots (cf. Fig. 5.12). Heat transfer is poor in zone 2. This can be seen by the normalized wall

heat flux shown in Fig. 5.12. Consequently, the meandering core flow is the main contributor to

heat transfer in pillow-plate channels. The identification of these two characteristic zones led to

the development of a flow pattern oriented model for the prediction of heat transfer coefficients.

The basic idea of this model is shown in Fig. 7.7.

Boundary layers in zone 1 are turbulent and hydro-dynamically and thermally fully developed.

For this type of a boundary layer, numerous Nusselt correlations have been developed in the

past (e.g. Petukhov and Popov [31], Colburn [59] and Dittus and Boelter [16]), as already

mentioned in Chap. 3.2. Hence, by subdividing the flow pattern into two different regions

it is possible to apply existing, robust correlations, e.g. the correlations for turbulent forced

convection heat transfer in pipes, to zone 1. The recirculation regions (zone 2) can be accounted

for by a correction factor.
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The meandering core is separated from the total flow in a post-processing stage of the CFD

simulations. Figure 7.7 shows schematically the results of the partitioning. The “virtual bound-

ary” between the two zones coincides with the location of the shear layer between zones 1 and 2.

This boundary is found using the scalar 2D-field of the wall shear stress |τw| (Fig. 7.7). In the

meandering core, |τw| is largest and in the recirculation zones it approaches zero. In the shear

layer between the two zones, |τw| varies strongly.

• Modeling of the meandering core flow (zone I)

As mentioned above, the boundary layers in zone 1 are fully turbulent (for 1000 ≤ Re ≤
8000) and hydro-dynamically and thermally fully developed. For this type of boundary

layer, Petukhov and Popov [31] suggested a semi-empirical Nusselt correlation (cf. Eq.

(3.26)):

Nu =
(ζf/8)RePr

1.07 + 12.7
√

(ζf/8)
(
Pr2/3 − 1

) (7.6)

Eq. (7.6) was originally developed for turbulent forced convection heat transfer in pipes

and it is up to date the most successful and widely used Nusselt correlation for this

type of flow. Eq. (7.6) is a heat transfer analogy; it is based on the assumption that

the mechanisms of momentum transfer and heat transfer are similar in fully developed

turbulent boundary layers. For this reason, it is possible to predict heat transfer coefficients

only from knowledge of frictional losses. Compared to purely empirical formulations, such

as by Dittus and Boelter [16], Steimle [26] or Colburn [59], which are mostly based on

fitting heat transfer data to power law expressions, Eq. (7.6) provides higher accuracy

and a larger range of validity. Although Eq. (7.6) was suggested for flow in pipes, it

is generally applicable to flow in any geometry, where regions of hydro-dynamically and

thermally fully developed turbulent boundary layers exist.

In order to apply Eq. (7.6) to the meandering core for the prediction of heat transfer

coefficients, zone 1 was simplified to an equivalent “tube” geometry (Fig. 7.8). The tube

diameter was set equal to the hydraulic diameter of zone 1 (dtube = dh,z1). The length

of the tube was chosen to be equal to the arc-length of the sine-curve s(x). This curve

describes the shape of the meandering core.

The analogy of Petukhov and Popov [31] is applied to zone 1 by employing the hydraulic

diameter dh,z1, the Reynolds number Rez1 and the friction factor ζz1 of zone 1 in Eq. (7.6):

Nuz1 =
(ζf,z1/8)Rez1Pr

1.07 + 12.7
√

(ζf,z1/8)
(
Pr2/3 − 1

) (7.7)

With Eq. (7.7), heat transfer coefficients can be determined for the meandering core. The

parameters dh,z1, Rez1 and ζz1 were obtained from the CFD simulations presented in Sec.

5.2.
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Figure 7.8: Illustration of the simplification of the meandering core flow into an analogous “model
tube”.

