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Abstract

The main focus of this thesis lies on the detection of objects with arbitrary geometry

in a predefined computational domain. The determination of the size or location

of the geometric object is of special interest for many real-life applications such as

non-invasive material testing and remote sensing. One way to obtain the desired

information is the use of direct/classic methods, where, e.g., the object is placed

between sender and receiver. Very often the usage of those methods is impossible

due to problem-dependent restrictions. In this thesis, we concentrate on a remote

sensing approach where electromagnetic waves serve as a possible alternative. These

waves are described by Maxwell’s equations. The electromagnetic waves propagate

through a computational domain and get reflected at the boundary of the geometric

object. The reflected waves are recorded by a user-defined sink within the compu-

tational domain or at the sensor boundary. Based on the measured reflection the

size resp. the location of the object can be reconstructed. This leads to an inverse

electromagnetic scattering problem. Naive approaches like the use of an indicator

function are rarely successful and often cause a high amount of computation time,

which is widely not acceptable for many applications. To overcome such restric-

tions, the use of Shape Calculus is an appropriate remedy. These methods promise

more accurate computations and less computational effort. They differentiate func-

tions w.r.t. the underlying domain. An explicit boundary gradient formulation in

the Hadamard sense leads to a significant reduction in memory requirement. A

generalized method especially for problems restricted by linear state constraints is

derived. Subsequently, Maxwell’s equations are examined more closely. Challenges

like the full time dependence and the high complexity of the problem are solved in

this thesis. Based on the derived theoretical results, a solver is developed to solve the

problem numerically. A complete implementation consists of an appropriate simula-

tion routine, calculation of the shape gradient including the adjoint equations, and

an optimization routine. Various test cases with up to 1.2 · 109 state unknowns are

solved to demonstrate the practicability of the proposed approach.

Keywords: Maxwell’s equation, shape optimization, adjoints, inverse problems,

parameter identification, Galerkin methods





Zusammenfassung

Gegenstand der Arbeit ist die Detektion beliebiger geometrischer Objekte in ei-

nem vorgegebenen Berechnungsgebiet. Untersuchenswert ist beispielsweise die Größe

und der Ort eines geometrischen Objektes. Dies ist für viele Anwendungen wie

z.B. zerstörungsfreie Materialprüfung oder im Bereich der Fernerkundung wichtig.

Die Bestimmung gewünschter Eigenschaften ist aufgrund problemspezifischer Ein-

schränkungen oftmals nicht unmittelbar möglich. Um dennoch gewisse Größen des

Problems identifizieren zu können, konzentriert sich diese Arbeit auf eine Alternati-

ve, welche die Verwendung von elektromagnetischen Wellen beinhaltet. Diese werden

durch Maxwell-Gleichungen beschrieben. Diese Wellen propagieren durch ein Gebiet

und werden an dem geometrischen Objekt reflektiert. Aufgrund dieser reflektierten

Daten werden Rückschlüsse auf den Ort bzw. die Größe des Objektes gezogen. Da-

her handelt es sich nicht um ein direktes Problem sondern um ein inverses Problem.

Naheliegende Ansätze wie die Verwendung von Indikatorfunktionen führen nur be-

dingt zum Ziel und verursachen zudem eine hohe Rechenzeit, die je nach Anwendung

inakzeptabel ist. Diese Problematik motiviert die Verwendung eines Shape Calcu-

lus Ansatzes. Die darauf basierenden Methoden versprechen sowohl eine präzisere

Rekonstruktion als auch einen geringeren Rechenaufwand. Methoden aus diesem Be-

reich differenzieren nach einer Form eines geometrischen Objektes. Die Hadamard-

Randdarstellung des Gradienten führt zu einer erheblichen Speicherplatzeinsparung.

Ein generalisierter Ansatz zur Behandlung von Problemen, welche durch lineare Zu-

standsbedingungen restringiert sind, wurde entwickelt. Im Speziellen wurde der An-

satz auf die Maxwell-Gleichungen übertragen. Sowohl die volle Zeitabhängigkeit als

auch die hohe Komplexität des Problems stellen Herausforderungen dar, welche in

der Arbeit bewältigt wurden. Auf Basis der in der Theorie erarbeiteten Ergebnisse

wurde ein Löser entwickelt, um das Problem numerisch zu lösen. Eine vollständige

Implementierung umfasst eine Vorwärtssimulation, die Auswertung des Formgradi-

enten, wobei die adjungierten Gleichungen einfließen, und eine Optimierungsroutine.

Verschiedenartige Testfälle mit bis zu 1.2 · 109 unbekannten Zustandsvariablen wur-

den mittels der vorgeschlagenen Methode gelöst und zeigen die Durchführbarkeit

dieser Methode.

Stichworte: Maxwell-Gleichungen, Formoptimierung, adjungierte Gleichungen, in-

verse Probleme, Parameteridentifikation, Galerkin-Methoden
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Symbol SI Unit Description
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Notation
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∇× F curl F

(curl operator of vector field F )
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, . . . , ∂v∂xd )

(gradient operator of scalar function v of x ∈ Rd)

∇ · F div F =
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∂Fi
∂xi

(divergence operator of vector field F = (F1, · · · , Fd) of x ∈ Rd)

∆v ∇ · ∇v = ∇2v =
d∑
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∂2v
∂x2i

(Laplace operator of scalar function v of x ∈ Rd)
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Ωε = Tε(Ω) perturbed domain
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1
Introduction

Non-invasive analyses of interior structures and material properties are daily chal-

lenges in various research fields such as aircraft design, biology, medical diagnostics,

stealth technology, design of sun cream and networks [2, 9, 69]. Another field, which

is related to this topic, is the production of optimized nanoscale particles, where

beside the chemical composition, other properties, like the size or the free surface

area of the particles have influence and have to be identified [30, 32].

A typical problem setting is the following: A given test setup defines the geometrical

resp. computational domain. Within this domain the position and/or size of a

geometric object is of special interest. While detecting the targeted object, specific

restrictions have to be taken into account. In many cases the measurements are only

available on a part of the geometrical boundary of the geometrical domain. This

scenario can be formulated as an optimization problem constrained by problem-

dependent boundary conditions.

1



1 Introduction

Hence, a description of the problem mainly comprises three components:

• a mathematical model to describe physical states,

• a computer-based simulation,

• an optimization of a user-defined target function.

Different methods can be applied to solve this kind of problem. One class of methods

are the direct methods, e.g., light-based methods or special set-ups, where the object

of interest is placed between sender and receiver. These strategies are not always

feasible for several reasons, e.g., inappropriate geometric shapes of the object or

due to physical settings. The considered application in this thesis includes a remote

sensing approach, where direct methods are also useless. As alternative electromag-

netic measurements might be used, leading to an inverse electromagnetic scattering

problem. Details for further reading can be found in [16]. In the context of inverse

scattering problems, the target function can be formulated as the mismatch between

given, measured data and data simulated in the same test setup. Here, we assume

that the data is obtained at a certain part of the surface. A general target function

is then given by

J(Fsim(t)) =
1

2

∫
Γin/out

tf∫
t0

‖Fsim(t)− Fmeas(t)‖2∗ dt dS,

where Fsim(t) denotes the simulated data and Fmeas(t) the measured data over a

time interval [t0, tf ]. The measured data is defined by the user and, of course,

stays constant during the whole shape identification process. The difference between

Fsim(t) and Fmeas(t) is evaluated in a suitable norm ‖·‖∗. The boundary part

denoted by Γin/out represents the surface where the scattering data is obtained.

One possible test setup is shown in Fig. 1.1, with Γi, i ∈ I, where I is an index-

set of different boundary conditions and Γincl the boundary of the inclusion. The

variable t lies in the time interval [t0, tf ] with 0 ≤ t0 < tf .

A source is located on the surface Γin/out, i.e., a problem-dependent pulse enters the

domain over a part of or completely over Γin/out. The recorded values are stored in

a sink on Γin/out or a sink in the interior. In our application the source serves as

sink as well.

2



Γincl

Γin/out

Γi

Γi

Γi

Figure 1.1: One possible test setup of a horn antenna.

The definition of the excitation of the incoming pulse (force) lies in the responsibility

of the user. Several setups for the excitation are interesting to analyze: E.g., point

source (dipole antenna), plane waves (horn antenna) and a Gaussian pulse.

Naive approaches like Finite-Differences in Time Domain (FDTD) methods [74,

77] in combination with an appropriate indicator function do not lead to desired

results due to accuracy reasons and a high amount of computation time [35]. A

comparatively new approach in this context is the field of shape optimization. So far,

there are rather few contributions on this topic, which probably might be explained

by the high complexity of the Maxwell’s equations.

The considered problem setting in this thesis is the following: We want to detect

the position and/or size of a geometric object, a so-called inclusion or obstacle, in

a domain Ω. The boundary of the domain is denoted by ∂Γ = ∪iΓi. On the parts

Γi of the boundary various boundary conditions, e.g., reflective or non-reflective

behaviour on the surface may apply. A sketch of the initial state is shown in the

first picture of Fig. 1.2. To determine the shape gradient, a forward simulation as

well as an adjoint computation is performed. The solutions to these equations are

required for the evaluation of the shape gradient. This shape gradient multiplied by

a velocity field V and a normal component n determines the directional derivative of

3



1 Introduction

the given obstacle in direction V . Shape Calculus is used to determine the directional

derivative when the domain Ω is subject to a deformation field V . Following the

necessary optimality conditions, we conduct a steepest descent algorithm, until a

geometry is found with vanishing directional derivatives for all desired directions V .

One iteration is illustrated in Fig. 1.2.

Figure 1.2: Illustration of one possible deformation process of a geometric object.
The first picture shows the initial state; the second one shows the veloc-
ity field arising from the gradient calculation; the last one sketches the
deformation of the obstacle.

1.1 Contributions and Structure of this Thesis

The field of shape optimization is a relatively new field. Especially in the con-

text of electromagnetics, it is of high relevance and hardly analyzed for the time-

dependent case. More often time-harmonic formulations of electromagnetic waves

are considered, e.g., in [78]. First studies on shape sensitivities are done in [36, 58].

Other studies on shape differentiability properties incorporate the usage of pseudo-

homogeneous kernels [17]. However, taking non-stationarity of the problem into

account, causes further problems. As discussed in [1, 74] solutions of the inverse

problem might not be sufficient.

More recently, works like [53] cover the time-dependence and focus on finding optimal

controls for the solution of the Maxwell problem. Concerning the shape sensitivities

of the Maxwell problem, investigations by Zolésio [13, 80] are noteworthy. In these

works regularity results are the center of interest.

This work focuses on an inverse electromagnetic optimization problem constrained

by Maxwell’s equations and mixed boundary conditions. For this complex problem,

there exists no theoretical work regarding existence or uniqueness of the solution,

4



1.1 Contributions and Structure of this Thesis

yet. A comprehensive analysis of this problem needs further extensive investigations

and is not part of the work. We assume the problem to be smooth enough and

perform a formal derivation of the shape gradient. The numerical part supports the

obtained results.

To the knowledge of the author, there is no comparable work published yet which

focuses on the derivation of the shape gradient of the 3D time-dependent Maxwell’s

equations in Hadamard form. Volume-based expressions for the shape gradient are

also possible and used but the explicit expression of the shape gradient on the bound-

ary leads to a significant reduction of memory requirements for the considered ap-

plication. Additionally, the explicit expression is necessary in the optimization part

when using gradient-based methods. To obtain the shape gradient for the Maxwell’s

equations, results for the Navier-Stokes equations [38, 60, 71] are extended. Like-

wise numerical analysis of this problem has not been done before. There one has to

face other difficulties like the complexity of the fully time-dependent system. One

challenge is the determination of six unknowns for every node of the discretization

for every timestep. This leads to a high computational effort especially for fine dis-

cretized grids. Several test settings are analyzed to demonstrate the applicability of

the proposed approach.

The theoretical derivation of the shape gradient for the Maxwell problem as well as

the numerical realization are completely new and presented in this thesis.

The structure of the thesis is the following: In Chapter 2, the governing partial

differential equations (PDEs), the Maxwell’s equations, are introduced. Funda-

mental theorems and fundamentals of functional analysis are also given to provide

all theoretical ingredients for the following sections. In addition to the Maxwell’s

equations appropriate solution methods are introduced. Chapter 3 starts with an

often applied ansatz using an indicator function to solve the considered problem.

Despite the simplicity of the described approach, many restrictions make the ap-

proach impractical. This fact motivated the author to look for possible alternatives.

One promising approach, which turned out to be a good choice, is Shape Calculus.

Shape Calculus provides several methods to obtain a shape gradient for the shape

optimization. These methods are briefly explained and basic definitions needed for

the derivation of the shape gradient for the Maxwell’s equations are given. The

chapter ends with a section deriving a general formulation for the shape gradient

5



1 Introduction

concerning problems constrained by linear PDEs. A general problem formulation

for the considered class of optimization problems forms the last part of the section.

Chapter 4 covers the main theoretical results of this thesis: First, a formulation of

a Steger-Warming upwind flux is studied to deal with possible discontinuous jumps

in the material coefficients and to stabilize the convective problem. Then, appro-

priate boundary conditions and a reasonable target function are defined to obtain

our concrete problem formulation. Corresponding adjoint equations complete the

required ingredients for the shape gradient. Next, the derivation of the shape gra-

dient follows and forms one of the main results of this thesis. Several challenges

like the appearance of the curl operator or the additional dependence of the target

function on the normal component have to be solved. In the end, a gradient ex-

pression in Hadamard form is derived. Based on this explicit expression, numerical

analysis w.r.t. shape optimization is possible. Numerical results are presented in

Chapter 5. The forward integration of the state equation is realized using the open

source tool dolfin/FEniCS, see, e.g., [45, 46]. FEniCS is a domain specific language

and can automatically generate parallel C/C++ code to solve variational problems.

