
Soft Clustering Algorithms
Theoretical and Practical Improvements

Kathrin Bujna

A dissertation submitted to the
Department of Computer Science

Paderborn University

for the degree of
Doktor der Naturwissenschaften

(doctor rerum naturalium)

July 25, 2017

accepted at the recommendation of

Prof. Dr. Johannes Blömer
(Paderborn University)

and

Prof. Dr. Eyke Hüllermeier
(Paderborn University)

defended on Oktober 4, 2017

Acknowledgements

I would like to thank my advisor Prof. Dr. Johannes Blömer for the regular discussions
about the ongoing progress in research. I am particularly grateful to him for supporting my
application for the doctoral forum at the SDM and my travel to the ECML PKDD. I also
have to thank my co-authors, Sascha Brauer and Dr. Daniel Kuntze, and the other members
of our clustering research group, Dr. Melanie Schmidt and Prof. Dr. Christian Sohler, for the
good cooperation. I also want to thank all my dear colleagues at the Paderborn University,
especially, Jan Bobolz, Sascha Brauer, Fabian Eidens, Dr. Peter Günther, Claudia Jahn,
Jakob Juhnke, Dr. Daniel Kuntze, Dr. Gennadij Liske, Nils Löken, and David Teusner, for
the relaxed and creative working atmosphere. Special thanks go to our patient IT crew,
especially, Ulrich Ahlers and Thomas Thissen. Last but not least, I want to thank Martin
Wistuba for his encouragement and our discussions about practical machine learning topics.

2

Abstract

In this thesis, we study two soft clustering approaches: fuzzy K-means clustering and model-
based clustering with Gaussian mixture models. In contrast to the popular K-means hard
clustering, there are hardly any algorithms for these approaches that provide guarantees on
the quality of the computed clusterings.

In the first part of this thesis, we present the very first theoretical analysis of the fuzzy
K-means problem that deals with approximation algorithms. The key to our results is
the identification of three properties: First, we show that for certain fuzzy clusters there
exist hard clusters with similar characteristics. Second, we show that there is a coarse
relation between the objective functions of the fuzzy K-means and the K-means problem.
Third, we show that the notion of empty hard clusters, which can effectively be ignored
in a hard clustering, has a counterpart in fuzzy K-means. Due to these three properties,
we are able to utilize two techniques that are known from the analysis of hard clustering
problems: We show how the so-called superset sampling technique can be applied to compute
an approximation for the fuzzy K-means problem. Moreover, we adapt a coreset construction
that is known from K-means clustering. Simply speaking, a coreset is a small summary of a
large data set that can be processed by a clustering algorithm instead of the original data
set, without affecting the quality of the solution too much. We show that there is a refined
version of a coreset construction for the K-means problem that yields a coreset for the fuzzy
K-means problem. Furthermore, we use this construction to derive another approximation
algorithm for the fuzzy K-means problem. Finally, we also consider alternative notions of
fuzziness and generalize all of our results to a large class of soft clustering problems.

In the second part of this thesis, we consider a model-based clustering approach, namely,
the method of maximum likelihood for estimating Gaussian mixture models. Our contribu-
tion is threefold: First, we compare two popular heuristics with one another, namely the
expectation-maximization algorithm and a stochastic variant thereof. Second, we tackle the
problem of initializing the expectation-maximization algorithm. We propose two new initial-
ization methods. Thereby, we aim to close the gap between simple, but rather unreliable,
methods and complex methods, whose performance crucially depends on the right choice
of hyperparameters. Third, we initiate the theoretical analysis of a constrained version of
the maximum likelihood estimation problem, which is known as the soft K-means problem.
We derive a variant of this problem that focuses more on determining a soft clustering
(than on determining a Gaussian mixture model) and present a first approach towards an
approximation algorithm.

3

4

Zusammenfassung

In dieser Arbeit betrachten wir zwei Soft-Clustering Methoden: Fuzzy K-Means Clustering
und modellbasiertes Clustering mittels Gaußmixturen. Im Gegensatz zum populären K-
Means Clustering gibt es für diese beiden Ansätze kaum Algorithmen, die Garantien für die
Güte der berechneten Clusterings bieten.

Im ersten Teil dieser Arbeit präsentieren wir die erste theoretische Analyse des Fuzzy
K-Means Problems, die sich mit Approximationsalgorithmen beschäftigt. Der Schlüssel
zu unseren Ergebnissen ist die Identifikation von drei grundlegenden Eigenschaften eines
Fuzzy K-Means Clusterings: Erstens zeigen wir, dass es für bestimmte Fuzzy-Cluster
entsprechende harte Cluster gibt, die den Fuzzy-Clustern ähneln. Zweitens zeigen wir, dass
es einen groben, aber dennoch nützlichen Zusammenhang zwischen der Zielfunktion des
Fuzzy K-Means Problems und der Zielfunktion des klassischen K-Means Problems gibt.
Drittens zeigen wir, dass es Fuzzy-Cluster gibt, die in einem Fuzzy-Clustering in etwa so
vernachlässigbar sind wie leere Cluster in einem harten Clustering. Diese drei Eigenschaften
helfen uns dabei, Methoden, die für das K-Means Problem entwickelt wurden, auf das Fuzzy
K-Means Problem zu übertragen: Wir zeigen, dass mit Hilfe der sogenannten Superset-
Sampling Technik auch ein Approximationsalgorithmus für das Fuzzy K-Means Problem
konstruiert werden kann. Außerdem übertragen wir eine Kernmengen-Konstruktion, die für
das K-Means Problem entwickelt wurde, auf das Fuzzy K-Means Problem. Einfach gesagt
ist eine Kernmenge eine kurze Zusammenfassung eines großen Datensatzes, die anstatt
des ursprünglichen Datensatzes von einem Clusteringalgorithmus bearbeitet werden kann,
ohne dass sich dadurch die Qualität des Ergebnisses zu sehr verschlechtert. Wir zeigen
nicht nur, dass sich eine Kernmenge für das Fuzzy K-Means Problem berechnen lässt, wir
nutzen die Konstruktion auch, um einen weiteren Approximationsalgorithmus für das Fuzzy
K-Means Problem herzuleiten. Darüber hinaus betrachten wir verschiedene Varianten des
Fuzzy K-Means Problems und verallgemeinern all unsere Ergebnisse.

Der zweite Teil dieser Arbeit dreht sich um den modellbasierten Clustering Ansatz,
genauer gesagt, die Maximum-Likelihood-Methode für das Schätzen von Gaußmixturen. Als
erstes vergleichen wir zwei Heuristiken, den klassischen Expectation-Maximization Algo-
rithmus und eine seiner randomisierten Varianten, miteinander. Zweitens beschäftigen wir
uns mit dem Problem, eine vernünftige initiale Lösung für den Expectation-Maximization
Algorithmus für Gaußmixturen zu finden. Wir präsentieren zwei neue Initialisierungsme-
thoden und versuchen damit die Lücke zwischen den einfachen, aber eher unzuverlässigen
Methoden und komplizierten Methoden, deren Qualität stark von den gewählten Hyperpa-
rametern abhängt, zu schließen. Drittens versuchen wir uns an einer theoretischen Analyse
des Maximum-Likelihood-Estimation Problems. Dazu betrachten wir einen Spezialfall, der
auch schlicht als das Soft-Clustering Problem bekannt ist. Wir leiten eine Variante dieses
Problems her, in deren Mittelpunkt die Bestimmung eines Soft-Clusterings (anstatt die
Bestimmung einer Gaußmixtur) steht, und präsentieren einen ersten Ansatz für einen
Approximationsalgorithmus.

5

6

Contents

Abstract . 3
Zusammenfassung . 5
Cheat Sheet . 13

1 Preface 17
1.1 Outline . 17
1.2 Publications & Credits . 18

I Soft Clusterings 19

2 Basics 21
2.1 Notation: Indices, Vectors, Data Sets . 21
2.2 Clusterings . 23

2.2.1 Soft Clustering . 23
2.2.2 Hard Clustering . 23
2.2.3 Clustering Problems . 24

2.3 Descriptive Statistics . 25
2.3.1 Cluster Statistics . 25
2.3.2 Data Set Statistics . 26
2.3.3 Lemmata . 26
2.3.4 Scaling Weights and Copying Data Points 28

3 From Soft Clusters to Hard Clusters 31
3.1 Related Work . 31
3.2 Contribution . 32
3.3 Imitating Softness by Randomness . 32

3.3.1 Probabilistic Memberships . 32
3.3.2 Algorithm . 33

3.4 Concentration Bounds . 33
3.4.1 Elementary Inequalities . 33
3.4.2 Chernoff Inequalities . 34

3.5 Analysis . 38
3.5.1 Preliminaries . 38
3.5.2 Weight . 39
3.5.3 Mean Vector . 40
3.5.4 Covariance Matrix . 43
3.5.5 Cost and Variance . 47

3.6 Conclusions . 48
3.6.1 Existence of Similar Hard Clusters . 48
3.6.2 Quality of an Imitation . 50
3.6.3 Remarks . 52

7

8 CONTENTS

II Fuzzy K-Means Problems 53

4 Introduction 55
4.1 The Fuzzy K-Means Problem . 55

4.1.1 Problem Definition . 55
4.1.2 Fuzzy K-Means Algorithm . 56
4.1.3 No Guarantees . 56

4.2 A Comparison with the K-Means Problem . 58
4.2.1 Similarities . 58
4.2.2 Differences . 59
4.2.3 Statistical Assumptions . 60

4.3 Related Work . 61
4.3.1 The Fuzzy K-Means Algorithm . 61
4.3.2 Fuzzifier . 61
4.3.3 Extensions . 63

4.4 More Related Work (The K-Means Problem) . 63
4.4.1 The Bad News First . 63
4.4.2 (Few Practical) Approximation Algorithms 63
4.4.3 Clustering is Difficult – Except when It Is Not 64
4.4.4 Constraints and Side Information . 64

4.5 Overview . 65

5 Basics 67
5.1 Problem Definition . 67

5.1.1 Cost and Clusters . 67
5.1.2 Induced Solutions . 68
5.1.3 Approximation . 69

5.2 Fuzzifier Functions . 69
5.2.1 Definition . 69
5.2.2 Basic Properties . 70
5.2.3 Bounded Contribution . 71
5.2.4 Bounded Increase . 72
5.2.5 Reducing Probabilities . 72
5.2.6 Induced r-Fuzzy Clusterings . 72

5.3 Special Cases . 75
5.3.1 Identity – K-Means . 76
5.3.2 Power Function – Classical Fuzzy K-Means 76
5.3.3 Quadratic-Linear – Between K-Means and Fuzzy K-Means 77
5.3.4 Exponential Fuzzifier . 79

6 Two Key Properties 83
6.1 Relation to the K-Means Cost Function . 83
6.2 Negligible Clusters . 84

7 Baselines 87
7.1 Contribution . 87
7.2 2-Approximation Algorithm . 87
7.3 (1+ε)-Approximation Algorithm . 89
7.4

(
const ·cr(K)−1)

-Approximation Algorithm . 90

CONTENTS 9

8 Superset Sampling for Fuzzy Clusters 91
8.1 Related Work . 92
8.2 Contribution . 92
8.3 From Fuzzy Clusters to Hard Clusters . 92
8.4 Applying Superset Sampling . 93
8.5 Combining the Results . 95

8.5.1 Approximation Factor . 95
8.5.2 Removing the Restriction to Rational Weights 96
8.5.3 Removing the Restriction to Clusters with A Minimum Weight 97

8.6 Algorithms . 98
8.6.1 A Deterministic Approximation Algorithm (Algorithm 8) 98
8.6.2 A Randomized Algorithm (Algorithm 9) 101

9 A Discretization 105
9.1 Contribution . 105
9.2 Preliminaries . 106
9.3 Basic Construction . 106
9.4 Distances and Costs . 108

9.4.1 Outside the Search Space . 108
9.4.2 Rings . 109
9.4.3 A Point and Its Representative . 109
9.4.4 Replace Means by Their Representatives (K-Means) 110
9.4.5 Replace Means by Their Representatives (r-Fuzzy K-Means) 111

9.5 A Discrete Search Space . 114

10 An ε-Approximate Mean Set 117
10.1 Related Work . 117
10.2 Contribution . 118
10.3 Main Result . 118
10.4 Application . 119
10.5 Analysis . 120

11 Dimension Reduction 125
11.1 The Johnson Lindenstrauss Lemma . 125

11.1.1 Related Work . 126
11.1.2 Main Result . 126
11.1.3 Application . 127

11.2 Principal Component Analysis . 128

12 Coresets 131
12.1 Related Work . 131
12.2 Contribution . 132
12.3 Main Result . 132
12.4 Application . 134
12.5 Analysis . 136

12.5.1 The Key Ideas . 137
12.5.2 Outline of the Analysis . 139
12.5.3 Preliminaries . 139
12.5.4 Weaker Coreset for a Fixed Number of Arbitrary Solutions 142
12.5.5 Weak Coreset . 145
12.5.6 Size of S and Runtime . 150
12.5.7 These Weak Coresets Are Not Weak . 151

10 CONTENTS

13 Summary & Conclusion 153
13.1 Review . 153
13.2 Overview of Our Algorithms . 154
13.3 Discussion . 154
13.4 Future Work . 156

III Clustering with Gaussian Mixture Models 157

14 Introduction 159
14.1 Gaussian Mixture Models (GMMs) . 159

14.1.1 Density Function . 159
14.1.2 Generating Observations . 160
14.1.3 Remarks . 161

14.2 Likelihood Approach . 162
14.2.1 Likelihood . 162
14.2.2 Likelihood Ratio . 163
14.2.3 Scale Invariance of the Likelihood-Ratio 163
14.2.4 Maximum Likelihood Estimator for K ≥ 2 164
14.2.5 Maximum Likelihood Estimator for K = 1 165
14.2.6 Constrained Maximum Likelihood Estimation 165
14.2.7 Remarks . 166

14.3 Expectation-Maximization (EM) . 168
14.3.1 General Framework . 168
14.3.2 EM Algorithm for GMMs . 170

14.4 Overview . 170

15 A Non-Asymptotic Comparison of EM and SEM Algorithms 171
15.1 Introduction . 171
15.2 Scope of Our Comparison . 172
15.3 Related Work . 174
15.4 Contribution . 174
15.5 Theoretical Comparison . 174

15.5.1 A Non-Asymptotic Bound . 174
15.5.2 Special Case: Gaussian Mixture Models (GMMs) 177

15.6 Some Concrete Examples . 178
15.7 Discussion . 182

16 Adaptive Seeding for Gaussian Mixture Models 185
16.1 Related Work . 185
16.2 Our Contribution . 186
16.3 Baseline Algorithms . 186
16.4 Adaptive Seeding for GMMs . 188

16.4.1 Choosing the Next Point . 188
16.4.2 Construction of a k-GMM . 190
16.4.3 Post-Processing of the K-GMM . 190
16.4.4 Summary and Comparison . 190

16.5 Evaluation . 192
16.5.1 Preliminaries . 192
16.5.2 Artificial Data Sets . 193
16.5.3 Results: Real-World Data Sets . 195

16.6 Conclusion and Future Work . 195

CONTENTS 11

17 On the Soft K-Means Problem 199
17.1 Related Work . 199
17.2 Contribution . 200
17.3 The Weighted Soft K-Means Problem . 200

17.3.1 Preliminaries . 200
17.3.2 Problem Statement . 202
17.3.3 Approximation . 202

17.4 A Clustering-Centric Variant . 203
17.4.1 Motivation . 203
17.4.2 A First Clustering-Centric Variant . 203
17.4.3 A Relaxation . 206
17.4.4 A Relaxed Clustering-Centric Approximation Problem 206

17.5 Towards an Analysis . 208
17.5.1 Applying Our Soft-to-Hard-Cluster Technique 208
17.5.2 Applying an Algorithm for the Constrained K-Means Problem 210
17.5.3 Determining the Soft Clustering . 214

17.6 Conclusions . 215

IV Appendix 217

A Three Handy Lemmata 219

12 CONTENTS

“ Melmac was the name of my
planet. It’s also what it was made
out of. ”

Alf

Cheat Sheet

[N] = {1,2, . . . , N −1, N} for N ∈N (Notation 2.1)

R+ = {x ∈R | x > 0}=R>0

Õ hides logarithmic factors that would appear in the classic O-notation

max max { f (a) | a ∈ A}= f (c) for all c ∈ A with ∀b ∈ A : f (c)≥ f (b)

arg max arg max { f (a) | a ∈ A}= {a ∈ A | ∀b ∈ A : f (a)≥ f (b)}⊆ A

Vectors and Matrices
ID ,0D,D ,0D identity (D×D)-matrix, zero (D×D)-matrix, D-dimensional zero vector

(xn)n∈[N] ⊂AD list whose n-th element is xn ∈AD , where A⊆R
(vd)d∈[D] ⊂A D-dimensional vector whose d-th coordinate is xd ∈A⊆R
(xn)d d-th coordinate of vector xn ∈RD with d ∈ [D]

〈v, w〉 =∑D
d=1 vd ·wd scalar product of v = (vd)d∈[D] and w = (wd)d∈[D]

‖v‖2 Euclidean norm of a vector v ∈RD

(M)i, j (i, j)-th entry of a matrix M ∈AD1×D2

〈M, L〉F =∑D1
i=1

∑D2
j=1(M)i j · (L)i j Frobenius inner product of M,L ∈RD1×D2

‖M‖F =√〈M, M〉F Frobenius norm of a matrix M ∈RD1×D2

Data Sets
X usually a weighted data set (think of a multi-set)

Dom(AD ,B) set of all finite data sets with data points from AD ×B where AD ⊆RD

and B ⊆R≥0 (Definition 2.3)

((xn,wn))n∈[N] weighted data set containing N ordered data points (Definition 2.3)

(xn,wn) n-th data point consisting of a point (object) xn ∈ AD and its weight
(importance) wn ∈B

(xn)n∈[N] unweighted data set containing N ordered points xn (Definition 2.3)

((xn,1))n∈[N] also an unweighted data set containing N ordered data points (xn,1)
(Definition 2.3)

|X | the size of the data set X (Notation 2.4)

X ⊂Y indicates that the data points from X are contained in the data set Y
(with their corresponding multiplicity) (Notation 2.4)

rd(X) range of the d-th coordinates of the points in X (Definition 2.18)

diam(X) maximum Euclidean distance between points in X (Definition 2.18)

w(X)
min (w(X)

max) minimum (maximum) weight of a data point in X (Definition 2.18)

13

14 CHEAT SHEET

Hard and Soft Cluster(ings)
∆K−1 ⊆RK closed K-simplex that contains all categorical distributions over K

classes (Definition 2.6)

∆N,K−1 ⊆RN×K set of all soft K-clusterings of N objects (Definition 2.6)

P ∈∆N,K−1 soft K-clustering of N objects (Notation 2.7)

pnk ∈ [0,1] probability that the n-th object belongs to the k-th cluster

Z ∈ {0,1}N×K indicator matrix of N objects to K clusters (Notation 2.9) and a hard
K-clustering of N objects if Z ∈∆N,K−1 (Notation 2.10)

znk ∈ {0,1} indicates whether the n-th object is assigned to the k-th cluster

R ∈ [0,1]N×K R = (rnk)n,k probabilistic membership matrix that assigns the n-th ob-
ject to the k-th cluster with probability rnk (

∑K
k=1 ≤ rnk) (Definition 3.1)

rnk ∈ [0,1] probability that the n-th object belongs to the k-th cluster (
∑K

k=1 rnk ≤ 1)

A(X ,R)
k = ((xn, rnk ·wn))n∈[N] k-th cluster of X given by the membership matrix

R (Definition 3.2)

A(X ,P)
k k-th soft cluster of X given by the soft clustering P (Eq. 2.1)

A(X ,Z)
k k-th hard cluster of X given by the indicator matrix Z (Eq. 2.2)

Ak ⊆ X k-th hard cluster written as a subset of X ; corresponds to the data set
A(X ,Z)

k with appropriate indicator matrix Z (Notation 2.10)

Cluster Statistics
w(A(X ,R)

k) =∑N
n=1 rnkwn weight (Definition 2.13)

m(A(X ,R)
k) = (∑N

n=1 rnkwnxn
)

/w(A(X ,R)
k) mean (Definition 2.14)

d(A(X ,R)
k , z) =∑N

n=1 rnkwn ‖xn − z‖2
2 , where z ∈RD , cost (Definition 2.16)

var(A(X ,R)
k) =d(A(X ,R)

k ,m(A(X ,R)
k)) /w

(
A(X ,R)

k

)
variance (Definition 2.16)

ucov(A(X ,R)
k , z) =∑N

n=1 rnk ·wn(xn − z)(xn − z)T , where z ∈RD , unnormalized covariance
(Definition 2.15)

cov(A(X ,R)
k , z) =ucov(A(X ,R)

k ,m(A(X ,R)
k)) /w

(
A(X ,R)

k

)
covariance (Definition 2.15)

wk, mk, . . . short notations for w(A(X ,R)
k), m(A(X ,R)

k), . . . with respect to the given X
and R (Notation 3.11)

ynk = (xn −mk)(xn −mk)T (Lemma 3.17)

Fuzzy
r a fuzzifier function (Definition 5.8)

ir ∈ [1,∞) increase-bounded (Definition 5.15)

cr ∈ (0,1] contribution-bounded (Definition 5.13)

D · tr(K) time needed to compute a r-fuzzy K-clustering of a D-dimensional data
point induced by K means (Assumption 5.19)

id identity function (Section 5.3.1)

pm polynomial fuzzifier function (Section 5.3.2)

sβ quadratic-linear fuzzifier function (Section 5.3.3)

eγ exponential fuzzifier function (Section 5.3.4)

r(P) = (r(pnk))n,k for P = (pnk)n,k (Definition 5.2)

A(X ,r(P))
k = ((xn, r(pnk)wn))n is an r-fuzzy cluster (Definition 5.2)
ε

2·ir ·K2 negligible support (Definition 6.2)

CHEAT SHEET 15

Fuzzy (cont.)
φ(r)

X (C,P) r-fuzzy K-means cost of X with respect to means C and soft clustering
P (Definition 5.1)

φ(r)
X (C) r-fuzzy K-means cost of X of the solution induced by C (Notation 5.3)

φ(r)
X (P) r-fuzzy K-means cost of X of the solution induced by P (Notation 5.3)

A(X ,r(P))
k = ((xn, r(pnk) ·wn))n∈[N] is the k-th r-fuzzy cluster of X given by P (Defi-

nition 5.2)

d
(
A(X ,r(P))

k

)
r-fuzzy K-means cost of the k-th cluster (Definition 5.1)

φOPT
(X ,K ,r) minimum r-fuzzy K-means cost of X (Definition 5.6)

kmX (C) K-means cost of X with respect to K means C (Problem 4.3)

kmOPT
(X ,K) minimum K-means cost of X (Problem 4.3)

Discretization
dist(x,C) =min

{∥∥x−µ∥∥
2

∣∣ µ ∈ C
}

for C ⊆RD and x ∈RD (Definition 9.1)

α-approx. a K-clustering whose cost are at most a factor α worse than the cost of
an optimal K-clustering

(α,β)-approx. a bβKc-clustering whose cost are at most a factor α worse than the cost
of an optimal K-clustering (Definition 9.3)

B
(
µ, r

)
closed ball around µ with radius r (Definition 9.2)

Descr contains triples (E,R,M) describing search spaces (Definition 9.5)

M= (ml)l∈[L] a vector of L means

2E ·R radius of closed balls around means from M

U(E,R,M) ⊂RD is a search space (Definition 9.5)

Ul, j (l, j)-th ring around mean ml (Definition 9.6)

g(x) ∈G representative of x ∈U (Definition 9.7)

G= g(U) discrete search space; set of all representatives (Definition 9.9)

Special Sets of Solutions
A≤M =∪l∈[L]

{
(µ1, . . . ,µl)

∣∣ ∀k ∈ [l] :µk ∈ M
}

for M ⊆RD (Notation 10.1)

Θ(r,ir ,K ,ε)(X) = { C ∈ (RD)≤L | C induces some r-fuzzy clustering that has no (ir,K ,ε)-
negligible clusters } (Definition 12.6)

Density & Likelihood
ND(µ,Σ) D-variate Gaussian with mean µ and covariance Σ (Definition 14.1)

θ parameters of a parameterized density function

θold input of an EM (SEM) update step (Algorithm 16, Algorithm 17)

LX (θ) = p(X |θ) likelihood of θ given observations X (Definition 14.4)

ΛX (θ1,θ2) =LX (θ1) /LX (θ2); likelihood ratio (Definition 14.5)

H(q) entropy (Definition 17.1)

KLD(p‖q) (q) relative entropy; Kullback-Leibler divergence (Definition 17.1)

Soft K-Means
s̆km(β,ω)

X ((µk)k) = − ln(LX (θ)) where GMM θ = ((ωk,µk, 2
β

ID)k∈[K] and ω = (ωk)k∈[K]
(Problem 17.4)

skm(β,ω)
X (C,P) generalized soft K-means cost (Problem 17.9)

s̄km(β,ω)
X (P) = skm(β,ω)

X ((m(A(X ,P)
k))k,P) (Problem 17.7)

16 CHEAT SHEET

EM∗ and SEM∗ Algorithm
Wk, Mk, Sk parameter updates by SEM∗ algorithm (Algorithm 21)

wk, µk, Σk parameter updates by EM∗ algorithm (Algorithm 20)

ζnk a constant depending on the given data set X , the initial model θold,
and the indices n,k (Algorithm 20)

aδ =p
3ln(2/δ) (Theorem 15.2)

bδ =p
2e ln(2/δ) (Theorem 15.2)

GMM Gaussian mixture model

LMM Laplacian mixture model

“ Stell’ dir vor es geht und keiner
kriegt’s hin. ”

Wolfgang Neuss1

Chapter 1

Preface

The term clustering refers to the task of dividing a set of objects into groups (clusters) such
that objects that are in the same group are more similar to each other than objects that
belong to different groups. This task arises in a wide variety of fields such as image analysis,
bioinformatics, data compression, and pattern recognition. However, there is no algorithm
that is universally right for all of the concrete clustering problems that arise in these
fields. Consequently, there is a vast number of concrete clustering problems and algorithms.
Finding the appropriate formulation for the problem at hand is a crucial question in practise.
Nonetheless, certain clustering problems and algorithms have become very popular.

One can roughly divide the existing clustering methods into two classes: hard clustering
methods and soft clustering methods. Hard clustering methods assign each object to exactly
one cluster. An exceptionally popular representative of this class is known as K-means
clustering. In recent years, the K-means clustering problem and various variants thereof
have been studied in detail. In contrast, relatively little is known about soft clustering
methods. With these methods, each object is not necessarily assigned to exactly one cluster,
but to several clusters to a certain degree. In this thesis, we focus on two soft clustering
problems: the fuzzy K-means problem and the maximum likelihood estimation problem
with respect to Gaussian mixture models. Both are related to the K-means problem, but
there are hardly any algorithms for these problems with performance guarantees.

1.1 Outline

This thesis is divided into three parts:

Part I deals with soft clustering in general. In Chapter 2, we introduce the basic notation
and definitions that we will use throughout this whole thesis. In Chapter 3, we present
a very general technique that helps us to relate soft clusterings to hard clusterings.
We apply this technique in both subsequent parts of this thesis.

Part II focuses on the fuzzy K-means problem. We present the first approximation algo-
rithms for this problem. The runtimes of these algorithms are similar to some of the
best approximation algorithms for the classical K-means problem.

Part III deals with the maximum likelihood estimation (MLE) problem with respect to
Gaussian mixture models. We consider three different topics in this part of the
thesis: First, in Chapter 15, we compare two existing heuristics with one another,
namely the classical expectation-maximization algorithm and a stochastic variant
thereof. Second, in Chapter 16, we tackle the initialization problem of the expectation-
maximization algorithm for Gaussian mixture models. Third, in Chapter 17, we

1Source: DIE ZEIT, 12.11.2009 Nr. 47

17

18 CHAPTER 1. PREFACE

initiate the theoretical analysis of approximation algorithms for a constrained version
of the MLE problem, which is known as the soft K-means problem.

Last but not least, we point out that there is an overview of our notation (Cheat Sheet),
which can be found after the table of contents.

1.2 Publications & Credits

Parts of this thesis were obtained in cooperation with my coauthors and published in:

Blömer et al. (2014): Blömer, J., Bujna, K., and Kuntze, D. (2014).
A Theoretical and Experimental Comparison of the EM and SEM Algorithm.
In 22nd International Conference on Pattern Recognition (ICPR 2014), pages 1419−
1424, Stockholm, Sweden. IEEE.

Blömer and Bujna (2016): Blömer, J. and Bujna, K. (2016).
Adaptive Seeding for Gaussian Mixture Models.
In Proceedings of the 20th Pacific-Asia Conference on Advances in Knowledge Dis-
covery and Data Mining (PAKDD 2016), volume 9652 of Lecture Notes in Computer
Science, pages 296−308, Auckland, New Zealand. Springer.

Blömer et al. (2016): Blömer, J., Brauer, S., and Bujna, K. (2016).
A Theoretical Analysis of the Fuzzy K-Means Problem.
In IEEE 16th International Conference on Data Mining (ICDM 2016), pages 805−810,
Barcelona, Spain. IEEE.

Blömer et al. (2017): Blömer, J., Brauer, S., and Bujna, K. (2017).
On Coreset Constructions for the Fuzzy K-Means Problem.
In Computing Research Repository (abs/1612.07516).

As usual in computer science, the authors are listed lexicographically.

Part I

Soft Clusterings

19

“ All models are wrong, but some
are useful. ”

Box & Draper1

Chapter 2

Basics

The goal of clustering is to group a given set of objects into clusters such that objects that
belong to the same cluster are more similar to one another than objects that belong to
different clusters. There are various ways to interpret and define objects, their similarity,
the notion of clusters, and the quality of a clustering. Typically, objects consist of a fixed
number of scalar features, which means that they can be interpreted as vectors from the real
space. Besides that, we can roughly classify clusterings either as soft or hard clusterings:
In a hard clustering, each object is allocated to exactly one cluster. In other words, a hard
clustering partitions the given set of objects into (hard) clusters. A soft clustering allows
each object to belong to multiple clusters to a certain degree. Hence, the (soft) clusters of a
soft clustering are not subsets of the given set of objects. Instead, each soft cluster defines
a degree of membership for each object. In this chapter, we formalize these notions and
introduce definitions that we will use throughout this whole thesis.

Overview. In Section 2.1, we explain our basic notation and, in particular, our notation of
data sets. In Section 2.2, we formalize our notion of soft clusterings, hard clusterings, and
clustering problems. Finally, in Section 2.3, we define statistics that we will use to describe
data sets as well as clusters, and derive useful properties of these statistics.

2.1 Notation: Indices, Vectors, Data Sets

Let us start with the following handy notation:

Notation 2.1 ({1, . . . , N}). For all N ∈N, we let

[N] := {1,2, . . . , N} .

In mathematics, a finite ordered list of elements is usually referred to as a tuple. We
stick to the term "vector" to stress the fact that the elements have the same type.

Notation 2.2 (tuples, vectors, matrices). Let v1,v2, . . . ,vN be some elements from the same
domain A (e.g. R, RD , or RD ×R). Given a finite set of indices S = {i1, . . . , iM} ⊆ N, where
iπ(1) ≤ iπ(2) ≤ ·· · ≤ iπ(M) for some permutation π of [M], we call the tuple

(vs)s∈S := (
viπ(1) ,viπ(2) , . . . ,viπ(M)

)
a vector. We write (vs)s∈S ⊆A or (vs)s∈S ∈A|S| to indicate that vs ∈A for all s ∈ S.

For the sake of simplicity, we identify x = (x1 x2 . . . xD)T ∈ RD with (xd)d∈[D]. To avoid
confusion, we denote the d-th coordinate of a vector xn ∈RD by (xn)d.

For matrices, we use the standard notation M = (
mi j

)
i=1,...,L; j=1,...,N = (

mi j
)

i∈[L], j∈[N] for
an (L×N)-matrix M. We denote the (i, j)-th entry of M by (M)i j = mi j.

1Source: Empirical model-building and response surfaces, Wiley, 1987, p. 424.

21

22 CHAPTER 2. BASICS

The objects that we want to cluster are numerical feature vectors of fixed length. That is,
objects are vectors x1, . . . , xN ∈RD , where D ∈N is some fixed value. Additionally, each object
xn has a certain weight wn ∈R≥0 which determines the importance of this object. We refer
to the tuple (xn,wn) as a data point.

We think of a data set as a finite collection of data points. In principle, the arrangement
of the data points in the data set is not important in this thesis. Even so, to keep our notation
uncluttered, we think of a data set as an ordered list rather than a multi-set.

Definition 2.3 (data sets). Let A⊆ R, B⊆ R≥0, and D, N ∈N. A D-dimensional data set X
with N points from AD and weights in B takes the form

X = ((xn,wn))n∈[N] with xn ∈AD and wn ∈B for all n ∈ [N] .

Dom(AD ,B) denotes the set of all data sets that contain a finite number of data points
with points in AD and weights in B.

A data set X = ((xn,wn))n∈[N] is unweighted if ∀n ∈ [N] : wn = 1. We identify an un-
weighted data set V = ((vm,1))m∈[M] ∈Dom(RD , {1}) with the vector V = (vm)m∈[M] ⊆RD .

Our notation might seem a bit cumbersome but it will spare us from defining mappings
between sets (which are now inherently given by indices) and from pointing out that we
work with multi-sets. However, to get the best of both worlds, we have to introduce the
following multi-set-like notation:

Notation 2.4 (multi-set-like notation). For all data sets X = ((xn,wn))n∈[N] ∈Dom(RD ,R≥0)
and data points (x,w) ∈RD ×R≥0, we let

count((x,w), X) := |{n ∈ [N] | xn = x ∧ wn = w}| .

We say that X contains count((x,w), X) copies of (x,w).
For all data sets X ,Y ∈Dom(RD ,R≥0), we use the following notation:

• D is the dimension of X (and of the data points in X).

• (x,w) ∈ X indicates that count((x,w), X)≥ 1.

• |X | :=∑
(x,w)∈X count((x,w), X) is the size (or length) of X. We write X =; if |X | = 0.

• We write X ⊆Y if, for each each (x,w) ∈ X, we have count(Y , (x,w))≥ count(X , (x,w)).
Consequently, we write X = Y if X ⊆ Y and Y ⊆ X. We write X ⊂ Y if, in addition to
X ⊆Y , there is some (x,w) ∈ X where count(Y , (x,w))> count(X , (x,w)) .

• X ∪̇Y denotes a data set Z ∈Dom(RD ,R≥0) where

count((x,w), Z)= count((x,w), X)+count((x,w),Y)

for all x ∈RD and w ∈R≥0.

Let K ∈N and A1, . . . , AK ⊆ Z. For all l ∈ {2, . . . ,K}, we let ∪̇l
k=1 Ak = Al∪̇

(∪̇l−1
k=1 Ak

)
. If

∪̇K
k=1 Ak = Z, then we call A1, . . . , AK a partition of Z. If ∪̇K

k=1 Ak ⊆ Z, then we call
A1, . . . , AK pairwise disjoint subsets of Z.

• X ∩Y is a data set Z ∈Dom(RD ,R≥0) where

count((x,w), Z)=min {count((x,w), X), count((x,w),Y)}

for all x ∈RD and w ∈R≥0.

For the sake of simplicity, we use this notation also for vectors: Recall from Definition 2.3
that we identify a vector (v1, . . . ,vM) ⊆ RD with an unweighted data set ((vm,1))m∈[M] ∈
Dom

(
RD , {1}

)
. When we use our multi-set-like notation with respect to vectors, we refer to the

notation with respect to the corresponding unweighted data sets.

2.2. CLUSTERINGS 23

2.2 Clusterings

In the following, we formalize our notion of soft and hard clusterings and describe the form
of the clustering tasks that we consider in this thesis.

2.2.1 Soft Clustering

In a soft clustering, each data point belongs to each cluster, but only with a certain probabil-
ity.

Definition 2.5 (soft K-clustering). Let K , N ∈N. A soft-assignment of an object to K clusters
is a discrete probability distribution over K classes. A soft K-clustering of N objects specifies
a particular soft-assignment (to K clusters) for each object.

We use the following notation to describe a soft clustering.

Definition 2.6. For each K ∈N, we denote the (closed standard) (K −1)-simplex by

∆K−1 :=
{

(pk)k∈[K] ∈ [0,1]K

∣∣∣∣∣ K∑
k=1

pk = 1

}
.

For all K , N ∈N, we let

∆N,K−1 :=
{
(pnk)n∈[N],k∈[K] ∈ [0,1]N×K

∣∣∣ ∀n ∈ [N] : (pnk)k∈[K] ∈∆K−1

}
.

Notation 2.7 (soft K-clustering). We denote a soft-assignment over K clusters by a dis-
tribution (pk)k∈[K] ∈ ∆K−1. We describe a soft K-clustering of N objects by a matrix P =
(pnk)n∈[N],k∈[K] ∈∆N,K−1 where (pnk)k∈[K] is the soft-assignment of the n-th object.

Given a soft clustering (pnk)n∈[N],k∈[K] of the N data points of X = ((xn,wn))n∈[N], we say
that (xn,wn) is assigned to the k-th cluster with probability pnk.

We think of the k-th soft cluster of X = ((xn,wn))n∈[N] given by P = (pnk)n,k ∈∆N,K−1 as
the data set

A(X ,P)
k := ((xn,wn · pnk))n∈[N] . (2.1)

That is, if (xn,wn) is assigned to the k-th cluster with probability pnk, then its importance
(weight) in the k-th cluster is reduced to pnk ·wn. Observe that the total importance of data
point (xn,wn) in the soft clustering is still given by its weight:

∑K
k=1(pnk ·wn)= wn.

2.2.2 Hard Clustering

In a hard clustering, each data point belongs to exactly one cluster. Hence, a hard clustering
is actually a special case of a soft clustering.

Definition 2.8 (hard K-clustering). Let K , N ∈ N. A hard-assignment of an object to K
clusters is simply given by a single value in [K]. A hard K-clustering of N objects defines a
particular hard-assignment to K clusters for each of the N objects.

We use indicator vectors to formally describe a hard clustering.

Notation 2.9 (indicator). We refer to a vector (zk)k∈[K] ∈ {0,1}K as an indicator vector and to
a matrix (znk)n∈[N],k∈[K] ∈ {0,1}N×K as an indicator matrix. We say that the indicator matrix
assigns the n-th object to the k-th cluster if znk = 1. Likewise, we say the indicator vector
indicates an assignment to the k-th cluster if zk = 1.

Note that indicator vectors and matrices might assign an object to more than one cluster
or to no cluster at all.

24 CHAPTER 2. BASICS

Notation 2.10 (hard K-clustering). Let X = ((xn,wn))n∈[N] be a data set. We describe a hard
K-clustering of X by an indicator matrix Z = (znk)n∈[N],k∈[K] ∈ {0,1}N×K where

∀n ∈ [N] :
K∑

k=1
znk = 1 .

We think of the k-th hard cluster of X = ((xn,wn))n∈[N] given by the hard clustering Z =
(znk)n∈[N],k∈[K] as

A(X ,Z)
k = ((xn,wn · znk))n∈[N] , (2.2)

which is a re-weighted version of the original data set, or as

Ak = ((xn,wn))n∈{m∈[N] | zmk=1} ⊆ X . (2.3)

Moreover, we denote data sets A ⊆ X also as hard clusters of X.

If Z ∈ {0,1}N×K describes a hard K-clustering with clusters A1, . . . , AK ⊆ X , then we have
∪̇k∈[K] Ak = X . Moreover, hard clusterings are special kinds of soft clusterings: For each
indicator matrix H ∈ {0,1}N×K that describes a hard clustering, we have H ∈∆N,K−1.

2.2.3 Clustering Problems

We stress the fact that we only consider clustering problems where we search for a clustering
with a predefined number of clusters K . We consider two types of such clustering tasks:
First, in Part II, we consider the fuzzy K-means problem, which belongs to the class of
representative-based clustering problems.

Problem 2.11 (Representative-Based). We are given a data set X ∈Dom
(
RD ,R≥0

)
, a number

of clusters K ∈ N, a set of representatives Θ ⊆ RD , a set of clusterings ∆ ⊆ ∆N,K−1, and a
function

Φ : Dom
(
RD ,R≥0

)
×ΘK ×∆→R .

Find representatives θ1, . . . ,θK ∈Θ and a clustering P ∈∆ minimizing Φ
(
X , (θk)k∈[K] ,P

)
.

Note that each representative is from the same domain as the points in the given data
set (i.e., θk, xn ∈RD). That is, the k-th representative can be thought of as the prototype of
the points in the k-th cluster.

Second, in Part III, we consider a model-based clustering problem, namely the maximum
likelihood estimation problem for Gaussian mixture models.

Problem 2.12 (Model-Based Clustering). We are given a data set X, a set of generative
models Θ(K), and a function

Φ : Dom
(
RD ,R≥0

)
×Θ(K) →R .

Find a model θ ∈Θ(K) that minimizes Φ (X ,θ).

In this problem formulation, we do not not explicitly mention a soft clustering. We
assume that the generative models θ ∈ Θ(K), which describe the generation of data sets,
implicitly depend on a number (of clusters) K . In Part III, we show that there is an obvious
way to derive a soft clustering P ∈∆N,K−1 for a given data set X and a generative model
θ ∈Θ(K), with respect to the maximum likelihood estimation problem for Gaussian mixture
models.

2.3. DESCRIPTIVE STATISTICS 25

2.3 Descriptive Statistics

Next, we define statistics that describe data sets and clusters.

2.3.1 Cluster Statistics

Recall from (2.1) and (2.2) that hard clusters and soft clusters can be thought of as re-
weighted versions of the given data set. In this thesis, we use the following statistics to
describe clusters in particular.

Definition 2.13 (weight). The weight of A = ((xn,αn))n∈[N] ∈Dom
(
RD ,R≥0

)
is

w(A) :=
N∑

n=1
αn .

Observe that w(A)≥ 0 for all A ∈Dom
(
RD ,R≥0

)
.

Definition 2.14 (mean). Let A = ((xn,αn))n∈[N] ∈Dom
(
RD ,R≥0

)
. If w(A)> 0, then the mean

of A is given by

m(A) :=
∑N

n=1αnxn

w(A)
.

Otherwise, we let m(A) := 0D be the zero vector.

Definition 2.15 (covariance). Let A = ((xn,αn))n∈[N] ∈Dom
(
RD ,R≥0

)
and z ∈RD . The unnor-

malized covariance of A with respect to z is given by

ucov(A, z) :=
N∑

n=1
αn(xn − z)(xn − z)T .

In particular, we let

ucov(A) :=ucov(A,m(A)) .

If w(A)> 0, then the covariance of A is

cov (A) := ucov(A)
w(A)

.

Otherwise, we let cov(A) := 0D,D be the zero matrix.

Definition 2.16 (cost, variance). Let A = ((xn,αn))n∈[N] ∈ Dom
(
RD ,R≥0

)
and z ∈ RD . The

cost of A with respect to z is the sum of squared Euclidean distances

d(A, z) :=
N∑

n=1
αn ‖xn − z‖2

2 .

The cost of A is

d(A) :=d(A,m(A)) .

The variance of A is given by

var (A) := d(A)
w(A)

if w(A)> 0. Otherwise, we let var (A) := 0.

For all A ∈Dom
(
RD ,R≥0

)
with w (A)= 0, we have d (A)= 0 and ucov (A)= 0.

26 CHAPTER 2. BASICS

"Sample" Statistics. The quantities that we call the mean, variance, and covariance of A
are also denoted as the sample mean, sample variance (in case D = 1), and sample covariance
(in case D > 1), respectively (cf. Bishop, 2006, p. 27). This is because the data points in A are
assumed to be the outcomes (samples) of independently and identically distributed random
variables. Under this assumption, our statistics are (biased) estimates of the statistics of a
(presumed) underlying distribution. In Section 14.2.7, we formalize this idea.

Variance. The variance var(A) of a data set A ∈Dom
(
RD ,R≥0

)
with D > 1 should not be

confused with the sample variance of a set of real-valued samples or with the variance of a
single real-valued random variable. However, it can be interpreted as a sum of variances:

Lemma 2.17. For all A = ((xn,αn))n∈[N] ∈Dom
(
RD ,R≥0

)
, we have

var (A)=Tr(cov (A)) .

Proof. If w (A)> 0, then Tr(cov (A))=∑D
d=1 (cov (A))dd = 1

w(A)
∑D

d=1
(∑N

n=1αn(xn −m (A))2
d
)=

1
w(A)

(∑N
n=1αn

∑D
d=1(xn −m (A))2

d
)= var (A). If w (A)= 0, then Tr(cov (A))= 0= var (A)

Hence, the variance var(A) can be thought of as the sum of the variances of the one-
dimensional (sample) data sets (((xn)d,wn))n∈[N] with d ∈ [D].

Consistency of Hard Cluster Notions. Recall from Notation 2.10 that we identify hard
clusters Ak ⊆ X with data sets A(X ,Z)

k for appropriately chosen hard clusterings Z. Observe
that the statistics of Ak coincide with the statistics of these data sets A(X ,Z)

k .

2.3.2 Data Set Statistics

The following statistics will be useful to describe the given data set X , in particular.

Definition 2.18 (statistics of a data set). Let X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R≥0

)
.

The range of X in the d-th coordinate is given by

rd(X) :=max {(xn)d − (xm)d | n,m ∈ [N]} .

The diameter of X is given by

diam(X) :=max {‖xn − xm‖2 | n,m ∈ [N]} .

The minimum and maximum weight of a data point in X are

w(X)
min :=min {wn | n ∈ [N]} and w(X)

max :=max {wn | n ∈ [N]} .

We describe the "extent" of the data set by the maximum Euclidean distance between
points (the diameter) or the maximum absolute difference between points per dimension
(the range). Observe that rd(X)≥ 0 and that diam(X)2 ≤∑D

d=1rd(X)2.
To describe the way the data points are scattered in the input domain RD , we use the

covariance cov(X) of the given data set X , which we defined in Definition 2.15.

2.3.3 Lemmata

In this section, we derive alternative formulations of the cost d(A) and the covariance
cov(A). The mean m(A) is exceptionally useful to understand both statistics.

2.3. DESCRIPTIVE STATISTICS 27

Observation 2.19 (zero). For all A = ((xn,αn))n∈[N] ∈Dom
(
RD ,R≥0

)
, we have

N∑
n=1

αn (xn −m(A))=
(

N∑
n=1

αnxn

)
−w(A) ·m(A)= 0D and

N∑
n=1

αn

(
(xn −m (A)) (xn −m (A))T −cov(A)

)
=ucov (A)−w (A)cov (A)= 0D,D ,

where 0D denotes the D-dimensional zero vector and 0D,D denotes the zero (D×D)-matrix.

The following lemma is well known (Inaba et al., 1994, proof of Theorem 2).

Lemma 2.20. For every A ∈Dom
(
RD ,R≥0

)
and z ∈RD , we have

d(A, z)=d(A)+w(A) · ‖z−m(A)‖2
2 .

Proof. Let A = ((xn,αn))n∈[N]. Observe that

d(A, z)=
N∑

n=1
αn ‖xn − z‖2

2

=
N∑

n=1
αn ‖xn −m(A)+m(A)− z‖2

2

=
N∑

n=1
αn 〈xn −m(A)+m(A)− z, xn −m(A)+m(A)− z〉

=
N∑

n=1
αn

(‖xn −m(A)‖2
2 +2〈xn −m(A), m(A)− z〉+‖m(A)− z‖2

2
)

=d(A)+2
N∑

n=1
αn 〈xn −m(A), m(A)− z〉+w(A) · ‖m(A)− z‖2

2 .

Due to Observation 2.19, the second summand computes to

N∑
n=1

αn 〈xn −m(A), m(A)− z〉 =
〈

N∑
n=1

αn(xn −m(A)), m(A)− z

〉
= 0 .

This yields the claim.

In particular, this lemma implies that z =m(A) is the vector minimizing the cost d(A, z).
For the unnormalized covariance, we obtain an analogous result:

Lemma 2.21. For every A ∈Dom
(
RD ,R≥0

)
and z ∈RD , we have

ucov(A, z)=ucov(A)+w(A) · (m(A)− z)(m(A)− z)T .

Proof. The proof is an analogon of Lemma 2.20 where we replace inner products by corre-
sponding outer products, which are bi-linear as well. Write A = ((xn,αn))n∈[N]. We have

ucov(A, z)=
N∑

n=1
αn(xn − z)(xn − z)T

=
N∑

n=1
αn(xn −m(A)+m(A)− z)(xn −m(A)+m(A)− z)T

=ucov(A)+
N∑

n=1
αn(xn −m(A))(m(A)− z)T

+
(

N∑
n=1

αn(xn −m(A))(m(A)− z)T

)T

+w(A) · (m(A)− z)(m(A)− z)T ,

28 CHAPTER 2. BASICS

where, due to Observation 2.19, we have

N∑
n=1

αn(xn −m(A))(m(A)− z)T =
(

N∑
n=1

αn (xn −m(A))

)
(m(A)− z)T = 0D,D .

This yields the claim.

With our definitions, we directly obtain the following corollary.

Corollary 2.22. For every A ∈Dom
(
RD ,R≥0

)
with w(A)> 0 and z ∈RD , we have

cov(A, z)= cov(A)+ (m(A)− z)(m(A)− z)T .

The following lemmata express the cost d(A) and the unnormalized covariance ucov(A)
of a cluster without explicitly using the mean m(A).

Corollary 2.23. For every A = ((xn,αn))n∈[N] ∈Dom
(
RD ,R≥0

)
with w(A)> 0, we have

d(A)=
∑N

n=1
∑

m<nαnαm ‖xn − xm‖2
2

w (A)
.

Proof. Observe that

2
N∑

n=1

∑
m<n

αmαn ‖xn − xm‖2
2 =

N∑
n=1

N∑
n=1

αmαn ‖xn − xm‖2
2

=
N∑

n=1
αnd(A, xn)

=
N∑

n=1
αn

(
d(A)+w (A)‖xn −m(A)‖2

2
)

(Lemma 2.20)

=w (A)d(A)+w (A)
N∑

n=1
αn ‖xn −m(A)‖2

2 = 2w(A)d(A) .

This yields the claim.

Corollary 2.24. For every A = ((xn,αn))n∈[N] ∈Dom
(
RD ,R≥0

)
with w(A)> 0, we have

ucov(A)=
∑N

n=1
∑

m<nαnαm(xn − xm)(xn − xm)T

w(A)
.

Proof. Analogously to Corollary 2.23, with the help of Lemma 2.21 instead of Lemma 2.20.

2.3.4 Scaling Weights and Copying Data Points

Sometimes it is useful to manipulate the data set. First, consider scaling all weights by the
same constant factor. We apply this trick in the proof of Theorem 3.21.

Lemma 2.25 (scaling weights). Let A = ((xn,αn))n∈[N] ∈ Dom
(
RD ,R≥0

)
and s ∈ R+. For

the re-weighted data set As = ((xn, s ·αn))n∈[N], we have w (As) = s ·w (A), m (As) = m (A),
cov (As)= cov (A), and d (As)= s ·d (A).

Besides that, |As| = |A|, while w(As)
max = s ·w(A)

max and w
(As)
min = s ·w(A)

min.

2.3. DESCRIPTIVE STATISTICS 29

Proof. By definition, we have w (As)=∑N
n=1 sαn = s

∑N
n=1αn = s ·w (A) and hence

m (As)=
∑N

n=1 s ·αnxn

w (As)
= s

∑N
n=1αnxn

sw (A)
=m (As) .

Hence, d (As)=∑N
n=1 s·αn ‖xn −m (As)‖2 = s·∑N

n=1αn ‖xn −m (A)‖2 = s·d (A). Analogously, we
obtain ucov (As)= s ·ucov (A). Thus, cov (As)=ucov (As) /w (As)= s ·ucov (A) /(s ·w (A))=
cov (A).

Second, consider adding (c−1) copies of each data point to the data set. We apply this
manipulation in the proof of Corollary 8.8.

Corollary 2.26 (adding copies). Let A ∈Dom
(
RD ,R≥0

)
and c ∈N. For the data set Ac that

contains c copies of each data point from A, we have w (Ac) = c ·w (A), m (Ac) = m (A),
cov (Ac)= cov (A), and d (Ac)= c ·d (A).

Besides that, |Ac| = c · |A|, while w(Ac)
max = w(A)

max and w
(Ac)
min = w(A)

min.

The statistics change in the same way as they do when we scale the weights by a factor
c. However, the resulting data set is c times larger than the original data set, while the
maximum and minimum weight of a data point remain the same.

30 CHAPTER 2. BASICS

“ There is nothing worse than a
sharp image of a fuzzy concept. ”

Ansel Adams1

Chapter 3

From Soft Clusters
to Hard Clusters

In contrast to soft clustering problems, hard clustering problems such as the K-means
problem have been well studied from a theoretical point of view. Accordingly, there are
numerous techniques to handle hard clustering problems. Unfortunately, most of these
techniques are not directly applicable for soft clustering problems.

In this chapter, we aim to cover the gap between soft and hard clusterings via a Monte
Carlo method: A soft clustering describes the assignment of data points to clusters via
probability distributions. That is, in principle, the soft clustering itself is deterministic.
However, we can make use of its inherent probabilistic interpretation. By simulating the
random assignment of each point, we can construct hard clusters. In the following, we show
that, with certain probability, the statistics of these hard clusters are similar to the statistics
of the given soft clusters.

Overview. First, we give an overview of some related work in Section 3.1 and sum up our
contribution in Section 3.2. In Section 3.3, we generalize and formalize our idea in terms of
a randomized algorithm. In Section 3.4, we give an overview of various probabilistic bounds
that can be used to analyse the algorithm and discuss their differences. In Section 3.5, we
use them to analyse the algorithm. In Section 3.6, we draw some conclusions from this
analysis: First, we prove the existence of hard clusters imitating a given soft clustering.
Second, we analyse the quality of a single run of the randomized algorithm. Finally, in
Section 3.6.3, we discuss a possible improvement and limits of these results.

Publications. In this chapter, we generalize and discuss two previously published results:
the analysis of the stochastic expectation-maximization algorithm (SEM) for Gaussian
mixture models (GMMs) presented in (Blömer et al., 2014) and the technique that helps to
"relate fuzzy clusters to hard clusters" from (Blömer et al., 2016, Theorem 5).

3.1 Related Work

The term Monte Carlo technique refers to a broad class of inference methods that are based
on random sampling. The main idea is to solve a problem, which might be deterministic in
principle, by using randomness. For an introduction to this topic, we refer to (Bishop, 2006,
pp. 523). There is a vast number of practical applications that make use of this technique,
such as the stochastic expectation-maximization algorithm (SEM) for Gaussian mixture
models (GMMs), which we consider in Chapter 15.

1Source: David Prutchi. Exploring Ultraviolet Photography, 2016.

31

32 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

3.2 Contribution

The main contribution of this chapter is a detailed analysis of an algorithm that helps
to relate soft clusters to hard clusters by sampling hard assignments according to the
probabilistic interpretation behind the given soft clustering. We derive probabilistic bounds
on the similarity between the statistics of the resulting hard clusters and the statistics of the
given soft clusters. We keep our analysis modular and compare the application of different
concentration bounds. Later in this thesis, we show that these results are useful in three
regards: First, in Chapter 8, we use them to derive an approximation algorithm for the fuzzy
K-means problem. Second, in Chapter 15, we use them for an (non-asymptotic) comparison
of the stochastic expectation-maximization (SEM) algorithm for Gaussian mixture models
with the expectation-maximization (EM) for Gaussian mixture models. Third, in Chapter 17,
we use them to analyse a variant of the so-called soft K-means problem.

3.3 Imitating Softness by Randomness

We want to imitate soft assignments by sampling hard assignments according to the distri-
butions given by the soft assignments. Before we formalize this approach, let us introduce a
more general class of soft assignments for which this approach works as well.

3.3.1 Probabilistic Memberships

The following generalization of soft clustering matrices and soft clusters is useful with
regard to the fuzzy K-means problem, which we consider in Part II.

Definition 3.1 (probabilistic memberships). We call a matrix (rnk)n∈[N],k∈[K] ∈ [0,1]N×K a
probabilistic membership matrix if

∀n ∈ [N] :
K∑

k=1
rnk ≤ 1 .

We call its single entries rnk ∈ [0,1] probabilistic membership values.

A probabilistic membership matrix describes a relaxed soft clustering where some
elements are possibly not assigned to any cluster at all.

Definition 3.2 (clusters). Given a data set X = ((xn,wn))n∈[N], the membership matrix
R = (rnk)n∈[N],k∈[K], and index k ∈ [K], we let

A(X ,R)
k := ((xn,wn · rnk))n∈[N]

be the k-th soft cluster of X defined by the membership matrix R.

The n-th data point (xn,wn) is assigned to the k-th soft cluster with probability rnk.
Therefore, its weight (importance) in the k-th cluster is only rnk ·wn.

Observe that the soft clusters that are given by a probabilistic membership matrix
(rnk)n,k do not necessarily form a soft clustering. They do not necessarily "cover" the whole
data set: Possibly, we have

∑K
k=1 rnk < 1 for some data point (xn,wn). Hence, the overall

weight of all data points
∑K

k=1 w(A(X ,R)
k) in the clusters might be less than the overall weight

w (X) of the original data set.

Example 3.3 (fuzzy K-means). In the fuzzy K-means objective function, each soft assignment
pnk is exponentiated by some number m ∈ (1,∞). For all (pnk)n,k ∈∆N,K−1 and n ∈ [N], we
have

∑K
k=1 pm

nk ≤
∑K

k=1 pnk = 1. Hence, the matrix R = (pm
nk)n,k is a probabilistic membership

matrix. It defines the clusters A(X ,R)
k = (

(xn,wn · pm
nk)

)
n∈[N] of X = ((xn,wn))n∈[N]. In general,

the overall weight of these clusters sums up to less than w (X).

3.4. CONCENTRATION BOUNDS 33

3.3.2 Algorithm

We are given a probabilistic membership matrix R = (rnk)n,k and a data set X = ((xn,wn))n. R
assigns data point (xn,wn) to the k-th cluster with probability rnk. We apply this probabilistic
interpretation as follows:

Algorithm 1 From Soft to Hard Clusters
Require: probabilistic membership matrix (rnk)n∈[N],k∈[K] ∈ [0,1]N×K and a data set X =

((xn,wn))n∈[N] ∈Dom
(
RD ,R+

)
1: Let A1, . . . , AK be empty hard clusters.
2: for all n ∈ [N] do
3: Sample (Znk)k∈[K] ∈ {0,1}K with

∑K
k=1 Znk ∈ {0,1} according to

Pr(Znk = 1 ∧ ∀l ∈ [K]\{k} : Znl = 0)= rnk for all k ∈ [K] and
Pr(∀l ∈ [K] : Znl = 0)= 1−∑K

l=1 rnl .

4: Add (xn,wn) to the cluster Ak where Znk = 1.
5: return ((Znk)n∈[N],k∈[K], (Ak)k∈[K])

3.4 Concentration Bounds

The statistics of the hard clusters constructed by Algorithm 1 can be interpreted as (matrices
of) real-valued random variables. In this section, we present different ways to bound
the probability that a real-valued random variable is far away from its expected value:
In Section 3.4.1, we state and discuss Markov’s and Chebyshev’s inequality. Then, in
Section 3.4.2, we derive some Chernoff-type inequalities. In the next Section 3.5, we apply
these inequalities to analyse Algorithm 1.

To illustrate the differences between the inequalities, we use the following example.

Example 3.4. Consider the number of heads in 100 fair coin flips. Formally, let Fi be the
binary random variable that indicates whether the i-th flip is heads (Fi = 1). Then we know
Pr(Fi = 1)= 1/2, E[Fi]= 1/2, and Var(Fi)= 1/4. Let X =∑100

i=1 Fi be the total number of heads.
We observe E[X]= 50 heads in expectation.

Intuitively, observing no or 100 heads is extremely unlikely. To be precise, the probability
of this event computes to Pr(X = 0∨X = 100)=Pr(X = 0)+Pr(X = 100)= 2 · (1/2)100 ≈ 2 ·10−30.

3.4.1 Elementary Inequalities

The most elementary bound is Markov’s inequality.

Theorem 3.5 (Markov). Let X be a real-valued non-negative random variable. Then, for all
a ≥ 1, we have

Pr(X ≥ a ·E[X])≤ 1
a

.

Proof. A proof can be found e.g. in (Mitzenmacher and Upfal, 2005, p. 44).

Example 3.4 (continued). Markov’s inequality says that the probability of observing 100
heads is at most E[X]/100= 0.5.

Apparently, this bound is often too weak to yield useful results. If not only the expected
value E[X] but also the variance Var(X) is known, then Markov’s inequality can be refined:

34 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Corollary 3.6 (Chebyshev). Let X be a real-valued random variable with finite variance
Var(X). Then, for all a ≥ 1, we have

Pr
(
|X −E[X]| ≥ a ·

√
Var(X)

)
≤ 1

a2 .

Proof. A proof can be found e.g. in (Mitzenmacher and Upfal, 2005, p. 49).

Example 3.4 (continued). Due to the independence of the coin flips, the variance of X
computes to Var(X)=∑100

i=1 Var(Fi)= 100 ·1/4= 25. Hence, Chebyshev’s inequality says that
the probability of observing no or 100 heads is at most (

p
25/50)2 = 0.01.

Note that Chebyshev’s inequality provides a bound on the absolute difference |X −E[X]|
(and not only on the difference X −E[X]) and, as can be seen in the example, usually yields
tighter bounds than Markov’s inequality. The only drawback is that we need to know and be
able to interpret the variance Var(X).

Overall, both inequalities presented in this section do not yield particularly tight bounds.
In spite of this, in Section 3.5 and Section 3.6.1, we use these inequalities to show that there
exist hard clusters that imitate given soft clusters.

3.4.2 Chernoff Inequalities

In comparison to the inequalities from the previous section, Chernoff bounds are exception-
ally tight as they give exponentially decreasing bounds on the probability that an observation
is far from its expected value (see Mitzenmacher and Upfal, 2005, p. 61ff). In the following,
we focus on deriving Chernoff bounds for random variables that are sums of mutually
independent random variables with bounded absolute value.

Using the Expected Value

The following Chernoff-type bounds measure the absolute difference between a random
variable and its expected value in terms of the expected value itself.

Theorem 3.7. Let X1, . . . , Xn be mutually independent random variables in [0,1] and let
Y =∑n

i=1 X i. Then, for all λ ∈ [0,1] we have

Pr(|Y −E[Y]| ≥λ ·E[Y])≤ 2e−E[Y] λ
2
3 .

Proof. A proof can be found e.g. in (McDiarmid, 1998, Thm. 2.3).

Example 3.4 (continued). The Chernoff-type bound from Theorem 3.7 states that the proba-
bility of observing no or 100 heads is at most 2 ·exp(−50 ·1/3)≈ 2 ·10−7.

The following corollary explicitly states the maximum deviation that Theorem 3.7 guar-
antees for a given probability δ.

Corollary 3.8. Let X1, . . . , Xn be mutually independent random variables in [0,1] and let
Y =∑n

i=1 X i. Let δ ∈ (0,1). If we have

E[Y]≥ 3ln(2/δ) ,

then
Pr

(
|Y −E[Y]| ≥

√
3ln(2/δ)

√
E[Y]

)
≤ δ.

Proof. Due to E[Y] ≥ 3ln(2/δ), we have λ :=p
3ln(2/δ)/E[Y] ∈ [0,1]. Applying Theorem 3.7

yields the claim.

From this latter proof we see that Theorem 3.7 is actually only meaningful for random
variables with a certain expected value.

3.4. CONCENTRATION BOUNDS 35

Using the Variance

In the following, we derive Chernoff-type bounds that measure the absolute difference
between a random variable and its expected value in terms of its variance. To this end, we
use the following lemma by Levchenko (2013).

Lemma 3.9 (A Chernoff-Type Bound). Let X1, . . . , Xn be discrete and mutually independent
random variables with E[X i] = 0 and |X i| ≤ C for all i ∈ [n] and some constant C ≥ 0. Let
Y =∑n

i=1 X i. Then, for all t ≥ 0, it holds

Pr
(
|Y | ≥ tetC Var(Y)

)
≤ 2e−t2etC Var(Y)/2 ,

where Var(Y)=∑n
i=1 Var(X i).

Proof. Just as the lemma itself, this proof is based on (Levchenko, 2013).
Due to symmetry, we only show Pr

(
Y ≥ tetC Var(Y)

)≤ 1 · e−t2etC Var(Y)/2.
By Markov’s inequality, we have

Pr
(
Y ≥λ

√
Var(Y)

)
=Pr

(
etY ≥ etλ

p
Var(Y)

)
≤ E

[
etY]

etλ
p

Var(Y)

for all t > 0 and all λ> 0.
Let Ωi be the set of possible outcomes of X i. Then, we have

E
[
etX i

]
= ∑

x∈Ωi

Pr(X i = x)et·x

= ∑
x∈Ωi

Pr(X i = x)
∞∑

m=0

(tx)m

m!
((Stewart, 2009, p. 772))

= ∑
x∈Ωi

Pr(X i = x) ·
(
1+ tx+

∞∑
m=2

(tx)m

m!

)

= 1+ t ·E[X i]+
∑

x∈Ωi

Pr(X i = x)
∞∑

m=2

(tx)m

m!

= 1+ ∑
x∈Ωi

Pr(X i = x)
∞∑

m=0

(tx)m+2

(m+2)!
(E[X i]= 0)

≤ 1+ ∑
x∈Ωi

Pr(X i = x) · (tx)2

2
·

∞∑
m=0

(tx)m

m!
(∀m ≥ 0 : (m+1)(m+2)≥ 2)

= 1+ ∑
x∈Ωi

Pr(X i = x) · (tx)2

2
· etx. ((Stewart, 2009, p. 772))

Hence,

E
[
etX i

]
≤ 1+ ∑

x∈Ωi

Pr(X i = x) · (tx)2

2
· etC (|X i| ≤ C)

= 1+ t2etC

2

∑
x∈Ωi

Pr(X i = x) · x2

= 1+ t2etC

2
Var(X i) , (3.1)

where we use the fact that Var(X i)=E[X2
i]− (E[X i])2 (Mitzenmacher and Upfal, 2005, p. 45)

and that, by assumption, E[X i]= 0.

36 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Due to the mutual independence of X1, . . . , Xn, we have

Var(Y)=
n∑

i=1
Var(X i) (3.2)

(Mitzenmacher and Upfal, 2005, pp. 46). Likewise, etX1 , . . . , etXn are mutually independent
and hence

E

[
n∏

i=1
etX i

]
=

n∏
i=1

E
[
etX i

]
(3.3)

(Mitzenmacher and Upfal, 2005, pp. 46). Consequently,

E
[
etY

]
=E

[
n∏

i=1
etX i

]

=
n∏

i=1
E

[
etX i

]
(Equation (3.3))

≤
n∏

i=1

(
1+ t2etC

2
Var(X i)

)
(Equation (3.1))

≤
n∏

i=1
et2etC Var(X i)/2 (∀α ∈R+ : 1+α≤ eα)

= et2etC Var(Y)/2 . (Equation (3.2))

Putting it all together, we have

Pr
(
Y ≥λ

√
Var(Y)

)
≤ et2etC Var(Y)/2−tλ

p
Var(Y) .

Set λ := tetCpVar(Y). With Boole’s inequality, the claim follows.

Example 3.4 (continued). Observe that Y = X −E[X] for Y := ∑100
i=1 X i with X i := Fi −1/2.

Note that E[X i]= 0, |X i| ≤ 1/2=: C, and Var(Y)= 25.
Let t ∈R be the value satisfying t·exp(t ·C)Var(Y)= 50. One can easily check that t ∈ [1,2].

This means that t2et·C Var(Y)/2 ∈ [25,50]. Hence, the Chernoff-type bound from Lemma 3.9
says that the probability of observing no or 100 heads is at most some probability δ with
δ= 2 ·exp

(
t2et·C Var(Y)/2

) ∈ [
4 ·10−22, 2 ·10−11]

.

As one can see from this example, it is somewhat demanding to apply Lemma 3.9.
Therefore, we try to substantiate this result as follows:

Theorem 3.10. Let X1, . . . , Xn be discrete and mutually independent random variables with
E[X i]= 0 and |X i| ≤ C for all i ∈ [n] and some constant C ≥ 0. Let Y :=∑n

i=1 X i. Then, for all
δ ∈ (0,1) we have

Pr
(
|Y | ≥λ

√
Var(Y)

)
≤ δ

for

λ=


bδ if

p
Var(Y)≥ C · bδ

e

b2
δ

e · Cp
Var(Y)

otherwise ,
where bδ =

√
2e ln(2/δ) .

Proof. Let λ(t) := tetCpVar(Y) and ε(t) := 2e−tλ(t)
p

Var(Y)/2 for t ∈R.
Due to Lemma 3.9, we have Pr

(|Y | ≥λ(t)
p

Var(Y)
)≤ ε(t) for all t > 0.

First, consider the case
p

Var(Y)≥ C
p

2ln(2/δ)/e. We have λ(0)= 0 and

λ(1/C)= (1/C)e
√

Var(Y)≥
√

2e ln(2/δ) .

3.4. CONCENTRATION BOUNDS 37

Hence, due to the intermediate value theorem (Golub and Loan, 1996, p. 104) we know that
there is some t1 ∈ (0,1/C] such that

λ(t1)=
√

2e ln(2/δ) . (3.4)

Due to the definition of λ(·) and since t1 ≤ 1/C , we have λ(t1)≤ t1·e1·pVar(Y). A combination
of this inequality with (3.4) implies

t1 ≥
p

2e ln(2/δ)
e
p

Var(Y)
. (3.5)

Thus,

ε(t1)= 2e−t2
1et1C Var(Y)/2

= 2e−t1·
p

2e ln(2/δ)·pVar(Y)/2 (Equation (3.4))

≤ 2e−
(p

2e ln(2/δ)
e
p

Var(Y)

)
·p2e ln(2/δ)·pVar(Y)/2 (Equation (3.5))

= 2e− ln(2/δ) = δ .

This yields the first part of the claim.
Second, consider the case

p
Var(Y) < C

p
2ln(2/δ)/e. Observe that 2ln(2/δ)Cp

Var(Y)
≥ 0 and that

λ(0)= 0. Since λ is a continuous and strictly increasing function, this means that there is a
value t2 ∈R+ where

λ(t2)= 2ln(2/δ)Cp
Var(Y)

.

Using the definition of λ(·), we can conclude

t2et2C = λ(t2)p
Var(Y)

= 2ln(2/δ)C
Var(Y)

. (3.6)

Due to the condition
p

Var(Y)< C
p

2ln(2/δ)/e, it follows

t2et2C > 2ln(2/δ)C
(C

p
2ln(2/δ)/e)2

= e
C

= (1/C)e(1/C)·C .

Hence, t2 > 1
C . Putting all these inequalities together, we obtain

ε(t2)= 2e−t2
2et2C Var(Y)/2

< 2e−t2·
(

2ln(2/δ)C
Var(Y)

)
·Var(Y)/2 (by Eq. (3.6))

= 2e−t2·(ln(2/δ)C)

< δ (t2 > 1/C)

This yields the claim.

Example 3.4 (continued). For δ := exp(−49.3)≤ 4 ·10−22, we have

√
Var(Y)= 5> 1/2 ·

√
2ln(2)+49.3

e
= C ·

√
2ln(2/δ)

e

and
p

2e ln(2/δ)=p
2e(ln(2)+49.3)≥ 49.9. Hence, Theorem 3.10 tells us that the probability

of observing no or at least 100 heads is at most 4 ·10−22. This matches the (lower bound on
the) probability that we derived in the last part of this example.

Finally, note that there are various other bounds, especially numerous kinds of Chernoff-
type bounds, that might be useful for our purpose. Some of these can be found in McDiarmid
(1998) and Mitzenmacher and Upfal (2005), for instance. However, to the best of our
knowledge, there are no bounds that would lead to substantially better results in the next
chapters.

38 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

3.5 Analysis

With the help of the probabilistic bounds that we presented in the previous section, we can
now analyse the hard clusters constructed by Algorithm 1 in comparison to the given soft
clusters. In the following, we analyse the different statistics of the hard clusters separately.
Having said that, note that the statistics do actually depend on each other. For instance, the
mean and covariance of a hard cluster both directly depend on the weight of this hard cluster
(see Section 2.3). Thus, we do not only analyse the statistics separately but decompose each
analysis according to these dependencies. We defer the problem of combining the resulting
separate probabilistic bounds to Section 3.6, where we discuss two different applications.

3.5.1 Preliminaries

In the following, we consider an arbitrary but fixed probabilistic membership matrix R =
(rnk)n∈[N],k∈[K] and data set X = ((xn,wn))n∈[N]. We analyse the statistics of the hard clusters
A1, . . . , AK ⊆ X that are constructed by a single run of the randomized Algorithm 1, given
the membership matrix R and data set X . We compare these statistics with the statistics of
the soft clusters of X defined by R. To keep our notation uncluttered, we use the following
shorthand notation throughout the rest of this chapter.

Notation 3.11 (shorthand notation). Given a data set X and a probabilistic membership
matrix R ∈ [0,1]N×K , we let

wk :=w
(
A(X ,R)

k

)
, mk :=m

(
A(X ,R)

k

)
, dk :=d

(
A(X ,R)

k

)
, vark := var

(
A(X ,P)

k

)
ucovk :=ucov

(
A(X ,R)

k

)
, and covk := cov

(
A(X ,R)

k

)
for each k ∈ [K].

Recall from Algorithm 1 that the assignment of the data point (xn,wn) to the k-th cluster
is indicated by the value of the variable Znk, which we consider a binary random variable.
Likewise, each hard cluster Ak as well as each of its statistics can be considered a random
variable which depends on all the binary random variables {Znl | n ∈ [N], l ∈ [L]}. We will
extensively use the following properties of these binary random variables.

Lemma 3.12 (assignment variable). For each k ∈ [K], the set {Znk | n ∈ [N]} is a set of
mutually independent random variables.

For all n ∈ [N], m ∈ [N] with m 6= n, and k ∈ [K], the following equations hold true:

E[Znk]=E
[
Z2

nk
]= rnk ,

E[ZnkZmk]= rnkrmk ,

Var(Znk)= rnk(1− rnk) , and

Var

(
N∑

n=1
Znk

)
=

N∑
n=1

rnk(1− rnk) .

Proof. By construction, for each k ∈ [K], the set {Znk}n∈[N] is a set of mutually independent
variables. Znk is a binary random variable. Hence, E[Znk]= 1 ·Pr(Znk = 1)+0 ·Pr(Znk = 0)=
Pr(Znk = 1) = rnk. Moreover, this implies that Z2

nk = Znk. Hence, E
[
Z2

nk
] = E[Znk] = rnk.

This means that Var(Znk) = E
[
Z2

nk
]−E[Znk]2 = rnk(1− rnk). Due to the independence,

E[ZnkZmk]=E[Znk]·E[Zmk] and Var
(∑N

n=1 Znk
)=∑N

n=1 Var(Znk). This yields the claim.

3.5. ANALYSIS 39

3.5.2 Weight

We compare the weight w (Ak) of the k-th hard cluster and the weight wk of the k-th soft
cluster in terms of their absolute difference

|w (Ak)−wk| =
∣∣∣∣∣ N∑
n=1

Znkwn −
N∑

n=1
rnkwn

∣∣∣∣∣ .

Basic Properties of w (Ak)

w (Ak) is a sum of the scaled binary random variables wnZnk with n ∈ [N]. Hence, by the
linearity of expectation, E[w (Ak)] computes to the desired value

E[w (Ak)]=E

[
N∑

n=1
Znkwn

]
=

N∑
n=1

E[Znk]wn =
N∑

n=1
rnkwn =wk . (3.7)

So we have the nice property that |w (Ak)−wk| = |w (Ak)−E[w (Ak)]| matches the form
of the probabilistic bounds that we considered in Section 3.4. Besides that, due to the
independence of the summands, we have

Var(w (Ak))=Var

(
N∑

n=1
Znkwn

)
=

N∑
n=1

Var(Znk)w2
n =

N∑
n=1

rnk(1− rnk)w2
n (3.8)

which is upper bounded by

Var(w (Ak))=
N∑

n=1
rnk(1− rnk)w2

n ≤ w(X)
max ·wk = w(X)

max ·E[w (Ak)] . (3.9)

In the following, we measure the absolute difference |w (Ak)−wk| in terms of the stan-

dard deviation
√

Var(w (Ak)) and in terms of its upper bound
√
w(X)

max ·wk, respectively.

Using Chebyshev’s Inequality

We can bound |w (Ak)−wk| in terms of the standard deviation
√

Var(w (Ak)) by using
Chebyshev’s inequality.

Lemma 3.13. Let δ ∈ (0,1) and k ∈ [K]. We have

Pr

|w(Ak)−wk| ≥
1
δ
·
√√√√ N∑

n=1
rnk(1− rnk)w2

n

≤ δ2 . (3.10)

Proof. Applying Corollary 3.6 and using (3.7) and (3.8) yields the claim.

Using a Chernoff-Type Bound

In case the weight wk is large enough, we can use a Chernoff-type bound to estimate the

difference |w (Ak)−wk| in terms of
√
w(X)

max ·wk.