The mean hydraulic diameter of zone 1 was evaluated by:

dh,z1 =
4Vz1
Aw,z1

(7.8)

Eq. (7.8) represents a volumetric hydraulic diameter (cf. Eq. (4.1)), which is a function of

the fluid volume Vz1 and the wetted wall area Aw,z1 in zone 1. The mean stream velocity

in this zone is determined by:

um,z1 =
V̇z1
Acs,z1

(7.9)

In Eq. (7.9), V̇z1 is the volumetric flow rate in zone 1 and Acs,z1 is the mean cross-sectional

area. It was assumed that V̇z1 is equal to the total volumetric flow rate Vtot in the pillow-

plate channel, since fluid in the recirculation zones is “trapped” there and, consequently,

does not exchange mass with the meandering core. Using Eq. (7.8) and Eq. (7.9), the

mean Reynolds number in zone 1 can be calculated as follows:

Rez1 =
um,z1dh,z1

ν
(7.10)

Finally, the mean friction factor in zone 1 was evaluated using a Blasius-type power law

function [22]:

ζf,z1 = n6Re
n7 (7.11)
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The coefficient n6 and the exponent n7 are functions of the welding spot pattern and the

inflation height; they were fitted to the simulated friction factors in zone 1 obtained in

Sec. 5.2.

• Modeling of the total channel

As shown above, the meandering core can be modeled using Eq. (7.7). However, Eq. (7.7)

is only applicable to this region. To complete the 2-zone model a link between zone 1 and

the total channel is required together with a model for the recirculation zones. Such a link

was established by an energy balance over the surface of the channel walls:

Q̇tot = Q̇z1 + Q̇z2 (7.12)

Equation (7.12) states that the total heat flow rate Q̇tot transferred to the channel surface

is equal to the sum of heat flow rates transferred to the surfaces covered by the meandering

core Q̇z1 and by the recirculation zones Q̇z2. Equation (7.12) can be rearranged into the

following equation,

Q̇tot (1− ψQ) = Q̇z1 (7.13)

by introducing the dimensionless variable ψQ (Eq. (5.12)), which represents the ratio of

heat transferred in the recirculation zones to the total heat flow rate. The heat flow rates

Q̇tot and Q̇z1 can also be determined using Newton’s law of cooling:

Q̇tot = htotAw,tot∆Ttot (7.14)

Q̇z1 = hz1Aw,z1∆Tz1 (7.15)

The term ∆Ttot in Eq. (7.14) represents the mean temperature difference between the

bulk and wall temperatures, while ∆Tz1 is the mean temperature difference between the

bulk and wall temperatures in zone 1 only. Since the meandering core mainly contributes

to heat transfer in the pillow-plate channel, it was assumed that the following relationship

is valid:

∆Ttot ≈ ∆Tz1 (7.16)

The approximation in Eq. (7.16) could be verified by the CFD simulations. Furthermore,

the relationship between the total surface area of the channel and the surface area covered
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by zone 1 is:

Aw,z1 = Aw,tot (1− ψA) (7.17)

where the dimensionless variable ψA (Eq. (5.11)) in Eq. (7.17) is used to evaluate the size

of the recirculation zones. Using Eqs. (7.13) to (7.17), the heat transfer coefficient in the

total channel htot can be determined based on the heat transfer coefficient in zone 1:

htot = hz1

(
1− ψA
1− ψQ

)
(7.18)

As mentioned above, ψQ reflects the contribution of the recirculation zones to heat transfer

in the pillow-plate channel. It was evaluated by CFD.

The variables ψA and ψQ are functions of the welding spot pattern, the inflation height

and the Reynolds number. However, as shown in Sec. 5.2, they depend only weakly on the

Reynolds number. Hence, simplified functions were derived for ψA and ψQ, which depend

on geometrical parameters only.