A gradient-based optimization algorithm is used for the shape optimization part.

The achieved results are very promising and provide a good basis for further re-

search. In Chapter 6, main results are summarized and further questions of interest

are formulated.

6



2
Forward Simulation of 3D Maxwell’s

Equations in Time Domain

In this chapter, a brief overview of the underlying equations of the simulation prob-

lem is presented. Electromagnetic waves, which propagate through the domain are

described by Maxwell’s equations. These fundamental equations of electromagnetics

and appropriate methods to solve these equations numerically are explained.

James Clerk Maxwell (1831 - 1879) was a pioneer in the field of electromagnetics. He

formulated the relation of magnetic and electric fields to their sources, charge densi-

ties and current densities in two pairs of coupled PDEs. These equations are highly

relevant in many applications such as telecommunications, computings, biomedicine

and radar technology. In the field of radar technology, antennas, microwave sources

and waveguides can be mentioned. In [6] a historical reproduction of Maxwell’s

work, which was originally published before 1923, can be found.

7



2 Forward Simulation of 3D Maxwell’s Equations in Time Domain

2.1 Formulation of Maxwell’s Equations

Let us consider a bounded domain Ω ⊆ R3 and a time interval (0, T ). The cylin-

drical evolution domain is denoted by Q = (0, T ) × Ω, the lateral boundary by

(0, T )× Γin/out, and the boundary of an inner inclusion by (0, T )× Γincl.

The time-dependent Maxwell’s equations are linear hyperbolic partial differential

equations and stated in the differential form as follows

Faraday’s Law. This law relates the electric field strength E(t, x) =: E and the

time-dependent change of the magnetic flux density B(t, x) =: B.

∂B

∂t
= −∇× E (2.1)

Ampere’s Law. The magnetic field strength H(t, x) =: H is induced by the charge

J and the time-changing electric current density D(t, x) =: D.

∇×H =
∂D

∂t
+ J (2.2)

From these two laws, one can recognize the immediate correlation of E and H in

the propagation process: A varying D is giving rise to H and a varying H effects E.

Gauss’ Law for the Electric Field. This law states that wherever the electric cur-

rent density exists, the divergence of it is equal to the electric charge density ρ.

Therefore, the electric charge density can be interpreted as a source or sink for the

electric charge.

∇ ·D = ρ (2.3)

Gauss’ Law for the Magnetic Field. This law states the non-existence of magnetic

charge.

∇ ·B = 0 (2.4)
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2.1 Formulation of Maxwell’s Equations

The related material equations, also called constitutive relations, for linear, isotropic

and non-dispersive media are defined as follows:

D = εE (2.5)

B = µH (2.6)

J = Jsource + σE (2.7)

with ε = ε0εr(x) and µ = µ0µr(x), where ε0, µ0 are constants for the permittivity

and permeability in vacuum, respectively, and εr = εr(x), µr = µr(x) describe the

relative permittivity and permeability respectively. These parameters may vary over

the domain, e.g., depending on the obstacle or the surrounding area. The same holds

for σ = σ(x), which represents the conductivity. The incoming pulse, also called

force, is denoted by Jsource. One example of an incoming excitation in the context of

electromagnetic measurements is a modulated Gaussian pulse and can be modelled

as

Gaussian(x) =
1

σ̃
√

2π
· e−0.5

(
x−Sp
ν

)2

, (2.8)

where σ̃ is the square root of the variance σ̃2, Sp is a shift of the pulse and ν is a

scaling factor.

General Problem Formulation Our general optimization problem is constrained

by Maxwell’s equations, which are listed above. Consequently, the electric field E

and the magnetic field H have to fulfill Eqs. (2.1) - (2.4). Coupling these equations

with the material equations (2.5) and (2.6), leads to

µ
∂H

∂t
= −∇× E in Ω (2.9)

ε
∂E

∂t
= ∇×H − J in Ω. (2.10)

9



2 Forward Simulation of 3D Maxwell’s Equations in Time Domain

Additionally, we define the following boundary conditions for our problem

H × n = 0 on Γincl (2.11)

E(0) = E0 on Γin/out (2.12)

H(0) = H0 on Γin/out, (2.13)

where Eq. (2.11) denotes the reflective boundary condition on the facet of the inclu-

sion and Eq. (2.12) and Eq. (2.13) determine the initial conditions at time t = 0.

Boundary Conditions of the Interface in Detail In this thesis, we consider the

case that a surface S̃ separates two homogenous materials leading to discontinuous

jumps in ε, µ and σ. Therefore, certain boundary conditions must be defined. For

different materials at the interface, the boundary conditions on S̃ can be expressed

as follows [55]

n̂× (E1 − E2) = 0 ⇐⇒ (E1t − E2t) = 0 (2.14)

n̂ · (B1 −B2) = 0 ⇐⇒ (B1n −B2n) = 0 (2.15)

n̂ · (D1 −D2) = ρs ⇐⇒ (D1n −D2n) = ρs (2.16)

n̂× (H1 −H2) = Js × n̂ ⇐⇒ (H1t −H2t) = Js × n̂, (2.17)

where n̂ denotes the unit normal vector to the interface S̃ and ρs and Js represent

the densities of surface current and charges. The vector-valued field parameter

E1, H1, D1, B1 occur on the other side of the interface than E2, H2, D2, B2 (cf. Fig.

2.1). Subscript t resp. n indicates the tangential resp. normal part of the field

variable. Boundary conditions (2.14) and (2.15) reflect the continuity of the normal

components of B and the tangential components of E.

A comprehensive derivation of the boundary conditions for the considered problem

can be found in Sec. 4.2.
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2.1 Formulation of Maxwell’s Equations

Figure 2.1: Interfacial boundary conditions for two different material distributions.

2.1.1 Useful Theorems

The following theorems (taken from [43]) are used for the theory developed in this

thesis. Therefore they are stated here for completeness.

Let u, v be scalar functions, w a vector-valued function of x ∈ Rd and n represents

the normal vector.

Theorem 2.1 (Divergence theorem).∫
Ω
∇ · w dΩ =

∫
∂Ω
w · n dS

where Ω denotes the domain, ∂Ω the boundary and S a closed surface.

Applying the divergence theorem to the product v · w, one gets

Theorem 2.2 (Green’s formula).∫
Ω
w · ∇v dx =

∫
∂Ω
w · nv ds−

∫
Ω
∇w · v dx

Another useful formula is given by

Theorem 2.3 (Integration by parts for the curl operator).∫
Ω
∇× u · v dx =

∫
Ω
u · ∇ × v dx−

∫
∂Ω

(u× n) · v dS

11



2 Forward Simulation of 3D Maxwell’s Equations in Time Domain

2.1.2 Notations and Functional Analysis

Notations One remark regarding the whole thesis has to be made: Sometimes

the same names for different variables are used. This can be explained by the fact

that some variables have characteristic names in the context they are usually used

and this naming convention is maintained in this thesis for consistency with the

literature.

In this subsection, we denote a domain by Ω ⊂ Rd with boundary Γ = ∂Ω.

The notation L(V,W ) is used for the set of all continuous linear operators from a

normed space V to another normed space W . Then, ` ∈ L(V,W ) denotes one linear

functional. The dual space of V is denoted by V −1.

Another space we introduce is D(Ω) representing the space of infinitely continuously

differentiable functions with compact support endowed with Schwartz’s topology and

its dual space D(Ω)−1, which describes the space of distributions.

Functional Analysis For the following sections of this thesis, the introduction of

fundamental definitions of functional analysis is useful. These basics are mainly

taken from [5, 43].

Definition 2.4 (Inner product space). Let V be a linear space over K = R or C.

An inner product (·, ·) is a function from V ×V to K, where the following properties

hold:

• For any u ∈ V, (u, u) ≥ 0 and (u, u) = 0 if and only if u = 0.

• For any u, v ∈ V, (u, v) = (v, u).

• For any u, v, w ∈ V , any α, β ∈ K, (αu+ βv,w) = α(u,w) + β(v, w).

The space V with the inner product (·, ·) is called inner product space.

Definition 2.5 (Hilbert space). A complete inner product space is called Hilbert

space.

Theorem 2.6 (Riesz representation theorem). Let V be a Hilbert space and ` ∈ V −1.

Then there exists a unique u ∈ V for which the following equation holds

`(v) = (v, u) ∀v ∈ V.

12



2.1 Formulation of Maxwell’s Equations

Additionally, one has

‖`‖ = ‖u‖ .

We introduce a d-dimensional vector α = (α1, . . . , αd), called multi-index, where

αi ∈ N0. The length of α is given by |α| =
∑d

i=1 αi. For a given function v : Rd 7→ R,

the partial derivatives of order |α| can be written as

Dαv =
∂|α|v

∂xα1
1 · · · ∂x

αd
d

.

Definition 2.7 (Spaces of continuously differentiable functions). For any m ∈ N,

Cm(Ω) is a linear space of functions with the property that the functions as well as

their derivatives of order less or equal to m are continuous on Ω, i.e.,

Cm(Ω) = {v ∈ C(Ω)|Dαv ∈ C(Ω) for |α| ≤ m}.

In this context, we can also define C∞0 by

C∞0 (Ω) = {v ∈ C∞(Ω)| support v ⊂ Ω} with support v = {x ∈ Ω|v(x) 6= 0}.

Definition 2.8 (Lp spaces). For p ∈ [1,∞), Lp(Ω) is the linear space of measurable

functions v : Ω 7→ R such that

‖v‖Lp(Ω) =


∫
Ω

|v(x)|p dx


1
p

<∞.

The space L∞(Ω) consists of all essential bounded measurable functions v : Ω 7→ R
such that

‖v‖L∞(Ω) = inf
meas(Ω′)=0

sup
x∈Ω\Ω′

|v(x)| <∞.

meas(Ω′) = 0 means that Ω′ is a measurable set with measure zero.

Definition 2.9 (Locally integrable functions). Let 1 ≤ p <∞. A function

v : Ω ⊆ Rd 7→ R is said to be locally p-integrable, v ∈ Lploc(Ω), if for every x ∈ Ω,

there is an open neighborhood Ω′ of x such that Ω′ ⊆ Ω and v ∈ Lp(Ω′).
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2 Forward Simulation of 3D Maxwell’s Equations in Time Domain

Definition 2.10 (Sobolev spaces). Let k be a non-negative integer and p ∈ [1,∞].

The Sobolev space W k,p(Ω) is the set of all functions v ∈ L1
loc(Ω) such that for each

multi-index α with |α| ≤ k, the αth weak derivative Dα exists and Dαv ∈ Lp(Ω).

The norm in the space W k,p(Ω) is defined as

‖v‖Wk,p(Ω) =


(∑

|α|≤k ‖Dαv‖pLp(Ω)

) 1
p
, 1 ≤ p <∞

max|α|≤k ‖Dαv‖L∞(Ω) , p =∞.

For p=2, we write Hk(Ω)
def
= W k,2(Ω).

Furthermore we can define W k,p
0 (Ω) as the space of all functions v in W k,p(Ω) such

that

Dαv(x) = 0 on ∂Ω, ∀α with |α| ≤ k − 1.

holds.

Definition 2.11 (Trace operator). The trace operator γ : C∞(Ω) 7→ C∞(Γ) is

defined by

γv := v|Γ.

In the following subsection, solution methods for the Maxwell’s equations are intro-

duced. Galerkin methods, described in Sec. 2.2.2 require the weak formulation of

the Maxwell’s equations. The strong form of the variational formulation is given by

T∫
0

∫
Ω

v ·
(
µ
∂H

∂t
+ curlE

)
+ w ·

(
ε
∂E

∂t
− curlH + σE

)
dx dt = 0, (2.18)

where v, w denote appropriate test functions living in a Sobolev space. The weak

form of the variational formulation is determined via integration by parts and given
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2.2 Solution Methods

by

0 =

T∫
0

∫
Ω

〈v, ∂H
∂t
〉+ 〈E, 1

µ
curl v〉+ 〈w, ∂E

∂t
〉 − 〈H, 1

ε
curlw〉+

σ

ε
〈w,E〉 dx dt

−
T∫

0

∫
∂Ω∪S̃

1

µ
〈v,E × n〉 − 1

ε
〈w,H × n〉 dS dt.

The set S̃ comprises all inner interfaces, where no continuity for test- and ansatz-

functions is required due to possible jumps at the interface.

2.2 Solution Methods

The analytical solution of Maxwell’s equations can only be obtained under simpli-

fying assumptions [20, 42]. Especially for applications, which arise from real world

problems, an analytical solution is usually not possible. Therefore, numerical solu-

tion methods have to be applied.

Since the main focus of this thesis lies on the optimizational part, we only briefly

summarize the main aspects of the solution methods in the remainder of this chapter.

Very often H(curl) spaces are used for the solution of the PDE. This ansatz can

be derived from a transformation of Maxwell’s equations as described in [4] such

that one of the two unknown variables can be eliminated. Works like [49, 79], also

analyze these problems theoretically and numerically. Since this procedure is quite

often used, it is presented here in a short form.

To eliminate one of the two unknown variables, we consider the coupled Maxwell’s

equations Eq. (2.9) and Eq. (2.10). First, Eq. (2.10) is differentiated w.r.t. t, leading

to

ε
∂2E

∂t2
= ∇× ∂H

∂t
− ∂J

∂t
. (2.19)
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2 Forward Simulation of 3D Maxwell’s Equations in Time Domain

From Eq. (2.9) we have the expression for ∂H
∂t given by

∂H

∂t
= − 1

µ
∇× E

and we can obtain

ε
∂2E

∂t2
= − 1

µ
∇× (∇× E)− ∂J

∂t
. (2.20)

Conducting the last steps for Eq. (2.9) analogously, leads to

µ
∂H2

∂2t
+

1

ε
∇× (∇×H) +

1

ε
∇× J = 0. (2.21)

To obtain a variational formulation of Eq. (2.21), we multiply Eq. (2.21) with an

appropriate test function v and have∫
Ω

v ·
(
µ
∂H2

∂2t
+

1

ε
∇× (∇×H) +

1

ε
∇× J

)
dx = 0. (2.22)

Applying the formula for the integration by parts for the curl operator yields∫
Ω

v · µ∂H
2

∂2t
+

1

ε
∇× (∇×H)(∇× v) +

1

ε
J · ∇ × v dx

− 1

ε

∫
Γ

(((∇×H)× n) + (J × n)) · v dΓ = 0.