Lemma 3.14. Let δ ∈ (0,1) and k ∈ [K]. If we have

wk ≥ 3ln(2/δ) ·w(X)
max ,

then we know

Pr
(
|w(Ak)−wk| ≥

√
3ln(2/δ) ·w(X)

max ·
p

wk

)
≤ δ . (3.11)

40 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Proof. Observe that w(Ak)/w(X)
max = ∑N

n=1 Znkwn/w(X)
max. Each summand Znkwn/w(X)

max lies in

[0,1]. From (3.7) we know that E
[
w(Ak)/w(X)

max

]
= wk/w(X)

max. Applying Corollary 3.8 with

Y =w(Ak)/w(X)
max yields the claim.

In comparison to Lemma 3.13, Lemma 3.14 uses a larger unit of measurement (3.9), but
bounds the difference by a smaller multiple of these units, namely,

p
3ln(2/δ) instead of 1/δ,

with respect to the same probability of success 1−δ.

3.5.3 Mean Vector

In this section, we analyse the squared Euclidean distance

‖m(Ak)−mk‖2
2 =

∥∥∥∥∥
∑N

n=1 Znkwnxn

w (Ak)
−

∑N
n=1 rnkwnxn

wk

∥∥∥∥∥
2

2

. (3.12)

Basic Properties of m (Ak)

Consider the quotient m (Ak)=∑N
n=1 Znkwnxn/w (Ak). Observe that the numerator as well as

the denominator are both random variables which depend on each other through the random
variables {Znk | n ∈ [N]}. In expectation, the numerator and the denominator compute to the
desired values: Due to the linearity of expectation and Lemma 3.12, we have

E[w (Ak) ·m (Ak)]=E

[
N∑

n=1
Znkwnxn

]
=

N∑
n=1

E[Znk]wnxn =
N∑

n=1
rnkwnxn =wk ·mk .

Besides that, E[w (Ak)]=wk, as already shown in the previous section. Unfortunately, due
to the dependency, this does not imply that E[m (Ak)] equals mk.

Decomposition of ‖m(Ak)−mk‖2
2

Observe that we can rewrite the difference as

m (Ak)−mk =
∑N

n=1 Znkwnxn

w (Ak)
−

∑N
n=1 Znkwn

w (Ak)
mk =

∑N
n=1 Znkwn (xn −mk)∑N

n=1 Znkwn
.

In the following, we consider the numerator and denominator of

‖m(Ak)−mk‖2
2 =

∥∥∑N
n=1 Znkwn(xn −mk)

∥∥2
2

w (Ak)2 (3.13)

separately. We already saw in Section 3.5.3 that we can upper and lower bound the denomi-
nator w (Ak). It remains to analyse the numerator∥∥∥∥∥ N∑

n=1
Znkwn(xn −mk)

∥∥∥∥∥
2

2

=
D∑

d=1

∣∣∣∣∣ N∑
n=1

Znkwn (xn −mk)d

∣∣∣∣∣
2

. (3.14)

Using Markov’s Inequality

We can bound the numerator in terms of its expected value via Markov’s inequality.

Lemma 3.15. Let δ ∈ (0,1) and k ∈ [K]. We have

Pr

(∥∥∥∥∥ N∑
n=1

Znkwn(xn −mk)

∥∥∥∥∥
2

2

≥ 1
δ
·τ2

k

)
≤ δ , (3.15)

where

τ2
k :=

N∑
n=1

rnk (1− rnk)w2
n ‖xn −mk‖2

2 . (3.16)

3.5. ANALYSIS 41

Proof. Let Mk := ∥∥∑N
n=1 Znkwn(xn −mk)

∥∥2
2. Observe that

Mk =
〈

N∑
n=1

Znkwn(xn −mk),
N∑

m=1
Zmkwm(xm −mk)

〉

=
N∑

n=1

N∑
m=1

ZnkZokwnwm 〈xn −mk, xm −mk〉 .

Because the expectation is linear, we obtain

E[Mk]=
N∑

n=1

N∑
m=1

E [ZnkZok]wnwm 〈xn −mk, xm −mk〉

=
N∑

n=1
E

[
Z2

nk
]
w2

n ‖xn −mk‖2
2 +

∑
m 6=n

E [ZnkZok]wnwm 〈(xn −mk), (xm −mk)〉 .

With Lemma 3.12, we can conclude

E[Mk]=
N∑

n=1
rnkw2

n ‖xn −mk‖2
2 +

∑
m 6=n

rnkrmkwnwm 〈(xn −mk), (xm −mk)〉

=
N∑

n=1

(
rnk − r2

nk
)
w2

n ‖xn −mk‖2
2 +

N∑
m=1

rnkrmkwnwm 〈(xn −mk), (xm −mk)〉

=
N∑

n=1
rnk(1− rnk)w2

n ‖xn −mk‖2
2 + rnkwn

〈
(xn −mk),

N∑
m=1

rmkwm(xm −mk)

〉

=
N∑

n=1
rnk(1− rnk)w2

n ‖xn −mk‖2
2 ,

where the last equality is due to Observation 2.19. Applying Markov’s inequality yields the
claim.

Using a Chernoff-Type Bound

We obtain a more detailed bound by considering each of the D summands∣∣∣∣∣ N∑
n=1

Znkwn (xn −mk)d

∣∣∣∣∣
2

with d ∈ [D] (3.17)

of the numerator (3.14) separately. We can measure the d-th summand in terms of its
variance by using a Chernoff-type inequality.

Lemma 3.16. Let δ ∈ (0,1), k ∈ [K], and d ∈ [D]. We have

Pr

(∣∣∣∣∣ N∑
n=1

Znkwn (xn −mk)d

∣∣∣∣∣≥λkd ·τkd

)
≤ δ (3.18)

where

τ2
kd :=

N∑
n=1

rnk(1− rnk)w2
n(xn −mk)2

d , (3.19)

bδ :=
√

2e ln(2/δ) , and

λkd =


bδ if τkd ≥ bδ

e w
(X)
maxrd(X)

b2
δ

e · w(X)
maxrd(X)
τkd

otherwise
. (3.20)

42 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Proof. For each n ∈ [N], define the real random variable

Mkdn := (Znk − rnk)wn (xn −mk)d .

Using Lemma 3.12 and the linearity of expectation, we get that E[Mkdn]= 0 and

Var(Mkdn)= rnk(1− rnk)w2
n(xn −mk)2

d .

Since the Znk are binary random variables and since each rnk lies in [0,1], we have
|Znk − rnk| ≤ 1. Since (mk)d is a convex combination of the (xn)d with n ∈ [N], we have∣∣(mk − xn)d

∣∣≤ rd(X). A combination of these inequalities gives

|Mkdn| = |Znk − rnk| · |wn| ·
∣∣(xn −mk)d

∣∣≤ w(X)
max ·rd(X) .

Due to Observation 2.19, we know that
∑N

n=1 rnkwn(xn −mk)= 0D . Hence,

Mkd :=
N∑

n=1
Mkdn =

N∑
n=1

Znkwn (xn −mk)d .

With our previous results, we can conclude that E[Mkd]=∑N
n=1 E[Mkdn]= 0. Moreover, since

{Mkdn}n∈[N] is a set of mutually independent random variables, we obtain

Var(Mkd) :=
N∑

n=1
Var(Mkdn)=

N∑
n=1

rnk(1− rnk)w2
n(xn −mk)2

d = τ2
kd .

Applying Theorem 3.10 with C := w(X)
maxrd(X) yields the claim.

Comparison

Let us briefly compare our bound from Lemma 3.16 with our bound from Lemma 3.15.
Fix some k ∈ [K] and let Mk := ∥∥∑N

n=1Znkwn(xn −mk)
∥∥2

2. From Lemma 3.16 and Boole’s
inequality, we can conclude that Mk ≤∑D

d=1λ
2
kdτ

2
kd holds true with a probability of at least

1−D ·δ. If the k-th cluster is scattered enough in the sense that

∀d ∈ [D] : τkd =
√√√√ N∑

n=1
rnk(1− rnk)w2

n(xn −mk)2
d ≥ bδ

e
w(X)

maxrd(X) ,

then, for all d ∈ [D], the factor λkd is equal to
p

2e ln(2/δ). That is,

Mk ≤
D∑

d=1
λ2

kdτ
2
kd = 2e ln(2/δ) ·

D∑
d=1

τ2
kd = 2e ln(2/δ) ·τ2

k .

with probability 1−δ ·D, where τ2
k is defined as in Lemma 3.15. For the same probability

of success 1−D ·δ, Lemma 3.15 guarantees that Mk ≤ 1
D·δ ·τ2

k. For sufficiently small δ, our
bound from Lemma 3.16 is tighter.

Interpretation

Consider some fixed k ∈ [K] and let Mk := ∥∥∑N
n=1Znkwn(xn −mk)

∥∥2
2. Assume that the k-th

cluster does not have too small a weight. More precisely, assume that wk ≥ c2 ·3ln(2/δ) ·
w(X)

max for some c ≥ 1. From Lemma 3.14, we can conclude that w (Ak) ≥ (1−1/c)wk with a
probability of at least 1−δ. In this section, we derived a bound on Mk that uses its expected
value τ2

k as a unit of measurement (see Lemma 3.15). We combine the lower bound on

3.5. ANALYSIS 43

w (Ak) and the upper bound on Mk via (3.12). Hence, we measure the squared distance
‖m (Ak)−mk‖2

2 between the mean vectors in terms of the quotient τ2
kd/w2

k. Observe that

τ2
k

w2
k
=

∑D
d=1τ

2
kd

w2
k

≤
∑N

n=1 rnk ·1 ·wn ·w(X)
max · ‖xn −mk‖2

2

w2
k

= w(X)
max

wk
· dk

wk
= w(X)

max

wk
·vark ≤ vark ,

where the last inequality is due to our initial assumption that wk ≥ c2 · (3ln(2/δ)w(X)
max).

To sum up, if the weight of the k-th soft cluster is large enough, then we effectively
measure the squared distance ‖m (Ak)−mk‖2

2 in terms of a lower bound on the variance of
the k-th soft cluster.

3.5.4 Covariance Matrix

The difference between the covariance matrices cov (Ak) and covk can be described by the
Frobenius norm

‖cov (Ak)−covk‖2
F =

∥∥∥∥ucov (Ak)
w (Ak)

− ucovk

wk

∥∥∥∥2

F
.

Basic Properties of cov (Ak)

Just as the mean vector m (Ak), the covariance cov (Ak) is the quotient of two random
variables that depend on each other through the random variables {Znk | n ∈ [N]}. Due to
Corollary 2.24, we have

cov (Ak)= ucov (Ak)
w (Ak)

=
∑N

n=1
∑

m<n ZnkZmkwnwm(xn − xm)(xn − xm)T

w (Ak)2 . (3.21)

In expectation, the numerator of this quotient computes to the desired value

E
[
w (Ak)2 ·cov (Ak)

]=E

[
N∑

n=1

∑
m<n

ZnkZmkwnwm(xn − xm)(xn − xm)T

]
(Eq. (3.21))

=
N∑

n=1

∑
m<n

E[ZnkZmk]wnwm(xn − xm)(xn − xm)T (linearity)

=
N∑

n=1

∑
m<n

rnkrmkwnwm(xn − xm)(xn − xm)T (Lemma 3.12)

=wk ·ucovk =w2
k ·covk . (Corollary 2.24)

Besides that, we already know from the previous sections that E[w (Ak)]=wk. Still, from
this we cannot conclude that the expected value of cov (Ak) computes to covk.

Decomposition of ‖cov (Ak)−covk‖2
F

Now we could proceed analogously to our analysis of the mean vectors (Section 3.5.3). That
is, with the help of (3.21), we can write

‖cov (Ak)−covk‖2
F =

∥∥∑N
n=1

∑N
m=1 ZnkZmkwnwm

(
(xn − xm)(xn − xm)T −covk

)∥∥2
F

4w (Ak)4 .

Due to the symmetry of each (xn − xm)(xn − xm)T and covk, the numerator is equal to∥∥∥∥∥ N∑
n=1

N∑
m=1

ZnkZmkwnwm

(
(xn − xm)(xn − xm)T −covk

)∥∥∥∥∥
2

F

=
D∑

i=1

∑
j≤i

(2−δi j)

∣∣∣∣∣ N∑
n=1

∑
m≤n

(2−δnm)ZnkZmkwnwm

(
(xn − xm)(xn − xm)T −covk

)
i j

∣∣∣∣∣
2

, (3.22)

44 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

where δpq denotes the Kronecker delta. With the help of Lemma 3.12, one can compute the
expected value of the numerator and apply Markov’s inequality (similarly to Lemma 3.15).
However, this yields a quiet lengthy result for which we have no better interpretation than
for the results that we present in the remainder of this section. Besides that, since the
single summands of (3.22) are not mutually independent, we cannot apply our Chernoff-type
bounds as in our analysis of the mean vectors (Section 3.5.3). Therefore, we take a different
approach.

Upper Bound on ‖cov (Ak)−covk‖2
F

Instead of analysing ‖cov (Ak)−covk‖F , we analyse the following upper bound.

Lemma 3.17 (upper bound). For all k ∈ [K], we have

‖cov(Ak)−covk‖F ≤
∥∥∑N

n=1 Znkwn (ynk −covk)
∥∥

F
w (Ak)

+‖mk −m (Ak)‖2
2 ,

where, for all n ∈ [N], we have

ynk := (xn −mk)(xn −mk)T ∈RD×D . (3.23)

Proof. With the help of Lemma 2.21, we can write

cov(Ak)−covk =
ucov(Ak,mk)−w(Ak) · (mk −m (Ak) (mk −m (Ak))T

w (Ak)
−covk

= ucov (Ak,mk)−w(Ak)covk

w (Ak)
− (mk −m (Ak) (mk −m (Ak))T .

The numerator of the minuend computes to

ucov (Ak,mk)−w(Ak)covk =
(

N∑
n=1

Znkwn ynk

)
−

(
N∑

n=1
Znkwncovk

)

=
N∑

n=1
Znkwn (ynk −covk) .

Observe that, for all v ∈RD , we have∥∥∥vvT
∥∥∥2

F
=

D∑
i=1

D∑
j=1

(
(v)i · (v) j

)2 =
D∑

i=1

D∑
j=1

(v)2
i · (v)2

j =
(

D∑
i=1

(v)2
i

)2

= ‖v‖4
2 .

Hence, the Frobenius norm of the subtrahend computes to∥∥∥(mk −m (Ak))(mk −m (Ak))T
∥∥∥

F
= ‖mk −m (Ak)‖2

2 .

Finally, applying the triangle inequality yields the claim.

We analyse and bound the single terms of the upper bound from Lemma 3.17 separately:
Recall that we already know how to bound the denominator w (Ak) of the first summand
and the second summand ‖mk −m (Ak)‖2

2. Hence, in the following, we only consider the
numerator

∥∥∑N
n=1 Znkwn (ynk −covk)

∥∥
F of the first summand. Observe that∥∥∥∥∥ N∑

n=1
Znkwn (ynk −covk)

∥∥∥∥∥
2

F

=
D∑

i=1

D∑
j=1

∣∣∣∣∣ N∑
n=1

Znkwn (ynk −covk)i j

∣∣∣∣∣
2

=
D∑

i=1

∣∣∣∣∣ N∑
n=1

Znkwn (ynk −covk)ii

∣∣∣∣∣
2

+2
∑

j∈[D]
j<i

∣∣∣∣∣ N∑
n=1

Znkwn (ynk −covk)i j

∣∣∣∣∣
2

, (3.24)

3.5. ANALYSIS 45

where the last inequality is due to the symmetry of the matrices ynk = (xn −mk)(xn −mk)T

and covk (see Definition 2.15). Via Boole’s inequality, we will later combine the resulting
bounds into a bound on (the upper bound on) the difference between the covariance matrices.

Using Markov’s Inequality

We can bound the random variable from (3.24) in terms of its expected value by using
Markov’s inequality.

Lemma 3.18. Let δ ∈ (0,1) and k ∈ [K]. We have

Pr

(∥∥∥∥∥ N∑
n=1

Znkwn (ynk −covk)

∥∥∥∥∥
2

F

≥ 1
δ
·ρ2

k

)
≤ δ , (3.25)

where ynk = (xn −mk)(xn −mk)T for all n ∈ [N] and

ρk =
N∑

n=1
rnk(1− rnk)w2

n ‖ynk −covk‖2
F . (3.26)

Proof. The following proof is an analogon of Lemma 3.15. Observe that

Sk :=
∥∥∥∥∥ N∑

n=1
Znkwn (ynk −covk)

∥∥∥∥∥
2

F

=
〈

N∑
n=1

Znkwn (ynk −covk) ,
N∑

m=1
Zmkwm (ymk −covk)

〉
F

=
N∑

n=1

N∑
m=1

ZnkZmkwnwm 〈ynk −covk, ymk −covk〉F ,

where 〈·, ·〉F denotes the Frobenius inner product. By linearity of expectation, we know

E[Sk]=
N∑

n=1

N∑
m=1

E[ZnkZmk]wnwm 〈ynk −covk, ymk −covk〉F .

With the help of Lemma 3.12, we can conclude

E[Sk]

=
N∑

n=1
rnkw2

n ‖ynk −covk‖2
F + ∑

m 6=n
rnkrmkwnwm 〈ynk −covk, ymk −covk〉F

=
N∑

n=1
(rnk − r2

nk)w2
n ‖ynk −covk‖2

F +
N∑

m=1
rnkrmkwnwm 〈ynk −covk, ymk −covk〉F

=
N∑

n=1
(rnk − r2

nk)w2
n ‖ynk −covk‖2

F + rnkwn

〈
ynk −covk,

N∑
m=1

rmkwm(ymk −covk)

〉
F

=
N∑

n=1
rnk(1− rnk)w2

n ‖ynk −covk‖2
F

=ρ2
k ,

where the second to the last equality is due to Observation 2.19. Applying Markov’s inequal-
ity yields the claim.

46 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Using a Chernoff-Type Bound

We can refine this bound by considering each of the D(D+1)/2 different summands∣∣∣∣∣ N∑
n=1

Znkwn (ynk −covk)i j

∣∣∣∣∣
2

with i, j ∈ [D], j ≤ i

of the random variable from (3.24) separately. We can bound the summand with indices
i, j ∈ [D] in terms of its variance by using a Chernoff-type bound.

Lemma 3.19. Let δ ∈ (0,1), k ∈ [K], and i, j ∈ [D]. We have

Pr

(∣∣∣∣∣ N∑
n=1

Znkwn (ynk −covk)i j

∣∣∣∣∣
2

>λ2
ki j ·ρ2

ki j

)
≤ δ , (3.27)

where ynk = (xn −mk)(xn −mk)T for all n ∈ [N],

ρ2
ki j :=

N∑
n=1

rnk(1− rnk)w2
n (ynk −mk)i (ynk −mk) j , (3.28)

bδ :=
√

2e ln(2/δ) , and

λki j =


bδ if ρki j ≥ 2bδ

e w(X)
maxri(X)r j(X)

2b2
δ

e
w(X)

maxri(X)r j(X)
ρki j

otherwise
.

Proof. For each n ∈ [N], define the real random variable

Ski jn := (Znk − rnk)wn (ynk −covk)i j ,

where (ynk)i j = (xn −mk)i(xn −mk) j. Since the Znk are binary random variables and since
each membership rnk lies in [0,1], we have |Znk − rnk| ≤ 1. Since (mk)d is a convex combina-
tion of the coordinates (xm)d with m ∈ [N], we know that (xn −mk)d ∈ [−rd(X),+rd(X)] for
all n ∈ [N]. Hence, for all n ∈ [N] and i, j ∈ [D], we can conclude that (ynk)i j = (xn−mk)i(xn−
mk) j ∈

[−ri(X) ·r j(X), +ri(X) ·r j(X)
]
. As (covk)i j is a convex combination of all values

(ymk)i j with m ∈ [N], it follows that (ynk −covk)i j ∈
[−2 ·ri(X)r j(X), +2 ·ri(X)r j(X)

]
for all

n ∈ [N]. Hence,
∣∣(ynk −covk)i j

∣∣ ≤ 2ri(X)r j(X) for all n ∈ [N]. Putting these inequalities
together yields∣∣Ski jn

∣∣= |Znk − rnk| · |wn| ·
∣∣(ynk −covk)i j

∣∣≤ 2w(X)
maxri(X)r j(X) .

Due to Observation 2.19, we know that

Ski j :=
N∑

n=1
Ski jn =

N∑
n=1

Znkwn(ynk −covk)i(ynk −covk) j .

With Lemma 3.12, we can conclude that

E[Ski jn]= 0 and Var(Ski jn)= rnk(1− rnk)w2
n (ynk −covk)2

i j .

Hence, we have E[Ski j]= 0. Moreover, since the summands Ski jn are mutually independent
random variables, we have Var(Ski j)= ρ2

ki j.

Hence, applying Theorem 3.10 with C := 2w(X)
maxri(X)r j(X) yields the claim.

3.5. ANALYSIS 47

3.5.5 Cost and Variance

In this section, we want to measure the cost

d(Ak)=
N∑

n=1
znkwn ‖xn −m (Ak)‖2 (3.29)

of the hard cluster Ak in terms of the cost dk = ∑N
n=1 rnkwn ‖xn −mk‖2 of the given soft

cluster. Recall that the variance var (Ak) is the quotient of the cost d (Ak) and the weight
w (Ak). Hence, our results from this section and our bounds from Section 3.5.2 can easily be
combined into an upper bound that measures the variance var(Ak) in terms of vark.

Basic Properties of d (Ak)

Recall from Corollary 2.23 that

d(Ak)=
∑N

n=1
∑

m<n ZnkZmkwnwm ‖xn − xm‖2
2

w (Ak)
. (3.30)

We do not know whether the expected value of d(Ak) computes to the cost dk. However, we
know that the numerator and denominator of (3.30) compute to the desired values: We have

E[w (Ak) ·d (Ak)]=E

[
N∑

n=1

∑
m<n

ZnkZmkwnwm ‖xn − xm‖2
2

]

=
N∑

n=1

∑
m<n

E[ZnkZmk]wnwm ‖xn − xm‖2
2 (linearity)

=
N∑

n=1

∑
m<n

rnkrmkwnwm ‖xn − xm‖2
2 (Lemma 3.12)

=wk ·d (Ak) .

and, as we already showed in Section 3.5.2, E[w (Ak)] = wk. The ratio of these expected
value is equal to dk.

Now we could analyse the numerator and denominator from (3.30) separately via
Markov’s inequality and combine the resulting bounds via Boole’s inequality. However,
this bound does not yield better results in the following chapters. Besides that, we cannot
apply to Chernoff-type bounds (similarly to Section 3.5.3) since neither the summands of
(3.29) nor the summands of the numerator from (3.30) are mutually independent. Therefore,
we proceed as follows.

Upper Bound on d (Ak)

Consider the following upper bound. Due to Lemma 2.20, we have

d(Ak)=d(Ak,mk)−w(Ak) · ‖m(Ak)−mk‖2
2 ≤d(Ak,mk)=

N∑
n=1

Znkwn ‖xn −mk‖2
2 . (3.31)

The upper bound d(Ak,mk) is a sum of mutually independent random variables. Due to the
linearity of expectation and Lemma 3.12, its expected value computes to

E[d(Ak,mk)]=
N∑

n=1
E[Znk]wn ‖xn −mk‖2

2 =
N∑

n=1
rnkwn ‖xn −mk‖2

2 =dk . (3.32)

48 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Using Markov’s Inequality

We can easily bound the upper bound from (3.31) via Markov’s inequality.

Lemma 3.20. Let δ ∈ (0,1) and k ∈ [K]. We have

Pr
(
d(Ak)≥ 1

δ
·dk

)
≤ δ . (3.33)

Proof. Apply Markovs’s inequality to the upper bound from (3.31) and use (3.32).

3.6 Conclusions

In this section, we present two different ways of using the probabilistic bounds from Sec-
tion 3.5. Again, we use the following shorthand notation:

Notation 3.11 (shorthand notation). Given a data set X and a probabilistic membership
matrix R ∈ [0,1]N×K , we let

wk :=w
(
A(X ,R)

k

)
, mk :=m

(
A(X ,R)

k

)
, dk :=d

(
A(X ,R)

k

)
, vark := var

(
A(X ,P)

k

)
ucovk :=ucov

(
A(X ,R)

k

)
, and covk := cov

(
A(X ,R)

k

)
for each k ∈ [K].

3.6.1 Existence of Similar Hard Clusters

By combining our probabilistic bounds from Section 3.5 via the union bound and applying
the probabilistic method, we can prove the existence of hard clusters that imitate given soft
clusters. In this way, we obtain the following Theorem 3.21, which we will apply in Chapter 8
in the context of the fuzzy K-means problem. More precisely, the theorem is obtained by
combining our probabilistic bounds (on the similarity of the weights, means, and costs) that
are based on Markov’s and Chebyshevs’s inequality. In contrast to our Chernoff-type bounds,
which distinguish between several cases, these inequalities yield a much simpler result.

Theorem 3.21 (Existence of Similar Hard Clusters). Let X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R+

)
,

let R = (rnk)n∈[N],k∈[K] be a probabilistic membership matrix, and ε ∈ (0,1]. Use Notation 3.11.
If we have

∀k ∈ [K] : wk ≥
16K
ε

w(X)
max , (3.34)

then there exist pairwise disjoint hard clusters A1, . . . , AK ⊆ X such that

w(Ak)≥ 1
2
·wk , (3.35)

‖m(Ak)−mk‖2
2 ≤ ε ·

dk

wk
, and (3.36)

d(Ak)≤ 4K ·dk (3.37)

for all k ∈ [K].
If R is a soft K-clustering of X, then the clusters A1, . . . , AK form a hard clustering of X.

That is, ∪̇K
k=1 Ak = X.

In the remainder of this section, we prove Theorem 3.21. A straightforward combination
of Lemma 3.13, Lemma 3.15, and Lemma 3.20 yields the following result:

3.6. CONCLUSIONS 49

Corollary 3.22. Let ε ∈ (0,1], X ∈Dom
(
RD ,R+

)
, and let R = (rnk)n∈[N],k∈[K] be a membership

matrix. Use Notation 3.11. There exist pairwise disjoint hard clusters A1, . . . , AK ⊆ X such
that for all k ∈ [K] we have

|w(Ak)−wk| ≤
p

4K ·ηk , (3.38)

‖m(Ak)−mk‖2
2 ≤ 4K · τ2

k(
wk −

p
4Kηk

)2 , and (3.39)

d(Ak)≤ 4K ·dk , (3.40)

where ηk =
√∑N

n=1 rnk(1− rnk)w2
n and τ2

k =
∑N

n=1 rnk (1− rnk)w2
n ‖xn −mk‖2

2.
If R is a soft K-clustering of X, then ∪̇K

k=1 Ak = X.

Proof. Apply Lemma 3.13 with δ2 = 1
4K , Lemma 3.15 with δ = 1

4K , and Lemma 3.20 with
δ= 1

4K , we can take the union bound and obtain that the inequalities stated in the lemmata
hold simultaneously with probability 1−3K · 1

4K > 0 strictly larger than 0. Finally, using
(3.13) yields the claim.

Given this result, we can prove Theorem 3.21.

Proof of Theorem 3.21. Write X = ((xn,wn))n∈[N]. Scale the weights of the data points by
1/w(X)

max, and let

X̂ :=
((

xn,
wn

w(X)
max

))
n∈[N]

.

Similar to Notation 3.11, let

ŵk :=w
(
A(X̂ ,R)

k

)
, m̂k :=m

(
A(X̂ ,R)

k

)
, and d̂k :=d

(
A(X̂ ,R)

k

)
for each k ∈ [K].

Let Â1, . . . , ÂK ⊆ X̂ be the pairwise disjoint subsets of X whose existence is guaranteed
by Corollary 3.22 when applied to the given ε, the given membership matrix R = (rnk)n,k, and
data set X̂ (instead of X). For each cluster Âk =

(
(xn,wn/w(X)

max)
)

n∈Ik
⊆ X̂ with some Ik ⊆ [N],

define the corresponding clusters Ak := ((xn,wn))n∈Ik ⊆ X .
Consider an arbitrary but fixed k ∈ [K]. Due to Lemma 2.25, we have:

ŵk =
1

w(X)
max

·wk m̂k =mk d̂k =
1

w(X)
max

·dk (3.41)

w
(
Âk

)= 1

w(X)
max

·w (Ak) m
(
Âk

)=m (Ak) d
(
Âk

)= 1

w(X)
max

·d (Ak) (3.42)

Moreover, due to (3.41) and Condition (3.34), we have

ε ·ŵk = ε ·
1

w(X)
max

wk ≥ 16K . (3.43)

In the following, we show that Ak satisfies (3.35), (3.36), and (3.37). First, we prove
(3.35). With the help of (3.43), we can bound

p
4K =

p
16K
2

≤
√
εŵk

2
≤

√
ŵk

2
. (3.44)

Since we apply Corollary 3.22 to X̂ instead of X , we have

ηk =
√√√√ N∑

n=1
rnk(1− rnk)

(
wn

w(X)
max

)2

≤
√√√√ N∑

n=1
rnk

(
wn

w(X)
max

)
=

√
ŵk . (3.45)

50 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Consider (3.38) from Corollary 3.22. By combining this inequality with (3.41), (3.42), (3.44)
and (3.45), we obtain

1

w(X)
max

|w(Ak)−wk| =
∣∣w(Âk)−ŵk

∣∣≤p
4Kηk <

ŵk

2
= 1

w(X)
max

· 1
2

wk . (3.46)

This yields (3.35).
Next, we prove (3.36). Recall that we apply Corollary 3.22 to X̂ instead of X . Hence,

with the help of (3.41), we can conclude

τ2
k =

N∑
n=1

rnk (1− rnk)

(
wn

w(X)
max

)2

‖xn −m̂k‖2
2 (3.47)

≤
N∑

n=1
rnk

(
wn

w(X)
max

)
‖xn −m̂k‖2

2 = d̂k =
1

w(X)
max

dk . (3.48)

Using (3.41) and our upper bound on
p

4Kηk from (3.46), we obtain

ŵk −
p

4Kηk =
1

w(X)
max

wk −
p

4Kηk ≥
1
2
· 1

w(X)
max

wk > 0 . (3.49)

From (3.43), we can conclude

4K ≤ ε

4
· 1

w(X)
max

wk . (3.50)

Consider (3.39) from Corollary 3.22. By combining this inequality with (3.41), (3.42), (3.48),
(3.49), and (3.50), we obtain

‖m(Ak)−mk‖2
2 =

∥∥m(Âk)−m̂k
∥∥2

2

≤ 4K

(ŵk −
p

4Kηk)2
τ2

k

≤ ε

4
· 1

w(X)
max

wk ·
(

1
2
· 1

w(X)
max

wk

)−2

· 1

w(X)
max

dk

= ε · dk

wk
.

This yields (3.36).
Finally, we prove (3.37). Consider (3.40) from Corollary 3.22. With (3.41) and (3.42), we

can conclude

1

w(X)
max

d (Ak)=d
(
Âk

)≤ 4K · d̂k =
1

w(X)
max

·4K ·dk .

This yields (3.37).

3.6.2 Quality of an Imitation

As already explained in Section 3.4, our Chernoff-type bounds are tighter than those based
on Markov’s or Chebyshev’s inequality. Hence, to bound the similarity of the hard clusters
computed by Algorithm 1 and the given soft clusters, one should use our Chernoff-type
bounds. To obtain a bound on the "overall similarity", one can simply combine the bounds
on the single cluster statistics via Boole’s inequality. In this way, we obtain the following
theorem, which we will use in Chapter 15 to analyse the stochastic expectation maximization
algorithm for Gaussian mixture models.

3.6. CONCLUSIONS 51

Theorem 3.23 (Quality of an Imitation). Consider a single run of Algorithm 1 that is given
some probabilistic membership matrix R = (rnk)n∈[N],k∈[K] and data set X = ((xn,wn))n∈[N].
Use Notation 3.11. Let A1, . . . , AK be the hard clusters constructed by the algorithm.

Let δ ∈ (0,1). Set aδ := 3ln(2/δ) ·w(X)
max and bδ :=p

2e ln(2/δ).
If we have

∀k ∈ [K] : wk ≥ aδ ,

then, with probability 1−K ·
(
1+D+ D(D+1)

2

)
·δ, for all k ∈ [K] and i, j ∈ [D] we have

|w(Ak)−wk| ≤paδ ·pwk , (3.51)∣∣(m(Ak)−mk)i
∣∣≤ λkipwk −p

aδ
· τkipwk

, and (3.52)

∣∣(cov (Ak)−covk)i j
∣∣≤ λki jpwk −p

aδ
· ρki jpwk

+ λkiλk j(pwk −p
aδ

)2

τkiτk j

wk
, (3.53)

where, for all k ∈ [K] and i, j ∈ [D], we have

τ2
ki =

N∑
n=1

pnk(1− pnk)2w2
n(xn −mk)2

i

λki =


bδ if τki ≥ bδ

e w
(X)
maxri(X)

b2
δ

e · w(X)
maxri(X)
τki

otherwise
,

ρ2
ki j =

N∑
n=1

rnk(1− rnk)w2
n (ynk −covk)i (ynk −covk) j , where

ynk = (xn −mk)(xn −mk)T for all n ∈ [N], and

λki j =


bδ if ρki j ≥ 2bδ

e ·w(X)
maxri(X)r j(X)

2b2
δ

e
w(X)

maxri(X)r j(X)
ρki j

otherwise
.

Proof. We combine Lemma 3.14, Lemma 3.16 and Lemma 3.19 by taking the union bound.
Thereby, we obtain that, with probability 1−K ·

(
1+D+ D(D+1)

2

)
·δ, the events considered in

(3.11), (3.18), and (3.27) hold simultaneously for all d, i, j ∈ [D] and k ∈ [K].
Fix some d, i, j ∈ [D] and k ∈ [K]. (3.51) follows directly from (3.11). To prove (3.52), just

observe that, due to (3.11) and (3.18), we have

∣∣(m(Ak)−mk)d
∣∣= ∣∣∑N

n=1 Znkwn (xn −mk)d
∣∣

w (Ak)
≤ λkd

(
pwk −p

aδ)
· τkdpwk

. (3.54)

To prove (3.53), we proceed as in the proof of Lemma 3.17. Let mk := (mk −m(Ak))(mk −
m(Ak))T and ynk := (xn −mk)(xn −mk)T , for all n ∈ [N]. Then,

∣∣(cov (Ak)−covk)i j
∣∣= ∣∣∣∣∣

(
ucov (Ak,mk)−w (Ak)mk

w (Ak)
−covk

)
i j

∣∣∣∣∣ (Lemma 2.21)

=
∣∣∣∣∣
(∑N

n=1 Znkwn ynk∑N
n=1 Znkwn

−mk −covk

)
i j

∣∣∣∣∣
≤

∣∣∣∣∣
(∑N

n=1 Znkwn ynk∑N
n=1 Znkwn

−covk

)
i j

∣∣∣∣∣+ ∣∣(mk)i j
∣∣ (triangle inequality)

=

∣∣∣(∑N
n=1 Znkwn (ynk −covk)

)
i j

∣∣∣
w (Ak)

+ ∣∣(mk)i j
∣∣ .

52 CHAPTER 3. FROM SOFT CLUSTERS TO HARD CLUSTERS

Due to (3.54) and (3.11), we have

∣∣(mk)i j
∣∣= ∣∣(mk −m(Ak))i

∣∣ · ∣∣(mk −m(Ak)) j
∣∣≤ λkiλk j(pwk −p

aδ
)2 · τkiτk j

wk
.

By combining these inequalities with (3.11) and (3.27), we obtain

∣∣(cov (Ak)−covk)i j
∣∣≤ λki jpwk −p

aδ
· ρki jpwk

+ λkiλk j

(
pwk −p

aδ)2

τkiτk j

wk
.

This yields the claim.

For an interpretation of this result, we refer back to our discussion from Section 3.5.3
and to our application in Section 15.5.2.

3.6.3 Remarks

We showed that, for given a probabilistic membership matrix R, Algorithm 1 constructs hard
clusters that are similar to the soft clusters defined by R. However, some aspects cannot be
guaranteed.

Downsides. First, the hard clusters exhibit no locality property: Points that belong to the
same hard cluster are not necessarily "close" to each other. The distance between a point
and the mean of its cluster might be larger than any of the distances between this point and
the means of other clusters. This means that the convex hulls of the hard clusters are not
necessarily disjoint. The hard clusters themselves are pairwise disjoint, though.

Second, if the probabilistic membership matrix does not indicate a soft clustering, then
the hard clusters do not necessarily cover the whole data set: We only showed that there
exist pairwise disjoint hard clusters. In other words, these hard clusters do not necessarily
form a hard clustering. Nevertheless, in the special case that R ∈∆N,K−1 is a soft-clustering,
the hard clusters form a hard clustering (i.e., a ∪̇K

k=1 Ak = X).

Repeated Sampling. Usually, Monte Carlo methods make use of repeated sampling. We
can repeatedly run Algorithm 1 (M ≥ 2 times) and merge the resulting hard clusters with the
same index. Thereby, we obtain hard clusters A1, . . . , AK of a data set XM which contains M
copies of each point in the given data set X (i.e., |XM | = M · |X |). Clearly, the corresponding
probabilistic bounds on the (scaled) statistics of these hard clusters are better than the
statistics of hard clusters that are computed by a single run of Algorithm 1:

Example 3.24. Consider our bound from Lemma 3.13. Observe that E
[1

M w (Ak)
]=wk and

Var
(1

M w (Ak)
)= 1

M2

∑N
n=1 rnk(1− rnk)w2

n. Hence,

Pr

∣∣∣∣ 1
M

w(Ak)−wk

∣∣∣∣≥ 1
δ ·M ·

√√√√ N∑
n=1

rnk(1− rnk)w2
n

≤ δ2.

However, the expected size of the hard clusters increases by a factor M (cf. Corollary 2.26
and (3.7)). Assuming that we want to process the resulting hard clusters instead of the soft
clusters, we have to accept that the computational costs (accordingly) increase by a factor M.
Moreover, even when we repeat the assignment M times, we can not ensure that all points
from X are covered with high probability (if R is no soft clustering). That is, there might
still be a data point that appears in none of the clusters. In other words, the probability
(1− (

1−∑K
k=1 rnk

)M)N that each of the N points from X appears in some cluster might still
be very small.

Part II

Fuzzy K-Means Problems

53

“ Is taxonomy art, or science, or
both? ”

Sydney Anderson1

Chapter 4

Introduction

Dunn (1973) was the first to present a fuzzy K-means objective function, which was later
extended by Bezdek et al. (1984). Today, fuzzy K-means has found numerous practical
applications, for example in image segmentation and biological data analysis, to name just a
few. There has been a lot of work on theoretical analysis, extensions, variants and heuristics
for the fuzzy K-means problem. However, previous to (Blömer et al., 2016), there had been no
algorithm with an approximation guarantee. In this chapter, we introduce the classical fuzzy
K-means problem, discuss its difficulties and flaws, and give an overview of the contribution
of this thesis.

Overview. In Section 4.1, we introduce the fuzzy K-means problem and the fuzzy K-
means algorithm. In Section 4.2, we discuss the difficulty behind the fuzzy K-means problem
in comparison to the well-known and well analysed K-means problem. In Section 4.3 and
Section 4.4, we give an overview of some related work concerning fuzzy K-means and K-
means clustering in general. More specific references will be provided in the subsequent
chapters. Finally, in Section 4.5, we give an overview of our contribution.

4.1 The Fuzzy K-Means Problem

In this section, we formally state the fuzzy K-means problem, describe a heuristic that is
known as the fuzzy K-means algorithm, and discuss its flaws.

4.1.1 Problem Definition

In addition to the number of clusters K ∈N, the fuzzy K-means problem also requires the
user to predefine the so-called fuzzifier m ∈ (1,∞), which determines the softness of the
clustering that is sought for.

Problem 4.1 (fuzzy K-means problem). Given X = ((xn,wn))n∈[N] ⊂ RD ×R+, K ∈ N and
m ∈ (1,∞), the fuzzy K-means problem is to find mean vectors C = (µk)k∈[K] ⊂RD and a soft
clustering P = (pnk)n∈[N],k∈[K] ∈∆N,K−1 minimizing

φ(m)
X (C,P)=

N∑
n=1

K∑
k=1

pm
nkwn

∥∥xn −µk
∥∥2

2 .

The fuzzifier value m determines the softness of an optimal clustering. For m = 1, the
problem would coincide with the classical K-means problem. Usually, practitioners choose
m = 2. We will briefly discuss and illustrate the choice of the fuzzifier value further in

1Source: Some Suggested Concepts for Improving Taxonomic Dialogue. Systematic Zoology, 23(1):58–70,
1974.

55

56 CHAPTER 4. INTRODUCTION

Figure 4.1: A contour plot of the soft assignment probabilities of a point to a cluster (4.1): We
are given three mean vectors that are marked by crosses. We set the fuzzifier to m = 2. For
each point xn ∈R2 in the plane, we evaluate the soft optimal assignment pn1 with respect to
mean µ1 (marked by the red bold cross).

Section 4.3.2. For the time being, note that the problem degenerates if we make the choice
of m ∈ (1,∞) part of the problem, because limm→∞ rm → 0 for all r ∈ [0,1). Hence, m is not
subject to optimization.

4.1.2 Fuzzy K-Means Algorithm

The fuzzy K-means algorithm is an alternating optimization algorithm for the fuzzy K-
means problem. It is given by the first-order optimality conditions of the objective function
(see Bezdek et al. (1987)):

For fixed means (µk)k∈[K], the optimal soft clustering (pnk)n∈[N],k∈[K] satisfies

pnk =
∥∥xn −µk

∥∥− 2
m−1

2∑K
l=1

∥∥xn −µl
∥∥− 2

m−1
2

(4.1)

for all k ∈ [K] and n ∈ [N] where ∀l ∈ [K] : xn 6= µl . If xn coincides with some mean vector,
then xn can be soft-assigned arbitrarily among these mean vectors (i.e., all µl with µl = xn).
Figure 4.1 illustrates an optimal soft clustering.

For a fixed soft clustering (pnk)n∈[N],k∈[K], the optimal means (µk)k∈[K] satisfy

µk =
∑N

n=1 pm
nkwnxn∑N

n=1 pm
nkwn

(4.2)

for all k ∈ [K] with
∑N

n=1 pm
nkwn > 0. For all k ∈ [K] with

∑N
n=1 pm

nkwn = 0, the mean µk may
take an arbitrary form.

The fuzzy K-means algorithm alternates between updating the soft clustering and the
representatives according to these formulas (until some termination criterion is met).

4.1.3 No Guarantees

Hathaway and Bezdek (1988) show that the fuzzy K-means algorithm converges to a
saddle point or a minimum of the objective function. However, it is easy to see that the
algorithm might converge to an arbitrarily poor solution. The following observation have
been published in (Blömer et al., 2015, Observation 1) and mentioned in Blömer et al. (2016).

4.1. THE FUZZY K-MEANS PROBLEM 57

µ1

µ2

x1x2

x3 x4

Figure 4.2: Illustration for the proof of Observation 4.2. Assume the fuzzy K-means algo-
rithm is given means (µ1,µ2). Clearly, the algorithm should compute a soft clustering that
assigns x1 to µ1 to the same degree to which it assigns x4 to µ2.

Observation 4.2. Consider an arbitrary but fixed fuzzifier m ∈ (1,∞) and constant c ∈ [1,∞).
Let a :=

p
c ·2m+2. Let Xa ∈ Dom

(
R2, {1}

)
be the unweighted data set that contains only the

four points

x1 =
(
a
1

)
, x2 =

(
−a
1

)
, x3 =

(
−a
−1

)
, x4 =

(
a
−1

)
⊆R2 ,

and let

Ia := (x1, x4)=
((

a
1

)
,

(
a
−1

))
⊆R2 .

Start the fuzzy K-means algorithm with K = 2, fuzzifier m, the data set Xa, and initial means
Ia. Then, in each round, the algorithm computes a solution (C,P) with φ(m)

X (C,P)≥ c·φOPT
(X ,K ,m).

Proof. The following proof is a corrected version of the proof from (Blömer et al., 2015).
First, we derive an upper bound on φOPT

(Xa,2,m). To this end, consider the means C =
((−a,0)T , (a,0)T). Let Z be the hard clustering of X that assigns x2 and x3 to the first cluster
and x1 and x4 to the second cluster. Then, φ(m)

Xa
(C, Z)= 4. Hence, φOPT

(Xa,2,m) ≤ 4.
Second, consider arbitrary means C = ((s, t)T , (s,−t)T)⊆R2 with s ∈ [−a,a] and t ∈ [−1,1].

Denote the single means by µ1 := (s, t)T and µ2 := (s,−t)T . This setting is illustrated in
Figure 4.2. It is obvious that there are certain symmetries and that the fuzzy K-means
algorithm should compute a soft clustering that assigns x1 to µ1 to the same degree to which
it assigns x4 to µ2. Formally, observe that

∥∥x1 −µ1
∥∥

2 = ∥∥x4 −µ2
∥∥

2,
∥∥x1 −µ2

∥∥
2 = ∥∥x4 −µ1

∥∥
2,∥∥x2 −µ1

∥∥
2 =

∥∥x3 −µ2
∥∥

2, and
∥∥x3 −µ1

∥∥
2 =

∥∥x2 −µ2
∥∥

2. Then, from (4.1), we can conclude that,
given C, the fuzzy K-means algorithm computes a soft clustering (pnk)n,k with p11 = p42,
p21 = p32, p31 = p22, and p41 = p12. Then, given these probabilities, the algorithm computes
new mean vectors C̃ = ((u, p)T , (v, q)T) according to (4.2). From (4.2) and the specific form of
the soft clustering, we can conclude that

u = pm
11a− pm

21a− pm
31a+ pm

41a
pm

11 + pm
21 + pm

31 + pm
41

= pm
42a− pm

32a− pm
22a+ pm

12a
pm

42 + pm
32 + pm

22 + pm
12

= v

and

p = pm
11 + pm

21 − pm
31 − pm

41

pm
11 + pm

21 + pm
31 + pm

41
= pm

42 + pm
32 − pm

22 − pm
12

pm
42 + pm

32 + pm
22 + pm

12
=−q .

That is, C̃ takes the form C̃ = ((u, p)T , (u,−p)T) ⊆ R2 for some u ∈ [−a,a] and p ∈ [−1,1].
Consequently, started with the initial solution Ia, each round of the fuzzy K-means algorithm
results in mean vectors that take the form ((s, t)T , (s,−t)T) ⊆ R2 for some s ∈ [−a,a] and
t ∈ [−1,1].

Next, we lower bound the cost of such means. Consider C = ((s, t)T , (s,−t)T) ⊆ R2 with
s ∈ [−a,a] and t ∈ [−1,1]. There are always at least 2 points in Xa that have Euclidean
distance at least a from both means. Without loss of generality, we can assume that these

58 CHAPTER 4. INTRODUCTION

points are x2 and x3. Denote by (pnk)n,k the optimal probabilities, for the fixed means C. For
all n ∈ [4], we have pn1+ pn2 = 1 and, hence,

∑2
k=1 pm

nk ≥
(1

2
)m. Combining these bounds gives

φ(m)
X (C)=

4∑
n=1

2∑
k=1

pm
nk

∥∥xn − µ̃k
∥∥2

2 ≥
2∑

k=1
pm

2ka2 +
2∑

k=1
pm

3ka2 ≥ a2

2m−1 ≥ c ·φOPT
(Xa,2,m) ,

where in the last inequality we use the fact that φOPT
(Xa,2,m) ≤ 4, which we proved in the

beginning. This yields the claim.

4.2 A Comparison with the K-Means Problem

The fuzzy K-means problem can be seen as a generalization of the K-means problem, which
is well-analysed and for which there are numerous approximation algorithms.

Problem 4.3 (K-means problem). Given a data set X = ((xn,wn))n∈[N] ⊂RD ×R+ and a num-
ber of clusters K ∈N, the K-means problem is to find means C = (µk)k∈[K] ⊂RD minimizing

kmX (C) :=
N∑

n=1
wn min

{∥∥xn −µk
∥∥2

2

∣∣∣ k ∈ [K]
}

.

We denote the cost of an optimal solution by kmOPT
(X ,K).

Observe that the minimum used in the objective function implicitly models a hard
clustering. This means that the K-means problem is a combinatorial problem and, hence,
there exist exact algorithms. Besides that, there are numerous approximation algorithms.
We will an overview of these algorithms and related work in Section 4.4.

4.2.1 Similarities

Despite their obvious differences, there are several similarities between the fuzzy K-means
and the K-means problem.

Distances. The objective functions are similar in the sense that both are sums of squared
Euclidean distances between points and mean vectors, weighted by terms that depend only
on (soft) assignments. This enables us to use a key result regarding the K-means problem,
namely Lemma 2.20 (cf. Inaba et al. (1994)). We study the relation between the objective
functions more closely in Section 6.1.

Locality. In both clustering approaches, a point belongs more to means that are close
than belonging to means that are farther away: Consider some fixed means C = (µk)k∈[K].
A K-means clustering assigns a data point solely to the cluster whose mean is closest. A
fuzzy K-means clustering assigns a data point to each cluster with some (possibly arbitrarily
small but) positive1 probability (4.1). However, it assigns each point xn to closer means µk
more than to means µl far away since

pnk =
∥∥xn −µk

∥∥− 2
m−1

2∑K
o=1

∥∥xn −µo
∥∥− 2

m−1
2

>
∥∥xn −µl

∥∥− 2
m−1

2∑K
o=1

∥∥xn −µo
∥∥− 2

m−1
2

= pnl ⇔ ∥∥xn −µk
∥∥

2 <
∥∥xn −µl

∥∥
2 .

1In the following, we ignore the special case where a point coincide with some mean vector.

4.2. A COMPARISON WITH THE K-MEANS PROBLEM 59

(a) fuzzy K-means (m = 2) (b) K-means

Figure 4.3: Contribution of a point to the cost of a single cluster represented by µ1 (marked
by the red bold cross). Figure 4.3a depicts the fuzzy K-means cost: For each xn ∈ R2, we
evaluate the cost p2

n1

∥∥xn −µ1
∥∥2

2 of xn with respect to mean µ1 , where pn1 is the optimal
assignment for the given means (cf. Figure 4.1 and (4.1)). Figure 4.3b depicts the K-means
cost: For each xn ∈R2, we evaluate

∥∥xn −µ1
∥∥2

2 with respect to mean µ1, if xn is not closer to
any other mean vector.

Special Case. The K-means problem is a limit case of the fuzzy K-means problem with
fuzzifier m = 1 (Huang et al., 2012):

Observation 4.4. Consider X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R+

)
and C = (µk)k∈[K] ⊆RD . Each

hard clustering Z = (znk)n∈[N],k∈[K] that satisfies

∀n ∈ [N] ∀k ∈ [K] : znk = 1 ⇒ k ∈ arg min
{∥∥xn −µl

∥∥
2

∣∣ l ∈ [K]
}

minimizes φ(1)(C, ·) with respect to all soft K-clusterings of X.

That is, optimal mean vectors for the K-means problem are also mean vectors of an
optimal solution to the fuzzy K-means problem with m = 1 and vice versa. In other words,
the fuzzy K-means problem is a generalization of the K-means problem.

4.2.2 Differences

In comparison to a K-means (hard) clustering, a fuzzy K-clustering is utterly soft.

Continuity of Assignments. Consider a fixed data set X and some fixed means C. Let
P be the optimal soft clustering of X , given the fixed means C. Now change the position xn
of a single data point a little bit. From the optimality conditions (4.1) we see that (for the
still fixed means C) each optimal assignment pnk of this data point xn is influenced. This is
different from a K-means clustering. Assume xn is closest to the k-th mean vector. As long
as we do not choose a position that is closer to one of the other means than to the k-th mean,
we can move xn without changing its optimal hard assignment.

Wide-Ranging Assignments. Figure 4.3 illustrates the fact that in a classical fuzzy K-
means clustering each data point is assigned to each cluster. The figure shows three mean
vectors (marked by crosses) in the plane. Consider the mean vector marked by the bold red
cross, say µ1. A hard assignment minimizing the K-means cost assigns only those points
to µ1 which are closer to (or, at last, not farther away from) µ1 than to any of the other
two mean vectors. Hence, all other data points do not contribute to the cost of the cluster
represented by µ1 at all. In contrast, each data point contributes to the fuzzy K-means cost
of this cluster.

60 CHAPTER 4. INTRODUCTION

(a) K-means (b) fuzzy K-means (m = 2)

Figure 4.4: Example data set (points marked by circles) and three mean vectors (marked by
crosses). Figure 4.3b depicts the optimal partition of the data set induced by the K-means
cost of the given means. Figure 4.4b depicts the optimal assignments to µ1 (marked by the
red bold cross): For each xn ∈R2, we evaluate the optimal assignment pn1 (4.1).

An Extreme Example. The discrepancy between fuzzy K-means and K-means clustering
is most striking in the, admittedly, extreme case where a mean vector is far away from
all the given data points. Figure 4.4 illustrates this case. Here, we are given three mean
vectors (marked by crosses) and data points (marked by circles) in the plane. The mean
vector marked by the bold red cross, say µ1, is much farther away from all the data points
than the other mean vectors. A soft assignment (4.1) that minimizes the fuzzy K-means cost
(with fuzzifier m = 2) assigns roughly 8% of the membership mass to µ1. The resulting soft
cluster contributes more than 16% to the overall cost of this solution. In contrast, for the
fixed means, the corresponding optimal K-means clustering assigns none of the points to
the cluster represented by µ1. It does not even matter if we move this mean vector, as long
as we keep it far away from all points. In contrast, moving this cluster mean changes all
optimal fuzzy K-means soft assignments (4.1).

4.2.3 Statistical Assumptions

There is no statistical assumption behind the fuzzy K-means problem. Thus, the fuzzy
K-means problem is inherently different from soft clustering problems based on statistical
models, such as the so-called soft K-means problem (Mackay, 2003). It also means that
the nice statistical concept of consistency is not applicable here (see e.g. (Wald, 1949)). For
instance, Hathaway and Bezdek (1988) report that, unsurprisingly, optimal fuzzy K-means
solutions do not provide consistent estimators for normal mixtures.

In contrast, the K-means problem exhibits similarities to a soft clustering problem
based on statistical models: The K-means problem is related to the maximum likelihood
estimation problem for Gaussian mixture models (e.g. see Kearns et al. (1997)). Lloyd’s K-
means algorithm, which is the analogon of the fuzzy K-means algorithm, can be interpreted
as a limit of the expectation-maximization (EM) algorithm for Gaussian mixture models
(with fixed equal weights and for covariances converging to the zero matrix (see (Lloyd,
1982) and (Bishop, 2006, pp. 443)).

In Section 4.3.3 we give a brief overview of some variants of the fuzzy K-means problem
that are inspired by the estimation of Gaussian mixture models. They do not close the gap
of the missing statistical assumption, though.

4.3. RELATED WORK 61

(a) soft assignment (m = 2) (b) soft assignment (m = 3) (c) soft assignment (m = 5)

(d) cost (m = 2) (e) cost (m = 3) (f) cost (m = 5)

Figure 4.5: Illustration of the impact of the fuzzifier values m ∈ {2,3,5}:
We are given the 3 mean points µ1 = 0, µ2 = 1, and µ3 = 3 in R. For each point xn ∈ [−1,4]
and each k ∈ [3], we evaluate the optimal soft assignments pnk for the given means and the
resulting cost pm

nk

∥∥xn −µk
∥∥2

2 per cluster (4.1). Figure 4.5a through Figure 4.5c depict the
optimal soft assignments, while Figure 4.5d through Figure 4.5f depict the resulting costs
per cluster and the overall cost (gray).

4.3 Related Work

In the following, we give a brief overview of some work related to the fuzzy K-means problem
and algorithm. More information can be found in (Oliveira and Pedrycz, 2007), (Höppner,
1999), and (Yang, 1993), for instance.

4.3.1 The Fuzzy K-Means Algorithm

Bezdek et al. (1984, 1987) prove convergence of the fuzzy K-means algorithm to a local
minimum or a saddle point of the objective function. Among others, Höppner and Klawonn
(2003) and Kim et al. (1988) address the problem of determining and distinguishing whether
the algorithm has reached a local minimum or a saddle point. Furthermore, Hathaway and
Bezdek (1986) show that the algorithm converges locally. That is, started sufficiently close
to a minimizer, the iteration sequence converges to that particular minimizer. Hathaway
and Bezdek (2001) generalize the fuzzy K-means algorithm in the sense that they replace
the use of the Euclidean distance by an Lp (semi-)norm. Hu and Hathaway (2002) compare
the fuzzy K-means algorithm with different general-purpose minimization methods (for
instance, Newton-type methods) and conclude that the fuzzy K-means algorithm is the best
and simplest method.

4.3.2 Fuzzifier

Which m Should We Choose? Recall that in our formulation of the fuzzy K-means
problem, the fuzzifier m is some fixed constant. Figure 4.5 illustrates the significant effect of

62 CHAPTER 4. INTRODUCTION

(a) soft assignment (β= 0.25) (b) soft assignment (β= 0.5) (c) soft assignment (β= 0.75)

(d) cost (β= 0.25) (e) cost (β= 0.5) (f) cost (β= 0.75)

Figure 4.6: Illustration of the impact of the fuzzifier function sβ with β ∈ {0.25,0.5,0.75}:
We are given the 3 mean points µ1 = 0, µ2 = 1, and µ3 = 3 in R. For each point xn ∈ [−1,4]
and each k ∈ [3], we evaluate the optimal soft assignments pnk for the given means and
the resulting cost sβ(pnk)

∥∥xn −µk
∥∥2

2 per cluster (see Section 5.3.3). Figure 4.6a through
Figure 4.6c depict the optimal soft assignments, while Figure 4.5d through Figure 4.5f depict
the resulting costs per cluster and the overall cost (gray).

changing the value of the fuzzifier. The question remains which fuzzifier m ∈ (1,∞) should
be chosen in practice. Often, practitioners just fix m = 2. However, there has been a lot of
work on this topic. As a starting point for more information, we refer to Huang et al. (2012).

Relax? There is a well-known variant of the fuzzy K-means problem that imposes a
relaxation on our notion of soft assignments. The restriction that the soft assignments form
a probability distribution (i.e., sum up to 1) is removed. Instead, a regularization term is
added to the objective function which ensures that setting all assignments to zero is not the
best solution. This approach is known as possibilistic clustering. A critical discussion of this
approach can be found in (Pal et al., 2005; Timm et al., 2004), for instance.

A Different Kind of Fuzziness? Klawonn and Höppner (2003) and Klawonn (2004)
consider several alternatives to the exponentiation pm

nk of the pnk. They propose to use

sβ(p) := 1−β
1+β p2 + 2β

1+β p , (4.3)

with some fixed β ∈ [0,1]. That is, they replace the term pm
nk in the objective function by the

term sβ(pnk). Supported by some experiments, they claim that their fuzzifier function can
help to overcome the undesired effect that all data tend to influence all clusters (Klawonn
and Höppner, 2003, p. 10). Figure 4.6 illustrates this claim. A further alternative proposed
by Klawonn (2004) is to use the exponential fuzzifier function

eγ(p) := eγ·p −1
eγ−1

, (4.4)

with some fixed γ ∈ [0,∞). We discuss both alternative fuzzifier functions in Section 5.2.

4.4. MORE RELATED WORK (THE K-MEANS PROBLEM) 63

4.3.3 Extensions

There are numerous extensions and variants of the fuzzy K-means problem and the fuzzy
K-means algorithm (Höppner, 1999; Yang, 1993). Let us briefly describe two well-known
extensions.

Gustafson and Kessel (1978) extend the fuzzy K-means problem such that it takes
into account clusters of different geometric shapes. To this end, they replace the squared
Euclidean distance by an Mahalanobis distance. That is, the representative of each cluster
is extended by a covariance matrix Σk ∈RD×D and the objective function becomes

ψ(m)
X

((
(µk,Σk)

)
k∈[K] , (pnk)n,k

)
=

N∑
n=1

K∑
k=1

wn pm
nk(xn −µk)TΣ−1

k (xn −µk) .

Since this objective function is linear in the precision matrix Σ−1
k , one needs to add additional

constraints. To this end, they fix the determinant of each covariance: Given parameters
λ1, . . . ,λK ∈ R+, which have to be chosen in advance, they add the constraints |Σk| = λk,
k ∈ [K]. This means that the covariance matrix is allowed to be non-spherical (i.e., scale
differently along each direction). Yet, it cannot scale arbitrarily as its volume is fixed.

Gath and Geva (1989) extend the Gustafson-Kessel algorithm further by using notions
from maximum likelihood estimation for Gaussian mixture model: They enhance the rep-
resentation of a cluster by a covariance and a weight parameter and use an exponential
distance measure. That is, the representative of each cluster consists of a weight wk ∈ [0,1],
a mean µk ∈RD , and a covariance Σk ∈RD×D and the objective function becomes

ξ(m)
X

((
(wk,µk,Σk)

)
k∈[K] , (pnk)n,k

)
=

N∑
n=1

K∑
k=1

pm
nk

√|Σk|
wk

exp
(

1
2

(xn −µk)TΣ−1
k (xn −µk)

)
.

Note that though this cost function resembles the likelihood of a Gaussian mixture, it is not
the likelihood of a mixture model. For more information, we refer to Höppner (1999).

4.4 More Related Work (The K-Means Problem)

For the K-means problem, there are numerous algorithms with performance guarantees.

4.4.1 The Bad News First

To get a coarse idea of the runtimes and the approximation guarantees of these algorithms,
take note of the following facts: The K-means problem is NP-hard for fixed K (even for K = 2)
(Dasgupta, 2008), and it is also NP-hard for fixed D (even for D = 2) (Mahajan et al., 2012).
Recently, Lee et al. (2017) showed that it is even NP-hard to approximate K-means within
a factor 1.0013. In other words, the problem is APX hard and there is no polynomial-time
approximation scheme (PTAS), given that K and D are not considered to be constants. In
case K is considered a constant, there is a PTAS for the K-means problem (e.g. Feldman
et al. (2007)). In case D is considered a constant, to the best of our knowledge it is not known
whether there is a PTAS.

4.4.2 (Few Practical) Approximation Algorithms

An overview of approximation algorithms for the K-means problem can be found in (Schmidt,
2014, p. 15), for instance. In the following, we just give a brief overview of some algorithms
that are important in the remainder of this thesis. We state all runtimes with respect to
unweighted data sets X ∈ Dom

(
RD , {1}

)
: First of all, Hasegawa et al. (1993) showed that

there is a very simple 2-approximation algorithm with runtime O(|X |K+1 ·KD). Shortly after,

64 CHAPTER 4. INTRODUCTION

Inaba et al. (1994) showed that there is an exact algorithm with running time O(|X |DK+1).
The algorithm of Matoušek (2000) yields a (1+ε)-approximation in time O(|X | log(|X |)Kε−2D)
(their algorithm was later improved by Har-Peled and Mazumdar (2004)). Moreover, there is
the famous K-means++ algorithm by Arthur and Vassilvitskii (2007). It is a randomized
algorithm that computes, in expectation, an O(log(K))-approximation in time O(|X |KD).
Aggarwal et al. (2009) show that the L-means cost of L = d16(K +p

K)e mean vectors that
have been generated according to the K-means++ algorithm is, with constant probability, at
most a constant factor 20 worse than the cost of an optimal solution to the K-means problem,
which contains K mean vectors. Moreover, based on the same idea, they derive an algorithm
that, with constant probability, computes a constant-factor approximation for the K-means
problem and needs time O(|X |KD+poly(log(|X | ,K))). Recently, Wei (2016) improved this
result and showed that it suffice to generate d1.2 ·Ke means to obtain a factor of 10, with the
same probability of success. Bachem et al. (2016) proposed a faster variant of the K-means++
algorithm that can be used for massive data sets and that still produces good clusterings in
practise.

4.4.3 Clustering is Difficult – Except when It Is Not

When we apply a certain clustering algorithm, then we implicitly make assumptions: We
assume that the given data is "clusterable" and we assume that the optimal clustering,
which the clustering algorithm searches for, is meaningful to us. For an introduction to this
topic, we refer to Ackerman and Ben-David (2009) and Ben-David and Reyzin (2014). Yet,
there is no formalization that is commonly agreed upon.

For instance, Awasthi et al. (2010b) formalize assumptions on optimal solutions. Under
their assumptions, the K-means problem simplifies significantly: They state that there is a
polynomial-time approximation scheme (PTAS) for instances where a subset of K −1 means
of an optimal K-means solution is at least a factor (1+α) costlier than a (complete) optimal
K-means solution, for some constant α. This approach has some similarity to the so-called
elbow method (Tibshirani et al., 2001), which is used to decide whether some number L is
the "right" number of clusters. Yet, Ben-David (2015) criticize that these assumptions are
much too strict. The authors themselves discuss their assumptions in (Awasthi et al., 2010a)
in comparison to the assumptions made by Ostrovsky et al. (2006), for example.

Another example is the work of Tang and Monteleoni (2016). They present a new
initialization algorithm for Lloyd’s algorithm under a clusterability assumption. More
precisely, their assumption is that, in the sought clustering, the mean vectors of two different
clusters have a certain minimum distance, which depends on the K-means cost of the sought
clustering and the number of points in each cluster.

4.4.4 Constraints and Side Information

The notion of clusterability, which we discussed in the last section, can be seen as a way
to incorporate additional knowledge. Two approaches that incorporate knowledge in a
more direct manner are known as semi-supervised clustering and constrained clustering.
An example for semi-supervised clustering is the work of Wagstaff et al. (2001). They
incorporate background knowledge on the input data set which takes the form of must-links
and cannot-links that determine if two data points must or cannot be in the same cluster. An
example for constraint clustering is the work of Ding and Xu (2015). They consider various
versions of the K-means problem where the space of solutions is constrained. For instance,
they consider the r-gather clustering problem where each cluster must contain at least r
points.

4.5. OVERVIEW 65

4.5 Overview

In the following, we abstract from the classical fuzzy K-means problem. That is, we consider
a generalized version where we replace the exponentiation pm

nk of the soft assignment
probabilities pnk by the evaluation r(pnk) of a fixed fuzzifier function r. We call the resulting
problem the r-fuzzy K-means problem. The benefit of this approach is threefold: First,
the abstraction helps to gain a better insight into the properties of this problem. Second,
it improves the reusability of our results. Third, it helps to check whether our results
generalize to the fuzzifier function proposed by Klawonn and Höppner (2003).

The following chapters are organized as follows.

Chapter 5 introduces the r-fuzzy K-means problem formally and discusses its basic prop-
erties. We discuss properties that a reasonable fuzzifier function r should have and
identify additional useful properties.

Chapter 6 deals with two basic techniques that will be very helpful throughout the follow-
ing chapters: Section 6.1 relates the r-fuzzy K-means cost function to the classical
K-means cost function. Section 6.2 introduces the notion of negligible fuzzy clusters.
Simply speaking, we show that fuzzy clusters with too small a weight can be ignored if
we allow the total cost to worsen by a small factor.

Chapter 7 gives an overview of some simple algorithms for the r-fuzzy K-means problem.
We show that there are large-factor approximation algorithms and that there is a
simple but extremely slow (1+ε)-approximation algorithm.

Chapter 8 shows how our results from Chapter 3 can be applied. We combine our soft-to-
hard-cluster technique with the so-called superset sampling technique, which is well
known from the K-means clustering problem.

Chapter 9 comprises some very technical results that are used in the following two chapters.
We analyse a technique that has been introduced by Chen (2009) in a general way.
In simple terms, this construction can be used to construct a small discrete search
space, which we will do in Chapter 10, or to discretize the input points, which is a very
helpful trick that we will use (in the proofs presented) in Chapter 12.

Chapter 10 proposes a (1+ε)-approximation algorithm for the r-fuzzy K-means problem.
It uses the technique from Chapter 9 to discretize the search space in such a way that
the resulting discrete search space is guaranteed to contain a (1+ε)-approximation.

Chapter 11 shows that the well-known Johnson-Lindenstrauss lemma can be applied to
the r-fuzzy K-means problem. We show that it can be used to improve our results from
Chapter 10. Moreover, we discuss further dimension reduction techniques.

Chapter 12 presents a coreset construction for the r-fuzzy K-means problem. A coreset is
a small representation of a data set that preserves a certain property of the original
data set. Again, we make use of the construction introduced by Chen (2009), which we
analysed in Chapter 9.

Chapter 13 contains a summary of our techniques and main results. Furthermore, discuss
our results and suggest directions for further work.

66 CHAPTER 4. INTRODUCTION

“ The purpose of computation is
insight, not numbers. ”

Richard Hamming1

Chapter 5

Basics

In this chapter, we introduce a generalized version of the fuzzy K-means problem where we
replace the exponentiation of a soft assignment probability by the evaluation of a fuzzifier
function r. We call this problem the r-fuzzy K-means problem. Our intention behind
this abstraction is to gain a better insight into the properties of the problem, improve the
reusability of our results, and to generalize our results.

Overview. In Section 5.1, we formalize the problem. In Section 5.2, we focus on the
fuzzifier function r. We discuss necessary as well as additional useful properties. Moreover,
we analyse the form that optimal soft clusterings take. Finally, in Section 5.3, we get back to
the different fuzzifier functions that we already described in Section 4.1 and Section 4.3.2
and analyse their properties.

Publications. In this chapter, we present unpublished ongoing work.

5.1 Problem Definition

The r-fuzzy K-means problem corresponds to the classical fuzzy K-means problem where we
replace the exponentiation of the soft assignments pnk by the evaluation r(pnk) of a fuzzifier
function r.

5.1.1 Cost and Clusters

In the r-fuzzy K-means problem we want to minimize the following objective function:

Definition 5.1 (r-fuzzy K-means cost). For each K ∈N, X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R≥0

)
,

and function r :R≥0 →R≥0, we let

φ(r)
X

(
(µk)k∈[K],P

)
:=

N∑
n=1

K∑
k=1

r(pnk)wn
∥∥xn −µk

∥∥2
2

be the r-fuzzy K-means cost of X with respect to the mean vectors (µk)k∈[K] ⊂RD and the soft
K-clustering P = (pnk)n∈[N],k∈[K].

A soft K-clustering (pnk)n,k ∈ ∆N,K−1 assigns the n-th data point to the k-th cluster
with probability pnk (Notation 2.7). We call the values r(pnk) fuzzified soft assignments.
Analogously, to the soft clusters A(X ,P)

k = ((xn, pnk ·wn))n∈[N] of X given by P (Notation 2.7),
we define r-fuzzy clusters as follows.

1Source: Hamming, Richard (1962). Numerical Methods for Scientists and Engineers. New York: McGraw-
Hill. ISBN 0-486-65241-6.

67

68 CHAPTER 5. BASICS

Definition 5.2 (r-fuzzy cluster). For all r :R≥0 →R≥0 and P = (pnk)n∈[N],k∈[K] ∈∆N,K−1, let

r(P) := (r(pnk))n∈[N],k∈[K] .

For all X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R≥0

)
and k ∈ [K], we call

A(X ,r(P))
k = ((xn, r(pnk) ·wn)n∈[N] .

the k-th r-fuzzy cluster of X given by P.

With this notation and our definitions from Section 2.3, we can identify

φ(r)
X ((µk)k∈[K],P)=

K∑
k=1

d
(
A(X ,r(P))

k ,µk

)
and

N∑
n=1

r(pnk)wn =w
(
A(X ,r(P))

k

)
. (5.1)

5.1.2 Induced Solutions

In this section, we consider an alternating optimization of the r-fuzzy K-means cost function.

Notation 5.3 (induced solutions). Let X ∈Dom
(
RD ,R≥0

)
, K ∈N, and r :R≥0 →R≥0.

We call C∗ ⊆RD r-fuzzy means of X induced by P ∈∆|X |,K−1 if

C∗ ∈ arg min
{
φ(r)

X (C,P)
∣∣∣ C = (µk)k∈[K] ⊆RD

}
.

We call P∗ ∈∆|X |,K−1 an r-fuzzy K-clustering of X induced by C ⊆RD , |C| = K, if

P∗ ∈ arg min
{
φ(r)

X (C,P)
∣∣∣ P ∈∆|X |,K−1

}
.

If the respective induced solutions exist, we use the short notation

φ(r)
X (P) :=min

{
φ(r)

X
(
C∗,P

) ∣∣∣ C∗ = (µ̃k)k∈[K] ⊆RD
}

and

φ(r)
X (C) :=min

{
φ(r)

X
(
C,P∗) ∣∣∣ P∗ ∈∆|X |,K−1

}
.

For a fixed soft clustering, the induced r-fuzzy means can be computed easily:

Lemma 5.4 (induced r-fuzzy means). Let X ∈Dom
(
RD ,R≥0

)
, r :R≥0 →R≥0, and P ∈∆|X |,K−1.

Then, r-fuzzy means (µk)k∈[K] of X induced by P exist. In particular, for all k ∈ [K] with
w(A(X ,r(P))

k)> 0, the mean µk satisfies

µk =m
(
A(X ,r(P))

k

)
. (5.2)

Proof. The claim directly follows from (5.1) and Lemma 2.20.

Given some means and an arbitrary black-box function r, it is obviously not clear how
an induced r-fuzzy clustering can be computed. In the following, we focus on continuous
functions r.

Lemma 5.5 (induced r-fuzzy clustering). Let X = ((xn,wn))n∈[N] ∈ Dom
(
RD ,R≥0

)
and let

r :R≥0 →R≥0 be a function. Let C ⊆RD be a vector of K means.

1. If r is continuous, C induces an r-fuzzy K-clustering.

2. The set of r-fuzzy clusterings that are induced by C is not necessarily singleton.

5.2. FUZZIFIER FUNCTIONS 69

Proof. Observe that the simplex ∆K−1 ⊆ RK is closed and bounded. Hence, the Cartesian
product (∆K−1)N ⊆ (RK)N is closed and bounded. Since r is continuous and bounded, the
objective function fC (∆K−1)N →R with fC(P)=φ(r)

X (C,P) (where we interpret (∆K−1)N) as
∆N,K−1 ⊆RN×K on the righthand side) is continuous and bounded. From the extreme value
theorem (Stewart, 2009, p. 964), we know that fC attains a minimum on (∆K−1)N . This
yields Item 1.

Consider a set of mean vectors containing two means µk and µl , k 6= l, that coincide with
one of the data points xn ∈ X . Then we have r(pnk)wn

∥∥xn −µk
∥∥2

2 + r(pnl)wn
∥∥xn −µl

∥∥2
2 = 0

for all pnk, pnl ∈ [0,1]. This yields Item 2.

Even though we know that induced r-fuzzy clusterings exist, we do not know how to
compute them yet. We will we deal with this question in Section 5.2.6 and Section 5.3.

5.1.3 Approximation

Lemma 5.4 and Lemma 5.5 imply the existence of an optimal solution.

Definition 5.6 (optimal). For all X ∈ Dom
(
RD ,R≥0

)
, K ∈N, and continuous r : R≥0 → R≥0,

we denote the cost of an optimal solution to the r-fuzzy K-means problem with respect to X by

φOPT
(X ,K ,r) :=min

{
φ(r)

X (C,P)
∣∣∣ C ⊆RD with |C| = K , P ∈∆|X |,K−1

}
.

In the following, we aim to find an approximate solution.

Problem 5.7 ((1+ε)-approximation). Given X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R+

)
, a continuous

function r : R≥0 → R≥0, K ∈ N, and ε ∈ (0,1], the r-fuzzy K-means (1+ ε)-approximation
problem is to find mean K vectors C ⊂RD and a soft K-clustering P ∈∆N,K−1 such that

φ(r)
X (C,P)≤ (1+ε) ·φOPT

(X ,K ,r) .

Observe that this problem has the following reasonable properties: First, the approxima-
tion factor is shift invariant: If we shift the data points by adding the same constant vector
c ∈RD to each point xn, then the value of the objective function does not change. Second, the
approximation factor is scale invariant: If we scale all points xn and means µk by a constant
factor c > 0, then the value of the objective function changes by the very same factor c. The
same happens if we scale the weights wn. In Part III, we will deal with an objective function
that does not fulfill the latter property.

5.2 Fuzzifier Functions

In this section, we focus on the function r. First, we propose fundamental constraints and
some additional useful constraints. After that, we aim to specify induced r-fuzzy clusterings
further. In the next Section 5.3, we present some concrete fuzzifier functions r.

5.2.1 Definition

We claim that the function r should satisfy the following properties.

Definition 5.8 (fuzzifier). A function r :R≥0 →R≥0 is a fuzzifier function if

1. r is continuous,

2. r(0)= 0 and r(1)= 1, and

3. r is strictly increasing.

70 CHAPTER 5. BASICS

This definition describes some of the very basic properties of the function r(p) = pm,
m ∈N, which is used in the classical fuzzy K-means problem. In the next section, we show
that these basic properties ensure that a fuzzy K-means clustering has some similarity to a
K-means clustering.

5.2.2 Basic Properties

In this section, we show that an r-fuzzy clustering with a fuzzifier function r has still some
similarity to a K-means clustering. We already discussed some of the following properties
with respect to the classical fuzzy K-means problem in Section 4.2.1.