• Determination of Rez1 based on Retot

The mean Reynolds number in zone 1 can be determined based on the mean Reynolds

number for the total channel. The former is determined by Eq. (7.10) and the latter by

Eq. (5.3). Dividing Eq. (7.10) by Eq. (5.3) leads to:

Rez1
Retot

=
um,z1dh,z1
umdh

(7.19)

In order to evaluate um,z1, it was assumed that V̇z1 is equal to the total volumetric flow

rate V̇tot in the pillow-plate channel, as mentioned above. This assumption leads to:

V̇z1 = um,z1Acs,z1 = umAcs,tot = V̇tot (7.20)

The ratio of the mean stream velocities um,z1/um in Eq. (7.19) is evaluated by:

um,z1
um

=
Acs,tot
Acs,z1

(7.21)

The mean cross-sectional area of the total channel Acs,tot is determined using Eq (4.2)

(Acs,tot = Acs,tot, over-bar omitted here for better readability). For Acs,z1, it is important to
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differentiate between transversal-type and longitudinal-type pillow plates (see Sec. 5.2.4).

For the latter, the meandering core is deflected more strongly around the welding spots

(Fig. 7.8). As a result, the length of the flow path of zone 1 is longer compared to

transversal-type pillow plates. In order to evaluate this length, it was assumed that the

shape of the meandering core can be approximated by a sine-curve:

s(x) = samp sin

(
xπ

sL
+ β

)
(7.22)

In Eq. (7.22), samp represents the amplitude and β the phase shift. The length of the flow

path of zone 1 is evaluated by the arc-length sz1 of the sine-curve:

sz1 =

2sL∫
0

√
1 + s′(x)2dx (7.23)

The ratio of the arc-length to the longitudinal pitch is given by:

s∗ =
sz1
2sL

(7.24)

Consequently, for transversal-type pillow plates s∗ = 1 and for longitudinal-type pillow

plates s∗ > 1. The cross-sectional area of the meandering core can then be determined by:

Acs,z1 =
Vz1

2sLs∗
(7.25)

With Eq. (4.2) and (7.25), Eq. (7.21) can be rearranged as follows:

um,z1
um

=
Vtot
Vz1

s∗ (7.26)

The ratio of the hydraulic diameters in Eq. (7.19) can be evaluated using Eq. (7.17):

dz1
dh

=
4Vtot/Aw,z1
4Vz1/Aw,tot

=
Vz1
Vtot

(
1

1− ψA

)
(7.27)
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Finally, Eq. (7.19) can be rearranged to:

Rez1
Retot

=
s∗

1− ψA
(7.28)

With Eq. (7.28), the Reynolds number in zone 1 can be calculated using the Reynolds

number for the total channel.

Modeling of variable physical properties

This section is common for both design approaches. When physical properties vary significantly

within the boundary layer due to their strong temperature dependence, the heat transfer rate

is affected. In such cases, the correction proposed by Sieder and Tate [60] is commonly applied:

NuT = Nu

(
Pr

Prw

)0.11

(7.29)

Eq. (7.29) is used for turbulent heat transfer in liquids in channel flow, where Pr is the Prandtl

number evaluated for the bulk temperature, while Prw represents the Prandtl number deter-

mined at the wall temperature. The exponent 0.11 is common for pipe flow.

The influence of variable physical properties on the heat transfer coefficient in pillow-plate

channels was evaluated based on a CFD study. In this work, the same technique as in Sec. 5.2

was applied, yet the dynamic viscosity µ = f(T ), the thermal conductivity λ = f(T ) and the

specific heat capacity cp = f(T ) of water were specified as polynomial functions of temperature

using the data obtained from the database Refprop [61]. In the simulations, the ratio Tw/TB

was varied between 1.023 and 1.087. The results of these simulations were then used to test the

applicability of Eq. (7.29) for pillow plates.

Figure 7.9 shows relative deviations between heat transfer coefficients calculated with Eq. (7.18)

and Eq. (7.29) and those obtained by CFD simulations. As can be seen, this deviation rises

significantly, when Eq. (7.18) is applied (dash line). In contrast, Eq. (7.29) works well for pillow

plates, with the almost constant relative deviation < 2% (solid line).