Here, it is notable that the test functions are in the vector-valued space

H(curl,Ω) = {v ∈ L2(Ω)3,∇× v ∈ L2(Ω)3},

which only requires tangential continuity over material interfaces. This property

corresponds to Eq. (2.14). Therefore, H(curl) is less smooth than H1. Using the

above problem formulation, H(curl,Ω) conforming elements such as Nédélec ele-

ments ([50, 51]) are needed to solve the problem numerically.

In our considered applications, we do not want to solve Maxwell’s equations in the

first place, but an inverse problem. To model our problem, we need leaving and
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2.2 Solution Methods

incoming information of the domain. Therefore, the characteristic variables are

necessary. The solver works on the hyperbolic form of Maxwell’s equations. Thus,

a DG-Solver is applied instead of a solver using Nédélec elements.

2.2.1 Classical Simulation Method: FDTD

A very classic way to solve (2.9) - (2.10) is the Finite-Differences Time-Domain

(FDTD) approach since it is easy to implement and known to be robust [74]. To guar-

antee robustness, Maxwell’s equations are not only solved for the electric (resp. the

magnetic) field, but also for the magnetic (resp. the electric) field. For this purpose

the coupled Maxwell’s equations are solved. The FDTD algorithm was first intro-

duced by Yee in 1966 [77]. The so-called Yee-cell is a rectangular cell in a uniform

Cartesian grid where the electric and magnetic field components are sampled. The

temporal discretization is performed by the leapfrog scheme, which is also a fully

explicit scheme. First, one characteristic field is completely computed and stored in

memory. Second, the other characteristic field is computed a half timestep later by

using the field computations of the first step. More details concerning the theoretical

discussion of the algorithm and the numerical realization can be found in [74].

The drawback of this method is the strict requirement of a sufficient small discretiza-

tion with respect to time and space due to the Courant-Friedrichs-Lewy (CFL)

condition [18], which is usually applied in the context of explicit time integration

schemes. This condition has to be fulfilled to guarantee convergence while solving

certain PDEs. It relates the length of the time step with the length of the spatial

step. For the 3D case, the condition is given by

C =
ux∆t

∆x
+
uy∆t

∆y
+
uz∆t

∆z
≤ Cmax,

where ∆t and ∆x, ∆y, ∆z denote the length of the time and spatial step and u∗ the

magnitude of the velocity in the respective direction. C denotes the Courant num-

ber and Cmax determines the upper bound, which is usually equal to 1 for explicit

schemes. In accordance to this condition, several problems in handling arbitrary

complex geometries in terms of a sufficient high resolution occur [35]. With this

naive finite difference approach, prior knowledge of the solution, which may lead to

adaptive discretizations of the domain, cannot be exploited. Additionally, the treat-
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2 Forward Simulation of 3D Maxwell’s Equations in Time Domain

ment of discontinuous layers, e.g., in our case discontinuous material coefficients,

turned out to be very complicated and error-prone [35].

Finite Volume Methods promise more geometric flexibility since they are able to op-

erate on unstructured and locally refined grids. One possibility to extend this flex-

ibility to higher-order accuracy is the usage of weighted essentially non-oscillatory

(WENO) schemes since they are able to provide high order accuracy in smooth com-

plex regions and essentially non-oscillatory transitions in regions with discontinuities

like shocks [44]. In this thesis, we concentrate on the usage of high-order techniques,

in particular on Galerkin methods.

2.2.2 Galerkin Methods

Galerkin methods consist of an intelligent combination of features from Finite Vol-

ume and Finite Element schemes. They operate on the weak formulation. The

solution to the PDEs is approximated by the solution of the corresponding varia-

tional equation.

In case of discontinuous jumps in the material coefficients of neighboring cells in a

given mesh, an appropriate handling is guaranteed by Discontinuous Galerkin (DG)

methods. These methods use discontinuous test and trial functions and numerical

flux functions.

For a better understanding, we illustrate one variant of the DG-method, the Dis-

continuous Galerkin Finite Element method, by considering the nonlinear, scalar,

conservation law, as stated in [35]

∂u

∂t
+
∂f(u)

∂x
= 0 x ∈ [lb, ub] = Ω (2.23)

u(x, 0) = u0 t = 0 (2.24)

u(lb, t) = g1(t) when fu(u(lb, t)) ≥ 0 (2.25)

u(ub, t) = g2(t) when fu(u(ub, t)) ≤ 0 (2.26)

with the initial condition (2.24) and the boundary conditions (2.25), (2.26) are valid

when the boundary is an inflow boundary. The domain is constrained by a lower

bound lb ∈ R and an upper bound ub ∈ R. The next step is the approximation of
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2.2 Solution Methods

the domain Ω by K nonoverlapping elements, such that Ω ' Ωh =
⋃K
k=1D

k with

Dk = x ∈ [xklb, x
k
ub] holds. Then the global solution u(x, t) can be represented as

u(x, t) ' uh(x, t) =
⊕

ukh(x, t).

Thus, a direct sum over piecewise local polynomials ukh(x, t) is computed. In accor-

dance to the nodal representation, one defines Np nodal values as Np = N +1 where

N describes the order of the local approximation. The local solutions of order N

can be expressed as

x ∈ Dk : ukh(x, t) =

Np∑
n=1

ûkn(t)ψn(x) =

Np∑
i=1

ukh(xki , t)l
k
i (x),

where the first sum computes a product of ûkn(t) as the expansion coefficients and

ψn as local polynomial basis. This is known as the modal formulation. The second

sum represents the nodal form of the DG scheme with a nodal basis containing

interpolating Lagrange polynomials lki (x). Then, we can state the local residual

x ∈ Dk : rh(x, t) =
∂ukh
∂t

+
∂fkh
∂x

and postulate the residual to vanish in a Galerkin sense∫
Dk

rh(x, t)lki (x) dx = 0, n ∈ [1, Np], (2.27)

on all K elements, i.e., that the residual is orthogonal to all test functions lki (x).

This leads to Np equations for Np local unknowns. Since these considerations are

made in a local sense, one has to extend them to a global solution. Therefore, one

conducts the spatial integration by parts of Eq. (2.27) leading to∫
Dk

(
∂ukh
∂t

lkh − fkh (ukh)
dlkh
dx

)
dx = −

[
fkh , l

k
i

]xk+1

xk
(2.28)

= −
[
f∗, lki

]xk+1

xk
. (2.29)
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2 Forward Simulation of 3D Maxwell’s Equations in Time Domain

Eq. (2.28) requires a value fkh at the interface, where possibly a discontinuous jump

in the material coefficients leads to different local solutions. To decide which local

solution or how these local solutions are combined to one global solution at the

interface, a problem depending numerical flux f∗ = f∗(u−h , u
+
h ) (Eq. (2.29)) is nec-

essary. Linear numerical fluxes are used in order to preserve the monotonicity of the

solution. Higher-order schemes can generate additional extrema. This is captured

in the Godunov theorem [27, 28]. One choice of an interface flux f∗ = (au)∗ is given

by

(au)∗ =
au− + au+

2
+ |a|1− α

2
(n̂−u− + n̂+u+) α ∈ [0, 1], (2.30)

where a = a(x) denotes a piecewise constant and u(x, t) = u the local solution. The

computation of the numerical flux au− is based on the elements of the left hand

side and au+ analogously depends on the elements of the right hand side. The same

interpretation holds for n̂± and u±. Furthermore the equation n− = −n+ holds.

The decision parameter α determines the characteristic of the interface flux:

• α = 1 : average of left and right flux (central/ ”natural” flux )

• α = 0 : interface flux carries information from where it is coming (upwind flux )

Both fluxes are consistent and energy conserving. But the central flux leads to an

unstable discontinuous Galerkin discretization whereas the usage of an upwind flux

ensures stability. The addition of artificial diffusion in upwind direction is sufficient

to stabilize the central flux. For more details see [33].

In this thesis, an appropriate upwind flux for the Maxwell’s equations is derived in

Section 4.1.

In case that an arbitrary mesh is given without any prior knowledge of the distri-

bution of the material coefficients, this method is the method of choice. However,

knowing or having predefined boundary conditions within the mesh, a combination

of DG methods and other methods, which assume a continuous distribution of the

material coefficients and test- and trial functions makes sense due to memory and

efficiency reasons. E.g., Streamline Upwind Petrov Galerkin methods [3, 8, 23] may

serve as possible alternative using artificial numerical diffusivity with continuous

test- and trial functions.
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3
Shape Calculus

Motivated by several real-life applications, e.g., in electromagnetics and aeronautics,

the focus of this thesis lies on the differentiation of functions with respect to a

geometric domain. The gradients of these functions are called shape gradients. While

in shape optimization the unknown variables to determine are the structure and/or

the form of a geometric object, in conventional optimization the unknowns are a

set of functions and/or parameters. Thus, in shape optimization the integration

domain is dependent on a variable whereas the integration domain stays fixed in the

other case. In the theory of PDEs the term shape sensitivity analysis describes the

analysis of the sensitivity of the solution of a boundary value problem with respect

to the geometry of the domain.

In this chapter, the underlying theory and useful definitions are introduced, which

are needed in Chapter 4 for the derivation of the shape gradient of the least-squares

objective functional with Maxwell’s equations as equality constraints. The funda-

mental basics are taken from [21, 22, 34, 70, 76].
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3 Shape Calculus

Motivation to Use Shape Calculus One possible approach to detect geometric

objects in a domain is the usage of an appropriate indicator function. An indicator

function determines the material distribution within the domain. The proposed ap-

proach requires the discretization of the domain into a structured grid and computes

the characteristic field variables via a FDTD-algorithm as described in Subsec. 2.2.1.

In this case, the usage of an indicator function can also be interpreted as a level-set-

method [56, 57]. One characteristic of level-set-methods is that the contour/boundary

of the geometric object is regarded as a root of a multidimensional function. The

movement of the boundary can be dependent on different things such as the curva-

ture of the boundary, the gradient or on a velocity field. In our case the movement

of the boundary is dependent on the gradient. The geometric object, which we

want to track as an example to illustrate the approach, is an ellipsoid in a given

computational domain. The zero level set Φ is then given by

Φ =

{
(x, y, z) ∈ R3 | x

2

r2
x

+
y2

r2
y

+
z2

r2
z

− 1 = 0

}
in a three dimensional Euclidean space with rx, ry, and rz as the semi-principal

axes. Based on Φ we can model an appropriate if-condition to check whether an

arbitrary point is inside or outside the ellipsoid. However, this if-condition naturally

leads to difficulties for the computation of the derivatives which are required for a

derivative-based optimization algorithm. One remedy is the usage of a smoothed

indicator function. A possible definition of an indicator function for an ellipsoid is

given by a smoothed Heaviside-function

I(x, y, z) =
1

2

(
r + rtrans√

(r + rtrans)2 + h2
− r − rtrans√

(r − rtrans)2 + h2

)

with

rtrans =
√
x2
trans + y2

trans + z2
trans, r =

√
x2 + y2 + z2

and h small.
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Here, the transformation into a spherical coordinate system can be applied xtrans

ytrans

ztrans

 =

 rx cos θ cosφ

ry cos θ sinφ

rz sin θ

 , θ = sin−1(
z

r
), φ = tan−1(

y

z
).

Consequently, the design parameters for the algorithm are the spherical coordinates.

This approach seems to be very simple to solve the problem formulation. However,

several restrictions lead to a negative evaluation of the approach:

• lack of accuracy due to smoothed indicator function

(dependent of choice of h)

• difficult to detect arbitrary geometric objects

(always adaption of zero level set resp. indicator function necessary

+ prior knowledge of form of geometric object necessary)

• staircase effect due to cartesian cells

• strategy to enforce connectivity of domain required

• FDTD-approach does not allow adaptive discretizations near the object, which

leads to high computational effort.

Due to these disadvantages, the usage of an indicator function is no suitable choice

to solve our problem. Hence, a more sophisticated approach is necessary. Here, the

concept of Shape Calculus comes into play. Despite the fact, that the knowledge of

Shape Calculus has to be deepened and extended for our Maxwell problem, Shape

Calculus turned out to be the method of choice. For a comprehensive understanding

of the developed theory, basic concepts of Shape Calculus will be detailed in the

remainder of this chapter.
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3 Shape Calculus

3.1 Shape Optimization

A very general formulation of a shape optimization problem can be given by

Problem 3.1 (Generalized shape optimization problem).

min
u(Ω̃),Ω̃⊂Ω

J(u(Ω̃))

such that
f(u(Ω̃)) = 0 in Ω

g(u(Ω̃)) = 0 on Γi.

The shape optimization problem is constrained by Γi, i ∈ I, where I denotes an

index-set of different boundary conditions. Here, ∪iΓi = ∂Ω and Ω̃ ⊂ Ω, where Ω is

the so-called ”hold-all”, is part of the geometric domain, where the target function

J(u(Ω̃)) is defined. J(u(Ω̃)) can be constrained by several state constraints f and

several boundary conditions g.