Locality. We demand that a fuzzifier function is strictly increasing. This helps to preserve
a locality property, which we already described in Section 4.2.1:

Lemma 5.9 (locality). Let r : R≥0 → R≥0 be a fuzzifier function, C = (µk)k∈[K] ⊆ RD , and
(xn,wn) ∈RD ×R+. Let (pnk)k∈[K] ∈∆K−1 be an r-fuzzy clustering of (xn,wn) induced by C.

Then, for all l,k ∈ [K], we have∥∥xn −µk
∥∥

2 <
∥∥xn −µl

∥∥
2 ⇒ pnk ≥ pnl .

Proof. Consider some µl ,µk ∈ C with
∥∥xn −µk

∥∥
2 <

∥∥xn −µl
∥∥

2. By definition, (pnk)k∈[K] min-
imizes the cost

∑K
k=1 r(pnk)wn

∥∥xn −µk
∥∥2

2. Besides that, we know that wn > 0. Hence,
r(pnk)

∥∥xn −µk
∥∥2

2 + r(pnl)
∥∥xn −µl

∥∥2
2 ≤ r(pnl)

∥∥xn −µk
∥∥2

2 + r(pnk)
∥∥xn −µl

∥∥2
2. This means that

r(pnk)
(∥∥xn −µk

∥∥2
2 −

∥∥xn −µl
∥∥2

2

)
≤ r(pnl)

(∥∥xn −µk
∥∥2

2 −
∥∥xn −µl

∥∥2
2

)
. By assumption, we have

(
∥∥xn −µk

∥∥2
2 −

∥∥xn −µl
∥∥2

2) < 0. Therefore, we know that r(pnk) ≥ r(pnl). Since r is strictly
increasing, we can conclude that pnk ≥ pnl . This yields the claim.

Hence, in an r-fuzzy K-means clustering, points are assigned more to those means that
are closer than to those means that are farther away.

Cost of a Hard Clustering. By demanding that r(0) = 0 and r(1) = 1, we ensure that
hard assignments are preserved exactly by the fuzzifier function.

Observation 5.10 (cost of a hard clustering). Let X ∈Dom
(
RD ,R+

)
and let r :R≥0 →R≥0 be

an arbitrary but fixed fuzzifier function. Consider some means C ⊆RD . Let Z be the K-means
hard clustering of X induced by C (cf. Observation 4.4). Then, φ(r)

X (C, Z)= kmX (C).

Monotonicity of Solutions. Simply speaking, the property that r(0)= 0 implies that we
do not increase the cost when we add some more mean vectors to our solution.

Lemma 5.11 (monotonicity). Let X ∈Dom
(
RD ,R+

)
, let r :R≥0 →R≥0 be a fuzzifier function,

and C ⊆RD a vector of mean vectors. Then,

∀C̃ ⊆ C : φ(r)
X (C̃)≥φ(r)

X (C) .

Proof. Let P̃ = (p̃nk)n,k be the r-fuzzy
∣∣C̃∣∣-clustering of X induced by C̃. Let P be the |C|-

clustering of X that assigns (xn,wn) to µk ∈ C\C̃ with probability 0 and that assigns (xn,wn)
to µk ∈ C̃ with probability p̃nk. Since r is a fuzzifier function, we have r(0) = 0. Hence, by
construction, φ(r)

X (C̃)=φ(r)
X (C̃, P̃)=φ(r)

X (C,P)≥φ(r)
X (C). This yields the claim.

Again, observe that the K-means cost function exhibits the same property. That is, by
adding a mean to a set of means we do not increase the (fuzzy) K-means cost of an induced
solution.

5.2. FUZZIFIER FUNCTIONS 71

No Probabilities. Be aware that Definition 5.8 does not ensure that a fuzzified soft
assignment r(pnk) can still be thought of as a probability. There might be some p ∈ [0,1]
with r(p)> p. Hence, there might be a soft assignment (pk)k∈[K] ∈∆K−1 with

∑K
k=1 r(pk)> 1 .

5.2.3 Bounded Contribution

In a soft clustering, each point belongs to each cluster with some probability pnk. In the
r-fuzzy K-means cost function, these probabilities pnk are fed to the fuzzifier function r. The
resulting fuzzified probabilities r(pnk) might be arbitrarily small. Even the sum

∑K
k=1 r(pnk)

can be arbitrarily close to zero. This means that the respective data point (xn,wn) might
contribute an arbitrarily small share to the overall r-fuzzy K-means cost. In the remainder
of this thesis, we sometimes require that each data point contributes a certain minimum
share to the overall cost.

Definition 5.12. For each fuzzifier function r :R≥0 →R≥0 and K ∈N, we let

c∗
r (K) :=min

{
K∑

k=1
r(pk)

∣∣∣∣∣ (pk)k∈[K] ∈∆K−1

}

be the minimum contribution in an r-fuzzy K-clustering.

Note that this minimum always exists: For each fuzzifier function r, the function
g : ∆K−1 →R≥0 with g((pk)k∈[K])=

∑K
k=1 r(pk) is continuous and lower bounded by 0. Since

the simplex ∆K−1 ⊆RK is closed and bounded, c∗
r (K) exists (Stewart, 2009, p. 964).

We do not need to know this minimum contribution exactly, but we do need to know a
lower bound on this value. This is why we consider the following property:

Definition 5.13. Let cr :N→ (0,1]. A fuzzifier function r is cr-contribution-bounded if

∀K ∈N : 0< cr(K)≤ c∗
r (K) and cr(K)≥ cr(K +1) .

We stress the fact that whenever we mention cr-contribution-bounded functions, we
implicitly assume that cr is a function cr :N→ (0,1].

To check that this definition is reasonable, we show that every fuzzifier function r is
c∗

r -contribution-bounded.

Lemma 5.14. Let r :R≥0 →R≥0 be a fuzzifier function. Then,

∀K ∈N : 0< c∗
r (K)≤ 1 and c∗

r (K)≥ c∗
r (K +1) .

Proof. First, we prove that c∗
r (K) ∈ [0,1]. Consider an arbitrary but fixed (pk)k∈[K] ∈∆K−1.

Observe that, since for all (pk)k∈[K] ∈∆K−1 we have
∑K

k=1 pk = 1, there exists a k ∈ [K] with
pk > 0. Since a fuzzifier function is strictly increasing, we have r(pk) > 0. Besides that,
for all l 6= k, we have r(pl) ≥ 0. Hence, c∗

r (K) > 0. Next, consider some p ∈ ∆K−1 ∩ [0,1]K .
Observe that

∑K
k=1 r(pk)= 1 since a fuzzifier function satisfies r(0)= 0 and r(1)= 1. Hence,

c∗
r (K)≤ 1. This yields the first part of the claim.

To prove the second part of the claim, consider some (pk)k∈[K] ∈∆K−1. Let (p̃k)k∈[K+1] ∈
∆K with p̃k = pk for all k ∈ [K] and pK+1 = 0. Since r is a fuzzifier function, we have r(pK+1)=
r(0) = 0. Therefore,

∑K
k=1 r(pk) = ∑K+1

k=1 r(p̃k). Hence,
{∑K

k=1 r(pk)
∣∣ (pk)k∈[K−1] ∈∆K−1

} ⊆{∑K+1
k=1 r(pk)

∣∣ (pk)k∈[K] ∈∆K
}

This yields the claim.

We do not need to know the function c∗
r exactly. As said before, we will need to be able to

compute a lower bound cr(K) in advance. This goes without saying that cr(K) should be as
large as possible.

72 CHAPTER 5. BASICS

5.2.4 Bounded Increase

Assume that we know that two soft assignments pnk and pnl are very similar. More precisely,
assume that there is a small ε> 0 such that pnl ≤ (1+ε)pnk. The cost function φ(r)

X depends
on the fuzzified probabilities r(pnk). So we can make use of the fact that pnl ≤ (1+ ε)pnk
only if we can deduce something about the relation between the fuzzified probabilities r(pnl)
and r(pnk). This leads us to the following property:

Definition 5.15. Let ir ∈ [1,∞). A function r :R≥0 →R≥0 is ir-increase-bounded if

∀p ∈ [0,1] ∀ε ∈ [0,1] : r
((

1+ ε

ir

)
· p

)
≤ (1+ε) · r(p) .

Hence, if r is an ir-increase-bounded fuzzifier function, then for all p, q ∈ [0,1] with
q ≤ (1+ ε/ir)p we have r(q) ≤ (1+ ε)r(p). We stress the fact that whenever we talk about
ir-increase-bounded functions, we implicitly assume that ir is some value with ir ∈ [1,∞).

Let us briefly discuss this property in the context of continuity and derivatives. First,
consider a continuous function r. By definition, for each p ∈ [0,1], there exists some δp > 0
such that for all p′ ∈ [1±δp] we have r(p′) ∈ [1±ε] · r(p). In particular, r(p+δp)≤ (1+ε) · r(p).
Definition 5.15 demands that δp := ε

ir
p fulfills the latter inequality. Second, assume that

r is differentiable and that its first derivative r′ is strictly increasing. Then we know that
r
((

1+ ε
ir

)
· p

)
≤ r(p)+ε · p

ir
· r′

((
1+ ε

ir

)
· p

)
. So if r′

((
1+ ε

ir

)
· p

)
< ir

p r(p), then we know that r is
increase-bounded. To sum up, if r does not increase too fast, then it is increase-bounded.

5.2.5 Reducing Probabilities

Simply speaking, the following property ensures that fuzzified probabilities can still be
thought of as probabilities.

Definition 5.16. A function r :R≥0 →R≥0 is [0,1]-reducing if

∀p ∈ [0,1] : r(p)≤ p .

Observe that, if r :R≥0 →R≥0 is a [0,1]-reducing function and P = (pnk)n,k ∈∆N,K−1, then
r(P)= (r(pnk))n,k is a probabilistic membership matrix (Definition 3.1). This means that we
can apply our soft-to-hard clustering technique from Theorem 3.21 to r-fuzzy clusters if r is
[0,1]-reducing. We will pursue this idea in Chapter 8.

5.2.6 Induced r-Fuzzy Clusterings

Unfortunately, it is not enough to know that an induced r-fuzzy clustering exists. We have
to be able to compute an induced r-fuzzy clustering in reasonable time. In this section, we
aim to specify the form that an induced r-fuzzy clustering takes, to the extent possible, for
certain classes of fuzzifier functions.

Independencies

First and foremost, take note of the following useful observations.

Lemma 5.17 (|X | independent observations). Let X = ((xn,wn))n∈[N] ∈ Dom
(
RD ,R≥0

)
, C =

(µk)k∈[K] ⊆RD , let r :R≥0 →R≥0 be a fuzzifier function, and let P = (pnk)n∈[N],k∈[K] ∈∆N,K−1.
P is an r-fuzzy clustering of X induced by C if and only if, for each n ∈ [N] with wn > 0,

(pnk)k∈[K] is a vector that minimizes

K∑
k=1

r(pnk)
∥∥xn −µk

∥∥2
2

subject to (pnk)k∈[K] ∈∆K−1.

5.2. FUZZIFIER FUNCTIONS 73

Proof. Consider an arbitrary but fixed r-fuzzy clustering P = (pnk)n,k of X induced by C.

That is, (pnk)n,k minimizes φ(r)
X (C, (pnk)n,k) = ∑N

n=1 wn ·
(∑K

k=1 r(pnk)
∥∥xn −µk

∥∥2
2

)
subject to:

(pnk)k∈[K] ∈∆K−1 for each n ∈ [N]. Hence, for each n ∈ [N] with wn > 0, (pnk)k∈[K] is a vector
that minimizes

∑K
k=1 r(pnk)

∥∥xn −µk
∥∥2

2 subject to (pnk)k∈[K] ∈ ∆K−1. For each n ∈ [N] with

wn = 0, we have wn ·
(∑K

k=1 r(p̃nk)
∥∥xn −µk

∥∥2
2

)
= 0 for all (p̃nk)k∈[K] ∈∆K−1.

Corollary 5.18 (independence of positive weights). Let C = (µk)k∈[K] ⊆RD , let r :R≥0 →R≥0
be a fuzzifier function, x ∈RD and v,w ∈R+ with v 6= w. An r-fuzzy clustering of (x,v) induced
by C is also an r-fuzzy clustering of a data point (x,w) induced by C.

A Vital Assumption

The algorithms presented in the following sections heavily rely on the assumption that,
given K means, an induced r-fuzzy K-clustering can be computed.

Assumption 5.19 (computation of an induced r-fuzzy clustering). There is an algorithm
that, given a point x ∈RD , means C ⊆RD and a fuzzifier function r :R≥0 →R≥0, computes an
r-fuzzy K-clustering of a data point (x,w) with weight w ∈R≥0 induced by C in time

D · tr(|C|) ,

for some tr(|C|) ∈Ω(|C|) that only depends on |C| and r.

In the following, we will not explicitly point out whether an algorithm depends on this
assumption. However, if it does, then the factor tr(K) will appear in the corresponding
runtime bound.

Probability Zero

In contrast to a classical fuzzy K-means clustering, an induced r-fuzzy clustering might
possibly assign a data point to some of the clusters with probability zero. For example, the
fuzzifier function sβ, which we presented in Section 4.3.2, exhibits this property. Nonetheless,
assignments with probability zero behave as to be expected:

Corollary 5.20 (monotonicity). Let r :R≥0 →R≥0 be a fuzzifier function, C = (µk)k∈[K] ⊆RD ,
and a data point (xn,wn) ∈RD ×R+. Let (pnk)k∈[K] ∈∆K−1 be an r-fuzzy clustering of (xn,wn)
induced by C. If pnk = 0 for some k ∈ [K], then for all l ∈ [K] with

∥∥xn −µl
∥∥

2 >
∥∥xn −µk

∥∥
2, we

have pnl = 0.

Proof. Apply Lemma 5.9.

First-Order Optimality Conditions

We can describe an induced r-fuzzy clustering via the first-order optimality condition of the
cost function. This approach has also been pursued by Klawonn and Höppner (2003) and
Klawonn (2004). In contrast to them, we formalize all results, consider arbitrary fuzzifier
functions, and provide complete proofs.

As explained in the previous section, it is possible that an r-fuzzy clustering P = (pnk)n,k
induced by C assigns a data point to some of the clusters with probability zero. In other
words, there might be a soft assignment (pnk)k∈[K] of some point xn that does not lie in the
interior (but on the border) of the simplex ∆K−1. In this case, P does not necessarily satisfy
the first-order optimality conditions of the function φ(r)

X (C, ·). For this reason, the following
lemma takes a slightly complicated form.

74 CHAPTER 5. BASICS

For each data point (xn,wn), consider a set In ⊂ [K] that determines which assignments
are not fixed to probability zero. That is, for all k ∉ In, we set pnk := 0. Then we use the
first-order optimality conditions of the cost function to determine the values pnk ∈R with
k ∈ I and

∑
k∈I pnk = 1 that minimize the cost function. If In indicates exactly the set of

non-zero assignments of an induced r-fuzzy clustering of (xn,wn), then these values pnk are
indeed the probabilities of an induced r-fuzzy clustering.

Before we explain the relevancy of this approach, take a look at the formal result:

Lemma 5.21. Let r : R≥0 → R≥0 be a differentiable function whose first derivative r′ is
invertible over the interval [0,1] and satisfies r′((0,1])> 0. Let x ∈RD and C = (µk)k∈[K] ⊆RD

where x 6=µk for all k ∈ [K].
Fix some set I ⊂ [K]. Consider the function gI given by

gI : R|I| →R

(p̃k)k∈I 7→
∑
k∈I

r(p̃k)
∥∥x−µk

∥∥2
2 −λ

(∑
k∈I

p̃k −1

)
,

where the variable λ denotes a Lagrange multiplier.
The function has a unique extremum (pk)k∈I ∈R|I| with the following properties:

1. For all k ∈ I, pk is the solution to

r′(pk)
∥∥x−µk

∥∥2
2 −λ= 0 (5.3)

where λ ∈R is a constant that satisfies

1= ∑
k∈I

(
r′

)−1
(

λ∥∥x−µk
∥∥2

2

)
. (5.4)

2. If pk > 0 for all k ∈ I, then (pk)k∈I is the global minimum of gI .

3. For all k, l ∈ I, we have

r(pk)
∥∥x−µk

∥∥2
2 = r(pl)

∥∥x−µl
∥∥2

2 .

Proof. First, we prove Item 1. Set the first derivative in the direction of p̃k equal to zero:
∂

∂p̃k
gI

(
(p̃k),k∈I

)= r′(p̃k)
∥∥x−µk

∥∥2
2 −λ= 0 . (5.5)

Since r′ is invertible over the interval [0,1], we can solve this equation for p̃k. This yields
(5.3). Observe that

∑
k∈I pk = 1. This yields (5.4).

Next, we prove Item 2. By assumption, x 6= µk. Moreover, in Item 2, we assume that
pk > 0 for all k ∈ I. Since r′((0,1])> 0 by assumption, we can conclude that r′(pk)> 0 for all
k ∈ I. Hence,

∂

∂p̃k∂p̃nl
gI ((pk)k∈I)=

{
r′ (pk)

∥∥x−µk
∥∥2

2 > 0 if k = l
0 if k 6= l

for all k, l ∈ I. Hence, the Hessian matrix of g is positive definite (Magnus and Neudecker,
1999, pp. 15). Due to (Magnus and Neudecker, 1999, pp. 123,pp. 131), this yields the
correctness of Item 2.

Finally, we prove Item 3. Setting (5.5) to zero gives λ = r(pk)
∥∥x−µk

∥∥2
2 where λ is

independent of k. Combining these equalities for all k ∈ I with respect to the same n ∈ [N]
yields the claim.

Lemma 5.21 gives us a hint on how useful fuzzifier functions should be defined. Klawonn
and Höppner (2003) and Klawonn (2004) use these results, especially the third claim of the
lemma, to derive alternative fuzzifier functions. We will review these alternative functions
in Section 5.3.

5.3. SPECIAL CASES 75

Efficient Use of the First-Order Optimality Conditions

So far, Lemma 5.21 does not tell us anything about "true" non-zero assignments. Obviously,
it is extremely time consuming to determine all the soft clusterings specified by Lemma 5.21
with respect to each possible assumption on the non-zero assignments (per point!) and
to find the best soft clustering among all of them. To be able to find the induced r-fuzzy
clustering efficiently, we have to characterize the "true" non-zero assignments further. This
is what the following lemma does.

Lemma 5.22. Let r : R≥0 → R≥0 be a differentiable function whose first derivative r′ is
invertible over the interval [0,1] and satisfies r′((0,1]) > 0. Consider some (x,w) ∈ RD ×R+
and C = (µk)k∈[K] ⊆RD where x 6= µk for all k ∈ [K]. Let (pk)k∈[K] be an r-fuzzy clustering of
(x,w) induced by C. Let

I := {k ∈ [K] | pk > 0} .

Let π be a permutation on [K] such that∥∥x−µπ(1)
∥∥

2 ≤
∥∥x−µπ(2)

∥∥
2 ≤ ·· · ≤ ∥∥x−µπ(K)

∥∥
2 .

Then, the following three properties hold true:

1. There exists some l ∈ [K] such that I = {π(q) ∈ [K] | q ≤ l}.

2. For each k ∈ I, pk is a solution to the equation given in Item 1 from Lemma 5.21 (with
respect to I).

3. Consider some I ′ ⊂ I. Let P̂ = (p̂k)k∈I ′ be the vector where each p̂k is the solution to the
corresponding equation given in Item 1 from Lemma 5.21 with respect to I ′ (instead of
I). Then, φ(r)

(x,w)(C, P̂)≥φ(r)
(x,w)(C,P).

Proof. The first part of the claim is a consequence of Corollary 5.20. The second part of
the claim is a consequence of Lemma 5.21. To see that the third part of the claim holds
true, consider functions gI and gI ′ as defined in Lemma 5.21. The condition I ′ ⊂ I can be
interpreted as a reduction of the space of possible solutions: Each point p′ from the input
domain of gI ′ can be interpreted as point p from the input domain of gI (with additional
coordinates that are set to 0) with gI ′(p′)= gI (p). Hence, a minimum of gI ′ cannot induce a
better solution than a minimum of gI . This observation yields the claim.

This last lemma shows us a way of applying Lemma 5.21 in an efficient way: We do not
have to consider all possible assumptions on the non-zero assignments. From Lemma 5.22,
we see that we just have to sort the distances and evaluate the soft assignments given by
Lemma 5.21 in the right way. We apply this approach in the next Section 5.3.

5.3 Special Cases

After having discussed the r-fuzzy K-means problem and fuzzifier functions in general,
we now turn to examine the concrete fuzzifier functions that we described in Section 5.2.
Table 5.1 gives an overview of the results that we explain in the remainder of this section.

Recall from Section 5.1.2 that induced r-fuzzy means are easy to compute, while the
computation of an induced r-fuzzy clustering heavily depends on the chosen fuzzifier function.
Hence, in the following, we focus on the latter.

76 CHAPTER 5. BASICS

r parameter description reducing cr(K) ir tr(K)

id – identity 3 1 1 O(K)

sβ β ∈ [0,1] quadratic-linear 3
1−β

(1+β)·K + 2β
1+β 4 O(K log(K))

pm m ∈ [1,∞) m-th power 3 1/Km−1 4m O(K)

eγ γ ∈R+ exponential 3
γ

eγ−1 – O(K log(K))

Table 5.1: Overview of the properties of some fuzzifier functions.

5.3.1 Identity – K-Means

The id-fuzzy K-means problem with the identity function id corresponds to the classical
K-means problem, as we already noted in Section 4.2.1:

Observation 5.23. Consider X = ((xn,wn))n∈[N] ∈ Dom
(
RD ,R+

)
and C = (µk)k∈[K] ⊆ RD .

Then, each hard clustering Z = (znk)n∈[N],k∈[K] that satisfies

∀n ∈ [N] ∀k ∈ [K] : znk = 1 ⇒ k ∈ arg min
{∥∥xn −µl

∥∥
2

∣∣ l ∈ [K]
}

minimizes φ(id)
X (C, ·) with respect to all soft K-clusterings of X.

Hence, an induced r-fuzzy K-clustering of a data set X can be computed in time O(|X | ·
K ·D). That is, tr(K)=Θ(K) (Assumption 5.19). Moreover, the identity function id is clearly
a fuzzifier function that is [0,1]-reducing, 1-increase-bounded, and c∗

id-contribution-bounded
with c∗

id(K)= 1 for all K ∈N.

5.3.2 Power Function – Classical Fuzzy K-Means

The classical fuzzy K-means problem with fuzzifier m ∈ (1,∞) coincides with the pm-fuzzy
K-means problem where pm is defined as follows.

Definition 5.24. For each m ∈ [1,∞), we let pm :R≥0 →R≥0 be the function with

pm(p)= pm .

Lemma 5.25 (properties of pm). For all m ∈ [1,∞), pm satisfies the following properties:

• pm is a [0,1]-reducing fuzzifier function.

• pm is (4m)-increase-bounded.

• If m ∈N, then pm is (2m)-increase-bounded.

• pm is cpm
-contribution-bounded with c∗

pm
(K)= 1/Km−1 for all K ∈N.

Proof. Clearly, since m ≥ 1, pm is a [0,1]-reducing fuzzifier function. Consider arbitrary but
fixed p,ε ∈ [0,1]. For all c ∈N, we have

pm

((
1+ ε

c ·m
)

p
)
=

(
1+ ε

c ·m
)m · pm =

(
1+ ε

c ·m
)m ·pm(p) .

For m ∈N and c = 2, we have
(
1+ ε

2m
)m ≤ (1+ ε) due to Lemma A.1. This yields the third

claim. For m ∈ [1,∞) and c = 4, we can bound(
1+ ε

4m

)m ≤
(
1+ ε

4bmc
)bmc+1

≤
(
1+ ε

4bmc
)2bmc

≤ 1+ε ,

where the last inequality is again due to Lemma A.1. This yields the second claim.

5.3. SPECIAL CASES 77

Now consider an arbitrary (pk)k∈[K] ∈∆K−1. We can apply Hölder’s inequality (Hardy
et al., 1952, p.21) and bound(

K∑
k=1

pm
k

)1/m

·K (m−1)/m =
(

K∑
k=1

pm
k

)1/m

·
(

K∑
k=1

1m/(m−1)

)(m−1)/m

≥
K∑

k=1
pk = 1 .

Hence,
∑K

k=1 pm
k ≥ Km−1. In particular, if pk = 1/K for all k ∈ [K], then

∑K
k=1 pm

k = 1/Km−1.
Hence, c∗

pm
(K)= 1/Km−1. This yields the last claim.

As already explained in Section 4.1, a pm-induced fuzzy K-means clustering can be
determined efficiently. For an illustration of an induced pm-fuzzy clustering (for different
values of m) we refer back to Figure 4.5 in Section 4.3.2.

Lemma 5.26 (induced pm-fuzzy clustering). Let X = ((xn,wn))n∈[N], C = (µk)k∈[K] ⊂RD , and
m ∈ (1,∞). The pm-fuzzy clustering (pnk)n,k of X induced by C can be computed in time
O(|X | ·K ·D) (i.e., tr(K) =Θ(K) with Assumption 5.19). In particular, for all n ∈ [N] with
∀l ∈ [K] : xn 6=µl , we have

∀k ∈ [K] : pnk =
∥∥xn −µk

∥∥− 2
m−1

2∑K
l=1

∥∥xn −µl
∥∥− 2

m−1
2

> 0 .

Proof. Use the method of Lagrange multipliers to ensure that
∑K

k=1 pnk = 1 for all n ∈ [N].
An analysis of the first-order optimality conditions of the resulting objective function yields
the claim.

5.3.3 Quadratic-Linear – Between K-Means and Fuzzy K-Means

Klawonn and Höppner (2003) propose a mixture of two fuzzifier functions: the identity
function id, which leads to hard K-means clustering, and the square function p2, which leads
to the classical fuzzy K-means clustering with fuzzifier m = 2.

Definition 5.27. For each β ∈ [0,1], we let sβ :R≥0 →R≥0 be the function with

sβ(p)= 1−β
1+β · p2 + 2β

1+β · p .

For β= 0, we obtain the power function s0 = p2. For β= 1, we obtain the identity function
s1 = id= p1.

Lemma 5.28 (properties of sβ). For all β ∈ [0,1], sβ satisfies the following:

• sβ is a [0,1]-reducing fuzzifier function.

• sβ is 4-increase-bounded.

• sβ is csβ-contribution-bounded with csβ(K)= 1−β
(1+β)·K + 2β

1+β for all K ∈N.

Proof. Observe that sβ is a convex combination of the two functions p2 and p1. With

Lemma 5.26, we can conclude that sβ is a [0,1]-reducing,
(

1−β
1+β ·c∗

p2
+ 2β

1+β ·c∗
p1

)
-contribution-

bounded, and 4-increase-bounded fuzzifier function. With Lemma 5.25 the claim follows.

Next, we show how an induced sβ-means clustering can be computed. Our results
coincide with the results of Klawonn (2004) and Klawonn and Höppner (2003). However,
neither of these publications contains a complete proof of correctness. An illustration of
induced sβ-fuzzy clusterings for different values of β can be found in Figure 4.6.

78 CHAPTER 5. BASICS

Lemma 5.29. Given X = ((xn,wn))n∈[N] ∈ Dom
(
RD ,R≥0

)
, β ∈ [0,1], and C = (µk)k∈[K] ⊆ RD ,

Algorithm 2 computes an sβ-means clustering of X induced by C in time

O (|X | ·K(D+ log(K))) .

With our notation from Assumption 5.19, we can write tr(K)= K log(K).

Proof. The correctness follows from Lemma 5.21, Lemma 5.22, and the next Lemma 5.30.
There is only one little trick: When checking whether pnk > 0, we make use of the fact that
the distances are sorted in ascending order and that the bound (1/β)+ k−1 increases if k
increases.

Algorithm 2 Induced sβ-Means Clustering

Require: X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R≥0

)
, β ∈ [0,1], and C = (µk)k∈[K] ∈RD

1: P := (0)n,k
2: for all n ∈ [N] do . consider the n-th point
3: s := 0
4: for all k ∈ [K] do . compute and sort the distances
5: dnk := ∥∥xn −µk

∥∥2
2

6: Compute a permutation π on [K] such that dnπ(1) ≤ dnπ(2) ≤ ·· · ≤ dnπ(K).
7: if dnπ(1) = 0 or wn = 0 then . xn =µk for some k ∈ [K]
8: pnπ(1) := 1
9: else

10: l := 0 . initialize search
11: s0 := 0
12: for all k = 1, . . . ,K do
13: sk := sk +1/dnπ(k) . sk =

∑k
h=1

(
1/

∥∥xn −µπ(h)
∥∥2

2

)
14: if dnπ(k) · sk < (1/β)+k−1 then . pnπ(k) > 0 ? (see (5.7))
15: l := k
16: for all k = 1, . . . ,K do
17: Set

pnπ(k) :=
{

1
1−β

(
(1+ (l−1) ·β) · (dnπ(k) · sl

)−1 −β
)

if k ≤ l

0 otherwise

18: return P

Lemma 5.30. Fix some β ∈ [0,1]. Let x ∈ RD and C = (µk)k∈[K] ⊆ RD where x 6= µk for all
k ∈ [K]. Fix some set I ⊂ [K]. Consider the function

gI : R|I| →R , (p̃k)k∈I 7→
∑
k∈I

sβ(p̃k)
∥∥x−µk

∥∥2
2 −λ

(∑
k∈I

p̃k −1

)
,

where the variable λ denotes a Lagrange multiplier.
Then, gI has a unique extremum (pk)k∈[K] where

pk =
1

1−β

(
1+ (|I|−1

) ·β) ·(∑
l∈I

∥∥x−µk
∥∥2

2∥∥x−µl
∥∥2

2

)−1

−β
 (5.6)

for all k ∈ I.

5.3. SPECIAL CASES 79

In particular, for all k ∈ I, we have pk > 0 if and only if

∑
l∈I

∥∥x−µk
∥∥2

2∥∥x−µl
∥∥2

2

< 1
β
+|I|−1 . (5.7)

Proof. Consider sβ as a function sβ :R→R. sβ is continuous and its first derivative

s′β(p)= 2
1−β
1+β p+ 2β

1+β
is strictly increasing. Hence, we can apply Lemma 5.21. Observe that

0= s′β(pk)
∥∥x−µk

∥∥2
2 −λ⇔ 0=

(
2

1−β
1+β pk +

2β
1+β

)∥∥x−µk
∥∥2

2 −λ

⇔ pk =
1+β

2(1−β)

(
λ∥∥x−µk

∥∥2
2

− 2β
1+β

)
= 1+β

2(1−β)
· λ∥∥x−µk

∥∥2
2

− β

1−β .

Hence, we have

1= ∑
l∈I

pk ⇔ 1= ∑
l∈I

(
1+β

2(1−β)
· λ∥∥x−µl

∥∥2
2

− β

1−β

)

⇔ 1= 1+β
2(1−β)

·λ ·
(∑

l∈I

1∥∥x−µl
∥∥2

2

)
−|I| · β

1−β

⇔λ= 2(1−β)
1+β ·

(
1+ |I|β

1−β
)
·
(∑

l∈I

1∥∥x−µl
∥∥2

2

)−1

.

Combining these equalities gives

pk =
(
1+ |I|β

1−β
)
·
(∑

l∈I

∥∥x−µk
∥∥2

2∥∥x−µl
∥∥2

2

)−1

− β

1−β = 1
1−β

(
1+ (|I|−1

) ·β) ·(∑
l∈I

∥∥x−µk
∥∥2

2∥∥x−µl
∥∥2

2

)−1

−β
 .

This yields the claim.

5.3.4 Exponential Fuzzifier

Klawonn (2004) also proposed the following exponential fuzzifier function.

Definition 5.31. For all γ ∈R+, we let eγ :R≥0 →R≥0 be the function with

eγ(p)= eγp −1
eγ−1

.

Klawonn (2004) already mentions some properties of this function, such as the fact that
for γ→ 0 one obtains a hard clustering objective, but he provides no proofs. We start by
formalizing and proving this observation:

Lemma 5.32 (similarity to K-means). For γ→ 0+ with γ 6= 0, we have eγ→ id pointwise.

Proof. On the one hand, in Lemma 5.33, we show that eγ(p) is [0,1]-reducing. Hence,
eγ(p)≤ p for all p ∈ [0,1]. On the other hand, we can upper bound eγ as follows. Recall the
fact that the exponential function can be expressed as an infinite power series (Stewart, 2009,
p. 772). Thus, eγ(p) = eγp−1

eγ−1 ≥ (1+γp)−1
eγ−1 = γ

eγ−1 · p. It is well known that limγ→0,γ6=0
γ

eγ−1 = 1
(Stewart, 2009, p. 397). The squeeze theorem (Stewart, 2009, p. A42) yields the claim.

80 CHAPTER 5. BASICS

Next, we check the properties of the exponential fuzzifier function. It is not surprising
that this function turns out to be not increase-bounded.

Lemma 5.33 (properties of eγ). For all γ ∈R+, eγ satisfies the following:

• eγ is a [0,1]-reducing fuzzifier function.

• eγ is ceγ-contribution-bounded with ceγ(K)= γ

eγ−1 for all K ∈N.

• eγ is not increase-bounded, i.e., there does not exist a constant ieγ ∈ [1,∞) such that eγ
is ieγ-increase-bounded.

Proof. It is easy to check that eγ is a fuzzifier function. We omit the details. Next, we show
that eγ is [0,1]-reducing. Observe that eγ is strictly convex since e′′γ(p)= γ2eγp/(eγ−1)> 0
for all p ∈ [0,1]. Together with the fact that eγ(0) = 0 and eγ(1) = 1, this yields the second
claim.

To prove the second claim, consider an arbitrary but fixed (pk)k∈[K] ∈ ∆K−1. We can
write

∑K
k=1eγ(pk)= 1

eγ−1
(−K +∑K

k=1 eγpk
)
. Using the fact that the exponential function can

be expressed as an infinite power series (Stewart, 2009, p. 772), we can bound
∑K

k=1 eγpk ≥∑K
k=1

(
1+γpk

)= K +γ. This yields the second claim.
Finally, we check that eγ is not increase-bounded. Consider arbitrary p,ε,ε′ ∈ (0,1) and

γ ∈R+. Towards a contradiction, assume that eγ
(
(1+ε′)p

)≤ (1+ε) ·eγ(p). Then,

eγ
(
(1+ε′)p

)≤ (1+ε) ·eγ(p)

⇔ eγ(1+ε′)p −1
eγ−1

≤ (1+ε) eγp −1
eγ−1

⇔ eγ(1+ε′)p −1≤ (1+ε)(eγp −1
)

⇔ eγ(1+ε′)p −1≤ eγp −1+ε(eγp −1
)

⇔ eγ(1+ε′)p − eγp ≤ ε(eγp −1
)

⇔ e(1+ε′) −1≤ ε(1− e−γp)
(where e−γp ∈ (0,1))

⇒ 1.7< e1+0 −1≤ e(1+ε′) −1≤ ε(1− e−γp)≤ ε,
which contradicts the fact that ε ∈ (0,1). This yields the claim.

Nonetheless, we can compute an induced eγ-fuzzy clustering in reasonable time, using an
algorithm that proceeds similarly to Algorithm 2. Figure 5.1 illustrates an induced eγ-fuzzy
clustering and the resulting cost function.

Lemma 5.34. There is an algorithm that, given X = ((xn,wn))n∈[N] ∈ Dom
(
RD ,R≥0

)
,γ ∈ R+,

and C = (µk)k∈[K] ⊆RD , computes an eγ-fuzzy clustering of X induced by C in time

O (NK(D+ log(K))) .

With our notation from Assumption 5.19, we can write tr(K)= K log(K).

Proof. The algorithm proceeds similarly to Algorithm 2: Instead of evaluating pnk according
to Lemma 5.30, it uses the formula from Lemma 5.35. Instead of making use of (5.7), it
makes use of (5.9). The correctness of this algorithm follows from Lemma 5.21, Lemma 5.22,
and the next Lemma 5.35.

Lemma 5.35. Fix some γ ∈R+. Let x ∈RD and C = (µk)k∈[K] ⊆RD where x 6=µk for all k ∈ [K].
Fix some set I ⊂ [K]. Consider the function

gI : R|I| →R , (p̃k)k∈I 7→
∑
k∈I

eγ(p̃k)
∥∥x−µk

∥∥2
2 −λ

(∑
k∈I

p̃k −1

)
,

5.3. SPECIAL CASES 81

(a) soft assignment (γ= 0.25) (b) soft assignment (γ= 1) (c) soft assignment (γ= 5)

(d) cost (γ= 0.25) (e) cost (γ= 1) (f) cost (γ= 5)

Figure 5.1: Illustration of the impact of the fuzzifier function eγ with γ ∈ {0.25,1,5}:
We are given the 3 mean points µ1 = 0, µ2 = 1, and µ3 = 3 in the one-dimensional space R.
For each data point xn ∈ [−1,4] and each k ∈ [3], we evaluate the optimal soft assignments
pnk for the given means and the resulting cost eγ(pnk)

∥∥xn −µk
∥∥2

2 per cluster.
Figure 5.1a through Figure 5.1c depict the optimal soft assignments, while Figure 4.5d
through Figure 4.5f depict the resulting costs per cluster and the overall cost (gray).

where the variable λ denotes a Lagrange multiplier.
Then, gI has a unique extremum (pk)k∈[K] where

pk =
1
|I|

(
1− 1

γ

∑
l∈I

ln

(∥∥x−µk
∥∥2

2∥∥x−µl
∥∥2

2

))
. (5.8)

In particular, for all k ∈ I, we have pk > 0 if and only if

∑
l∈I

ln

(∥∥x−µk
∥∥2

2∥∥x−µl
∥∥2

2

)
< γ . (5.9)

Proof. Consider eγ as a function eγ :R→R. Since eγ is continuous and its first derivative

e′γ(p)= γ eγp −1
eγ−1

is strictly increasing, we can apply Lemma 5.21.
Observe that

0= e′γ(pk)
∥∥x−µk

∥∥2
2 −λ

⇔ 0= γ eγpk −1
eγ−1

∥∥x−µk
∥∥2

2 −λ

⇔ eγpk =λ · eγ−1

γ ·∥∥x−µk
∥∥2

2

⇔ pk =
1
γ

ln

(
λ · eγ−1

γ ·∥∥x−µk
∥∥2

2

)
= 1
γ

(
ln(λ)+ ln

(
eγ−1
γ

)
− ln

(∥∥x−µk
∥∥2

2

))
.

82 CHAPTER 5. BASICS

Then, we have

1= ∑
l∈I

pk ⇔ 1= ∑
l∈I

1
γ

(
ln(λ)+ ln

(
eγ−1
γ

)
− ln

(
γ ·∥∥x−µl

∥∥2
2

))
⇔ 1= |I|

γ

(
ln(λ)+ ln

(
eγ−1
γ

))
− 1
γ

∑
l∈I

ln
(∥∥x−µl

∥∥2
2

)
⇔ |I|

γ
ln(λ)= 1+ 1

γ

∑
l∈I

ln
(∥∥x−µl

∥∥2
2

)
− |I|
γ

ln
(

eγ−1
γ

)
⇔ ln(λ)= γ

|I| +
1
|I|

∑
l∈I

ln
(∥∥x−µl

∥∥2
2

)
− ln

(
eγ−1
γ

)
.

Combining these equalities gives

pk =
1
γ

(
γ

|I| +
1
|I|

(∑
l∈I

ln
(∥∥x−µl

∥∥2
2

))
− ln

(∥∥x−µk
∥∥2

2

))

= 1
γ

(
γ

|I| +
1
|I|

∑
l∈I

(
ln

(∥∥x−µl
∥∥2

2

)
− ln

(∥∥x−µk
∥∥2

2

)))

= 1
|I|

(
1+ 2

γ

∑
l∈I

ln

(∥∥x−µl
∥∥

2∥∥x−µk
∥∥

2

))

= 1
|I|

(
1− 1

γ

∑
l∈I

ln

(∥∥x−µk
∥∥2

2∥∥x−µl
∥∥2

2

))
.

This yields the claim.

“ Like my old skleenball coach
used to say, ’Find out what you
don’t do well, then don’t do it.’ ”

Alf

Chapter 6

Two Key Properties

In this chapter, we present two basic techniques that help us to analyse the r-fuzzy K-means
problem: First, we relate the r-fuzzy K-means cost function and the K-means cost function.
Second, we transfer the notion of empty hard clusters, which can effectively be ignored in
a hard clustering, to an r-fuzzy K-means clustering. Thereby, we effectively reduce the
problem of approximating an optimal solution to the problem of approximating the best
solution where each cluster has a certain non-negligible weight.

Publication. In this chapter, we generalize properties of the classical fuzzy K-means
problem that we also identified in (Blömer et al., 2016, Lemma 1+2).

6.1 Relation to the K-Means Cost Function

There is a coarse yet useful relation between the objective functions of the K-means and an
r-fuzzy K-means problem:

Lemma 6.1 (Relation to K-Means). Let X ∈ Dom
(
RD ,R≥0

)
, let r : R≥0 → R≥0 be a fuzzifier

function, K ∈N, and let C ⊂RD with |C| ≥ 1.
Then,

φ(r)
X (C) ≤ kmX (C) .

If r is cr-contribution-bounded, then

φ(r)
X (C) ≥ cr(|C|) ·kmX (C) .

Proof. First, consider the lower bound. Write X = ((xn,wn))n∈[N]. Let (pnk)n,k be the r-fuzzy
clustering of X induced by C = (µk)k∈[K]. Then,

φ(r)
X (C)≥

N∑
n=1

(
K∑

k=1
r(pnk)

)
wn min

{∥∥xn −µl
∥∥

2

∣∣ l ∈ [K]
}≥ cr(K) ·kmX (C) .

Now consider the upper bound. Let Z ∈ {0,1}N×K ∩∆N,K−1 be the K-means clustering
(i.e., the id-fuzzy clustering) of X induced by C. Since r is a fuzzifier, we have r(0)= 0 and
r(1)= 1. Hence,

φ(r)
X (C)≤φ(r)

X (C, Z)=
N∑

n=1

K∑
k=1

znk
∥∥xn −µk

∥∥2
2 = kmX (C) .

83

84 CHAPTER 6. TWO KEY PROPERTIES

Observe that we cannot expect a lower bound that does not depend on an additional
constraint, such as the contribution-bounded property of the fuzzifier function. Without
additional constraints, the r-fuzzy K-means cost φ(r)

(xn,wn)(C,P)= wn ·∑N
k=1 r(pnk) ·∥∥xn −µk

∥∥2
2

of a point (xn,wn) with respect to a fixed set of means C = (µk)k∈[K] might be arbitrarily
close to zero because the fuzzified probabilities (r(pnk))k∈[K] might be arbitrarily small. We
preclude this possibility by demanding that r is contribution-bounded.

6.2 Negligible Clusters

Given a soft K-clustering P of a data set X , we think of a cluster as negligible if not even a
single data point (xn,wn) in X supports this cluster sufficiently.

Definition 6.2 ((ir,K ,ε)-negligible cluster). Let ir ∈ [1,∞), ε ∈ (0,1], and K ∈N. Consider a
soft L-clustering P = (pnl)n∈[N],l∈[L] ∈∆N,L−1 with L ≥ K.

The l-th cluster given by P is (ir,K ,ε)-negligible if

∀n ∈ [N] : pnl ≤
ε

2 · ir ·K2 .

For each solution that contains such a negligible cluster, there exists a solution with
similar cost where none of the clusters is negligible.

Theorem 6.3 (remove negligible clusters). Let X ∈Dom
(
RD ,R≥0

)
, K ∈N, and let r :R≥0 →

R≥0 be an ir-increase-bounded fuzzifier function.
For each C ⊂RD with |C| = K there exists C̃ ⊆ C with

φ(r)
X (C̃) ≤ (1+ε) ·φ(r)

X (C)

and there exists an r-fuzzy L-clustering P̃ = (p̃nl)n∈[N],l∈[L] of X induced by C̃ that has no
(ir,K ,ε)-negligible clusters.

This observation resembles the notion of empty clusters in a K-means hard clustering:
If a hard cluster is empty, then no point from the data set is assigned to this cluster (i.e.,
supports it), and we can remove its mean vector from the solution without increasing the
K-means cost. Nonetheless, there is also an aspect that is different: We cannot preclude the
possibility that an optimal r-fuzzy K-means solution contains a negligible cluster.

Theorem 6.3 is a direct consequence of the following constructive results.

Algorithm 3 Remove Negligible Clusters
Require: X = ((xn,wn))n∈[N] ∈ Dom

(
RD ,R≥0

)
, ε ∈ (0,1], r : R≥0 → R≥0, ir ∈ [1,∞), and C =

(µk)k∈[K] ∈RD

1: ε̃ := ε/(2K)
2: I :=;
3: P−I := r-fuzzy K-clustering of X induced by C
4: l := 0
5: while l < K −|I| do
6: l := l+1 . Consider the next cluster
7: if ∀n ∈ [N] : pnl < ε̃/(irK) then . Is the support of the l-th cluster low?
8: I := I ∪ {l} . Remove mean µl from C−I
9: C−I := (

µk
)
k∈[K]\I

10: P−I := r-fuzzy (|K |− |I|)-clustering of X induced by C−I
11: l := 0 . Restart search
12: return (C−I ,P−I)

6.2. NEGLIGIBLE CLUSTERS 85

Lemma 6.4 (remove all negligible clusters). Given a data set X ∈Dom
(
RD ,R≥0

)
, K ∈N, an

ir-increase-bounded fuzzifier function r :R≥0 →R≥0, the value ir ∈ [1,∞), ε ∈ (0,1], and means
C ∈ RD with |C| = K, Algorithm 3 computes a solution (C̃, P̃) such that C̃ ⊆ C, L := ∣∣C̃∣∣ > 0,
P̃ = (p̃nl)n,l is an r-fuzzy L-clustering of X induced by C̃,

φ(r)
X (P̃) ≤ φ(r)

X (C̃)=φ(r)
X (C̃, P̃) ≤ (1+ε) ·φ(r)

X (C) ,

and

∀l ∈ [L] : ∃n ∈ [N] : p̃nl ≥
ε

2irK2 .

The algorithms’ runtime is O(|X | ·D ·K · tr(K)).

In order to prove this result, let us start by considering the removal of a single mean
vector whose corresponding cluster is negligible.

Lemma 6.5 (remove a single negligible cluster). Let X ∈ Dom
(
RD ,R≥0

)
, ε ∈ (0,1], an ir-

increase-bounded fuzzifier function r : R≥0 → R≥0, and let P be a soft K-clustering P =
(pnk)n∈[N],k∈[K] with K ≥ 2.

Assume that for some l ∈ [K] we have

∀n ∈ [N] : pnl ≤
ε

irK
.

Then, then there exists a soft (K −1)-clustering P̃ = (p̃nk)k∈[K]\{l},n∈[N] ∈∆N,K−2 such that

∀n ∈ [N] : ∀k ∈ [K]\{l} : p̃n,k ≥ pnk

and such that for all (µk)k∈[K] ⊂RD it holds

φ(r)
X

((
µk

)
k∈[K]\{l} , P̃

)
≤ (1+ε) ·φ(r)

X
(
(µk)k∈[K],P

)
.

Proof. Write X = ((xn,wn))n∈[N]. Assume that for some l ∈ [L] we have ∀n ∈ [N] : pnl ≤ ε
irK .

Consider an arbitrary n ∈ [N]. Since
∑K

k=1 pnk = 1 and pnl ≤ 1
irK ≤ 1

K , there exists some
k(n) ∈ [K]\{l} such that pnk(n) ≥ 1

K . Hence,

pnl ≤
ε

irK
≤ ε

ir
· pnk(n) . (6.1)

Let P̃ = (p̃nk)k∈[K]\{l},n∈[N] be the soft clustering where, for all n ∈ [N], we have p̃nk = pnk
for all k ∈ [K]\{l,k(n)} and p̃n k(n) = pn k(n) + pnl . Let C = (µk)k∈[K] ⊆RD be an arbitrary but
fixed set of means. Let

C−l := (
µk

)
k∈[K]\{l} ,

φ̄l,k(·) :=
N∑

n=1

∑
o∈[K]: o 6=l∧o 6=k(n)

r(pno)wn
∥∥xn −µo

∥∥2
2 , and

φl :=
N∑

n=1
r(pnl)wn

∥∥xn −µl
∥∥2

2 .

86 CHAPTER 6. TWO KEY PROPERTIES

Then,

φ(r)
X (C−l , P̃)=

N∑
n=1

r(pnk(n) + pnl)wn
∥∥xn −µk(n)

∥∥2
2 + φ̄l,k(·)

≤
N∑

n=1
r
((

1+ ε

ir

)
pnk(n)

)
wn

∥∥xn −µk(n)
∥∥2

2 + φ̄l,k(·) (Eq. (6.1), r is increasing)

≤
N∑

n=1
(1+ε) · r(pnk(n))wn

∥∥xn −µk(n)
∥∥2

2 + φ̄l,k(·) (r is ir-increase-bounded)

≤
N∑

n=1
(1+ε) · r(pnk(n))wn

∥∥xn −µk(n)
∥∥2

2 + φ̄l,k(·) +φl (φl ≥ 0)

≤ (1+ε) ·φ(r)
X (C,P) , (φ̄l,k(·),φl ≥ 0)

which yields the claim.

Now we could try to remove all (currently) negligible clusters at once. However, we want
to guarantee that the resulting induced r-fuzzy clustering has no negligible clusters. As
we do not know how the induced clustering changes when we remove the mean vector of a
negligible cluster, we cannot1 preclude the possibility that we have to repeat this removal K
times. Therefore, we remove clusters one by one as described in Algorithm 3.

Proof of Lemma 6.4. Observe that a soft 1-clustering of N elements is always equal to 1N .
Hence, by construction, the algorithm returns a set of means C−I with |C−I | ≥ 1 such that
the support of each cluster given by P−I is at least ε̃/(irK).

Assume that, at some point during its execution, the algorithm removes mean µk
from the current set of means C−I . Denote the resulting set of means by C−I,k. Since
ε̃

ir ·K ≤ ε̃
ir ·(K−|I|) = ε̃

ir ·|C−I | (cf. Algorithm 3), Lemma 6.5 implies that

φ(r)
X (C−I,k, P̃)≤ (1+ ε̃) ·φ(r)

X (C−I) .

Now consider the final index set I. By applying this argument repeatedly to each index that
was added to I, we obtain the desired approximation factor: We have

φ(r)
X (C−I)≤ (1+ ε̃)K ·φ(r)

X (C)≤ (1+ε) ·φ(r)
X (C) ,

where the last inequality is due to Lemma A.1 and the fact that ε̃= ε/2K .
For the runtime, observe that the algorithm removes at most K means. After a mean

has been removed, we have to compute a new r-fuzzy clustering of X which needs time
O (|X | ·D · tr(K)). Between the removal of two means, we have to check whether a cluster
has too low a support, which needs time O(|X |) (and is done at most K times). Thus, the
overall runtime is O(K · (|X | ·D · tr(K)+|X | ·K))⊆O(|X | ·D ·Ktr(K)).

1Well, except for the classical fuzzy K-means problem where we know the form of the optimal soft assignments
exactly. However, this possible speedup will make no difference for the main results of this thesis.

Chapter 7

Baselines

In this chapter, we derive some simple algorithms for the r-fuzzy K-means problem with
performance guarantees. We pursue the following three ideas: First, we restrict the set of
mean vectors to the finite set of points {xn | n ∈ [N]} that contains only points from the given
data set X = ((xn,wn))n∈[N]. We perform an exhaustive search through all solutions induced
by means from this set. This approach is exactly the same as the approach by Hasegawa
et al. (1993) for the K-means problem. Second, we restrict the set of soft clusterings to
a finite set of soft clusterings whose single soft assignment probabilities pnk are rational
values ink/B ∈ Q with a bounded denominator B ∈ N. Again, we perform an exhaustive
search through all solutions induced by soft clusterings from this set. Third, we analyse the
use of a K-means approximation algorithm.

Overview. We summarize our contribution in Section 7.1. We do not present related work
as, to the best of our knowledge, prior to Blömer et al. (2016), there have been no algorithms
with approximation guarantees for a r-fuzzy K-means problem with r 6= id. For an overview
of work related to the K-means problem, we refer back to Section 4.4. In Section 7.2 and
Section 7.3, we present our exhaustive searches through reduced sets of possible means and
soft clusterings, respectively. In Section 7.4, we consider K-means approximation algorithms.

7.1 Contribution

First, we show that there is a 2-approximation algorithm for the r-fuzzy K-means problem
that runs in time O(|X |K ·D). Unlike the other algorithms, it works for for arbitrary fuzzifier
functions. This result is an analogon of the results of Hasegawa et al. (1993).

Second, we show that there is a (1+ε)-approximation algorithm for the r-fuzzy K-means
problem with ir-increase-bounded fuzzifier functions r. Its runtime is linear in the dimension,
but exponential in the number of data points |X | and the number of clusters K .

Third, we show that every α-approximation for the K-means problem also induces an(
α ·cr(K)−1)

-approximation for the corresponding r-fuzzy K-means problem if the given
fuzzifier function r is cr-contribution-bounded. For example, this implies that the algorithm
by Matoušek (2000) is a constant factor approximation algorithm for the eγ-fuzzy K-means
problem with runtime O(|X | log(|X |)Kε−2D) (for unweighted data sets). For an overview of
all of our approximation algorithms we refer to Chapter 13.

7.2 2-Approximation Algorithm

The following result is an analogon of the results of Hasegawa et al. (1993) for the K-means
problem: By testing all vectors of means that consist of points from the given point set X ,

87

88 CHAPTER 7. BASELINES

we can find a 2-approximation to the r-fuzzy K-means problem. The key to this result is the
observation that the r-fuzzy K-means cost function can be expressed via pairwise distances
between points (see Corollary 2.23).

Algorithm 4 Exhaustive Search for Means
Require: X ∈Dom

(
RD ,R+

)
, K ∈N, r :R≥0 →R≥0

1: C∗ := (); φ∗ :=∞
2: for all C ⊆ X with |C| = K do
3: if φ(r)

X (C)<φ∗ then
4: φ∗ :=φ(r)

X (C); C∗ := C

5: return C∗

Theorem 7.1. Given X ∈ Dom
(
RD ,R+

)
, K ∈ N, and a fuzzifier function r, Algorithm 4

computes K means C ⊆RD such that

φ(r)
X (C)≤ 2 ·φOPT

(X ,K ,r) .

The algorithms’ runtime is

O
(
|X |K+1 ·D · tr(K)

)
.

Proof. The correctness is a consequence of the following Lemma 7.2. For the runtime,
observe that there are at most |X |K different vectors C of length K with elements from
X . Evaluating the cost of a solution induced by such vector C needs time O(|X |Dtr(K)+
|X |KD)=O(|X |Dtr(K)) since tr(K) ∈Ω(K) (Assumption 5.19).

We stress the fact that this result does not impose any additional constraints on the
fuzzifier function, except for the constraint that we need to be able to compute induced r-fuzzy
clusterings (Assumption 5.19). This result is applicable for all the fuzzifier functions that
we presented in Section 5.3. For each of these fuzzifier functions, the algorithm computes a
2-approximation to the r-fuzzy K-means problem in running time O(|X |K+1 ·DK log(K)).

Lemma 7.2. Let X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R+

)
, K ∈N, and let r :R≥0 →R≥0 be a fuzzifier

function. Let P = (pnk)n∈[N],k∈[K] be a soft K-clustering, and let C = (µk)k∈[K] be the r-fuzzy
means of X induced by P. Set C̃ := (µ̃k)k∈[K] ⊆ X where µ̃k ∈ arg min

{∥∥xn −µk
∥∥

2

∣∣ xn ∈ X
}

for
each k ∈ [K]. Then, φ(r)

X (C̃)≤ 2 ·φ(r)
X (P).

Proof. This proof is an analogon of the proof of Hasegawa et al. (1993). Recall that

φ(r)
X (C̃)≤φ(r)

X (C̃,P)=
K∑

k=1
d

(
A(X ,r(P))

k , µ̃k

)
.

Then, with Lemma 2.20, we can conclude

d
(
A(X ,r(P))

k , µ̃k

)
=w

(
A(X ,r(P))

k

)∥∥∥µ̃k −m
(
A(X ,r(P))

k

)∥∥∥
2
+d

(
A(X ,r(P))

k

)
=

N∑
n=1

r(pnk)wn

(∥∥∥µ̃k −m
(
A(X ,r(P))

k

)∥∥∥2

2
+

∥∥∥m
(
A(X ,r(P))

k

)
− xn

∥∥∥2

2

)
.

From Lemma 5.4 and the definition of C, we know that µk =m
(
A(X ,r(P))

k

)
. By definition of C̃,

we have
∥∥µ̃k −µk

∥∥
2 ≤

∥∥xn −µk
∥∥

2 for all n ∈ [N]. Hence,

d
(
A(X ,r(P))

k , µ̃k

)
=

N∑
n=1

r(pnk)wn

(∥∥µ̃k −µk
∥∥2

2 +
∥∥µk − xn

∥∥2
2

)
≤ 2

N∑
n=1

r(pnk)wn
∥∥xn −µk

∥∥2
2 = 2φ(r)

X (C,P)= 2φ(r)
X (P) .

7.3. (1+ε)-APPROXIMATION ALGORITHM 89

7.3 (1+ε)-Approximation Algorithm

Consider an arbitrary soft clustering P = (pnk)n,k and a distorted version P̃ = (p̃nk)n,k thereof
where ∀n,k : p̃nk ≤ (1+ε/ir)pnk for some ir ∈ [1,∞). If r is an ir-increase-bounded fuzzifier,
then we know that the r-fuzzy K-means cost of P̃ is at most a factor (1+ε) larger than the
cost of P. In the following, this observation helps us to construct a set of soft clusterings ∆
such that, for each possible soft clustering P, there is a soft clustering P̃ ∈∆ whose cost is
at most a factor (1+ε) larger than the cost of P. In particular, there is some soft clustering
P̃ ∈∆ whose cost is close to the cost of an optimal solution. Hence, by an exhaustive search
through the set ∆, we can find a (1+ε)-approximation.

Algorithm 5 Exhaustive Search for a Clustering
Require: X ∈Dom

(
RD ,R+

)
, K ∈N, r :R≥0 →R≥0, ir ∈ [1,∞), and ε ∈ (0,1]

1: P∗ := (); φ∗ :=∞
2: B :=

⌈
K ·ir
ε

⌉
3: for all soft K-clusterings P = (ink/B)n,k of X , where ∀n ∈ [N]∀k ∈ [K] : ink ∈ [B] do
4: if φ(r)

X (P)<φ∗ then
5: P∗ := P; φ∗ :=φ(r)

X (P)

6: return P∗

Theorem 7.3. Given X ∈ Dom
(
RD ,R+

)
, K ∈ N, an ir-increase-bounded fuzzifier function

r :R≥0 →R≥0, the value ir ∈ [1,∞), ε ∈ [0,1], Algorithm 5 computes a soft K-clustering P of X
such that

φ(r)
X (P)≤ (1+ε)φOPT

(X ,K ,r) .

The algorithms’ runtime is
2O(K |X |·log(ir /ε)) ·D .

Proof. Write X = ((xn,wn))n∈[N]. As in the algorithm, let B := dK · ir/εe. For each n ∈ [N] and
k ∈ [K], let înk :=

(
1+ ε

ir

)
pnkB. Then, for all n ∈ [N], we have

∑K
k=1 înk =

(
1+ ε

ir

)
B ≥ B and

K∑
k=1

b înkc
B

=
K∑

k=1

înk − (înk −b înkc)
B

=
K∑

k=1

(
1+ ε

ir

)
pnk −

K∑
k=1

înk −b înkc
B

≥
(
1+ ε

ir

)
−K · 1

B
≥ 1 ,

where in the last inequality we use that B ≥ K · ir/ε.
Hence, there exist values ink ∈N0 such that ink ≤ b înkc and

∑K
k=1 ink = B. Set P̃ :=

(
ink
B

)
n,k

.

Let C = (µk)k∈[K] ⊂RD be the r-fuzzy means of X induced by P. Then,

φ(r)
X (P̃)≤φ(r)

X (C, P̃)

=
N∑

n=1

K∑
k=1

r
(

ink

B

)
wn

∥∥xn −µk
∥∥2

2

≤
N∑

n=1

K∑
k=1

r
(

înk

B

)
wn

∥∥xn −µk
∥∥2

2 (ink ≤ înk and r is increasing)

=
N∑

n=1

K∑
k=1

r
((

1+ ε

ir

)
pnk

)
wn

∥∥xn −µk
∥∥2

2 (înk =
(
1+ ε

ir

)
pnkB)

≤
N∑

n=1

K∑
k=1

(1+ε) · r(pnk)wn
∥∥xn −µk

∥∥2
2 (ir-increase-bounded)

= (1+ε) ·φ(r)
X (C) .

90 CHAPTER 7. BASELINES

This yields the first part of the claim.
For the runtime, apply the well-known stars and bars method: The number of K tuples

of non-negative integers whose sum is B is equal to the number of sets of size K −1 whose
elements are taken from a set of size B+K −1, i.e.,

(B+K−1
K−1

)
. Hence, the total number

of clusterings considered by the algorithm is
(B+K−1

K−1
)N

. Recall that, irK /ε ≤ B ≤ irK /ε+1.
Moreover, for all n ∈N and k ∈ [n], we have

(n
k
)≤ (e·n

k
)k (Cormen et al., 2001, p. 1097). Hence,(

B+K −1
K −1

)N

≤
(

(B+K −1) · e
K −1

)(K−1)N
≤

((
B

K −1
+1

)
· e

)K N
≤

(
B
K

·3e
)K N

∈
(
ir

ε

)O(K N)
.

Evaluating the r-fuzzy means induced by P (see Lemma 5.4) and the cost of the resulting
induced solution needs time Θ(NKD). This yields the claim.

Special Cases. Recall our results from Section 5.3. For the classical fuzzy K-means
problem, we know that the corresponding fuzzifier pm is (2m)-increase-bounded. This
implies that Algorithm 5 is a (1+ ε)-approximation algorithm for the classical K-means
problem with runtime

2O(K |X | log(m/ε)) ·D .

In contrast, for the r-fuzzy K-means problem with the exponential fuzzifier eγ, this algorithm
is not applicable since the fuzzifier eγ is simply not increase-bounded (see Lemma 5.33).

7.4
(
const ·cr(K)−1)-Approximation Algorithm

The following result is a straightforward application of Lemma 6.1.

Theorem 7.4 (K-means α-approximation). Let r :R≥0 →R≥0 be a cr-contribution-bounded
fuzzifier function. Let X ∈Dom

(
RD ,R≥0

)
and let C ⊆RD be a vector containing K ≥ 1 means

such that kmX (C)≤α ·kmOPT
(X ,K). Then, φ(r)

X (C)≤α ·cr(K)−1 ·φOPT
(X ,K ,r).

Proof. Let C∗ ⊆RD , |C∗| = K , such that φOPT
(X ,K ,r) =φ(r)

X (C∗). With Lemma 6.1, we can conclude

that φ(r)
X (C)≤ kmX (C)≤α ·kmOPT

(X ,K) ≤α ·kmX (C∗)≤α ·cr(K)−1 ·φ(r)
X (C∗)=α ·cr(K)−1 ·φOPT

(X ,K ,r).

This means that we can simply use an K-means clustering algorithm for the r-fuzzy
K-means problem if we accept that the approximation factor, which is guaranteed with
regard to the K-means problem, might worsen by a factor cr(K)−1.

Special Cases. This result is applicable for the eγ-fuzzy K-means problem with the
exponential fuzzifier eγ. Recall our results from Section 5.3.4. We know that this function is
ceγ-contribution-bounded by a constant: ceγ(K) = γ/(eγ−1) for all K ∈N. This means that,
for instance, the algorithm of Matoušek (2000) is a ((eγ−1)/γ)-approximation algorithm for
the eγ-fuzzy K-means problem with runtime O(|X | log(|X |)Kε−2D) (for unweighted data sets
X ∈Dom

(
RD , {1}

)
).

Next, consider the classical fuzzy K-means problem. The fuzzifier function pm is c∗
pm

-
contribution-bounded with c∗

pm
(K) = 1/Km−1 for all K ∈N (see Section 5.3.2). Hence, an α-

approximation algorithm for the K-means problem is an (α ·Km−1)-approximation algorithm
for the classical fuzzy K-means problem with fuzzifier value m ∈ (1,∞). So, for example,
the famous K-means++ algorithm by Arthur and Vassilvitskii (2007) yields, in expectation,
an O(log(K) ·Km−1)-approximation to the classical fuzzy K-means problem and needs only
linear time O(|X |KD) (for unweighted data sets X ∈Dom

(
RD , {1}

)
).

“ By a small sample, we may
judge of the whole piece. ”

Miguel de Cervantes from Don
Quixote

Chapter 8

Superset Sampling for Fuzzy
Clusters

The key observation behind the superset sampling technique is that certain properties of a
data set can be determined, with constant probability and to some precision, by examining a
small subset of the data that has been sampled uniformly at random.

Inaba et al. (1994) showed that the mean m (S) of a uniform sample S from an unweighted
data set X ∈Dom

(
RD , {1}

)
is close to the mean m(X), with high probability. More precisely,

their squared Euclidean distance is at most a small multiple of the variance

var (X)= d (X)
|X | = 1

|X |
∑
x∈X

‖x−m(X)‖2
2 .

Assume that we want to find the mean of an unknown hard cluster A ⊆ X . If A has not too
small a size, then a uniform sample SX from X contains a certain fraction of the points in
A. That is, SA ⊆ SX ∩ A does not have too small a size. Since SX is a uniform sample from
X , the subset SA is a uniform sample of A. With the initial observation, one can conclude
that the mean m(SA) of the sample is close to the mean m(A) of the cluster, in the sense
that their Euclidean distance is bounded by a small multiple of the variance var (A) of the
cluster. To sum up, by a clever way of uniform sampling and an exhaustive enumeration, we
can construct a set that contains a good approximation to the mean of an unknown hard
cluster, with high probability. By repeating this process and exhaustively enumerating all
possible combinations, we can construct a set of candidates that contains approximations to
the means of K unknown hard clusters, with high probability.

This technique is obviously useful for the K-means problem and probably for similar
hard clustering problems. However, the r-fuzzy K-means problem is no such problem. The
key ingredient that, nevertheless, enables us to apply the superset sampling technique is
our result from Chapter 3. There, we showed that for each soft clustering there exist hard
clusters that exhibit characteristics similar to those of the soft clusters.

Overview. First, we give an overview of related work in Section 8.1 and briefly state
our main contributions in Section 8.2. In Section 8.3, we describe the implications of our
hard-to-soft technique from Chapter 3 with respect to the r-fuzzy K-means problem. In
Section 8.4, we describe two different ways in which the superset sampling technique can be
applied to approximate the means of K unknown hard clusters. Then, in Section 8.5, we
focus on the details that need to be considered when combining these results. Finally, the
results of this combination are presented and discussed in Section 8.6.

Publication. In this chapter, we generalize and discuss the results from (Blömer et al.,
2016, Theorem 2+4), which deal with the classical fuzzy K-means problem.

91

92 CHAPTER 8. SUPERSET SAMPLING FOR FUZZY CLUSTERS

8.1 Related Work

First of all, the superset sampling technique has been used to tackle the K-means problem:
Inaba et al. (1994), who also present the first exact algorithm for the K-means problem that
runs in time O(|X |KD+1), applies this technique to show that there is a (1+ε)-approximation
algorithm for the 2-means problem (i.e., K = 2) that runs in time O(|X | · (1/ε)D). Later,
Kumar et al. (2004, 2010) use it to show that there is a randomized (1+ε)-algorithm for the
K-means problem (with arbitrary K) whose runtime is linear in the dimension D. More
precisely, its runtime is 2(K /ε)O(1) ·D |X |. Ackermann et al. (2010) extend these results to
K-median problems with respect to dissimilarity measures where the respective 1-median
problem can be approximated by taking a random sample and solving the 1-median problem
for this sample exactly. This covers, for instance, the K-median problem with respect to the
Kullback-Leibler divergence and other special Bregman divergences.

8.2 Contribution

First and foremost, we state the first polynomial-time approximation scheme (PTAS) for
the r-fuzzy K-means problem with respect to unweighted data sets and for [0,1]-reducing
fuzzifier functions r that are increase-bounded by a constant, under the assumption that
the number of clusters K is constant. This result covers all fuzzifier functions presented in
Section 5.3, except the exponential fuzzifiers eγ.

Second, we state a randomized version of this algorithm which is substantially (asymp-
totically) faster and returns a solution whose cost is at most a factor (1+ε)-worse than the
best solution whose r-fuzzy clusters have a certain minimum weight (Section 8.6.2). Though
there is some similarity to a constraint clustering approach, this result needs to be handled
with caution. We discuss its flaws and present a (nonetheless) reasonable application of this
algorithm in Section 8.6.2.

8.3 From Fuzzy Clusters to Hard Clusters

In the first part of this thesis we showed that for clusters with not too small a weight
there always exist hard clusters whose statistics are similar to those of the soft clusters.
More precisely, we showed that this property holds for clusters defined by probabilistic
membership values. Therefore, it also applies to r-fuzzy clusters where the fuzzifier function
r is [0,1]-reducing.

Theorem 8.1. Let ε ∈ (0,1], X ∈ Dom
(
RD ,R+

)
, P ∈ ∆|X |,K−1, and let f : R≥0 → R≥0 be a

[0,1]-reducing function such that

∀k ∈ [K] : w
(
A(X ,r(P))

k

)
≥ 16

ε
·K ·w(X)

max .

Then, there exist pairwise disjoint hard clusters A1, . . . , AK ⊆ X such that for all k ∈ [K] we
have

w(Ak)≥ 1
2

w
(
A(X ,r(P))

k

)
, (8.1)∥∥∥m (Ak)−m

(
A(X ,r(P))

k

)∥∥∥2

2
≤ ε

2
·var

(
A(X ,r(P))

k

)
, and (8.2)

d (Ak)≤ 4K ·d
(
A(X ,r(P))

k

)
. (8.3)

Proof. Since r is [0,1]-reducing, r(P) is a probabilistic membership matrix. Thus, applying
Theorem 3.21 to the membership values rnk := r(pnk), n ∈ [N] and k ∈ [K], yields the
claim.

8.4. APPLYING SUPERSET SAMPLING 93

Unfortunately, to the best of our knowledge, the hard clusters Ak do not exhibit any
concrete structure: Points that belong to the same cluster are not necessarily "close" to
one another (i.e., there is no locality property). In particular, the convex hulls of the hard
clusters will probably overlap. The hard clusters do not even necessarily cover X (i.e.,
∪̇k∈[K] Ak 6= X). Due to these properties, it is not clear how techniques that do not solely rely
on sampling can be applied. For instance, we presume that the sample and prune technique
from Ackermann et al. (2010) and the K-means++ algorithm (see Arthur and Vassilvitskii,
2007) require a locality property, while the algorithm by Bhattacharya et al. (2016), which is
based on the K-means++ algorithm, requires that the hard clusters form a hard clustering.

8.4 Applying Superset Sampling

In this section, we focus on the problem of approximating the means of unknown hard
clusters Ak ⊆ X of some data set X ∈Dom

(
RD ,Q+

)
with rational weights. If we know that

the weight of each cluster Ak is a certain fraction of the weight of X , then we can tackle this
problem via superset sampling.

From (Ackermann, 2009) we directly obtain the following lemma.

Lemma 8.2 (Weighted Superset Sampling). Let α ∈ (0,1], ε ∈ (0,1], and X = ((xn,wn))n∈[N] ∈
Dom

(
RD ,Q+

)
. Consider an arbitrary but fixed (unknown) data set A ⊆ X with

w(A)≥α ·w(X) .

Let S ∈Dom
(
RD , {1}

)
be the data set that contains at least 4/(αε) random samples from

the unweighted data set ((xn,1))n∈[N]: Each sample is drawn independently and identically
according to the distribution that assigns data point (xn,1) probability wn/w(X). Then, with
a probability of at least 1/10, there exists a data set A′ ⊆ S of size

∣∣A′∣∣= d2/εe satisfying

∥∥m(A)−m(A′)
∥∥2

2 ≤ ε ·var (A) .

Proof. A proof can be found in (Ackermann, 2009, p. 75).

Now consider K unknown hard clusters C1, . . . ,CK ⊆ X . Assume that the weight w(Ak)
of each cluster is at least a certain fraction of the total weight w(X). Then, by repeatedly
sampling candidate means as in Lemma 8.2 and combining these candidate means in each
way possible, we obtain a set of candidates C = (µ̃k)k∈[K] where for each k ∈ [K] the mean
vector µ̃k is close to the mean m(Ak) of the hard cluster Ak.

Theorem 8.3. Let X ∈ Dom
(
RD ,Q+

)
, K ∈ N, ε ∈ (0,1], and α ∈ (0,1]. Let (Ak)k∈[K] be an

arbitrary but fixed vector of (unknown) hard clusters Ak ⊆ X.
Given X, K, ε, and α, Algorithm 6 constructs a set T ⊂ (RD)K such that, with constant

probability, there exists a vector
(
µk

)
k∈[K] ∈ T such that for all k ∈ [K] with

w (Ak)≥α ·w(X)

we have ∥∥µk −m (Ak)
∥∥2

2 ≤ ε ·var (Ak) .

The size of T is
|T| ∈ 2O(K loglog(K) log(1/(αε))) .

The algorithms’ runtime is O(|X |+ |T| ·D).

94 CHAPTER 8. SUPERSET SAMPLING FOR FUZZY CLUSTERS

Algorithm 6 Superset Sampling
Require: X = ((xn,wn))n∈[N] ∈Dom

(
RD ,Q+

)
, K ∈N, ε ∈ (0,1], and α ∈ (0,1]

1: Start with an empty data set M :=;
2: Pre-compute the distribution p over X with p((xn,wn))= wn

w(X) for all n ∈ [N].
3: for all r ∈ [d10log(2K)e] do
4: Start with an empty data set Sr :=;.
5: for all s ∈ [d4/(αε)e] do
6: Sample (x,w) from X according to p.
7: Sr := Sr∪̇ ((x,1))
8: Mr :=;
9: for all S′ ⊂ Sr with

∣∣S′∣∣= d2/εe do
10: Mr := Mr∪̇

(
m(S′)

)
11: M := M∪̇Mr

12: T := MK

13: return T

Proof. Let R = d10log(2K)e. Observe that M contains all means m(S′) of data sets S′ with
S′ ⊂ Sr,

∣∣S′∣∣= d2/εe, and r ∈ [R]. Fix an arbitrary k ∈ [K] with w (Ak)≥α ·w(X). According
to Lemma 8.2, with a probability of at least p := 1− (9/10)R , there is a µk ∈ M satisfying∥∥m(Ak)−µk

∥∥2
2 ≤ ε ·var (Ak) .

Since R ≥ 10log(2K), we have that (9/10)R ≤ (2K)log(9/10)·10 ≤ 1/(2K). Hence, p ≥ 1−1/(2K).
By taking the union bound, we obtain that, with a probability of at least 1/2, T contains a
tuple (µk)k∈[K] with the desired property.

Next, we analyse the size of T. Thee algorithm constructs R = d10log(2K)e data sets Sr
with |Sr| = d4/(αε)e. For each of these data sets Sr, the algorithm constructs at most

|Mr| =O

((
4
αε

)2/ε
)

vectors. T contains all possible combinations of K vectors from M = ∪̇r∈[R]Mr. Therefore,

|T| ∈O
((

R ·
(

4
αε

)2/ε
)K)

⊆O
(
16K · (log(2K))K ·2K log(4/(αε))

)
(R ≤ 16log(2K))

⊆O
(
24K ·2K ·log(log(2K)) ·2K(2+log(1/(αε)))

)
⊆ 2O(K loglog(K) log(1/(αε))) .

Now consider the runtime. The construction of all data sets Sr with r ∈ [R] needs time
O

(
R · (|X |+D · 1

αε

))
(Vose, 1991; Knuth, 1997). Enumerating all the data sets S′ with size

d2/εe and computing the mean of each S′ needs time O(|M| · 1
ε
D). Enumerating all elements

in T needs time O(|T|D)=O(|M|K D). Hence, the overall running time is

O

(
|X |+R ·

(
D
αε

)
+R · |M| · 1

ε
D+|T| ·D

)
⊆O (|X |+ |T| ·D) .

Observe that each candidate mean constructed by Algorithm 6 is the mean of a data set
S′ of size d2/εe. Instead constructing these sets S′ via sampling, we can simply enumerate all

8.5. COMBINING THE RESULTS 95

possible data sets S′ of size d2/εe. In other words, we can replace the random sampling by an
exhaustive enumeration. Thereby, we obtain a deterministic algorithm that computes a set
of candidate means. Most notably, this algorithm does not need to know the ratio between
the weights of the clusters and data points.

Algorithm 7 De-Randomized Superset Sampling
Require: X = ((xn,wn))n∈[N] ∈Dom

(
RD ,Q+

)
, K ∈N, ε ∈ (0,1], and α ∈ (0,1]

1: M :=;
2: for all data sets S′ ⊆Dom({xn | (xn,wn) ∈ X } , {1}) with

∣∣S′∣∣= d2/εe do
3: M := M∪ (

m(S′)
)

4: M := TK

5: return T

Corollary 8.4. Given X ∈ Dom
(
RD ,Q+

)
, K ∈ N, ε ∈ (0,1], and α ∈ (0,1], Algorithm 7 con-

structs a set T ⊂ (RD)K with the following properties: For all vectors (Ak)k∈[K] of sets Ak ⊆ X,
there exists a vector

(
µk

)
k∈[K] ∈ T such that for all k ∈ [K] with Ak 6= ; we have

∥∥µk −m(Ak)
∥∥2

2 ≤ ε ·var (Ak) .