7.1.3 Adjustment of correlation parameters and method validation

The adjusted parameters n1 to n7, ψA, ψQ, dh,z1 and s∗ in the design equations for pressure

loss and heat transfer were obtained by regression analysis, using the Darcy friction factors and

Nusselt numbers from the CFD simulations shown in Sec. 5.2.

Within the variation range of a, b and c considered in the present work, it was found that the

dependence of the Darcy friction factors and the Nusselt numbers on the geometry parameters b

and c is nearly linear. Hence, it was possible to adapt simple linear functions for the adjustment

parameters mentioned above to approximate the numerical data.
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Figure 7.9: Relative deviation of heat transfer coefficients determined using Eq. (7.18) or (7.29)
from heat transfer coefficients evaluated by CFD simulations, plotted against the
Prandtl number ratio Pr/Prw.

Furthermore, the effect of the welding spot diameter on the Darcy friction factor and heat

transfer coefficient was investigated for different welding spot arrangements a, while keeping

inflation height c constant. The qualitative relation ζ∆p = f(b) and h = f(b) was assumed to be

similar for all inflation heights. However, this has not yet been verified by CFD or experiment.

The hydraulic diameter and the mean stream velocity in the pillow-plate channel were deter-

mined by the following expressions:

dh = 1.06dh0 (7.30)

um = 0.94um0 (7.31)

where dh0 and um0 denote the hydraulic diameter and the mean stream velocity in pillow-plate

channels determined using the methods proposed in Chapt. 4. The marginal deviations between

dh and dh0 and between um and um0 arise from the difference in the determination of the inner

channel volume Vtot in Chapt. 4 and in the simulations in Sec. 5.2. In the latter, a small

extrusion (0.05 mm) of the welding spot was necessary in order to generate a high quality mesh

in the vicinity of the welding spots, where the channel becomes very narrow. Such an extrusion

is also observed in reality as a result of the welding process; however, it is small and has no

significant effect on the flow.
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Table 7.1: Coefficients n1 and n2 in Eq. (7.1) used for the prediction of pressure loss. The
validity range for the Reynolds number is 1000 ≤ Re ≤ 8000.

ζ∆p = n1Re
n2

a ≈ 0.58(
0.1 ≤ b ≤ 0.14

0.042 ≤ c ≤ 0.083

) a ≈ 1(
0.17 ≤ b ≤ 0.24

0.071 ≤ c ≤ 0.143

) a ≈ 1.71(
0.17 ≤ b ≤ 0.24

0.071 ≤ c ≤ 0.143

)
n1 8.74b+ (17c+ 0.73) −15.3b+ (1.4c+ 5.4) 1.35b+ (2.8c+ 0.92)
n2 −0.38 1.725b+ (1.11c− 0.66) 0.3b+ (0.53c− 0.29)

Figure 7.10: Comparison of Darcy friction factors obtained by simulation in Sec. 5.2 and by Eq.
(7.1) with coefficients from Tab. 7.1.

Parameters of ζ∆p

The best fit functions used to approximate the parameters n1 and n2 in Eq. (7.1) for the Darcy

friction factor in pillow-plate channels are presented in Tab. 7.1. Validation results for the

design equation for pressure loss is shown in Fig. 7.10.

As can be seen in Fig. 7.10, pressure loss in pillow-plate channels can be predicted with good

accuracy using the proposed equations, with a maximum relative deviation of ±6%.

Parameters of the power-law correlation

The best fit functions used to approximate the parameters n3, n4 and n5 for the power-law

model (Eq. (7.5)) are presented in Tab. 7.2.

The exponent n5 of the Prandtl number is generally a function of the characteristic geometry

parameters of the pillow plate. However, it was found that n5 varies with a, b and c only weakly

(≈ 0.38 − 0.42). Hence, an average value n5 = 0.4 was adopted. This assumption leads to a

deviation of only ±5% compared to the Nusselt numbers calculated using the exact value of n5.
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Table 7.2: Coefficients n3 to n5 used in Eq. (7.5) for the prediction of heat transfer coefficients.
The validity range for the Reynolds number is 1000 ≤ Re ≤ 8000 and for the Prandtl
number 1 ≤ Pr ≤ 150.