In this thesis, we primary focus on the following class of problems

Problem 3.2 (Generalized problem (divergence form)).

min
Γincl

J(H,E,Ω) =
1

2

tf∫
t0

∫
Γin/out

φ>B(n)φ dS dt+ δ

∫
Γincl

1 dS (3.1)

such that

∂φ

∂t
+ divF (φ) = 0 in Ω

FΓ = 0 on ∂Ω

, (3.2)

where φ = (H,E) denotes the state variable, B(n) a symmetric positive definite

matrix, n the outward pointing normal. The parameter δ serves as regulariza-

tion/penalty parameter for the perimeter of the inclusion. The operator F (φ) ∈ H1

does not contain any differentiation formulas and FΓ are problem dependent bound-

ary conditions.
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3.1 Shape Optimization

Maxwell’s equations in divergence form Maxwell’s equations as well as the con-

sidered target function can be transformed into the generalized form of problem

(3.2). The divergence formulation of Maxwell’s equations can be derived as

(µ, ε)
∂Q

∂t
+∇ · F (Q) = J (3.3)

Q =
(
Hx, Hy, Hz, Ex, Ey, Ez

)
, J = σE, (3.4)

where Q contains the time-dependent variables, F the flux terms and J the source

terms. F (Q) is defined as

F (Q) :=

 R1E R>1 H

R2E R>2 H

R3E R>3 H

 , (3.5)

where Ri denotes the Levi-Civita permutation tensor:

(Ri)jk = εjik, 1 ≤ i ≤ d,

i.e., εjik = 0 if any index is repeated, εjik = 1 if it is a cyclic permutation and

εjik = −1 if it is an anticyclic permutation, e.g.,

R1 =

 0 0 0

0 0 −1

0 1 0

 .
F can be decomposed into F = îf + ĵg + k̂h, where

f =
(
R1E,R

>
1 H

)
=

[
0 R1

R>1 0

](
H

E

)
, î = (13×3, 03×3, 03×3),

and analogously

g =
(
R2E,R

>
2 H

)
, ĵ = (03×3,13×3, 03×3),

h =
(
R3E,R

>
3 H

)
, k̂ = (03×3, 03×3,13×3).
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3 Shape Calculus

Hence, the divergence of F can be obtained as

div(F (Q)) =
∂

∂x

[
0 R1

R>1 0

](
H

E

)
+

∂

∂y

[
0 R2

R>2 0

](
H

E

)

+
∂

∂z

[
0 R3

R>3 0

](
H

E

)

=

(
∂
∂xR1E + ∂

∂yR2E + ∂
∂zR3E

− ∂
∂xR1H − ∂

∂yR2H − ∂
∂zR3H

)

=

(
curlE

− curlH

)
.

An appropriate formulation of the target function is given in Sec. 4.5.

3.2 Shape Optimization Design Cycle

In Fig. 3.1 a very general scheme of the shape optimization design cycle is shown.

First of all, an initial geometric object has to be guessed and placed into the com-

putational domain. Then, the domain and possibly inner geometric objects are

discretized in a suitable manner, which usually depends on the considered applica-

tion. A forward simulation is conducted and especially in our formulation the primal

data is compressed to the boundary.

After that, a problem-dependent target function is evaluated. Next, the adjoints are

computed and take part in the evaluation of the shape gradient. To avoid disconti-

nuities of the mesh and to speed up the optimization, a smoothed descent direction

is computed in the space of continuous functions. The smoothing can be interpreted

as a Newton-step for a circumference penalization. After these steps, one or sev-

eral convergence criteria, e.g., with respect to the reduction of the target functional

or with respect to the norm of the gradient, are checked. If the defined conver-

gence criteria are satisfied, the iteration stops with a final shape Γ∗. Otherwise, the

domain discretization and the discretization of the geometric object, in particular

the discretization of the boundaries, will be updated, the mesh will be moved, and

the steps from the forward simulation onwards will be repeated until a convergence

criterion is reached.
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3.2 Shape Optimization Design Cycle

guess and place initial object

domain discretization

perform forward simulation

evaluate target function

compute adjoints

evaluate shape gradient

smooth shape gradient

optimization step

convergence?
update domain
discretization

final shape Γ∗no yes

Figure 3.1: Scheme of shape optimization design cycle.

In the next section, the Brachistochrone problem is presented. It is not only one

of the first problems in the context calculus of variations but also an illustrative

example in the field of shape optimization. More similar introductory problems are

described, e.g., in [10, 11, 75]. The solution of the Brachistochrone problem should

not be in the focus of this section but the proposed task should illustrate that shape

optimization problems have been known for a long time although they have been

solved via other methods. Furthermore, the example should demonstrate that even

simple problems can be formulated as a shape optimization problem.

Brachistochrone problem Johann Bernoulli posed the Brachistochrone problem in

1696. The task was to find the optimal shape of a curve y(x), which provides the least

time to travel (without friction) from a point (a, ya) to a point (b, yb) in a constant

gravity field g. First, one might think of a straight line as a minimizer. However, in

fact a cycloid turns out to be the optimal curve. A cycloid is the curve traced by a

point attached to a circular wheel travelling along a straight line. A sketch of the

problem is shown in Fig. 3.2. The problem was solved by Johann Bernoulli, Jacob

Bernoulli, Isaac Newton, Gottfried Leibniz, and Guillaume de L’Hôpital applying
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3 Shape Calculus

different approaches. Nevertheless, all of them came to similar solutions.

Figure 3.2: Brachistochrone problem. Possible paths from (a, ya) to (b, yb).
Red curve (cycloid) needs the least time for the transit.

Thereof, one can formulate a shape optimization problem with the target to find a

minimal curve y(x) ∈ R2 with fix start and end-point.

Problem 3.3 (Shape optimization problem: Brachistochrone).

min
Γ
y(Γ)

such that y(a) = ya, y(b) = yb.

In order to solve the problem, one employs basic equations and laws from mechanics.

The time to travel between two points is given by

Tab =

b∫
a

ds

v
,

where s denotes the arc length and v the speed. For a rectifiable curve and infinites-

imal ds, the following equation holds

ds2 = dx2 + dy2 = (1 + y′(x)2)dx2. (3.6)

Assuming the total energy of the point mass to be zero and exploiting the energy
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3.3 Basics of Shape Calculus

law, which involves the kinetic energy Ekin and the potential energy Epot,

Ekin = Epot ⇔
1

2
mv2 = m · g · y(x),

one arrives at an expression for v of the form

v =
√

2gy(x).

Now, we can transform the shape Brachistochrone problem into a variational prob-

lem with fixed limits:

Problem 3.4 (Variational problem: Brachistochrone).

min
y(x)

b∫
a

√
1 + y′(x)2√

2gy(x)
dx

such that y(a) = ya, y(b) = yb.

This problem might be solved, e.g., by the Euler-Lagrange differential equation. In

the end, one arrives at a solution for y(x), which describes a cycloid. A possible

parametric representation is given by

x(t) =
k

2
(t− sin t), y(t) =

k

2
(1− cos t),

where k describes the diameter of a circular wheel. The trigonometric functions

describe the circular motion. This cycloid is called Brachistochrone.

3.3 Basics of Shape Calculus

In this section, the most common concepts to obtain shape derivatives are explained.

One term, which is indispensable in this context, is the vector/velocity field. The

vector field is a continuous differentiable map, which operates on the whole compu-

tational domain. Hence, it contains a definition for the movement for every point.

Therefore, it can also be interpreted as a domain perturbation. Illustrations of the

vector field for different perturbations methods are given by Fig. 3.3 and Fig. 3.4.
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3 Shape Calculus

Lagrange Method One approach to obtain the shape gradient of a PDE-constrained

problem is based on the Lagrangian formulation. This technique was first introduced

by Cea in 1986 [14]. It can be considered as a comparatively simple method to ob-

tain the shape derivative since one has to define the Lagrangian formulation. The

Lagrangian function is denoted by

L(Ω, u, λ1, λ2) = J(u(Ω̃)) + λ1f(u(Ω̃)) + λ2g(u(Ω̃)),

where u denotes the state and λ1, λ2 the adjoint variables. The state constraints

are denoted by f(u(Ω̃)) and the boundary conditions by g(u(Ω̃)). Then, the shape

derivative in the direction of the velocity field V is given by

dJ(Ω;V ) =
d

dε
(Ωε, uε, λ1ε , λ2ε ;V ).

In order to arrive at an explicit expression for the gradient, the Lagrangian is ana-

lyzed for saddle points and an adjoint system is solved. Applying this method, it is

assumed that u and λ1, λ2 are differentiable with respect to the domain. Therefore,

it is also called a formal method. The required differentiability might cause prob-

lems for certain applications. For the considered Maxwell problem, the mentioned

problem occurs as well since, e.g., the state variable H is defined for the space where

curl(H) lives, but not necessarily on the whole domain.

For the following two fundamental methods we can define the family of perturbed

domains Ωε

Ωε = Tε(Ω) = {Tε(x) : x ∈ Ω}.

Analogously, we have for the perturbed boundary Γε = T̃ε = {T̃ε(x)|x ∈ Γ}.
Tε and T̃ε are bijective transformations of Rn with T0 = I. Here, we assume that

the initial domain Ω = Ω0 and all perturbed domains Ωε have the same topological

properties and the same regularity.

Another relevant definition is the definition of a shape functional. It is given by

Definition 3.1 (Shape functional). A shape functional J is a map

J(·) : D → R

Ω 7→ J(Ω),
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3.3 Basics of Shape Calculus

where D denotes the ”hold-all” of admissible domains with Ω ∈ D ⊂ P(Rd), which

is a domain of class Ck, k ≥ 1. J(·) is associated to the unperturbed domain.

Perturbation of Identity For a shape functional J(Ω) in a given domain Ω ⊂ Rn,

one can construct a family of transformations

Tε[V ](x)
def
= idΩ(x) + εV (x) = x+ εV (x), x ∈ Ω ε ∈ [0, ε̃)

for small perturbations 0 ≤ ε < ε̃ of Ω.

In Fig. 3.3, a sketch of the perturbation of the initial geometric domain Ω is given.

The vector v is an element of the velocity field V and points in the direction of

the normal of the boundary. The description of the concrete deformation of the

boundary that we are using for our application, is denoted in the update scheme of

the boundary (3.8). The velocity method, in the literature also called speed method,

is based on this perturbation and can be regarded as a generalization of the described

method.

Figure 3.3: 2D representation of perturbation of the domain.

Velocity Method The velocity method covers additional time dependence in the

vector fields. Therefore these fields are also called nonautonomous vector fields.

The flow (solution) of the differential equation x(ε,X) = x(ε) is defined as

dx

dε
(ε) = V (ε, x(ε)), ε ∈ [0, ε̃), x(0, X) = X,
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3 Shape Calculus

where V : [0, ε̃]× Ω 7→ Rn denotes the vector field.

Then the perturbed domain is given by

Tε[V ](X)
def
= x(ε,X) : Rn 7→ Rn ε ∈ [0, ε̃), X ∈ Ω.

A sketch of this method can be found in Fig. 3.4.

Figure 3.4: 2D representation of velocity method.

Remark 3.2. Under suitable assumptions, the method of perturbation of identity

and the velocity method yield the same first order shape derivative. An additional

acceleration term appearing in the second order shape derivatives using the method

of perturbation of identity, leads to different results for higher order shape deriva-

tives [22].

A formula to transform the perturbed domain Ωε back to the original form Ω is

given by

Jε =

∫
Ωε

f dx =

∫
Ω

f(Tε)| det (DTε)| dx, (3.7)

where D denotes the Jacobi operator. This transformation is the general analogon

to Eq. (3.6) of the Brachistochrone problem.

Motion of the Geometry Recalling basic concepts of nonlinear optimization [54],

one can find several parallels concerning the determination of a new iterate, e.g.,

considering the steepest descent method, where a new iterate is computed through

xnew = xold−α∇F (xold). A new point xnew is computed as a composition of the old

point xold minus a product of an appropriately chosen step size α with ∇F (xold),

which is the gradient of the function F at the former point xold.

In the field of shape optimization, Zolésio also proposed an explicit formula of the
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3.3 Basics of Shape Calculus

update of the boundaries depending on the explicit formulation of the gradient, as

will be derived in Sec. 4.5. Obviously, this is a gradient method applied to a non-

convex problem, which often leads to local minima and therefore the choice of the

initial geometry Ω0 is of high relevance.

Definition 3.3 (Update of boundary). For Γ being compact, there exists ε̃ > 0 such

that for any ε, |ε| < ε̃, the following equation for the update of the boundary holds

Γε = Γ + εg(x)n(x) = {y|y = x+ εg(x)n(x) for x ∈ Γ}. (3.8)

Thus, an update of a point x on the boundary Γ is determined by a shift of x in the

direction of the outward pointing normal n(x) multiplied with the gradient g(x) and

a step size ε.

An illustration of the update of the boundary is given in Fig. 3.5.

Figure 3.5: Update of the boundary Γ directly depending on the gradient g in the
direction of the normal n.

Important to notice is that the updated shape of the boundary Γupdate depends on

the former shape Γcurrent and not directly on the initial shape Γ0, thus

Γupdate = Γcurrent + εgn.

The step size ε can be determined via various step size control methods adapted

from [54].

Applying various methods, one can modify the update formula of the geometric

variable. Various approaches can be followed, e.g., the definition of a Newton-type

speed function, which includes calculating second Eulerian derivatives for shape

functionals. This approach is discussed in [37] in the context of image segmentation.

Another very successful technique is a gradient smoothing technique of Newton-type.
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3 Shape Calculus

This gradient smoothing method promises to accelerate the optimization process

similar to approximative Newton schemes. A possible approximation is using the

Hessian of the perimeter penalization in problem (3.2), which leads to a classical

Laplacian-type smoothing also found in so-called Sobolev methods [59]. More details

on smoothing can be found in Sec. 3.6.