The size of T is
|T| ∈ |X |O(K /ε) .

The algorithms’ runtime is
D · |X |O(K /ε) .

Proof. On the one hand, observe that Lemma 8.2 holds for all choices of α ∈ (0,1], especially
α = min {w (Ak) /w (X) | k ∈ [K], Ak 6= ;}. On the other hand, observe that the candidates
constructed in the proof of Theorem 8.3 are always means of sets of size d2/εe. Combining
both observations yields the claim regarding the approximation factor.

Observe that there are at most |X |d2/εe data sets with points from {xn | (xn,wn) ∈ X } and
size d2/εe. Hence, the size of T is |X |O(K /ε). The algorithms’ runtime is O

(|M| · 2
ε
D+|T| ·D)⊆

O (|T|D)⊆ D · |X |O(K /ε).

Again, we stress the fact that this approach does not require that the weights w(Ak) of
the unknown hard clusters Ak make up a certain fraction of the weight w(X).

8.5 Combining the Results

In this section, we show how the results from the previous two sections can be combined.

8.5.1 Approximation Factor

Let us start with the easy part: Consider an arbitrary soft clustering P. Assume that there
are hard clusters that imitate the r-fuzzy clusters given by P as described in Theorem 8.1
(with ε/2 instead of ε). Moreover, assume that we have found means that are close to the
means of these hard clusters, as described in Theorem 8.3 and Corollary 8.4 (with ε/(32K)
instead of ε). Then we have found an approximation to the corresponding r-fuzzy K-means
problem:

Lemma 8.5 (combination). Let X ∈ Dom
(
RD ,R+

)
be a data set, r : R≥0 → R≥0 be a fuzzifier

function, and K ∈N.

96 CHAPTER 8. SUPERSET SAMPLING FOR FUZZY CLUSTERS

Consider a hard K-clustering (Ak)k∈[K] of X, P ∈∆N,K−1, and (µk)k∈[K] ⊂RD satisfying

∥∥µk −m(Ak)
∥∥2

2 ≤
ε

32K
·var (Ak) , (8.4)

w(Ak)≥ 1
2
·w

(
A(X ,r(P))

k

)
, (8.5)∥∥∥m (Ak)−m

(
A(X ,r(P))

k

)∥∥∥2

2
≤ ε

4
·var

(
A(X ,r(P))

k

)
, and (8.6)

d (Ak)≤ 4K ·d
(
A(X ,r(P))

k

)
. (8.7)

Then,

φ(r)
X ((µk)k∈[K])≤ (1+ε)φ(r)

X (P) .

Proof. We start by observing that

φ(r)
X ((µk)k∈[K])≤φ(r)

X ((µk)k∈[K],P)

=φ(r)
X (P)+

K∑
k=1

w
(
A(X ,r(P))

k

)
·
∥∥∥µk −m

(
A(X ,r(P))

k

)∥∥∥2

2
(Lemma 2.20)

≤φ(r)
X (P)+2

K∑
k=1

w
(
A(X ,r(P))

k

)∥∥µk −m(Ak)
∥∥2

2 (Lemma A.3)

+2
K∑

k=1
w

(
A(X ,r(P))

k

)∥∥∥m(Ak)−m
(
A(X ,r(P))

k

)∥∥∥2

2
.

We can bound the second term of this upper bound by

2
K∑

k=1
w

(
A(X ,r(P))

k

)∥∥µk −m(Ak)
∥∥2

2 ≤
ε

16K
·

K∑
k=1

w
(
A(X ,r(P))

k

)
· d(Ak)
w(Ak)

(Equation (8.4))

≤ ε

8K
·

K∑
k=1

d (Ak) (Equation (8.5))

≤ ε
2
·

K∑
k=1

d
(
A(X ,r(P))

k

)
(Equation (8.7))

= ε
2
·φ(r)

X (P) .

Furthermore, we can bound the third term by

2
K∑

k=1
w

(
A(X ,r(P))

k

)∥∥∥m(Ak)−m
(
A(X ,r(P))

k

)∥∥∥2

2
≤ ε

2
·

K∑
k=1

d
(
A(X ,r(P))

k

)
(Equation (8.6))

= ε
2
·φ(r)

X (P) .

Putting these inequalities together yields the claim.

However, we can only apply Theorem 8.1, Theorem 8.3, and Corollary 8.4 if certain
conditions are satisfied.

8.5.2 Removing the Restriction to Rational Weights

Note that Theorem 8.3 and Corollary 8.4 hold true only for data sets with rational weights.
This is not really a problem because there is no application that requires our algorithms to
deal with real-valued weights. Nonetheless, one can easily get rid of this restriction.

8.5. COMBINING THE RESULTS 97

Lemma 8.6 (rounding the weights). Let X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R+

)
and ε ∈ [0,1]. Set

B :=
⌈

1

ε ·w(X)
min

⌉

and let XQ := (
(xn,wQ

n
)
n∈[N] be the re-weighted data set where

∀n ∈ [N] : wQ

n := dwn ·Be
B

∈Q+ .

Then we have
∀n ∈ [N] : wn ≤ wQ

n ≤ (1+ε)wn .

For all means C ⊂RD , soft clusterings P ∈∆N,K−1, and r :R≥0 →R≥0, we have

φ(r)
X (C,P)≤φ(r)

XQ(C,P)≤ (1+ε)φ(r)
X (C,P) .

Proof. Let n ∈ [N]. On the one hand, dwn ·Be/B ≥ (wn ·B)/B = wn. On the other hand,
dwn ·Be/B ≤ (wn ·B+1)/B = wn +1/B where 1/B = 1/

⌈
1/(ε·w(X)

min)
⌉ ≤ 1/(1/(ε·w(X)

min)) = ε ·w(X)
min ≤ ε ·wn.

This yields the first part of the claim.
Using the first part of the claim and recalling the definition of φ(r)

X (C,P) yields the second
part of the claim.

8.5.3 Removing the Restriction to Clusters with A Minimum Weight

Theorem 8.1 requires that each r-fuzzy cluster has a certain absolute weight. However, the
given r-fuzzy clusters might have an arbitrarily small weight. To circumvent this problem,
we want to increase these weights.

We know from Section 2.3.4 that we can construct a data set X c whose weight is c times
larger than the weight w (X) of the given data set X by adding c copies of each data point
in X to X c. If we make corresponding copies of the soft assignments of a soft clustering P,
then we obtain a soft clustering Pc of X c whose r-fuzzy clusters are c times heavier than the
r-fuzzy clusters of X given by P.

Obviously, we can only make use of this approach if the following two properties are
satisfied: First, we need to be able to make use of mean vectors C that we computed with
respect to X c instead of X . Fortunately, the cost function changes in a predictable way:

Corollary 8.7 (adding copies). Let X ∈Dom
(
RD ,R+

)
, and c ∈N. Let X c be the data set that

contains c copies of each data point from X.
For every P ∈∆|X |,K−1, we have φ(r)

X (P)= 1
cφ

(r)
X c

(P c), where P c ∈∆c·|X |,K−1 contains c copies
of each assignment from P (ordered in the same way as the copies in X c are ordered).

Moreover, for all means C ⊂RD , φ(r)
X (C)= 1

cφ
(r)
X c

(C).

Proof. From Corollary 2.26 it follows that the mean vectors induced by P with respect to X
coincide with the mean vectors induced by P c with respect to X c. This yields the first claim.
To see that the second claim holds true, recall Lemma 5.17.

Second, we need to be able to compute an appropriate number of copies c. However, as
said before, the weights of arbitrary r-fuzzy clusters might be arbitrarily small. Hence, the
number of copies that we have to add might be arbitrarily large. Therefore, we need an
additional trick.

We make use of our notion of non-negligible clusters. Recall from Section 6.2 that for each
soft clustering, there exists a soft clustering that has similar cost and no negligible clusters.
Each non-negligible cluster has a certain minimum support and, hence, the corresponding
r-fuzzy clusters have a certain minimum weight. Observe that neither the required absolute
bound nor the minimum weight of a non-negligible cluster depend on the number of data
points. Moreover, we know both bounds. These observations lead us to the following result:

98 CHAPTER 8. SUPERSET SAMPLING FOR FUZZY CLUSTERS

Corollary 8.8 (add copies to increase the weights). Let K ∈N, and let r : R≥0 → R≥0 be an
ir-increase-bounded fuzzifier function. Consider some data set X ∈Dom

(
RD ,R+

)
and a soft

K-clustering P ∈∆|X |,K−1. Choose some constant a ∈R>0.
Set

c :=
⌈

a ·
(
r
(

ε

2irK2

)
·w(X)

min

)−1⌉
.

Let X c be the data set that contains c copies of each data point from X and let P c ∈∆c·|X |,K−1
be the soft K-clustering that contains c copies of each assignment from P (ordered in the same
way as the copies of X in X c).

Then, there exists a soft L-clustering P c
sup of X c with L ≤ K such that

φ(r)
X c

(P c
sup)≤ (1+ε) ·φ(r)

X c
(P c)

and
w

(
A

(X c,r(P c
sup))

k

)
≥ a .

Proof. Write X = ((xn,wn))n∈[N]. From Theorem 6.3, we know that there exists a soft L-
clustering Psup = (pnl)n,l of X with L ≤ K such that

φ(r)
X (Psup)≤ (1+ε) ·φ(r)

X (P) (8.8)

and such that ∀l ∈ [L] ∃n ∈ [N] : pnl ≥ ε
2irK2 . From the latter property and the properties of

a fuzzifier function, it follows that

∀l ∈ [L] : w
(
A(X ,r(Psup))

l

)
=

N∑
n=1

wnr(pnk)≥ r
(

ε

2irK2

)
·w(X)

min . (8.9)

Let P c
sup ∈∆c·|X |,K−1 be the soft K-clustering that contains c copies of each assignment from

Psup (ordered in the same way as the copies of X are ordered in X c). From Corollary 8.7 and
(8.8), we can conclude that φ(r)

X c
(P c

sup) ≤ (1+ ε) ·φ(r)
X c

(P c). From Corollary 2.26 and (8.9), we
can conclude that

w
(
A

(X c,r(P c
sup))

l

)
= c ·w

(
A(X ,r(Psup))

l

)
≥ c · r

(
ε

2irK2

)
·w(X)

min ≥ a

for all l ∈ [L]. This yields the claim.

We point out that the required absolute weight and the minimum weight of a non-
negligible cluster depend on the minimum and maximum weight of a data point in the given
data set, respectively. Therefore, we cannot remove the restriction by scaling the weights.

8.6 Algorithms

In this section, we state and discuss two algorithms: First, we present a deterministic
(1+ε)-approximation algorithm that applies the de-randomized version of superset sampling
from Theorem 8.1. Second, we describe a randomized (1+ε)-approximation algorithm that
uses superset sampling directly (Theorem 8.3). For both of these algorithms, the proof of
their correctness relies on our soft-to-hard clustering technique.

8.6.1 A Deterministic Approximation Algorithm (Algorithm 8)

Let us start with an application of the de-randomized version of superset sampling from
Theorem 8.1. Before we consider a concrete fuzzifier function, take note of the result in its
most general form:

8.6. ALGORITHMS 99

Algorithm 8 Deterministic Approximation via Superset Sampling
Require: X = ((xn,wn))n∈[N] ∈Dom

(
RD ,R+

)
, r :R≥0 →R≥0, ir ∈ [1,∞), K ∈N, ε ∈ (0,1]

1: Choose
ε̃ := ε/6 and B :=

⌈(
ε̃ ·w(X)

min

)−1
⌉

.

2: Choose the number of copies

c :=
⌈(

32
ε̃

K(1+ ε̃)w(X)
max

)
·
(
r
(

ε̃

2irK2

)
·w(X)

min

)−1⌉
.

3: Construct a data set XQ

c that, for each n ∈ [N], contains c copies of the data point
(xn, c ·wQ

n), where wQ

n := dwn ·Be/B.
4: Apply Algorithm 7 to XQ

c , K , ε̃/(32K) to compute a set of candidate solutions T ⊂ (
RD)K

5: Determine C ∈ arg min
{
φ(r)

X (C′)
∣∣∣ C′ ∈ T

}
.

6: return C

Theorem 8.9. Given X ∈Dom
(
RD ,R+

)
, an ir-increase-bounded [0,1]-reducing fuzzifier func-

tion r :R≥0 →R≥0, the value ir ∈ [1,∞), K ∈N, ε ∈ (0,1], Algorithm 8 computes means C ⊂RD ,
|C| ≤ K, such that

φ(r)
X (C)≤ (1+ε) ·φOPT

(X ,K ,m) .

The algorithms’ runtime is

D · tr(K) ·
(
r
(

ε

12irK2

)−1
· w

(X)
max

w(X)
min

· |X |
)O(K2 log(K)/ε log(1/ε))

.

Proof. First, we show that this algorithm returns a solution C with the desired approxima-
tion factor. Fix an arbitrary soft K-clustering Popt of X and K means Copt with

φ(r)
X (Copt,Popt)=φOPT

(X ,K ,r) . (8.10)

Let XQ := (
(xn,wQ

n
)
n∈[N] where wQ

n := dwn ·Be/B for each n ∈ [N]. Then, from Lemma 8.6,
we know

w(XQ)
min ≥ w(X)

min and (8.11)

w(XQ)
max ≤ (1+ ε̃)w(X)

max . (8.12)

Let XQ

c be defined as in the algorithm.
Let P c

opt be the soft K-clustering of XQ

c that contains c copies of each assignment from
Popt (ordered in the same way as the copies in XQ

c are ordered). With (8.11), we can conclude
that

c ≥
⌈(

32
ε̃

K(1+ ε̃) ·w(X)
max

)
·
(
r
(

ε̃

2irK2

)
·w(XQ)

min

)−1⌉
.

Hence, with Corollary 8.8, we can conclude that there exists a soft L-clustering P c
sup of XQ

c
with L ≤ K ,

φ(r)
XQ(P c

sup)≤ (1+ ε̃)φ(r)
XQ(P c

opt) , (8.13)

100 CHAPTER 8. SUPERSET SAMPLING FOR FUZZY CLUSTERS

and

∀l ∈ [L] : w
(
A

(XQ
c ,r

(
P c

sup
)
)

l

)
≥ 32

ε̃
K(1+ ε̃)w(X)

max

≥ 32
ε̃

Kw(XQ)
max (Equation (8.12))

= 32
ε̃

Kw
(XQ

c)
max (Corollary 2.26)

≥ 32
ε̃

Lw(XQ
c)

max . (L ≤ K)

Due to the latter bound and Theorem 8.1, there exist hard clusters A1, . . . , AL ⊆ XQ

c
where, for each l ∈ [L], we have

w(Al)≥
1
2

w
(
A

(XQ
c ,r

(
P c

sup
)
)

l

)
,∥∥∥∥m (Al)−m

(
A

(XQ
c ,r

(
P c

sup
)
)

l

)∥∥∥∥2

2
≤ ε̃

4
·var

(
A

(XQ
c ,r

(
P c

sup
)
)

l

)
, and

d (Al)≤ 4L ·d
(
A

(XQ
c ,r

(
P c

sup
)
)

l

)
.

From Corollary 8.4, we know that the set T contains a candidate C = (µk)k∈[K] ∈ T with

∀l ∈ [L] :
∥∥µl −m (Al)

∥∥2
2 ≤

ε̃

32K
var (Al)≤

ε̃

32L
var (Al) .

Combining these results via Lemma 8.5 gives

φ(r)
XQ

c
(C)≤ (1+ ε̃)φ(r)

XQ
c
(P c

sup) . (8.14)

Let P be the r-fuzzy L-clustering of XQ induced by C. Then, observe that

φ(r)
X (C)≤φ(r)

X (C,P)

≤φ(r)
XQ(C,P) (Lemma 8.6)

=φ(r)
XQ(C) (by definition of P)

= 1
c
φ(r)

XQ
c
(C) (Corollary 8.7)

≤ (1+ ε̃) · 1
c
φ(r)

XQ
c
(P c

sup) (Equation (8.14))

≤ (1+ ε̃)2 · 1
c
φ(r)

XQ
c
(P c

opt) (Equation (8.13))

≤ (1+ ε̃)2 ·φ(r)
XQ(Popt) (Corollary 8.7)

≤ (1+ ε̃)2 ·φ(r)
XQ(Copt,Popt) (cf. Equation (8.10))

≤ (1+ ε̃)3 ·φ(r)
X (Copt,Popt) (Lemma 8.6)

= (1+ ε̃)3 ·φOPT
(X ,K ,r) (Equation (8.10))

≤ (1+6ε̃) ·φOPT
(X ,K ,r) (Lemma A.1)

= (1+ε) ·φOPT
(X ,K ,r) . (ε̃= ε/6)

Since Algorithm 8 computes the cost of each C′ ∈ T and returns the C′ with the smallest
r-fuzzy K-means cost, this yields our claim.

Second, we analyse the algorithm’s runtime. By definition, we have
∣∣XQ

c
∣∣= c · |X |, where

c ≤ (32 ·2 ·6) ·K · 1
ε
· r

(
ε

12irK2

)−1
· w

(X)
max

w(X)
min

.

8.6. ALGORITHMS 101

XQ

c can be constructed in O(c |X |D). We apply Algorithm 7 to XQ

c to compute a set T, where
we use ε̃/(32K) instead of ε. Hence, due to Corollary 8.4, the size of T is

|T| ∈ (c · |X |)O(K /(ε̃/32K)) ⊆ (c · |X |)O(K2/ε) .

and the time needed to construct T is D · (c · |X |)O(K2/ε). Observe that

(c · |X |)O(K2/ε) ⊆
(
K · 1

ε
· r

(
ε

12irK2

)−1
· w

(X)
max

w(X)
min

· |X |
)O(K2/ε)

⊆
(
r
(

ε

12irK2

)−1
· w

(X)
max

w(X)
min

· |X |
)O(K2 log(K)/ε log(1/ε))

.

Finally, note that we have to evaluate φ(r)
X (C) for each candidate C ∈ T. This needs time

O (|T| · (|X | ·D · tr(K)+|X |KD))⊆O (|T| · |X | ·D · tr(K)) ,

since we assume that tr(K) ∈Ω(K) (Assumption 5.19). This yields the claim.

Observe that Algorithm 9 is a polynomial-time approximation scheme for the r-fuzzy
K-means problem if K ,ir ∈O(1) are constants and if the given data sets X satisfy w(X)

max/w(X)
min ∈

|X |O(1). Note that this covers all unweighted data sets X ∈Dom
(
RD , {1}

)
and all the fuzzifier

functions presented in Section 5.3, except for the exponential fuzzifier function eγ, which is
not increase-bounded.

Special Case. Consider the classical fuzzy K-means problem with the polynomial fuzzifier
function pm(x)= xm with m ∈ (1,∞). Recall from Section 5.3.2, that we can set tpm

(K)=O(K)
and ipm

= 4m. Hence,

pm

(
ε

12 · ipm
·K2

)−1

=
(

48 ·m ·K2

ε

)m

.

This means that for the classical fuzzy K-means problem, Theorem 8.9 describes a (1+ε)-
approximation algorithm with runtime

D ·K ·
((

48 ·m ·K2

ε

)m

· w
(X)
max

w(X)
min

|X |
)O(K2 log(K)/ε log(1/ε))

⊆ D ·
(
w(X)

max

w(X)
min

|X |
)O(K3ε−2m2)

.

To sum up, if K ∈N and m ∈ (1,∞) are constants and if we are only given data sets where
w(X)

max/w(X)
min ∈ |X |O(1), then we have a polynomial-time approximation scheme for the classical

fuzzy K-means problem.

8.6.2 A Randomized Algorithm (Algorithm 9)

Algorithm 7 applies a de-randomized version of the superset-sampling technique. As already
explained in Section 8.4, this eliminates the need to fix a ratio α between the weights of
the r-fuzzy clusters, whose means we want to approximate, and the weight of the given
data set. If we knew the ratio αopt between the weights of optimal r-fuzzy clusters and
the weight of the given data set in advance, then we could apply the randomized version
of sampling-sampling in a way that guarantees that we approximate the means of optimal
r-fuzzy clusters. However, we do not know αopt.

In the following, we first consider the application of the superset sampling technique
with some arbitrary but fixed ratio α ∈ (0,1]. We explain why, with respect to an arbitrary
but fixed constant ratio α, the use of this algorithm is questionable. However, we also show
that, for each data set, we can choose a specific α that works nearly as good as the optimal
ratio αopt, which we do not know. To this end, we make use of our notion of negligible
clusters from Section 6.2.

102 CHAPTER 8. SUPERSET SAMPLING FOR FUZZY CLUSTERS

A Questionable Algorithm. The following algorithm does not approximate an optimal
solution. Its goal is to find a solution whose cost is not much worse than the minimum cost
of a solution where the ratio between the weight of each r-fuzzy cluster and the data set is
at least α.

Algorithm 9 Randomized Approximation via Superset Sampling
Require: X = ((xn,wn))n∈[N] ∈Dom

(
RD ,R+

)
, r :R≥0 →R≥0, ir ∈ [1,∞), K ∈N, and ε,α ∈ (0,1]

1: Choose
ε̃ := ε/6 and B :=

⌈(
ε̃ ·w(X)

min

)−1
⌉

.

2: Choose the number of copies

c :=
⌈(

32K ε̃−1(1+ ε̃) ·w(X)
max

)
·
(
r
(

ε̃

2irK2

)
·w(X)

min

)−1⌉
.

3: Construct a data set XQ

c that, for each n ∈ [N], contains c copies of the data point
(xn, c ·wQ

n), where wQ

n := dwn ·Be/B.
4: Apply Algorithm 6 to XQ

c , K , ε̃/(32K) to compute a set of candidate solutions T ⊂ (
RD)K .

5: Determine C ∈ arg min
{
φ(r)

X (C′)
∣∣∣ C′ ∈ T

}
.

6: return C

Theorem 8.10. Given X ∈Dom
(
RD ,R+

)
, K ∈N, an ir-increase-bounded [0,1]-reducing fuzzi-

fier function r :R≥0 →R≥0, the value ir ∈ [1,∞), ε ∈ (0,1], and α ∈ [0,1], Algorithm 9 computes
means C ⊂RD , |C| ≤ K, such that with constant probability

φ(r)
X (C)≤ (1+ε)φ(r)

X (Pα) ,

where

Pα ∈ arg min

{
φ(r)

X (P)

∣∣∣∣∣ soft L-clustering P of X with L ≤ K and

where ∀l ∈ [L] : w
(
A(X ,r(P))

l

)
≥α ·w (X)

}
,

if this minimum exists.
The algorithms’ runtime is

|X | ·
(
O

(
K · 1

ε
· r

(
ε

12irK2

)−1
· w

(X)
max

w(X)
min

)
+D · tr(K) ·2O(K log(K)2 log(1/(αε)))

)

Proof. Observe that Algorithm 9 differs from Algorithm 8 only in the way that superset
sampling is applied: Algorithm 8 uses Algorithm 7 to compute a set of candidate solutions
T. Algorithm 6, as used by Algorithm 8, computes a set of candidate solutions T with the
same property regarding the hard clusters A1, . . . , AK , with a constant success probability
(cf. Corollary 8.4 and Theorem 8.3). Hence, Algorithm 9 computes a (1+ε)-approximation,
with constant probability.

As for the runtime, recall that by definition
∣∣XQ

c
∣∣= c ·|X |. Hence, XQ

c can be constructed in
O(c |X |D). We apply Algorithm 6 to XQ

c with ε̃/(32K) instead of ε. According to Theorem 8.3,
this needs time (c |X |)+|T| ·D) where

|T| ∈ 2O(K loglog(K) log(1/(αε̃))) ⊆ 2O(K log(K)2 log(1/(αε)))

and

c ∈O
(
K · 1

ε
· r

(
ε

12irK2

)−1
· w

(X)
max

w(X)
min

)
.

8.6. ALGORITHMS 103

Evaluating φ(r)
X (C) for each candidate C ∈ T needs time O(|T| · |X | ·D · tr(K)) (cf. Assump-

tion 5.19). By putting all these bounds together, we can bound the overall runtime by

O (c |X |+ |T| · |X | ·D · tr(K))
=O (|X | · (c+|T| ·D · tr(K)))

=|X | ·
(
O

(
K · 1

ε
· r

(
ε

12irK2

)−1
· w

(X)
max

w(X)
min

)
+D · tr(K) ·2O(K log(K)2 log(1/(αε)))

)
This yields the claim.

Two Flaws. Theorem 8.10 seems to be a constraint clustering approach (Basu et al., 2008).
However, there are two flaws: First, the constraint only applies to the solution that the
outcome of the algorithm is compared to. The outcome of the algorithm is not guaranteed to
satisfy the same constraint as well. Second, the constraint is difficult to interpret. The sum
of all the weights of all r-fuzzy clusters in a fuzzy K-means clustering, in general, does not
sum up to the weight of the data set. Therefore, the constraint

∀l ∈ [L] : w
(
A(X ,r(P))

l

)
≥α ·w (X)

is potentially much stronger than the constraint that the clusters are balanced in the sense
that

∀l ∈ [L] : w
(
A(X ,r(P))

l

)
≥α ·

L∑
l=1

w
(
A(X ,r(P))

l

)
.

This problem becomes very obvious in the following example:

Example 8.11 (an artificial and extreme case). For the classical fuzzy K-means problem
with fuzzifier m ∈ (1,∞) the gap between these restrictions might be up to a factor c∗

pm
= Km−1:

Consider the "uniform" soft K-clustering Pu with pnk = 1/K for all n ∈ [N] and k ∈ [K]. The
pm-fuzzy clusters described by Pu are perfectly balanced in the sense that

∀k ∈ [K] : w
(
A(X ,pm(Pu))

k

)
=

N∑
n=1

(
1
K

)m
wn = 1

Km ·w (X) .

However, when we apply Theorem 8.10 with α = 1/K2 and m = 3, then we know that the
outcome of the algorithm is compared to a soft clustering Pα that is chosen from a set that
does not contain the perfectly balanced uniform soft K-clustering Pu.

That is, the parameter α does not describe how balanced the (r-fuzzy) clusters of the
sought solution are. To sum up, we are still missing a concise interpretation of the constraint
from Theorem 8.10.

A Reasonable Application of a Questionable Algorithm. From Theorem 6.3, we
know that there exists a (1+ ε)-approximation to the r-fuzzy K-means problem where
each r-fuzzy cluster has a certain weight. This fact directly leads us to the following result.

Corollary 8.12. Given X ∈ Dom
(
RD ,R+

)
, K ∈ N, an ir-increase-bounded [0,1]-reducing

fuzzifier function r : R≥0 → R≥0, the value ir ∈ [1,∞), ε/4 ∈ (0,1/4], and α := r
(

ε
8irK2

)
w(X)

min

w(X)
max·|X | ,

Algorithm 9 computes means C ⊂RD , |C| ≤ K, such that with constant probability

φ(r)
X (C)≤ (1+ε)φOPT

(X ,K ,r) .

The algorithms’ runtime is

D · tr(K) ·
(
r
(

ε

8irK2

)−1 w(X)
max

w(X)
min

· |X |
)O(K log(K)2·log(1/ε))

.

104 CHAPTER 8. SUPERSET SAMPLING FOR FUZZY CLUSTERS

Proof. From Theorem 6.3, we know that there exists a C ⊆ RD with |C| =: L ≤ K and
φ(r)

X (C)≤ (1+ε/4) ·φOPT
(X ,K ,r) that induces some soft L-clustering P = (pnk)n,k of X where, for all

l ∈ [L], there exists some n ∈ [N] with pnl ≥ ε
8irK2 . Observe that φ(r)

X (P)≤φ(r)
X (C,P).

Moreover, we can conclude that, for all l ∈ [L], we have w
(
A(X ,P)

k

)
≥ r

(
ε

8irK2

)
·w(X)

min. Let

α := r
(

ε
8irK2

)
w(X)

min

w(X)
max·|X | . Then,

α ·w (X)= r
(

ε

8irK2

)
w(X)

min

w(X)
max · |X |

·w (X)≤ r
(

ε

8irK2

)
w(X)

min

w (X)
·w (X)= r

(
ε

8irK2

)
w(X)

min .

That is, α ·w (X) is a lower bound on the weights of the r-fuzzy clusters of X defined by P.
Hence, by applying Algorithm 8 as described in the claim, we compute (with constant

probability) a solution whose cost are at most a factor (1+ ε/4) larger than the cost of the
solution induced by P, which is at most a factor (1+ ε/4) larger than an optimal cost. So,
overall, we compute a solution whose cost is at most a factor (1+ε/4)2 ≤ (1+ε) worse than an
optimal solution, with constant probability.

Observe that our execution of the algorithm needs time

|X | ·
O(

K · 1
ε
· r

(
ε

12irK2

)−1
· w

(X)
max

w(X)
min

)
+D · tr(K) ·2

O

(
K log(K)2·log

(
r
(

ε

8ir K2

)−1 w(X)
max
w(X)

min
·|X |

)
·log(1/ε)

)
⊆|X | ·

O(
K · 1

ε
· r

(
ε

12irK2

)−1
· w

(X)
max

w(X)
min

)
+D · tr(K) ·

(
r
(

ε

8irK2

)−1 w(X)
max

w(X)
min

· |X |
)O(K log(K)2·log(1/ε))


⊆D · tr(K) ·

(
r
(

ε

8irK2

)−1 w(X)
max

w(X)
min

· |X |
)O(K log(K)2·log(1/ε))

Compared to the runtime of the deterministic algorithm from Algorithm 8, which is
bounded by

D · tr(K) ·
(
r
(

ε

12irK2

)−1
· w

(X)
max

w(X)
min

· |X |
)O(K2 log(K)/ε log(1/ε))

,

the runtime of the randomized algorithm from Corollary 8.12 has only a slightly better
dependence on K .

Special Case. Again, consider the classical fuzzy K-means problem with the polynomial
fuzzifier function pm(x)= xm with m ∈ (1,∞). Analogously to the previous section,

pm

(
ε

8 · ipm
·K2

)−1

=
(

32 ·m ·K2

ε

)m

.

Hence, for the classical fuzzy K-means problem, Corollary 8.12 describes a randomized
(1+ε)-approximation algorithm with runtime

D ·K ·
((

32 ·m ·K2

ε

)m

· w
(X)
max

w(X)
min

|X |
)O(K log(K)2/ε log(1/ε))

⊆ D ·
(
w(X)

max

w(X)
min

|X |
)O(K2ε−2m2)

.

“ One Ring to rule them all, one
Ring to find them. ”

J. R. R. Tolkien

Chapter 9

A Discretization

Chen (2009) described a construction for the K-means problem that can be thought of as a
well-informed grid search. In Chapter 7, we considered a grid search for the soft assignments
of a good solution. Now we consider a grid search for good mean vectors. A naïve approach to
such a grid search would be to construct a D-dimensional grid where the grid cells have some
fixed side length and search through all grid points that lie within the convex hull of the
point set. With some additional information and the use of exponential grids, Chen (2009)
improved this naïve approach substantially. His approach uses a coarse K-means solution
as additional information. That is, one pre-computes a constant-factor approximation of
the K-means problem. This solution gives a rough idea of where the data points lie. In
particular, one knows that the data points are rather concentrated around the means of
the coarse K-means solution. This information is then exploited by constructing a special
kind of exponential grid around the means. Chen (2009) used this construction to develop a
coreset and a (1+ε)-approximation algorithm for the K-means problem.

In Section 6.1 we showed that there is a coarse relation between the K-means and the
r-fuzzy K-means cost function, given that the fuzzifier function r is contribution-bounded.
This coarse relation is the key ingredient that enables us to interpret this construction with
respect to the r-fuzzy K-means problem.

In this chapter, we focus on analysing the basic properties of the construction. In the
subsequent chapters we will then apply the results in two different ways: In Chapter 10, we
use it to construct a (1+ε)-approximation algorithm for the r-fuzzy K-means problem. In
Chapter 12, we show that it helps to construct a coreset for the r-fuzzy K-means problem.

Overview. In Section 9.1 we summarize our contribution. After a brief introduction of
some notation in Section 9.2, we describe the construction formally in Section 9.3. In
particular, we define a search space U⊆ RD and a representative g(x) for each point x ∈U
in the search space. In Section 9.4, we focus on the properties of the search space U and
distances between points x ∈ U and their representatives g(x). In Section 9.5, we have a
closer look at the size of the set g(U), which contains all representatives, and the time needed
to compute this set.

Publication. In this chapter, we generalize results that have been published in Blömer
et al. (2017).

9.1 Contribution

We give a detailed analysis of the construction described by Chen (2009): On the one hand,
we identify the single properties of this construction that have already been exploited for
the K-means problem. On the other hand, we analyse these properties with respect to the

105

106 CHAPTER 9. A DISCRETIZATION

r-fuzzy K-means problem. The benefit is twofold: First, this allows for a discussion of the
usefulness of this approach. It becomes clear that this construction is probably only useful
(and our analysis is only useful) if the coarse K-means solution and the fuzzifier function
meet certain requirements. Second, apart from deriving a coreset construction similar to
Chen (2009) (see Chapter 12), from our analysis it becomes clear that the construction can
be used to derive a (1+ε)-approximation algorithm for the r-fuzzy K-means problem, as we
show in Chapter 10.

9.2 Preliminaries

From now on, we use the following abbreviations:

Definition 9.1 (distance). For each x ∈RD and C = (µk)k∈[K] ⊆RD , we let

dist(x,C) :=min
{∥∥x−µk

∥∥
2

∣∣ k ∈ [K]
}

.

Definition 9.2 (ball). For each µ ∈RD and r ∈R+, we let

B
(
µ, r

)
:=

{
x ∈RD

∣∣∣ ∥∥x−µ∥∥
2 ≤ r

}
be the closed ball around µ with radius r.

Definition 9.3. Let X ∈ Dom
(
RD ,R+

)
, K ∈ N, and α,β ∈ [1,∞). We call M ⊂ RD an (α,β)-

approximation to the K-means problem with respect to X if

kmX (M)≤α ·kmOPT
(X ,K) and |M| = bβ ·Kc .

Moreover, the following simple lemma will be useful.

Lemma 9.4. For all a,b, c ∈ RD we have

‖a− c‖2
2 ≤ ‖a−b‖2

2 +‖b− c‖2
2 +2‖a−b‖2 ‖c−b‖2 .

Proof. For all a,b, c ∈ RD , we have

‖a− c‖2
2 ≤ (‖a−b‖2 +‖b− c‖2)2 (Lemma A.3)

= ‖a−b‖2
2 +2〈a−b, b− c〉+‖b− c‖2

2

≤ ‖a−b‖2
2 +2 |〈a−b, b− c〉|+‖b− c‖2

2

≤ ‖a−b‖2
2 +2‖a−b‖2 ‖b− c‖2 +‖b− c‖2

2 .

where the last inequality is due to the Cauchy-Schwarz inequality.

9.3 Basic Construction

The following construction is due to (Chen, 2009, pp. 935): Consider a data set X ∈
Dom

(
RD ,R+

)
. Assume we are given L mean vectors M = (ml)l∈[L] ⊆ RD that give us a

rough idea of where the data points from X lie. For now, we do not assume any specific
property of M. We will deal with the question of how to choose M later on in Section 9.4.5.

In the first step of the construction, we restrict the search space to the union of closed
balls around the single means.

Definition 9.5 (search space). Let Descr :=N0 ×R+×{
(ml)l∈[L] ⊆RD ∣∣ L,D ∈N}

.
For each (E,R,M) ∈Descr with M⊆RD , we call the set

U(E,R,M) := ⋃
m∈M

B
(
m,2E ·R

)
⊂RD . (9.1)

the search space described by (E,R,M).

9.3. BASIC CONSTRUCTION 107

We partition each ball into exponentially increasing rings.

Definition 9.6 (ring). Let (E,R, (ml)l∈[L]) ∈Descr. Let l ∈ [L] and j ∈ {0, . . . ,E}. The (l, j)-th
ring defined by (E,R, (ml)l∈[L]) is the set

Ul, j :=
{
B(ml ,R) , if j = 0
B
(
ml ,2 jR

)
\B

(
ml ,2 j−1R

)
if j ≥ 1

. (9.2)

m1

m2

U2,3

U2,2
U2,1

2 2
R

ε · 23Rp
D

two points

representative of both points

Figure 9.1: Sketch of the construction.

The union of the rings Ul, j defined by
(E,R,M) coincides with the search space
U defined by (E,R,M):⋃

k∈[L]

⋃
j∈{0,...,E}

Ul, j =U .

For each l ∈ [L], the rings Ul, j with j ∈
{0,1, . . . ,E} are pairwise disjoint. How-
ever, this is not necessarily true for a
fixed j ∈ {0,1, . . . ,E} and the rings Ul, j
with l ∈ [L]. Hence, the rings do not nec-
essarily form a partition of U(E,R,M).

Finally, we put a grid over each ring.
We let the sizes of the grid cells of these
rings grow exponentially as well. We use
these grid cells to define representative
points as follows.

Definition 9.7 (representatives). Let ε ∈
(0,1], (E,R,M) ∈Descr, and let U be the
search space described by (E,R,M). A
function g : U → U is a representative
function if it satisfies the following prop-
erty:

For each l ∈ [|M|] and j ∈ {0, . . . ,E}, let Ul, j be the (l, j)-th ring defined by (E,R,M).
Assume that each ring Ul, j ⊆ RD is partitioned into an axis-parallel grid with cells (i.e.,
hypercubes) of side length

ε · 2 jRp
D

.

There is a function C that assigns each x ∈U to a grid cell C(x) that contains x such that for
all x, y ∈U with C(x)=C(y) we have g(x)= g(y).

In simple words, a representative function g maps all points in a grid cell to the same
representative, which is also contained in the grid cell. However, it does not matter where
the representative lies inside this cell.

Example 9.8 (representatives). First, assign each x ∈U to a grid cell C(x) that contains x
(i.e., choose a tie breaker for border points and overlapping cells). Let C= {C(x) | x ∈U}. For
each C ∈ C choose an arbitrary point c(C) from C (e.g. a vertex of the respective hypercube).
Then, let g be the function that maps each x ∈U to c(C(x)).

We call the set that contains all possible representatives a discrete search space:

Definition 9.9 (discrete search space). Let ε ∈ (0,1] and (E,R,M) ∈Descr. Let U⊂RD be the
search space described by (E,R,M) and let g be a representative function defined by (E,R,M)
and ε. The set

G := g(U)= {g(x) | x ∈U}⊆U

is a discrete search space defined by (E,R,M) and ε.

108 CHAPTER 9. A DISCRETIZATION

9.4 Distances and Costs

In this section, we focus on the properties of a search space U, its rings Ul, j, and representa-
tive points g(x) of points x ∈U in the search space U.

9.4.1 Outside the Search Space

Consider some data set X = ((xn,wn))n∈[N] ∈Dom
(
RD ,R+

)
. If we choose the radius 2E ·R of

each ball around each mean m ∈M large enough, then all the points xn and some space
around each point xn are contained in the resulting search space U=U(E,R,M). It suffices

to choose a radius 2E ·R∝
√

kmX (M) /w(X)
min.

Lemma 9.10. Let X = ((xn,wn))n∈[N] ∈ Dom
(
RD ,R+

)
, K ∈ N, a,b ∈ R, a,b ∈ [1,∞), and ε ∈

(0,1]. Let U⊂RD be the search space described by (E,R,M) ∈Descr, where

E=
⌊

1
2

log

(
9ab

w (X)

w(X)
min

)⌋
and R=

√
kmX (M)
aw (X)

.

Then, ⋃
x∈X

B(x,r)⊆U

where

r= 2

√√√√b
kmX (M)

w(X)
min

.

Proof. Towards a contradiction, assume that there exists an (x,w) ∈ X with B(x, r)*U. Due
to Definition 9.5, this implies that, for all m ∈M, we have B(x, r)* B

(
m,2ER

)
. Hence,

dist(x,M)> 2ER− r .

Observe that

2ER≤
√√√√9ab

w (X)

w(X)
min

·
√

kmX (M)
aw (X)

= 3 ·
√√√√b

kmX (M)

w(X)
min

.

Hence,

dist(x,M)> 2ER− r=
√√√√b

kmX (M)

w(X)
min

≥
√√√√kmX (M)

w(X)
min

. (b ≥ 1)

To sum up, we have

∃(x,w) ∈ X : w(X)
mindist(x,M)2 > kmX (M) ,

which contradicts the fact that

∀(x,w) ∈ X : kmX (M)=
∑

(x′,w′)∈X
w′dist

(
x′,M

)2 ≥ w(X)
mindist(x,M)2 .

This yields the claim.

9.4. DISTANCES AND COSTS 109

9.4.2 Rings

The following simple yet useful observation corresponds to (a part of the proof of) Claim 5.3
from (Chen, 2009, p. 934). It exploits the fact that the radii of the rings are exponentially
increasing.

Lemma 9.11 (diameter of a ring). Let (E,R, (ml)l∈[L]) ∈ Descr, ε ∈ (0,1], l ∈ [L], and j ∈
{0,1, . . . ,E}. Let Ul, j be the (l, j)-th ring described by (E,R, (ml)l∈[L]). For all x ∈Ul, j, we have

diam(Ul, j)≤ 2max
{
2‖x−ml‖2 ,R

}
.

Proof. First, we show that 2 jR≤max
{
2‖x−ml‖2 ,R

}
for all x ∈Ul, j. If j = 0, then 20R=R.

If j ≥ 1, then by definition we have ‖x−ml‖2 ≥ 2 j−1R for all x ∈ Ul, j. Hence, 2‖x−ml‖2 ≥
2 ·2 j−1R= 2 jR. This yields our initial claim.

Now consider some arbitrary but fixed x, y ∈ Ul, j. Due to the triangle inequality, we
have ‖x− y‖2 ≤ ‖x−ml‖2 +‖ml − y‖2 ≤ 2 ·2 jR. With our first claim, we can conclude that
‖x− y‖2 ≤ 2max

{
2‖x−ml‖2 ,R

}
.

9.4.3 A Point and Its Representative

Recall that we put exponentially growing grids on the exponentially growing rings. The
representative of a point in the search space is some fixed point inside the grid cell that
contains the point. Hence, a point and its representative are always contained in the same
grid cell and, needless to say, in the same ring.

Lemma 9.12 (distance between point and representative). Let (E,R,M) ∈Descr and ε ∈
(0,1]. Let U ⊆ RD be the search space described by (E,R,M) and let g be a representative
function defined by (E,R,M) and ε.

For all x ∈U and all y ∈RD , we have

‖x−g(x)‖2 ≤ 2ε · (min{dist(x,M) , dist(g(x),M)}+R)
≤ 2ε · (min{‖y− x‖2 ,‖y−g(x)‖2}+ dist(y,M)+R

)
and

‖x−g(x)‖2
2 ≤ 12ε2 (

min{‖y− x‖2 ,‖y−g(x)‖2}2 + dist(y,M)2 +R2)
.

Proof. Consider an arbitrary but fixed x ∈U. By Definition 9.7, there is a grid cell in some
ring Ul, j that contains x and its representative g(x).

If j = 0, then we have ‖x−g(x)‖2 ≤ εR, due to Definition 9.7. If j ≥ 1, then from Defini-
tion 9.7 and Definition 9.6 we know that

‖x−g(x)‖2 ≤ ε ·2 jR= 2ε · (2 j−1R)

and
2 j−1R≤min {dist(x,M) , dist(g(x),M)} .

Hence, if j ≥ 1, we have

‖x−g(x)‖2 ≤ 2ε ·min {dist(x,M) , dist(g(x),M)} .

By taking the sum of the bounds for the case j = 0 and j ≥ 1, we obtain

‖x−g(x)‖2 ≤ 2ε ·min {dist(x,M) , dist(g(x),M)}+εR
≤ 2ε · (min {dist(x,M) , dist(g(x),M)}+R) .

110 CHAPTER 9. A DISCRETIZATION

This yields the first inequality in the claim.
Observe that for all z, z′ ∈ RD and C ⊂ RD we have dist(z,C) ≤

∥∥z− z′
∥∥

2 + dist
(
z′,C

)
due to the triangle inequality. Hence, for all y ∈RD , we have

min {dist(x,M) , dist(g(x),M)}≤min
{‖x− y‖2 + dist(y,M) , ‖g(x)− y‖2 + dist(y,M)

}
=min

{‖x− y‖2 , ‖g(x)− y‖2
}+ dist(y,M) .

This yields the second inequality in the claim.
Finally, applying Lemma A.2 yields the last inequality in the claim.

9.4.4 Replace Means by Their Representatives (K-Means)

Now consider some means C ⊆ U contained in the search space and some point x ∈ RD .
Replace the means by their representatives g(C). With the help of the previous result, we
can compare the minimum distances dist(x,C) and dist(x,g(C)) with one another. This
result corresponds to (part of) the proof of Lemma 5.11 from (Chen, 2009, p. 937).

Lemma 9.13 (replacing means by their representatives). Let ε ∈ (0,1] and (E,R,M) ∈Descr.
Let U⊂RD be the search space described by (E,R,M) and let g be a representative function
defined by (E,R,M) and ε.

Let C = (µk)k∈[K] ⊆U, g(C) := (
g(µl)

)
l∈[L], and x ∈RD . Then,

dist(x,g(C))2 ≤ dist(x,C)2 +18ε
(
2dist(x,C)2 + dist(x,M)2 +R2)

and

dist(x,C)2 ≤ dist(x,g(C))2 +18ε
(
2dist(x,g(C))2 + dist(x,M)2 +R2)

.

Proof. Consider an index l ∈ [K] where dist(x,C)=
∥∥x−µl

∥∥
2. Observe that

dist(x,g(C))2 − dist(x,C)2 = min
k∈[K]

∥∥x−g(µk)
∥∥2

2 −
∥∥x−µl

∥∥2
2

≤ ∥∥x−g(µl)
∥∥2

2 −
∥∥x−µl

∥∥2
2

≤ ∥∥µl −g(µl)
∥∥2

2 +2
∥∥µl −g(µl)

∥∥
2 ·

∥∥x−µl
∥∥

2 . (Lemma 9.4)

The first summand can be bounded by∥∥µl −g(µl)
∥∥2

2 ≤ 12ε2
(∥∥µl − x

∥∥2
2 + dist(x,M)2 +R2

)
(Lemma 9.12)

= 12ε2 (
dist(x,C)2 + dist(x,M)2 +R2)

. (dist(x,C)=
∥∥x−µl

∥∥
2)

The second summand can be bounded by

2
∥∥µl −g(µl)

∥∥
2

∥∥x−µl
∥∥

2

≤ 4ε
(∥∥x−µl

∥∥
2 + dist(x,M)+R

) ·∥∥x−µl
∥∥

2 (Lemma 9.12)

≤ 2ε
((∥∥x−µl

∥∥
2 + dist(x,M)+R

)2 +∥∥x−µl
∥∥2

2

)
(Lemma A.2)

≤ 2ε
(
3 ·

(∥∥x−µl
∥∥2

2 + dist(x,M)2 +R2
)
+∥∥x−µl

∥∥2
2

)
(Lemma A.2)

≤ 6ε
(
2

∥∥x−µl
∥∥2

2 + dist(x,M)2 +R2
)

= 6ε
(
2dist(x,C)2 + dist(x,M)2 +R2)

. (dist(x,C)=
∥∥x−µl

∥∥
2)

By combining these bounds, we obtain

dist(x,g(C))2 − dist(x,C)2

≤ 12ε2 (
dist(x,C)2 + dist(x,M)2 +R2)+6ε

(
2dist(x,C)2 + dist(x,M)2 +R2)

≤ 18ε
(
2dist(x,C)2 + dist(x,M)2 +R2)

.

9.4. DISTANCES AND COSTS 111

This yields the first part of the claim.
Since the second part of the claim can be proven analogously, we only point out the

main arguments. Consider an index l ∈ [L] where dist(x,g(C))=
∥∥x−g(µl)

∥∥
2. Then, due to

Lemma 9.4, we have

dist(x,g(C))2 − dist(x,C)2 ≤ ∥∥µl −g(µl)
∥∥2

2 +2
∥∥µl −g(µl)

∥∥
2 ·

∥∥x−g(µl)
∥∥2

2 .

With the help of Lemma 9.12 and dist(x,g(C)) =
∥∥x−g(µl)

∥∥
2, one can bound the first

summand by ∥∥µl −g(µl)
∥∥2

2 ≤ 12ε2 (
dist(x,g(C))2 + dist(x,M)2 +R2)

.

Using Lemma 9.12, Lemma A.2, and dist(x,g(C))=
∥∥x−g(µl)

∥∥
2, we can bound

2
∥∥µl −g(µl)

∥∥
2 ·

∥∥x−g(µl)
∥∥2

2 ≤ 6ε
(
2dist(x,g(C))2 + dist(x,M)2 +R2)

.

By combining these bounds we obtain the second claim.

Consequently, the difference between the K-means cost kmX (C) and the K-means cost
kmX (g(C)) can be bounded as follows. This result corresponds to Lemma 5.11 from (Chen,
2009, p. 937).

Corollary 9.14 (replacing means by their representatives). Let ε ∈ (0,1] and (E,R,M) ∈
Descr. Let U⊂ RD be the search space described by (E,R,M) and let g be a representative
function defined by (E,R,M) and ε.

Let C = (µk)k∈[K] ⊆U, g(C) := (
g(µk)

)
k∈[K], and X ∈Dom

(
RD ,R≥0

)
. Then,

kmX (g(C))≤ kmX (C)+18ε
(
2kmX (C)+kmX (M)+w (X)R2)

,

and
kmX (C)≤ kmX (g(C))+18ε

(
2kmX (g(C))+kmX (M)+w (X)R2)

.

9.4.5 Replace Means by Their Representatives (r-Fuzzy K-Means)

The K-means cost of a point (x,w) in X is simply the minimum squared Euclidean distance
dist(x,C)2 multiplied by the weight w (see Problem 4.3). In contrast, the r-fuzzy K-means
cost of (x,w) with respect to C is given by the sum over all squared Euclidean distances∥∥x−µk

∥∥2
2, with k ∈ [K], that are multiplied with the respective fuzzified probabilities r(pnk)

and the weight w. Hence, transfering Lemma 9.13 to the r-fuzzy K-means cost is more
involved.

Lemma 9.15 (replacing means by their representatives). Let ε ∈ (0,1] and (E,R,M) ∈Descr.
Let U⊂RD be the search space described by (E,R,M) and let g be a representative function
defined by (E,R,M) and ε̃= ε/36.

Let r :R≥0 →R≥0 be a [0,1]-reducing fuzzifier function, (x,w) ∈RD ×R+, C = (µk)k∈[K] ⊆U,
and g(C) := (

g(µk)
)
k∈[K]. Then,

1
w

∣∣∣φ(r)
((x,w))(C)−φ(r)

((x,w))(g(C))
∣∣∣≤ ε(dist(x,C)2 + dist(x,M)2 +R2)

.

Proof. Consider an arbitrary but fixed (x,w) ∈ X . Let (pk)k∈[K] and (p̃k)k∈[K] be the r-fuzzy
clusterings of (x,w) induced by C and g(C), respectively. Since r is [0,1]-reducing, we know

K∑
k=1

r(pk)≤ 1 and
K∑

k=1
r(p̃k)≤ 1 . (9.3)

112 CHAPTER 9. A DISCRETIZATION

Let

E := 1
w

∣∣∣φ(r)
((x,w))(C)−φ(r)

((x,w))(g(C))
∣∣∣= ∣∣∣∣∣ K∑

k=1
r(pk)

∥∥x−µk
∥∥2

2 − r(p̃k)
∥∥x−g(µk)

∥∥2
2

∣∣∣∣∣ .

First of all note that if the first term in E is larger than the second, then

E=
K∑

k=1
r(pk)

∥∥x−µk
∥∥2

2 − r(p̃k)
∥∥x−g(µk)

∥∥2
2

≤
K∑

k=1
r(p̃k)

(∥∥x−µk
∥∥2

2 −
∥∥x−g(µk)

∥∥2
2

)
(Lemma 5.17)

≤
K∑

k=1
r(p̃k)

(∥∥µk −g(µk)
∥∥2

2 +2
∥∥µk −g(µk)

∥∥
2

∥∥x−g(µk)
∥∥

2

)
. (Lemma 9.4)

Analogously, if the second term in E is larger than the first, then

E≤
K∑

k=1
r(pk)

(∥∥µk −g(µk)
∥∥2

2 +2
∥∥µk −g(µk)

∥∥
2

∥∥x−µk
∥∥

2

)
.

Hence, we have

E≤max
{ K∑

k=1
r(p̃k)

(∥∥µk −g(µk)
∥∥2

2 +2
∥∥µk −g(µk)

∥∥
2

∥∥x−g(µk)
∥∥

2

)
, (9.4)

K∑
k=1

r(pk)
(∥∥µk −g(µk)

∥∥2
2 +2

∥∥µk −g(µk)
∥∥

2

∥∥x−µk
∥∥

2

)}
. (9.5)

Before we bound this value, observe that

K∑
k=1

r(p̃k)
∥∥x−g(µk)

∥∥2
2 (9.6)

= 1
w
φ(r)

((x,w))(g(C)) (Lemma 5.17)

≤ dist(x,g(C))2 (Lemma 6.1)

≤ dist(x,C)2 +18ε̃
(
2dist(x,C)2 + dist(x,M)2 +R2)

(Lemma 9.13)

= (1+36ε)dist(x,C)2 +18ε̃dist(x,M)2 +18ε̃R2 (where ε̃= ε/36)

≤ 2dist(x,C)2 + dist(x,M)2 +R2 . (9.7)

Next, we bound the single terms in (9.4). Observe that

K∑
k=1

r(p̃k)
∥∥µk −g(µk)

∥∥2
2

≤ 12ε̃2
K∑

k=1
r(p̃k)

(∥∥x−g(µk)
∥∥2

2 + dist(x,M)2 +R2
)

(Lemma 9.12)

≤ 12ε̃2

(
K∑

k=1
r(p̃k)

∥∥x−g(µk)
∥∥2

2 + dist(x,M)2 +R2

)
(Equation (9.3))

≤ 12ε̃2 (
2dist(x,C)2 + dist(x,M)2 +R2 + dist(x,M)2 +R2)

(Equation (9.7))

≤ 24ε̃2 (
dist(x,C)2 + dist(x,M)2 +R2)

≤ ε̃(dist(x,C)2 + dist(x,M)2 +R2)
. (ε̃= ε/36)

9.4. DISTANCES AND COSTS 113

Moreover, we obtain

K∑
k=1

r(p̃k)
∥∥µk −g(µk)

∥∥
2

∥∥x−g(µk)
∥∥

2

≤ 2ε̃
K∑

k=1
r(p̃k)

(∥∥g(µk)− x
∥∥

2 + dist(x,M)+R
)∥∥x−g(µk)

∥∥
2 (Lemma 9.12)

≤ ε̃
K∑

k=1
r(p̃k)

((∥∥g(µk)− x
∥∥

2 + dist(x,M)+R
)2 +∥∥x−g(µk)

∥∥2
2

)
(Lemma A.2)

≤ ε̃
K∑

k=1
r(p̃k)

(
3dist(x,M)2 +3R2 +4

∥∥x−g(µk)
∥∥2

2

)
(Lemma A.2)

≤ 4ε̃
K∑

k=1
r(p̃k)

(
dist(x,M)2 +R2 +∥∥x−g(µk)

∥∥2
2

)
≤ 4ε̃

(
dist(x,M)2 +R2 +

K∑
k=1

r(p̃k)
∥∥x−g(µk)

∥∥2
2

)
(Equation (9.3))

≤ 8ε̃
(
dist(x,M)2 +R2 +2dist(x,C)2 + dist(x,M)2 +R2)

(Equation (9.7))

≤ 8ε̃
(
dist(x,M)2 +R2 + dist(x,C)2)

.

Next, we bound the single terms in (9.5). We have

K∑
k=1

r(pk)
∥∥µk −g(µk)

∥∥2
2

≤ 12ε̃2
K∑

k=1
r(pk)

(∥∥x−µk
∥∥2

2 + dist(x,M)2 +R2
)

(Lemma 9.12)

≤ 12ε̃2

(
K∑

k=1
r(pk)

∥∥x−µk
∥∥2

2 + dist(x,M)2 +R2

)
(Equation (9.3))

≤ 12ε̃2 (
dist(x,C)2 + dist(x,M)2 +R2)

(Lemma 6.1 + Lemma 5.17)

≤ ε̃(dist(x,C)2 + dist(x,M)2 +R2)
. (ε̃= ε/36)

Furthermore, we can bound

K∑
k=1

r(pk)
∥∥µk −g(µk)

∥∥
2

∥∥x−µk
∥∥

2

≤ 2ε̃
K∑

k=1
r(pk)

(∥∥µk − x
∥∥

2 + dist(x,M)+R
)∥∥x−µk

∥∥
2 (Lemma 9.12)

≤ ε̃
K∑

k=1
r(pk)

((∥∥µk − x
∥∥

2 + dist(x,M)+R
)2 +∥∥x−µk

∥∥2
2

)
(Lemma 9.4)

≤ ε̃
K∑

k=1
r(pk)

(
4

∥∥µk − x
∥∥2

2 +3dist(x,M)2 +3R2
)

(Lemma 9.4)

≤ 4ε̃
K∑

k=1
r(pk)

(∥∥µk − x
∥∥2

2 + dist(x,M)2 +R2
)

≤ 4ε̃

(
K∑

k=1
r(pk)

∥∥µk − x
∥∥2

2 + dist(x,M)2 +R2

)
(Equation (9.3))

≤ 4ε̃
(
dist(x,C)2 + dist(x,M)2 +R2)

. (Lemma 6.1 + Lemma 5.17)

Combining the bounds on the terms from (9.4) and (9.5), we obtain that

E≤max
{
9ε̃

(
dist(x,C)2 + dist(x,M)2 +R2)

, 5ε̃
(
dist(x,C)2 + dist(x,M)2 +R2)}

114 CHAPTER 9. A DISCRETIZATION

≤ ε(dist(x,C)2 + dist(x,M)2 +R2)
. (ε̃= ε/36)

This yields the claim.

Given this result, it is easy to see that the difference between the r-fuzzy K-means costs
φ(r)

X (C) and φ(r)
X (g(C)) can be bounded as follows.

Corollary 9.16 (replacing means by their representatives). Let ε ∈ (0,1] and (E,R,M) ∈
Descr. Let U⊂ RD be the search space described by (E,R,M) and let g be a representative
function defined by (E,R,M) and ε̃= ε/36.

Let r : R≥0 → R≥0 be a [0,1]-reducing fuzzifier function, K ∈N, C = (µk)k∈[K] ⊆U, g(C) :=(
g(µk)

)
k∈[K], and X ∈Dom

(
RD ,R+

)
. Then,∣∣∣φ(r)

X (C)−φ(r)
X (g(C))

∣∣∣≤ ε(kmX (C)+kmX (M)+w (X)R2)
.

Proof. Note that
∣∣∣φ(r)

X (C)−φ(r)
X (g(C))

∣∣∣≤∑N
n=1

∣∣∣φ(r)
((xn,wn))(C)−φ(r)

((xn,wn))(g(C))
∣∣∣. Bound each sum-

mand via Lemma 9.15. This yields the claim.

Discussion. This bound and all the bounds that we presented in the previous section
heavily depend on the definition of the K-means cost. Consequently, our application of
this construction also heavily depends on the relation between the r-fuzzy K-means and
the K-means cost function. Our goal is that the discrete search space g(U) contains a good
representative for each solution contained in the continuous search space U. That is, we
want that the upper bound from Corollary 9.16 computes to some small multiple of φ(r)

X (C).
To this end, we need the following paramter setting: To be able to bound the first summand
ε ·kmX (C) by φ(r)

X (C) via Lemma 6.1, we require that

ε∝ cr(K)−1 .

Given this setting of ε, it suffices if kmX (M) ∈O (kmX (C)). We can only guarantee that this
is true for all possible C ⊆RD with |C| ≤ K if

kmX (M)≤αkmOPT
(X ,K)

for some constant α ∈O(1). Given this bound on kmX (M), it remains to choose the parameter
R such that

w (X)R2 ∈O(kmX (M)) .

To sum up, there is a strong dependence on notions from K-means clustering.

9.5 A Discrete Search Space

In this section, we focus on the discrete search space, which contains all possible representa-
tives of points from the search space. Clearly, the size of a discrete search space G, which
is described by (E,R,M) and ε, linearly depends on the number |M| of the given means
and the exponent E of the radius (see Definition 9.9). The following result and its proof
correspond to Claim 4.3 and Claim 5.7 from (Chen, 2009, p. 930,936).

Lemma 9.17 (Size of the Discrete Search Space). The size of a discrete search space G⊂RD

defined by (E,R,M) ∈Descr and ε ∈ (0,1] is bounded by

|G| ≤ |M| · (E+1) ·
(

16
p
π · e
ε

)D

.

9.5. A DISCRETE SEARCH SPACE 115

Proof. Let M := (ml)l∈[L]. Recall Definition 9.7 and Definition 9.9. Consider the grid which
partitions the rings Ul, j. For each l ∈ [|M|] and j ∈ {0, . . . ,E}, the ring Ul, j is partitioned into
an axis-parallel grid with side length s j := ε · 2 jRp

D
. Hence, the volume of each grid cell in

which Ul, j is split up is given by

v j := sD
j =

(
ε · 2 jRp

D

)D

.

By definition, the ring Ul, j is completely contained in a (closed) ball around ml with radius
2 jR. Observe that the (smallest) cube containing a grid cell may not be completely covered
by this ball, but certainly by the ball around ml with radius 2 jR+ s j ≤ 2 j+1R. The volume of
the latter ball is given by

Vj := π
D/2(2 j+1R)D

Γ(D/2+1)
,

where Γ denotes Euler’s gamma function (Hopcroft and Kannan, 2017, pp. 16). Hence, the
number of grid cells in which Ul, j is split up is at most

Vj

v j
= πD/2(2 j+1R)D

Γ(D/2+1)
·
(p

D
ε ·2 jR

)D

= πD/22Dp
D

D

Γ(D/2+1) ·εD .

Note that Γ(n)= (n−1)! for all n ∈N (Hopcroft and Kannan, 2017, p. 17). Hence, Γ(D/2+1)≥
Γ(bD/2+1c)≥ (bD/2+1c−1)!= bD/2c! for all D ≥ 4. From Stirling’s approximation, we know
that n!≥ (n/e)n for all n ∈N (Cormen et al., 2001, p. 55). Hence,

Γ(D/2+1)≥ (bD/2c/e)bD/2c ≥ (D/(4e))D/2−1 .

Therefore,

Vj

v j
≤ πD/22DDD/2(4e)D/2−1

DD/2−1 ·εD = πD/22DD(4e)D/2

εD ≤ πD/24D(4e)D/2

εD ≤
(

16
p
π · e
ε

)D

.

Overall, there are L · (E+1) different rings. Hence, the total number of grid cells is at

most L · (E+1) ·
(

16
p
π·e
ε

)D
. This yields the claim.

Lemma 9.18. A discrete search space G⊂RD defined by (E,R,M) ∈Descr and ε ∈ (0,1] can
be computed in time

O
(
|M|2 ·E · (2/ε)3D

)
.

Proof. Recall our analysis of the size of G from the proof of Lemma 9.17. Due to this analysis,
we know that we have to iterates over O

(|M| ·E · (1/ε)D ·2D)
grid points. Testing whether a

point lies inside a certain ring needs time O(D). Determining which of the means in M is
closest to a point needs time O(|M|D). Combining these bounds yields the claim.

116 CHAPTER 9. A DISCRETIZATION

Chapter 10

An ε-Approximate Mean Set

In the previous chapter, we constructed two search spaces with respect to a data set X : a
continuous search space U⊆ RD and a discrete search space G⊂ RD of finite size |G| <∞.
These search spaces have the nice property that we can map mean vectors C ⊆U from the
continuous search space U to representatives g(C)⊆G in the discrete search space G such
that the r-fuzzy K-means cost φ(r)

X (g(C)) of the representatives is similar to the r-fuzzy
K-means cost φ(r)

X (C) of the original means C. The idea pursued in this chapter is the
following: If we knew that good mean vectors are contained in the continuous search space
U, then the aforementioned properties ensure that the discrete search space G also contains
a similarly good mean vectors. In particular, if near-optimal mean vectors are contained in
U, then there are also near-optimal mean vectors in the discrete search space G. As G is
finite, we could find these near-optimal mean vectors via an exhaustive search.

In this chapter, we show that this idea works: We can indeed construct a discrete search
space that contains means that induce a (1+ ε)-approximation to the r-fuzzy K-means
problem for certain fuzzifier functions r. We call such a set of means an ε-approximate mean
set.

Overview. In Section 10.1 and Section 10.2, we give a brief overview of the related work
and our contribution. In Section 10.3, we state our formal definition of approximate means
sets for the r-fuzzy K-means problem, a construction of such sets, and an approximation
algorithm. In Section 10.5, we state the complete proofs.

Publication. In this chapter, we generalize and correct the corresponding result from
Blömer et al. (2016), which deals with the classical fuzzy K-means problem.

10.1 Related Work

In this chapter, we reuse the construction and results that we presented in Chapter 9.
These results are based on the work of Chen (2009). Besides that, we make use of the
notion of approximate mean sets. Usually, these sets are called approximate centroid sets
(Matoušek, 2000). We hope to avoid confusion (and not cause any) by sticking with the
term ’means’ instead of introducing the synonym ’centroid’. There are several algorithms
for the K-means problem that make use of this notion: Matoušek (2000) presents a (1+ε)-
approximation algorithm for the K-means problem with runtime O(|X |ε−2K2D log(|X |)K).
Effros and Schulman (2004) construct a (1+ε)-algorithm for the K-means problem which
runs in time poly(K) · (D/ε)O(D) |X | loglog(|X |)+ (D/ε)O(KD). The work of Feldman et al. (2007)
is based on a construction that yields a weak coreset for the K-means problem and a
(1+ε)-approximation algorithm with running time O(|X |KD)+D ·poly(K /ε)+2Õ(K /ε).

117

118 CHAPTER 10. AN ε-APPROXIMATE MEAN SET

10.2 Contribution

First, we show how a finite ε-approximate mean set can be computed for the r-fuzzy K-means
problem, given that the fuzzifier function is increase-bounded, contribution-bounded, and
[0,1]-reducing. More precisely, we show that a slightly refined version of the construction of
Chen (2009) can be used to compute such a set. Second, we use this result to show that there
is a (1+ε)-approximation algorithm for the r-fuzzy K-means problem (for the aforementioned
class of fuzzifier functions). This algorithm simply performs an exhaustive search through
all the solutions in the aforementioned ε-approximate mean set. Later, in Chapter 11, we
will use a dimension reduction technique to improve the performance of this algorithm. For
an overview and comparison of all our approximation algorithms, we refer to Chapter 13.

10.3 Main Result

Let us start by formalizing our notion of an ε-approximate mean set. For the sake of
simplicity, we denote a vector of means as a solution and use the following notation:

Notation 10.1 (short notation). For M ⊆RD and K ∈N, the set of solutions with exactly K
mean vectors from M is MK := {

(µ1, . . . ,µK)
∣∣ ∀k ∈ [K] : µk ∈ M

}
. Analogously, we let M≤K :=⋃

k∈[K]
{
(µ1, . . . ,µk)

∣∣ ∀l ∈ [k] : µl ∈ M
}
.

An ε-approximate mean set is a set of solutions that contains a (1+ε)-approximation to
the r-fuzzy K-means problem.

Definition 10.2 (ε-approximate mean set). Let X ∈ Dom
(
RD ,R+

)
, let r : R≥0 → R≥0 be a

fuzzifier function, ε ∈ [0,1], and K ∈N.
A set Θ⊆ (RD)≤K is an ε-approximate mean set of X for the r-fuzzy K-means problem if

∃C∗ ∈Θ : φ(r)
X (C∗)≤ (1+ε) ·φOPT

(X ,K ,r) .

Usually, one calls these sets (K ,ε)-approximate mean sets. Here, K is either clear from
context or stated explicitly, as part of the term "r-fuzzy K-means problem". Besides that, we
point out that allowing for solutions with less than K mean vectors is not important in this
chapter, but it will be handy in Chapter 12.

The following result shows that one can construct a discrete search space G that is an
ε-approximate mean set.

Theorem 10.3. Given a data set X ∈ Dom
(
RD ,R+

)
, K ∈N, a fuzzifier r : R≥0 → R≥0 that is

ir-increase-bounded, cr-contribution-bounded, and [0,1]-reducing, cr(K) ∈ (0,1], ir ∈ [1,∞),
and ε ∈ (0,1], Algorithm 10 computes a discrete search space G ⊆ RD such that GK is an
ε-approximate mean set of X for the r-fuzzy K-means problem.

The size of G is

|G| =O

(
log

(
|X | w

(X)
max

w(X)
min

)
·K ·ε−D ·H(r,K ,ε)

)
,

where

H(r,K ,ε) =max
{

log
(
r
(

ε

4irK2

)−1)
, log

(
cr(K)−1)

, 1
}

.

Before we provide a proof in Section 10.5, let us consider an application of this construc-
tive result.

10.4. APPLICATION 119

Algorithm 10 Exhaustive Search Through a Discrete Search Space
Require: X = ((xn,wn))n∈[N] ∈ Dom

(
RD ,R+

)
, K ∈N, r : R≥0 → R≥0, cr(K) ∈ (0,1], ir ∈ [1,∞),

and ε ∈ (0,1]
1: Construct an unweighted data set X̂ that, for each n ∈ [N], contains dwn/w(X)

mine copies of
the data point (xn,1).

2: Apply the algorithm from (Matoušek, 2000) to compute an α′-approximation M to the
K-means problem with respect to X̂ , where α′ is some constant.

3: Set

α := 2 ·α′ and b :=max
{

r
(

ε

4irK2

)−1
, cr(K)−1

}
.

4: Let

E :=
⌊

1
2

log

(
9 ·α ·b · w (X)

w(X)
min

)⌋
and R :=

√
kmX (M)
αw (X)

.

5: Compute a discrete search space G described by (E,R,M) and

ε̃ := ε · cr(K)
72 · (2+α)

.

6: Determine C := argmin
{
φ(r)

X (C)
∣∣∣ C ⊆G with |C| = K

}
.

10.4 Application (Corollary 10.4)

By an exhaustive search through an ε-approximate mean set we can find a good solution.

Corollary 10.4. Given a data set X ∈ Dom
(
RD ,R+

)
, K ∈N, a fuzzifier r : R≥0 → R≥0 that is

ir-increase-bounded, cr-contribution-bounded, and [0,1]-reducing, cr(K) ∈ (0,1], ir ∈ [1,∞),
and ε ∈ (0,1], Algorithm 10 computes means C ⊆RD , |C| = K, such that

φ(r)
X (C)≤ (1+ε)φOPT

(X ,K ,r) .

The algorithms’ runtime is(
|X | w

(X)
max

w(X)
min

)
· log

(
|X | w

(X)
max

w(X)
min

)K

·2O(K2D log(1/ε)) ·HK
(r,K ,ε) · tr(K)

where

H(r,K ,ε) =max
{

log
(
r
(

ε

4irK2

)−1)
, log

(
cr(K)−1)

, 1
}

.

We prove this result in the next Section 10.5. Observe that Algorithm 10 is a polynomial-
time approximation scheme (PTAS) for the r-fuzzy K-means problem if K ,cr(K),ir,D ∈
O(1) are constants and if the given data sets X satisfy w(X)

max/w(X)
min ∈ |X |O(1). Note that this

observation covers all unweighted data sets X ∈Dom
(
RD , {1}

)
and all the fuzzifier functions

presented in Section 5.3, except the exponential fuzzifier function eγ because it is not
increase-bounded.

Alternative. We can accelerate the algorithm a little bit by using a randomized K-means
approximation algorithm instead of an deterministic K-means approximation algorithm in
the second step of the algorithm.

120 CHAPTER 10. AN ε-APPROXIMATE MEAN SET

Corollary 10.5 (randomized alternative). Consider a randomized variant of Algorithm 10
that uses the algorithm of Aggarwal et al. (2009) instead of the algorithm of Matoušek
(2000) to compute a constant-factor approximation to the K-means problem with respect to
X̂ in the second step of the algorithm. Given a data set X ∈Dom

(
RD ,R+

)
, K ∈N, a fuzzifier

r : R≥0 → R≥0 that is ir-increase-bounded, cr-contribution-bounded, and [0,1]-reducing,
cr(K) ∈ (0,1], ir ∈ [1,∞), and ε ∈ (0,1], this algorithm computes means C ⊆RD , |C| = K, such
that φ(r)

X (C)≤ (1+ε)φOPT
(X ,K ,r), with constant probability. The algorithms’ runtime is

|X | w
(X)
max

w(X)
min

KD+|X | log

(
|X | w

(X)
max

w(X)
min

)O(K)

·2O(K log(K)D log(1/ε)) ·HK
(r,K ,ε) · tr(K) .

where H(r,K ,ε) is defined as in Corollary 10.4.

We prove this result in the next section.

Special Case. Consider the classical fuzzy K-means problem with the polynomial fuzzifier
function pm(x)= xm with m ∈ (1,∞). Recall from Section 5.3.2 that we can set cpm

(K)= Km−1,

ipm
= 4m, and tpm

(K)=Θ(K). Observe that H(pm,K ,ε) =max
{
m log

(
16mK2

ε

)
, (m−1)log(K), 1

}
⊆

O(m2Kε−1). Hence, HK
(pm,K ,ε) ∈ 2O(log(m)K log(K) log(1/ε)). So, for unweighted data sets, the deter-

ministic algorithm from Corollary 10.4 has runtime

|X | log(|X |)K ·2O(K2·D·log(m)·log(1/ε)) ,

while the randomized variant from Corollary 10.5 needs time

|X | log(|X |)O(K) ·2O(K log(K)D log(m) log(1/ε)) .

So, for unweighted data sets, it does not really matter which algorithm we choose. The
dependence on the number of clusters K is only slightly different.

10.5 Analysis

In the following, we analyse a single run of Algorithm 10 given X = ((xn,wn))n∈[N] ∈
Dom

(
RD ,R+

)
, K ∈N, ε ∈ (0,1], and a [0,1]-reducing, cr-contribution-bounded and ir-increase-

bounded fuzzifier function r :R≥0 →R≥0. Additionally, we let

U :=U(E,R,M)

where the elements from the tuple (E,R,M) are defined as in Algorithm 10. Consider
the discrete space G defined by the algorithm. Let g be the corresponding representative
function, i.e., the representative function that is defined by (E,R,M) and ε̃ satisfying

G= {g(x) | x ∈U} .

Outline

The following analysis consists of five steps: First, we show that M is a (2 ·α′)-approximation
to the K-means problem with respect to X . Second, we show that there exists a good
approximation in the search space U. Third, we show that representatives g(C)⊆G incur an
r-fuzzy K-means cost similar to the means C ⊆U. Fourth, we conclude from these results
that it suffices to search through all solutions consisting of representatives from G to find a
good approximation. Finally, we analyse the runtime of the algorithm.

10.5. ANALYSIS 121

Approximation to the K-Means Problem

We need a constant-factor approximation to the K-means problem with respect to the
weighted data set X . Therefore, we apply an algorithm that computes an α′-approximation
for the K-means problem with respect to unweighted data sets to the data set X̂ , which
contains copies of unweighted versions of the data points from X .

Observation 10.6. The size of X̂ is
∣∣X̂ ∣∣=∑N

n=1dwn/w(X)
mine ≤ 2

∑N
n=1 wn/w(X)

min ≤ 2 |X | ·w(X)
max/w(X)

min.

Claim 10.7. M is a (2α′)-approximation to the K-means problem with respect to the weighted
data set X. That is,

kmX (M)≤ (2α′) ·kmOPT
(X ,K) .

Proof. For all n ∈ [N], we have wn/w(X)
min ≤ dwn/w(X)

mine ≤ 2wn/w(X)
min since wn/w(X)

min ≥ 1. Hence, by
definition of the K-means cost (see Problem 4.3), we have

∀C ⊆RD :
1

w(X)
min

kmX (C)≤ kmX̂ (C)≤ 2

w(X)
min

kmX (C) . (10.1)

We know that M is an α′-approximation for the K-means problem with respect to
X̂ . Hence, kmX̂ (M) ≤ α′kmOPT

(X̂ ,K)
. Let Copt

X ⊆ RD ,
∣∣Copt∣∣ = K , be a solution with kmOPT

(X ,K) =
kmX

(
Copt

X

)
. With (10.1), we can conclude that

kmX (M)≤ w(X)
min kmX̂ (M)≤ w(X)

minα
′kmOPT

(X̂ ,K)
≤ w(X)

minα
′kmX̂

(
Copt

X

)
≤ 2α′kmOPT

(X ,K) .

This yields the claim.

Existence of a Good Solution in U

Let us start by showing that there exists a good approximation in the search space U. We
point out that this result requires that the coarse K-means solution M, which Algorithm 10
uses to construct the search space U, contains (at most) K mean vectors.

Claim 10.8 (existence of an approximation in U). There exist means C ⊂U with |C| ≤ K and

φ(r)
X (C)≤

(
1+ ε

2

)
φOPT

(X ,K ,r) .