Nu = n3Re
n4Prn5

a ≈ 0.58(
0.1 ≤ b ≤ 0.14

0.042 ≤ c ≤ 0.083

) a ≈ 1(
0.17 ≤ b ≤ 0.24

0.071 ≤ c ≤ 0.143

) a ≈ 1.71(
0.17 ≤ b ≤ 0.24

0.071 ≤ c ≤ 0.143

)
n3 0.0775b+ (0.38c+ 0.005) 0.03b+ (0.76c− 0.032) −0.163b+ (0.711c+ 0.022)
n4 0.75 −1.12c+ 0.905 0.29b+ (−c+ 0.8)
n5 0.4 0.4 0.4

Figure 7.11: Comparison of Nusselt numbers obtained by simulation in Sec. 5.2 with those
determined using the power-law model summarized in Tab. 7.2.

A validation of the power-law correlation using heat transfer coefficients evaluated by the CFD

simulations, is shown in Fig. 7.11.

The simulated Nusselt numbers are predicted with a relative deviation of ±15%.

Parameters of 2-zone model

The best fit functions used to approximate the parameters n6, n7, ψA, ψQ and dh,z1 of the

two-zone model are presented in Tab. 7.3.

The exponent n7 of the Fanning friction factor in zone 1 proved to be independent of b and

c for any fixed welding spot arrangement a. Since the meandering core is hardly deflected

in transversal-type (a ≈ 0.58) and equidistant-type (a ≈ 1) geometries, the factor s∗ was set

equal to 1. It is important to mention, that for small Prandtl numbers (Pr < 5), the Nusselt

correlation presented in [31] is more accurate than that given by Eq. (7.7). A validation of the

two-zone model is shown in Fig. 7.12.
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Table 7.3: Equations and model adjustment parameters required within the 2-zone model for the
prediction of heat transfer coefficients. The validity range for the Reynolds number
is 1000 ≤ Re ≤ 8000 and for the Prandtl number 1 ≤ Pr ≤ 150.

ζf,z1 = n6Re
n7

Rez1 = Re

(
s∗

1− ψA

)
Nuz1 =

(ζf,z1/8)Rez1Pr

1.07 + 12.7
√

(ζf,z1/8)
(
Pr2/3 − 1

) a

h = hz1

(
1− ψA
1− ψQ

)
a ≈ 0.58(

0.1 ≤ b ≤ 0.14
0.042 ≤ c ≤ 0.083

) a ≈ 1(
0.17 ≤ b ≤ 0.24

0.071 ≤ c ≤ 0.143

) a ≈ 1.71(
0.17 ≤ b ≤ 0.24

0.071 ≤ c ≤ 0.143

)
n6 4.36c+ 1.14 2.52c+ 0.24 4.62c+ 0.6
n7 −0.44 −0.3 −0.34
ψA 0.94b+ 0.4 0.75b+ 0.46 0.81b+ 0.263
ψQ 2.16b+ (4.23c− 0.352) 0.75b+ (1.54c− 0.014) 0.46b+ (1.17c− 0.042)
dh,z1 −11.22b+ (113c+ 1.82) −18.31b+ (35.42c+ 4.8) −8.1b+ (60c+ 2.1)
s∗ 1 1 1.0761

a If Pr < 5, Nuz1 =
(ζf,z1/8)Rez1Pr

1+3.4ζf,z1+(11.7+1.8Pr−1/3)
√

(ζf,z1/8)(Pr2/3−1)
[31]

Figure 7.12: Comparison of Nusselt numbers obtained by simulation in Sec. 5.2 with those
determined using the 2-zone model summarized in Tab. 7.3.
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Figure 7.13: Plot of the Darcy friction factor and Nusselt number in the outer pillow plate
channel as a function of the Reynolds number.

As can be seen, the two-zone model predicts the simulated Nusselt numbers in pillow-plate

channels with a good accuracy. The maximum relative deviation is ±15%.