3.4 Shape Gradient

Some preliminary definitions regarding the definition of the shape gradient are nec-

essary. Central concepts are defined in this section and are also taken from [21]. For

the derivation of the shape gradient of the least-squares objective functional with

Maxwell’s equations as equality constraints, the local shape derivative u′(Ω;V ), the

material derivative u̇(Ω;V ), the boundary shape derivative u′(Γ;V ), and the adjoint

system are required. The definition of the shape derivative dJ(Ω;V ) is also necessary

for the definition of the shape gradient in Hadamard form. With a deformation via

perturbation of identity the shape derivative of a domain functional J(Ω) is defined

as

Definition 3.4 (Shape derivative). The shape functional J : P(Ω) → R is called

shape differentiable along a vector field V, also called velocity field, where V indicates

the direction of the derivative, if the limit

dJ(Ω;V ) := lim
ε→0+

J(Ωε)− J(Ω)

ε
(3.9)

exists and the mapping V 7→ dJ(Ω;V ) is continuous and linear. Here, Ωε = Tε(Ω)[V ]

denotes the perturbed domain as described above.

The shape derivative dJ(Ω;V ) describes the change in the functional J depending

on the perturbed domain Ωε[V ].

The shape derivative is also known as Eulerian semi-derivative. Usual rules of

differential operators such as product rule or chain rule also hold for this operator.
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3.4 Shape Gradient

Remark 3.5 (Normal component). Under the assumptions that the boundary Γ is

Lipschitz continuous and div(f · V (0)) exists, the shape derivative only depends on

the normal component of the deformation on the boundary of the reference domain

[70].

For the derivation of the shape gradient the material derivative is needed. The

material derivative describes the change of the quantity of one specific property

depending on a velocity field V at a certain time at a certain place. The material

derivative is pointwise defined and if it exists at x ∈ Ω, it is defined as

Definition 3.6 (Material derivative). For a given family of functions uε : D 7→ R,

D = ”hold-all”, on a perturbed domain the material derivative is defined as

u̇(x;V ) :=
d

dε

∣∣∣∣
ε=0

uε(xε) (3.10)

:= lim
ε→0+

uε(Tε(x))− u(x)

ε
. (3.11)

The material derivative is also known as Lagrangian derivative or total derivative.

Definition 3.7 (Local shape derivative). For a given family of functions uε :D 7→R,

D = ”hold-all”, the local shape derivative can be read as partial derivative and is

expressed by

u′(x;V ) :=
∂

∂ε
uε(x). (3.12)

The local shape derivative of J(Ω) in the direction of V and the material derivative

are related as follows

u̇(x;V ) = u′(x;V ) +∇u(x) · V (0). (3.13)

Here, the physical meaning of the material derivative can be explained. The first

part, the shape derivative, describes the local part, in particular the sensitivity of

a specific property at a fixed place. The second part describes the convected part,

which contains additional sensitivity due to a spatial movement.
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In this thesis, the Hadamard representation of the shape gradient plays a central

role. The following definition states the shape derivative as a scalar distribution on

the boundary, which only depends on the normal part.

Definition 3.8 (Hadamard formula). Let J : P(Rd) → R be a shape functional

which is shape differentiable at every domain Ω of class Ck,Ω ⊂ D. Additionally,

let Ω ⊂ D be a domain with boundary of class Ck−1.

There exists the scalar distribution

g(Γ) in D−k(Γ) (3.14)

with the vector distribution G(Ω) ∈ D−k(Ω;Rn) = Dk(Ω;Rn)′ which is the gradient

of the shape functional J at Ω. It is expressed by

G(Ω) = γ∗Γ(g · n), (3.15)

where γΓ denotes the trace operator of g · n on Γ and γ∗Γ the adjoint of γΓ.

Directly connected to this definition, the following formula is often used for conve-

nience.

Remark 3.9. If g is integrable on Γ, the shape gradient g can also be expressed as

[70]

dJ(Ω;V ) =

∫
Γ
g(x)〈V (0, x), n(x)〉RndΓ. (3.16)

This definition will be used throughout the whole thesis. The explicit form of g

is required for implementation purposes, leads to significant data reduction and

prevents checkpointing.

3.4.1 Tangential Differential Calculus

In this section, we briefly summarize one of the basic ideas of shape optimization,

in particular the main concepts of tangential differential calculus. Classically, these

notions are introduced via a smooth extension R of a scalar function r : Γ 7→ R in
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a tubular neighborhood of Γ. This tubular neighborhood can be defined as

Uk(Γ) = {x ∈ Rd : b(x) < k}, k > 0, k ∈ R

with the oriented distance function b = bΩ. Assuming Ω to be an open domain

of class C2 in Rd with compact boundary Γ, then there exists h > 0 such that

b = bΩ ∈ C2(U2h(Γ)) [22]. The idea of extending boundary values can be applied

in this context since the expression of the tangential gradient on Γ is independent

of the choice of the extension R. A projection of a point x onto Γ is given by a

projection function p = pΓ and is defined as

p(x) = x− b(x)∇b(x).

Furthermore ∇(r ◦ p)|Γ denotes the tangential gradient ∇Γr (cf. Def. 3.10). The

extension r ◦ p is called canonical extension. The gradient of r ◦ p is tangent to the

level sets of b, e.g., for d = 2 the gradient is tangent to the isolines of b. Proofs for

the last two statements are given in [22]. The orthogonal projection operator of a

vector onto a tangent plane Tp(x)Γ is defined as

P (x) = I −∇b(x)∇b(x)>.

With a smooth extension, the Euclidean differential calculus in the ambient neigh-

borhood of Γ can be used. E.g., for a normal extension of r ∈ C1(Γ), one basically

determines normals on the boundary Γ and extends values of Γ of a certain area in

a tubular neighborhood. This tubular extension is also illustrated in Fig. 3.6.

The tangential gradient, also referred to as the surface gradient, is calculated along

a surface. It is similar to the conventionally known gradient without the normal

component of the surface. Therefore, it is tangential to the surface. The definition of

the tangential gradient uses a smooth extension R of r ∈ C1(Γ) in the neighborhood

of Γ and is formulated as

Definition 3.10 (Tangential gradient). For Γ being compact, the tangential gradient

of r ∈ C1(Γ) in a point of Γ reads as

∇Γr = ∇R|Γ −
∂R

∂n
n. (3.17)
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Figure 3.6: Illustration of tubular extension. Left: boundary Γ of ellipse with
varying values r(x), x ∈ Γ; not-oriented normals given in black.
Right: related normal extension in a tubular neighborhood of Γ.

The tangential gradient is the orthogonal projection P (x)∇R(x) of ∇R(x) onto the

tangent plane to Γ at x, that is TxΓ. A sketch of a tangent plane of an ellipsoid is

shown in Fig. 3.7.

Figure 3.7: Tangent plane of an ellipsoid.

Definition 3.11 (Tangential Jacobian matrix). The tangential Jacobian matrix of

a vector function r ∈ C1(Γ)M ,M ≥ 1, is defined as follows

(DΓr)ij = (∇Γri)j or DΓr = D(r ◦ p)|Γ,

where D denotes the Jacobian and r ◦ p the canonical extension of r.
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Definition 3.12 (Tangential divergence). The tangential divergence for a vector

function r ∈ C1(Γ) is defined as

divΓ r = div(r ◦ p)|Γ,

where r ◦ p denotes the canonical extension of r.

In general, the following notation is used for the tangential divergence [70]

divΓ r = divR|Γ −DRn · n. (3.18)

In Rd, the Tangential Stokes formula and the Tangential Green’s formula reads as

follows

Theorem 3.13 (Tangential Stokes formula). For a vector r ∈ C1(Γ)d, the tangential

Stokes formula is given by ∫
Γ

divΓ r dΓ =

∫
Γ

κr · n dΓ, (3.19)

where κ = divΓ n denotes the curvature.

And subsequently, we have

Theorem 3.14 (Tangential Green’s formula). For a function f ∈ C1(Γ) and a

vector r ∈ C1(Γ)d and a closed boundary Γ, the tangential Green’s formula equals∫
Γ

f divΓ r +∇Γf · r dΓ =

∫
Γ

κfr · n dΓ, (3.20)

where κ denotes the curvature.

Corresponding proofs for Thm. 3.13 and Thm. 3.14 can be found in [22].
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3.5 Adjoint Equations

For the derivation of the shape gradient, the determination of the adjoint system is

necessary. The adjoint operator was originally defined by Lagrange [47].

For the introduction of the adjoint operator we follow [5]. The adjoint operator can

be interpreted as a generalization of the matrix transpose to infinite-dimensional

spaces. Therefore we introduce some properties of the matrix transpose. For a

given linear continuous operator A : Rn 7→ Rm, we can use the Euclidean inner

products for Rn and Rm

y>Ax = (Ax, y)Rm , x>A>y = (x,A>y)Rn ∀x ∈ Rn, y ∈ Rm.

This yields the definition for the transpose (adjoint) operator

(Ax, y)Rm = (x,A>y)Rn ∀x ∈ Rn, y ∈ Rm.

Thus, the adjoint operator is equivalent to the transpose operator considering real

spaces.

For the general case, we can state the following. We assume the spaces V and W are

Hilbert spaces and L ∈ L(V,W ). Additionally, we assume for the sake of simplicity

K = R for the corresponding set of scalars. We define an operator L∗ : W 7→ V as

the adjoint of L as follows.

First, we define a linear functional `w ∈ V ′ for a given w ∈ W via the Riesz

representation by

`w(v) = (Lv,w)W ∀v ∈ V.

The boundedness of lw can be derived by

|`w(v)| ≤ ‖Lv‖ ‖w‖ ≤ ‖L‖ ‖v‖ ‖w‖ .

Using then the Riesz representation theorem (Thm. 2.6), we obtain a uniquely de-

termined element L∗(w) ∈ V such that

`w(v) = (v, L∗(w)) ∀v ∈ V
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or equivalently

(Lv,w)W = (v, L∗(w))V v ∈ V,w ∈W.

This is also known as the Lagrange identity. The proofs showing the linearity and

boundedness of the operator L∗ can be found in [5].

Remark 3.15 (Self-adjoint operator). If for the linear operator L and the corre-

sponding adjoint operator L∗ the equalities V = W and L∗ = L hold, then L is called

a self-adjoint operator. A linear operator A ∈ Rn×n is self-adjoint, if one has for

A∗ that A∗ = A> = A.

3.6 Smoothing

All of the above definitions and theoretic concepts are needed to derive the shape

gradient. For the applicability of gradient-based optimization techniques, an ex-

plicit form of the gradient is required. An explicit formulation of the shape gradient

on the boundary also leads to a significant reduction of the memory requirement

since a huge data reduction can be achieved. Therefore, we express the gradient in

the Hadamard sense. Despite having an explicit form of the gradient, one cannot

directly conduct the update of the mesh as proposed in Eq. (3.8) due to possible dis-

continuities in the gradient, e.g., distinct sharp features, arising from the geometry

modification. This fact leads to problems in the numerical realization such as un-

desirable artifacts. Consequently, we have to deal with an ill-conditioned problem.

Usually a regularization of the inverse problem is conducted. This can be achieved

by a penalization of the circumference of the geometric object. This additional term

is described in [70]. The penalization can also be interpreted as a smoothing con-

straint, since it prevents the optimization algorithm from suffering from objects with

sharp features. So, just considering the penalization term of problem 3.2, we can

obtain with [37]

J(H,E,Ω) =

∫
Γincl

1 dS

→ d2J(H,E,Ω;V,W ) =

∫
Γincl

〈∇Γ〈V, n〉,∇Γ〈W,n〉〉+ κ〈V, n〉〈W,n〉 dS.
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This second derivative would represent a Newton-type update within the optimiza-

tion process, but this can also be achieved by a Laplacian gradient smoothing as

described in the following. Examples for gradient smoothing approaches are geomet-

ric strategies, which adjust mesh points close to the boundaries or filter techniques.

The latter one is often applied in topology optimization in order to avoid checker-

boards [7, 68].

Here, we focus on implicit gradient smoothing methods. In this research field,

Jameson was one of the first who developed and implemented suitable algorithms

[39, 40, 41]. These smoothing methods can also be interpreted as preconditioners

or Newton approximation. Instead of using the shape gradient directly, a smoothed

gradient leads to a better handling of the ill-conditioned problem. The smoothing

is usually performed by a change of the inner product from the L2 space to an ap-

propriate Sobolev space. The use of an alternate inner product indicates why these

methods are also called Sobolev gradient smoothing methods. They are present in

many application areas such as aerodynamic, geometric modeling problems and sig-

nal processing. Details of the mentioned applications and further developments can

be found in [48, 52].

In this thesis, we focus on Laplacian smoothing. Stemming from the Newton-step

for circumference regularization, more useful information concerning the direction

of the minimum is available. Thanks to this additional information, larger step sizes

in the update (Eq. (3.8)) are possible and consequently less optimization iterations

are needed. The originally proposed steepest descent method then resembles rather

a Newton-type method. Therefore, a better convergence rate can be expected.

In order to determine the smoothed gradient we solve the Laplacian equation

−∆u+ u = uold in Ω (3.21)

u = u0 on ∂Ω (3.22)

in the smooth space H1
0 (Ω). The function uold represents the L2 gradient. Therefore,

this way of smoothing is also called implicit smoothing. From Eq. (3.21), we form
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3.7 General Formulation for the Shape Gradient for Linear State Constraints

the weak formulation a(u, v) = L(v) with

a(u, v) =

∫
Γ

(εsmooth〈∇Γv,∇Γu〉+ v · u) dS

L(v) =

∫
Γ

uold · v dS,

where v denotes the test function, u the trial function and εsmooth the smoothing

parameter, which is related to δ in problem (3.2). A well-chosen εsmooth is very

important since the update of the boundary and consequently a successful optimiza-

tion directly depends on the smoothed gradient. Solving this problem stated in the

weak formulation in the finite dimensional space Vh ⊂ V , we receive the smoothed

gradient. The smoothed gradient replaces the previously calculated gradient g(x) in

the update scheme of Eq. (3.8), whereas the rest of the optimization process remains

unchanged.