Proof. Consider optimal means O ⊂ RD with |O| = K where φ(r)
X (O) = φOPT

(X ,K ,r). From Theo-
rem 6.3, we know that there exists O′ = (µl)l∈[L] ⊆O, L := |C| ≤ K , such that

φ(r)
X (O′)≤

(
1+ ε

2

)
φOPT

(X ,K ,r) (10.2)

and such that O′ induces an r-fuzzy clustering P = (pnl)n∈[N],l∈[L] of X where

∀l ∈ [L] : ∃n ∈ [N] : pnl ≥
ε/2

2irK2 = ε

4irK2 . (10.3)

Towards a contradiction, assume that for all solutions C ⊂U with |C| ≤ K and φ(r)
X (C)≤(

1+ ε
2
)
φOPT

(X ,K ,r) we have C \U 6= ;.
Then, due to (10.2), there must exist a mean vector µk ∈O′ \U. More precisely, we have

µk ∉U=U(E,R,M) where R=
√

kmX (M) /(αw (X)) and

E≥
⌊

1
2

log

(
9 ·α · r

(
ε

4irK2

)−1
· w (X)

w(X)
min

)⌋
.

122 CHAPTER 10. AN ε-APPROXIMATE MEAN SET

With Lemma 9.10, we can conclude that

∀n ∈ [N] :
∥∥xn −µk

∥∥2
2 ≥ 2 · r

(
ε

4irK2

)−1
· kmX (M)

w(X)
min

. (10.4)

Hence, (
1+ ε

2

)
φOPT

(X ,K ,r) ≥φ(r)
X (O′) (Equation (10.2))

=φ(r)
X (O′,P) (P induced by O′)

≥
N∑

n=1
wnr(pnk)

∥∥xn −µk
∥∥2

2

≥w
(
A(X ,r(P))

k

)
·2 · r

(
ε

4irK2

)−1 kmX (M)

w(X)
min

. (Equation (10.4))

Consequently,

w
(
A(X ,r(P))

k

)
≤

(
1+ ε

2
)
φOPT

(X ,K ,r) · r
(

ε
4irK2

)
·w(X)

min

2kmX (M)
.

Now we exploit the fact that |M| = K . With Lemma 6.1, we can conclude that

φOPT
(X ,K ,r) ≤ kmX (M) .

Besides that,
(
1+ ε

2
)
/2= 1

2 + ε
4 < 1. Hence,

w
(
A(X ,R)

k

)
=

N∑
n=1

r(pnk)wn < r
(

ε

4irK2

)
·w(X)

min .

With the properties of a fuzzifier function, it follows that pnk < ε
4irK2 for all n ∈ [N], which

contradicts (10.3).

Replacing a Solution in U by a Solution in G

Next, we show that representatives g(C) perform similar to the corresponding means C ⊆U
from the search space. The following result is an analogon of Lemma 5.8 from (Chen, 2009,
p. 936).

Claim 10.9 (representatives suffice). For all C = (µk)k∈[K] ⊆ U and their representatives
g(C) := (

g(µk)
)
k∈[K], we have∣∣∣φ(r)

X (C)−φ(r)
X (g(C))

∣∣∣≤ 36ε̃ (2+α)
cr(K)

·φ(r)
X (C) .

Proof. As r is [0,1]-reducing, Corollary 9.16 gives∣∣∣φ(r)
X (C)−φ(r)

X (g(C))
∣∣∣≤ 36ε̃

(
kmX (C)+kmX (M)+w (X)R2)

.

Recall from Lemma 6.1 that
kmX (C)≤ 1

cr(K)
φ(r)

X (C) .

Recall that, by definition, cr(K) ≤ 1. Moreover, recall from Claim 10.7 that M is an α-
approximation to the K-means problem. Hence,

kmX (M)≤αkmOPT
(X ,K) ≤αkmX (C)≤α 1

cr(K)
φ(r)

X (C)

Besides that, with Lemma 6.1, we can conclude that

w (X)R2 = kmX (M)
α

≤ 1
cr(K)

kmX (M)
α

≤ 1
cr(K)

φ(r)
X (C) . (α≥ 1)

A combination of these inequalities yields the claim.

10.5. ANALYSIS 123

Existence of a Good Solution in G

Now we can conclude that there are good representatives in G. In other words, we show
that, in order to find a good approximation, it suffices to evaluate all possible solutions(
µ̃k

)
k∈[K] ⊆G.

Claim 10.10 (existence of an approximation in G). There exist means C ⊆G with size |C| ≤ K
such that

φ(r)
X (C)≤ (1+ε)φOPT

(X ,K ,r) .

Proof. From Claim 10.8, we know that there exist means C = {µl}l∈[L] ⊂U with L ≤ K and

φ(r)
X (C)≤

(
1+ ε

2

)
φOPT

(X ,K ,r) .

From Claim 10.9 we know that

φ(r)
X (g(C))≤

(
1+ 36ε̃ (2+α)

cr(K)

)
·φ(r)

X (C) .

By combining these inequalities, we obtain

φ(r)
X (g(C))≤

(
1+ 36ε̃ (2+α)

cr(K)

)(
1+ ε

2

)
φOPT

(X ,K ,r)

≤
(
1+ ε

2
+ 72ε̃ (2+α)

cr(K)

)
φOPT

(X ,K ,r) (ε≤ 1)

≤ (1+ε)φOPT
(X ,K ,r) , (ε̃= ε · cr(K)

72(2+α))

which yields the claim.

This last claim shows that Algorithm 10 returns a solution satisfying the desired approx-
imation guarantee.

Size of G and Runtime

It remains to analyse the size of G and the algorithms’ runtime. As in Corollary 10.4, let

H(r,K ,ε) :=max
{

log
(
r
(

ε

4irK2

)−1)
, log

(
cr(K)−1)

, 1
}

.

Claim 10.11 (size). The discrete search space G has the size

|G| ∈O
(
log

(
|X | w

(X)
max

w(X)
min

)
·K ·

(
2
ε

)−D
·H(r,K ,ε)

)
.

Proof. Recall Lemma 9.17, plug in the parameters defined in Algorithm 10, and recall that
α ∈O(1) and |M| = K . Note that w (X) /w(X)

min ≤ |X | ·w(X)
max/w(X)

min.

Claim 10.12 (runtime of Algorithm 10). The overall runtime of Algorithm 10 is(
|X | w

(X)
max

w(X)
min

)
· log

(
|X | w

(X)
max

w(X)
min

)K

·2O(log(K)KD log(1/ε)) ·HK
(r,K ,ε) · tr(K) .

124 CHAPTER 10. AN ε-APPROXIMATE MEAN SET

Proof. First, consider our execution of the algorithm of Matoušek (2000). We apply it to the
data set X̂ , which has the size

∣∣X̂ ∣∣≤ 2 |X |w(X)
max/w(X)

min (see Observation 10.6). We apply it with
a constant precision ε ∈ (0,1). Hence, we need time

O
(∣∣X̂ ∣∣ · log

(∣∣X̂ ∣∣)K 2K2D
)
⊆O

((
|X | w

(X)
max

w(X)
min

)
· log

(
|X | w

(X)
max

w(X)
min

)K

2K2D

)
.

Next, consider the computation of the discrete search space. With Lemma 9.18 we can
conclude that the time needed to compute G is

O
(
|M| ·E · (2/ε)3D

)
⊆O

(
K2 ·

(
log

(
|X | w

(X)
max

w(X)
min

))
·H(r,K ,ε) · (2/ε)3D

)

⊆ log

(
|X | w

(X)
max

w(X)
min

)
·H(r,K ,ε) ·2O(D log(1/ε) log(K)) .

Finally, consider the exhaustive search through the discrete search space G. There are
|G|K possible combinations of K elements from G. Evaluating the cost φ(r)

X (C) of a set C ⊆RD

with |C| = K needs time O(|X |Dtr(K)) (Assumption 5.19). With the help of the previous
claim (and the fact that w (X)≤ |X | ·w(X)

max), we can conclude that the K representatives that
incur the smallest cost can be determined in time

O
(
|X |Dtr(K) |G|K

)
⊆O

(
|X |Dtr(K)

(
log

(
|X | w

(X)
max

w(X)
min

)
H(r,K ,ε) ·K

(
2
ε

)−D
)K)

=O

(
|X |D

(
log

(
|X | w

(X)
max

w(X)
min

))K

·HK
(r,K ,ε) ·KKtr(K)

(
2
ε

)−KD
)

⊆ |X | log

(
|X | w

(X)
max

w(X)
min

)K

·2O(log(K)KD log(1/ε)) ·HK
(r,K ,ε) · tr(K) .

A combination of these bounds yields the claim.

Claim 10.13 (runtime of algorithm from Corollary 10.5). The overall runtime of the algo-
rithm from Corollary 10.5 is

|X | w
(X)
max

w(X)
min

KD+|X | · log

(
|X | w

(X)
max

w(X)
min

)O(K)

·2O(log(K)KD log(1/ε)) ·HK
(r,K ,ε) · tr(K) .

Proof. This proof is similar to the proof of Claim 10.12. Instead of the algorithm by Matoušek
(2000), we apply the algorithm by Aggarwal et al. (2009) to the data set X̂ , which has size∣∣X̂ ∣∣≤ 2 |X |w(X)

max/w(X)
min. Executing this algorithm needs time

O
(∣∣X̂ ∣∣KD+poly

(
K , log

(∣∣X̂ ∣∣)))⊆O

(
|X | w

(X)
max

w(X)
min

KD+poly

(
K , log

(
|X | w

(X)
max

w(X)
min

)))
.

The remaining steps of the algorithm from Corollary 10.5 coincide with Algorithm 10. From
the proof of Claim 10.12, we already know that these steps need time

|X | log

(
|X | w

(X)
max

w(X)
min

)K

·2O(log(K)KD log(1/ε)) ·HK
(r,K ,ε) · tr(K) .

A combination of these bounds yields the claim.

Chapter 11

Dimension Reduction

A dimension reduction technique can be used to speed up an algorithm whose runtime
crucially depends on the dimension of the given data set. The main idea is to map the
given high-dimensional data set XD to a low-dimensional representation Xd, feed this
low-dimensional representation Xd to the algorithm, and then translate its output back
to a solution with respect to XD . More precisely, consider a high-dimensional data set
XD = ((xn,wn))n∈[N] with points xn ∈RD . We apply a dimension reduction technique to map
each point xn ∈RD from XD to a point π(xn) ∈Rd where d ¿ D. Then we solve our clustering
problem on the resulting lower-dimensional data set Xd = ((π(xn),wn))n∈[N]. Finally, we need
to translate the solution back to a solution for the original data set XD . Since the number
of points is the same in both data sets, we can simply take the (soft) clustering P from the
solution and compute the representatives induced by P with respect to XD (instead of Xd).
However, it depends on the mapping π whether the quality of the solution is preserved.

There are two kinds of provably accurate dimensionality reduction techniques known
for K-means clustering: First, there are methods based on random projections, which are
called Johnson-Lindenstrauss lemmata. They not only ensure that the quality of a K-means
solution is preserved by the reduction; they also ensure that the pairwise Euclidean distances
between the points are preserved up to a small factor. Clearly, this is useful not only in the
context of the K-means problem, but also for the r-fuzzy K-means problem. Second, there is
a spectral method known as principal component analysis (PCA). It is well known that this
method is closely related to the K-means problem.

In this chapter, we show that the Johnson-Lindenstrauss lemma is useful in the context
of r-fuzzy K-means. Moreover, we discuss the use of a PCA for the r-fuzzy K-means problem.

Overview. In Section 11.1, we describe the Johnson-Lindenstrauss lemma, give an overview
of related work, and utilize the lemma for the r-fuzzy K-means problem. In Section 11.2, we
briefly discuss spectral methods.

Publication. The results that we present Section 11.1 are generalizations of the results
from (Blömer et al., 2016, Corollary 1, Lemma 3).

11.1 The Johnson Lindenstrauss Lemma

Johnson and Lindenstrauss (1984) showed that N points in a D-dimensional Euclidean
space can be mapped down to a D̃ =O(log(N)/ε2) dimensional space while preserving the
pairwise distances between the points by a factor 1± ε. Our formulation of their result
follows Dasgupta and Gupta (2003):

125

126 CHAPTER 11. DIMENSION REDUCTION

Lemma 11.1. Let X ⊂RD with |X | = N and ε ∈ [0,1]. There is a linear map π :RD →RD̄ with
D̄ =O(log(N)/ε2) such that for all x, y ∈ X we have

(1−ε)‖x− y‖2
2 ≤ ‖π(x)−π(y)‖2

2 ≤ (1+ε)‖x− y‖2
2 .

Moreover, there is a randomized algorithm that, given X ⊂RD and ε ∈ [0,1], finds such a
map, with constant probability, and needs time O(D log(N)/ε2).

In particular, the dimension D̃ is independent from the dimension D of the original
points. This means that the linear map preserves the pairwise distances between the N
points to D̄ =O(log(N)/ε2) dimensions, regardless of how high the given dimension D is.

11.1.1 Related Work

Recently, Larsen and Nelson (2016) showed that the bound on the dimension D̄ given in
the Johnson-Lindenstrauss lemma is tight. That is, every linear mapping π :RD → D̄ that
satisfies the properties given in the lemma also satisfies D̄ =Ω(min

{
D, log(N)/ε2}

). However,
this does not prove that we cannot map a data set to an even smaller dimension that
preserves the r-fuzzy K-means cost (of a transferred solution).

The algorithm referred to in Lemma 11.1 is not very practical. Consequently, there has
been a lot of work on developing more efficient algorithms: For instance, Ailon and Chazelle
(2006) introduced the fast Johnson-Lindenstrauss transform which makes use of a sparse
projection matrix with a randomized Fourier transform. This method has been repeatedly
improved since then. For more information, see Ailon and Liberty (2013) and Kane and
Nelson (2014), for instance.

11.1.2 Main Result

The key ingredient that enables us to apply the Johnson-Lindenstrauss lemma to the r-fuzzy
K-means problem is the same as for the K-means problem: It is the observation that the cost
can be expressed as a weighted sum of pairwise distances between points (Corollary 2.23).

Lemma 11.2. Given X ∈Dom
(
RD ,R+

)
and ε ∈ [0,1], the algorithm from Lemma 11.1 com-

putes a linear map π :RD →RD̄ with D̄ =O(log(|X |)/ε2) such that, with constant probability,
the following property is satisfied:

For all fuzzifier functions r :R≥0 →R≥0 and soft clusterings P of X, we have

φ(r)
π(X)(P) ∈ [1±ε]φ(r)

X (P) .

Proof. Fix arbitrary P = (pnk)n∈[N],k∈[K] ∈∆N,K−1 and X = ((xn,wn))n∈[N]. First, observe that
we map each point xn to some π(xn), but we do not change its weight wn. Thus, for all
clusters with w

(
A(X ,r(P))

k

)
= 0, we have d

(
A(X ,r(P))

k

)
=d

(
A(π(X),r(P))

k

)
= 0. So, without loss of

generality, we can assume that the cluster weights are strictly larger than 0. Then,

φ(r)
π(X)(P)=

K∑
k=1

∑N
n=1

∑
m<n r(pnk)r(pmk)wnwm ‖π(xn)−π(xm)‖2

2∑N
n=1 r(pnk)wn

(Corollary 2.23)

∈ [1±ε] ·
K∑

k=1

∑N
n=1

∑
m<n r(pnk)r(pmk)wnwm ‖xn − xm‖2

2∑N
n=1 r(pnk)wn

(Lemma 11.1)

= [1±ε] ·φ(r)
X (P) .

That is, this dimension reduction technique preserves the r-fuzzy K-means cost of each
soft clustering up to a small factor. Therefore, the quality of a solution is preserved:

11.1. THE JOHNSON LINDENSTRAUSS LEMMA 127

Corollary 11.3. Given X ∈ Dom
(
RD ,R+

)
and ε

3 ∈ (0,1/3], the algorithm from Lemma 11.1
computes a linear map π :RD →RD̄ with D̄ =O(log(|X |)/ε2) such that, with constant probabil-
ity, the following property is satisfied:

For all fuzzifier functions r :R≥0 →R≥0 and soft clusterings P of X with

φ(r)
π(X)(P)≤αφOPT

(π(X),K ,r)

it holds that
φ(r)

X (P)≤α (1+ε)φOPT
(X ,K ,m) .

Proof. Fix an arbitrary fuzzifier function r. Consider a soft K-clustering P of X with
φ(r)
π(X)(P)≤αφOPT

(π(X),K ,r). With Lemma 11.2, we can conclude

φ(r)
X (P)≤ 1

1−ε/3φ
(r)
π(X)(P)≤α 1

1−ε/3φ
OPT
(π(X),K ,r) .

Let POPT
X be a soft K-clustering of X with φ(r)

X (POPT
X)=φOPT

(X ,K ,r). With Lemma 11.2, we can
conclude

φOPT
(π(X),K ,r) ≤φ(r)

π(X)(P
OPT
X)≤ (1+ε/3)φ(r)

X (POPT
X)= (1+ε/3)φOPT

(X ,K ,r) .

A combination of these inequalities gives

φ(r)
X (P)≤α 1+ε/3

1−ε/3 φ
OPT
(X ,K ,m) ≤α (1+ε)φOPT

(X ,K ,m) ,

where we use that 1+ε/3
1−ε/3 = 1+2 ε/3

1−ε/3 = 1+2 ε
3−ε ≤ 1+ε. This yields the claim.

11.1.3 Application (Algorithm 11)

With the help of the Johnson-Lindenstrauss dimension reduction technique, we can speed
up the algorithm from Corollary 10.5. More precisely, we get rid of the runtimes’ exponential
dependence on the dimension of the data points. A drawback is that the dependence on the
number of clusters K becomes stronger.

In the following, we first state the general result and then simplify it with respect to
special fuzzifier functions.

Algorithm 11 Combination with Dimension Reduction
Require: X = ((xn,wn))n∈[N] ∈ Dom

(
RD ,R+

)
, K ∈N, r : R≥0 → R≥0, cr(K) ∈ (0,1], ir ∈ [1,∞),

and ε ∈ (0,1]
1: Apply the algorithm from Corollary 11.3 to X and ε/4 (instead of ε) to compute a map
π :RD →RD̄ with D̄ =O(log(|X |)/ε2).

2: Y := ((π(xn),wn))n∈[N] ∈Dom
(
RD̄ ,R+

)
.

3: Apply our randomized variant of Algorithm 10 from Corollary 10.4 to Y , K , r, cr, ir(K),
and ε/4 to compute a solution C ⊆RD

4: return C

Corollary 11.4. Given a data set X ∈ Dom
(
RD ,R+

)
, K ∈N, a fuzzifier r : R≥0 → R≥0 that is

ir-increase-bounded, cr-contribution-bounded, and [0,1]-reducing, the values cr(K) ∈ (0,1]
and ir ∈ [1,∞), and some ε ∈ (0,1], Algorithm 11 computes means C ⊆RD , |C| = K, such that
with constant probability

φ(r)
X (C)≤ (1+ε)φOPT

(X ,K ,r) .

The algorithms’ runtime is bounded by

D · w
(X)
max

w(X)
min

· |X |O(K log(K) log(1/ε)/ε2) · log

(
w(X)

max

w(X)
min

)O(K)

·HK
(r,K ,ε) · tr(K) ,

128 CHAPTER 11. DIMENSION REDUCTION

where

H(r,K ,ε) =max
{

log
(
r
(

ε

16irK2

)−1)
, log

(
cr(K)−1)

, 1
}

.

Proof. From Corollary 10.4, we know that C is a (1+ ε/4)-approximation to the r-fuzzy K-
means problem with respect to Y . With Corollary 11.3 we can conclude that, with constant
probability, C is a (1+ε/4)2-approximation to the r-fuzzy K-means problem with respect to
X , where (1+ε/4)2 ≤ (1+ε) (Lemma A.1).

According to Corollary 11.3, the computation of the mapping π : RD → RD̄ needs time
O(D · log(|X | /ε2) and

D̄ =O(log(|X |)/ε2) . (11.1)

So applying the linear mapping to each of the given points needs time

O(|X | ·D · D̄)⊆O
(|X | log(|X |) ·D/ε2)

.

Observe that |Y | = |X |, w(Y)
max = w(X)

max, and w(Y)
min = w(X)

min. Hence, our application of the
algorithm from Corollary 10.4 needs time

|X | w
(X)
max

w(X)
min

KD̄+|X | log

(
|X | w

(X)
max

w(X)
min

)O(K)

·2O(log(K)KD̄ log(1/ε)) ·HK
(r,K ,ε) · tr(K) .

where H(r,K ,ε) is defined as in the claim (note that, in comparison to the definition of H(r,K ,ε)
in Corollary 10.4, we replaced ε by ε/4) and

2O(K log(K)D̄ log(1/ε)) ⊆ 2O(K log(K) log(|X |) log(1/ε)/ε2) ⊆ |X |O(K log(K) log(1/ε)/ε2)

due to (11.1). Combining these bounds yields the claim.

As already pointed out, in contrast to the runtime from Corollary 10.4, the runtime from
Corollary 11.4 does not have an exponential dependence on the dimension of the data points.
The dependence on the number of clusters K becomes stronger, though.

Special Case. Consider the classical fuzzy K-means problem with fuzzifier value m ∈
(1,∞). Recall from Section 5.3.2 that we can set cpm

(K) = Km−1, ipm
= 4m, and tpm

(K) =
Θ(K). Hence, H(pm,K ,ε) =max

{
m log

(
64mK2

ε

)
, (m−1)log(K) , 1

}
∈O(m2ε−1K). Consequently,

HK
(pm,K ,ε) ∈ 2O(log(m) log(1/ε) log(K)). We can simplify the runtime bound to

D · w
(X)
max

w(X)
min

· |X |O(K log(K) log(1/ε) log(m)/ε2) log

(
w(X)

max

w(X)
min

K)

⊆D · w
(X)
max

w(X)
min

· |X |O(K2ε−3m) log

(
w(X)

max

w(X)
min

K)
.

In particular, for unweighted data sets X ∈Dom
(
RD , {1}

)
, the runtime is simply

D · |X |O(K2ε−3m) .

For an overview of all our approximation algorithms, we refer to Chapter 13.

11.2 Principal Component Analysis

Simply speaking, a principal component analysis (PCA) is a dimension reduction technique
that is based on a singular value decomposition of a matrix containing (data) points.

11.2. PRINCIPAL COMPONENT ANALYSIS 129

In a Nutshell. First, let us briefly review the PCA approach. For more information, we
refer to (Bishop, 2006, pp.561) and (Kannan and Vempala, 2009). Assume we are given
a centered version of an unweighted data set X = ((xn,1))n∈[N]. That is, we assume that
the mean of the whole data set is the zero vector (m (X) = 0D) (if it is not, just shift all
points). Consider the matrix MX = (x1 . . . xN) ∈ RD×N that contains all points as column
vectors. Via singular value decomposition, one can find the appropriate D vectors that span
the point matrix MX . That is, each point xn can be expressed as a linear combination of
these points. The goal of a PCA is to identify the most meaningful d vectors that describe
the point matrix MX best. Given these meaningful vectors, one reduces the dimension by
performing a change of the basis. That is, the d vectors are chosen such that this change
of the basis results in an error as small as possible, where by error we refer to the sum of
the squared Euclidean distances between the original data points and their representations
in the d-dimensional subspace (Bishop, 2006, pp. 563). This corresponds to choosing the
vectors that point into the direction where the variance of the data set is largest. In other
words, one chooses the d vectors whose corresponding singular values are largest.

Connection to K-Means. Clearly, variances are essential in the PCA approach (Shlens,
2003): Those directions in which the variance of the data set is large are considered the
most meaningful by this approach. This statistic is important in K-means clustering as
well since the cost of each hard cluster coincides with the (normalized) variance of this hard
cluster. The connection is even much closer than this observation: Ding and He (2004) show
that K-means and PCA maximize the same objective function but with respect to different
constraints. Drineas et al. (2004) show that one can utilize PCA for an approximation
algorithm for the K-means problem (which they refer to as "the discrete clustering problem").
Moreover, another way to describe the relation between K means and PCA is to consider
them both as variations of a matrix factorization problem, as noted by Watt et al. (2016) for
instance. Besides that, note that there are also results showing that a PCA is related to
(spherical) Gaussian mixture modelling (Vempala and Wang, 2004). To sum up, there is an
inherently close relation between the K-means problem and PCA.

Connection to Fuzzy K-Means? Now the question arises whether we can (provably)
utilize a PCA for the r-fuzzy K-means problem. On the one hand, in Section 4.2, we already
discussed the differences between the K-means problem and the fuzzy K-means problem.
The r-fuzzy K-means cost is a sum of (un-normalized) variances of re-weighted versions of
the given point set with weights that probably exhibit no useful property (regarding the
variances of the original point set). On the other hand, in Chapter 6, we showed that there is
a coarse relation between the K-means and fuzzy K-means objective function and between
the respective notions of negligible clusters. However, the relation between the objective
functions is so coarse that when we apply results from K-means directly, we eventually
incur a very large approximation factor (cf. Section 7.1). It is still an open question how
dimension reduction techniques that rely on singular value decomposition can be used or
adapted (provably) properly.

130 CHAPTER 11. DIMENSION REDUCTION

“ You will need to know the
difference between Friday and a
fried egg. It’s quite a simple
difference, but an important one. ”

Douglas Adams1

Chapter 12

Coresets

Assume that we are given a data set that contains far more data points than we want to
process. A way to deal with such a data set is to summarize its data points in some way and
then to process the summary instead of the data set. Given that a suitable summary can be
computed fast enough, this approach can effectively speed up an algorithm whose runtime
heavily depends on the number of data points. Whether a summary is suitable obviously
depends on what we want to do with the data set. One can roughly distinguish two types of
summaries: coresets and sketches. Simply speaking, a coreset can be used as a surrogate for
the data set, whereas a sketch may take a completely different form than the original data
set. For instance, a coreset is often just a (weighted) subset of the original data set, while a
Gaussian mixture model that has been fitted to the data set might be a useful sketch. As
the title says, in this chapter we focus on coresets.

To this end, we return to the results of Chen (2009) once again, who gave a construction
of coresets for the K-means problem. We already analysed and refined some of his results
in Chapter 9. In this chapter, we show that a slightly refined version of his construction
actually yields a useful coreset for the r-fuzzy K-means problem.

Overview. In Section 12.1, we give a brief overview of work regarding coreset construc-
tions. In Section 12.2, we sum up our main contributions of this chapter. In Section 12.3, we
formally state our main result and describe the algorithm that constructs a coreset for the
r-fuzzy K-means problem. Section 12.5 contains our analysis of this algorithm. Finally, in
Section 12.4, we show that our algorithm can be used to enhance Algorithm 11, which we
presented in Section 11.1.

Publication. In this chapter, we generalize and correct results and proofs from Blömer
et al. (2017).

12.1 Related Work

An overview of the early work of coresets can be found in Bādoiu et al. (2002) and Agar-
wal et al. (2005). Har-Peled and Mazumdar (2004) present a deterministic construction
of a coreset with a size linear in K , exponential in D and logarithmic in |X |, namely
O(Kε−D log(|X |)). Later, Har-Peled and Kushal (2005) improved this result to a core-
set with a size polynomial in K and exponential in D, but independent of |X |, namely
O(K3ε−D−1). Leveraging this idea, Chen (2009) presented a randomized coreset construc-
tion. His construction does not have an exponential dependence on D, but again intro-
duces a factor that is poly-logarithmic in |X |. More precisely, the size of this coreset is

1Source: Douglas Adams, The Salmon of Doubt

131

132 CHAPTER 12. CORESETS

O(K log(|X |)ε−2(DK log(D/ε)+K log(K)+K log(log(|X |)))). Feldman et al. (2013) presented a
construction based on low rank approximation, which results in a coreset size completely
independent of D, but logarithmic in |X |. Recently, Lucic et al. (2016) proposed a coreset
construction for a large class of hard and soft clustering problems that are based on Bregman
divergences.

12.2 Contribution

We show that a coreset for the r-fuzzy K-means problem can be constructed via a slightly
refined version of an algorithm by Chen (2009). Furthermore, we show that this coreset
construction is good enough to improve Algorithm 14, which we presented in Section 11.1.
That is, the size of this coreset is small enough and it can be computed fast enough, so that
we can use it to speed up the application of this algorithm. For an overview of all of our
approximation algorithms we refer to Section 13.1.

12.3 Main Result

Let us start by formalizing our notion of coresets for the r-fuzzy K-means problem. As in
Chapter 10, we denote vectors of means as solutions and use the following notation:

Notation 10.1 (short notation). For M ⊆RD and K ∈N, the set of solutions with exactly K
mean vectors from M is MK := {

(µ1, . . . ,µK)
∣∣ ∀k ∈ [K] : µk ∈ M

}
. Analogously, we let M≤K :=⋃

k∈[K]
{
(µ1, . . . ,µk)

∣∣ ∀l ∈ [k] : µl ∈ M
}
.

Simply speaking, a coreset S of a data set X behaves like the data set in the sense that
the quality of each possible solution is similar.

Definition 12.1 ((strong) coreset). Let X ∈ Dom
(
RD ,R+

)
, let r : R≥0 → R≥0 be a fuzzifier

function, K ∈N, and ε ∈ [0,1]. The data set S ∈ Dom
(
RD ,R+

)
is a (strong) ε-coreset of X for

the r-fuzzy K-means problem if

∀C ∈ (RD)≤K : φ(r)
S (C) ∈ [1±ε]φ(r)

X (C) . (12.1)

Usually, these sets are called (K ,ε)-coresets. In the following, K is either clear from
context or stated explicitly, as part of the term "r-fuzzy K-means problem". In the next
sections, we use the optional prefix "strong" to distinguish this kind of coreset from "weaker"
coresets.

As said before, with a refined version of the algorithm from (Chen, 2009), we can actually
compute such coresets. In fact, the only difference between our Algorithm 12 and the
algorithm from (Chen, 2009) is that we tuned the sample size Q the precision ε.

Theorem 12.2 (coreset). Given an unweighted data set X ∈Dom
(
RD , {1}

)
, K ∈N, a fuzzifier

function r that is [0,1]-reducing, ir-increase-bounded, and cr-contribution-bounded, the
values cr(K) ∈ (0,1] and ir ∈ [1,∞), ε/4 ∈ (0,1/4), and δ ∈ (0,1), Algorithm 12 computes a data
set S ∈ Dom({x | (x,w) ∈ X } ,N) such that, with a probability of at least 1−δ, the set S is an
ε-coreset of X for the r-fuzzy K-means problem.

The data set S has the size

|S| ∈O
(
log(|X |) loglog(|X |)2 ·K3 ·D ·ε−3 · loglog

(
r
(

ε

2 · irK2

)−1)
·cr(K)−3 · log(δ−1)

)
and its weights satisfy

w(S)
max

w(S)
min

≤ |X | .

12.3. MAIN RESULT 133

Algorithm 12 Strong Coreset
Require: X ∈Dom

(
RD , {1}

)
, K ∈N, r :R≥0 →R≥0, cr(K) ∈ (0,1], ir ≥ 1, ε ∈ (0,1), and δ ∈ (0,1)

1: Apply the randomized algorithm from Aggarwal et al. (2009) which computes, with
probability at least 1−δ/3, an (α,β)-bicriteria approximation M⊆RD for the K-means
problem with respect to the unweighted data set X where α,β=O(1).

2: Set

ε̃ := ε ·cr(K)
504α

,

E′ := 1
2

log

9α |X | · 20

ε̃2r
(

ε
2·irK2

)
 , and

γ :=βK · (E′+1) ·
(

1692
ε̃

)D
.

3: Let S be the output of Algorithm 13, given X , K , r, cr(K), ε̃, δ/3, γ, α, β, and M.
4: Return S

Algorithm 13 Sampling from K-Means Clusters Divided into Rings (cf. Chen (2009))
Require: X ∈ Dom

(
RD , {1}

)
, K ∈ N, r : R≥0 → R≥0, cr(K) ∈ (0,1], ε ∈ (0,1), δ ∈ (0,1), γ ∈ N,

α,β ∈ [1,∞), M= (ml)l∈[L] ⊆RD with L = bβKc
1: Let A1, . . . , AL ⊂RD be an L-means partition of {x | (x,1) ∈ X } induced by M.
2: Let

E :=
⌈

1
2

log(α |X |)
⌉

and R :=
√

kmX (M)
α |X | . (12.2)

3: For a sufficiently large constant Qconst, let

Q :=Qconst ·
(

α

ε ·cr(K)

)2
ln

(
4LEγK

δ

)
.

4: for all l ∈ [L] and j ∈ {0, . . . ,E} do
5: Let Ul, j be the (l, j)-th ring defined by (E,R,M) (Definition 9.6).
6: X l, j :=Ul, j ∩ Al ⊆RD

7: if X l, j 6= ; then
8: if |X l, j|

Q ∈N then
9: Sl, j := (si)i∈[Q] where each si has been uniformly sampled from X l, j.

10: Sω
l, j =

((
si,

|X l, j|
Q

))
i∈[Q]

.

11: else
12: Q̂ := ∣∣X l, j

∣∣−Q ·
⌊ |X l, j|

Q

⌋
13: Tl j := (ti)i∈[Q̂] ⊆ X l, j be an arbitrary vector containing Q̂ points from X l, j.
14: Tω

l j := ((ti,1))i∈[Q]
15: Rl j := (r i)i∈[Q] where each r i has been uniformly sampled from X l, j \ Tl j

16: Rω
l j =

((
r i,

|X l, j\Tl j|
Q

))
i∈[Q]

17: Sl, j := Sl, j ∪Rl j
18: Sω

l, j := Tω
l j∪̇Rω

l j

19: return S :=⋃
l∈[L], j∈{0,...,E} Sω

l, j.

134 CHAPTER 12. CORESETS

The algorithms’ runtime is

O
(|X |DK log

(
δ−1)+|S|) .

For the sake of clarity, in this theorem and in the remainder of this chapter, we ignore
the case that an evaluation of loglog might return a value less than one.

Special Case. With respect to the classical fuzzy K-means problem, our result simplifies
as follows. Recall from Section 5.3.2 that for the polynomial fuzzifier function pm with
m ∈ (1,∞), we can set ipm

= 4m and cpm
(K) = Km−1. Let the probability of success 1−δ be

some constant. Then we can bound the size of S by

|S| ∈O
(
log(|X |) loglog(|X |)2 ·K3 ·D ·ε−3 · log

(
m log

(
8mK2

ε

))
·K3(m−1)

)
⊆O

(
log(|X |) loglog(|X |)2 ·K3m+2 ·D ·ε−4)

.

Generalization to Weighted Data Sets (N). We can also compute coresets for data sets
with weights in N: Given the weighted data set X = ((xn,wn))n∈[N] ∈Dom

(
RD ,N

)
, construct

a data set Xw that contains wn copies of (xn,1), for each n ∈ [N]. Then apply Algorithm 12 to
Xw instead of X . With Corollary 2.26 and Theorem 12.2, it is easy to see that the algorithm
computes a coreset S of the weighted set X . However, as we apply the algorithm to a data
set that contains |Xw| =w (X) points instead of |X | points, the size of this coreset and the
runtime of the algorithm increase accordingly.

12.4 Application (Algorithm 14)

In this section, we show that Theorem 12.2 constructs a sufficiently small coreset fast enough
so that it pays off to compute the coreset first and then to apply Algorithm 11 to the coreset.

The straightforward combination of the algorithms, as described in Algorithm 14, yields
the following performance:

Algorithm 14 Combination of Techniques
Require: X ∈Dom

(
RD , {1}

)
, K ∈N, r :R≥0 →R≥0, cr(K) ∈ (0,1], ir ∈ [1,∞), ε ∈ [0,1]

1: Let ε̃ := ε/6
2: Apply Algorithm 12 to X ,K , r,cr(K),ir, ε̃/4 and sufficiently small δ to compute a data set

S ∈Dom({x | (x,w) ∈ X } ,N).
3: Apply Algorithm 11 to X ,K , r,cr(K),ir and ε̃ to compute a vector of means C.
4: Return C

Corollary 12.3. Given a data set X ∈ Dom
(
RD , {1}

)
, K ∈N, a fuzzifier r : R≥0 → R≥0 that is

ir-increase-bounded, cr-contribution-bounded, and [0,1]-reducing, the values cr(K) ∈ (0,1]
and ir ∈ [1,∞), and some ε ∈ (0,1], Algorithm 11 computes means C ⊆RD , |C| = K, such that
with constant probability

φ(r)
X (C)≤ (1+ε)φOPT

(X ,K ,r) .

The algorithms’ runtime is bounded by

D · |X | ·
(
log(|X |) ·D ·max

{
log

(
r
(

ε

96 · irK2

)−1)
, 1

}
·cr(K)−1

)O(K log(K)2 log(1/ε)2/ε2)

· tr(K) .

12.4. APPLICATION 135

Proof. As in the algorithm, let ε̃ := ε/6. First, we analyse the approximation guarantee.
Assume that S is an ε̃-coreset of X . From Theorem 12.2, we know that this holds true with
constant probability. That is,

∀C ∈ (RD)≤K : φ(r)
S (C) ∈ [1± ε̃] ·φ(r)

X (C) . (12.3)

From Corollary 11.4, we know that, with constant probability,

φ(r)
S (C)≤ (1+ ε̃) ·φOPT

(S,K ,r) . (12.4)

Fix some COPT
X ∈ (RD)≤K where φ(m)

X (COPT
X)=φOPT

(X ,K ,r). A combination of these inequalities
gives

φ(r)
X (C)≤ 1

1− ε̃ ·φ
(r)
S (C) (Equation (12.3))

≤ 1+ ε̃
1− ε̃ ·φ

OPT
(S,K ,r) (Equation (12.4))

≤ 1+ ε̃
1− ε̃ ·φ

(r)
S

(
COPT

X

)
≤ (1+ ε̃)2

1− ε̃ ·φ(r)
X

(
COPT

X

)
(Equation (12.3))

= (1+ ε̃)2

1− ε̃ ·φOPT
(X ,K ,r)

≤ (1+ε) ·φOPT
(X ,K ,r) ,

where in the last inequality we use the fact that

(1+ ε̃)2

1− ε̃ ≤ 1+3ε̃
1− ε̃ = 1+ 4ε̃

1− ε̃ = 1+ 4ε/6
1− ε̃/6 = 1+ 4ε

6−ε ≤ 1+ 4
5
ε≤ 1+ε .

Next, consider the runtime. From Corollary 11.4, we can know that the computation of
C needs time

TC := D · w
(S)
max

w(S)
min

· |S|O(K log(K) log(1/ε̃)/ε̃2) log

(
w(S)

max

w(S)
min

)O(K)

·HK
(r,K ,ε̃) · tr(K) ,

where ε̃= ε/6 and

HK
(r,K ,ε̃) =max

{
log

(
r
(

ε̃

16irK2

)−1)
, log

(
cr(K)−1)

, 1
}K

=max
{

log
(
r
(

ε

96irK2

)−1)
, log

(
cr(K)−1)

, 1
}K

. (ε̃= ε/6)

From Theorem 12.2 we know that
w(S)

max

w(S)
min

≤ |X |

and (since δ is some constant)

|S| ∈O
(
log(|X |) log(log(|X |))2 ·K3 ·D ·ε−3 · loglog

(
r
(

ε

2 · irK2

)−1)
·cr(K)−3

)

⊆O

((
log(|X |) ·D · loglog

(
r
(

ε

2 · irK2

)−1)
·cr(K)−1

)log(K) log(1/ε))
.

136 CHAPTER 12. CORESETS

Besides that, note that r
(

ε
2·irK2

)−1 ≤ r
(

ε
96·irK2

)−1
since r is strictly increasing. Hence,

|S|O(K log(K) log(1/ε̃)/ε̃2)

⊆O
(
log(|X |) ·D · loglog

(
r
(

ε

96 · irK2

)−1)
·cr(K)−1

)O(K log(K)2 log(1/ε)2/ε2)
.

By combining all these bounds, we obtain

TC ∈ D |X | ·
(
log(|X |) ·D ·max

{
log

(
r
(

ε

96 · irK2

)−1)
, 1

}
·cr(K)−1

)O(K log(K)2 log(1/ε)2/ε2)

tr(K) .

From Theorem 12.2, we know that the time needed to compute S is O(|X |DK +|S|). This
yields the claim.

Special Case. With respect to the classical fuzzy K-means problem, the result can be
simplified as follows. Recall from Section 5.3.2 that for the fuzzifier function pm with
m ∈ (1,∞), we can set ipm

= 4m, cpm
(K)= Km−1, and tpm

(K)=Θ(K). This means that

log
(
pm

(
ε

96irK2

)−1)
·cpm

(K)−1 = m · log
(

96 ·4mK2

ε

)
·Km−1 ∈O(

m2 ·ε−1 ·Km)
Hence, the runtime bound becomes

|X |(log(|X |) ·D ·m2 ·ε−1 ·Km)O(K log(K)2 log(1/ε)2/ε2)

⊆ |X | (log(|X |) ·D)O(K log(K)3·log(1/ε)3/ε2·m)

⊆ |X | (log(|X |) ·D)O(K2ε−3m) . (12.5)

Comparison. For the sake of simplicity, let us just compare Algorithm 11 and Algorithm 14
with respect to the classical fuzzy K-means problem. From Section 11.1.3, we know that the
runtime of Algorithm 11, given an unweighted data set X ∈Dom

(
RD , {1}

)
, is bounded by

D · |X |O(K2 log(1/ε) log(m)/ε2) ⊆ D · |X |O(K2ε−3m) .

In comparison to this bound, the runtime bound from (12.5) is clearly preferable as its
dependence on the number of points |X | is weaker. A downside of our bound from (12.5) is
that its dependence on the dimension D is worse. For an overview of all of our algorithms
we refer to Section 13.1.

Remark. Note that we cannot improve the approximation algorithm from Theorem 8.9
by a applying it to our coreset S. The runtime of this algorithm strongly depends on the
weights of the given data set S, namely, by a factor (w(S)

max/w(S)
min)K . Unfortunately, we can only

guarantee that w(S)
max/w(S)

min ≤ |X |, for the original input data set X .

12.5 Analysis

For our analysis we make use of various relaxed notions of coresets. In Section 12.5.1, we
introduce these relaxed notions formally and explain why they are useful in our analysis.
Then, in Section 12.5.2, we give a more detailed outline of our analysis.

12.5. ANALYSIS 137

12.5.1 The Key Ideas

A (strong) coreset guarantees that the coreset property holds for each possible solution. That
is, for each solution, the cost with respect to the coreset differs from the cost with respect to
the original data set by only a small factor.

Weak Coresets

A weak coreset guarantees the coreset property only for a certain set of solutions, which has
to be an ε-approximate mean set.

Definition 12.4 (weak ε-coresets). Let X ∈ Dom
(
RD ,R+

)
, let r : R≥0 → R≥0 be a fuzzifier

function, ε ∈ [0,1], and K ∈N.
Consider a set of solutions Θ⊆ (RD)≤K and a data set S ∈Dom

(
RD ,R+

)
. The tuple (S,Θ)

is a weak ε-coreset of X for the r-fuzzy K-means problem if

∀C ∈Θ : φ(r)
S (C) ∈ [1±ε] ·φ(r)

X (C)

and if Θ is an ε-approximate mean set of X for the r-fuzzy K-means problem.

In contrast to the definition of weak coresets for the K-means problem (Feldman et al.,
2007), we consider elements C of a given set of solutions Θ instead of subsets of a set of
candidate means. This is just a slight generalization that allows us to choose the set of
solutions more precisely.

To utilize a weak coreset (S,Θ) of X , we need an approximation algorithm that solves
the r-fuzzy K-means problem with respect to the data set S and the set of solutions Θ:

Observation 12.5 (the use of weak coresets). Assume we have an algorithm that can solve
the r-fuzzy K-means approximation problem, restricted to a small set of solutions Θ, with
respect to the small data set S in reasonable time. That is, it finds some solution Cal g ∈Θ
with φ(r)

S (Cal g)≤ (1+ε)φ(r)
S (Copt

S,Θ) where Copt
S,Θ ∈ arg min

{
φ(r)

S (C′)
∣∣∣ C′ ∈Θ

}
.

Assume that (S,Θ) is a weak coreset of the large data set X. This means that the
coreset property holds for all solutions from Θ. Hence, we have φ(r)

X (Cal g)≤ 1/(1−ε)φ(r)
S (Cal g).

Moreover, it means that Θ is an approximate mean set. Hence, there exists a C∗ ∈Θ satisfying
φ(r)

X (C∗)≤ (1+ε)φOPT
(X ,K ,r).

Observe that φ(r)
S (Copt

S,Θ)≤φ(r)
S (C∗) due to the definition of Copt

S,Θ and the fact that C∗ ∈Θ.

Besides that, observe that φ(r)
S (C∗) ≤ (1+ ε)φ(r)

X (C∗) due to the fact that the coreset property
applies to C∗ ∈Θ. Therefore, we have φ(r)

S (Copt
S,Θ)≤φ(r)

S (C∗)≤ (1+ε)φ(r)
X (C∗).

By combining these observations, we obtain

φ(r)
X (Cal g)≤ 1

1−εφ
(r)
S (Cal g)≤ 1+ε

1−εφ
(r)
S (Copt

S,Θ)≤ (1+ε)2

1−ε φ
(r)
X (C∗)≤ (1+ε)3

1−ε φ
OPT
(X ,K ,r) .

Solutions with Non-Negligible Clusters

The notion of a weak coreset is only useful if we can identify a suitable ε-approximate mean
set Θ. For each (original) data set X , we consider a special set of solutions Θ(r,ir ,K ,ε)(X):

Definition 12.6. For each X ∈Dom
(
RD , {1}

)
, ir-increase-bounded fuzzifier function r :R≥0 →

R≥0, K ∈N, and ε ∈ [0,1], we let

Θ(r,ir ,K ,ε)(X) :=
{

C ∈ (RD)≤K

∣∣∣∣∣ There is an r-fuzzy clustering of X induced by C

that has no (ir,K ,ε)-negligible clusters

}
.

It is easy to see that this set of solutions is an ε-approximate mean set for X .

138 CHAPTER 12. CORESETS

Lemma 12.7. For all X ∈Dom
(
RD , {1}

)
, ir-increase-bounded fuzzifier functions r, K ∈N, and

ε ∈ [0,1], Θ(r,ir ,K ,ε) is an ε-approximate mean set of X for the r-fuzzy K-means problem.

Proof. Theorem 6.3 holds for optimal solutions, in particular. This yields the claim.

The benefit of the restriction to this specific set of solutions Θ(r,ir ,K ,ε)(X) is that it
guarantees that we can make use of the notion of non-negligible clusters, which is the
analogon of non-empty clusters in a K-means hard clustering (cf. Section 6.2). This helps
us to transfer the proof of Chen (2009), who showed that Algorithm 12 computes a (strong)
coreset for the K-means problem, to the r-fuzzy K-means problem. More precisely, we
will follow his line of arguments to show that Algorithm 12 computes a set S such that
(S,Θ(r,ir ,K ,ε)(X)) is a weak coreset for the given set X

An Open Gap?

To utilize a weak coreset (S,Θ(r,ir ,K ,ε)(X)) of X , we need an approximation algorithm that
solves the r-fuzzy K-means problem with respect to the set data set S and the restricted
set of solutions Θ(r,ir ,K ,ε)(X) (see Observation 12.5). However, we do not know whether
there is such an algorithm. In particular, given an approximation algorithm that solves the
problem with respect to S and the complete set of solutions (RD)≤K , we cannot construct an
approximative solution that is contained in Θ(r,ir ,K ,ε)(X) via Algorithm 3:

Observation 12.8 (we cannot use weak coresets). Assume, the tuple (S,Θ(r,ir ,K ,ε)(X)) is a
weak coreset of X. Apply an (1+ε)-approximation algorithm that solves the r-fuzzy K-means
problem with respect to the set S and the complete set of solutions (RD)≤K . It returns some
solution Cal g ∈ (RD)≤K ⊇Θ(r,ir ,K ,ε)(X) with φ(r)

S (Cal g)≤ (1+ε)φOPT
(S,K ,r).

According to Lemma 6.4, we can apply Algorithm 3 to Cal g and X in order to compute a
solution C̃al g ∈Θ(r,ir ,K ,ε)(X) with φ(r)

X (C̃al g)≤ (1+ε)φ(r)
X (Cal g).

However, this does not imply that φ(r)
S (C̃al g) ≤ (1+ ε)φOPT

(S,K ,r). The reason for this is that

C̃al g ⊆ Cal g, and hence, φ(r)
S (C̃al g)≥φ(r)

S (Cal g) (see Lemma 5.11).
Consequently, we cannot conclude that φ(r)

X (C̃al g)≤ const ·φOPT
(X ,K ,r) as in Observation 12.5.

To put it in a nutshell, we do not know whether one can utilize an arbitrary weak coreset
(S,Θ(r,ir ,K ,ε)(X)) of X .

There is no Gap.

Fortunately, the set S = ((sm,vm))m constructed by Algorithm 12 takes a specific form. Its
points sm coincide with some points xn from the given data set X = ((xn,wn))n∈[N]. Moreover,
the ε-approximate mean sets Θ(r,ir ,K ,ε)(X) have some useful properties.

To gain some intuition why we can exploit these properties, take note of the following:
We consider solutions from Θ(r,ir ,K ,ε)(X). This means that we consider solutions which induce
non-negligible clusters with respect to X . The notion of a non-negligible cluster basically
boils down to the fact that at least a single point xn in X supports this cluster. The points sn
from S coincide with points xn from X . To sum up, there is some connection between the
notion of non-negligible clusters of S and non-negligible clusters of X . For more details, we
refer to Section 12.5.7. There, we show that a weak coreset (S,Θ(r,ir ,K ,ε)(X)) of X where S
has been constructed by Algorithm 12 is actually a strong coreset.

Weaker Coresets and a Discrete Search Space

While the notion of weak coresets is in principle useful, the next relaxed notion of a coreset
is rather technical. To prove that Algorithm 12 computes a set S such that (S,Θ(r,ir ,K ,ε)(X) is

12.5. ANALYSIS 139

a weak coreset for X , we follow the line of arguments from Chen (2009). In his proof, Chen
implicitly makes use of another relaxed notion of a coreset.

Definition 12.9 (weaker ε-coresets). Let X ∈ Dom
(
RD ,R+

)
, let r : R≥0 → R≥0 be a fuzzifier

function, ε ∈ [0,1], and K ∈N.
Consider a set of solutions Θ⊆ (RD)≤K and a data set S ∈Dom

(
RD ,R+

)
. The tuple (S,Θ)

is a weaker (than weak) ε-coreset of X for the r-fuzzy K-means problem if

∀C ∈Θ : φ(r)
S (C) ∈ [1±ε] ·φ(r)

X (C) .

In this definition, Θ is not necessarily an ε-approximate mean set. Hence, we cannot use
weaker coresets in the same way as in Observation 12.5.

In the following sections, we show that Algorithm 13 can be used to construct a set S such
that (S,GK) is a weaker coreset where G is a discrete search space (Definition 9.9). That is,
unlike the discrete search space that we considered in Chapter 10, this set G does not have
the property that GK is an ε-approximate mean set of the given data set X . Nonetheless, a
discrete search space has several useful properties, which we explained in Chapter 9. The
coreset property helps us to exploit these properties of G.

12.5.2 Outline of the Analysis

In the first part of the analysis, we show that Algorithm 12 constructs a set S such that
(S,Θ(r,ir ,K ,ε)(X)) is a weak coreset of the given data set X . The following three steps of this
proof are similar to the proof from (Chen, 2009):

1. In Section 12.5.4, we show that, for an arbitrary but fixed unknown set of solutions Θ
of some known size |Θ| ≤ γ, Algorithm 13 can be used to construct a data set S such
that (S,Θ) is a weaker coreset of X , with constant probability.

2. In Section 12.5.5, we use this result to conclude that Algorithm 12 constructs a data
set S such that (S,Θ(r,ir ,K ,ε)(X)) is a weak coreset of X . In particular, we construct a
discrete search space G with |G|K ≤ γ (see Chapter 9) and exploit the fact that, due to
our previous results, (S,GK) is a weaker coreset of X , with constant probability.

3. In Section 12.5.6, we analyse the size of the constructed data set S and the runtime of
Algorithm 12.

In the second part of the analysis, we show that the data set S constructed by Algorithm 12
is a strong coreset, with constant probability.

4. In Section 12.5.7, we identify some useful properties of the construction and of the
sets of solutions Θ(r,ir ,K ,ε)(X). From these properties, we conclude that the data set S
computed by Algorithm 12 actually is a strong coreset.

12.5.3 Preliminaries

In this section, we introduce some notation, take a close look at Algorithm 13, and note a
basic observation that helps us to compare the cost of two different data sets.

Notation (K-Means)

We use the terms (strong) coreset, weak coreset and weaker (than weak) coreset also with
respect to the K-means problem. In doing so, we refer to the respective definitions for the
special case r = id, where the r-fuzzy K-means problem corresponds to the K-means problem
(Observation 5.23).

140 CHAPTER 12. CORESETS

Properties of Algorithm 13

The following observations correspond to the notes that can be found in (Chen, 2009, pp. 927
(incl. footnote)).

Observation 12.10 (partition). ∪̇l, j X l, j = {x | (x,1) ∈ X }.

Proof. By construction and Definition 9.6, the sets X l, j are pairwise disjoint. It remains to
show that {x | (x,1) ∈ X }⊆∪l, j X l, j. Towards a contradiction, assume that there exists a point
(x,1) ∈ X with x ∉∪l, j X l, j. This implies that

dist(x,M)> 2ER≥
√
α |X | ·

√
kmX (M)
α |X | = kmX (M) ,

which contradicts the fact that kmX (M)≥ 1 · dist(y,M)2 for all (y,1) ∈ X .

Observation 12.11 (number of samples and their weights). For every set Sl, j (with X l, j 6= 0),
observe the following:

1. In the (l, j)-th round the algorithm samples at most
∣∣Sl, j

∣∣≤ 2 ·Q points.

2. The weight of all samples in Sω
l, j sums up to

∑
(s,ωs)∈Sω

l, j
ωs =

∣∣X l, j
∣∣.

3. The weights of all data points in Sω
l, j ∈Dom({x | (x,1) ∈ X } ,N) are natural numbers. In

particular, if |X l, j|
Q ∉N, then each point in Tω

l j is weighted by |X l, j\Tl j|
Q =

⌊ |X l, j|
Q

⌋
∈N.

Proof. Assume
∣∣X l, j

∣∣ /Q ∈N. Then
∑

(s,ωs)∈Sω
l, j
ωs = q · |X l, j|

Q = ∣∣X l, j
∣∣ and

∣∣Sl, j
∣∣=Q.

Assume
∣∣X l, j

∣∣ /Q ∉N. Then,

∑
(s,ωs)∈Sω

l, j

ωs =
∣∣Rl j

∣∣ ∣∣X l, j \ Tl j
∣∣

Q
+ ∣∣Tl j

∣∣ ·1=Q ·
∣∣X l, j \ Tl j

∣∣
Q

+ ∣∣Tl j
∣∣= ∣∣X l, j

∣∣ .

Moreover, Q̂ = ∣∣X l, j
∣∣−Q ·

⌊ |X l, j|
Q

⌋
≤Q. Hence,

∣∣Sl, j
∣∣= ∣∣Tl j

∣∣+∣∣Rl j
∣∣= Q̂+Q ≤ 2·Q. Furthermore,

observe that Q̂ is chosen such that

∣∣X l, j \ Tl j
∣∣

Q
=

∣∣X l, j
∣∣− Q̂

Q
=

∣∣X l, j
∣∣− (∣∣X l, j

∣∣−Q ·
⌊ |X l, j|

Q

⌋)
Q

=
⌊∣∣X l, j

∣∣
Q

⌋
∈N .

Observation 12.12 (size of S and runtime). The algorithm constructs a set S of the size

|S| ∈O(
log(|X |) log(log(|X |)) ·cr(K)−2 ·K2 ·ε−2 · log(γ) · log

(
δ−1))

.

in time O(|X |DK +|S|).

Proof. From Algorithm 13 and Observation 12.11 (Item 1), we can conclude that S is a union
of L ·E sets of size ≤ 2 ·Q where L ∈O(K), E ∈O (log(|X |), and

Q ∈O
((

1
εcr(K)

)2
log

(
KEγK

δ

))
⊆O

(
ε−2 ·cr(K)−2 · log(log(|X |)) ·K · log(γ) · log

(
δ−1))

.

Combining these bounds yields the claim.

12.5. ANALYSIS 141

Comparing the Cost of Two Different Data Sets

The following general observation will be helpful in Section 12.5.5.

Lemma 12.13 (different data sets). Let C = (µl)l∈[L] ⊆ RD . Let r : R≥0 → R≥0 be a [0,1]-
reducing fuzzifier function. Consider two data sets X = ((xn,1))n∈[N] ∈ Dom

(
RD , {1}

)
and

Y = ((yn,1))n∈[N] ∈Dom
(
RD , {1}

)
of the same size N. Then, for all ε̂ ∈ [0,1], it holds∣∣∣φ(r)

X (C)−φ(r)
Y (C)

∣∣∣≤ (
1+ 1

ε̂

) N∑
n=1

‖xn − yn‖2
2 + ε̂ ·min

{
φ(r)

Y (C), φX (C)
}

.

Proof. Let PX = (pnk)k∈[K] and PY = (p̃nk)k∈[K] be the r-fuzzy clusterings induced by (µk)k∈[K]
with respect to X and Y , respectively. Let

E :=
∣∣∣φ(r)

X (C)−φ(r)
Y (C)

∣∣∣= ∣∣∣∣∣ L∑
l=1

N∑
n=1

(
r(pnl)

∥∥xn −µl
∥∥2

2 − r(p̃nl)
∥∥yn −µl

∥∥2
2

)∣∣∣∣∣ .

In the following, we distinguish two cases.
Case 1: If φ(r)

X (C)≥φ(r)
Y (C), then

E=φ(r)
X (C)−φ(r)

Y (C)

=φ(r)
X (C, (pnk)n,k)−φ(r)

Y (C, (p̃nk)n,k)

≤φ(r)
X (C, (p̃nk)n,k)−φ(r)

Y (C, (p̃nk)n,k)

=
L∑

l=1

N∑
n=1

r(p̃nl)
(∥∥xn −µl

∥∥2
2 −

∥∥yn −µl
∥∥2

2

)
≤

L∑
l=1

N∑
n=1

r(p̃nl)
(‖xn − yn‖2

2 +2‖xn − yn‖2
∥∥yn −µl

∥∥
2
)

(Lemma 9.4)

=
N∑

n=1

(
L∑

l=1
r(p̃nl)

)
‖xn − yn‖2

2 +2
L∑

l=1

N∑
n=1

r(p̃nl)‖xn − yn‖2
∥∥yn −µl

∥∥
2 .

Observe that, for all a ∈ R+ and x, y ∈ R, we have 0 ≤ (ax− 1
a y)2 = a2x2 −2xy+ 1

a2 y2, which
means that 2xy≤ a2x2 + 1

a2 y2. Hence, for all ε̂ ∈ [0,1], we have

2
N∑

n=1

L∑
l=1

r(p̃nl)
∥∥yn −µl

∥∥
2 ‖xn − yn‖2 ≤

N∑
n=1

L∑
l=1

r(p̃nl)
(
ε̂
∥∥yn −µl

∥∥2
2 +

1
ε̂
‖xn − yn‖2

2

)

=ε̂ ·φ(r)
Y (C)+ 1

ε̂

N∑
n=1

(
L∑

l=1
r(p̃nl)

)
‖xn − yn‖2

2 .

Combining these inequalities gives

E≤
(

N∑
n=1

(
L∑

l=1
r(p̃nl)

)
‖xn − yn‖2

2

)
+

(
ε̂ ·φ(r)

Y (C)+ 1
ε̂

N∑
n=1

(
L∑

l=1
r(p̃nl)

)
‖xn − yn‖2

2

)

=
(
1+ 1

ε̂

) N∑
n=1

(
L∑

l=1
r(p̃nl)

)
‖xn − yn‖2

2 + ε̂ ·φ(r)
Y (C) .

Case 2: If φ(r)
X (C)<φ(r)

Y (C), then we analogously obtain

E≤
(
1+ 1

ε̂

) N∑
n=1

(
L∑

l=1
r(pnl)

)
‖xn − yn‖2

2 + ε̂ ·φ(r)
X (C) .

Unfortunately, we do not know whether
∑L

l=1 r(pnl)≥
∑L

l=1 r(p̃nl) for some n ∈ [N], or not.
However, given that r is [0,1]-reducing, we know that in both cases

∀n ∈ [N] :
L∑

l=1
r(pnl)≤ 1 ∧

L∑
l=1

r(p̃nl)≤ 1 .

This yields the claim.

142 CHAPTER 12. CORESETS

12.5.4 Weaker Coreset for a Fixed Number of Arbitrary Solutions

Fix an arbitrary set of solutions Γ⊂RD . Assume that Γ is unknown to us, except for its size
which, as we know, is upper bounded by some γ ∈N. With the help of Algorithm 15, we can
construct a data set S such that (S,Γ≤K) is a weaker coreset of X , with constant probability.

Algorithm 15 Weaker Coreset
Require: X ∈Dom

(
RD , {1}

)
, K ∈N, r :R≥0 →R≥0, cr(K) ∈ (0,1], ε ∈ (0,1], δ ∈ (0,1), γ ∈N.

1: Use the algorithm of Aggarwal et al. (2009) to compute an (α,β)-bicriteria approximation
M= (ml)l∈[L] ⊆RD for the K-means problem with respect to X with α,β≥ 1.

2: Apply Algorithm 13 to X , K , ε, δ, γ, α, β, and M to compute a data set S.
3: return S

Theorem 12.14. Let γ ∈ N. Fix an arbitrary Γ ⊆ RD with |Γ| ≤ γ. Let X ∈ Dom
(
RD , {1}

)
,

K ∈N, a cr-contribution-bounded fuzzifier function r :R≥0 →R≥0, ε ∈ (0,1], and δ ∈ (0,1).
Then, given X ,K , r,cr(K),ε,δ and γ, Algorithm 15 computes a set S ∈Dom({x | (x,1) ∈ X } ,N)

such that, with a probability of 1−δ, the tuple (S,Γ≤K) is

1. a weaker ε-coreset of X for the r-fuzzy K-means problem, and

2. a weaker (ε ·cr(K))-coreset of X for the K-means problem.

The set S has the size

|S| ∈O(
log(|X |) log(log(|X |)) ·cr(K)−2 ·K2 ·ε−2 · log

(
γ
) · log

(
δ−1))

.

The algorithms’ runtime is
O

(|X |DK log(δ−1)+|S|) .

We point out that the form Θ= Γ≤K that the set of solutions takes here is only for the
sake of simplicity (we will set Γ=G for some discrete search space G in the next chapter).
Analogously, one can show that the result holds true for Θ⊆ (RD)≤K with |Θ| ≤ γK . Moreover,
one could combine Theorem 12.14 with our results from Section 10.3.

From Lemma 5.12 from (Chen, 2009, p. 938), we already know that Item 2 of Theo-
rem 12.14 is satisfied, with constant probability. However, together with Lemma 6.1, this
observation does not directly imply that Algorithm 15 computes a weaker coreset for the
r-fuzzy K-means problem. Therefore, we have to refine the analysis from (Chen, 2009). To
this end, we need the following concentration bound by Haussler (1992).

Lemma 12.15. Let ε,δ > 0, X ⊆ RD a finite set, f : X → R, and let F ∈ R be such that
∀x ∈ X : 0≤ f (x)≤ F. Let S ⊂ X be a uniform sample multi-set of size |S| ≥ 1

2ε
−2 ln(2/δ). Then

Pr

[∣∣∣∣∣ 1
|X |

∑
x∈X

f (x)− 1
|S|

∑
s∈S

f (s)

∣∣∣∣∣≤ εF
]
≥ 1−δ.

With this lemma at hand, we can now prove Theorem 12.14.

Proof of Theorem 12.14. This proof follows the lead of Chen (2009).
Fix an arbitrary Γ⊂RD with |Γ| ≤ γ. Consider a single run of the algorithm as described

in the theorem. Consider an arbitrary but fixed C ⊆Γ with |C| ≤ K .
Due to Observation 12.10 and due to the construction of S, we have ∪̇l, j X l, j = X and

∪̇l, jSω
l, j = S. Hence, with the the triangle inequality, we can conclude

∣∣∣φ(r)
X (C)−φ(r)

S (C)
∣∣∣≤ L∑

l=1

E∑
j=0

∣∣∣∣φ(r)
X l, j

(C)−φ(r)
Sω

l, j
(C)

∣∣∣∣ , (12.6)

12.5. ANALYSIS 143

where we identify X l, j ⊆RD with an unweighted data set, as explained in Definition 2.3, and
let Sl, j := Tl j := Rl j :=; if X l, j =;.

Consider an arbitrary but fixed summand
∣∣∣∣φ(r)

X l, j
(C)−φ(r)

Sω
l, j

(C)
∣∣∣∣ with l ∈ [L] and j ∈ {0,1, . . . ,E}.

Our goal is to derive a probabilistic upper bound on this summand with the help of
Lemma 12.15. To this end, we distinguish two cases:

Case 1: First, consider the case that X l, j 6= ; with
∣∣X l, j

∣∣ /q ∈N.

Then, ωs = |X l, j|
q ∈N for each (s,ωs) ∈ Sω

l, j and
∣∣Sl, j

∣∣= q. Hence, 1
|X l, j| ·ωs = 1

|Sl, j| . Therefore,
we have

1∣∣X l, j
∣∣φ(r)

Sω
l, j

(C)= 1∣∣X l, j
∣∣ ∑

(s,ωs)∈Sω
l, j

φ(r)
(s,ωs)

(C)

= ∑
(s,ωs)∈Sω

l, j

(
1∣∣X l, j

∣∣ωs

)
φ(r)

(s,1)(C)

= 1∣∣Sl, j
∣∣ ∑

s∈Sl, j

φ(r)
(s,1)(C) .

Consequently, we can write∣∣∣∣φ(r)
X l, j

(C)−φ(r)
Sω

l, j
(C)

∣∣∣∣= ∣∣X l, j
∣∣ ∣∣∣∣∣ 1∣∣X l, j

∣∣ ∑
x∈X l, j

φ(r)
(x,1)(C)− 1∣∣Sl, j

∣∣ ∑
s∈Sl, j

φ(r)
(s,1)(C)

∣∣∣∣∣
= ∣∣X l, j

∣∣ ∣∣∣∣∣ 1∣∣X l, j
∣∣φ(r)

X l, j
(C)− 1∣∣Sl, j

∣∣φ(r)
Sl, j

(C)

∣∣∣∣∣ , (12.7)

where we identify X l, j and Sl, j with unweighted data sets, as explained in Definition 2.3.
We want to apply Lemma 12.15 with f (·)=φ(r)

(·) (C): Obviously, φ(r)
(x,1)(C)≥ 0 for all x ∈RD .

Next, we need to determine an upper bound F(l, j) ∈R with φ(r)
(x,1)(C)≤ F(l, j) for all x ∈ X l, j.

Due to Lemma 6.1, we have φ(r)
(x,1)(C)≤ dist(x,C)2 for all x ∈RD . Fix some

cl, j ∈ arg min{dist(x,C) |x ∈ X l, j} . (12.8)

Then, for each x ∈ X l, j, we can bound

dist(x,C)2 ≤ 2
(
dist

(
cl, j,C

)2 +∥∥cl, j − x
∥∥2

2

)
(Lemma A.3 and Lemma A.2)

≤ 4
(
dist

(
cl, j,C

)2 +∥∥cl, j −mk
∥∥2

2 +‖mk − x‖2
2

)
(Lemma A.2)

≤ 4
(
dist

(
cl, j,C

)2 +22 j+1R2
)

,

where the last inequality is due to the fact that X l, j ⊆Ul, j ⊆ B
(
ml ,2 jR

)
(cf. Definition 9.6).

Hence, we can set

F(l, j) := 4
(
dist

(
cl, j,C

)2 +22 j+1R2
)

.

Let ε′ := ε ·cr(K)/(44α) and δ′ := δ/
(
2LE(γ+1)K)

. Note that Sl, j is a uniform sample
multi-set of size

Q ≥ 1
2

(ε′)−2 ln(2/δ′)

from X l, j (assuming Qconst is sufficiently large). So we can apply Lemma 12.15 with ε′

instead of ε and δ′ instead of δ. Recall (12.7). We obtain that, with a probability of at least

144 CHAPTER 12. CORESETS

1−δ/
(
2LE(γ+1)K)

,∣∣∣∣φ(r)
X l, j

(C)−φ(r)
Sω

l, j
(C)

∣∣∣∣≤ ∣∣X l, j
∣∣ ·ε′F(l, j)

= 4ε′
(∣∣X l, j

∣∣ dist(
cl, j,C

)2 + ∣∣X l, j
∣∣22 j+1R2

)
. (12.9)

Consider the first term in (12.9). Due to (12.8),∣∣X l, j
∣∣ dist(

cl, j,C
)2 ≤ ∑

x∈X l, j

dist(x,C)2 = kmX l, j (C) .

Consider the second term in (12.9). For j = 0, we know

∣∣X l, j
∣∣22 j+1R2 = ∣∣X l, j

∣∣2R2 = 2
α

∣∣X l, j
∣∣

|X | kmX (M)≤ 2

∣∣X l, j
∣∣

|X | kmX (M) .

For j ≥ 1, observe that X l, j ⊆Ul, j ∩ Al where Ul, j ∩B
(
ml ,2 j−1R

)=; (cf. Definition 9.6) and
where Al is the l-th K-means hard cluster induced by M. Hence, for all x ∈ X l, j, we have
(2 j−1R)2 = 22 j−2R2 ≤ ‖x−ml‖2

2 = dist(x,M)2. Hence, for j ≥ 1,∣∣X l, j
∣∣22 j+1R2 ≤ 23 ∑

x∈X l, j

‖x−mk‖2
2 = 8kmX l, j (M) .

By combining the upper bounds (for the case j = 0 and j ≥ 1) with (12.9), we obtain that∣∣∣∣φ(r)
X l, j

(C)−φ(r)
Sω

l, j
(C)

∣∣∣∣≤ 4ε′
(
kmX l, j (C)+8kmX l, j (M)+2

∣∣X l, j
∣∣

|X | kmX (M)

)
(12.10)

with a probability of at least 1−δ/(2LE(γ+1)K)−1.
Case 2: Second, consider the case that X l, j 6= ; and

∣∣X l, j
∣∣ /Q ∉N.

Then, Sl, j = Tl j ∪Rl j. Observe that, by construction, Tl j∪̇Rl j ⊆ X l, j. Moreover, by
construction, each data point (t,ωt) ∈ Tω

l j is weighted by ωt = 1. Recall that the points in
X ∈Dom

(
RD , {1}

)
are also weighted by 1. Therefore, we can write∣∣∣∣φ(r)

X l, j
(C)−φ(r)

Sω
l, j

(C)
∣∣∣∣= ∣∣∣∣φ(r)

X l, j
(C)−φ(r)

Tω
l j

(C)−φ(r)
Rω

l j
(C)

∣∣∣∣= ∣∣∣∣φ(r)
X l, j\Tl j

(C)−φ(r)
Rω

l j
(C)

∣∣∣∣ . (12.11)

Observe that Rl j contains Q uniform samples from X l, j \ Tl j. In Rω
l j, each of these

samples from Rl j is weighted by ω = ∣∣X l, j \ Tl j
∣∣ /Q. From Observation 12.11 (Item 3), we

know that ω ∈ N. Moreover, we can apply the same line of argument as in the first case
(with X l, j replaced by X l, j \Tl j and Sω

l, j replaced by Rω
l j). Combining this result with (12.11)

yields the correctness of a result that is analog to (12.10) (with the same probability).
To sum up, in either case, we know that (12.10) holds true with a probability of 1−

δ/(2LE(γ+1)K)−1.
Due to Boole’s inequality, we know that (12.10) holds simultaneously for every l ∈ [L]

and j = {0,1, . . . ,E} with a probability of at least 1−δ/(2(γ+1)K). Due to Observation 12.10,
we have

∑L
l=1

∑E
j=0

∣∣X l, j
∣∣= |X |. Hence, by taking the sum on both sides of (12.10), we obtain

L∑
l=1

E∑
j=0

∣∣∣φ(r)
X l, j

(C)−φ(r)
Sl, j

(C)
∣∣∣≤ 4ε′ (kmX (C)+10kmX (M)) . (12.12)

Due to Lemma 6.1 and |C| ≤ K , it holds that kmX (C)≤ 1
cr(K)φ

(r)
X (C) and kmX (M)≤αkmOPT

(X ,K) ≤
α 1

cr(K)φ
(r)
X (C).

12.5. ANALYSIS 145

We can conclude

L∑
l=1

E∑
j=0

∣∣∣φ(r)
X l, j

(C)−φ(r)
Sl, j

(C)
∣∣∣≤ 4ε′ · (1+10α)

cr(K)
φ(r)

X (C)≤ ε ·φ(r)
X (C) ,

where the last inequality is due to ε′ = ε ·cr(K)/(44α) and α≥ 1.
Recall (12.6). We just showed that, for a fixed C ⊆ Γ, |C| ≤ K , with a probability of at

least 1−δ/(2(γ+1)K), it holds ∣∣∣φ(r)
X (C)−φ(r)

S (C)
∣∣∣≤ ε ·φ(r)

X (C) . (12.13)

There are at most (|Γ|+1)K ≤ (γ+1)K different vectors C ⊆Γ with |C| ≤ K . Thus, by Boole’s
inequality, with a probability of at least 1−δ/2, (12.13) holds simultaneously for all C ⊆ Γ
with |C| ≤ K .

Now consider the case that r = id. Recall that φ(id)
X (C)= kmX (C) for all X ∈Dom

(
RD ,R+

)
and C ⊆ RD . Follow the same line of arguments as before, up to (12.12). With r = id, this
inequality reads

L∑
l=1

E∑
j=0

∣∣kmX l, j (C)−kmSl, j (C)
∣∣≤ 4ε′ (kmX (C)+10kmX (M)) .

Recall that kmX (M)≤αkmOPT
(X ,K) ≤αkmX (C) since |C| ≤ K . Hence,

|kmX (C)−kmS (C)|
L∑

l=1

E∑
j=0

∣∣kmX l, j (C)−kmSl, j (C)
∣∣

≤4ε′ (1+10α)kmX (C)
≤ε ·cr(K) (1/(11 ·α)+10/11)kmX (C) (ε′ = ε ·cr(K)/(44α))

≤ε ·cr(K)kmX (C) . (α≥ 1)

By using Boole’s inequality to combine our result (for the given r) with this special case
(r = id), we obtain that both results hold simultaneously with a probability of at least 1−δ.
This yields the claim.

12.5.5 Weak Coreset

In this section, we show that Algorithm 12 computes a set S such that (S,Θ(r,ir ,K ,ε)(X)) is a
weak coreset for the given data set X .

Theorem 12.16. Given an unweighted data set X ∈ Dom
(
RD , {1}

)
, K ∈N, a [0,1]-reducing

fuzzifier function r :R≥0 →R≥0, ir-increase-bounded and cr-contribution-bounded, the values
cr(K) ∈ (0,1] and ir ∈ [1,∞), ε ∈ (0,1) and δ ∈ (0,1), Algorithm 12 computes a data set S ∈
Dom({x | (x,w) ∈ X } ,N) such that, with a probability of at least 1−δ, the tuple (S,Θ(r,ir ,K ,ε)(X))
is a weak ε-coreset of X for the r-fuzzy K-means problem.

The proof of this theorem is basically an analogon to the proof from (Chen, 2009, pp.935)
for (strong) coresets for the K-means problem.

Preliminaries

Consider arbitrary but fixed X = (xn)n∈[N] ∈Dom
(
RD , {1}

)
, K ∈N, fuzzifier function r that is

ir-increase-bounded (ir ∈ [1,∞)), cr-contribution-bounded (cr(K) ∈ (0,1]), and [0,1]-reducing,
ε ∈ (0,1), and δ ∈ (0,1). We analyse a single run of Algorithm 12 given X , K , r, cr(K), ir, ε,

146 CHAPTER 12. CORESETS

and δ. We denote the (α,β)-approximation computed in the first step of the algorithm by
M= (ml)l∈[L]. That is, α,β ∈O(1) and

L = |M| ≤β ·K and kmX (M)≤αkmOPT
(X ,K) . (12.14)

Fix an arbitrary solution C ∈Θ(r,ir ,K ,ε). That is, C = (µt)t∈[T] ⊂RD contains

T = |C| ≤ K (12.15)

mean vectors and induces some r-fuzzy clustering (pnt)n∈[N],t∈[T] of X that has no (ir,K ,ε)-
negligible clusters. Hence,

∀t ∈ [T] ∃n ∈ [N] : pnt ≥ ε

2irK2 . (12.16)

Choose a Large (Discrete) Search Space

Additionally, we define the search space

U :=U(E′,R,M)⊂RD

where

E′ :=
ÌÌÌÊ1

2
log

9 ·α · 20

ε̃2 · r
(

ε
2irK2

) · |X |
ÍÍÍË , R=

√
kmX (M)
α |X | and ε̃= ε ·cr(K)

504α
. (12.17)

Note that R and ε̃ take the values described in Algorithm 12.