7.2 Design methods for the outer channels of PPHE

Using the CFD simulations, functional dependence of the Darcy friction factor ζ∆p and the

Nusselt number Nu for 5000 ≤ Re ≤ 15000 could be obtained. They are shown in Fig. 7.13.

The best fit for the Darcy friction factor for the outer channel is represented by

ζ∆p = 3.46Re−0.39 (7.32)

with a maximum deviation of 2%. The best fit for the Nusselt number for the outer channel is

give by

Nu = 0.091Re0.74Pr1/3 (7.33)

also with a maximum deviation of 2%. Actually, Eq. (7.33) was obtained for Pr = 6. The

exponent of the Prandtl number was then assumed to be 1/3, because it is a typical value for

turbulent boundary layers in forced convection heat transfer (see, e.g., Dittus-Boelter equation

in [16]).

7.3 Conclusions

In this chapter, new design equations for the determination of pressure loss and heat transfer

coefficients describing turbulent forced convection in the inner and outer channels of pillow-plate
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heat exchangers were developed. The equations for the inner channels cover a wide range of

Reynolds numbers, Prandtl numbers and variations of the characteristic geometry parameters.

The equations for the outer channels are strictly valid for one set of characteristic geometry

parameters of pillow plates.

For the determination of heat transfer coefficients in the inner channels, two different methods

are presented. The first is based on a simple Dittus-Boelter type power-law function for the

Nusselt number. The second model is based on the characteristic flow pattern in pillow-plate

channels. It is denoted the 2-zone model, since the original flow pattern is broken down into two

simpler flows, which are then modeled separately. Results of both methods were then compared

to Nusselt numbers obtained by the CFD simulations, with relative deviations in the range of

±15%.

Furthermore, the equation of Sieder and Tate [60], which is commonly used for the determination

of Nusselt number under the condition of variable physical properties, was tested for heat transfer

in pillow-plate channels. It was shown that this equation is applicable for pillow plates.

A better accuracy can be achieved with the 2-zone model when the dependency of the recir-

culation zones from the Prandtl number is considered. The separation of the flow pattern in

two zones within this model can be advantageous, when coupled problems covering the outer

pillow-plate channels are considered, e.g. condensation or falling film evaporation.
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In this work, fluid dynamics and heat transfer in pillow-plate heat exchangers (PPHE) were

studied using experiments and comprehensive CFD simulations. The latter formed the bulk

of this work, whereas the experiments were mainly used for validation purposes and for the

investigation of flow regimes not easily resolvable with CFD (e.g. transitional flow regime).

The experimental study was performed using two different experimental facilities with the goal

of validating the numerical model both qualitatively and quantitatively. The first one focused

on flow visualization. It encompassed a transparent pillow-plate channel, which enabled a com-

parison between the flow patterns observed experimentally and obtained by CFD simulations.

The results from the first facility showed that CFD is capable of accurately capturing the flow

pattern in pillow-plate channels. Both facilities were used to measure pressure in pillow plates,

whereas the second experimental set-up was used to also measure heat transfer coefficients in

pillow plates. The CFD simulations proved to accurately capture these quantities as well.

The realistic description of the fluid dynamics in PPHE using CFD methods, requires an accurate

reconstruction of the wavy pillow-plate channels. This was achieved by forming simulations

based on Finite-Element-Analysis (FEA), using the commercial solver ABAQUS. A validation

of the method was carried out by comparing the simulated wavy profiles of the pillow plates

with those of a real pillow plate, measured using a contour gauge. The deviation between the

simulation and the measurement was less than 4%. The numerical results were then used to

develop simple equations for the accurate determination of the geometrical design parameters:

mean hydraulic diameter, mean cross-sectional area and heat transfer area for the inner channel

of a pillow plate and for the channel between adjacent pillow plates. The simulation results also

show that the surface area enlargement caused by the surface waviness is marginal compared to

a plane surface (2− 7%).