3.7 General Formulation for the Shape Gradient for Linear

State Constraints

In this section, a general formulation for the shape gradient for linear state con-

straints is derived. This result serves as basis for the derivation of the shape gradient

in Sec. 4.5.

First of all, we start with the shape derivative in the Hadamard form of a domain

integral and a boundary integral as introduced by Zolésio in [70].

Shape Derivative for Domain Integral A general target function J(Ω), defined on

the domain Ω and depending on the state u, is given by

J(Ω) =

∫
Ω

h(Ω;u) dx,
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3 Shape Calculus

then the Eulerian derivative is defined as

dJ(Ω;V ) =

∫
Ω

ḣ(Ω;u) dx+

∫
Ω

div(h(Ω;u)V ) dx.

Assuming Γ is of class Ck, k ≥ 1, the Eulerian derivative can be formulated as

dJ(Ω;V ) =

∫
Ω

h′(Ω;u) dx+

∫
Γ

h(Ω;u)〈V, n〉 dS. (3.23)

Corresponding proofs can be found in [70].

Shape Derivative for Boundary Integral Now we consider a general target func-

tional J(Γ), which is only defined on a boundary Γ and depends on the state u,

i.e.,

J(Γ) =

∫
Γ

h(Γ;u) dS.

Applying the Hadamard theorem, the Eulerian derivative can be expressed as

dJ(Γ;V ) =

∫
Γ

ḣ(Γ;u) dS +

∫
Γ

h(Γ;u) divΓ(V ) dS. (3.24)

Using Eq. (3.13), which describes the relation between the material derivative and

the shape derivative, yields

dJ(Γ;V ) =

∫
Γ

h′(Γ;u) dS +

∫
Γ

[∇Γh(Γ;u) · V + h(Γ;u) divΓ(V )] dS. (3.25)

Exploiting the tangential Green’s formula (Thm. 3.14), one gets

dJ(Γ;V ) =

∫
Γ

h′(Γ;u) + κh(Γ;u)〈V, n〉 dS, (3.26)
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3.7 General Formulation for the Shape Gradient for Linear State Constraints

where κ denotes the curvature. Additionally, the equation

h′(Γ;u) = h′(Ω;u)|Γ +
∂h

∂n
〈V, n〉

holds.

Finally, the shape derivative of the boundary integral can be expressed as

dJ(Γ;V ) =

∫
Γ

h′(Ω;u)|Γ + 〈V, n〉
[
∂h

∂n
+ κh

]
dS. (3.27)

The expressions for the shape derivative for the domain integral (3.23) and for the

boundary integral (3.27) will be reused in the remainder of the section to derive the

shape derivative for the general problem (3.2). In the next chapter, this result will

be transferred to the Maxwell problem (4.1).

Furthermore, we refer to results obtained in [71]. In particular, they consider the

variational formulation of the shape derivatives for the compressible Navier-Stokes

equations. For obtaining a gradient representation in Hadamard form, results of [60]

are recalled and extended.

In order to obtain an actual expression for the shape derivative for linear state con-

straints, we revisit the generalized problem (3.2), which is formulated in divergence

form and derive the weak formulation of the (domain) constraint.

Then, the strong variational formulation of the (domain) constraint is given by

0 =

∫
Ω

〈ξ, ∂φ(x)

∂t
〉+ 〈ξ,divF (φ(x))〉 dx

=

∫
Ω

〈ξ, ∂φ(x)

∂t
〉+ divF (ξφ(x))− 〈∇, ξ · F (φ(x))〉 dx ∀ξ ∈ H1(Ω).

Using the divergence theorem (Thm. 2.1) yields

0 =

∫
Ω

〈ξ, ∂φ(x)

∂t
〉 − 〈F (φ(x)),∇ξ〉 dx ∀ξ ∈ H1(Ω).
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3 Shape Calculus

Consequently, we get the following expression for the weak formulation

0 =

∫
Ω

〈ξ, ∂φ(x)

∂t
〉 − 〈F (φ(x)),∇ξ〉 dx+

∫
∂Ω

ξ · FΓ(φ(x), n) dS.

The expression FΓ(φ(x), n) indicates that the boundary conditions might also de-

pend on the outer pointing normal n as it is the case for the Maxwell’s equations.

First, we concentrate on the derivation of the local shape derivative of the (domain)

constraint. Therefore, we assume Ωε ⊂ D ∀ε. Then, we can formulate the last

equation as

0 =

∫
Ωε

〈ξ, ∂φ(xε)

∂t
〉 − 〈F (φ(xε)),∇ξ〉 dxε ∀ξ ∈ H1(D).

Next, we can determine the local shape derivative of the (domain) constraint

0 =
d

dε

∫
Ωε

〈ξ, ∂φ(xε)

∂t
〉 − 〈F (φ(xε)),∇ξ〉 dxε

∣∣
ε=0

=

∫
Ω

〈ξ, ∂φ
′(x)

∂t
〉 − 〈F ′(φ(x))φ′[V ],∇ξ〉 dx−

∫
∂Ω

〈V, n〉〈F (φ(x)),∇ξ〉 dS.

Now, we continue with the derivation of the local shape derivative for the boundary

constraints FΓ. Here, we have to take the additional dependence on the normal n

into account. Hence, analogously to Eq. (3.24), also cf. [71], we can determine the

Eulerian derivative

0 =

∫
∂Ω

〈V, n〉[〈∇(ξ · FΓ(φ(x), n)), n〉

+ κ (ξ · FΓ(φ(x), n)−Dn(ξ · FΓ(φ(x), n)) · n)

+ divΓ(D>n (ξ · FΓ(φ(x), n)))] dS. (3.28)

If the boundary conditions FΓ are linear, the curvature κ vanishes since

Dn(ξ · FΓ(φ, n)) · n = ξ · FΓ(φ, n).
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3.7 General Formulation for the Shape Gradient for Linear State Constraints

Using the definition of the tangential divergence (Def. 3.12), one gets

dJ(Ω;V ) =

∫
∂Ω

〈V, n〉[〈∇(ξ · FΓ(φ(x), n)), n〉

+ div(D>n (ξ · FΓ(φ(x), n)))− 〈∇(D>n (ξ · FΓ(φ(x), n))n), n〉 dS

=

∫
∂Ω

〈V, n〉 div(D>n (ξ · FΓ(φ(x), n))) dS. (3.29)

This important result is recalled in Sec. 4.5 to derive the shape derivative for the

Maxwell problem (4.1).
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4
Shape Optimization for Electromagnetic

Simulations

In this chapter, a detailed analysis of a 3D time-dependent Maxwell problem is

conducted. The focus lies on the general Maxwell problem subject to boundary con-

ditions motivated by real-life applications. Therefore, an exact formulation of the

underlying problem has to be defined. This comprises the derivation of an appropri-

ate upwind flux for possible jumps in the material coefficients and general stability as

well as the definition of suitable boundary conditions. Defining a problem-dependent

target functional completes the formulation of the optimization problem. Adjoint

equations, which take part in the derivation of the Maxwell shape gradient, are in-

troduced as well. This thorough analysis contains new approaches and ideas and is

of high interest especially concerning real-life applications.
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4.1 Derivation of the Steger-Warming Upwind Flux for

Maxwell’s Equations

Let us recall the motivation of Galerkin methods from Subsec. 2.2.2: In general, one

needs an appropriate strategy to relate local solutions at the interface to one global

solution. In our application, we have discontinuous jumps in the material coefficients

since we consider a domain with different electromagnetic properties such as electric

permittivity ε, magnetic permeability µ or conductivity σ.

In the following, we derive an appropriate flux contained in the class of upwind fluxes

to ensure stability and to preserve monotonicity of the solution. A more detailed

discussion of fluxes can be found in Subsec. 2.2.2.

Using local solution methods such as Galerkin methods, accuracy in the solutions

is ensured. To guarantee stability, a carefully chosen upwind flux is indispensable.

Here, we derive the Steger–Warming upwind flux for the 3D Maxwell’s equations.

Later, the derived expression enters the problem formulation. The Steger–Warming

upwind scheme is based on a flux–projection onto the space of eigenvectors [67, 72].

Therefore, the flux vectors are linearized with respect to the primitive variables H

and E resulting into matrices with real eigenvalues and a complete set of eigenvec-

tors. With an appropriate similarity transformation, we can split the system matrix

into two parts: one describes the behavior of the characteristic variables of the left-

hand side of the interface and the other one the behavior of the right-hand side.

First of all, we start with the variational formulation for the Maxwell’s equations

for our local approach, cf., Chapter 2

T∫
0

∫
Ω

v · (∂H
∂t

+
1

µ
curlE) + w · (∂E

∂t
− 1

ε
curlH +

σ

ε
E) dx dt = 0,

where v and w are the test functions.
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4.1 Derivation of the Steger-Warming Upwind Flux for Maxwell’s Equations

Integration by parts for the curl operator leads to

0 =

T∫
0

∫
Ω

〈v, ∂H
∂t
〉+ 〈E, 1

µ
curl v〉+ 〈w, ∂E

∂t
〉 − 〈H, 1

ε
curlw〉+

σ

ε
〈w,E〉 dx dt

−
T∫

0

∫
∂Ω∪S̃

1

µ
〈v,E × n〉 − 1

ε
〈w,H × n〉 dS dt.

Here, S̃ collects inner interfaces, where no continuity for test- and ansatzfunctions

is required due to possible jumps at the interface.

To obtain the general form as stated in Sec. 3.7, Eq. (3.29) can also be expressed as

tf∫
t0

∫
Ω

〈v, ∂H
∂t
〉+ 〈E, 1

µ
curl v〉+ 〈w, ∂E

∂t
〉 − 〈H, 1

ε
curlw〉+

σ

ε
〈w,E〉 dx dt

−

tf∫
t0

∫
Γ∪S̃

h(s, n) dS dt = 0

with

h(s, n) = (v, w)

[
0 1

µAn

−1
εAn 0

](
H

E

)
, An =

 0 −nz ny

nz 0 −nx
−ny nx 0

 .
The definition of An is closely related to the flux definition of the Maxwell’s equations

(3.5) through An = R1nx + R2ny + R3nz. For the projection onto the space of

eigenvectors, the computation of the eigenvalues and eigenvectors of

Â :=

[
0 1

µAn

−1
εAn 0

]

is needed. For the system considered here, the eigenvalues are

λ1 = 0, λ2 = 0, λ3 = − 1
√
µε
, λ4 = − 1

√
µε
, λ5 =

1
√
µε
, λ6 =

1
√
µε
.
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Corresponding eigenvectors can then be computed as

v1 =
(

0, 0, 0, nx, ny, nz

)>
, v2 =

(
nx, ny, nz, 0, 0, 0

)>
,

v3 =
(
−
√

ε
µnxny,

√
ε
µ(n2

x + n2
z),−

√
ε
µnynz,−nz, 0, nx

)>
,

v4 =
( √

ε
µnxnz,

√
ε
µnynz,−

√
ε
µ(n2

x + n2
y),−ny, nx, 0

)>
,

v5 =
( √

ε
µnxny,−

√
ε
µ(n2

x + n2
z),
√

ε
µnynz,−nz, 0, nx

)>
,

v6 =
(
−
√

ε
µnxnz,−

√
ε
µnynz,

√
ε
µ(n2

x + n2
y),−ny, nx, 0

)>
.

In the following, we use the abbreviations

Y =

√
ε

µ
, Z =

√
µ

ε
, c =

1
√
µε
.

To compute the Jacobian Â, we exploit the similarity transformation

Λ = P−1ÂP,

where

P := [v5, v3, v1, v6, v4, v2]

=



nxnyY −nxnyY 0 −nxnzY nxnzY nx

−(n2
x + n2

z)Y (n2
x + n2

z)Y 0 −nynzY nynzY ny

nynzY −nynzY 0 (n2
x + n2

y)Y −(n2
x + n2

y)Y nz

−nz −nz nx −ny −ny 0

0 0 ny nx nx 0

nx nx nz 0 0 0


and the diagonal matrix Λ = diag(c,−c, 0, c,−c, 0), i.e., the diagonal elements of

Λ are given by the corresponding eigenvalues. Defining A± = PΛ±P−1, where

Λ+ = diag(max(λi, 0)) and Λ− = diag(min(λi, 0)), it is easy to see that Â can be
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4.1 Derivation of the Steger-Warming Upwind Flux for Maxwell’s Equations

split into a sum of

A+ =
1

2



n2
y + n2

z −nxny −nxnz 0 −nzY nyY

−nxny n2
x + n2

z −nynz nzY 0 −nxY
−nxnz −nynz n2

x + n2
y −nyY nxY 0

0 nzZ −nyZ n2
y + n2

z −nxny −nxnz
−nzZ 0 nxZ −nxny n2

x + n2
z −nynz

nyZ −nxZ 0 −nxnz −nynz n2
x + n2

y


and

A−=
1

2



−(n2
y + n2

z) nxny nxnz 0 −nzY nyY

nxny −(n2
x + n2

z) nynz nzY 0 −nxY
nxnz nynz −(n2

x + n2
y) −nyY nxY 0

0 nzZ −nyZ −(n2
y + n2

z) nxny nxnz

−nzZ 0 nxZ nxny −(n2
x + n2

z) nynz

nyZ −nxZ 0 nxnz nynz −(n2
x + n2

y)


.