Observation 12.17 (large search space). From Lemma 9.10, we know that the search space
U covers the data set X well:

⋃
x∈X

B(x,r)⊆U where r= 2

√√√√ 20

ε̃2 · r
(

ε
2irK2

) ·kmX (M) .

For those points inside the search space U, function g defines a representative in G. Let g
be a representative function described by (E′,R,M) and (ε̃/36) and let G be the corresponding
discrete search space

G := {g(x) |x ∈U} .

Weaker Coreset for r-Fuzzy K-Means and Strong Coreset for K-Means

With our results from Section 12.5.4, we can conclude that (S,G≤K) is a weaker coreset, with
high probability:

Claim 12.18 (weaker coresets). With a probability of at least 1−δ, (S,G≤K) is a weaker
(cr(K) · ε̃)-coreset of X for the K-means problem and a weaker ε̃-coreset of X for the r-fuzzy
K-means problem.

Proof. Recall that the discrete search space G is described by (E′,R,M) and the precision
ε̃/36, where |M| ≤βK . From Lemma 9.17, the chosen parameters (12.17), and the definition
of γ in Algorithm 12, we know that

|G| ≤ |M| · (E′+1) ·
(

16
p
π · e

ε̃/36

)D

≤βK · (E′+1) ·
(

47 ·36
ε̃

)D
= γ .

Applying Theorem 12.14 yields the claim.

12.5. ANALYSIS 147

So, from now on, let us assume that this is the case: (S,G≤K) is a weaker (cr(K)·ε̃)-coreset
of X for the K-means problem and a weaker ε̃-coreset of X for the r-fuzzy K-means problem.
In particular, this means that

∀C̃ ∈G≤K :
∣∣∣φ(r)

X (C̃)−φ(r)
S (C̃)

∣∣∣≤ ε̃ ·φ(r)
X (C̃) . (12.18)

Under this assumption, then we know that S already does part of the trick:

Claim 12.19. S is a (cr(K) · ε̃)-coreset of X for the K-means problem. That is,

∀C̃ ∈ (RD)≤K :
∣∣kmX

(
C̃

)−kmS
(
C̃

)∣∣≤ ε̃ ·cr(K) ·kmX
(
C̃

)
. (12.19)

Proof. Consider the work of (Chen, 2009, pp. 935) under the assumption that (S,G≤K) is a
weaker (cr(K) · ε̃)-coreset of X for the K-means problem.

Case 1: Inside the Search Space

Following the same line of arguments as in (Chen, 2009, p. 937), we first consider the case
that all means from C lie inside the search space U. In this case, we can make use of the
fact that for all means from C ⊆U there exist representatives in g(C)⊆G and that, as we
showed in Section 9.4, these representatives are similar to the original means C. This is
useful simply because we know that S exhibits the coreset property with respect to means
from G.

Claim 12.20. If C ⊆U, then
φ(r)

S (C)≤ ε ·φ(r)
X C .

Proof. Start by observing that∣∣∣φ(r)
S (C)−φ(r)

X (C)
∣∣∣ (12.20)

≤
∣∣∣φ(r)

S (C)−φ(r)
S (g(C))

∣∣∣+ ∣∣∣φ(r)
S (g(C))−φ(r)

X (g(C))
∣∣∣+ ∣∣∣φ(r)

X (g(C))−φ(r)
X (C)

∣∣∣ . (12.21)

Recall that g is a representative function that defines a representative for each point in
U=U(E′,R,M) with precision ε̃/36. Since C ⊆U, we can apply Corollary 9.16 with respect to
C and ε̃/36.

Moreover, recall that |C| = T ≤ K and |M| = L ≤ K . Hence, kmX (M)≤αkmOPT
(X ,K) and

kmX (M)≤αkmOPT
(X ,K) ≤αkmX (C) . (12.22)

Besides that, since S is a strong (ε̃ ·cr)-coreset for the K-means problem (12.19), we can
conclude that

kmS (M)≤ (1+ ε̃ ·cr)kmX (M) and kmS (C)≤ (1+ ε̃ ·cr)kmX (C) . (12.23)

First, we consider the last summand of the upper bound from (12.21). We have∣∣∣φ(r)
X (g(C))−φ(r)

X (C)
∣∣∣≤ 36ε̃

(
kmX (C)+kmX (M)+|X |R2)

≤ 36ε̃ (kmX (C)+ (1+1/α)kmX (M)) (Equation (12.17))

≤ 36ε̃(α+2)kmX (C) (Equation (12.22))

≤ ε̃ · 36(α+2)
cr(K)

φ(r)
X (C) (Lemma 6.1)

≤ ε̃ · 108α
cr(K)

φ(r)
X (C) . (α≥ 1)

148 CHAPTER 12. CORESETS

Second, consider the first summand of the upper bound from (12.21). Similarly, we have∣∣∣φ(r)
S (C)−φ(r)

S (g(C))
∣∣∣

≤ 36ε̃ (kmS (C)+kmS (M)+|S|R)
≤ 36ε̃ (kmS (C)+kmS (M)+kmX (M) /α) (|S| ≤ |X | and Equation (12.17))

≤ 36ε̃ ((1+ ε̃cr(K))kmX (C)+ (1+ ε̃cr(K)+1/α)kmX (M)) (Equation (12.19))

≤ 36ε̃ (1+ ε̃cr(K)+α+αε̃cr(K)+1)kmX (C) (Equation (12.22))

≤ 180α · ε̃ ·kmX (C) (ε̃,cr(K)≤ 1,α≥ 1)

≤ ε̃ 180α
cr(K)

·φ(r)
X (C) . (Lemma 6.1)

To bound the second summand, we use our assumption (12.18) that (S,G≤K) is an ε̃-
weaker coreset for the r-fuzzy K-means problem with respect to X . Observe that g(C)⊆G.
Hence, with (12.18), we can directly bound∣∣∣φ(r)

S (g(C))−φ(r)
X (g(C))

∣∣∣≤ ε̃ ·φ(r)
X (g(C)) .

With our bound on the last summand of the upper bound from (12.21), we can conclude that∣∣∣φ(r)
S (g(C))−φ(r)

X (g(C))
∣∣∣≤ ε̃ ·(1+ ε̃ · 108α

cr(K)

)
φ(r)

X (C)

≤ ε̃ · 216α
cr(K)

·φ(r)
X (C) . (ε̃,cr(K)≤ 1, α≥ 1)

By combining our bounds on the single summands of the upper bound from (12.21) and
using the fact that ε̃= ε ·cr(K)/(504α), we obtain∣∣∣φ(r)

S (C)−φ(r)
X (C)

∣∣∣= ε̃ · 504α
cr(K)

φ(r)
X (C)≤ ε ·φ(r)

X (C) .

Case 2: Outside the Search Space

Next, we consider the case that one of the mean vectors from C is not contained in the large
search space U. In this case, we can exploit the fact that the resulting r-fuzzy K-means
cost of C is rather large. Moreover, we can make use of the specific form of the coreset
construction. Take note of the following observation:

Observation 12.21 (exploit the natural weights). From Observation 12.11 (Item 2 and
Item 3) we can conclude that there exists a function s : {x | (x,1) ∈ X } 7→ {x | (x,1) ∈ X } that
satisfies

∀l ∈ [L] ∀ j ∈ {0,1, . . . ,E} : s(X l, j)= Sl, j ⊆ X l, j

and
∀(s,ωs) ∈ S :

∣∣s(s)−1∣∣=ωs .

We stress the fact that this result exploits the specific form of the constructed sets:
Algorithm 13 computes data sets Sω

l, j whose data points are weighted by natural numbers
and that the sum of these weights is equal to the number of points in X l, j =Ul, j ∩ Al .

In the following, let us fix a function s as described in Observation 12.21. With this
function, we can now bound the cost between the given data set X and the presumed coreset
S as follows.

12.5. ANALYSIS 149

Claim 12.22 (upper bound). For all ε̂ ∈ [0,1], we have∣∣∣φ(r)
X (C)−φ(r)

S (C)
∣∣∣≤ (

1+ 1
ε̂

) N∑
n=1

‖xn −s(xn)‖2
2 + ε̂ ·min

{
φ(r)

S (C),φ(r)
X (C)

}
.

Proof. Let S̃ be the unweighted data set that contains ωs copies of (s,1) for each of the |S|
data points (s,ωs) ∈ S. Recall from Corollary 8.7 that φ(r)

S (C)=φ(r)
S̃

(C) for all C ⊆RD .
Observe that

∣∣S̃∣∣ = ∑
(s,ωs)∈Sωs = |X | due to Observation 12.10 and Observation 12.11

(Item 2). Moreover, recall that r is [0,1]-reducing. Hence, we can apply Lemma 12.13 to X
and S̃. This yields the claim.

Consider the first summand of this upper bound. Analogously to (Chen, 2009, p. 934),
we can upper bound this sum in terms of kmX (M).

Claim 12.23.
N∑

n=1
‖xn −s(xn)‖2

2 ≤ 20 ·kmX (M)

Proof. Consider an arbitrary xn ∈ X . By construction, there exists a set X l, j such that
xn,s(xn) ∈ X l, j. Recall that X l, j = Al ∩Ul, j. With Lemma 9.11, we can conclude that

‖xn −s(xn)‖2 ≤ diam(Ul, j)≤ 2max
{
2(‖xn −ml‖2 ,R

}= 2max {2dist(xn, M) ,R} .

Hence,
‖xn −s(xn)‖2

2 ≤ 4max
{
4dist(xn, M)2 ,R2}

.

By summing over all xn ∈ X , we obtain

N∑
n=1

‖xn −s(xn)‖2
2 ≤ 4

N∑
n=1

max
{
4dist(xn, M)2 ,R2}

≤ 4
N∑

n=1
4dist(xn, M)2 +R2

= 4
(
4kmX (M)+N ·R2)

= 4(4+1/α)kmX (M) (Equation (12.2))

≤ 20kmX (M) . (α≥ 1)

This upper bound seems to be very large. However, since one mean lies outside the
(particularly large) search space U and since this cluster has non-negligible support (by
assumption (12.16), there is no negligible cluster), the r-fuzzy K-means cost of C must be
large. Note that this is the only argument in the whole proof that requires the notion of
non-negligible clusters.

Claim 12.24. If C *U, then

kmX (M)≤ ε̃2

20
φ(r)

X (C) .

Proof. Let

b := 20

ε̃2 · r
(

ε
2irK2

) . (12.24)

Fix an arbitrary µt ∈ C \U. From Observation 12.17, we know that

dist
(
µt,M

)2 > 4b ·kmX (M) . (12.25)

150 CHAPTER 12. CORESETS

Hence, for all (x,1) ∈ X , we have∥∥x−µt
∥∥

2 ≥ dist
(
µt,M

)−‖x−ml‖2 (triangle inequality, ml ∈M)

≥
√

4b ·kmX (M)−‖x−ml‖2 (Equation (12.25))

≥
√

4b ·kmX (M)−
√

kmX (M) ((x,1) ∈ X)

=
(
2
p

b−1
)
·
√

kmX (M)

≥
p

b ·
√

kmX (M) . (b ≥ 1)

Combining these inequalities gives

φ(r)
X (C)≥

N∑
n=1

r(pnt)
∥∥x−µt

∥∥2
2 ≥

(
N∑

n=1
r(pnt)

)
b ·kmX (M)=

∑N
n=1 r(pnt)

r
(

ε
2irK2

) · 20
ε̃2 kmX (M) .

Finally, observe that due to (12.16) there exists some n(t) ∈ [N] such that pn(t) t ≥ ε
2irK2 .

Since a fuzzifier function is non-negative and strictly increasing, we can conclude that∑N
n=1 r(pnt)≥ r(pn(t) t)≥ r

(
ε

2irK2

)
. This yields the claim.

A combination of these results yields the desired bound:

Claim 12.25. If C *U, then ∣∣∣φ(r)
X (C)−φ(r)

S (C)
∣∣∣≤ ε ·φ(r)

X (C) .

Proof. First, observe that, due to Claim 12.23 and Claim 12.24, we have

N∑
n=1

‖xn −s(xn)‖2
2 ≤ 20 ·kmX (M)≤ ε̃2 ·φ(r)

X (C) .

With Claim 12.22, we can conclude that

∣∣∣φ(r)
X (C)−φ(r)

S (C)
∣∣∣≤ (

1+ 1
ε̃

) N∑
n=1

‖xn −s(xn)‖2
2 + ε̃ ·min

{
φ(r)

S (C),φ(r)
X (C)

}
≤

(
1+ 1

ε̃

)
· ε̃2 ·φ(r)

X (C)+ ε̃ ·φ(r)
X (C)

= (
ε̃2 +2ε̃

)
φ(r)

X (C)≤ εφ(r)
X (C) . (ε̃≤ ε/3)

Conclusion

Combining the results of both cases yields the correctness of the approximation bound stated
in Theorem 12.16.

12.5.6 Size of S and Runtime

Consider the setting from Theorem 12.2. From Observation 12.12, we know that

|S| ∈O(
log(|X |) log(log(|X |)) ·cr(K)−2 ·K2 ·ε−2 · log

(
γ
) · log(δ−1)

)
, where

γ=βK ·
1

2
log

9α |X | · 20

ε̃2r
(

ε
2·irK2

)
+1

 ·
(

1692
ε̃

)D
, ε̃= ε ·cr(K)

504α
, and α,β ∈O(1).

12.5. ANALYSIS 151

Hence,

log(γ) ∈O
(
log(K)+ log

(
log(|X |)+ log

(
1
ε̃2

)
+ log

(
r
(

ε

2 · irK2

)−1))
+D log

(
1
ε̃

))
⊆O

(
log(K)+ log(log(|X |))+ loglog

(
r
(

ε

2 · irK2

)−1)
+D log

(
1

εcr(K)

))
⊆O

(
log(K) · log(log(|X |)) ·D · log

(
1
ε

)
· loglog

(
r
(

ε

2 · irK2

)−1)
· log

(
1

cr(K)

))
.

Putting these bounds together gives the desired bound

|S| ∈O
log(|X |) log(log(|X |))2 ·K3 ·D ·ε−3 · loglog

 1

r
(

ε
2·irK2

)
 ·cr(K)−3 · log(δ−1)

 .

Next, consider the runtime. From Observation 12.12, we know that the time needed to
apply Algorithm 13 is O (|X |DK +|S|). The time needed to apply the (α,β)-approximation
algorithm from (Aggarwal et al., 2009) is just O(|X |DK log(1/δ)). A combination of these
observations yields the claim on the runtime.

12.5.7 These Weak Coresets Are Not Weak

With a little additional analysis of the chosen approximate mean sets, it is easy to see that
our weak coresets are actually strong coresets. In the following, we first give an overview of
the main arguments and an informal outline of the proof. After that, we provide a formal
proof of Theorem 12.2.

Recall that our weak coresets guarantee the coreset property only with respect to a
restricted set of solutions:

Observation 12.26 (weak coreset). If (S,Θ(r,ir ,K ,ε)(X)) is a weak ε-coreset of X for the r-fuzzy
K-means problem, then

∀C̃ ∈Θ(r,ir ,K ,ε̃)(X) : φ(r)
S (C̃) ∈ [1±ε]φ(r)

X (C̃) . (12.26)

Recall from Definition 12.6 that Θ(r,ir ,K ,ε)(Y) is the set of solutions that do not contain
negligible clusters with respect to Y . So this restriction is rather negligible in regard to Y :

Observation 12.27 (negligible). Due to Theorem 6.3, for all Y ∈ Dom
(
RD ,R+

)
and all

C ∈ (RD)≤K , we have

∃C′ ⊆ C : C′ ∈Θ(r,ir ,K ,ε)(Y) and φ(r)
Y (C′)≤ (1+ε) ·φ(r)

Y (C) .

Consider an arbitrary solution C ∈ (RD)≤K . This observation tells us that, for a given
data set X as well as the presumed coreset S, there exist solutions C′

X , C′
S ⊆ C with C′

X ∈
Θ(r,ir ,K ,ε)(X) and C′

S ∈Θ(r,ir ,K ,ε)(S) whose costs are not much worse than the costs of C with
respect to X and S, respectively.

Moreover, we already know from Observation 12.26 that the costs of C′
X ∈Θ(r,ir ,K ,ε)(X)

with respect to X and with respect to S do not differ much. We do not know yet how the cost
of C′

S ∈Θ(r,ir ,K ,ε)(S) with respect to X and with respect to S relate to each other. Fortunately,
due to the way S is constructed, we know the following:

Lemma 12.28 (transitivity (due to construction)). For all X ,S ∈Dom
(
RD ,R+

)
we have

S ∈Dom({x | (x,w) ∈ X } ,R+) ⇒ Θ(r,ir ,K ,ε)(S)⊆Θ(r,ir ,K ,ε)(X) .

152 CHAPTER 12. CORESETS

Proof. Let S = ((sm,vm))m∈[M] be some data set. Let X = ((xn,wn))n∈[N] be a data set such
that S ∈Dom({x | (x,w) ∈ X } ,R+). This means that, for each m ∈ [M], there exists an n(m) ∈
[N] such that sm = xn(m).

Recall from Lemma 5.17 that an r-fuzzy clustering of a data set that is induced by
some means consists of soft clusterings of the single data points that depend only on the
respective point and the given means. In particular, the soft assignments of the single data
points do not depend on the weight of the data points (Corollary 5.18). Hence, there exists
an r-fuzzy L-clustering P = (pnk)n∈[N],k∈[K] of X induced by C and an r-fuzzy clustering
P̃ = (p̃nk)n∈[N],k∈[K] of S induced by C such that, for all (xn,wn) ∈ X and (sm,vm) ∈ S with
xn = sm we have pnk = p̃mk. With our first observation, we can conclude that, for each
m ∈ [M], there exists an index n(m) ∈ [N] such that ∀k ∈ [K] : pmk = p̃n(m)k.

Let c ∈R+ be some constant. Assume that, for each k ∈ [K], there exists some m(k) ∈ [M]
such that p̃m(k)k ≥ c. Then, for each k ∈ [K], we have pn(m(k))k = p̃m(k)k ≥ c.

Hence, Θ(r,ir ,K ,ε)(S)⊆Θ(r,ir ,K ,ε)(X). So, due to Observation 12.26, we also know that the
costs of C′

S ∈Θ(r,ir ,K ,ε)(S) with respect to X and with respect to S do not differ much.
Now it remains to analyse how the cost with respect to X changes when we replace C

by C′
S and how the cost with respect to S changes when we replace C by C′

X . Here, our
knowledge on the specific form of C′

S and C′
X comes in handy. Recall that both of these sets

are subsets of C.

Observation 12.29 (monotonicity). Due to Lemma 5.11, for all C′,C ∈ (RD)≤K , we have

C′ ⊆ C ⇒ ∀Z ∈Dom
(
RD ,R+

)
: φ(r)

Z (C′)≥φ(r)
Z (C) .

Hence, φ(r)
X (C′

S) ≥φ(r)
X (C) and φ(r)

S (C′
X) ≥φ(r)

S (C). Given these observations, we can now
prove the main result of this chapter.

Proof of Theorem 12.2. Let ε̃ = ε/4. From Theorem 12.16, we know that, with probability
1−δ, the tuple (S,Θ(r,ir ,K ,ε̃)(X)) is a weak ε-coreset of X for the r-fuzzy K-means problem.
In the following, we assume that this is the case. This means that

∀C̃ ∈Θ(r,ir ,K ,ε̃)(X) : φ(r)
S (C̃) ∈ [1±ε]φ(r)

X (C̃) . (12.27)

Now consider an arbitrary but fixed C ∈ (RD)≤K \Θ(r,ir ,K ,ε̃). First, we prove the upper
bound. From Observation 12.27, we know there exists a C′ ∈Θ(r,ir ,K ,ε̃)(X) with φ(r)

X (C′) ≤
(1+ ε̃)φ(r)

X (C). Thus, we have

φ(r)
S (C)≤φ(r)

S (C′) (C′ ⊆ C and Observation 12.29)

≤ (1+ ε̃)φ(r)
X (C′) (C′ ∈Θ(r,ir ,K ,ε̃)(X) and (12.27))

≤ (1+ ε̃)2φ(r)
X (C) (choice of C′)

= (1+ε)φ(r)
X (C) . (ε̃= ε/4)

Next, we prove the lower bound. From Observation 12.27, we know there exists an
C′′ ∈ Θ(r,ir ,K ,ε̃)(S) with φ(r)

S (C′′) ≤ (1+ ε̃)φ(r)
S (C). Due to Lemma 12.28, we know that C′′ ∈

Θ(r,ir ,K ,ε̃)(X)∩Θ(r,ir ,K ,ε̃)(S). Hence,

φ(r)
S (C)≥ 1

1+ ε̃φ
(r)
S (C′′) (choice of C′′)

≥ 1− ε̃
1+ ε̃φ

(r)
X (C′′) (C′′ ∈Θ(r,ir ,K ,ε̃)(X) and (12.27))

≥ 1− ε̃
1+ ε̃φ

(r)
X (C) (C′′ ⊆ C and Observation 12.29)

≥ (1−4ε̃)φ(r)
X (C)= (1−ε)φ(r)

X (C) . (ε̃= ε/4)

“ Hypotheses are what we lack
the least. ”

Henri Poincaré1

Chapter 13

Summary & Conclusion

In this chapter, we first review the main steps of our analysis and give an overview of our
approximation algorithms. Then we discuss our results and suggest ideas for future work.

13.1 Review

Basically, we derived our notion of fuzzifier functions r with the goal that the resulting r-
fuzzy K-means clustering shares basic properties with a K-means clustering (Section 5.2.2).
We found that our fuzzifier functions guarantee two particularly useful properties: First,
there is a connection between the r-fuzzy K-means and the K-means objective function.
More precisely, we showed that objective values of solutions induced by the same means
differ by at most a factor c∗

r (K), which only depends on the number of clusters K and the
fuzzifier r (Section 6.1). Second, the notion of an empty hard cluster has a counterpart in
r-fuzzy K-means clustering. If a hard cluster is empty, then it is not supported by any point
at all, and so we can effectively remove its mean from the hard clustering without changing
its K-means cost. If an r-fuzzy cluster has negligible support, then there is no point that
supports this cluster sufficiently, and so we can remove the mean of this cluster without
significantly increasing the overall r-fuzzy K-means cost (Section 6.2).

Besides these two properties, we found that an r-fuzzy K-means clustering exhibits
a locality property. Points are more assigned to means nearby than they are assigned
to means far away (Section 5.2.2). However, this locality property is inherently soft and
so we completely lose the notion of a hard clustering (Section 4.2.2). In Chapter 8 we
tried to close this gap between r-fuzzy clusterings and hard clusterings via a Monte Carlo
method. By exploiting the probabilistic interpretation of r-fuzzy clusterings, we showed
that there exist hard clusters whose statistics are similar to those of the r-fuzzy clusters.
Unfortunately, apart from the probabilistic interpretation, these hard clusters do not exhibit
useful structural properties: They do not exhibit any locality property, their convex hulls
might overlap, and they do not even cover the whole data set.

Nevertheless, due to our identification of all these properties of the r-fuzzy K-means
problem, we were able to apply algorithmic techniques that are known from K-means
clustering: the algorithm of Hasegawa et al. (1993), the coreset construction by Chen (2009),
the notion of ε-approximate mean sets by Matoušek (2000), and the superset sampling
technique used by Ackermann et al. (2010). With slight adaptions (e.g. a larger sampling
rates and evaluation of a different cost function) and a more detailed analysis (e.g. the
duplication of points), we were able to show that these techniques can be used to compute
approximations and coresets with respect to the r-fuzzy K-means problem as well. This
shows that these techniques primarily rely on the form of the K-means cost function and

1Source: Henri Poincaré, Science and Hypothesis (1905)

153

154 CHAPTER 13. SUMMARY & CONCLUSION

the notion of empty clusters. For instance, the superset sampling technique is a clever way
of applying uniform sampling to identify candidates for the (mean) statistics of (nearly)
arbitrary hard clusters. In contrast, we were not able to apply the K-means++ algorithm
by Arthur and Vassilvitskii (2007) as this technique relies on much more specific locality
properties of K-means hard clusterings.

13.2 Overview of Our Algorithms

First, let us briefly compare our algorithms with the corresponding algorithm for the K-
means problem: Algorithm 4 is the basically the same as the algorithm by Hasegawa et al.
(1993). It also computes a 2-approximation and has runtime O(|X |K+1 DK). Algorithm 8
uses the superset sampling technique introduced by Inaba et al. (1994), whose result was
enhanced by Kumar et al. (2004). Its runtime is slightly better than that the runtime
|X |O(DK) of the exact algorithm by Inaba et al. (1994) and slightly worse than the runtime
O(|X |D2poly(K /ε)) of the approximation algorithm by Kumar et al. (2004). Recall that Algo-
rithm 9 does not guarantee a proper approximation bound. Algorithm 14 follows the idea of
the algorithm by Chen (2009), whose runtime of O(|X |D)+D ·poly(1/ε)+2Õ(K /ε) is slightly
better than that of our algorithm.

Next, let us consider the dependencies on the notions from K-means clustering and on the
properties of the fuzzifier function: The simplest method, Algorithm 4, does not rely on the
additional properties that we introduced for fuzzifier functions. Our approach that constructs
a set of soft clusterings (Algorithm 5) relies on the increase-bounded property as, simply
speaking, it distorts soft assignments. All the algorithms that are based on the work by
Chen (2009) heavily depend on notions from K-means clustering. In particular, Algorithm 14
depends on a bound cr(K) on the minimum contribution, which relates the r-fuzzy K-means
objective function to the K-means objective function. In contrast, Algorithm 8, which is
based on the superset sampling technique, does not depend on the minimum contribution
bound cr(K).

13.3 Discussion

We have generalized the fuzzy K-means problem and identified a large class of related
problems, the so-called r-fuzzy K-means problems. Despite the fact that all of these problems
search for soft clusterings, we have shown that there are some aspects that are similar to the
K-means hard clustering problem. We have identified and characterized these aspects. They
justified the application of techniques known from K-means clustering. Thereby, we derived
the very first algorithms for the fuzzy K-means problem with approximation guarantees.

However, unsupervised clustering is about identifying unknown structures in data sets.
This raises the following questions: What are the structural differences between a (1+ε)-
approximation to the r-fuzzy K-means problem and a (1+ε)-approximation to the K-means
problem? How can we describe these differences? Is there an algorithm that exploits these
structural properties? That is, is there an algorithm that does not generate nearly the same
set of candidate solutions and just uses a different cost function to evaluate these candidates?
On a slightly different note, can we identify properties of the fuzzy K-means algorithm that
explains why it is used in practise? It is the use of this algorithm that motivated us to
consider the fuzzy K-means problem after all.

Besides that, in our analysis it becomes apparent that we are missing statistical assump-
tions and an interpretation of the fuzzified soft assignments. Recall that the latter gap led
us to (and was our one and only motivation for) the definition of probabilistic membership
values (Section 3.3.1). In particular, it is the reason why our soft-to-hard-cluster technique

13.3. DISCUSSION 155

ap
pr

ox
im

at
io

n
ru

nt
im

e
w

rt
.

X
∈D

om
(RD ,

{1
}) a

de
pe

nd
sb

on
..

.

re
fe

re
nc

e
te

ch
ni

qu
e

ra
nd

om
iz

ed
c

fa
ct

or
an

d
p

m
-f

uz
zy

d
K

-m
ea

ns
i r

c r
w

(X
)

m
ax

w
(X

)
m

in
re

du
ci

ng

A
lg

or
it

hm
4

m
ea

ns
fr

om
X

2
| X

|K
+1

·D
K

T
he

or
em

7.
4

K
-m

ea
ns

c-
ap

pr
ox

im
at

io
ne

–
c·

c−
1

r
(K

)
–

–

A
lg

or
it

hm
5

ro
un

d
as

si
gn

m
en

ts
(1

+ε
)

D
·2

O
(| X

| K
m
ε)

7

A
lg

or
it

hm
8

su
pe

rs
et

sa
m

pl
in

g
(1

+ε
)

D
·| X

|O(
K

3
ε−

2
m

2
)

7
7

7

A
lg

or
it

hm
9

su
pe

rs
et

sa
m

pl
in

g
7

–f
| X

| ·D
·2

O
(K

2
m
ε−

1
α
−1

)
7

7
7

C
or

ol
la

ry
8.

12
su

pe
rs

et
sa

m
pl

in
g

7
(1

+ε
)

D
·| X

|O(
K

2
ε−

2
m

2
)

7
7

7

A
lg

or
it

hm
10

di
sc

re
ti

ze
m

ea
ns

(1
+ε

)
| X

| ·l
og

(| X
|)K

·2
O

(K
2
D
ε−

1
m

)
7

7
7

7

A
lg

or
it

hm
11

+
di

m
en

si
on

re
du

ct
io

n
7

(1
+ε

)
D
·| X

|O(
K

2
ε−

3
m

)
7

7
7

7

A
lg

or
it

hm
14

+
co

re
se

ts
7

(1
+ε

)
| X

| · (
lo

g(
| X

|)·
D

)O
(K

2
ε−

3
m

)
7

7
–

g
7

Ta
bl

e
13

.1
:O

ve
rv

ie
w

of
ou

r
ap

pr
ox

im
at

io
n

al
go

ri
th

m
s.

a F
or

th
e

sa
ke

of
si

m
pl

ic
it

y,
w

e
on

ly
st

at
e

th
e

ru
nt

im
e

of
th

e
al

go
ri

th
m

s
w

it
h

re
sp

ec
t

to
un

-w
ei

gh
te

d
da

ta
se

ts
X

∈D
om

(R
D

,{
1}

) .
b "

7
"

m
ar

ks
an

al
go

ri
th

m
th

at
de

pe
nd

s
on

th
e

re
sp

ec
ti

ve
qu

an
ti

ty
.

c "
7

"
m

ar
ks

a
ra

nd
om

iz
ed

al
go

ri
th

m
(w

it
h

a
co

ns
ta

nt
pr

ob
ab

ili
ty

of
su

cc
es

s)
.

d
Fo

r
th

e
fu

zz
ifi

er
fu

nc
ti

on
p

m
w

it
h

m
∈(

1,
∞

),
w

e
ha

ve
c p

m
(K

)=
1/

K
m
−1

an
d

i p
m
=

4m
.

e "
–"

m
ar

ks
in

fo
rm

at
io

n
th

at
de

pe
nd

s
on

th
e

ch
oi

ce
of

th
e

co
nc

re
te

c-
ap

pr
ox

im
at

io
n

K
-m

ea
ns

al
go

ri
th

m
.

f T
he

re
is

no
pr

op
er

gu
ar

an
te

e.
Fo

r
m

or
e

in
fo

rm
at

io
n,

w
e

re
fe

r
to

Se
ct

io
n

8.
6.

2.
g A

lg
or

it
hm

14
ca

n
on

ly
be

ap
pl

ie
d

to
un

w
ei

gh
te

d
da

ta
se

ts
.

156 CHAPTER 13. SUMMARY & CONCLUSION

cannot guarantee the existence of a hard clustering that imitates an r-fuzzy clustering well
(Chapter 3).

In Section 4.4 we already pointed out the current line of work that deals with the
notion of clusterability and the idea that clustering is difficult only when it does not matter.
With this in mind, one can sum up the previous questions as follows: When is a data set
r-fuzzy-K-means-clusterable?

13.4 Future Work

First of all, one can tackle the general problem criticized in the previous section. As explained
in Section 4.4, there is no definition of clusterability that is agreed upon and, to the best
of our knowledge, these definitions focus on hard clusterings. Nonetheless, we propose to
study the notion of clusterability with respect to soft K-means problems. In particular, the
derivation of algorithms that are more specific to the r-fuzzy K-means problem might be a
step towards the analysis of clusterability and a better understanding of fuzzy clusterings.
Such algorithms might exist for relaxed versions of the r-fuzzy K-means approximation
problem. Therefore, we propose to pursue the study of constant factor and constant bi-factor
approximation algorithms. This is not to say that these algorithms are less useful or less
meaningful. For instance, the K-means++ algorithm by Arthur and Vassilvitskii (2007) is
very popular in practise although it (is only proven that it) yields a O(log(K))-approximation
in expectation. Moreover, the "correct" number of clusters is hardly ever known. Hence,
allowing for a larger number of clusters might, in practise, be more appealing than allowing
for a poor approximation factor for the presumed correct number of clusters. Besides that,
we propose to study the properties of the fuzzy K-means algorithm in order to explain its
popularity and help us understand the fuzzy K-means clustering approach. Last but not
least, we presume that the K-means++ algorithm also works provably well with respect to
the fuzzy K-means problem.

Part III

Clustering with Gaussian Mixture
Models

157

“ Everyone believes it, however, as
M. Lippmann told me one day,
because the experimenters
imagine it is a mathematical
theorem, and the mathematicians
that it is an experimental fact. ”

Henri Poincare1Chapter 14

Introduction

Training the parameters of statistical models to describe a given data set is a central task in
the field of data mining and machine learning. In the following, we give a short introduction
to the topic. For more information we refer to the work of Bilmes (1998), Mackay (2003),
Bishop (2006), and Cover and Thomas (2006).

14.1 Gaussian Mixture Models (GMMs)

Among the most widely used families of statistical models are mixture models, especially,
mixtures of Gaussian distributions.

14.1.1 Density Function

Gaussian (or normal) distributions are probably the most common distributions used in
natural sciences.

Definition 14.1 (Gaussian). The probability density function ND(·|µ,Σ) : RD → R≥0 of a
D-variate Gaussian distribution with mean µ ∈RD and covariance Σ ∈RD×D is given by

ND(x|µ,Σ)= 1
(2π)D/2 |Σ|1/2 ·exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
where |Σ| denotes the determinant of the matrix Σ ∈RD×D .

This distribution is non-degenerated if the covariance Σ is non-degenerated, i.e., , sym-
metric and positive definite). If Σ takes the form σ2ID , where ID denotes the (D×D)-identity
matrix and σ2 ∈ (0,∞), then we call this matrix and the distribution spherical.

In this thesis, we consider Gaussian mixture models where the number of components
K ∈ N is predefined and where each of the Gaussian components is described by its own
mean and covariance.

Definition 14.2 (GMM). The probability density function p(·|θ) : RD →R≥0 of a D-variate
Gaussian mixture model (GMM) with parameters θ = (

(wk,µk,Σk)
)
k∈[K], where (wk)k∈[K] ∈

∆K−1, µk ∈RD and Σk ∈RD×D for all k ∈ [K], is given by

p(x|θ)=
K∑

k=1
wkND(x|µk,Σk) .

It is non-degenerated if none of its components is degenerated.

1Source: Duplantier and Rivasseau (2015). Henri Poincaré, 1912-2012. Poincaré Seminar 2012. ISBN:
978-3-0348-0834-7. (p. 187)

159

160 CHAPTER 14. INTRODUCTION

Whenever we talk about covariance matrices or Gaussian mixtures, we will implicitly
assume that they are non-degenerated, unless stated otherwise. For the sake of simplicity,
we write ND(µ,Σ) to denote the function ND(·|µ,Σ). Moreover, we refer to a GMM with
parameters θ simply as the GMM θ.

Besides that, as with data sets, the indexation of the Gaussian components does not
matter. That is, given a permutation π of [K], the densities p(·|θ) and p(·|θπ) with θπ =(
(wk,µk,Σ2

k)
)
k∈(π(1),...,π(K)) are the same. Nonetheless, to keep our notation uncluttered, we

stick with our vector notation from Section 2.1.

14.1.2 Generating Observations

When we draw an observation according to a Gaussian mixture model (GMM), we implicitly
follow a two-step process.

Process. Drawing an observation Xn according to a GMM θ = (
(wk,µk,Σk)

)
k∈[K] can be

described as follows:

1. Sample an indicator vector Zn = (Znk)k∈[K] with
∑K

k=1 Znk = 1 from [0,1]K according to
Pr(Znk = 1)= wk.

2. Sample an observation Xn from RD according to the k-th component ND(µk,Σk) with
the index k ∈ [K] that satisfies Znk = 1.

When we draw N observations X = (Xn)n∈[N] according to a GMM θ, then we draw each
observation Xn independently according to this process described above. Consequently, the
set of random variables {Xn}n∈[N] is mutually independent.

By the conditional function p(Y |θ′) we denote the probability density function of Y under
the assumption that the random variables X1, . . . , XN and Z1, . . . , ZN (on which Y usually
depends) have been generated according to the process described by θ′.

That is, for θ = (
(wk,µk,Σk)

)
k∈[K], we write

p(Znk = 1|θ)= wk ,

p(Xn, Znk = 1|θ)=ND(Xn|µk,Σk) , and (14.1)

p(Xn|θ)=∑K
k=1 p(Znk = 1|θ) ·p(Xn, Znk = 1|θ) .

Moreover, due to the independence of the observations, we can write

p(X |θ)=∏N
n=1 p(Xn|θ) and p(X , Z|θ)=∏N

n=1 p(Xn, Zn|θ) .

Hidden Variables (Hard Assignments). As we only observe the value xn ∈RD that Xn
takes, the indicator (Znk)k∈[K] is called a hidden (or latent) random variable in this two-step
process. Likewise, we call the realization zn of Zn a hidden variable. Observe that the
matrix (Znk)n∈[N],k∈[K] describes a hard K-clustering of X .

Posterior Probabilities (Soft Assignments). Given an observation Xn = xn ∈ RD that
has been generated according to a GMM θ = (

(wk,µk,Σk)
)
k∈[K], we can compute the posterior

probability that the k-th component of θ has generated this observation during the second
step of the process. This probability is given by

pnk := p(Znk = 1|Xn = xn,θ)= p(Znk = 1|θ) ·p(Xn = xn|Znk = 1,θ)
p(Xn = xn|θ)

(Bayes’)

= wk ·ND(xn|µk,Σk)
p(xn|θ)

, (14.2)

where the last equality is due to (14.1). We call (pnk)n,k ∈∆N,K−1 the soft clustering of X
induced by the GMM θ.

14.1. GAUSSIAN MIXTURE MODELS (GMMS) 161

(a) Contour plot of the density of the GMM θ. (b) Contour plot of the soft assignments pn1.

Figure 14.1: Consider the GMM θ = (
(0.5,µ1,Σ1), (0.5,µ2,Σ2)

)
where µ1 = (1 3)T , µ2 = (3 1)T ,

Σ1 is a diagonal matrix with entries 3 and 0.25, and where Σ2 is a diagonal matrix with
entries 0.25 and 3. In Figure 14.1a, we see that the density actually has more modes than
the mixture has components (at (1,3), (3,1), and (3,3)). Figure 14.1b depicts a contour plot
of the posterior probability pn1 := p(Znk = 1|θ, Xn = xn)= 0.5 ·N2(xn|µ1,Σ1)/p(xn|θ) for each
xn ∈ [−4,6]2. The two crosses mark the means µ1 and µ2 and the dashed line marks the
perpendicular bisector of the line segment between these means. There are points (e.g.
(6,2)T) that are closer to µ2 but whose soft assignment to µ1 is larger than 0.5.

14.1.3 Remarks

Unbounded. A density is no probability. It can take values larger than 1. In fact, it can
even be arbitrarily large: Consider a Gaussian distribution ND(x,σ2 · ID) with some x ∈RD

and σ2 > 0. For σ2 > 0, this density is non-degenerated. Nonetheless, if σ converges to 0,
then the Gaussian density at x diverges to ∞.

Observation 14.3. For |Σ|→ 0+ with Σ 6= 0D,D , we have ND(x|x,Σ)= 1
(2π)D |Σ|1/2 ·1→∞.

Highly Multi-Modal. A mixture with K ≥ 2 Gaussian components does not necessarily
have K modes. It can have more or less than K modes. An example for a fairly simple
mixture of 2 Gaussians with 3 modes is given in Figure 14.1a.

No Locality (Soft Assignments). Consider the soft assignment (pnk)k∈[K] of some point
xn ∈RD induced by some GMM θ, which we derived in (14.2). Depending on the covariances
of θ, this soft assignment does not necessarily assign xn more to a cluster whose mean is
closer than to a cluster whose mean is farther away. An example is depicted in Figure 14.1b.
Hence, the soft clusterings induced by GMMs are inherently different from the r-fuzzy
K-means clusterings, which we considered in Section 4.2.1.

No Monotonicity. In an r-fuzzy K-means clustering, adding another representative to
a solution is never a bad idea. If we add a mean vector to a set of mean vectors, then the
r-fuzzy K-means cost of this set does not increase (Lemma 5.11). This observation cannot be
directly transferred to the clustering with GMMs.

An obvious example that illustrates this fact is the following: Consider an arbitrary
GMM θ and observations X . Add a new component (µK+1,ΣK+1) to θ with weight wK+1 ≈ 1
and reduce the weights of the other components accordingly. Let the mean µK+1 be a point
that lies farther away from all points in X than all means in θ. Choose a sufficiently small

162 CHAPTER 14. INTRODUCTION

covariance matrix ΣK+1 (i.e., |ΣK+1| close enough to zero). Then, the likelihood of the
resulting GMM is much smaller than the likelihood of the original GMM θ.

No Identifiability. Even if we were able to evaluate the density of an unknown GMM at
every point, we could still not identify the correct number of its components. As an example,
consider a mixture θ2 =

(
(w1,µ,σ1 · ID), (w2,µ,σ2 · ID)

)
where σ2

1 6=σ2
2 and w1,w2 > 0. Then,

p(x|θ) = ND(x|µ, (σ2
1 +σ2

2)/2 · ID). Hence, there is no difference between drawing points
from the mixture θ2 with 2 different components and the single Gaussian distribution
ND(µ, (σ2

1 +σ2
2)/2 · ID) (i.e., a mixture with one component). This also means that given only

the resulting observations X , we cannot identify the exact parameters that have been used
to create X . Besides that, as already pointed out in Section 14.1.1, the indexation of the
Gaussian components is not identifiable.

Curse & Blessing of High-Dimensionality (Sampling). In high dimension, the proba-
bility mass of a Gaussian density is concentrated in a thin shell around the mean (Hopcroft
and Kannan, 2017): Nearly all of the probability mass of a D-variate Gaussian with spherical
covariance matrix σ2ID is contained in a shell around the mean which has radius r =p

Dσ
and whose thickness is proportional to r/

p
D. For example, for D = 1000 and σ = 1, 90%

of the probability mass is contained in a shell with the radius r = 31.6 and thickness 2.8
(Mackay, 2003, p. 309). Nevertheless, the density itself is still largest at the mean vector.
In the example, the density at the mean is e1000/2 ≈ 10217 times larger than the density of
a point contained in the shell. This unintuitive behaviour is usually collectively referred
to as the curse of dimensionality. However, as the tight concentration of points in the shell
can be a very useful property, it is also referred to as a blessing. For instance, Anderson
et al. (2014) use this fact to derive an algorithm that determines the means of an unknown
Gaussian mixture in high dimension.

14.2 Likelihood Approach

We are given a set of observations X = (xn)n∈[N] and presume that these observations have
been drawn according to a GMM θ∗. Our goal is to estimate the parameters of the GMM
θ∗. There are various approaches to estimate such parameters. In this thesis, we focus on
the method of maximum likelihood estimation. This method estimates θ∗ by the GMM θML
which has most likely generated X .

In the following, we formalize the notion of likelihood, show how likelihoods can be
compared with one another, and discuss this approach in general. In Section 14.3, we deal
with methods for finding the most likely solution θML.

14.2.1 Likelihood

We are given some observations X = (xn)n∈[N] ⊆ RD . We assume that each xn has been
generated independently according to the two-step process described by some unknown
GMM θ∗. Under this assumption, consider some arbitrary but fixed GMM θ. How likely is it
that θ has generated the observations X?

One can measure this likelihood in terms of the density of the observations under the
(assumed) distribution θ.

Definition 14.4 (likelihood). Let θ = (
(wk,µk,Σk)

)
k∈[K] be a D-variate GMM and let X =

(xn)n∈[N] ⊂RD . The likelihood of θ, given X, is

LX (θ) :=
N∏

n=1
p(xn|θ)=

N∏
n=1

K∑
k=1

wkND(xn|µk,Σk) .

14.2. LIKELIHOOD APPROACH 163

This definition might seem a bit cumbersome as it just gives the joint density p(X |θ) a
different name. Yet, it marks a change in the paradigm: We consider a function in the model
parameters.

Log-Likelihood. Often, it is easier to work with the natural logarithm of the likelihood
instead of the likelihood. We use the short notation "log-likelihood" to refer to the natural
logarithm of a likelihood.

14.2.2 Likelihood Ratio

Assume we are given two GMMs θ1 and θ2. We prefer one GMM over the other if its
likelihood is larger. However, they might still be very similar to each other. How do we
measure the difference of the quality of two GMMs?

To this end, one considers the ratio between these likelihoods.

Definition 14.5 (likelihood ratio). The likelihood ratio between the GMM θ1 and the GMM
θ2, given observations X, is given by

ΛX (θ1,θ2) := LX (θ1)
LX (θ2)

,

where we use the convention that LX (θ1)/0=∞, if LX (θ1)> 0, and 0/0= 1.

Example 14.6 (likelihood ratio between Gaussians). The likelihood of a spherical Gaussian
ND(µ,σ2ID) with respect to observations X = (xn)n∈[N] is given by

N∏
n=1

ND(xn|µ,σ2)= (2π)−ND/2 ·σ−ND ·exp

(
− 1

2σ2

N∑
n=1

∥∥xn −µ
∥∥2

2

)
.

Let θ1 := (1,µ1,σ2ID) and θ2 := (1,µ2,σ2ID) be two Gaussians with identical covariance
matrix σ2ID . Then,

ΛX (θ1,θ2)=
∏N

n=1ND(xn|µ1,σ2)∏N
n=1ND(xn|µ2,σ2)

= exp

(
− 1

2σ2

N∑
n=1

∥∥xn −µ1
∥∥2

2

)
·exp

(
+ 1

2σ2

N∑
n=1

∥∥xn −µ2
∥∥2

2

)

= exp

(
1

2σ2

(
N∑

n=1

∥∥xn −µ2
∥∥2

2 −
N∑

n=1

∥∥xn −µ1
∥∥2

2

))

= exp
(

N
2σ2

(∥∥m (X)−µ2
∥∥2

2 −
∥∥m (X)−µ1

∥∥2
2

))
. (Lemma 2.20)

14.2.3 Scale Invariance of the Likelihood-Ratio

Suppose we are given observations X = (xn)n∈[N] and a GMM θ. We scale the observations
by some constant factor c ∈R+. That is, we consider X c := (c · xn)n∈[N] instead of X . How can
we transfer the GMM θ from X to X c?

Intuitively, we should scale the mean vectors by the same factor c, the covariance matrix
by a factor c2, and leave the weights as they are. This intuition is confirmed by the following
result.

Lemma 14.7 (scale). Let X = (xn)n∈[N] ⊂RD , let θ = (
(wk,µk,Σk)

)
k∈[K] be a D-variate GMM,

and c ∈R+. Set θc := (
(wk, c ·µk, c2 ·Σk

)
k∈[K] and X c := (c · xn)n∈[N]. Then,

Lc·X (θc)= 1
cD|X | ·LX (θ) .

164 CHAPTER 14. INTRODUCTION

Proof. For all xn ∈ X and k ∈ [K], we have

ND(c · xn|cµk, c2Σ2
k)= 1

(2π)D/2
∣∣c2 ·Σ∣∣1/2 ·exp

(
−1

2
(c · xn − c ·µ)T (c2 ·Σ)−1(c · xn − c ·µ)

)

= 1
(2π)D/2cD · |Σ|1/2 ·exp

(
−1

2
· c(xn −µ)T (

c−2 ·Σ−1) · c(xn −µ)
)

= 1
cD · 1

(2π)D/2 · |Σ|1/2 ·exp
(
−1

2
(xn −µ)T ·Σ−1 · (xn −µ)

)
= 1

cD ·ND(xn|µk,Σ2
k) .

Hence, p(c ·x|θc)= 1
cD ·p(x|θ) and

∏N
n=1 p(c ·xn|θc)=∏N

n=1

(
1
cD p(xn|θ)

)
= 1

cD·N
∏N

n=1 p(xn|θ). This
yields the claim.

Consequently, the likelihood ratio is invariant against this kind of scaling.

Corollary 14.8 (scale invariance). Let X = (xn)n∈[N] ⊆ RD and let θ̂ = (
(ŵk, µ̂k, Σ̂k

)
k∈[K]

and θ̃ = (
(w̃k, µ̃k, Σ̃k

)
k∈[K] be D-variate GMMs. Fix some c ∈ R+. Set X c := (cxn)n∈[N], θc =(

(ŵk, cµ̂k, c2Σ̂k
)
k∈[K], and θc =

(
(w̃k, cµ̃k, c2Σ̃k

)
k∈[K]. Then, ΛX (θ̂, θ̃)=ΛX c (θ̂c, θ̃c).

14.2.4 Maximum Likelihood Estimator for K ≥ 2

We are given some observations X = (xn)n∈[N] and presume that these observations have been
drawn according to a GMM θ∗. We want to approximate θ∗. There are several approaches
to this problem. In this thesis, we focus on the method of maximum likelihood estimation.
That is, we want to estimate θ∗ by a GMM θML which has most likely generated X . We call
θML a maximum likelihood estimator.

In the following, we assume that we know the number of components K of the underlying
GMM θ∗. That is, we focus on determining a mixture θML with a predefined number of
components K ∈N. An obvious formulation of our goal is the following:

Problem 14.9 (a meaningless MLE problem). We are given X = (xn)n∈[N] ⊂RD , and K ≥ 2.
We want to find a GMM θ = (

(wk,µk,Σk)
)
k∈[K] with the maximum likelihood p(X |θ).

It is a well-known fact that Problem 14.9 is no sensible formulation of our problem. For
instance, this has already been noted by Day (1969). The reason is simply that for K ≥ 2 the
likelihood function is unbounded from above, which means that there are infinitely many
solutions with the likelihood ∞.

Lemma 14.10 (unboundedness for K ≥ 2). Let K ≥ 2, and X = (xn)n∈[N] ⊂RD . Fix arbitrary
µ2, . . . ,µK ∈RD . Fix arbitrary non-degenerated covariance matrices Σ2, . . . ,ΣK ∈RD .

Let θ(Σ) := (
(1/K , x1,Σ) ,

(
1/K ,µ2,Σ2

)
, . . . ,

(
1/K ,µK ,ΣK

))
for all p ∈N.

Then, we have L(X |θ(Σ))→∞ for |Σ|→ 0 with Σ 6= 0D,D .

Proof. Observe that

L(X |θ(Σ))=
N∏

n=1

(
1
K
ND(xn|x1,Σ)+ 1

K

K∑
k=2

ND(xn|µk,Σk)

)

= 1
K N

N∏
n=1

(
ND(xn|x1,Σ)+ t(n)

const

)
=

(
1

K N

N∏
n=2

t(n)
const

)
·ND(x1|x1,Σ)+ tnon-neg. ,

where the t(n)
const are non-negative terms that are independent of Σ and tnon-neg. is a non-

negative term (that depends on Σ). With Observation 14.3 the claim follows.

14.2. LIKELIHOOD APPROACH 165

In particular, this lemma holds true for K = 2. It does not hold true for K = 1, though.

Example 14.11 (boundedness for K = 1). Let X = (xn)n∈[N] ⊂ RD . Consider an arbitrary
σ2 > 0. The likelihood of the Gaussian ND(x1,σ2ID) with respect to X computes to

N∏
n=1

ND(xn|x1,σ2ID)= const ·σ−ND ·exp

(
− 1

2σ2

∑
n∈[N]

‖x1 − xn‖2
2

)

where const denotes a non-negative term that is independent of σ. Observe that, for σ→ 0,
the term exp

(
− 1

2σ2
∑

n∈[N] ‖x1 − xn‖2
2

)
converges faster to 0 than σ−ND diverges to ∞.

14.2.5 Maximum Likelihood Estimator for K = 1

It is easy to determine a single Gaussian with maximum likelihood:

Lemma 14.12. Let X = (xn)n∈[N] ⊂ RD with some xn 6= m (X). Then, the vector µ ∈ RD and
the matrix Σ ∈RD×D maximizing

∏N
n=1ND(xn|µ,Σ) satisfy

µ=m (X) and Σ= cov (X) .

Besides that, the vector µ ∈ RD and the value σ2 ∈ [0,∞) that maximize the likelihood∏N
n=1ND(xn|µ,σ2ID) satisfy

µ=m (X) and σ2 = var (X)
D

.

Proof. Recall our definitions from Section 2.3 and Section 2.1, where we stated that we
identify X = (xn)n∈[N] with the data set ((xn,1))n∈[N]. A proof of the first claim can be found
in (Bishop, 2006, pp. 93), for instance. The second claim follows analogously. Consider the
log-likelihood

ln
(∏

n
ND(xn|µ,σ2ID)

)
=

N∑
n=1

ln
(
ND(xn|µ,σ2ID)

)= const.−ND ln(σ)− 1
2σ2

N∑
n=1

∥∥xn −µ
∥∥2

2 .

Observe that the optimal choice of the mean vector µ does not depend on the value of σ2.
Due to Lemma 2.20, we know that the optimal choice is µ=m (X). For arbitrary but fixed µ,
the first derivative in the direction of σ computes to −ND

σ
+ 1

σ2

∑N
n=1

∥∥xn −µ
∥∥2

2. Setting this
derivative to zero and solving the resulting equation yields the claim.

Nonetheless, if there are too few different points in X , then the problem degenerates.

Observation 14.13. Assume that there are at most D−1 different points in X. We know that
Σ= ucov(X)

N is positive definite if for all x ∈RD , x 6= 0, we have xTΣx > 0 (Golub and Loan, 1996,
p. 140). Observe that, due to the number of different points, there exists a vector x ∈RD which
is orthogonal to all vectors (x1−m(X)), . . . , (xN −m(X) (i.e., ∀n : 〈x, (xn −m(X))〉 = 0). Hence,
xTΣx = 1

N
∑N

n=1 xT (xn −m(X))(xn −m(X))T x = 1
N

∑N
n=1 〈x, (xn −m(X))〉2 = 0. This shows that

we need at least |X | ≥ D different observations to obtain a non-degenerated covariance.

14.2.6 Constrained Maximum Likelihood Estimation

To turn Problem 14.9 into a reasonable problem, one could impose additional constraints on
the covariances or add a regularization term to the likelihood function. In the following, we
briefly explain the former approach.

Hathaway (1985) proposed the following formalization for one-dimensional mixtures:

166 CHAPTER 14. INTRODUCTION

Problem 14.14 (constrained one-dimensional MLE problem). We are given N ∈ N, X =
(xn)n∈[N] ⊂ R, K ≥ 2, and some additional constant c ∈ R+. We want to find a GMM θ =(
(wk,µk,σk)

)
k∈[K] maximizing p(X |θ) subject to σ2

k/σ2
l ≥ c for all k, l ∈ [K] with k 6= l.

Hathaway (1985) showed that this problem is well-defined. That is, there exists a global
maximizer θML to the constrained optimization problem with L(θML)<∞.

To gain the intuition behind this result, observe the following: The constraint ensures
that all σi differ by at most a factor c. Hence, if we consider a sequence of mixture models
(
(
(wk,µk,σp

k)
)
k∈[K])p∈N, where the variances satisfy the constraint and where σ

p
k → 0 for

p →∞ for some k ∈ [K], then we can conclude that σp
l → 0 for p →∞ for all l ∈ [K]. Then,

we basically have the same situation as in Example 14.11. Hence, the resulting likelihood is
finite. This is the main idea behind the constraint in Problem 14.14.

García-Escudero et al. (2015) generalized this approach for D-dimensional Gaussian
mixtures in a straightforward manner.

Problem 14.15 (constrained D-dimensional MLE problem). We are given N ∈ N, X =
(xn)n∈[N] ⊂ RD , K ≥ 2, and c ∈ R+. We want to find a GMM θ = (

(wk,µk,Σk)
)
k∈[K] maxi-

mizing p(X |θ) subject to min{λd(Σk) | d∈[D]}
max{λd(Σl) | d∈[D]} ≥ c for all k, l ∈ [K] with k 6= l, where λd(Σ) denotes

the d-th eigenvalue of Σ.

Unfortunately, to the best of our knowledge, there are no theoretical guidelines on how
to choose the parameter c. Hence, we will not work on this problem or Problem 14.14.

14.2.7 Remarks

Unbounded. Problem 14.9 is no sensible problem formulation because the likelihood
function is unbounded. We already discussed this issue in Section 14.2.

Spurious Maxima. The constraints imposed by Hathaway and Bezdek (1986) and García-
Escudero et al. (2015), which we described in Section 14.2.6, also tackle the problem of
spurious maximizers. The issue of spurious maxima is discussed in (McLachlan and Krish-
nan, 2008, p. 65). He argues, "Consideration has to be given to the problem of a relatively
large local maxima that occur as a consequence of a fitted component having a very small
(but nonzero) variance for multivariate data. Such a component corresponds to a cluster
containing a few data points either relatively close together or almost lying in a lower
dimensional subspace in the case of multivariate data. There is thus a need to monitor
the relative size of [...] component variances [...] in an attempt to identify these spurious
local maximizers". More generally, Day (1969) noted that, "[...] each sample point generates
a singularity in the likelihood function. Similarly, any pair of sample points which are
sufficiently close together will generate a local maximum, as will triplets, quadruplets and
so on which are sufficiently close. Maximum likelihood clearly breaks down".

The constraints imposed by Hathaway and Bezdek (1986) and García-Escudero et al.
(2015) do not rule out the possibility of spurious maximizers. In Problem 14.14 and Prob-
lem 14.15, a constant c has to be chosen in advance and in accordance to our notion of
spurious maxima. Nonetheless, we have reason to believe that the constraints allow for less
spurious maxima than there would be without this constraint.

Consistency. Despite the fact that the likelihood is unbounded, the maximum likelihood
estimator is consistent (Hathaway and Bezdek, 1986; Kiefer and Wolfowitz, 1956). That is,
given a sufficient amount of data that has been drawn according to a Gaussian mixture, there
is a local maximizer of the likelihood function that is close to the underlying distribution.
More formally, for each N ∈ N, let XN be a set of N points drawn according to a one-
dimensional Gaussian mixture θ∗. Then, there is a sequence of local maximizers θN of the

14.2. LIKELIHOOD APPROACH 167

likelihood function LXN (·) such that θN → θ∗ for N →∞. For the case K = 1, it is easy to see
that, for N →∞, the expected maximum likelihood estimator takes the desired value:

Lemma 14.16. Let X = (Xn)n∈[N] be a vector of N random variables that have been drawn
independently according to the Gaussian ND(µ,Σ). Then,

E[m(X)]=µ and E[cov (X)]= N −1
N

Σ .

Proof. Observe that each Xn is distributed identically with

E[Xn]=µ and E
[
(Xn −µ)(Xn −µ)T

]
=Σ (14.3)

for each n ∈ [N] (Bishop, 2006, p. 83). Due to linearity of expectation, E[m(X)]=E[Xn] for
all n ∈ [N]. With (14.3), we can conclude that the first claim holds true. To prove the second
claim, observe that

E[cov (X)]=E
[

ucov (X)
N

]
= 1

N

N∑
n=1

E
[
(Xn −m (X))(Xn −m (X))T

]
(linearity)

=E
[
(Xn −m (X))(Xn −m (X))T

]
(identical distribution)

=E
[
(Xn −µ+µ−m (X))(Xn −µ+µ−m (X))T

]
=E

[
(Xn −µ)(Xn −µ)T + (Xn −µ)(µ−m (X))T

+ (µ−m (X))(Xn −µ)T + (µ−m (X))(µ−m (X))T]
=E

[
(Xn −µ)(Xn −µ)T

]
+E

[
(Xn −µ)(µ−m (X))T

]
+E

[
(µ−m (X))(Xn −µ)T

]
+E

[
(µ−m (X))(µ−m (X))T

]
. (linearity)

Let us consider the single summands separately. Observe that

E
[
(Xn −µ)(µ−m (X))T

]
=−E

[
(Xn −µ)(m (X)−µ)T

]
=−E

[
(Xn −µ)

(
N∑

m=1

Xm −µ
N

)T]
(Definition 2.14)

=− 1
N

∑
m∈[N]

E
[
(Xn −µ)

(
Xm −µ)T

]
(linearity)

=− 1
N

E
[
(Xn −µ)

(
Xn −µ

)T
]
− 1

N

∑
m∈[N]\{n}

E
[
Xn −µ

]
E

[
Xm −µ]T (independence)

=− 1
N

E
[
(Xn −µ)

(
Xn −µ

)T
]
− 1

N

∑
m∈[N]\{n}

(E[Xn]−µ)(E[Xm]−µ)T (linarity)

=− 1
N
Σ− N −1

N
0D,D (Equation (14.3))

=− 1
N
Σ . (14.4)

So we also have E
[
(µ−m (X))(Xn −µ)T]=E

[
(Xn −µ)(µ−m (X))T]T =− 1

NΣ. Moreover,

E
[
(µ−m (X))(µ−m (X))T

]
= 1

N

N∑
n=1

E
[
(µ− Xn)(µ−m (X))T

]
(Definition 2.14)

168 CHAPTER 14. INTRODUCTION

=− 1
N

N∑
n=1

E
[
(Xn −µ)(µ−m (X))T

]
(linearity)

= 1
N
Σ . (Equation (14.4))

Hence, E
[

ucov(X)
N

]
= (1−2 1

N + 1
N)Σ= N−1

N Σ, which yields the claim.

Curse of Dimensionality (Parameters). Last but not least, one should be aware of the
curse of dimensionality with regard to the space of the parameters. We consider multivariate
Gaussian mixtures with a fixed number of components K where each component has its own
set of parameters: a weight, a D-dimensional mean vector, and a symmetric (D×D)-matrix
as covariance. This means that we actually have

K ·
(
1+D+ D · (D+1)

2

)
real-valued parameters in total. This number of parameters is quadratic in the dimension.
We need a large number of observations to correctly estimate all these parameters. There
are several approaches that tackle this problem, such as dimension reduction, regularization
of parameters, constrained and parsimonious clustering. For an overview, we refer to
Bouveyron and Brunet-Saumard (2014).

14.3 Expectation-Maximization (EM)

We are given a set of observations X = (xn)n∈[N] and assume that these observations have
been drawn according to a GMM θ∗. We want to estimate θ∗ via the GMM θML that has
most likely generated X .

The standard approach to this problem is the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977; Bishop, 2006; McLachlan and Krishnan, 2008), which is actually a
very general framework.

14.3.1 General Framework

The following problem is a straightforward generalization of Problem 14.9 where we replace
the family of GMMs by some arbitrary family of parameterized models.

Problem 14.17 (general MLE problem). We are given a parameterized statistical model
(X, {p(·|θ) | θ ∈Θ}) and observations X ∈X. Find

θML ∈ arg max {p(X |θ) | θ ∈Θ} .

The EM algorithm that is described in Algorithm 16 is a heuristic for this problem. It
leverages the notion of hidden random variables Z. The functioning of this algorithm is
explained by the following fundamental result. For the sake of simplicity, let us assume that
the hidden variables are discrete.

Lemma 14.18 (decomposition of the likelihood). For all parameters θ ∈Θ and all distribu-
tions q over the hidden variables Z, it holds

ln(p(X |θ))=EZ∼q(Z) [ln(p(X , Z|θ))]+H(q)+KLD(p(·|X ,θ)‖q) ,

where
H(q) :=−∑

Z
q(Z) ln(q(Z))≥ 0

14.3. EXPECTATION-MAXIMIZATION (EM) 169

Algorithm 16 EM Update Step
Require: observations X ,

parameters θold ∈Θ

Expectation Step: Determine a distribu-
tion q over the latent variables Z:

q(Z) := p(Z|X ,θold)

Maximization Step: Determine the pa-
rameter θ ∈Θ that maximizes

EZ∼q(Z) [ln(p(X , Z|θ))] .

return θ

Algorithm 17 EM Update Step for GMMs
Require: observation X = (xn)n∈[N] ⊆RD ,

parameters {(wold
k ,µold

k ,Σold
k)}k∈[K]

for all n ∈ [N] and k ∈ [K] do
Determine the posterior probabilities

pnk := wold
k ND (xn|µold

k ,Σold
k)∑K

l=1 wold
l ND (xn|µold

l ,Σold
l)

.

for all k ∈ [K] do
wk := 1

N
∑N

n=1 pnk

µk :=
∑N

n=1 pnk xn∑N
n=1 pnk

Σk :=
∑N

n=1 pnk(xn−µk)(xn−µk)T∑N
n=1 pnk

return
(
(wk,µk,Σk)

)
k∈[K]

and
KLD(p(·|X ,θ)‖q) :=∑

Z
p(Z|X ,θ) ln

(
p(Z|X ,θ)

q(Z)

)
≥ 0

with the convention that ln(0)= 0, 0 · ln(0/p)= 0, and p · ln(p/0)=∞ for all p 6= 0. Besides that,
KLD(p(·|X ,θ)‖q)= 0 if and only if p(·|X ,θ)= q.

Proof. A proof can be found in (Bishop, 2006, pp. 450), for instance.

With this fundamental result, it is easy to see that an EM update step computes param-
eters θ that are not less likely than the given parameters θold.

Observation 14.19 (monotonicity). Consider a run of Algorithm 16, given some observations
X ∈X and parameters θold ∈Θ. Due to Lemma 14.18, we know that

ln(p(X |θold))

=EZ∼q(Z)

[
ln

(
p(X , Z|θold)

)]
+H(q)+KLD

(
p(·|X ,θold)

∥∥∥q
)

(arbitrary distribution q)

=EZ∼p(Z|X ,θold)

[
ln

(
p(X , Z|θold)

)]
+H(p(·|X ,θold))+0 (q(Z)= p(Z|X ,θold))

≤EZ∼p(Z|X ,θold) [ln(p(X , Z|θ))]+H(p(·|X ,θold))+0

≤EZ∼p(Z|X ,θold) [ln(p(X , Z|θ))]+H(p(·|X ,θold))+KLD
(
p(·|X ,θ)

∥∥∥p(·|X ,θold)
)

(KLD≥ 0)

= ln(p(X |θ)) .

Besides the monotonicity of the sequence of likelihood values produced by the EM
algorithm, little is guaranteed. For instance, (McLachlan and Krishnan, 2008, pp. 79)
noted the following: The sequence of likelihoods (LX (θr))r produced by the EM algorithm
might diverge to ∞ if the likelihood is not bounded from above (cf. Section 14.2.4). If
the likelihood is bounded, then the sequence (LX (θr))r converges monotonically to some
LX (θ) < ∞. However, the sequence of models (θr)r computed by the EM algorithm is
not guaranteed to converge, even if the sequence of likelihoods (LX (θr))r converges. If
the sequence of likelihoods (LX (θr))r computed by the EM algorithm converges to some
LX (θ)<∞, then LX (θ) is not necessarily a local maximum of the likelihood. Nonetheless,
(Wu, 1983) shows that under some regularity conditions the EM algorithm converges to a
local maximum.

170 CHAPTER 14. INTRODUCTION

14.3.2 EM Algorithm for GMMs

The EM algorithm for GMMs takes the form described in Algorithm 17. As already explained
in the last section, the EM algorithm never decreases the likelihood. However, it is not
guaranteed that a sequence produced by Algorithm 17 converges to a non-degenerated GMM.
Besides that, the EM algorithm has two major drawbacks: On the one hand, the convergence
of the EM algorithm can be very slow. In particular if the mixture components are "not well
separated", as observed by Xu and Jordan (1996). On the other hand, the EM algorithm is
prone to get trapped in (poor) stationary points of the likelihood function (McLachlan and
Krishnan, 2008, p. 228). In Chapter 15, we analyse a stochastic version of the EM algorithm
which is known to suffer less from these drawbacks. In Chapter 16, we derive initialization
methods for the EM algorithm for GMMs which, hopefully, prevent the algorithm from
getting trapped in a poor solution.

14.4 Overview

The following three chapters deal with three different topics:

Chapter 15 provides a theoretical comparison of the classical EM algorithm and a stochas-
tic variant thereof, with respect to certain mixture models. Making use of our results
from Chapter 3, we show that under certain conditions the update formulas of both
algorithms yield similar results with high probability.

Chapter 16 deals with the problem of initializing the EM algorithm for GMMs. We propose
new initialization methods that are based on the well-known K-means++ algorithm
by Arthur and Vassilvitskii (2007) for the K-means problem and the algorithm of
Gonzalez (1985) for the so-called discrete radius clustering problem. We compare these
new methods with a large number of existing methods via experiments with respect to
artificial data sets and real-world data sets.

Chapter 17 deals with an approach towards a theoretical analysis of the maximum like-
lihood estimation (MLE) problem. We consider a special case of the MLE problem
where the weights and covariances of the Gaussian mixture models (GMMs) are fixed
in advance and so the only degrees of freedom that are left to be determined are mean
vectors. We propose and discuss different variants of this problem and an approach
towards a theoretical analysis.

“ Mathematics, according to D.
Hilbert (1862-1943), is nothing
more than a game played
according to certain simple rules
with meaningless marks on
paper. ”

E.T. Bell1Chapter 15

A Non-Asymptotic Comparison of
EM and SEM Algorithms

A major downside of the EM algorithm for mixture models is that there are cases where
the algorithm converges very slowly and gets attracted to unstable stationary points of the
likelihood function. A variant of the EM algorithm that tackles this problem is the stochastic
EM (SEM) algorithm, which is also known as a special case of the Monte Carlo EM (MCEM)
algorithm. It replaces the expectation step of the EM algorithm by a stochastic expectation
step: Recall that the goal of the expectation step is to compute the distribution q which
determines the expected complete-data log-likelihood EZ∼q(Z) [ln(p(X , Z|θ))]. The stochastic
EM algorithm approximates this expected value via a sample ln(p(X , Z = z|θ)) where z is
drawn according to q(Z = z). Intuitively, the SEM algorithm imitates the EM algorithm
if the data set is sufficiently large. In this chapter, we aim to quantify this intuition with
respect to EM and SEM algorithms for mixture models.

Overview. In Section 15.1, we introduce the SEM algorithm formally. In Section 15.2, we
give an overview of the mixture models with respect to which we compare EM and SEM
(like) algorithms. In Section 15.3 and Section 15.4, we summarize related work and our
contribution. Section 15.5 contains our theoretical comparison. In Section 15.6, we provide
some examples and illustrate our bounds.

Publication. We generalize and discuss the result from Blömer et al. (2014).

15.1 Introduction

Recall that an update step of the EM algorithm, which is described in Algorithm 18, consists
of two steps: In the expectation step, the algorithm computes a distribution q over the hidden
variables Z. Together with the observations X , this distribution q determines the expected
complete-data log-likelihood f (θ) :=EZ∼q(Z) [ln(p(X , Z|θ))]. Then, in the maximization step,
the expected complete-data log-likelihood f (θ) is maximized with respect to θ.

The stochastic EM (SEM) algorithm is described in Algorithm 19. Instead of determining
the expected complete-data log-likelihood f (θ) exactly, the stochastic EM (SEM) algorithm
approximates f (θ) via sampling. More precisely, it approximates the expectation f (θ) =
EZ∼q(Z) [ln(p(X , Z|θ))] via a sample fz(θ) = ln(p(X , Z = z|θ)) where z is drawn according to
q(Z = z). That is, the expectation step of the EM is replaced by a stochastic expectation
step where the SEM algorithm samples realizations of the hidden variables. Then, in the
maximization step, the SEM algorithm proceeds in the same way as the EM algorithm, but

1Source: E.T. Bell, Mathematics (Queen and Servant of Science). G. Bell & Sons Ltd. 1952 (p. 21)

171

172 CHAPTER 15. NON-ASYMPTOTIC COMPARISON OF EM AND SEM

Algorithm 18 EM Update Step
Require: X , θold ∈Θ

Expectation Step: Determine a distribu-
tion q over the latent variables Z:

q(Z) := p(Z|X ,θold)

Maximization Step: Determine the pa-
rameter θ ∈Θ that maximizes

EZ∼q(Z) [ln(p(X , Z|θ))] .

return θ

Algorithm 19 SEM Update Step
Require: X , θold ∈Θ

Stochastic Expectation Step: Sample a
realization z according to

z ∼ p(Z = z|X ,θold)

Maximization Step: Determine the pa-
rameter θ ∈Θ that maximizes

ln(p(X , Z = z|θ)) .

return θ

with f (θ) replaced by fz(θ). That is, it determines the parameters θ maximizing fz(θ). Note
that it is possible to improve the estimate of the expectation f (θ) via repeated sampling. This
generalization of the SEM algorithm is known as the Monte Carlo EM (MCEM) algorithm
(McLachlan and Krishnan, 2008, p. 227).

A downside of the SEM algorithm is that we have to give up the monotonicity property
of the EM algorithm (cf. Observation 14.19). That is, one round of the SEM algorithm might
produce a model with smaller likelihood than the given model. However, a major advantage
of the SEM algorithm is that it prevents us from "staying near an unstable stationary
point of the likelihood function" (McLachlan and Krishnan, 2008, p. 228). Thereby it avoids
cases where the EM algorithm (for mixture models) is known to converge very slowly. Last
but not least, note that sometimes the EM algorithm is simply no alternative to the SEM
algorithm because the expectation step of the EM algorithm is analytically intractable for
some probabilistic models (McLachlan and Krishnan, 2008, p. 224). For more information,
we refer to Celeux and Diebolt (1985), Bishop (2006), and McLachlan and Krishnan (2008).

15.2 Scope of Our Comparison

In the following, we focus on mixture models that are parameterized by a mean vector µ ∈RD

and, possibly, a covariance matrix Σ ∈RD×D .

Definition 15.1. We consider a family of parameterized D-variate density functions P ={
p(·|µ,Σ)

∣∣ µ ∈RD ,Σ ∈RD×D}
. The probability density function p(·|θ) : RD → R≥0 of a mix-

ture model with K components from P is given by p(x|θ) = ∑K
k=1 wk p(x|µk,Σk), where θ =(

(wk,µk,Σk)
)
k∈[K], (wk)k∈[K] ∈∆K−1, µk ∈RD and Σk ∈RD×D for all k ∈ [K]

For these mixtures, we analyse EM-like and SEM-like algorithms that take the form
described in Algorithm 20 and Algorithm 21, respectively. This covers the following distribu-
tions and algorithms:

First and foremost, we consider the EM and SEM algorithm for Gaussian mixture models:
A Gaussian distribution is parameterized by a mean vector µ ∈RD and a covariance matrix
Σ ∈RD×D . As already explained in Section 14.1, its probability density function takes the
form

ND(x|µ,Σ)= 1
(2π)D/2 |Σ|1/2 ·exp

(
−1

2
(xn −µ)TΣ−1(xn −µ)

)
.

For mixtures of Gaussian distributions, the component update of the corresponding EM and
SEM algorithm take the form depicted in Algorithm 20 and Algorithm 21, respectively, with
all ζnk values set to 1 (see Bishop (2006) and Algorithm 17).

15.2. SCOPE OF OUR COMPARISON 173

Algorithm 20 EM∗ Update Step
Require: data set X = (xn)n∈[N],
θold = (

(wold
k ,µold

k ,Σold
k)

)
k∈[K],

a density function p(·|θold),
some function ζ(X ,θold) : [N]× [K]→R+

for all n ∈ [N] and k ∈ [K] do
pnk := wold

k p(xn|µold
k ,Σold

k)∑K
l=1 wold

l p(xn|µold
l ,Σold

l)
ζnk := ζ(X ,θold)(n,k)

for all k ∈ [K] do
wk := 1

N
∑N

n=1 pnk

µk :=
∑N

n=1 pnkζnk xn∑N
n=1 pnkζnk

Σk :=
∑N

n=1 pnkζnk ynk∑N
n=1 pnk

where ynk = (xn −µk)(xn −µk)T

return
(
(wk,µk,Σk)

)
k∈[K]

Algorithm 21 SEM∗ Update Step
Require: data set X = (xn)n∈[N],
θold = (

(wold
k ,µold

k ,Σold
k)

)
k∈[K],

a density function p(·|θold),
some function ζ(X ,θold) : [N]× [K]→R+

for all n ∈ [N] and k ∈ [K] do
pnk := wold

k p(xn|µold
k ,Σold

k)∑K
l=1 wold

l p(xn|µold
l ,Σold

l)
ζnk := ζ(X ,θold)(n,k)

for all n ∈ [N] do
Sample (Znk)k ∈ {0,1}K with∑

k Znk = 1 s.t. Pr(Znk = 1)= pnk.

for all k ∈ [K] do
Wk := 1

N
∑N

n=1 Znk

Mk :=
∑N

n=1 Znkζnk xn∑N
n=1 Znkζnk

Sk :=
∑N

n=1 ZnkζnkYnk∑N
n=1 Znk

where Ynk = (xn −Mk)(xn −Mk)T

return ((Wk, Mk,Sk))k∈[K]

Second, our work covers heuristics for mixtures of multivariate power exponential (MPE)
distributions, which are generalizations of multivariate Gaussian distributions (Gómez et al.,
1998). MPE distributions have an additional shape parameter s ∈R+. For s = 1 one obtains
Gaussians, while s = 1/2 yields Laplacians. The probability density function of an MPE
distribution with shape s ∈R+, mean vector µ ∈RD , and covariance Σ ∈RD×D is given by

Ms(x|µ,Σ)=C · |Σ|− 1
2 exp

(−1
2
(
(x−µ)TΣ−1(x−µ)

)s) ,

where C= DΓ
(D

2
)
/
(
π

D
2 Γ

(
1+ D

2s
)
21+ D

2s

)
and where Γ(·) denotes the gamma function. In the

following, we assume that the shape parameter s is some given fixed constant. For mixtures
of MPE distributions, there is no implementation of the EM or SEM algorithm known since
there is no known implementation of the maximization step of either algorithm. However,
Zhang and Liang (2010) introduced an EM-like heuristic which was later corrected by Dang
et al. (2015). The EM-like heuristic corresponds to Algorithm 20 with the ζnk values set to

ζnk := s
(
(xn −µold

k)T (Σold
k)−1(xn −µold

k)
)s−1 .