In the next step, a thorough CFD analysis of fluid dynamics and heat transfer in pillow plates was

carried out, using the commercial solver STAR-CCM+. The numerical results were validated

successfully against experiments. Two different test facilities were used to validate the CFD

simulations, one to visualize the flow in a unique transparent pillow-plate channel, and another

one, to perform measurement of pressure loss and heat transfer coefficients in a pillow plate.
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The simulations showed that the fully developed turbulent flow in pillow plates is characterized

by two distinctive regions, namely (a) recirculation zones arising in the wake of the welding spots

and (b) the core flow, which is bounded by the walls and the recirculation zones. The latter

flow represents a primary effect while the former is secondary. The secondary flow produces

form drag, which increases pressure loss in the channel. Depending on the geometry, three sub-

categories of the characteristic flow pattern, a longitudinal-type, transversal-type and mixed-type

pillow plates, could be identified. They differ mainly in the size and shape of the recirculation

zones. While the characteristic flow pattern in longitudinal-type and transversal-type pillow

plates is only weakly dependent on the Reynolds number, in mixed-type pillow plates, the

recirculation zones increase significantly in size with rising Reynolds number.

Furthermore, the thermo-hydraulic efficiency of pillow plates was investigated. The largest effi-

ciencies were observed at the lowest Reynolds number and decreased rapidly at larger Reynolds

numbers. This effect is caused by the fact that, with increasing Reynolds number, pressure loss

grows more rapidly than the heat transfer coefficient. The lowest efficiencies were observed for

pillow plates, in which the longitudinal and transversal welding spot pitches were equal, whereas

the highest efficiencies were obtained for transversal-type pillow plates with the larger inflation

height.

A geometry based optimization study for improving the thermo-hydraulic efficiency of pillow

plates was performed. It was found, that by using “oval-shaped” welding spots, which are more

streamlined than round ones, the efficiency can be increased by as much as 37% for longitudinal-

type pillow plates and by 22% for transversal-type pillow plates. Even greater improvements in

the efficiency were found for reduced-size welding spots.

The flow in the inner channel is largely determined by the geometry of the channel walls, and

boundary layer separation depends mainly on the geometry, yet only weakly on the Reynolds

number. However, in the outer channel, boundary layer separation occurs over the smooth

curved surface of the pillow plates. Most linear eddy viscosity models are unable to accurately

predict boundary layer separation and re-attachment in such cases and, hence, tend to under-

predict or overpredict pressure loss and heat transfer rate. For this reason, the elliptic blending

k−ε model was adopted for the outer channel. This model is more advanced, and it was capable

of predicting the measurements of pressure loss within a maximum deviation range of ±5%. The

CFD simulations showed that boundary layer separation occurs upstream of the welding spots,

leading to large but flat-shaped recirculation zones, which occupy roughly 30% of the wall area.

These zones are the main cause of form drag, which contributes approximately 50% of the Darcy

friction factor.

The results of the numerical studies for the inner and outer pillow-plate channels were then

accumulated for the development of new design equations for the determination of pressure loss

and heat transfer coefficients describing turbulent forced convection in PPHE. The outer channel

was studied based on one set of characteristic geometrical parameters only. Correspondingly,

design correlations for this one geometry were developed, whereas for the inner channels more

generic design equations were derived.

Two different design methods were developed in this thesis for the determination of heat transfer

coefficients in the inner channels. The first is based on a Dittus-Boelter type power-law function



109

for the Nusselt number. The second model is based on the characteristic flow pattern in pillow-

plate channels, whereby this pattern is broken down into two simpler flows, which are then

modeled separately. Both methods showed good agreement to the Nusselt numbers obtained by

the CFD simulations.

The results of this thesis clearly show the potential of CFD methods to be used as virtual

experiments for the development of accurate design methods for new heat exchangers, such

as PPHE. Consequently, these methods can successfully be used in future work to deliver the

remaining data required to obtain generic design methods for the outer channels of PPHE, thus

providing engineers with the necessary tools for optimally designing and rating PPHE.
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