By setting

Ãn =

 n2
y + n2

z −nxny −nxnz
−nxny n2

x + n2
z −nynz

−nxnz −nynz n2
x + n2

y

 ,
one can compute AnE = n× E = −E × n and ÃnE = n× (E × n) = −A2

nE. The

decomposed parts of Â can then be expressed as

A+ =
1

2

[
Ãnc AnY c

−AnZc Ãnc

]
, A− =

1

2

[
−Ãnc AnY c

−AnZc −Ãnc

]
. (4.1)
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Summarizing the above considerations, the upwind flux is given by

(v, w) · Â ·

(
H

E

)
= (v, w) ·

[
0 1

µAn

−1
εAn 0

](
H

E

)
(4.2)

= (v, w)(PΛP−1) ·

(
H

E

)

= (v, w)

[
(PΛ+P−1) ·

(
H−

E−

)
+ (PΛ−P−1) ·

(
H+

E+

)]

= (v, w)
1

2

[
Ãnc AnY c

−AnZc Ãnc

]
·

(
H−

E−

)
(4.3)

+ (v, w)
1

2

[
−Ãnc AnY c

−AnZc −Ãnc

]
·

(
H+

E+

)
:= h(s, n)

In the derived formulation, the primitive variables H and E are split into H−, H+

resp. E−, E+ for a proper representation of the non continuous values at inner inter-

faces S̃. The matrix block in front of (H+, E+)
>

denotes the incoming information

of the domain and consequently, the matrix block in front of (H−, E−)
>

denotes the

outgoing information of the domain and this matrix block is positive semidefinite.

This general expression h(s, n) for the upwind scheme has to be adjusted to the

specific boundary conditions that hold on the different surfaces. Appropriate for-

mulations are derived in Sec. 4.2.

4.2 Boundary Formulation

Two different kinds of boundary conditions govern the surfaces of the bounding box

of the computational domain. One boundary condition defines the pulse p entering

the domain. This surface is denoted by Γin/out. All other surfaces Γnon−reflective of

the bounding box should have the property to be non-reflective. The surface of the

obstacle is supposed to be reflective and is denoted by Γreflective = Γincl. On Γin/out,

the values of the reflected E and H field are recorded and enter the evaluation of

the target function as explained in detail in Sec. 4.3. Boundary conditions for the

remaining surfaces are specified in the remainder of this section.
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4.2 Boundary Formulation

First, we consider the reflection boundary of the hidden obstacle. If the material of

the obstacle has zero electric permeability, i.e., a perfect conductor, then we want the

electric field on the boundary and inside the obstacle to vanish for the observation

time interval. An example for this is a metallic object, where the resulting currents

automatically eliminate the electric field. The system matrix belonging to the local

magnetic field H− and electric field E− remains always the same, while the system

matrix belonging to the responding remote fields H+, E+ varies due to the desired

behavior.

Reflective Boundary Condition For the reflective boundary, we determine

hreflective(H,E, n) =
1

2
(v, w)

[
Ãnc AnY c

−AnZc Ãnc

]
·

(
H−

E−

)

+
1

2
(v, w)

[
−Ãnc −AnY c
−AnZc −Ãnc

]
·

(
H+

E+

)

= (v, w)

[
0 0

−AnZc 0

]
·

(
H

E

)
= w · (−An)ZcH.

Inlet Boundary Condition For the inlet boundary Γin/out, one can define the fol-

lowing boundary conditions

hin/out(H,E, n) =
1

2
(v, w)

[
Ãnc AnY c

−AnZc Ãnc

]
·

(
H−

E−

)
+

1

2
(v, w)

(
pH

pE

)
.

(4.4)

Here, the remote fields H+ and E+ are replaced with the incoming pulse pH and

pE , which varies depending on the considered application. For the incoming flow at

the inlet boundary, one can show redundancy of

1

2

[
−Ãnc AnY c

−AnZc −Ãnc

]
·

(
H

E

)
=

(
pH

pE

)
.
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It follows that

1

2
(n× (H × n)c+ (n× E)Y c) = pH , (4.5)

1

2
((H × n)Zc+ (n× (E × n)c)) = pE . (4.6)

Equation (4.6) can be transformed to

(H × n)Zc+ (n× (E × n)c) = 2pE ⇐⇒ H × n =
2

c
Y pE − (n× (E × n)Y ).

Inserting the expression for H × n in Eq. (4.5) yields

1

2

(
n×

[
2

c
Y pE − n× (E × n)Y

]
c+ (n× E)Y c

)
= pH

⇐⇒ n× pEY −
1

2
n× [n× (E × n)Y ] c+

1

2
(n× E)Y c = pH

⇐⇒ Y n× pE = pH

⇐⇒ n× pE = pHZ.

All together we have

1

2
[(H × n)Zc+ (n× (E × n)c)] = pE ⇐⇒

1

2

[
−AnH + ÃnEY

]
=
Y

c
pE (4.7)

and n× pE = pHZ.

Due to the shown redundancy, one can choose one of the two lines of the matrix

block of Eq. (4.4) to represent the boundary condition on Γin/out.

Non-reflecting Boundary Condition For all other surfaces of the bounding box,

we define a non-reflecting behaviour, which means that only the leaving information

is considered and no information is sent back into the domain. Consequently, the

boundary condition is formulated as

hnon−reflective(H,E, n) =
1

2
(v, w)

[
Ãnc AnY c

−AnZc Ãnc

]
·

(
H−

E−

)
.
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Thus, we arrive at a detailed expression for the general Maxwell problem in a weak

sense constrained by problem-dependent boundary conditions in a general form as

explained in Sec. 3.7

tf∫
t0

∫
Ω

〈v, ∂H
∂t
〉+ 〈E, 1

µ
curl v〉+ 〈w, ∂E

∂t
〉 − 〈H, 1

ε
curlw〉+

σ

ε
〈w,E〉 dx dt

−

tf∫
t0

∫
Γreflective

hreflective(H,E, n) dS dt−

tf∫
t0

∫
Γin/out

hin/out(H,E, n) dS dt

−

tf∫
t0

∫
Γnon−reflective

hnon−reflective(H,E, n) dS dt. (4.8)

With this expression, we have a complete description of the boundary conditions

that might occur in our application. In the following section a proper expression for

the target functional is formulated and hence, an entire formulation of the underlying

problem is determined.

4.3 Problem Formulation

Our goal is to determine the actual structure of a hidden object inside a given

domain. Based on an initial geometry, the forward simulation is performed and the

reflected electric and magnetic fields on the surface Γin/out are simulated. To obtain

an analytical expression for the simulated field values, we only consider the part

that is leaving the computational domain, namely the reflected values at the inlet

boundary Γin/out, which is the first term of Eq. (4.4). Analogously, redundancy can

also be obtained in this case with pH = pE = 0.

This redundancy can also be exploited for the boundary Γnon−reflective.

With the expression of the simulated fields (4.7) and Γincl = Γreflective, we can state

a proper formulation of our optimization problem, namely
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Problem 4.1 (Maxwell problem).

min
Γincl

J(H,E,Ω) =

1

2

tf∫
t0

∫
Γin/out

∥∥∥−αAnHZc+ ÃnEc− Fmeas
∥∥∥2

dS dt+ δ

∫
Γincl

1 dS (4.9)

such that

µ
∂H

∂t
= − curlE in Ω

ε
∂E

∂t
= curlH − σE in Ω

1

2

(
−AnHZc+ ÃnEc

)
= pE on Γin/out

1

2

(
−AnHZc+ ÃnEc

)
= 0 on Γnon-reflective

−AnHZc = 0 on Γincl,

(4.10)

where Fmeas denotes the actual measurement values. Depending on the factor

α ∈ {0, 1} either both reflected fields E and H are taken into account or just the

reflected E field. The regularization parameter δ scales the perimeter penalization.

Using curl- instead of matrix notation, one obtains

min
Γincl

J(H,E,Ω) =

1

2

tf∫
t0

∫
Γin/out

‖−α(n×H)Zc+ n× (E × n)c− Fmeas‖2 dS dt+ δ

∫
Γincl

1 dS

such that

µ
∂H

∂t
= − curlE in Ω

ε
∂E

∂t
= curlH − σE in Ω

1

2
((H × n)Zc+ n× (E × n)c) = pE on Γin/out

1

2
((H × n)Zc+ n× (E × n)c) = 0 on Γnon−reflective

(H × n)Zc = 0 on Γincl.
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Existence and Uniqueness of Local Shape Derivatives of Maxwell’s Equations

First analytical results concerning the existence and uniqueness of the local shape

derivatives of the Maxwell’s equations can be found in [13]. In that paper the

authors formulate the required derivatives in the Lebesgue space. They make use of

the concept of material derivatives. All their considerations and proofs correspond

to H(curl,Ω). Their main result is the proof of the proposition that the solution

to the Maxwell’s equations is weakly material differentiable in H(curl,Ω) as well

as weakly shape differentiable in H(curl,Ω). Furthermore, the material derivative

resp. the shape derivative are supposed to be the solution of corresponding derived

systems. These propositions are proved by showing the regularity of the solution

using shape difference quotients.

A further remark on the existence of the local shape derivatives can be extracted

from a paper by Ito, Kunisch and Peichl [38]. One result of that paper is that the

shape derivative of the objective function does not necessarily require existence of

the variation of the PDE state. The idea is to formulate a variational problem whose

solution may replace the variation of the PDE state.

4.4 Formulation of the Corresponding Adjoint Equations

Although it is not obvious in the general expression of the shape gradient for linear

constraints formulated in Eq. (3.29), the adjoint system takes implicitly part in

the final expression of the shape gradient as presented at the end of this chapter.

Considering Eq. (4.2), one can obtain the adjoint system by exploiting A>n = −An
and rescaling of Y and Z. For completeness, we derive the adjoint system via the

Lagrange ansatz.

Exploiting the Optimality Condition We follow the approach presented in [31]

to derive the adjoint system. For this purpose, we consider the Lagrange function

defined by

L(H,E,Ω, λH(t), λE(t)) := J(H,E,Ω) +

(
λH(t)

λE(t)

)
c(H,E) (4.11)
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where c(H,E) describes the state equations given by the problem constraints in

Eq. (4.10). We only focus on the parts depending on the states H and E. There-

fore, the boundary conditions for the non-reflective part and the in/out part are

identical. The functions λH(t) and λE(t) denote the Lagrange-multiplier for the H-

and E-field, respectively. Taking the different boundary conditions into account,

one obtains(
λH(t)

λE(t)

)
c(H,E) =

tf∫
t0

∫
Ω

λH(t)

[
∂H

∂t
+

1

µ
curlE

]
dx dt+

tf∫
t0

∫
Ω

λE(t)

[
∂E

∂t
− 1

ε
curlH +

σ

ε
E

]
dx dt

+

tf∫
t0

∫
Γnon−reflective∪Γin/out

(H,E)

[
Ãnc AnZc

−AnY c Ãnc

](
λH(t)

λE(t)

)
dS dt

+

tf∫
t0

∫
Γincl

(H,E)

[
0 −AnZc
0 0

](
λH(t)

λE(t)

)
dS dt

(
λH(t)

λE(t)

)
dS dt.

At an optimal point, the optimality condition

L(H,E)(H,E,Ω, λH(t), λE(t)) = 0

must hold. This condition is exploited to determine the adjoint system.

We omit the integration over time and the regularization term for brevity and there-

fore use

J̃(H,E,Ω) =
1

2

∫
Γin/out

∥∥∥−αAnH + ÃnEY − Fmeas
∥∥∥2

dS.

in (4.11). First, we derive the adjoint equation for the target functional. Therefore,
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4.4 Formulation of the Corresponding Adjoint Equations

we transform the functional in a more general form

1

2
(−H>A>n + E>Ã>n Y − F>meas)(−AnH + ÃnEY − Fmeas)

=
1

2
(H>A>nAnH −H>A>n ÃnEY +H>A>nFmeas − E>Ã>n Y AnH + E>Ã>n Y ÃnE

− E>Ã>n Y Fmeas + F>measAnH − F>measAnEY + F>measFmeas)

=
1

2

(
(H>, E>)

[
A>nAn −A>n ÃnY
−Ã>nAnY Y Ã>n ÃnY

](
H

E

))

+
1

2

(
(2 · F>measAn,−2 · FmeasÃnY )

(
H

E

)
+ F>measFmeas

)

In the following, we use the abbreviations

Q2 =

[
A>nAn −A>n ÃnY
−Ã>nAnY Y Ã>n ÃnY

]
, Q1 = (2 · F>measAn,−2 · FmeasÃnY )

leading to

=
1

2

[
(H>, E>) ·Q2

(
H

E

)
+Q1

(
H

E

)
+ F>measFmeas

]
. (4.12)

Next, we differentiate with respect to the state variables H and E.

d

dε

1

2

(
(H>ε , E

>
ε ) ·Q2

(
Hε

Eε

)
+Q1

(
Hε

Eε

)
+ F>measFmeas

)∣∣∣∣
ε=0

=
1

2

(
(H ′>, E′>)Q2

(
H

E

)
+ (H>, E>)Q2

(
H ′

E′

)
+Q1

(
H ′

E′

))
.
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Setting Q2 = B>B, one arrives at

=
1

2

(B( H ′

E′

))>
B

(
H

E

)
+

(
B

(
H

E

))>
B

(
H ′

E′

)
+Q1

(
H ′

E′

)
=

1

2

[
2 · (H>, E>)B>B

(
H ′

E′

)
+Q1

(
H ′

E′

)]

= (H>, E>)Q2

(
H ′

E′

)
+

1

2
Q1

(
H ′

E′

)

This expression determines the right-hand side of the adjoint boundary condition

on Γin/out.