Dang et al. (2015) showed that the covariance update of this heuristic is reasonable if
s ∈ (0,1]. More precisely, he showed that, given fixed weights and means, an update of the
covariance matrices does not decrease the expected complete-data log-likelihood which shall
be maximized in the last step of the EM algorithm (cf. Dang et al. (2015), Bishop (2006)).

Third, our analysis also covers the EM and SEM Algorithm for mixtures of regular
exponential distributions. These distributions are only parameterized by a mean vector
µ ∈RD . Their density functions are of the form

Rψ(x|µ)= exp
(〈x,µ〉−ψ(µ)

)
R0(x) ,

where ψ(·) and R0(·) denote given functions. For instance, Banerjee et al. (2005) showed
that the component update of the corresponding EM algorithm takes the form depicted in
Algorithm 20 (excluding the update of the (non-existing) covariance) and with all the ζnk
values set to 1. For more information, we refer to (McLachlan and Krishnan, 2008, pp. 22).

174 CHAPTER 15. NON-ASYMPTOTIC COMPARISON OF EM AND SEM

15.3 Related Work

There are various theoretical comparisons of the EM and SEM algorithm that deal with
asymptotic theory, for instance, Celeux et al. (1995), Nielsen (2000a) and Nielsen (2000b).
For mixtures of distributions from the exponential family, Ip (1994) shows that the sequence
of models generated by iterations of the SEM update step is an ergodic Markov chain that
converges weakly to a stationary distribution over models. Furthermore, he shows that,
under appropriate assumptions, the mean of this stationary distribution converges to the
maximum likelihood estimator.

An experimental comparison between the EM and SEM algorithm for mixtures of
Gaussian distributions can be found in Dias and Wedel (2004), for instance. The algorithms
are applied to two small one-dimensional data sets (containing 150 and 174 points) and
use Gaussian mixtures with 3 and 2 components, respectively. The authors evaluate the
log-likelihood of the sequence of produced solutions and the log-likelihood surface in the
neighborhood of these solutions. Furthermore, they compare the final Gaussian mixture
models returned by the algorithms. Their results indicate that the SEM algorithm converges
faster and more reliably than the EM algorithm. More comparisons can be found in Celeux
et al. (1996), for instance.

15.4 Contribution

We analyse an SEM∗ update step in comparison to an EM∗ update step, with respect to
different mixture models. We show that these single update steps, with high probability, yield
similar results if the given data set X and the given model θold satisfy certain properties.

15.5 Theoretical Comparison

In this section, we state probabilistic bounds on the differences between an EM∗ and SEM∗

update step. First, we state and prove these bounds in the most general form. Then we
consider the specific case of Gaussian mixture models. Finally, we discuss our results.

15.5.1 A Non-Asymptotic Bound

With our results from Chapter 3 we can derive the following probabilistic bound on the
proximity between Algorithm 20 and Algorithm 21.

Theorem 15.2 (Proximity of Update Steps). Consider a single run of Algorithm 20 and
Algorithm 21, given the same observations X = (xn)n∈[N] ⊆ RD , mixture model θold with K
components, density function p(·|θold), and function ζ(X ,θold), respectively.

Let δ ∈ (0,1),

aδ := 3ln(2/δ) and bδ :=
√

2e ln(2/δ)

For all k ∈ [K], let

ζmax
k =max {ζnk | n ∈ [N]} .

If for all k ∈ [K] we have

rk :=
N∑

n=1
pnk ≥ aδ and uk :=

N∑
n=1

pnkζnk ≥ aδζmax
k , (15.1)

15.5. THEORETICAL COMPARISON 175

then, with probability 1−K ·
(
2+D+ D(D+1)

2

)
·δ, for all k ∈ [K] and d, i, j ∈ [D] we have

|Wk −wk| ≤
p

aδp
rk

·wk , (15.2)

∣∣(Mk −µk
)
d

∣∣≤ λ
(µ)
(kd)

p
uk −

√
aδζmax

k

· τkdp
uk

, and (15.3)

∣∣(Sk −Σk)i j
∣∣≤ λ(Σ)

(ki j)p
rk −p

aδ
· ρki jp

rk
+

(p
uk +

√
aδζmax

k

)
(p

uk −
√

aδζmax
k

)2 ·
λ

(µ)
(ki)λ

(µ)
(k j)p

rk −aδ
· τkiτk jp

ukrk
, (15.4)

where

τ2
kd =

N∑
n=1

pnk(1− pnk)ζ2
nk(xn −µk)2

d ,

λ
(µ)
(kd) =


bδ if τkd ≥ 1

e bδ ·ζmax
k rd(X)

2b2
δ

e · ζ
max
k rd(X)
τkd

otherwise
, (15.5)

ρ2
ki j =

N∑
n=1

pnk(1− pnk) (ζnk ynk −Σk)2
i j with ynk = (xn −µk)(xn −µk)T , and

λ(Σ)
(ki j) =


bδ if ρki j ≥ 1

e bδ ·ζmax
k ri(X)r j(X)

2b2
δ

e · ζ
max
k ri(X)r j(X)

ρki j
otherwise

.

In the remainder of this section, we prove this theorem. For a discussion, we refer to the
next section.

Because the covariance update does not take the same form as a covariance of a soft
cluster, we cannot make use of Lemma 3.19. However, we can derive the following similar
result:

Lemma 15.3. Consider the setting from Theorem 15.2. Let δ ∈ (0,1), k ∈ [K], and i, j ∈ [D].
We have

Pr

(∣∣∣∣∣ N∑
n=1

Znk (ζnk ynk −Σk)i j

∣∣∣∣∣>λki j ·ρki j

)
≤ δ . (15.6)

Proof. The following proof is similar to the proof of Lemma 3.19 (the main differences are
marked in boldface). For each n ∈ [N], define the real random variable

Ski jn := (Znk − pnk) (ζnk ynk −Σk)i j .

Since the Znk are binary random variables and since each membership pnk lies in [0,1],
we have |Znk − pnk| ≤ 1. Since

(
µk

)
d is a convex combination of the coordinates (xm)d with

m ∈ [N], we know that (xn−µk)d ∈ [−rd(X),+rd(X)] for all n ∈ [N]. Hence, for all n ∈ [N] and
i, j ∈ [D], we can conclude that (ynk)i j = (xn −µk)i(xn −µk) j ∈

[−ri(X) ·r j(X), +ri(X) ·r j(X)
]
.

As (covk)i j is a convex combination of values in (ζmk ymk)i j with m ∈ [N], it follows that

(ζnk ynk −covk)i j ∈
[−2 ·ζmax

k ri(X)r j(X), +2 ·ζmax
k ri(X)r j(X)

]
for all n ∈ [N]. Hence,

∣∣(ζnk ynk −covk)i j
∣∣≤ 2ζmax

k ri(X)r j(X) for all n ∈ [N]. Putting these
inequalities together yields∣∣Ski jn

∣∣= |Znk − pnk| ·
∣∣(ζnk ynk −covk)i j

∣∣≤ 2 ·ζmax
k ri(X)r j(X) .

176 CHAPTER 15. NON-ASYMPTOTIC COMPARISON OF EM AND SEM

With Lemma 3.12, we conclude that

E[Ski jn]= 0 and Var(Ski jn)= pnk(1− pnk) (ζnk ynk −covk)2
i j .

Similarly to Observation 2.19, we can identify

Ski j :=
N∑

n=1
Ski jn =

N∑
n=1

Znk(ζnk ynk −covk)i(ζnk ynk −covk) j .

With our previous results, we get E[Ski j]= 0 and Var(Ski j)= ρ2
ki j.

Finally, applying Theorem 3.10 with C := 2ζmax
k ri(X)r j(X) yields the claim.

Proof of Theorem 15.2. As they are given the same parameters, both algorithms compute
the same soft clustering P = (pnk)n∈[N],k∈[K] and values (ζnk)n∈[N],k∈[K]. Additionally, Al-
gorithm 21 samples a hard assignment (znk)k (according to Pr(znk = 1) = pnk), for each
observation xn. Let Z := (znk)n∈[N],k∈[K]. Observe that rk = w(A(X ,P)

k), wk = w(A(X ,P)
k)/ |X |,

and Wk =w(A(X ,Z)
k)/ |X |. For each k ∈ [K], define

Wk := ((xn,ζnk))n∈[K] .

Then we can identify µk = m(A(Wk,P)
k), Mk = m(A(Wk,Z)

k), and uk = w(A(Wk,P)
k). Moreover,

the numerator of Σk is equal to ucov(A(Wk,P)
k) and that the numerator of Sk is equal to

ucov(A(Wk,P)
k). Observe that w(X)

max = 1, while w
(Wk)
max = ζmax

k for all k ∈ [K]. Besides, ri(Wk) =
ri(X) for all k ∈ [K] and i ∈ [D].

Apply Lemma 3.14 with respect to X , for each k ∈ [K]. Apply Lemma 3.14 with respect
to Wk, for each k ∈ [K]. Apply Lemma 3.16 with respect to Wk, for each d ∈ [D] and k ∈ [K].
Apply Lemma 15.3 with respect to X , for each k ∈ [K]. Combine these bounds via the union
bound. As we apply Lemma 3.14 for 2K times instead of K times, the overall probability of
success becomes 1−K · (2+D+D(D+1)/2) ·δ.

To prove (15.2), observe that, due to Lemma 3.14 (applied to X), we have

|Wk −wk| =

∣∣∣w(
A(X ,P)

k

)
−w

(
A(X ,Z)

k

)∣∣∣
|X | ≤

p
aδ

√
w(A(X ,P)

k)

|X | =
p

aδp
rk

· rk

|X | =
p

aδp
rk

wk .

(15.3) follows analogously to the respective claim in Theorem 3.23. The proof of (15.4) is also
similar to the proof of the respective claim in that theorem: Let mk := (µk −Mk)(µk −Mk)T

and, as in the theorem, write ynk := (xn −µk)(xn −µk)T for each n ∈ [N]. Due to Lemma 2.21,
we have

Sk =
ucov(A(Wk,Z)

k)

w(A(X ,Z)
k)

=
ucov(A(Wk,Z)

k ,µk)

w(A(X ,Z)
k)

−
w

(
A(Wk,Z)

k

)
w(A(X ,Z)

k)
mk .

Hence,

∣∣(Sk −Σk)i j
∣∣=

∣∣∣∣∣∣
ucov(A(Wk,Z)

k ,µk)

w(A(X ,Z)
k)

−
w

(
A(Wk,Z)

k

)
w(A(X ,Z)

k)
mk −Σk


i j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑N

n=1 znkζnk(xn −µk)(xn −µk)T

w(A(X ,Z)
k)

−
w

(
A(Wk,Z)

k

)
w(A(X ,Z)

k)
mk −Σk


i j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑N

n=1 znkζnk ynk

w(A(X ,Z)
k)

−
w

(
A(Wk,Z)

k

)
w(A(X ,Z)

k)
mk −Σk


i j

∣∣∣∣∣∣

15.5. THEORETICAL COMPARISON 177

=
∣∣∣∣∣∣
∑N

n=1 znk (ζnk ynk −Σk)

w(A(X ,Z)
k)

−
w

(
A(Wk,Z)

k

)
w(A(X ,Z)

k)
mk


i j

∣∣∣∣∣∣
≤

∣∣(∑N
n=1 znk (ζnk ynk −Σk)

)∣∣
i j

w(A(X ,Z)
k)

+
w

(
A(Wk,Z)

k

)
w(A(X ,Z)

k

∣∣(mk)i j
∣∣ .

Due to Lemma 3.16 (applied to Wk), we have

∣∣(mk)i j
∣∣= ∣∣(µk −Mk)i

∣∣ · ∣∣(µk −Mk)
∣∣

j ≤
λ

(µ)
(ki)λ

(µ)
(k j)(p

uk −
√

aδζmax
k

)2 · τkiτk j

uk
.

Due to Lemma 3.14 (applied to X and Wk, respectively), we know that

w
(
A(Wk,Z)

k

)
w

(
A(X ,Z)

k

) ≤
uk +aδζmax

k
p

uk

rk −aδ
p

rk
=

p
uk +aδζmax

kp
rk −p

aδ
·
p

ukp
rk

and, in particular, Rk ≥
(p

rk −p
aδ

) ·prk. Due to Lemma 15.3 (applied to X), we have∣∣∣∣∣
(

N∑
n=1

znk (ζnk ynk −Σk)

)∣∣∣∣∣
i j

≤λ(Σ)
(ki j) ·ρki j .

A combination of these inequalities yields the claim.

15.5.2 Special Case: Gaussian Mixture Models (GMMs)

In the special case where the EM∗ and SEM∗ algorithm describe the classical EM and
SEM algorithm for GMMs, Theorem 15.2 simplifies slightly. In this case, the given density
function is Gaussian and we have ζnk = 1 for all n ∈ [N] and k ∈ [K].

Observe that the posterior probabilities P = (pnk)n∈[N],k∈[K], which both algorithms
compute, describe a soft K-clustering of X . More precisely, P is the soft clustering induced
by the GMM θold (see Section 14.1.2).

First, let us consider the initial condition from (15.1). We have ζmax
k = 1 for all k ∈ [K]

and w(X)
max = 1. Consequently,

∀k ∈ [K] : rk = uk =
N∑

n=1
pnk ·1=w

(
A(X ,P)

k

)
.

This means that the two bounds from (15.1) coincide. Both demand that the weight of the
k-th soft cluster of X given by P is

w
(
A(X ,P)

k

)
≥ 2ln(2/δ)= aδ

at least some value that (only) depends on the probability of success. To sum up, it is
essential that each cluster does not have too small a weight.

Now, consider the difference of the parameter updates. First, consider the weight updates.
With a certain probability, the difference is at most

|Wk −wk| ≤
√√√√ 2ln(2/δ)

w
(
A(X ,P)

k

) ·wk .

178 CHAPTER 15. NON-ASYMPTOTIC COMPARISON OF EM AND SEM

To sum up, the weight updates are similar if the cluster weights w
(
A(X ,P)

k

)
are large enough.

Second, consider the bound on the mean updates. As in Section 3.5.3, observe that

D∑
d=1

τ2
kd =

N∑
n=1

pnk(1− pnk) ·1 ·∥∥xn −µk
∥∥2

2 ≤d
(
A(X ,P)

k

)
. (15.7)

Thus, the unit of measurement which Theorem 15.2 effectively uses to measure the squared
distance

∥∥µk −Mk
∥∥2

2 is at most

D∑
d=1

(
τkdp

uk

)2
=

∑D
d=1τ

2
kd

uk
≤

d
(
A(X ,P)

k

)
w

(
A(X ,P)

k

) = var
(
A(X ,P)

k

)

the variance of the respective soft cluster. Moreover, observe that this unit of measurement
is multiplied with the factor

(λ(µ)
(kd))

2

(
p

uk −aδζmax
k)2 = 2e ln(2/δ)(

w
(
A(X ,P)

k

)
−p

2e ln(2/δ)
)2 , (15.8)

if the term τ2
kd is large enough. Intuitively, τkd should be large enough if the points in the

soft cluster A(X ,P)
k are scattered enough. That is, τkd should be large if the cost d

(
A(X ,P)

k

)
of the soft cluster is large enough. However, strictly speaking, τ2

kd is still a lower bound
on the cost (see (15.7)). Nonetheless, the resulting factor from (15.8) is small if the weight
w

(
A(X ,P)

k

)
of the soft cluster is large enough.

Third, consider the bound on a covariance update. Again, the bound becomes tighter
when the weight w

(
A(X ,P)

k

)
of the soft cluster is large enough. However, to the best of our

knowledge, there is no concise interpretation of the unit of measurement in this bound.
To sum up, it is essential that the weights of the soft clusters of X that are induced by

the given GMM θold are large enough.

15.6 Some Concrete Examples

In this section, we illustrate our results with respect to the following two mixture models
and the corresponding instantiations of Algorithm 20 and Algorithm 21: First, we consider
Gaussian mixture models (GMM) and instantiations that correspond to the classical EM
and SEM algorithm for GMMs. Second, we consider Laplacian mixture models (LMM) and
instantiations that are EM-like and SEM-like heuristics for LMMs (see Section 15.2).

For our examples, we use the artificial data sets that are illustrated in Figure 15.1. In the
following, XK ,D,N denotes an artificial data set that has been generated by drawing N points
according to a fixed D-variate mixture θK ,D with K components. That is, for every N ∈N, the
data set XK ,D,N has been generated according to the same mixture model θK ,D . For more
details on our data generation method, we refer to our explanations in Section 16.5.2.

A Direct Comparison

We start with a straightforward comparison: We consider the sequences of parameters
computed by the EM∗ algorithm (Algorithm 20) and the SEM∗ algorithm (Algorithm 21)
and their likelihoods. We feed both algorithms with the same initial solution and run
each algorithm for 50 rounds. After each round, we compute the differences between
their current solutions. More precisely, we compute the absolute difference |wk −Wk|, the

15.6. SOME CONCRETE EXAMPLES 179

(a) X10,3,N , N = 1000 (b) X10,3,N , N = 10000 (c) X10,3,N , N = 10000, initial GMM

Figure 15.1: Illustration of our data sets. We depict orthogonal projections to randomly
chosen 2-dimensional subspaces. The green ellipses indicate the covariance matrices of the
underlying GMM. The red ellipses in Figure 15.1c indicate the covariance matrices of an
initial solution (computed via the Unif method, as described in Section 16.3).

Euclidean distance
∥∥µk −Mk

∥∥
2, and the Frobenius norm ‖Σk −Sk‖F . Moreover, we compute

the negative log-likelihoods of the solutions, which we denote as "cost" in the following.
The value of a Euclidean distance between mean vectors and the value of a Frobenius

norm of a difference between covariance matrices are completely meaningless, as long as
we cannot compare them to something. To get a rough idea of how to interpret them, we
compare them with the following values: We compare the Euclidean distances between
mean vectors with the diameter diam(X) of the respective data set X (see Definition 2.18).
We compare the Frobenius norm of the difference between covariance matrices with the
Frobenius norm of the covariance ‖cov (X)‖F of the given data set X (see Definition 2.15).
The concrete values of diam(X) and ‖cov (X)‖F of the respective data set X can be found in
the caption of the figure that depicts the results.

The following examples show that, as to be expected, an SEM∗ update step is very
similar to an EM∗ update step if the data set is large. However, larger deviations between
parameters do not necessary imply that a solution obtained via the SEM∗ algorithm has a
smaller likelihood. Besides that, recall that the EM algorithm is guaranteed to produce solu-
tions with a non-decreasing likelihood (Bishop, 2006). In the following examples, we observe
the same for the EM-like EM∗ algorithm for LMMs, which is actually no instantiation of the
EM algorithm for LMMs.

Figure 15.2 depicts a comparison of the EM and SEM algorithm for Gaussian mix-
ture models (GMMs). In general, we observe that in comparison to diam(X10,3,N) and∥∥cov

(
X10,3,N

)∥∥
F (see caption of the respective figure), the parameters computed by the

EM and SEM algorithm are similar. It is clearly visible that the differences between the
parameters become smaller when the number of points N becomes larger. However, this
does not necessarily result in different likelihood values.

Figure 15.3 shows our results regarding the EM-like and SEM-like algorithm for Lapla-
cian mixture models (LMMs). In general, the differences between the parameters are much
larger than those we obtained in our comparison between the EM and SEM algorithm for
GMMs (i.e., roughly by a factor of 10). Nonetheless, the SEM-like algorithm for LMMs does
not necessarily produce solutions that are less likely than those computed by the EM-like
algorithm for LMMs. Again, the differences between the parameters decrease for a larger
number of observations.

An Illustration of Our Theoretical Bounds

In this section, we illustrate a tighter variant of Theorem 15.2 that only bounds the proximity
of the mean updates. To this end, we proceed as follows: First, we compute an initial solution

180 CHAPTER 15. NON-ASYMPTOTIC COMPARISON OF EM AND SEM

(a)w
eights,N

=
1

000
(b)m

eans,N
=

1
000,

d
i
a
m(X

10,3,N
)≈

7
158

(c)covariances,N
=

1
000,

∥∥cov (X
10,3,N) ∥∥

F ≈
2.5·10

6
(d)cost,N

=
1

000

(e)w
eights,N

=
10

000
(f)m

eans,N
=

10
000,

d
i
a
m(X

10,3,N
)≈

7
757

(g)covariances,N
=

10
000,

∥∥cov (X
10,3,N) ∥∥

F ≈
2.4·10

6
(h)cost,N

=
10

000

(i)w
eights,N

=
100

000
(j)m

eans,N
=

100
000,

d
i
a
m(X

10,3,N
)≈

8
195

(k)covariances,N
=

100
000,

∥∥cov (X
10,3,N) ∥∥

F ≈
2.4·10

6
(l)cost,N

=
100

000

F
igure

15.2:
C

om
parison

ofthe
E

M
and

SE
M

algorithm
for

G
M

M
s.B

oth
algorithm

s
w

ere
executed

once
on

the
artificialdata

set
X

10,3,N
,given

the
sam

e
initialsolution.E

ach
line

corresponds
to

the
difference

betw
een

param
eters

w
ith

the
sam

e
index

k.

15.6. SOME CONCRETE EXAMPLES 181

(a
)w

ei
gh

ts
,N

=
1

00
0

(b
)m

ea
ns

,N
=

1
00

0,
d
i
a
m

(X
10

,3
,N

)≈
7

15
8

(c
)c

ov
ar

ia
nc

es
,N

=
1

00
0,

∥ ∥ cov
(X

10
,3

,N
)∥ ∥ F

≈
2.

5
·1

06
(d

)c
os

t,
N

=
1

00
0

(e
)w

ei
gh

ts
,N

=
10

00
0

(f
)m

ea
ns

,N
=

10
00

0,
d
i
a
m

(X
10

,3
,N

)≈
7

75
7

(g
)c

ov
ar

ia
nc

es
,N

=
10

00
0,

∥ ∥ cov
(X

10
,3

,N
)∥ ∥ F

≈
2.

4
·1

06
(h

)c
os

t,
N

=
10

00
0

(i
)w

ei
gh

ts
,N

=
10

0
00

0
(j)

m
ea

ns
,N

=
10

0
00

0,
d
i
a
m

(X
10

,3
,N

)≈
8

19
5

(k
)c

ov
ar

ia
nc

es
,N

=
10

0
00

0,
∥ ∥ cov

(X
10

,3
,N

)∥ ∥ F
≈

2.
4
·1

06
(l

)c
os

t,
N

=
10

0
00

0

F
ig

ur
e

15
.3

:
C

om
pa

ri
so

n
of

th
e

E
M

-li
ke

an
d

SE
M

-li
ke

he
ur

is
ti

c
fo

r
L

M
M

s.
B

ot
h

al
go

ri
th

m
s

w
er

e
ex

ec
ut

ed
on

ce
on

th
e

ar
ti

fic
ia

ld
at

a
se

t
X

10
,3

,N
,g

iv
en

th
e

sa
m

e
in

it
ia

ls
ol

ut
io

n.
E

ac
h

lin
e

co
rr

es
po

nd
s

to
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

pa
ra

m
et

er
s

of
th

e
co

m
po

ne
nt

w
it

h
th

e
sa

m
e

in
de

x
k.

182 CHAPTER 15. NON-ASYMPTOTIC COMPARISON OF EM AND SEM

(a) diam(X10,3,N)≈ 7757, N = 10000 (b) diam(X10,3,N)≈ 8195, N = 100000

Figure 15.4: Experimental difference and theoretical bound on the difference between the
mean updates for Gaussian mixture models (GMMs).

θold. Then we compute the mean updates as described in Algorithm 20 and Algorithm 21
for the given θold, respectively. We want to compare the Euclidean distance between these
mean updates with our theoretical bound. Hence, we additionally compute a bound on the
difference of the mean updates (given θold) that holds with high probability. More precisely,
we apply the bounds from the following Corollary 15.4 with ε= 1

100 .

Corollary 15.4 (proximity of mean updates). Consider the same setting as in Theorem 15.2.
Fix ε ∈ (0,1). Set δ := ε/K(D +1). If uk = ∑N

n=1 pnkζnk ≥ (3ln(2/δ))ζmax
k for all k ∈ [K], then

with probability 1−ε we have

∀k ∈ [K] :
∥∥Mk −µk

∥∥2
2 ≤

D∑
d=1

 λ
(µ)
(kd)

p
uk −

√
3ln(2/δ)ζmax

k


2

·
∑N

n=1 pnk(1− pnk)ζ2
nk(xn −µk)2

d∑N
n=1 pnkζnk

.

After that, we generate a new model θold because our analysis only covers the comparison
of a single update step of both algorithms (both started with the same θold). Instead of
computing a new initial solution θold from scratch, we compute a new model θ by applying a
complete update step according to Algorithm 21 to the given θold and repeat our evaluation
with θold set to θ.

Figure 15.4 depicts our results with respect to GMMs. We observe that the actual
difference is significantly smaller than our bound, as it is to be expected. However, our
bounds on the differences become tighter when the number of points becomes larger. This
matches the fact that a larger number of observations results in a larger uk value which
in turn yields tighter bounds. For the data set X10,3,N with N=1 000, our bounds were not
applicable.

Figure 15.5 depicts results with respect to LMMs. Again, we do not depict results for the
data set X10,3,N with N = 1000, since our bounds were not applicable at all. For N = 10000,
there are missing values in Figure 15.5a since our bounds were not applicable in each round.
For N = 100000, our bound was applicable in each round and, as to be expected, significantly
tighter than the bound for N = 10000.

15.7 Discussion

Unsurprisingly, for Gaussian mixture modes, our probabilistic bounds confirm the intuition
that an SEM∗ update step imitates the EM∗ update step well if the soft clusters (given by
the current model θold) do not have too small a weight. Apart from that, our probabilistic
bound does not guarantee much.

First, our bound from Theorem 15.2 is not particularly tight. One can also see this
from the examples that we will provide in Section 15.6. There, we evaluate a bound on the

15.7. DISCUSSION 183

(a) diam(X10,3,N)≈ 7757, N = 10000 (b) diam(X10,3,N)≈ 8195,N = 100000

Figure 15.5: Experimental difference and theoretical bound on the difference between the
mean updates for Laplacian mixture models (LMMs).

proximity of the mean updates (which is tighter than the bound in Theorem 15.2 because we
simply ignore the proximity of the covariance updates).

Second, our bounds are only valid for a single update step. They do not guarantee
that several consecutive update steps still perform similarly for certain initial solutions
and data sets. Note that for consecutive update steps one cannot simply repeatedly apply
Theorem 15.2 because it assumes that both algorithms are given the same model θold , while
the very first update step of both algorithms will certainly already yield two different models.

Third, we do not expect that monitoring the conditions given in Theorem 15.2 during a
run of the SEM∗ algorithm and switching to the update steps of the EM∗ algorithm (in case
the SEM∗ update step might deviate too far from the EM∗ update step) is useful. This is
simply due to the fact that the evaluation of the conditions from Theorem 15.2 introduces a
large overhead.

184 CHAPTER 15. NON-ASYMPTOTIC COMPARISON OF EM AND SEM

“ The combination of some data
and an aching desire for an
answer does not ensure that a
reasonable answer can be
extracted from a given body of
data. ”

John Tukey1Chapter 16

Adaptive Seeding for Gaussian
Mixture Models

The performance of the expectation-maximization (EM) algorithm for Gaussian mixture
models (GMMs) crucially depends on its initial solution. Hence, numerous initialization
methods have been proposed: On the one hand, there are simple random methods that,
for instance, sample mean vectors uniformly from the given set of observations. On the
other hand, there are rather complex methods that crucially depend on the right choice of
hyperparameters. None of these methods comes with a performance guarantee.

Simply speaking, an initialization method is a fast algorithm that computes a good
solution. For other clustering problems, there are such algorithms: For the K-means
problem, we have the K-means++ algorithm by Arthur and Vassilvitskii (2007). For the
discrete radius K-clustering problem, there is an algorithm by Gonzalez (1985). Both
algorithms are fast and work provably well. Moreover, both have already been utilized to
determine the mean vectors of an initial GMM. In this chapter, we aim to continue this work
and modify the K-means++ algorithm and Gonzalez’ algorithm further.

Overview. In Section 16.1, we give an overview of common initialization methods for
the EM algorithm for GMMs. In Section 16.2, we briefly state our main contribution. In
Section 16.3, we give a more detailed description of those algorithms to which we compare our
methods. In Section 16.4, we introduce our adaptive seeding methods, which use ideas from
the K-means++ algorithm and Gonzalez’ algorithm. Finally, in Section 16.5, we compare our
adaptive seeding methods with existing algorithms with respect to large sets of artificial
data sets and some real-world data sets.

Publication. The following results have been published in (Blömer and Bujna, 2016).

16.1 Related Work

The problem of initializing the EM algorithm for GMMs properly is well-known. Only
recently, Jin et al. (2016) published a theoretical analysis of local maxima in the likelihood
of GMMs that also stresses the necessity of a careful initialization, even "in highly favorable
settings". In the following, we give a brief overview of initialization methods. More informa-
tion can be found in (Maitra, 2009; Thiesson, 1995; Fayyad et al., 1998; Biernacki, 2004), for
instance.

A common way to initialize the EM algorithm is to first draw mean vectors uniformly
at random from the input set and then to approximate covariances and weights (Biernacki,

1Source: Sunset salvo. The American Statistician 40 (1). Online at http://www.jstor.org/pss/2683137

185

http://www.jstor.org/pss/2683137

186 CHAPTER 16. ADAPTIVE SEEDING FOR GAUSSIAN MIXTURE MODELS

2004; Melnykov and Melnykov, 2011; Maitra, 2009; Meilă and Heckerman, 1998). To
compensate for the random choice of initial means, several candidate solutions are created
and the one with the largest likelihood is chosen. Often, few steps of the EM, Classification
EM, Stochastic EM algorithm, or Lloyd’s K-means algorithm are applied to the candidates
(Bishop, 2006, p. 427).

Other popular initializations are based on hierarchical agglomerative clustering (HAC).
For instance, in (Melnykov and Melnykov, 2011; Maitra, 2009; Meilă and Heckerman, 1998),
HAC (with different distance measures) is used to obtain mean vectors. Since HAC is
generally very slow, it is usually only executed on a random sample. However, the size of any
reasonable sample depends on the size of the smallest optimal component, which is unknown.
Moreover, it is often outperformed by other methods (Melnykov and Melnykov, 2011; Meilă
and Heckerman, 1998). An approach that tries to speed up HAC is presented in (Maitra,
2009). It aims at finding the best local modes of the data set in a reduced m∗-dimensional
space and applies HAC only on these modes. However, this method is time-consuming and
the choice of m∗ is crucial (Maitra, 2009, p. 5,13). Moreover, in (Maitra and Melnykov, 2010)
it is outperformed by simple random methods.

Melnykov and Melnykov (2011) present a density based approach that not only deter-
mines an initial solution but also tries to determine the correct number of components. It
initializes the means by points which have a “high concentration” of neighbors. To this end,
the size m of the neighborhood of a point (i.e., the minimum number of points in a cluster)
has to be fixed in advance. In our experiments, we found that the performance crucially
depends on the choice of m.

In Verbeek et al. (2003), a greedy algorithm is presented which constructs a sequence
of mixture models with 1 through K components. Given a model θk with k components, it
constructs several new candidates with k+1 components. Each candidate is constructed
by adding a new component to θk and executing the EM algorithm. Hence, this method is
rather expensive.

In Kwedlo (2015), a modification of the Gonzalez algorithm for GMMs is presented. First,
it estimates covariances and weights randomly. Then it uses a variant of the algorithm from
(Gonzalez, 1985) to determine initial mean vectors. Furthermore, there are some practical
applications that use the K-means++ algorithm for the initialization of GMMs. For instance,
in (Krüger et al., 2010), it is applied in the context of speech recognition.

16.2 Our Contribution

Clearly, there is no way to determine the best initialization algorithm that outperforms
all other algorithms on all instances. The performance depends on our notion of whether
it performs well, the given data, and the allowed computational cost. Nonetheless, the
initialization methods presented so far (except the simple random initializations) face
mainly two problems: First, they are rather complex and time consuming. Second, the choice
of hyperparameters is crucial for the outcome. In this chapter, we present new methods
that are fast and do not require choosing sensitive hyperparameters. These methods make
use of the ideas behind the K-means++ algorithm (Arthur and Vassilvitskii, 2007) and the
Gonzalez algorithm (Gonzalez, 1985). Thereby, we continue the work of Kwedlo (2015) and
Krüger et al. (2010).

16.3 Baseline Algorithms

Due to the large number of initialization methods, our comparison only focuses on the most
common ones. To the best of our knowledge, the most widely used initializations consist of
the following steps, which we illustrate in Figure 16.1.

16.3. BASELINE ALGORITHMS 187

(a) Choose K points (b) K-means partition (c) Construct a GMM (d) EM algorithm

Figure 16.1: An illustration of the baseline algorithm Gonz (without additional preprocessing
via Lloyd’s algorithm) and a subsequent run of the EM algorithm for GMMs.

Choosing K Points. First, they choose K points from the given set of observations. We
consider the following four methods:

Unif draws K points independently and uniformly at random from X .

HAC computes a uniform sample S of size s · |X | of the input set X and executes hierarchical
K-clustering with average linkage cost on S.

Gonz executes the algorithm by Gonzalez (1985), which yields a 2-approximation for the
discrete radius K-clustering problem. Iteratively, it chooses the point with the largest
cost (i.e., the minimum Euclidean distance) with respect to the already chosen means
and adds it to its set of means.

That is, given means µ1, . . . ,µk−1, it chooses

µk ∈ arg max
{
dist

(
x,

{
µ1, . . . ,µk−1

}) ∣∣ x ∈ X
}

, (16.1)

where we re-use Definition 9.1 and write

dist
(
x,

{
µ1, . . . ,µk−1

})=min
{∥∥x−µi

∥∥
2

∣∣ i ∈ [k−1]
}

. (16.2)

KM++ executes the K-Means++ algorithm by Arthur and Vassilvitskii (2007), which has
been designed for the K-means problem. In each round, KM++ samples a data point
p from the given data set X with probability proportional to its K-means cost (with
respect to the points chosen so far) and adds this point as the next mean.

That is, given means µ1, . . . ,µk−1, it chooses µk randomly according to

Pr(µk = x)= dist
(
x,

{
µ1, . . . ,µk−1

})2∑
y∈X dist

(
y,

{
µ1, . . . ,µk−1

})2 , (16.3)

where dist(·, ·) is defined in (16.2). In expectation, the resulting solution is a O(log(K))-
approximation to the K-means problem. KM++ is particularly interesting since the
K-means algorithm is a special (limit) case of the EM algorithm (Bishop, 2006).

(Optional) Preprocessing. Some methods process the K chosen points further, before
generating a GMM: They feed the K points to Lloyd’s K-means algorithm as initial cluster
means and then use the resulting set of K points hereafter (Bishop, 2006, p. 427, p. 438). As
this preprocessing is quite popular, it seems to improve the initial solution and reduce the
risk of getting stuck at a poor local minimum later on.

Notation 16.1. We refer to the K-means algorithm as an intermediate algorithm and
indicate its use by the postfix “km”. For instance, we write Gonz km.

188 CHAPTER 16. ADAPTIVE SEEDING FOR GAUSSIAN MIXTURE MODELS

Construction of a K-GMM. Finally, the K points are used to create a GMM. To this end,
one determines the K-means hard clustering of X that is induced by the K points. Then
for each of the resulting hard clusters, one computes a single Gaussian with maximum
likelihood (cf. Lemma 14.12) and uses this Gaussian as a single component of the GMM. The
weight of a component is estimated by the relative number of points in the respective hard
cluster. Algorithm 22 describes this approach in detail (including our error handling in case
the estimate of the covariance is not positive definite).

Algorithm 22 Construction of a GMM
Require: X = (xn)n∈[N] ⊂RD ,

(
µl

)
l∈[k] ⊂RD

1: Determine the k-means hard clustering A1, . . . , Ak of X induced by
(
µl

)
l∈[k].

2: for l = 1, . . . ,k do
3: Set wl := |Al |

|X | , µl :=m (Al) and Σl := cov (Al).

4: If Σl is not positive definite, then let Σl := var(Al)
D · ID .

5: If Σl is still not positive definite, set Σl := ID .
6: return θ = (

(wl ,µl ,Σl)
)
l=1,...,k.

16.4 Adaptive Seeding for GMMs

We want to construct a sequence of GMMs with k = 1 through k = K components adaptively.
Given a GMM θk−1 with k−1 components, we want to choose a point from the data set that
is a good representative for those points that are not described well by θk−1. We hope that
such a point is a good representative of a component of an optimal k-GMM that is not well
described by θk−1. Then we want to use this point p and the old model θk−1 to construct a
GMM θk with k components.

Overview. In Section 16.4.1, we discuss several possible ways of choosing a data point p,
given some current GMM θk−1 with k−1 components. In Section 16.4.2, we describe how we
use the chosen point p and θk−1 to construct a GMM θk with k components. Additionally, in
Section 16.4.3, we propose some post-processing of our initial GMM, which we execute before
we execute the EM algorithm. In Section 16.4.4 we briefly sum up the resulting adaptive
seeding methods and compare them with existing methods.

16.4.1 Choosing the Next Point

Assume we are given a GMM θk−1 with k−1 components that is a likely solution, compared
to other GMMs with k−1 components. In this section, we deal with the question of how to
choose a point x ∈ X that is not well described by θk−1 and that is a good representative for
other points that are also not well described.

The main idea is to proceed similarly to the K-means++ algorithm and the algorithm
by Gonzalez (1985), which we described in Section 16.3. That is, we want to make use of a
cost function that describes how poorly a point is described by the current model. Then we
choose a point either proportional to its cost or choose the point with maximum cost.

Cost Function

We want to use a cost function m(·|θk−1) : X → [0,∞) that describes how poorly a point
is described by a GMM θk−1. Ideally, the cost m(x|θk−1) of point x is larger than the
cost m(y|θk−1) of point y if the model θk−1 describes y better than x. In other words, if
m(x|θk−1)> m(y|θk−1), then we tend to prefer x over y as the next chosen point. Additionally,

16.4. ADAPTIVE SEEDING FOR GMMS 189

(a) p(x|θk−1)−1 and
p(x|θk−1)

(b) − ln
(
p(x|θk−1)

)
(c) min{ − ln(N1(x|−1,1)) ,

− ln(N1(x|2,1)) }
(d) min{(x− (−1))2,

(x− (+2))2}

Figure 16.2: Examples for different ways to measure how poor a point is described by a
GMM. In each figure, we evaluate the respective measure for each x ∈ [−4,4] with respect to
the GMM θk−1 = ((0.2, (−1), (1)), (0.8, (2), (1)).

there is one more requirement to keep in mind: As we want to be able to sample a point
with probability proportional to its cost, we require that the cost function m only takes
non-negative values.

There are several possible functions that could be used as a cost function m. We illustrate
these functions in Figure 16.2.

Inverse? The most obvious choice is the inverse density p(x|θk−1)−1. It clearly has an
exponential behaviour. An example that illustrates this aspect is given in Figure 16.2a.
Therefore, we consider it being too strict.

Negative Logarithm? Usually, to avoid the problem of the exponential behaviour (under-
and over-flows) of Gaussian densities, one considers the logarithm of this density instead.
Obviously, just as the inverse density, the negative logarithm − ln(p(x|θk−1) is also a measure
of how poorly x is described by θk−1. For an illustration, we refer to Figure 16.2b.

There are two problems left: First, this function may take negative values. We saw in
Section 14.2.4 that the density function is unbounded from above and, hence, its negative
logarithm is unbounded from below. Second, as we already explained in Section 14.2, the
logarithm of the likelihood does not scale with the data set and the GMM. Recall that
ln

(
ND(c · x|c ·µ, c2 ·Σ)

) = ln
(
ND(x|µ,Σ)

)−D ln(c) for all c ∈ R+ (Section 14.2.3). Therefore,
one should obviously not sample data points proportional to this measure.

Component-Wise Negative Logarithm? Next, consider the minimum negative loga-
rithm of the density of a point in a single Gaussian component:

min
{
− ln

(
(2π)D/2|Σl |1/2

)
+ 1

2
(x−µl)TΣ−1

l (x−µl)
∣∣∣∣ (wl ,µl ,Σl) ∈ θk−1

}
.

An example is depicted in Figure 16.2c. This measure suffers from the same problems as
the negative logarithm of the density of x, given θk−1. Observe that these problems would
vanish if we removed the terms − log

(
(2π)D/2|Σl |1/2)

, which originate from the normalization
terms of the Gaussian components. Therefore, we just remove these terms.

A Minimum Mahalanobis Distance! Our previous considerations lead us to the follow-
ing minimum Mahalanobis distance:

m(x|θk−1) :=min
{
(x−µl)TΣ−1

l (x−µl)
∣∣∣ (wl ,µl ,Σl) ∈ θk−1

}
. (16.4)

190 CHAPTER 16. ADAPTIVE SEEDING FOR GAUSSIAN MIXTURE MODELS

As the covariance matrices are positive definite1, we know that m(x|θk−1) is always positive
for all x with ∀l ∈ [k−1] : x 6=µl and equals zero if x =µl for some l ∈ [k−1] (Golub and Loan,
1996, p. 140). Moreover, it does not exhibit the strong exponential behavior as the (inverse)
density. This is also apparent in our example in Figure 16.2b. A potential downside is that
this measure does not take into account the mixture weights at all.

With Some Extra Softness

We know that the cost function m, which we defined in (16.4), does not exhibit a strong
exponential behaviour like the inverse density. Still, we are interested in weakening the
effect of our function m further. In other words, we want to reduce the probability to choose
an outlier even further. Thus, we additionally consider the following approaches:

In the K-means++ like approach, we sample a point according to the distribution given
by m(x|θk−1)/

(∑
y∈X m(y|θk−1)

)
. To make this distribution weaker, we add a constant portion

of uniform distribution. That is, we sample a point according to

mα(x|θk−1) :=α · m(x|θk−1)∑
y∈X m(y|θk−1)

+ (1−α) · 1
|X | ,

with some α ∈ [0,1], instead of m(x). Observe that α is some hyperparameter that we have
to determine in advance. In our experiments, we just evaluate α= 0.5 (and α= 1). For our
Gonzalez-like initialization, we obviously have to take a different approach: To weaken the
effect of always choosing the point that maximizes m(x), we sample a uniform subset of the
whole data set X in advance. Here, the size s · |X | of the uniform sample is a hyperparameter
that we have to choose in advance. In our experiments, we just test s = 0.1 and s = 1.

16.4.2 Construction of a k-GMM

Given some chosen point x ∈ X and the old GMM θk−1 with (k−1) components, we want to
construct a GMM with k components. In our very first experiments, we used Algorithm 22 to
construct such a GMM. However, the estimation of spherical covariance matrices yielded a
better performance than the estimation of full covariance matrices. That is, we replaced the
covariance update in Step 3 of Algorithm 22 by a spherical covariance estimate, as described
in Algorithm 23 (see also Lemma 14.12). Given the resulting GMM, our methods then again
choose a new point from X as described in the previous section.

16.4.3 Post-Processing of the K-GMM

Recall from Section 16.3 that some popular initialization methods use the K-means algorithm
as an intermediate algorithm, which is a hard clustering algorithm. Since we do not solely
construct mean vectors but a (complete) GMM, we apply a hard-clustering variant of the
EM algorithm instead, which is known as the Classification EM algorithm (CEM) (Celeux
and Govaert, 1992). As our initial GMM is spherical, we choose a spherical variant of the
CEM algorithm, which is described in Algorithm 24. We indicate its use by the postfix "cem".

16.4.4 Summary and Comparison

Algorithm 25 and Algorithm 26 summarize our methods. We point out that in our experi-
ments we did not optimize the hyperparameters α ∈ (0,1] and s ∈ (0,1]. Instead, we evaluate
the instantiations with α ∈ {0.5,1} and s ∈ {0.1,1}, respectively.

Let us briefly compare our algorithms with the algorithms by Arthur and Vassilvitskii
(2007), Gonzalez (1985), and Kwedlo (2013, 2015). First of all, consider the K-means++

1This means that we have to make sure that they are. If not, we are in trouble anyway.

16.4. ADAPTIVE SEEDING FOR GMMS 191

Algorithm 23 Construction of a Spherical GMM
Require: X = (xn)n∈[N] ⊂RD ,

(
µl

)
l∈[k] ⊂RD

1: Determine the k-means hard clustering A1, . . . , Ak of X induced by
(
µl

)
l∈[k].

2: for l = 1, . . . ,k do
3: Set wl := |Al |

|X | , µl :=m (Al) and Σl := var(Al)
D · ID .

4: If Σl is still not positive definite, set Σl := ID .
5: return θ = (

(wl ,µl ,Σl)
)
l=1,...,k.

Algorithm 24 Spherical Classification EM (CEM) Update Step (postfix "cem")
Require: X = (xn)n∈[N] ⊆RD ,

(
(wold

k ,µold
k ,Σold

k)
)
k∈[K]

1: for all n ∈ [N] and k ∈ [K] do
2: pnk := wold

k ND (xn|µold
k ,Σold

k)∑K
l=1 wold

l ND (xn|µold
l ,Σold

l)

3: Compute a partition A1, . . . , AK of X such that for all xn ∈ X we have pnk ≥ pnl if xn ∈ Xk.
4: for all k ∈ [K] do
5: wk := |Ak|

|X | , µk :=m (Ak), Σk := var(Ak)
D ID

6: return
(
(wk,µk,Σk)

)
k∈[K]

algorithm by Arthur and Vassilvitskii (2007) and the algorithm by Gonzalez (1985), which
inspired our algorithms. We already described both algorithms in Section 16.3. In each
step, the Gonzalez algorithm chooses a point x with the maximum distance dist(x,C)
to the already chosen points C, while the K-means++ initialization chooses a point with
probability proportional to dist(x,C)2. Hence, both algorithms can be seen as special cases
of our initialization method where the covariances matrices are fixed to the identity matrix:
Formally, for θ = (

(wk,µk, ID)
)
k, we have m(x|θk−1) = dist

(
x,

{
µl

∣∣ l ∈ [k−1]
})2. Instead of

keeping the covariances fixed to Σk = ID , our methods estimate the covariance matrices
adaptively, along with the mean vectors.

Another algorithm that is similar to ours is the algorithm by Kwedlo (2013, 2015), which
is described in Algorithm 27. In our experiments, we denote this algorithm by KG. Unlike
Algorithm 25, this algorithm fixes weights and covariance matrices before it determines the
mean vectors. Then it only chooses the mean vectors adaptively. To ensure equal conditions
in our evaluation, we also tested a version of Algorithm 27 that samples means only from a
subset of the input set which has been chosen uniformly at random beforehand.

Algorithm 25 Our Adaption of Gonzalez’ Algorithm (SphericalGonzalez, SG(s), SG(s)cem)
Require: X ⊂RD ,K ∈N, s ∈ {0.1,1}

1: θ1 := optimal 1-MLE wrt. X
2: If s < 1, let S be a uniform sample of X of size ds · |X |e. Otherwise, set S = X .
3: for k = 2, . . . ,K do
4: Choose a point p ∈ argmaxx∈S m(x|θk−1).
5: Mk := {

µ
∣∣ (·,µ, ·) ∈ θk−1

}∪ {p}
6: Compute a GMM θk by applying Algorithm 23 to X and Mk.
7: (only SG(s)cem) Apply a small number (25) rounds of Algorithm 24
8: return θK

192 CHAPTER 16. ADAPTIVE SEEDING FOR GAUSSIAN MIXTURE MODELS

Algorithm 26 Our Adaption of the K-means++ Algorithm (Adaptive, Ad(α), Ad(α)cem)
Require: X ⊂RD ,K ∈N,α ∈ {0.5,1}

1: θ1 := optimal 1-MLE wrt. X
2: for k = 2, . . . ,K do
3: Sample a point p from X with probability mα(p|θk−1).
4: Mk := {

µ
∣∣ (·,µ, ·) ∈ θk−1

}∪ {p}
5: Compute a k-GMM θk by applying Algorithm 23 to X and Mk

6: (only Ad(α)cem) Apply a small number (25) rounds of Algorithm 24
7: return θK

Algorithm 27 Kwedlo’s Gonzalez Adaption (KG) (Kwedlo, 2013)
Require: X ⊂RD ,K ∈N, s ∈ (0,1]

1: Draw a uniform sample w̃1, . . . , w̃K from [0,1].
2: for k = 1, . . . ,K do
3: Set wk = w̃k/

∑k
l=1 w̃l .

4: Choose λ1, . . . ,λD ∈ R randomly such that
∑D

d=1λk = d (X)/(10 ·D ·K) and
max {λd | d = 1, . . . ,D} /min {λd | d = 1, . . . ,D}≤ 10. Draw a orthonormal matrix Q ∈RD×D

at random. Set Σk :=QTdiag(λ1, . . . ,λD)Q.
5: Let S be a uniform sample of X of size s · |X |.
6: Choose µ1 ∈ S uniformly at random and set θ1 = (w1,µ1,Σ1).
7: for k = 2, . . . ,K do
8: Choose µk ∈ arg min {m(x|θk−1) | x ∈ S} and set θk := θk−1 ∪ {(wk,µk,Σk)}.
9: return θK

16.5 Evaluation

We evaluated all methods with respect to artificial as well as real-world data sets. Our
implementation and the complete results are available at (Bujna, 2016). In the following,
we omit the results of those algorithms that are consistently outperformed by others.

16.5.1 Preliminaries

Recall that the EM algorithm has been designed to find a maximum likelihood estimator
(MLE). Thus, the likelihood is an obvious measure of the performance. Other measures
need to be treated with caution: Some authors consider their methods only with respect to
some specific tasks where fitting a GMM to some data is part of some framework. Hence,
any observed effects might be due to several reasons and, possibly, not due to the fact
that some GMM explains the (presumed) generation of the given data better than another
GMM. In particular, GMMs are often compared with respect to certain classifications. As
also pointed out by Färber et al. (2010), the class labels of real-world data sets do not
necessarily correspond to the structure of an MLE. The same holds for data sets and
classifications generated according to some GMM. A cross-validation that examines whether
methods over-fit models to training data is certainly reasonable. Nonetheless, we refrain
from this evaluation method as our goal is not to find a model that does not fit too well
to the given data set. This problem should become less important for a large number of
observations, though. Moreover, we could generate data sets according to some "ground
truth" GMM θgt and compare GMMs with θgt because in many cases, in particular for a
"small" number of observations, one cannot expect θgt to be a good surrogate on a maximum
likelihood estimate. Again, this problem should become less important for a large number of
observations. There are several ways to compare a GMM θ with a ground-truth θgt: One can

16.5. EVALUATION 193

consider the likelihood ratio, the difference in parameters, or some measure that compares
the difference of the respective density functions. However, it is not clear how to summarize
such comparisons for a large number of experiments. For these reasons, we also refrain from
this evaluation method as well and stick with the evaluation of likelihood values. For more
information on the evaluation of clustering methods, we refer to von Luxburg et al. (2012).

Besides that, recall that Algorithm 25 and Algorithm 26 have hyperparameters α and
s. We did not optimize these parameters, but evaluated α ∈ {0.5,1} and s ∈ {0.1,1}. Another
hyperparameter that is hidden in our formulation of the algorithm is the number of rounds
that we execute for the intermediate algorithms. Here, we chose a fixed number of 25 rounds.
Besides that, we chose a fixed number of rounds for the EM algorithm: If some intermediate
algorithm is applied, then we execute the EM algorithm for 50 rounds. If only the EM
algorithm is applied, but no intermediate algorithm, then we execute it for 75 rounds.

16.5.2 Artificial Data Sets

In the following, we first describe our generation of artificial data sets. Then we explain how
we evaluated the methods with respect to this large number of data sets. Finally, we state
our results with respect to certain sets of data sets.

Generation of Data Sets. We generate data sets by drawing points according to randomly
generated GMMs. However, we control the following four properties of the GMMs: First, the
Gaussian components of a GMM can either be spherical or elliptical. Formally, we describe
the eccentricity of a covariance matrix Σk by

ek =
maxdλkd

mindλkd
,

where λ2
kd denotes the d-th eigenvalue of Σk. Second, components can have different

sizes, in terms of the smallest eigenvalue of the corresponding covariance matrices. Third,
the components can have different or uniform mixture weights w1, . . . ,wk. Fourth, the
components can overlap more or less. Following Dasgupta (1999), we define the separation
parameter cθ of a GMM θ = (

(wk,µk,Σk)
)
k∈[K] as

cθ =min

{
‖µl −µk‖√

max {trace(Σl), trace(Σk)}

∣∣∣∣∣ k, l ∈ [K], k 6= l

}
.

In high dimension D À 1, cθ = 2 indicates almost completely separated clusters (i.e.,
points generated by the same component), while cθ ∈ {0.5,1} indicates a slight but still
negligible overlap (Dasgupta and Schulman, 2000). However, in small dimension, cθ ∈ {0.5,1}
indicates significant overlaps between clusters, while cθ = 2 implies rather separated clusters.
Figure 16.3 illustrates the effect of the separation parameter.

With these properties of a GMMs in mind, we generate the parameters of a GMM
as follows: Initially, we draw K mean vectors independently uniformly at random from
a cube with a fixed side length. For the weights, we fix some weight constant cw ≥ 0,
construct a set of weights {2cw·i/

∑K
j=1 2cw· j}i=1,...,K and assign these weights randomly. To

control the sizes and the eccentricity, we fix a minimum λk1 and maximum eigenvalue λkD
and draw the remaining values λ2, . . . ,λk(D−1) uniformly at random from the interval. We
draw a random orthonormal (D×D)-matrix Q (cf. (Golub and Loan, 1996, pp. 69)) and set
Σk := QTdiag(λ2

k1, . . . ,λ2
kD)Q. Finally, the mean vectors are scaled as to fit the predefined

separation parameter cθ.
We generate 30 GMMs for each of the following combination of parameters: K = 20,

D ∈ {3,10}, separation parameter cθ ∈ {0.5, 1, 2}, weight parameter cw ∈ {0.1,1}, and different
combinations of size and eccentricity (i.e., equal size and ek = 10, equal size and ek ∈ [1,10],

194 CHAPTER 16. ADAPTIVE SEEDING FOR GAUSSIAN MIXTURE MODELS

(a) cθ = 0.5 (b) cθ = 1 (c) cθ = 2

(d) cθ = 0.5 (e) cθ = 1 (f) cθ = 2

Figure 16.3: Examples for different separation parameters. Each figure shows an orthogonal
projection of a data set to a randomly chosen plane. Data sets in (16.3a)–(16.3c) are 3-
dimensional. (16.3d)–(16.3f) are 10-dimensional.

different size and ek = 1, different size and ek ∈ [1,10]). Then, for each of the resulting
GMMs θ, we generate data sets as follows: We draw N ∈ {1000, 5000} points according to θ.
If the data set shall contain noise points, then we draw only 90% ·N points according to the
GMM, construct a bounding box, elongate its side lengths by a factor 1.2, draw 10% ·N noise
points uniformly at random from the resized box, and add these points to the 90% ·N that
we have drawn in the beginning.

Evaluation Method. We consider the initial solutions produced by the initialization
(including the optional intermediate algorithm) and the final solutions obtained by running
the EM algorithm afterwards. For each data set, we compute the average log-likelihood of
the initial and final solution, respectively. Based on these averages, we create rankings of
the algorithms (per data set). Then we compute the average rank (and standard deviation of
the rank) of each algorithm over all data sets matching certain properties.

We point out that averaging the (average) log-likelihood values over different data sets
is not meaningful, since the optimal log-likelihoods may deviate significantly (per data set).

Results. In the following, we focus solely on those methods that are not constantly out-
performed by the other methods in all experiments. Therefore, we omit the results of many
methods that do not use an intermediate algorithm. Hence, we also recommend to use an
intermediate algorithm before applying the EM algorithm.

With respect to the data sets that do not contain uniform noise points, there is no method
that constantly outperforms all others. Nonetheless, it is always one of our adaptive methods
or the Gkm initialization that performs best.

The results depicted in Table 16.1 and Table 16.2 suggest that, regardless of the weights,
the performance is determined by the separation. Furthermore, they show that a good initial
solution does not imply a good final solution. Given overlap (cθ = 0.5) or moderate separation
(cθ = 1), SGcem(s = 1) and Adcem(α= 1) work best, even though their initial solutions have

16.6. CONCLUSION AND FUTURE WORK 195

low average ranks compared to KM++km. Given higher separation (cθ = 2), we expect it to be
easier to identify clusters and that skewed covariance matrices do not matter much if means
are assigned properly in the first place. Indeed, the simple Gkm and KG do the trick.

Table 16.3 shows that Adcem(α= 1) works well for elliptical data, while Gkm should be
chosen for spherical data. Recall that there are no noise points yet. We expect that the
performance of Gkm degenerates in the presence of noise since it is prone to choose outliers.
Overall, given data sets without noise, Adcem(α= 1) performs best.

When introducing noise, our adaptive methods are still among the best methods, while
the performance of some other methods degenerates significantly. Table 16.4 and Table 16.5
show that SGcem and Adcem still work well for cw ≤ 1 and, in contrast to data without noise,
also for separated instances (cw = 2). KG and Gkm are now among the methods with the
lowest average rank. This is not a surprise, since our noisy data sets contain outliers. From
the results depicted in Table 16.6 one can draw the same conclusion. That is, KG and Gkm
cannot handle these noisy data sets. Here, Adcem(α= 1) outperforms the others.

We expect that if the dimension is low or the sample size is large enough, it is generally
easier to identify clusters (cf. Section 14.1.3). Indeed the results differ significantly from our
previous results. For data sets with D = 3 and |X | = 1000, Table 16.7 shows that the KM++km
method works well even in the presence of noise. However, if we are given noise and small
separation, the simple Unifkm does well. We also increased the sample size to |X | = 5000
and the dimension to D = 10, expecting that the higher sample size can make up for the
higher dimension (results available at (Bujna, 2016)). Indeed, for data sets without noise,
where clusters can presumably be identified easier, KM++km suffices. However, given noise or
too small a separation, our Adcem methods and the simple Unifkm work better.

16.5.3 Results: Real-World Data Sets

We use five publicly available data sets: The Covertype data set contains |X | = 581012 points,
which consist of D = 10 real-valued features (Asuncion, 2007). We consider two Aloi data
sets with |X | = 110250 points and dimension D ∈ {27,64}. Both data sets are based on color
histograms in HSV color space (Kriegel et al., 2011) from data provided by the ELKI project
(Achtert et al., 2012) and the Amsterdam Library of Object Images (Geusebroek, Burghouts,
and Smeulders, 2005). The Cities data set contains |X | = 135082 2-dimensional points.
It is a projection of the coordinates of cities with a population of at least 1000 from the
GeoNames geographical database (http://www.geonames.org/). The Spambase data set
contains |X | = 4601 points, which consist of D = 10 real-valued features (Asuncion, 2007).

The results are depicted in Figure 16.4: For Aloi (D = 27) and Spambase (K = 3),
SGcem(s = 1) is considerably better than the other methods. For Cities and Spambase
(K = 10), SG(s = 1) does better (without running the CEM algorithm). For Aloi (D = 64) and
the Covertype, Adcem(α= 1) works better than the others.

16.6 Conclusion and Future Work

If you need a fast and simple method, then we suggest using one of the following methods: Try
the K-means++ initialization followed by Means2GMM and the K-means algorithm. Besides,
we recommend testing our new methods Ad and SG followed by the spherical CEM algorithm,
especially if your data is presumably noisy. Last but not least, whatever you prefer, we
suggest applying intermediate steps of the spherical CEM or K-means algorithm.

For the K-means++ algorithm and the Gonzalez algorithm there are provable guarantees.
We hope our results are a starting point for a theoretical analysis that will transfer these
results to the MLE problem for GMMs.

http://www.geonames.org/

196 CHAPTER 16. ADAPTIVE SEEDING FOR GAUSSIAN MIXTURE MODELS

Table 16.1: Average ranks (± std.dev.) for generated data with K = 20, |X | = 1000, D = 10,
different weights, and without noise.

separation cθ = 0.5 separation cθ = 1 separation cθ = 2
initial final initial final initial final

SG
(
s = 1

10
)

7.53±1.08 3.58±1.93 7.29±0.86 5.08±2.95 7.14±0.57 7.28±2.31
SG(s = 1) 8.00±1.52 3.26±2.27 8.77±0.68 5.53±3.42 8.72±0.53 7.44±2.60
KG(s = 1) 10.00±0.00 9.75±0.72 10.00±0.00 7.68±2.52 10.00±0.00 2.38±1.34
Unifkm 1.56±0.74 8.39±1.15 2.19±0.61 7.46±1.88 2.98±0.13 7.08±2.14
Gkm 3.34±1.33 6.03±2.32 2.38±0.86 5.16±2.79 1.23±0.46 1.99±1.31
KM++km 1.85±0.64 7.87±1.14 1.43±0.64 6.22±2.60 1.78±0.41 3.75±2.25
SG

(
s = 1

10
)

cem 6.15±0.60 3.95±1.24 6.30±0.68 4.71±2.54 6.10±0.40 6.65±2.13
SG(s = 1)cem 6.47±1.51 3.20±2.48 7.32±1.26 5.12±3.31 8.03±0.61 7.80±2.61
Ad(α= 1)cem 5.16±1.84 4.31±1.77 4.59±0.64 3.88±1.75 4.47±0.50 5.06±1.40
Ad

(
α= 1

2
)

cem 4.93±2.11 4.67±1.93 4.72±0.80 4.15±1.77 4.53±0.50 5.58±1.71

Table 16.2: Average ranks (± std.dev.) for generated data with K = 20, |X | = 1000, dimension
D = 10, equal weights, and without noise.

separation cθ = 0.5 separation cθ = 1 separation cθ = 2
initial final initial final initial final

SG
(
s = 1

10
)

7.58±0.98 3.98±1.87 7.36±0.73 5.02±2.97 7.08±0.41 7.35±2.24
SG(s = 1) 8.11±1.53 3.62±2.58 8.67±0.85 5.67±3.20 8.79±0.43 7.77±2.59
KG(s = 1) 10.00±0.00 9.54±0.96 10.00±0.00 7.97±2.40 10.00±0.00 2.38±1.23
Unifkm 1.44±0.70 8.36±1.25 2.14±0.61 7.28±1.83 2.98±0.16 7.00±1.98
Gkm 3.39±1.34 6.12±2.17 2.53±0.83 6.04±2.76 1.27±0.50 1.82±1.08
KM++km 1.91±0.55 7.82±1.30 1.35±0.56 5.89±2.77 1.75±0.43 3.77±2.50
SG

(
s = 1

10
)

cem 6.18±0.62 3.58±1.31 6.44±0.87 4.26±2.43 6.02±0.13 6.55±1.95
SG(s = 1)cem 6.49±1.44 3.17±2.73 7.35±1.13 5.30±3.23 8.12±0.45 8.04±2.37
Ad(α= 1)cem 5.03±1.75 4.12±1.79 4.49±0.64 3.48±1.61 4.42±0.50 4.90±1.35
Ad

(
α= 1

2
)

cem 4.87±1.99 4.69±1.91 4.67±0.65 4.09±1.73 4.58±0.50 5.42±1.38

Table 16.3: Average ranks (± std.dev.) for generated data with K = 20, |X | = 1000, dimension
D = 10, and without noise. Only final solutions.

equal weights different weights
spherical elliptical both spherical elliptical both

SG
(
s = 1

10
)

6.13±2.63 5.22±2.80 5.45±2.78 6.03±2.65 5.07±2.90 5.31±2.87
SG(s = 1) 6.64±2.99 5.37±3.30 5.69±3.27 6.04±3.22 5.20±3.28 5.41±3.28
KG(s = 1) 6.78±3.19 6.58±3.59 6.63±3.49 6.81±3.20 6.53±3.65 6.60±3.54
Unifkm 7.67±1.48 7.50±1.91 7.54±1.81 7.64±1.64 7.64±1.92 7.64±1.85
Gkm 3.03±2.26 5.20±2.92 4.66±2.92 2.83±2.33 4.91±2.78 4.39±2.82
KM++km 5.44±2.60 5.96±2.87 5.83±2.81 5.57±2.66 6.07±2.69 5.95±2.69
SG

(
s = 1

10
)

cem 4.77±2.61 4.81±2.23 4.80±2.33 5.68±2.19 4.91±2.35 5.10±2.33
SG(s = 1)cem 6.53±3.16 5.16±3.46 5.51±3.43 6.07±3.30 5.14±3.40 5.37±3.39
Ad(α= 1)cem 3.62±1.61 4.34±1.69 4.16±1.69 4.02±1.82 4.55±1.66 4.42±1.71
Ad

(
α= 1

2
)

cem 4.38±1.78 4.86±1.75 4.74±1.77 4.30±1.86 4.97±1.88 4.80±1.89

16.6. CONCLUSION AND FUTURE WORK 197

Table 16.4: Average ranks (± std.dev.) for generated data with K = 20, |X | = 1000, dimension
D = 10, different weights, and 10% noise.

separation cθ = 0.5 separation cθ = 1 separation cθ = 2
initial final initial final initial final

SG
(
s = 1

10
)

8.41±0.68 3.40±1.75 8.22±0.64 4.44±2.45 8.06±0.68 5.46±2.42
SG(s = 1) 8.25±0.98 3.46±2.60 8.67±0.47 4.13±3.02 8.74±0.44 5.93±2.87
KG(s = 1) 10.00±0.00 9.95±0.22 10.00±0.00 9.72±0.76 10.00±0.00 9.02±1.49
Unifkm 1.98±0.89 8.65±1.03 1.05±0.25 7.89±1.71 1.19±0.49 7.34±1.87
Gkm 4.29±1.29 5.31±1.76 4.17±0.98 6.59±1.43 3.97±0.96 7.16±1.38
KM++km 3.23±0.98 6.45±1.40 2.27±0.60 6.83±1.62 2.17±0.60 6.69±1.69
SG

(
s = 1

10
)

cem 6.06±0.55 4.26±1.36 6.04±0.20 3.90±0.90 6.01±0.091 3.65±1.27
SG(s = 1)cem 6.31±1.43 3.49±2.64 7.08±0.39 3.80±2.89 7.19±0.42 5.00±3.01
Ad(α= 1)cem 3.64±1.88 4.61±2.26 4.05±0.90 3.57±2.03 3.76±1.26 2.06±1.39
Ad

(
α= 1

2
)

cem 2.83±2.26 5.42±2.70 3.46±0.89 4.12±2.38 3.92±0.78 2.69±1.45

Table 16.5: Average ranks (± std.dev.) for generated data sets with K = 20, |X | = 1000,
dimension D = 10, equal weights, and 10% noise.

separation cθ = 0.5 separation cθ = 1 separation cθ = 2
initial final initial final initial final

SG
(
s = 1

10
)

8.57±0.62 3.38±1.92 8.18±0.65 4.17±2.28 7.94±0.77 5.02±2.44
SG(s = 1) 8.05±1.08 3.19±2.23 8.68±0.47 3.77±2.68 8.73±0.44 5.47±2.96
KG(s = 1) 10.00±0.00 9.93±0.35 10.00±0.00 9.62±0.87 10.00±0.00 7.85±2.22
Unifkm 1.92±0.87 8.83±0.77 1.02±0.13 8.39±1.22 1.11±0.31 8.18±1.63
Gkm 4.47±0.99 5.53±1.75 4.01±1.01 6.74±1.51 3.53±0.83 7.18±1.28
KM++km 3.20±1.07 6.66±1.22 2.08±0.31 7.04±1.46 1.93±0.37 7.66±1.56
SG

(
s = 1

10
)

cem 6.08±0.53 4.47±1.31 6.03±0.18 3.92±0.97 6.00±0.00 3.64±1.11
SG(s = 1)cem 6.20±1.43 3.14±2.43 7.10±0.40 3.88±2.75 7.33±0.47 5.13±2.76
Ad(α= 1)cem 3.62±1.85 4.42±2.35 4.20±0.79 3.54±2.11 4.15±0.82 2.27±1.59
Ad

(
α= 1

2
)

cem 2.89±2.45 5.45±2.47 3.69±0.74 3.92±2.29 4.28±0.66 2.60±1.51

Table 16.6: Average ranks (± std.dev.) for generated data sets with K = 20, |X | = 1000,
dimension D = 10, and 10% noise. Only final solutions.

equal weights different weights
spherical elliptical both spherical elliptical both

SG
(
s = 1

10
)

5.38±2.26 3.79±2.20 4.19±2.32 5.53±2.30 4.07±2.29 4.43±2.38
SG(s = 1) 4.98±2.79 3.87±2.76 4.14±2.81 5.53±3.14 4.17±2.90 4.51±3.02
KG(s = 1) 8.61±2.03 9.31±1.49 9.13±1.66 9.32±1.28 9.64±0.95 9.56±1.05
Unifkm 8.36±1.36 8.50±1.26 8.47±1.28 7.63±1.72 8.07±1.63 7.96±1.66
Gkm 6.70±1.69 6.41±1.67 6.49±1.68 6.42±1.87 6.33±1.66 6.35±1.71
KM++km 7.09±1.71 7.13±1.39 7.12±1.48 6.46±1.71 6.72±1.53 6.66±1.58
SG

(
s = 1

10
)

cem 4.00±1.45 4.01±1.09 4.01±1.18 4.03±1.34 3.90±1.17 3.94±1.22
SG(s = 1)cem 5.04±2.79 3.72±2.69 4.05±2.77 4.88±2.98 3.84±2.86 4.10±2.92
Ad(α= 1)cem 2.01±1.29 3.88±2.27 3.41±2.22 2.31±1.57 3.78±2.25 3.41±2.19
Ad

(
α= 1

2
)

cem 2.83±1.72 4.37±2.50 3.99±2.42 2.88±1.78 4.48±2.57 4.08±2.50

198 CHAPTER 16. ADAPTIVE SEEDING FOR GAUSSIAN MIXTURE MODELS

Table 16.7: Average ranks (± std.dev.) for generated data (K = 20, |X | = 1000, D= 3).
without noise noisy

initial final initial final
SG

(
s = 1

10
)

7.31±0.63 7.94±1.39 8.05±0.70 7.93±1.31
SG(s = 1) 8.90±0.39 8.56±1.98 8.72±0.45 7.99±2.19
KG(s = 1) 9.94±0.42 3.28±1.98 10.00±0.00 8.09±1.46
Unifkm 2.82±0.58 4.63±1.40 3.38±0.94 2.76±1.38
Gkm 1.93±1.04 2.80±1.97 4.43±1.59 6.01±1.59
KM++km 1.51±0.60 1.99±1.21 2.96±1.12 2.35±1.57
SG

(
s = 1

10
)

cem 6.10±0.42 7.46±1.14 5.75±0.82 6.07±1.16
SG(s = 1)cem 7.65±0.94 8.83±1.74 7.04±0.86 8.16±2.10
Ad(α= 1)cem 4.35±0.83 4.66±1.48 2.54±1.43 3.02±1.13
Ad

(
α= 1

2
)

cem 4.49±0.74 4.85±1.51 2.12±1.36 2.62±1.28

(a) Aloi (D = 27, K = 10) (b) Aloi (D = 64, K = 10, normalized features)

(c) Covertype (K = 10) (d) Spambase (K = 3)

(e) Spambase (K = 10) (f) Cities (K = 10)

Figure 16.4: Results for the real-world data sets depicted as boxplots (final solutions only).

“ Far better an approximate
answer to the right question,
which is often vague, than an
exact answer to the wrong
question, which can always be
made precise. ”

John Tukey1Chapter 17

On the Soft K-Means Problem

In this chapter, we deal with a special case of the maximum likelihood estimation (MLE)
problem for Gaussian mixture models (GMMs): We predefine a number of components K ∈N,
weights (ωk)k∈[K] ∈ ∆K−1, and a spherical covariance matrix 2

β
ID . Then, we consider the

MLE problem with respect to the restricted class of GMMs ΘK ,ω,β which contains all GMMs
with K components where each component has the corresponding predefined weight ωk
and the predefined covariance 2

β
ID . That is, given a set of observations X , we want to find

a GMM θ from the restricted class of GMMs Θω,β with maximum likelihood. As the only
degree of freedom left are the mean vectors, we refer to this problem as the soft K-means
problem. To the best of our knowledge, there is no algorithm for this problem with an
approximation guarantee. In this chapter, we derive a clustering-centric variant of the soft
K-means problem and present an approach towards an approximation algorithm.

Overview. In Section 17.1, we give an overview of work related to the soft K-means
problem and, in particular, related to a theoretical analysis thereof. In Section 17.2, we
briefly state the main contributions of this chapter. In Section 17.3, we introduce the soft
K-means problem formally. In Section 17.4, we derive a clustering-centric variant of the
problem. Finally, in Section 17.5, we present first steps towards an analysis of this variant.

Publication. In this chapter, we present unpublished ongoing work.

17.1 Related Work

The work of Jin et al. (2016) deals with the a variant of the soft K-means problem: They
consider the population (infinite-sample) likelihood function of Gaussian mixture models
(with K ≥ 3 components) instead of the likelihood with respect to a finite set of observations.
First, they show that this function has poor local maxima even in the special case of equally-
weighted mixtures of well-separated and spherical Gaussians. Second, they analyse the
probability that an EM algorithm converges to poor critical points if it is initialized randomly.

Feldman et al. (2011) and Lucic et al. (2017) consider coreset constructions for the MLE
problem with respect to GMMs. They consider an surrogate cost function which differs from
the likelihood function on the normalization terms of the Gaussian distributions. Lucic
et al. (2017) shows that, for each ε ∈ (0,1), their construction yields a set Cε such that
supθ∈Θλ

∣∣− log(LX (θ))+ log(LCε
(θ)

∣∣→ 0 as ε→ 0, where Θλ denotes the set of all GMMs with
K components and where each covariance matrix takes eigenvalues in some fixed interval
[λ,1/λ] for some fixed λ ∈ [0,1].

1Source: The future of data analysis. Annals of Mathematical Statistics 33 (1), 1962 (p. 13)

199

200 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

Moreover, the line of work of Dasgupta and Schulman (2007), Kalai et al. (2012), and
Hardt and Price (2015) is related to the topic of this chapter. They deal with the following
problem: Based on samples that have been drawn according to an unknown GMM θgt, the
goal is to estimate the density function of the underlying GMM θgt. They investigate the
sample complexity and computational complexity of this problem. That is, they investigate
how many samples (drawn according to θgt) are needed to estimate θgt up to a certain
precision and how much runtime is necessary to achieve this. However, to the best of
our knowledge, this line of work does not result in any practical algorithms. Moreover,
it is questionable whether this analysis can help to explain the quality of some practical
clustering algorithms based on GMMs. For instance, a combination of the K-means++
algorithm by Arthur and Vassilvitskii (2007) and the EM algorithm for GMMs, which we
explain in detail in Chapter 16, works well in practice. Clearly, an estimate computed by the
EM algorithm could be used as an estimate for the underlying GMM θgt. However, the EM
algorithm has been designed for the MLE problem. Therefore, we follow the MLE approach.

Besides that, note that the EM algorithm for the MLE problem that we consider here is
also known as the soft K-means algorithm (Mackay, 2003, p. 289). There is no guarantee
on the quality of the solution produced by the soft K-means algorithm. For a more details
regarding the soft K-means algorithm, we refer to (Mackay, 2003, p. 289).

17.2 Contribution

First, we propose a clustering-centric version of the soft K-means problem where an optimal
solution is described by a soft clustering. On the one hand, we want to simplify the analysis
of the resulting problem. On the other hand, we want to maintain the core of the soft
K-means problem. We claim that our version of the problem explicitly models goals that are
implicitly given in the classical soft K-means problem. To underpin this claim, we give a
detailed derivation of our problem formulation.

Second, we discuss an approach towards an analysis of this problem: We show that
our soft-to-hard-cluster technique is applicable. With the help of this result, we are able to
show that a technique for constrained K-means clustering by Bhattacharya et al. (2016) can
be used to determine a set of candidate mean vectors that contains means that describes
an approximative solution well. Finally, we show that, under certain restrictions, we can
determine a soft clustering that complements given approximate mean vectors via linear
programming. Though these results do not yield a proper approximation algorithm, they
constitute a first step towards an analysis.

17.3 The Weighted Soft K-Means Problem

Consider the MLE problem where the space of solutions is restricted to GMMs whose
covariances take the form Σk = 2

β
ID for some constant β ∈R+ and whose weights w1, . . . ,wK

are equal to some constants ω1, . . . ,ωK .

17.3.1 Preliminaries

In the following, we will make use of the notion of the (relative) entropy.

Definition 17.1 (relative entropy). Let p, q ∈∆M−1 be two categorical distributions over M
classes. The entropy of q is given by

H(q) :=− ∑
z∈∆M−1

q(z) ln(q(z))

where we use the convention that ln(0)= 0.

17.3. THE WEIGHTED SOFT K-MEANS PROBLEM 201

The relative entropy or Kullback-Leibler divergence between p and q is given by

KLD(p‖q) := ∑
z∈∆M−1

p(z) ln
(

p(z)
q(z)

)
where we use the convention that ln(0)= 0, 0 · ln(0/q)= 0, and p · ln(p/0)=∞.

This definition is a special case of the definition that we stated in Lemma 14.18. In the
remainder of this section, we only need the following properties of the (relative) entropy. For
more information, we refer to (Cover and Thomas, 2006, pp.13).

Lemma 17.2. For all categorical distributions q, p over the same number of classes, we have
KLD(p‖q)≥ 0, KLD(p‖q)= 0 if and only if p = q, and H(q)≥ 0.

Let Z1, . . . , ZK be K mutually independent categorical random variables (over the same
number of classes) that are distributed according to q1, . . . , qK , respectively. Then the entropy
of their joint distribution q(Z1, . . . , ZK)=∏K

k=1 qk(Zk) computes to H(q)=∑K
k=1H(qk).

Proof. A proof can be found in (Cover and Thomas, 2006, pp.42), for instance

With the help of Lemma 17.2 and Lemma 14.18, we can now rewrite the likelihood of a
GMM with constant covariances Σk = 2

β
ID and constant weights wk =ωk as follows.

Observation 17.3 (reformulate the likelihood). Consider a GMM θ := ((ωk,µk, 2
β

ID)k∈[K]
and observations X = (xn)n∈[N]. Let pnk := p(Znk = 1|X ,θ) for all latent variables Znk with
n ∈ [N] and k ∈ [K]. We write Zn = (Znk)k∈[K] for all n ∈ [N]. Then we can write

− ln(LX (θ))
=− lnp(X |θ) (Definition 14.4)

=−EZ∼p(Z|X ,θ) [ln(p(X , Z|θ))]−H(p(Z|X ,θ))+0 (Lemma 14.18)

=−EZ∼p(Z|X ,θ)

[
ln

(
N∏

n=1
p(xn, Zn|θ)

)]
−H

(
N∏

n=1
p(Zn|xn,θ)

)
(cf. Section 14.1.2)

=−
N∑

n=1
EZ∼p(Z|X ,θ) [ln(p(xn, Zn|θ))]−H

(
N∏

n=1
p(Zn|xn,θ)

)
(linearity)

=−
N∑

n=1
EZ∼p(Z|X ,θ) [ln(p(xn, Zn|θ))]−

N∑
n=1

H(p(Zn|xn,θ)) (Lemma 17.2)

=−
N∑

n=1

K∑
k=1

pnk ln(p(xn, Znk = 1|θ))+
N∑

n=1

K∑
k=1

pnk ln(pnk) (total probability)

=
N∑

n=1

K∑
k=1

−pnk ln
(
wkND

(
xn

∣∣∣∣µk,
2
β

ID

))
+ pnk ln(pnk) (cf. Section 14.1.2)

=
N∑

n=1

K∑
k=1

−pnk ln
(
ND

(
xn

∣∣∣∣µk,
2
β

ID

))
+ pnk ln

(
pnk

wk

)

=
N∑

n=1

K∑
k=1

pnk

(
D
2
· ln

(
1

2πβ

)
+β∥∥xn −µk

∥∥2
2

)
+

N∑
n=1

KLD(pnk)k(wk)k (Definition 14.1)

=ND
2

· ln
(

1
2πβ

)
︸ ︷︷ ︸

const

+
N∑

n=1

K∑
k=1

pnkβ
∥∥xn −µk

∥∥2
2 +

N∑
n=1

KLD((pnk)k‖(wk)k) .

and

pnk = p(Znk = 1|X ,θ)= p(xn, Znk = 1|θ)
p(xn|θ)

= wk exp(−β∥∥xn −µk
∥∥2

2)∑K
l=1 wl exp(−β∥∥xn −µl

∥∥2
2)

.

202 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

17.3.2 Problem Statement

Our observation from the previous section directly leads us to the following formulation:

Problem 17.4 (weighted soft K-means). We are given observations X = (xn)n∈[N] ⊂RD , K ∈N,
ω ∈∆K−1, and β ∈R+. Find K mean vectors (µk)k∈[K] ⊆RD minimizing

s̆km(β,ω)
X ((µk)k) :=β ·

N∑
n=1

K∑
k=1

pnk
∥∥xn −µk

∥∥2
2 +

N∑
n=1

KLD
(
(pnk)k∈[K]

∥∥ω)
where

pnk =
ωk exp(−β∥∥xn −µk

∥∥2
2)∑K

l=1ωl exp(−β∥∥xn −µl
∥∥2

2)
(17.1)

for all n ∈ [N] and k ∈ [K].

Recall that, strictly speaking, the MLE problem for GMMs that we stated in Problem 14.9
is meaningless because the objective function is unbounded. However, this does not hold for
Problem 17.4: Recall that KLD(p‖q)≥ 0 for all categorical distributions q, p over the same
number of classes (Lemma 17.2). Hence, the goal of Problem 17.4 is to minimize an objective
function that bounded from below.

An EM algorithm can be used to tackle this problem. There is no guarantee on the
quality of the computed solution, though.

Remark 17.5 (soft K-means algorithm). The instantiation of the EM algorithm that is
referred to as the soft K-means algorithm (Mackay, 2003, p. 289) is an algorithm for the
weighted soft K-means problem with ωk = 1/K for all k ∈ [K].

17.3.3 Approximation

Optimal solutions are probably hard, if not impossible, to compute. Therefore, we aim to
compute an approximate solution that is not much less likely than an optimal solution. This
raises the following question: How do we compare the soft K-means cost of two different
solutions and what differences can we expect?

Difference of Objective Values. Recall that in the fuzzy K-means problem we compared
the factor between the fuzzy K-means costs of an optimal solution and an approximate
solution. That is, we sought for a solution C with φ(r)

X (C) ≤ α ·φ(r)
X (Copt) for some small

constant α ∈R+.
However, in the soft K-means problem, we deal with a negative log-likelihood as a cost.

As we already explained in Section 14.2, one compares likelihood values in terms of their
ratio. This means that one compares log-likelihoods in terms of their difference. Hence, our
goal is that the difference

s̆km(β,ω)
X ((µk)k)− s̆km(β,ω)

X

((
µ

opt
k

)
k

)
= log

(
ΛX

((
(ωk,µopt

k ,
2
β

ID

)
k

,
(
(ωk,µk,

2
β

ID

)
k

))

between the cost of an approximate solution (µk)k and an optimal solution (µopt
k)k is small.

Dependencies. Observe that, in general, the value of the objective function

s̆km(β,ω)
X ((µ̃k)k)=

N∑
n=1

(
β ·

K∑
k=1

p̃nk
∥∥xn − µ̃k

∥∥2
2 +KLD

(
(p̃nk)k∈[K]

∥∥ω))

17.4. A CLUSTERING-CENTRIC VARIANT 203

increases with every observation that we add to X , irrespective of the given set of means
(µ̃k)k and the induced soft clustering (p̃nk)n,k (cf. Lemma 17.2). Similarly, the value of the
objective function increases (or at least, does not decrease) with every coordinate that we
add to each observation in X . Only the first summand depends on the dimension, though.

To sum up, we cannot expect an algorithm to compute an approximative solution such
that the difference between the cost of the approximative solution and the optimal solution
is at most a factor log(1+ε)=: ε′, which is independent of the number of given observations
|X | and their dimension D, without adjusting the precision parameter ε that we feed to the
algorithm. In other words, we cannot expect an algorithm to compute an approximative
solution such that the (non-log) likelihood ratio between the approximative solution and the
optimal solution is at most a factor (1+ε), which does not depend on |X | and D.

Conclusion. We propose the following approximation problem.

Problem 17.6 (approximate weighted soft K-means). We are given X = (xn)n∈[N] ⊂ RD ,
K ∈N, ω ∈∆K−1, β ∈R+, and ε ∈ [0,1]. Find K mean vectors (µk)k∈[K] ⊆RD such that

s̆km(β,ω)
X ((µk)k∈[K])− s̆km(β,ω)

X ((µopt
k)k∈[K])≤ ε · |X |D ,

where (µopt
k)k∈[K] ∈ argmin

{
s̆km(β,ω)

X ((µ̃k)k∈[K])
∣∣∣ (µ̃k)k∈[K] ⊆RD

}
is an optimal solution.

17.4 A Clustering-Centric Variant

In this section, we derive a problem that is similar to the soft K-means problem and that is
focused on a soft clustering of the given data points.

17.4.1 Motivation

First, we do not know how to tackle Problem 17.6 directly. In particular, we cannot apply the
techniques that we used in Part II: There we worked with soft clusterings rather than with
mean vectors and used the notion of induced means. In Problem 17.6, a solution is solely
described via mean vectors, which induce some soft clustering.

Second, every data set can be described by a GMM with fixed covariances and weights,
in the sense that, among all GMMs with fixed covariances and weights, there is always
some GMM with fixed covariances and weights that describes a given data set best. We can
find such a GMM even though the data set might not have been generated by such a GMM.
In particular, the soft clusters that are induced by this GMM, might exhibit completely
different weights and covariances than those weights and covariances that are given by the
GMM itself.

For these two reasons, we want to derive a variant of Problem 17.6 where a soft clustering
is used to describe a solution. Roughly speaking, we assume that there is a soft clustering of
the given data set such the variances and weights of these clusters take the desired form,
and we want to find this soft clustering. Table 17.1 gives an overview of the derivation of the
new clustering problem, which we present in the following sections.

17.4.2 A First Clustering-Centric Variant

To derive a clustering-centric variant of Problem 17.4, we first relax the problem and then
add constraints.

204 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

solution property cost

Problem 17.4 C GMM with means from C, covariances
2/β · ID and weights (ωk)k
induces P = (pnk)n,k with

w
(
A(X ,P)

k

)
=?, cov

(
A(X ,P)

k

)
=?

s̆km(β,ω)
X (C)=

skm(β,ω)
X (C,P)

Problem 17.9 P P describes clusters with
w

(
A(X ,P)

k

)
=?, cov

(
A(X ,P)

k

)
=?

s̄km(β,ω)
X (P)

(17.2) P P describes describes clusters with
w

(
A(X ,P)

k

)
=ωk |X |, cov

(
A(X ,P)

k

)
= 2

β
ID

s̄km(β,ω)
X (P)

(17.3) P P describes clusters with
w

(
A(X ,P)

k

)
=ωk |X |, var

(
A(X ,P)

k

)
= 2

β
D

s̄km(β,ω)
X (P)

(17.4) ((µk)k,P) ((µk)k,P) satisfy w
(
A(X ,P)

k

)
≈ωk |X |,

var
(
A(X ,P)

k ,µk

)
≈ 2

β
D∥∥∥m

(
A(X ,P)

k

)
−µk

∥∥∥2

2
≤ ε · 2

β
D

skm(β,ω)
X ((µk)k,P)

Table 17.1: Overview of our Derivation of Problem 17.7.

Straightforward Relaxation. An obvious way to relax Problem 17.4 is to extend the
input of the objective function by a soft clustering in a straightforward manner and to ignore
the form that this soft clustering should take:

Problem 17.7 (a relaxation). We are given observations X = (xn)n∈[N] ⊂RD , K ∈N, ω ∈∆K−1,
and β ∈ R+. Find K mean vectors (µk)k∈[K] ⊆ RD and a soft K-clustering (pnk)n∈[N],k∈[K]
minimizing

skm(β,ω)
X ((µk)k, (pnk)n,k) :=β ·

N∑
n=1

K∑
k=1

pnk
∥∥xn −µk

∥∥2
2 +

N∑
n=1

KLD
(
(pnk)k∈[K]

∥∥ω)
.

This problem is reasonable as, for fixed means (µk)k∈[K], the induced soft K-clustering
(pnk)n,k takes the desired form (17.1):

Lemma 17.8 (induced soft clustering). Let X = (xn)n∈[N] ⊂RD , K ∈N, ω ∈∆K−1, and β ∈R+.
Fix K means C = (µk)k∈[K] ⊆ RD . Then, the soft clustering P = (pnk)n,k that minimizes the
cost skm(β,ω)

X (C,P) satisfies

pnk =
ωk exp(−β∥∥xn −µk

∥∥2
2)∑K

l=1ωl exp(−β∥∥xn −µl
∥∥2

2)

for all n ∈ [N] and k ∈ [K].

Proof. Define ψ((pnk)n,k) :=∑K
k=1

∑N
n=1βpnk

∥∥xn −µk
∥∥2

2+pnk ln
(

pnk
wk

)
+∑N

n=1λn
(∑K

k=1 pnk −1
)
,

where λn denote Lagrange multipliers (which ensure that
∑K

k=1 pnk = 1 for each n ∈ [N]).
Setting the first derivative of ψ in the direction of pnk to zero, gives

∂

∂pnk
ψ= ∥∥xn −µk

∥∥2
2 + ln

(
pnk

wk

)
+1+λn = 0 .

17.4. A CLUSTERING-CENTRIC VARIANT 205

This implies that

pnk = wk exp
(
−∥∥xn −µk

∥∥2
2

)
exp(−1−λn) .

With the constraint
∑K

k=1 pnk = 1, we can conclude that

exp(−1−λn)= 1∑K
k=1 wk exp

(
−∥∥xn −µk

∥∥2
2

) .

A combination of these equalities yields the claim.

Hence, the soft K-means algorithm (i.e., the EM algorithm for Gaussian mixtures from
ΘK ,ω,β) is also an alternating optimization algorithm for Problem 17.9. In other words,
similarly to Lloyd’s algorithm for the K-means problem, the soft K-means algorithm makes
use of a relaxation of the objective function that it tries to minimize.

Add Constraints on the Mean Vectors. To obtain a clustering-centric variant of Prob-
lem 17.4, we could just fix the mean vectors to the mean vectors induced by the soft clustering
(cf. Lemma 2.20):

Problem 17.9 (first draft). We are given observations X = (xn)n∈[N] ⊂RD , K ∈N, ω ∈∆K−1,
and β ∈R+. Find a soft K-clustering (pnk)n∈[N],k∈[K] minimizing

s̄km(β,ω)
X ((pnk)n,k) :=β ·

N∑
n=1

K∑
k=1

pnk

∥∥∥xn −m
(
A(X ,P)

k

)∥∥∥2

2
+

N∑
n=1

KLD
(
(pnk)k∈[K]

∥∥ω)
.

However, there there is no guarantee that the soft clusters that are given by an optimal
solution (pnk)n,k to Problem 17.9 take a form that is similar to the soft clusters described
by the GMM ((ωk,µopt

k , 2
β

ID))k∈[K] that we actually search for. That is, the variances and
weights of the soft clusters defined by (pnk)n,k do not necessarily coincide with 2/β and
ω1, . . . ,ωK , respectively.

Add Constraints on the Weights and Covariances. To sum up, in order to obtain a
reasonable clustering-centric version of Problem 17.4, we have to take into account the
assumptions on the covariances and weights explicitly.

We propose to consider Problem 17.9 subject to:

∀k ∈ [K] : cov
(
A(X ,P)

k

)
= 2
β

ID and w
(
A(X ,P)

k

)
=ωk · |X | . (17.2)

The motivation for these constraints is the following: Recall from Lemma 14.16 that
the expected covariance of observations that have been sampled according to a Gaussian
N(µk,2/β · ID) converges to 2

β
ID when the number of samples diverges to infinity. Besides

that, from Section 14.1.2, it is obvious that the expected number of observations that have
been drawn according to the k-th component of a GMM with weights (ωk)k∈[K] computes to
ωk. We want the covariance and the weight of each soft cluster described by P to compute to
these expected (limit) values.

The Non-Existence of an (Optimal) Solution. In our constraints from (17.2) we de-
mand that the covariances and weights compute to certain values exactly. Does such a
solution always exist? Formally, we are given a non-linear optimization problem with several
side constraints. A solution to such a problem is not always guaranteed to exist. Never-
theless, in principle, this is no problem: Assume that we have an algorithm that returns

206 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

the best solution matching certain constraints if a solution that matches the constraints
exists. Given an arbitrary set of observations, we do not know if a solution that matches the
constraints exists. However, we can easily figure that out by applying the algorithm (if such
an algorithm exists). In the following, we focus on the problem under the assumption that
an (optimal) solution satisfying (17.2) exists.

17.4.3 A Relaxation

Considering Problem 17.9 under the constraints from (17.2) seems to be reasonable. Yet, we
have no idea how to deal with the very specific constraint on the covariances. It demands
that each of the D(D+1)/2 different entries of the covariance matrix matches a certain value.
We presume that this constraint is far to strict to make sense. Therefore, our next question
is: How can we relax the constraint on the covariance?

Variance instead of Covariance. We relax the problem further by constraining the
variances of the clusters instead of the covariances. Formally, instead of the additional
constraint from (17.3), we use the additional constraint

∀k ∈ [K] : var
(
A(X ,P)

k

)
= 2
β
·D and w

(
A(X ,P)

k

)
=ωk · |X | . (17.3)

Observe that we demand that the variances compute to 2/β ·D due to the relation between
the covariance and variance that we already explained in Lemma 2.17.

Cost of a Solution with Matching Variance. The constraint from (17.3) not only re-
laxes the problem, it also simplifies our notation: The cost of a solution that matches the
constraints from (17.3) takes the following simple form:

Observation 17.10 ("2 |X |D"). Assume that var
(
A(X ,P)

k

)
= 2

β
·D for all k ∈ [K]. Then,

K∑
k=1

β ·d
(
A(X ,P)

k

)
=

K∑
k=1

2D
w

(
A(X ,P)

k

)
d

(
A(X ,P)

k

)
 ·d

(
A(X ,P)

k

)
= 2D

K∑
k=1

w
(
A(X ,P)

k

)
= 2 |X |D .

Hence,

s̄km(β,ω)
X ((pnk)n,k)= 2 |X |D+

N∑
n=1

KLD
(
(pnk)k∈[K]

∥∥ω)
.

17.4.4 A Relaxed Clustering-Centric Approximation Problem

So far, we only derived a clustering-centric variant of Problem 17.4 and relaxed this variant.
That is, we introduced a new optimization problem by defining a new notion of an optimal
solution, which is given by a soft clustering. To derive a clustering-centric variant of
the approximation problem from Problem 17.6, we still need to specify how we describe
approximative solutions.

Description of an Approximative Solution. Clearly, one could describe an approxi-
mate solution by a soft clustering as well. Again, we do not know how to determine such a
solution. Therefore, we take a different approach and allow more degrees of freedom: We

17.4. A CLUSTERING-CENTRIC VARIANT 207

propose to search for a soft K-clustering P of X and mean vectors (µk)k∈[K] satisfying

∀k ∈ [K] : var
(
A(X ,P)

k ,µk

)
∈ [1,1+ε] · 2

β
D

∧
∥∥∥µk −m

(
A(X ,P)

k

)∥∥∥2

2
≤ ε · 2

β
D (17.4)

∧ w
(
A(X ,P)

k

)
∈ [1±ε] ·ωk · |X | .

Our additional constraint on the mean vectors is motivated by Lemma 2.20.

Resulting Problem Formulation. The result of all our considerations is the following
problem statement.

Problem 17.11 (clustering-centric approximation problem). We are given observations
X = (xn)n∈[N] ⊂ RD , a number of clusters K ∈N, weights ω = (ωk)k∈[K] ∈∆K−1, a parameter
β ∈R+, and a precision ε ∈ [0,1].

Find a soft K-clustering (pnk)n,k and means (µk)k∈[K] ⊆RD with the following property:

If there exists a soft K-clustering Popt that minimizes the objective function s̄km(β,ω)
X (Popt)

subject to

∀k ∈ [K] : var
(
A(X ,Popt)

k

)
= 2
β
·D and w

(
A(X ,Popt)

k

)
=ωk · |X | ,

then

skm(β,ω)
X

(
(µk)k, (pnk)n,k

)− s̄km(β,ω)
X

(
Popt

)≤ ε · |X |D

and

∀k ∈ [K] : var
(
A(X ,P)

k ,µk

)
∈ [1,1+ε] · 2

β
D ,

∧
∥∥∥µk −m

(
A(X ,P)

k

)∥∥∥2

2
≤ ε · 2

β
D , and

∧ w
(
A(X ,P)

k

)
∈ [1±ε] ·ωk · |X | .

We describe an optimal solution via a soft clustering. We consider a soft clustering
optimal if it minimizes the cost subject to the constraint that the variances and weights of
the soft clusters match the desired values (17.3).

Our goal is to describe the data set via a soft clustering P and mean vectors (µk)k∈[K].
We want this description to be not much less likely than an optimal solution. Moreover, we
want the variances of the soft clusters with respect to the mean vectors µk, the mean vectors
µk, and the weights of the soft clusters to approximately match the desired values (17.4). As
explained in Section 17.3.3, we want the difference between the cost of this solution and the
cost of an optimal solution to be at most ε · |X |D for some small ε.

Downsides. Despite our claim that Problem 17.11 is a reasonable way to formalize the
goals behind Problem 17.6, there are some downsides that we cannot compensate: Obviously,
we lose the notion of a generative model. We only have a constraint on the variances but
not on covariances. Another disadvantage might be that, even if we had a constraint on
the covariance, the soft clustering (of a good solution to our problem) might still take a
significantly different shape than a soft clustering induced by a solution to Problem 17.4. In
other words, there is not necessarily a GMM that induces this soft clustering.

208 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

17.5 Towards an Analysis

In the following, we present three results regarding Problem 17.11: In Section 17.5.3, we
show how our soft-to hard-cluster technique from Chapter 3 can be applied. In Section 17.5.2,
we show that an algorithm for constrained K-means clustering by Bhattacharya et al. (2016)
can be used to determine mean vectors. To prove this result, we make use of our soft-to-
hard-cluster technique. The quality of the computed mean vectors depends on the given
weights, though. The best estimates are obtained for uniform weights. In Section 17.5.3, we
show how, under various further restrictions, an appropriate soft clustering for a given set
of means can be determined via linear optimization.

17.5.1 Applying Our Soft-to-Hard-Cluster Technique

In this section, we take advantage of our formulation of Problem 17.11: It enables us to
apply our soft-to-hard-cluster technique from Section 3.6.1.

Consider a soft K-clustering P where each cluster has the same fixed variance 2/β and
not too small a weight. In the following, we show that there exist hard clusters A1, . . . , AK of
X whose mean vectors m (A1) , . . . ,m (AK) are good surrogates for the mean vectors induced
by the soft clustering P. In particular, when we exchange these means with the means of the
hard clusters, the solution becomes only a little less likely and the variances of the clusters
with respect to these means still approximately compute to 2/β.

Corollary 17.12. Let X = (xn)n∈[N], K ∈ N, β ∈ R+, and ε ∈ (0,1]. Assume there is a soft
K-clustering P = (pnk)n∈[N],k∈[K] of X where

∀k ∈ [K] : w
(
A(X ,P)

k

)
≥ 16K

ε
and var

(
A(X ,P)

k

)
= 2
β
·D . (17.5)

Then, there exists a hard clustering A1, . . . , AK of X such that

skm(β,ω)
X

(
(m (Ak))k∈[K] , (pnk)n,k

)− s̄km(β,ω)
X ((pnk)n,k)≤ ε |X |D

and

∀k ∈ [K] : var
(
A(X ,P)

k ,m (Ak)
)
∈

[
1,1+ ε

2

] 2
β
·D ,∥∥∥m

(
A(X ,P)

k

)
−m (Ak)

∥∥∥2

2
≤ ε

2
· 2
β

D and

w (Ak)≥ 1
2
·w

(
A(X ,P)

k

)
.

Proof. Let ∪̇K
k=1 Ak = X be the partition whose existence is guaranteed by Theorem 3.21.

That is, we have

w (Ak)≥ 1
2

w
(
A(X ,P)

k

)
and (17.6)

∥∥∥m
(
A(X ,P)

k

)
−m (Ak)

∥∥∥2

2
≤ ε

2
·

d
(
A(X ,P)

k

)
w

(
A(X ,P)

k

) = ε

2
2
β

D , (17.7)

where the last equality is due to (17.5).

17.5. TOWARDS AN ANALYSIS 209

Now we prove the first part of the claim. Fix some k ∈ [K] and observe that

d
(
A(X ,P)

k ,m (Ak)
)
=d

(
A(X ,P)

k

)
+w

(
A(X ,P)

k

)∥∥∥m
(
A(X ,P)

k

)
−m (Ak)

∥∥∥2

2
(Lemma 2.20)

≤d
(
A(X ,P)

k

)
+w

(
A(X ,P)

k

) ε
2
·

d
(
A(X ,P)

k

)
w

(
A(X ,P)

k

) (Equation (17.7))

=
(
1+ ε

2

)
·d

(
A(X ,P)

k

)
. (17.8)

Due to (17.5) and by Definition 2.16, we have

β= 2 ·D
var

(
A(X ,P)

k

) = 2D ·
w

(
A(X ,P)

k

)
d

(
A(X ,P)

k

) . (17.9)

From (17.8) and (17.9) we can conclude that

β ·d
(
A(X ,P)

k ,m (Ak)
)
≤

(
1+ ε

2

)
·2D ·w

(
A(X ,P)

k

)
= (2+ε) ·D ·w

(
A(X ,P)

k

)
. (17.10)

Hence,

skm(β,ω)
X

(
(m (Ak))k∈[K] , (pnk)n,k

)− s̄km(β,ω)
X ((pnk)n,k)

=
(
β

K∑
k=1

d
(
A(X ,P)

k ,m (Ak)
))

−2 |X |D (Observation 17.10)

≤ (2+ε) ·D ·
K∑

k=1
w

(
A(X ,P)

k

)
−2 |X |D (Equation (17.10))

= ε |X |D . (X is an unweighted data set)

This yields the first part of the claim.
To prove the second part of the claim, observe that

var
(
A(X ,P)

k ,m (Ak)
)
=

d
(
A(X ,P)

k ,m (Ak)
)

w
(
A(X ,P)

k

) (Definition 2.16)

=
d

(
A(X ,P)

k

)
+w

(
A(X ,P)

k

)∥∥∥m (Ak)−m
(
A(X ,P)

k

)∥∥∥2

2

w
(
A(X ,P)

k

) (Lemma 2.20)

=
d

(
A(X ,P)

k

)
w

(
A(X ,P)

k

) +∥∥∥m (Ak)−m
(
A(X ,P)

k

)∥∥∥2

2

= var
(
A(X ,P)

k

)
+

∥∥∥m (Ak)−m
(
A(X ,P)

k

)∥∥∥2

2
. (Definition 2.16)

On the one hand, this shows that var
(
A(X ,P)

k ,m (Ak)
)
≥ var

(
A(X ,P)

k

)
. On the other hand,

observe that

var
(
A(X ,P)

k ,m (Ak)
)
= var

(
A(X ,P)

k

)
+

∥∥∥m (Ak)−m
(
A(X ,P)

k

)∥∥∥2

2

≤ var
(
A(X ,P)

k

)
+ ε

2
·

d
(
A(X ,P)

k

)
w

(
A(X ,P)

k

) (Equation (17.7))

=
(
1+ ε

2

)
var

(
A(X ,P)

k

)
.

This yields the second part of the claim.

210 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

17.5.2 Applying an Algorithm for the Constrained K-Means Problem

In the last section, we showed that our soft-to-hard-cluster technique from Section 3.6.1
guarantees that, for each soft clustering whose clusters have the desired variances and not
too small a weight, there exist hard clusters whose means are good surrogates for the means
induced by the soft clustering. Recall from Section 3.6.3 that these hard clusters exhibit no
locality property (for instance, the convex hulls of the hard clusters might overlap). Despite
these downsides, these hard clusters form a hard clustering of the given observations X .
This is different from our application of the soft-to-hard-cluster technique in Chapter 8.
There, we were not able to guarantee that there exist appropriate hard clusters that form a
hard clustering because we were only given a probabilistic membership matrix, which does
not necessarily describe a soft clustering. As a consequence, we had to apply the superset
sampling technique, which solely relies on the condition that each hard cluster contains a
certain minimum number of points. Now, given the fact that the hard clusters form a hard
clustering, we can apply a slightly more elaborate technique.

Bhattacharya et al. (2016) presented an algorithm that aims to identify the means of the
hard clusters of an unknown hard clustering:

Theorem 17.13. Given a data set X = (xn)n∈[N] ⊂ RD , K ∈ N and ε ∈ [0,1], the algorithm
from (Bhattacharya et al., 2016) computes a set of candidates S ⊂ (

RD)K that satisfies the
following property:

Fix an arbitrary hard K-clustering A1, . . . , AK of X. Then, with constant probability,
there is a candidate (µk)k∈[K] ∈ S with

∀k ∈ [K] : d
(
Ak,µk

)≤ (
1+ ε

2

)
d (Ak)+ ε

2K

K∑
l=1

d (Al) (17.11)

The algorithm’s runtime is |X |D ·2Õ(K /ε) and the size of S is 2Õ(K /ε).

Proof. See (Bhattacharya et al., 2016, p. 16:8) (yes, the page number is "16:8").

Their algorithm is based on the same idea as the K-means++ algorithm of Arthur and
Vassilvitskii (2007) but does not require the hard clusters to satisfy any locality property.
Hence, it is just the right tool for our problem.

In the following, we consider a straightforward application of their result:

Algorithm 28 Applying (Bhattacharya et al., 2016)
Require: X = (xn)n∈[N] ⊂RD , β ∈R+, K ∈N, ε ∈ (0,1]

1: Choose
ε̃ := ε

64 ·K .

2: Choose the number of copies

c :=
⌈

16K
ε̃

⌉
.

3: Construct a data set X c that, for each n ∈ [N], contains c copies of the data point (xn,wn).
4: Apply the algorithm from Bhattacharya et al. (2016) to X c, K , and ε̃ to compute a set of

candidate solutions S ⊂ (
RD)K

5: return S

Theorem 17.14. Given X = (xn)n∈[N], K ∈N, β ∈R+, (ωk)k∈[K] ∈∆K−1 with ∀k ∈ [K] : ωk > 0,
and ε ∈ (0,1], Algorithm 28 computes a set S ⊂ (RD)K such that the following property is
satisfied:

17.5. TOWARDS AN ANALYSIS 211

Consider some fixed but arbitrary soft K-clustering P of X with

∀k ∈ [K] : var
(
A(X ,P)

k

)
= 2
β
·D and w

(
A(X ,P)

k

)
=ωk · |X | (17.12)

(if such a clustering exists).
With constant probability, there exists a (µk)k ∈ S satisfying

skm(β,ω)
X

((
µk

)
k∈[K] ,P

)
− s̄km(β,ω)

X (P)≤ ε · |X |D ,

∀k ∈ [K] : var
(
A(X ,P)

k ,µk

)
∈

[
1, 1+ε ·

(
1+ 1/K

ωk

)]
· 2
β

D , and

∀k ∈ [K] :
∥∥∥m

(
A(X ,P)

k

)
−µk

∥∥∥2

2
≤ ε

4
·D · 2

β

(
1+ 1/K

ωk

)
.

The algorithms’ runtime is bounded by |X |D ·2Õ(K2/ε) and the size of S is bounded by
2Õ(K2/ε).

Proof. Let ∪̇K
k=1 Ak = X c be the hard clustering whose existence is guaranteed by Theo-

rem 3.21 (with respect to X c and ε̃). Using Corollary 2.26, we can conclude that

1
c

w (Ak)≥ 1
2

w
(
A(X ,P)

k

)
, (17.13)

∥∥∥m
(
A(X ,P)

k

)
−m (Ak)

∥∥∥2

2
≤ ε̃

2
·

d
(
A(X ,P)

k

)
w

(
A(X ,P)

k

) and (17.14)

1
c

d (Ak)≤ 4K ·d
(
A(X ,P)

k

)
. (17.15)

From Theorem 17.13 we know that, with constant probability, there is a (µk)k∈[K] ∈ S
that satisfies

∀k ∈ [K] d
(
Ak,µk

)≤ (
1+ ε̃

2

)
d (Ak)+ ε̃

2K

K∑
l=1

d (Al) . (17.16)

In the first part of this proof, we upper bound the term
∥∥∥m

(
A(X ,P)

k

)
−µk

∥∥∥2

2
. Due to

Lemma A.3, we have

∥∥∥m
(
A(X ,P)

k

)
−µk

∥∥∥2

2
≤ 2

∥∥∥m
(
A(X ,P)

k

)
−m (Ak)

∥∥∥2

2
+2

∥∥m (Ak)−µk
∥∥2

2 .

We can bound the first summand by

2
∥∥∥m

(
A(X ,P)

k

)
−m (Ak)

∥∥∥2

2
≤ ε̃ ·

d
(
A(X ,P)

k

)
w

(
A(X ,P)

k

) (Equation (17.14))

= ε̃ ·var
(
A(X ,P)

k

)
= ε̃ · 2

β
·D . (Equation (17.12))

212 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

We can bound the second summand by

2
∥∥m (Ak)−µk

∥∥2
2

= 2 · 1
w (Ak)

· (d(
Ak,µk

)−d (Ak)
)

(Lemma 2.20)

≤ 2 · 1
w (Ak)

(
ε̃

2
d (Ak)+ ε̃

K

K∑
l=1

d (Al)

)
(Equation (17.16))

= ε̃ · 1
w (Ak)

·
(
d (Ak)+ 2

K
·

K∑
l=1

d (Al)

)

≤ ε̃ · 8K

w
(
A(X ,P)

k

) ·(d
(
A(X ,P)

k

)
+ 2

K
·

K∑
l=1

d
(
A(X ,P)

l

))
(Equation (17.15) and (17.13))

= 8K ε̃ ·
 d

(
A(X ,P)

k

)
w

(
A(X ,P)

k

) + 2
K

· 1

w
(
A(X ,P)

k

) K∑
l=1

d
(
A(X ,P)

l

)
= 8K ε̃ ·

(
D

2
β
+ 2

K
· 1
|X | ·ωk

K∑
l=1

(
D

2
β
·w

(
A(X ,P)

l

)))
(Equation (17.12))

= 8K ε̃ ·D 2
β
·
(
1+ 2

K
· 1
|X | ·ωk

K∑
l=1

w
(
A(X ,P)

l

))

= 8K ε̃ ·D 2
β
·
(
1+2 · 1/K

ωk

)
. (X is unweighted)

A combination of the bounds on the first and second summand gives∥∥∥m
(
A(X ,P)

k

)
−µk

∥∥∥2

2
≤ ε̃ ·D · 2

β
+8K ε̃ ·D 2

β
·
(
1+2 · 1/K

ωk

)
= ε̃ ·D · 2

β

(
1+8K ·

(
1+2 · 1/K

ωk

))
= ε̃ ·D · 2

β

(
1+8K +16K · 1/K

ωk

)
≤ 16K ε̃ ·D · 2

β

(
1+ 1/K

ωk

)
. (17.17)

≤ ε

4
· ·D · 2

β

(
1+ 1/K

ωk

)
(ε̃= ε

64·K)

Next, we will use this bound to prove the claims stated in the theorem.
In the first part of this proof, we prove the second claim from the theorem. Observe that

var
(
A(X ,P)

k ,µk

)
=

d
(
A(X ,P)

k ,µk

)
w

(
A(X ,P)

k

)
=

d
(
A(X ,P)

k

)
w

(
A(X ,P)

k

) +∥∥∥µk −m
(
A(X ,P)

k

)∥∥∥2

2
(Lemma 2.20)

= var
(
A(X ,P)

k

)
+

∥∥∥µk −m
(
A(X ,P)

k

)∥∥∥2

2

= 2
β
·D+

∥∥∥µk −m
(
A(X ,P)

k

)∥∥∥2

2
. (Equation (17.12))

On the one hand, this directly shows that var
(
A(X ,P)

k ,µk

)
≥ 2/β ·D. On the other hand, we

17.5. TOWARDS AN ANALYSIS 213

have

var
(
A(X ,P)

k ,µk

)
= 2
β
·D+

∥∥∥µk −m
(
A(X ,P)

k

)∥∥∥2

2

≤ 2
β
·D+16K ε̃ ·D · 2

β

(
1+ 1/K

ωk

)
(Equation (17.17))

≤ 2
β
·D

(
1+16K ε̃ ·

(
1+ 1/K

ωk

))
≤ 2
β
·D

(
1+ε ·

(
1+ 1/K

ωk

))
. (ε̃≤ ε/(16K))

This yields the second claim.
In the last part of this proof, we prove the first claim from the theorem. Observe that

K∑
k=1

d
(
A(X ,P)

k ,µk

)
=

(
K∑

k=1
d

(
A(X ,P)

k

))
+

K∑
k=1

w
(
A(X ,P)

k

)∥∥∥m
(
A(X ,P)

k

)
−µk

∥∥∥2

2
(Lemma 2.20)

≤
(

K∑
k=1

d
(
A(X ,P)

k

))
+16K ε̃ ·D · 2

β
·

K∑
k=1

w
(
A(X ,P)

k

)(
1+ 1/K

ωk

)
(Equation (17.17))

=
(

K∑
k=1

d
(
A(X ,P)

k

))
+16K ε̃ ·D · 2

β
·
 K∑

k=1
w

(
A(X ,P)

k

)
+ 1

K

K∑
k=1

w
(
A(X ,P)

k

)
ωk

 .

Observe that
w

(
A(X ,P)

k

)
ωk

= |X | due to (17.12) and
∑K

k=1 w
(
A(X ,P)

k

)
= |X | since X is unweighted.

Hence,

K∑
k=1

d
(
A(X ,P)

k ,µk

)
≤

(
K∑

k=1
d

(
A(X ,P)

k

))
+16K ε̃ ·D · 2

β
·2 |X |

≤
(

K∑
k=1

d
(
A(X ,P)

k

))
+ε · 1

β
·D |X | , (17.18)

where we use the fact that ε̃≤ ε/(64K). Recall that, due to (17.5) and by Definition 2.16, we
have

β= 2 ·D
var

(
A(X ,P)

k

) = 2D ·
w

(
A(X ,P)

k

)
d

(
A(X ,P)

k

) . (17.19)

From (17.18) and (17.19) we can conclude that

β ·
K∑

k=1
d

(
A(X ,P)

k ,µk

)
≤

(
K∑

k=1
βd

(
A(X ,P)

k

))
+ε ·D |X | (Equation (17.18))

≤ 2D

(
K∑

k=1
w

(
A(X ,P)

k

))
+ε ·D |X | (Equation (17.19))

≤ (2+ε) ·D |X | . (X is unweighted)

With this equation and Observation 17.10, we conclude that

skm(β,ω)
X

(
(m (Ak))k∈[K] , (p̃nk)n,k

)− s̄km(β,ω)
X ((p̃nk)n,k)≤ (2+ε) ·D |X |−2D |X | = εD |X | .

This yields the claim.

214 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

Unfortunately, our bounds depend on the given weights (ωk)k∈[K]. If we are given uniform
weights, i.e., ∀k ∈ [K] : ωk = 1/K , then Algorithm 28 delivers a set of candidate means that
contains the means that we search for:

Corollary 17.15. Given X = (xn)n∈[N], K ∈N, β ∈R+, and ε ∈ (0,1], Algorithm 28 computes a
set S ⊂ (RD)K such that the following property is satisfied:

Consider some fixed but arbitrary soft K-clustering P = (p̃nk)n∈[N],k∈[K] with

∀k ∈ [K] : var
(
A(X ,P)

k

)
= 2
β
·D and w

(
A(X ,P)

k

)
= |X |

K

(if such a clustering exists).
With constant probability, there exists (µk)k ∈ S satisfying

skm(β,ω)
X

((
µk

)
k∈[K] ,P

)
− s̄km(β,ω)

X (P)≤ ε · |X |D ,

∀k ∈ [K] : var
(
A(X ,P)

k ,µk

)
∈ [1, 1+2ε] · 2

β
D , and

∀k ∈ [K] :
∥∥∥m

(
A(X ,P)

k

)
−µk

∥∥∥2

2
≤ ε

2
·D 2

β
.

The algorithms’ runtime is bounded by |X |D ·2Õ(K2/ε) and the size of S is bounded by
2Õ(K2/ε).

This latter fact is unsurprising as it resembles a main difference between the soft K-
means cost function and the K-means cost function, for which the algorithm of Bhattacharya
et al. (2016) has been designed (see Theorem 17.13): In the K-means cost function, the
clusters are (implicitly) weighted equally. That is, the cost of each cluster contributes equally
to the overall K-means cost and is not more important (i.e., has a higher weight) than
that of any other cluster. In contrast, in the soft K-means cost function, the given weighs
ω1, . . . ,ωK might not be all equal to 1/K . That is, the cost of the clusters might not be equally
important. The cost of a cluster with weight ωk contributes more to the overall soft K-means
cost than the cost of a cluster with weight ωl <ωk.

Even though we can now determine a set that contains approximate mean vectors, we
do not have a solution yet. We are still missing an appropriate approximate soft clustering.

17.5.3 Determining the Soft Clustering

In the last section, we showed that the algorithm from Bhattacharya et al. (2016) can
be used to determine likely mean vectors. However, it remains to determine a suitable
soft clustering. Formally, assume that we have found good approximate means (µk)k∈[K].
How can we determine a likely soft clustering P = (pnk)n,k where the soft clusters have the
appropriate variances, mean vectors, and weights?

We do not know how to solve this problem yet. However, there is a way to solve a very
simplified version of this problem:

First, let us drop the constraint on the weights and means and simplify the constraint
on the variances. More precisely, replace the lower and upper bound [1,1+ ε]2/β ·D on
the variances by a single lower bound 2/β ·D. Observe that this lower bound can also be
described as follows:

var
(
A(X ,P)

k ,µk

)
=

∑N
n=1 pnk

∥∥xn −µk
∥∥2

2∑N
n=1 pnk

≥ 2
β
·D

⇔
N∑

n=1
pnk

(∥∥xn −µk
∥∥2

2 −
2
β
·D

)
≥ 0 .

17.6. CONCLUSIONS 215

Second, let us assume that the observations xn and the given means µk all take values in
ZD . Moreover, assume that the means lie inside the convex hull of the point set {xn | n ∈ [N]}.
These simplifications and assumptions lead us to the following observation:

We consider observations X = (xn)n∈[N] ⊂ZD , K ∈N, and a variance 2/β ∈N. Moreover,
we fix some mean vectors (µk)k∈[K] ⊆ ZD . For all n ∈ [N] and k ∈ [K], let dnk := ∥∥xn −µk

∥∥2
2

and fnk :=
(∥∥xn −µk

∥∥2
2 − 2

β
·D

)
. Given these constants, we can formulate the problem of

determining a soft clustering, where the variance of each soft cluster with respect to the
corresponding mean vector is at least 2/β, as a linear program:

minimize
K∑

k=1

N∑
n=1

p̃nkdnk

subject to
N∑

n=1
p̃nk fnk ≥ 0, k = 1, . . . ,K

K∑
k=1

p̃nk = 1 n = 1, ..., N

p̃nk ≥ 0 n = 1, ..., N;k = 1, . . . ,K

.

Given the restriction that we only consider observations and mean vectors in ZD , we can
use the Ellipsoid method to solve this linear program in polynomial time (Megiddo, 1986).
Observe that the number of bits in a binary representation of the coefficients in the linear
program is polynomial in |X |, K , log(rd(X)) with d ∈ [D], and log(2/β), where we use the fact
that we can shift the whole point set such that (min {(xn)d | n ∈ [N]})d∈[D] = 0D and the fact
that the mean vectors lie inside the convex hull of the point set. Hence, the ellipsoid method
needs time poly(|X |, K , log(r1(X)),. . .,log(rD(X),log(2/β)).

17.6 Conclusions

Even though we tried to derive a variant of the soft K-means problem that is (hopefully)
easier to analyse, there is still no proper approximation algorithm for it. However, so far, our
analysis again focused on techniques known from (constrained) K-means clustering. Just as
in the case of fuzzy K-means (see Section 13.4), one might obtain a (more specific) algorithm
easier if one accepts a larger approximation factor. Last but not least, there might be other
ways of relaxing the soft K-means problem that might lead us to a better understanding of
the soft K-means problem.

216 CHAPTER 17. ON THE SOFT K-MEANS PROBLEM

Part IV

Appendix

217

“ Location, location, location! ”

Appendix A

Three Handy Lemmata

In this appendix, we state three fundamental lemmata that we use throughout this thesis.
For an overview of our handy notation, we refer to the Cheat Sheet at the very beginning of
the thesis.

Lemma A.1. Let ε ∈ [0,1] and m ∈N. Then, for all i ∈ [m] it holds(
1+ ε

2m

)i ≤ 1+ i · ε
m

.

Proof. The proof is by induction. For i = 1, the claim is clearly true. Assume that the claim
holds true for an arbitrary but fixed i ∈ [m]. Observe that(

1+ ε

2m

)i+1 =
(
1+ ε

2m

)i ·
(
1+ ε

2m

)
≤

(
1+ i · ε

m

)
·
(
1+ ε

2m

)
(by induction hypothesis)

= 1+ i · ε
m

+ ε

2m
+ i · ε2

2m2

= 1+ i · ε
m

+ ε

m
·
(

1
2
+ ε

2
i
m

)
≤ 1+ i · ε

m
+ ε

m
(since i ≤ m and ε≤ 1)

= 1+ (i+1) · ε
m

.

Lemma A.2. For all a,b, c ∈R we have

1. 2ab ≤ a2 +b2,

2. (a+b)2 ≤ 2(a2 +b2) and

3. (a+b+ c)2 ≤ 3(a2 +b2 + c2).

Proof. Fix arbitrary a,b, c ∈R. Observe that 0≤ (a−b)2 = a2−2ab+b2. Hence, 2ab ≤ a2+b2

(Item 1). Consequently, (a+ b)2 = a2 + 2ab + b2 ≤ 2(a2 + b2) (Item 2) and (a+ b + c)2 =
a2 +b2 + c2 +2ab+2ac+2cb ≤ 3(a2 +b2 + c2) (Item 3).

Lemma A.3. For all a,b, c, x, y ∈RD and all finite A ⊆RD , we have

1. ‖a−b‖2 ≤ ‖a−b‖2 +‖b− c‖2,

2. 2〈a, b〉 ≤ ‖a‖2
2 +‖b‖2

2,

219

220 APPENDIX A. THREE HANDY LEMMATA

3. ‖a+b‖2
2 ≤ 2(‖a‖2

2 +‖b‖2
2), and

4. min {‖x−a‖2 | a ∈ A}≤min
{‖y−a‖2

∣∣ a ∈ A
}+‖x− y‖2.

Proof. Item 1 is the well-known triangle inequality for vectors (Stewart, 2009, p. 822).
Write a = (a1 . . .aD)T and b = (b1 . . .bD)T . With Lemma A.2, we can conclude 2〈a, b〉 =∑D

d=1(2adbd)≤∑D
d=1(a2

d+b2
d)= ‖a‖2

2+‖b‖2
2 (Item 2) and moreover, ‖a+b‖2

2 =
∑D

d=1(ad+bd)2 ≤∑D
d=1(2a2

d +2b2
d)= ‖a‖2

2 +‖b‖2
2 (Item 3).

Next, consider some a′ ∈ A with min
{‖y−a‖2

∣∣ a ∈ A
} = ∥∥y−a′∥∥

2. With Item 1 we can
conclude that min {‖x−a‖2 | a ∈ A} ≤

∥∥x−a′∥∥
2 ≤ ‖x− y‖2 +

∥∥y−a′∥∥
2 = min

{‖y−a‖2
∣∣ a ∈ A

}
(Item 4).

Bibliography

Achtert, Goldhofer, Kriegel, Schubert, and Zimek (2012). Evaluation of Clusterings Metrics
and Visual Support. ICDE 2012, 0:1285–1288.

Ackerman, M. and Ben-David, S. (2009). Clusterability: A Theoretical Study. In Proceedings
of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS
2009, Clearwater Beach, Florida, USA, April 16-18, 2009, pages 1–8.

Ackermann, M. R. (2009). Algorithms for the Bregman k-Median problem. PhD thesis,
University of Paderborn.

Ackermann, M. R., Blömer, J., and Sohler, C. (2010). Clustering for metric and nonmetric
distance measures. ACM Transactions on Algorithms, 6(4):59:1–59:26.

Agarwal, P. K., Har-Peled, S., and Varadarajan, K. R. (2005). Geometric approximation via
coresets. In Combinatorial and Computational Geometry, pages 1–30. University Press.

Aggarwal, A., Deshpande, A., and Kannan, R. (2009). Adaptive Sampling for k-Means Clus-
tering. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, volume 5687 of Lecture Notes in Computer Science, pages 15–28. Springer
Berlin Heidelberg.

Ailon, N. and Chazelle, B. (2006). Approximate Nearest Neighbors and the Fast Johnson-
Lindenstrauss Transform. In Proceedings of the Thirty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’06, pages 557–563, New York, NY, USA. ACM.

Ailon, N. and Liberty, E. (2013). An Almost Optimal Unrestricted Fast Johnson-
Lindenstrauss Transform. ACM Transactions on Algorithms, 9(3):21:1–21:12.

Anderson, J., Belkin, M., Goyal, N., Rademacher, L., and Voss, J. R. (2014). The More,
the Merrier: the Blessing of Dimensionality for Learning Large Gaussian Mixtures. In
Proceedings of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain,
June 13-15, 2014, pages 1135–1164.

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The Advantages of Careful Seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pages 1027–1035. Society for Industrial and Applied Mathematics.

Asuncion (2007). UCI Machine Learning Repository.

Awasthi, P., Blum, A., and Sheffet, O. (2010a). Clustering under natural stability assump-
tions. Computer Science Department, page 123.

Awasthi, P., Blum, A., and Sheffet, O. (2010b). Stability Yields a PTAS for k-Median and
k-Means Clustering. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 309–318.

221

222 BIBLIOGRAPHY

Bachem, O., Lucic, M., Hassani, H., and Krause, A. (2016). Fast and Provably Good Seedings
for k-Means. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R.,
editors, Advances in Neural Information Processing Systems 29, pages 55–63. Curran
Associates, Inc.

Bādoiu, M., Har-Peled, S., and Indyk, P. (2002). Approximate Clustering via Core-sets. In
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC
’02, pages 250–257, New York, NY, USA. ACM.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with Bregman
Divergences. Journal of Machine Learning Research, 6:1705–1749.

Basu, S., Davidson, I., and Wagstaff, K. (2008). Constrained clustering: Advances in
algorithms, theory, and applications. CRC Press.

Ben-David, S. (2015). Computational Feasibility of Clustering under Clusterability Assump-
tions. CoRR, abs/1501.00437.

Ben-David, S. and Reyzin, L. (2014). Data stability in clustering: A closer look . Theoretical
Computer Science, 558:51 – 61. Algorithmic Learning Theory.

Bezdek, J., Ehrlich, R., and Full, W. (1984). FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences, 10(2):191–203.

Bezdek, J., Hathaway, R., Sabin, M., and Tucker, W. (1987). Convergence theory for fuzzy c-
means: Counterexamples and repairs. Systems, Man and Cybernetics, IEEE Transactions
on, 17(5):873–877.

Bhattacharya, A., Jaiswal, R., and Kumar, A. (2016). Faster Algorithms for the Constrained
k-Means Problem. In Ollinger, N. and Vollmer, H., editors, 33rd Symposium on Theoretical
Aspects of Computer Science (STACS 2016), volume 47 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:13, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

Biernacki (2004). Initializing EM using the properties of its trajectories in Gaussian mixtures.
Statistics and Computing, 14(3):267–279.

Bilmes, J. (1998). A Gentle Tutorial of the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report TR-97-
021, International Computer Science Institute.

Bishop, C. (2006). Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Blömer, J., Brauer, S., and Bujna, K. (2015). Complexity and Approximation of the Fuzzy
K-Means Problem. CoRR, abs/1512.05947.

Blömer, J., Brauer, S., and Bujna, K. (2016). A Theoretical Analysis of the Fuzzy K-Means
Problem. In IEEE 16th International Conference on Data Mining (ICDM 2016), pages
805–810, Barcelona, Spain. IEEE.

Blömer, J., Brauer, S., and Bujna, K. (2017). On coreset constructions for the fuzzy k-means
problem. CoRR, abs/1612.07516.

Blömer, J. and Bujna, K. (2016). Adaptive Seeding for Gaussian Mixture Models. In
Proceedings of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and
Data Mining (PAKDD 2016), volume 9652 of Lecture Notes in Computer Science, pages
296–308, Auckland, New Zealand. Springer.

BIBLIOGRAPHY 223

Blömer, J., Bujna, K., and Kuntze, D. (2014). A Theoretical and Experimental Comparison
of the EM and SEM Algorithm. In 22nd International Conference on Pattern Recognition
(ICPR 2014), pages 1419–1424, Stockholm, Sweden. IEEE.

Bouveyron, C. and Brunet-Saumard, C. (2014). Model-based Clustering of High-dimensional
Data: A Review. Computational Statistics & Data Analysis, 71:52–78.

Bujna, K. (2016). Supplemental Material (Initialization of the EM Algorithm for
GMMs). http://cs.uni-paderborn.de/cuk/forschung/clusteranalyse/adaptive-seeding-for-
gaussian-mixture-models/.

Celeux and Govaert (1992). A Classification EM Algorithm for Clustering and Two Stochastic
Versions. Computational Statistics & Data Analysis, 14(3):315332.

Celeux, G., Chauveau, D., and Diebolt, J. (1995). On Stochastic Versions of the EM Algorithm.
Research Report RR-2514, INRIA.

Celeux, G., Chauveau, D., and Diebolt, J. (1996). Stochastic versions of the em algorithm:
an experimental study in the mixture case. Journal of Statistical Computation and
Simulation, 55(4):287–314.

Celeux, G. and Diebolt, J. (1985). The SEM algorithm: a probabilistic teacher algorithm de-
rived from the EM algorithm for the mixture problem. Computational Statistics Quarterly,
2:73–82.

Chen, K. (2009). On Coresets for K-Median and K-Means Clustering in Metric and Euclidean
Spaces and Their Applications. SIAM Journal on Computing, 39(3):923–947.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience.

Dang, U. J., Browne, R. P., and McNicholas, P. D. (2015). Mixtures of multivariate power
exponential distributions. Biometrics, 71(4):1081–1089.

Dasgupta, S. (1999). Learning Mixtures of Gaussians. In FOCS 1999, pages 634–644.

Dasgupta, S. (2008). The hardness of k-means clustering. Technical report, Department of
Computer Science and Engineering, University of California, San Diego.

Dasgupta, S. and Gupta, A. (2003). An Elementary Proof of a Theorem of Johnson and
Lindenstrauss. Random Structures & Algorithms, 22(1):60–65.

Dasgupta, S. and Schulman, L. (2007). A Probabilistic Analysis of EM for Mixtures of
Separated, Spherical Gaussians. Journal of Machine Learning Research, 8:203–226.

Dasgupta, S. and Schulman, L. J. (2000). A Two-Round Variant of EM for Gaussian Mixtures.
In Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, UAI’00,
pages 152–159, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Day, N. E. (1969). Estimating the components of a mixture of normal distributions.
Biometrika, 56(3):463.

Dempster, Laird, and Rubin (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, Series B: Statistical Methodology,
39(1):138.

224 BIBLIOGRAPHY

Dias, J. G. and Wedel, M. (2004). An Empirical Comparison of EM, SEM and MCMC
Performance for Problematic Gaussian Mixture Likelihoods. Statistics and Computing,
14(4):323–332.

Ding, C. and He, X. (2004). K-means Clustering via Principal Component Analysis. In
Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04,
pages 29–, New York, NY, USA. ACM.

Ding, H. and Xu, J. (2015). A Unified Framework for Clustering Constrained Data Without
Locality Property. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’15, pages 1471–1490, Philadelphia, PA, USA. Society for
Industrial and Applied Mathematics.

Drineas, P., Frieze, A., Kannan, R., Vempala, S., and Vinay, V. (2004). Clustering Large
Graphs via the Singular Value Decomposition. Machine Learning, 56(1-3):9–33.

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal of Cybernetics, 3(3):32–57.

Effros, M. and Schulman, L. J. (2004). Deterministic clustering with data nets. Electronic
Colloquium on Computational Complexity (ECCC), (050).

Färber, I., Günnemann, S., Kriegel, H., Kröger, P., Müller, E., Schubert, E., S., T., and Z., A.
(2010). On Using Class-Labels in Evaluation of Clusterings. In Proc. 1st International
Workshop on Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2010)
in conjunction with 16th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD 2010), Washington, DC, USA.

Fayyad, Reina, and Bradley (1998). Initialization of Iterative Refinement Clustering Algo-
rithms. In KDD 1998, page 194198.

Feldman, D., Faulkner, M., and Krause, A. (2011). Scalable Training of Mixture Models via
Coresets. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems 24, pages 2142–2150.
Curran Associates, Inc.

Feldman, D., Monemizadeh, M., and Sohler, C. (2007). A PTAS for K-means Clustering
Based on Weak Coresets. In Proceedings of the Twenty-third Annual Symposium on
Computational Geometry, SCG ’07, pages 11–18, New York, NY, USA. ACM.

Feldman, D., Schmidt, M., and Sohler, C. (2013). Turning Big Data into Tiny Data: Constant-
size Coresets for K-means, PCA and Projective Clustering. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages 1434–
1453. SIAM.

García-Escudero, L. A., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. (2015). Avoiding
spurious local maximizers in mixture modeling. Statistics and Computing, 25(3):619–633.

Gath, I. and Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern
Anal. Mach. Intell., 11(7):773–780.

Geusebroek, Burghouts, and Smeulders (2005). The Amsterdam Library of Object Images.
International Journal of Computer Vision, 6(1):103112.

Golub, G. H. and Loan, C. F. V. (1996). Matrix Computations. John Hopkins University
Press.

BIBLIOGRAPHY 225

Gómez, E., Gomez-Viilegas, M., and Marín, J. (1998). A multivariate generalization of the
power exponential family of distributions. Communications in Statistics - Theory and
Methods, 27(3):589–600.

Gonzalez (1985). Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293306.

Gustafson, D. and Kessel, W. (1978). Fuzzy clustering with a fuzzy covariance matrix. In
Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE
Conference on, pages 761–766.

Har-Peled, S. and Kushal, A. (2005). Smaller Coresets for K-median and K-means Clustering.
In Proceedings of the Twenty-first Annual Symposium on Computational Geometry, SCG
’05, pages 126–134, New York, NY, USA. ACM.

Har-Peled, S. and Mazumdar, S. (2004). On Coresets for K-means and K-median Clustering.
In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’04, pages 291–300, New York, NY, USA. ACM.

Hardt, M. and Price, E. (2015). Tight Bounds for Learning a Mixture of Two Gaussians. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 753–760.

Hardy, G. H., Littlewood, J. E., and Pólya, G. (1952). Inequalities. Cambridge University
Press.

Hasegawa, S., Imai, H., Inaba, M., and Katoh, N. (1993). Efficient algorithms for variance-
based k-clustering. In Proceedings of the 1st Pacific Conference on Computer Graphics and
Applications, pages 75–89.

Hathaway, R. and Bezdek, J. (1986). Local convergence of the fuzzy c-Means algorithms .
Pattern Recognition, 19(6):477 – 480.

Hathaway, R. and Bezdek, J. (2001). Fuzzy c-means clustering of incomplete data. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 31(5):735–744.

Hathaway, R. J. (1985). A constrained formulation of maximum-likelihood estimation for
normal mixture distributions. The Annals of Statistics, 13:795–800.

Hathaway, R. J. and Bezdek, J. C. (1988). Recent convergence results for the fuzzy c-means
clustering algorithms. Journal of Classification, 5(2):237–247.

Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100(1):78 – 150.

Hopcroft, J. and Kannan, R. (2017). Foundations of Data Science.

Höppner, F. (1999). Fuzzy cluster analysis: methods for classification, data analysis and
image recognition. John Wiley & Sons.

Höppner, F. and Klawonn, F. (2003). A contribution to convergence theory of fuzzy c-means
and derivatives. IEEE Transactions Fuzzy Systems, 11(5):682–694.

Hu, Y. and Hathaway, R. J. (2002). On efficiency of optimization in fuzzy c-means. Neural
Parallel & Scientific Computing, 10(2):141–156.

Huang, M., Xia, Z., Wang, H., Zeng, Q., and Wang, Q. (2012). The range of the value for the
fuzzifier of the fuzzy c-means algorithm. Pattern Recognition Letters, 33(16):2280 – 2284.

226 BIBLIOGRAPHY

Inaba, M., Katoh, N., and Imai, H. (1994). Applications of Weighted Voronoi Diagrams
and Randomization to Variance-based K-clustering. In Proceedings of the Tenth Annual
Symposium on Computational Geometry, SoCG ’94, pages 332–339, New York, NY, USA.
ACM.

Ip, E. H.-s. (1994). A stochastic EM estimator in the presence of missing data – theory and
applications. PhD thesis, Stanford University.

Jin, C., Zhang, Y., Balakrishnan, S., Wainwright, M. J., and Jordan, M. I. (2016). Local Max-
ima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic
Consequences. In Advances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 4116–4124.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of Lipschitz maps into a Hilbert
space. Contemporary Mathematics, 26:189–206.

Kalai, A. T., Moitra, A., and Valiant, G. (2012). Disentangling Gaussians. Communications
of the ACM, 55(2):113–120.

Kane, D. M. and Nelson, J. (2014). Sparser Johnson-Lindenstrauss Transforms. Journal of
the ACM, 61(1):4:1–4:23.

Kannan, R. and Vempala, S. (2009). Spectral Algorithms. Foundations and Trends in
Theoretical Computer Science, 4(3-4):157–288.

Kearns, M., Mansour, Y., and Ng, A. Y. (1997). An Information-Theoretic Analysis of Hard
and Soft Assignment Methods for Clustering. In Proceedings of the Thirteenth conference
on Uncertainty in artificial intelligence (UAI’97), pages 282–293. Morgan Kaufmann.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the Maximum Likelihood Estimator in the
Presence of Infinitely Many Incidental Parameters. The Annals of Mathematical Statistics,
27(4):887–906.

Kim, T., Bezdek, J. C., and Hathaway, R. J. (1988). Optimality tests for fixed points of the
fuzzy c-means algorithm. Pattern Recognition, 21(6):651–663.

Klawonn, F. (2004). Fuzzy clustering: insights and a new approach. Mathware & Soft
Computing, 11(3).

Klawonn, F. and Höppner, F. (2003). What Is Fuzzy about Fuzzy Clustering? Understanding
and Improving the Concept of the Fuzzifier, pages 254–264. Springer Berlin Heidelberg.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Kriegel, H., Schubert, E., and Zimek, A. (2011). Evaluation of multiple clustering solutions.
In Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing and Using
Multiple Clusterings, Athens, Greece, September 5, 2011, in conjunction with ECML/PKDD
2011, pages 55–66.

Krüger, Leutnant, Haeb-Umbach, Ackermann, and Blömer (2010). On the initialization of
dynamic models for speech features. Sprachkommunikation 2010.

Kumar, A., Sabharwal, Y., and Sen, S. (2004). A simple linear time (1+ ε)-approximation
algorithm for geometric k-means clustering in any dimensions. In Proceedings-Annual
Symposium on Foundations of Computer Science, pages 454–462. IEEE.

BIBLIOGRAPHY 227

Kumar, A., Sabharwal, Y., and Sen, S. (2010). Linear-time approximation schemes for
clustering problems in any dimensions. Journal of the ACM, 57(2):1–32.

Kwedlo (2013). A New Method for Random Initialization of the EM Algorithm for Multivari-
ate Gaussian Mixture Learning. In Proceedings of the 8th International Conference on
Computer Recognition Systems CORES 2013, page 8190. Springer International Publish-
ing.

Kwedlo (2015). A new random approach for initialization of the multiple restart EM algo-
rithm for Gaussian model-based clustering. Pattern Analysis and Applications, 18(4):757–
770.

Larsen, K. G. and Nelson, J. (2016). The Johnson-Lindenstrauss Lemma Is Optimal for
Linear Dimensionality Reduction. In 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 82:1–82:11, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

Lee, E., Schmidt, M., and Wright, J. (2017). Improved and simplified inapproximability for
k-means. Information Processing Letters, 120:40–43.

Levchenko, K. (2013). Chernoff Bound. (cseweb.ucsd.edu/ klevchen/techniques/chernoff.pdf).

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137.

Lucic, M., Bachem, O., and Krause, A. (2016). Strong Coresets for Hard and Soft Bregman
Clustering with Applications to Exponential Family Mixtures. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz,
Spain, May 9-11, 2016, pages 1–9.

Lucic, M., Faulkner, M., Krause, A., and Feldman, D. (2017). Training Mixture Models at
Scale via Coresets. Computing Research Repository.

Mackay, D. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge
University Press.

Magnus, J. R. and Neudecker, H. (1999). Matrix Differential Calculus with Applications in
Statistics and Econometrics. John Wiley, second edition.

Mahajan, M., Nimbhorkar, P., and Varadarajan, K. (2012). The planar k-means problem is
NP-hard. Theoretical Computer Science, 442:13 – 21.

Maitra (2009). Initializing Partition-Optimization Algorithms. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 6(1):144–157.

Maitra and Melnykov (2010). Simulating data to study performance of finite mixture
modeling and clustering algorithms. Journal of Computational and Graphical Statistics,
19(2):354376.

Matoušek, J. (2000). On Approximate Geometric k -Clustering. Discrete & Computational
Geometry, 24(1):61–84.

McDiarmid, C. (1998). Concentration, pages 195–248. Springer Berlin Heidelberg, Berlin,
Heidelberg.

McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Extensions (Wiley Series
in Probability and Statistics). Wiley-Interscience, 2 edition.

228 BIBLIOGRAPHY

Megiddo, N. (1986). On the complexity of linear programming. IBM Thomas J. Watson
Research Division.

Meilă and Heckerman (1998). An Experimental Comparison of Several Clustering and
Initialization Methods. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, page 386395. Morgan Kaufmann, Inc., San Francisco, CA.

Melnykov and Melnykov (2011). Initializing the EM algorithm in Gaussian mixture models
with an unknown number of components. Computational Statistics & Data Analysis.

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA.

Nielsen, S. F. (2000a). On simulated EM algorithms . Journal of Econometrics, 96(2):267 –
292.

Nielsen, S. F. (2000b). The Stochastic EM Algorithm: Estimation and Asymptotic Results.
Bernoulli, 6(3):457–489.

Oliveira, J. V. d. and Pedrycz, W. (2007). Advances in Fuzzy Clustering and Its Applications.
John Wiley & Sons, Inc., New York, NY, USA.

Ostrovsky, R., Rabani, Y., Schulman, L. J., and Swamy, C. (2006). The effectiveness of
Lloyd-type methods for the k-means problem. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 165–176. IEEE.

Pal, N., Pal, K., Keller, J., and Bezdek, J. (2005). A possibilistic fuzzy c-means clustering
algorithm. IEEE Transactions on Fuzzy Systems, 13(4):517–530.

Schmidt, M. (2014). Coresets and streaming algorithms for the k-means problem and related
clustering objectives. PhD thesis, Universität Dortmund.

Shlens, J. (2003). A Tutuorial on Principal Component Analysis – Derivation, Discussion
and Singular Value Decomposition.

Stewart, J. (2009). Calculus. Cengage Learning.

Tang, C. and Monteleoni, C. (2016). On Lloyd’s Algorithm: New Theoretical Insights for
Clustering in Practice. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 1280–
1289.

Thiesson (1995). Accelerated quantification of Bayesian networks with incomplete data.
University of Aalborg, Institute for Electronic Systems, Department of Mathematics and
Computer Science.

Tibshirani, R., Guenther, W., and Hastie., T. (2001). Estimating the Number of Clusters in a
Data Set via the Gap Statistic. Journal of the Royal Statistical Society Series B.

Timm, H., Borgelt, C., Döring, C., and Kruse, R. (2004). An extension to possibilistic fuzzy
cluster analysis. Fuzzy Sets and systems, 147(1):3–16.

Vempala, S. and Wang, G. (2004). A spectral algorithm for learning mixture models. Journal
of Computer and System Sciences, 68(4):841–860.

Verbeek, Vlassis, and Kröse (2003). Efficient greedy learning of Gaussian mixture models.
Neural computation, 15(2):469485.

BIBLIOGRAPHY 229

von Luxburg, U., Williamson, R. C., and Guyon, I. (2012). Clustering: Science or art? In
Guyon, I., Dror, G., Lemaire, V., Taylor, G., and Silver, D., editors, Proceedings of ICML
Workshop on Unsupervised and Transfer Learning, volume 27 of Proceedings of Machine
Learning Research, pages 65–79, Bellevue, Washington, USA. PMLR.

Vose, M. D. (1991). A Linear Algorithm for Generating Random Numbers with a Given
Distribution. IEEE Transactions on Software Engineering, 17(9):972–975.

Wagstaff, K., Cardie, C., Rogers, S., and Schrödl, S. (2001). Constrained k-means clustering
with background knowledge. In Proceedings of the Eighteenth International Conference
on Machine Learning (ICML 2001), Williams College, Williamstown, MA, USA, June 28 -
July 1, 2001, pages 577–584.

Wald, A. (1949). Note on the Consistency of the Maximum Likelihood Estimate. The Annals
of Mathematical Statistics, 20(4):595–601.

Watt, J., Borhani, R., and Katsaggelos, A. K. (2016). Machine Learning Refined: Foundations,
Algorithms, and Applications. Cambridge University Press.

Wei, D. (2016). A Constant-Factor Bi-Criteria Approximation Guarantee for k-means++. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
604–612.

Wu, C. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics,
11(1):95103.

Xu, L. and Jordan, M. I. (1996). On Convergence Properties of the EM Algorithm for
Gaussian Mixtures. Neural Computing, 8(1):129–151.

Yang, M.-S. (1993). A survey of fuzzy clustering. Mathematical and Computer Modelling,
18(11):1–16.

Zhang, J. and Liang, F. (2010). Robust Clustering Using Exponential Power Mixtures.
Biometrics, 66(4):1078–1086.

	Abstract
	Zusammenfassung
	Contents
	Cheat Sheet
	1 Preface
	1.1 Outline
	1.2 Publications & Credits

	I Soft Clusterings
	2 Basics
	2.1 Notation: Indices, Vectors, Data Sets
	2.2 Clusterings
	2.2.1 Soft Clustering
	2.2.2 Hard Clustering
	2.2.3 Clustering Problems

	2.3 Descriptive Statistics
	2.3.1 Cluster Statistics
	2.3.2 Data Set Statistics
	2.3.3 Lemmata
	2.3.4 Scaling Weights and Copying Data Points

	3 From Soft Clusters to Hard Clusters
	3.1 Related Work
	3.2 Contribution
	3.3 Imitating Softness by Randomness
	3.3.1 Probabilistic Memberships
	3.3.2 Algorithm

	3.4 Concentration Bounds
	3.4.1 Elementary Inequalities
	3.4.2 Chernoff Inequalities

	3.5 Analysis
	3.5.1 Preliminaries
	3.5.2 Weight
	3.5.3 Mean Vector
	3.5.4 Covariance Matrix
	3.5.5 Cost and Variance

	3.6 Conclusions
	3.6.1 Existence of Similar Hard Clusters
	3.6.2 Quality of an Imitation
	3.6.3 Remarks

	II Fuzzy K-Means Problems
	4 Introduction
	4.1 The Fuzzy K-Means Problem
	4.1.1 Problem Definition
	4.1.2 Fuzzy K-Means Algorithm
	4.1.3 No Guarantees

	4.2 A Comparison with the K-Means Problem
	4.2.1 Similarities
	4.2.2 Differences
	4.2.3 Statistical Assumptions

	4.3 Related Work
	4.3.1 The Fuzzy K-Means Algorithm
	4.3.2 Fuzzifier
	4.3.3 Extensions

	4.4 More Related Work (The K-Means Problem)
	4.4.1 The Bad News First
	4.4.2 (Few Practical) Approximation Algorithms
	4.4.3 Clustering is Difficult – Except when It Is Not
	4.4.4 Constraints and Side Information

	4.5 Overview

	5 Basics
	5.1 Problem Definition
	5.1.1 Cost and Clusters
	5.1.2 Induced Solutions
	5.1.3 Approximation

	5.2 Fuzzifier Functions
	5.2.1 Definition
	5.2.2 Basic Properties
	5.2.3 Bounded Contribution
	5.2.4 Bounded Increase
	5.2.5 Reducing Probabilities
	5.2.6 Induced r-Fuzzy Clusterings

	5.3 Special Cases
	5.3.1 Identity – K-Means
	5.3.2 Power Function – Classical Fuzzy K-Means
	5.3.3 Quadratic-Linear – Between K-Means and Fuzzy K-Means
	5.3.4 Exponential Fuzzifier

	6 Two Key Properties
	6.1 Relation to the K-Means Cost Function
	6.2 Negligible Clusters

	7 Baselines
	7.1 Contribution
	7.2 2-Approximation Algorithm
	7.3 (1+eps)-Approximation Algorithm
	7.4 (const/minimumContribution)-Approximation Algorithm

	8 Superset Sampling for Fuzzy Clusters
	8.1 Related Work
	8.2 Contribution
	8.3 From Fuzzy Clusters to Hard Clusters
	8.4 Applying Superset Sampling
	8.5 Combining the Results
	8.5.1 Approximation Factor
	8.5.2 Removing the Restriction to Rational Weights
	8.5.3 Removing the Restriction to Clusters with A Minimum Weight

	8.6 Algorithms
	8.6.1 A Deterministic Approximation Algorithm (Algorithm 8)
	8.6.2 A Randomized Algorithm (Algorithm 9)

	9 A Discretization
	9.1 Contribution
	9.2 Preliminaries
	9.3 Basic Construction
	9.4 Distances and Costs
	9.4.1 Outside the Search Space
	9.4.2 Rings
	9.4.3 A Point and Its Representative
	9.4.4 Replace Means by Their Representatives (K-Means)
	9.4.5 Replace Means by Their Representatives (r-Fuzzy K-Means)

	9.5 A Discrete Search Space

	10 An eps-Approximate Mean Set
	10.1 Related Work
	10.2 Contribution
	10.3 Main Result
	10.4 Application
	10.5 Analysis

	11 Dimension Reduction
	11.1 The Johnson Lindenstrauss Lemma
	11.1.1 Related Work
	11.1.2 Main Result
	11.1.3 Application

	11.2 Principal Component Analysis

	12 Coresets
	12.1 Related Work
	12.2 Contribution
	12.3 Main Result
	12.4 Application
	12.5 Analysis
	12.5.1 The Key Ideas
	12.5.2 Outline of the Analysis
	12.5.3 Preliminaries
	12.5.4 Weaker Coreset for a Fixed Number of Arbitrary Solutions
	12.5.5 Weak Coreset
	12.5.6 Size of S and Runtime
	12.5.7 These Weak Coresets Are Not Weak

	13 Summary & Conclusion
	13.1 Review
	13.2 Overview of Our Algorithms
	13.3 Discussion
	13.4 Future Work

	III Clustering with Gaussian Mixture Models
	14 Introduction
	14.1 Gaussian Mixture Models (GMMs)
	14.1.1 Density Function
	14.1.2 Generating Observations
	14.1.3 Remarks

	14.2 Likelihood Approach
	14.2.1 Likelihood
	14.2.2 Likelihood Ratio
	14.2.3 Scale Invariance of the Likelihood-Ratio
	14.2.4 Maximum Likelihood Estimator for K>1
	14.2.5 Maximum Likelihood Estimator for K=1
	14.2.6 Constrained Maximum Likelihood Estimation
	14.2.7 Remarks

	14.3 Expectation-Maximization (EM)
	14.3.1 General Framework
	14.3.2 EM Algorithm for GMMs

	14.4 Overview

	15 A Non-Asymptotic Comparison of EM and SEM Algorithms
	15.1 Introduction
	15.2 Scope of Our Comparison
	15.3 Related Work
	15.4 Contribution
	15.5 Theoretical Comparison
	15.5.1 A Non-Asymptotic Bound
	15.5.2 Special Case: Gaussian Mixture Models (GMMs)

	15.6 Some Concrete Examples
	15.7 Discussion

	16 Adaptive Seeding for Gaussian Mixture Models
	16.1 Related Work
	16.2 Our Contribution
	16.3 Baseline Algorithms
	16.4 Adaptive Seeding for GMMs
	16.4.1 Choosing the Next Point
	16.4.2 Construction of a k-GMM
	16.4.3 Post-Processing of the K-GMM
	16.4.4 Summary and Comparison

	16.5 Evaluation
	16.5.1 Preliminaries
	16.5.2 Artificial Data Sets
	16.5.3 Results: Real-World Data Sets

	16.6 Conclusion and Future Work

	17 On the Soft K-Means Problem
	17.1 Related Work
	17.2 Contribution
	17.3 The Weighted Soft K-Means Problem
	17.3.1 Preliminaries
	17.3.2 Problem Statement
	17.3.3 Approximation

	17.4 A Clustering-Centric Variant
	17.4.1 Motivation
	17.4.2 A First Clustering-Centric Variant
	17.4.3 A Relaxation
	17.4.4 A Relaxed Clustering-Centric Approximation Problem

	17.5 Towards an Analysis
	17.5.1 Applying Our Soft-to-Hard-Cluster Technique
	17.5.2 Applying an Algorithm for the Constrained K-Means Problem
	17.5.3 Determining the Soft Clustering

	17.6 Conclusions

	IV Appendix
	A Three Handy Lemmata