In the following, the adjoint equations for the partial differential system are de-

rived. For brevity reasons, we also omit the integration over time and differentiate

the corresponding defined c̃(H,E) with respect to the states H and E, and set

Γnon−reflective ∪ Γin/out = Γi\Γincl, yielding

−c̃(H,E)(H,E,Ω)

(
λH(t)

λE(t)

)

=

∫
Ω

λH(t)

[
∂H ′

∂t
+

1

µ
curlE′

]
dx+

∫
Ω

λE(t)

[
∂E′

∂t
− 1

ε
curlH ′ +

σ

ε
E′
]
dx

+

∫
Γi\Γincl

(H ′, E′)

[
Ãnc AnZc

−AnY c Ãnc

](
λH(t)

λE(t)

)
dS

+

∫
Γincl

(H ′, E′)

[
0 −AnZc
0 0

](
λH(t)

λE(t)

)
dS.
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4.4 Formulation of the Corresponding Adjoint Equations

Integration by parts for the domain integrals leads to∫
Ω

λH(t)

[
∂H ′

∂t
+

1

µ
curlE′

]
dx+

∫
Ω

λE(t)

[
∂E′

∂t
− 1

ε
curlH ′ +

σ

ε
E′
]
dx

=

∫
Ω

−H ′λ̇H(t) +
1

µ
(E′, curlλH(t)) dx

+

∫
Ω

−E′λ̇E(t)− 1

ε
(H ′, curlλE(t)) +

σ

ε
(E′, λE(t)) dx

+

∫
∂Ω

1

µ
E′(λH(t)× n)− 1

ε
H ′(λE(t)× n) dS.

One has∫
∂Ω

1

µ
E′(λH(t)× n)− 1

ε
H ′(λE(t)× n) dS

=−
∫
∂Ω

(H ′, E′)

[
0 −1

εAn
1
µAn 0

](
λH(t)

λE(t)

)
dS

=

∫
∂Ω

(H ′, E′)

(
1

2

[
Ãnc AnZc

−AnY c Ãnc

]
+

1

2

[
−Ãnc AnZc

−AnY c −Ãnc

])(
λH(t)

λE(t)

)
dS.

Combining this equation with the expression for Γnon−reflective and the outgoing

part of Γin/out, one obtains

∫
Γi\Γincl

(H ′, E′)

(
1

2

[
Ãnc AnZc

−AnY c Ãnc

]
+

1

2

[
−Ãnc AnZc

−AnY c −Ãnc

])(
λH(t)

λE(t)

)

− (H ′, E′)
1

2

[
Ãnc AnZc

−AnY c Ãnc

](
λH(t)

λE(t)

)
dS

= −
∫

Γi\Γincl

(H ′, E′)
1

2

[
Ãnc −AnZc
AnY c Ãnc

](
λH(t)

λE(t)

)
dS
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yielding a positive semidefinite operator. Finally, for Γincl one gets

∫
Γincl

(H ′, E′)

[
0 −AnZc
0 0

](
λH(t)

λE(t)

)
dS = H ′AnZcλE(t).

Then we sum up the expressions for the adjoints of the boundary and we formulate

the adjoint equations for the constraints for H

− ∂λH(t)

∂t
µ− 1

ε
curlλE(t) = 0 in Ω (4.13)

1

ε
(n× λE(t))−AnZcλE(t) = 0 on Γincl (4.14)

1

ε
(n× λE(t))− 1

2
λE(t)AnZc = 0 on Γnon−reflective (4.15)

1

ε
(n× λE(t))− 1

2
λE(t)AnZc =

A>nAnH
> − Ã>nAnY E> + FmeasAn on Γin/out (4.16)

and analogously for E

− ∂λE(t)

∂t
+

1

µ
curlλH(t) +

σ

ε
λE(t) = 0 in Ω (4.17)

1

µ
λH(t)× n+

1

2
λE(t)Ãnc = 0 on Γnon−reflective (4.18)

1

µ
λH(t)× n+

1

2
λE(t)Ãnc = (4.19)

−A>n ÃnH> + Ã>n ÃnY E
> − FmeasÃn on Γin/out. (4.20)

4.5 Derivation of the Shape Derivatives for Maxwell’s

Equations

In order to determine an expression for the shape gradient for the 3D time-dependent

Maxwell’s equations, a thorough analysis of the problem stated in Sec. 4.3 is per-

formed. To achieve this, we go step by step through the given problem beginning

with the target functional (4.9). First, we start with the regularization term of the

target function and then, we continue with the actual tracking-type function. There-
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fore, we determine the local derivative at the boundary where the target functional

is evaluated. At the end of this chapter, we obtain an explicit expression for the

shape gradient of the Maxwell problem. As mentioned in Sec. 3.4, this expression

can be utilized for the optimization process to obtain numerical results.

The shape derivative of the perimeter penalization can be directly determined using

Eq. (3.27)

J = δ

∫
Γincl

1 dS ⇒ dJ = δ

∫
Γincl

〈V, n〉κ dS, δ > 0.

Now, we reuse the general function of the actual tracking function (4.12) derived in

the last section. With this reformulation of the target function and the variational

formulation of the constraints, we can state the Maxwell problem (4.1) also as

min
Γincl

J(H,E,Ω)

=
1

2

tf∫
t0

∫
Γin/out

[
(H>, E>) ·Q2

(
H

E

)
+Q1

(
H

E

)
+ F>measFmeas

]
dS dt

such that

0 =

tf∫
t0

∫
Ω

[
〈v, ∂H

∂t
〉+

1

µ
〈E, curl v〉+ 〈w, ∂E

∂t
〉 − 1

ε
〈H, curlw〉+

σ

ε
〈w,E〉

]
dx dt

+

tf∫
t0

∫
∂Ω

(v, w)h(H,E, n) dS dt ∀(v, w) ∈ H1(Ω).

Following the derivation of a general formulation for the shape gradient for linear

state constraints in Sec. 3.7, in particular considering Eq. (3.29), we state the follow-

ing proposition for an expression for the shape derivative resp. the shape gradient

of the Maxwell’s equations.
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Proposition 4.1 (Shape derivative / shape gradient of Maxwell’s equations).

For a given domain Ω the shape derivative of the Maxwell’s equations dJ(H,E,Ω;V )

in the direction of the vector field V reads as

dJ(H,E,Ω;V ) =

tf∫
t0

∫
Γincl

〈V, n〉 · div (Zc(λE(t)×H)) dS dt. (4.21)

The adjoint operator λE corresponds to the state variable E.

The explicit representation of the shape gradient is g = div (Zc(λE(t)×H)).

Proof. First, we continue with the local derivative of the target function and deter-

mine

d

dε

1

2

(
(H>ε , E

>
ε ) ·Q2

(
Hε

Eε

)
+Q1

(
Hε

Eε

)
+ F>measFmeas

)∣∣∣∣
ε=0

=
1

2

(
(H ′>, E′>)Q2

(
H

E

)
+ (H>, E>)Q2

(
H ′

E′

)
+Q1

(
H ′

E′

))
.

Replacing Q2 with B>B yields

=
1

2

(B( H ′

E′

))>
B

(
H

E

)
+

(
B

(
H

E

))>
B

(
H ′

E′

)
+Q1

(
H ′

E′

)
=

1

2

[
2 · (H>, E>)B>B

(
H ′

E′

)
+Q1

(
H ′

E′

)]

= (H>, E>)Q2

(
H ′

E′

)
+

1

2
Q1

(
H ′

E′

)
.

Thus, the derivative of the target function can be expressed as

dJ(H,E,Ω) =

tf∫
t0

∫
Γin/out

[
(H>, E>)Q2 +

1

2
Q1

]
·

(
H ′

E′

)
dS dt (4.22)
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with the first order optimality system of the constraints

0 =

tf∫
t0

∫
Ω

[
〈v, ∂H

′

∂t
〉+

1

µ
〈E′, curl v〉+ 〈w, ∂E

′

∂t
〉 − 1

ε
〈H ′, curlw〉+

σ

ε
〈w,E′〉

]
dx dt

+

tf∫
t0

∫
∂Ω

D(H,E)h(H,E, n)

(
H ′

E′

)
dS dt. (4.23)

It is noticeable that the boundary, where the values for the target function are

recorded, does not depend on the shape of the geometric object.

Having the first order optimality system of the constraints (4.23) and applying the

derived formula for optimization problems constrained by linear PDEs Eq. (3.28),

we obtain an expression for the local shape derivatives for the boundary conditions

tf∫
t0

∫
∂Ω

〈V, n〉
[
〈v, ∂H

∂t
〉+

1

µ
〈E, curl v〉+ 〈w, ∂E

∂t
〉 − 1

ε
〈H, curlw〉+

σ

ε
〈w,E〉

]
dS dt

+

tf∫
t0

∫
∂Ω

〈V, n〉[〈∇ (h(H,E, n)) , n〉+ κ (h(H,E, n)−Dn (h(H,E, n)) · n)

+ divΓ

(
D>n h(H,E, n)

)
] dS dt

+

tf∫
t0

∫
Ω

[
〈v, ∂H

′

∂t
〉+

1

µ
〈E′, curl v〉+ 〈w, ∂E

′

∂t
〉 − 1

ε
〈H ′, curlw〉+

σ

ε
〈w,E′〉

]
dx dt

+

tf∫
t0

∫
∂Ω

D(H,E)(h(H,E, n)) ·

(
H ′

E′

)
dS dt = 0.

Due to first order optimality conditions, the boundary conditions on the facet, where

the target function operates, have to vanish. In particular, this comprises the first

order derivative of the general boundary conditions of the inlet boundary derived

in Sec. 4.2 as well as the first order derivative of the target function (4.22). Hence,
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choose a (λH(t), λE(t)) ∈ H1(Ω) such that

0
!

=

tf∫
t0

∫
Γin/out

[
1

2
(λH(t), λE(t))

(
Ãnc AnY c

−AnZc Ãnc

)
+ (H>, E>)Q2 +

1

2
Q1

]

·

(
H ′

E′

)
dS dt.

Now, we can derive the shape gradient with respect to the obstacle for our Maxwell

problem, which obviously only exists on the surface of the obstacle Γincl and is

expressed by

dJ(H,E,Ω;V ) =

=

tf∫
t0

∫
Γincl

〈V, n〉
[
〈v, ∂H

∂t
〉+

1

µ
〈E, curl v〉+ 〈w, ∂E

∂t
〉 − 1

ε
〈H, curlw〉+

σ

ε
〈w,E〉

]
dS dt

+

tf∫
t0

∫
Γincl

〈V, n〉[〈∇ (h(H,E, n)) , n〉+ κ (h(H,E, n)−Dn (h(H,E, n)) · n)

+ divΓ(D>n (h(H,E, n))] dS dt.

In particular, on Γincl = Γreflect, one has

hreflect(s, n) = (λH(t), λE(t))

[
0 0

−AnZc 0

](
H

E

)
= (−λE(t)AnZc, 0)

(
H

E

)

= −λE(t)AnH = λE(t)

 0 −nz ny

nz 0 −nx
−ny nx 0

 ·H.
This yields

Dnh(H,E, n) = λE(t)Zc

 0 Hz −Hy

−Hz 0 Hx

Hy −Hx 0

 , Dnh(H,E, n) · n = h(H,E, n).
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In this case the linearity of the operator h can be exploited, cf. (3.29). Thus, the

expression of the gradient can be reduced to

dJ(H,E,Ω;V )

=

tf∫
t0

∫
Γincl

〈V, n〉
[
〈v, ∂H

∂t
〉+

1

µ
〈E, curl v〉+ 〈w, ∂E

∂t
〉 − 1

ε
〈H, curlw〉+

σ

ε
〈w,E〉

]
dS dt

+

tf∫
t0

∫
Γincl

〈V, n〉 · div

Zc
 0 Hz −Hy

−Hz 0 Hx

Hy −Hx 0


>

λE(t)

 dS dt

Under the assumption that the trace of the PDE vanishes on the boundary if the

problem is smooth enough, we finally obtain the shape gradient

dJ(H,E,Ω;V ) =

tf∫
t0

∫
Γincl

〈V, n〉 · div (Zc(λE(t)×H)) dS dt. (4.24)

With this important result, we have an explicit representation of the shape gradient

and we are able to perform a first numerical verification. In the next chapter, a

numerical analysis with various test cases can be found.
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5
Numerical Results and Discussion

In this chapter, first numerical results confirm the theoretical formulation of the

shape gradient. Therefore several tests based on different test-setups are analyzed.

The following excitations are considered

• point source (e.g. dipole antenna),

• plane waves (e.g. horn antenna),

• sine or a modulated Gaussian pulse.

These excitations have to be modelled in an appropriate way. Moreover the solution

of the Maxwell’s equations as well as the solution of the adjoints have to be defined.

The numerical realization of the various test cases builds on features provided by

the software project FEniCS, which is described in the following.
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Used Modelling Software The software package FEniCS [45, 46] is a collaborative

project, which comprises several other projects such as the problem-solving environ-

ment dolfin, the form compiler FFC, the form language UFL, the finite element tab-

ulator FIAT and many more. The software package dolfin can be used as standalone

solver for PDEs. In particular, it focuses on the automated solution of differential

equations by finite element methods including discontinuous Galerkin methods. It

serves as a tool for development and implementation of new methods. Since the

code is near mathematical notations, it is comparatively easy to read. This project

forms a fundamental basis regarding our problem-dependent implementation for the

forward integration of the PDEs. Although there exists an extension for dolfin to

compute the corresponding adjoints (dolfin-adjoint, libadjoint [25]), this extension

does not provide needed facilities to compute the adjoint solutions of the tracking

type functional considered here. Since shape derivatives live on the boundary of the

inclusion, a data compression to the boundary would be desirable for an efficient

implementation. Another advantage of data compression to the boundary is that all

forward and adjoint variables can be stored for every timestep. Consequently, there

is no necessity to apply a checkpoint strategy. Due to these reasons we reuse the

manually derived adjoint equations from Sec. 4.4, solve them in dolfin and use the

results for calculating the shape gradient.

For the conservation of energy in the differential system, a symplectic procedure for

the discretization in time is the method of choice. Here, we apply a simple Runge–

Kutta method: the implicit midpoint rule, which is a symplectic integrator. For a

general state ut, the next state ut+1 for the timestep t+1, can be calculated through:

ut+1 = ut + ∆t[(1− α)f(ut) + αf(ut+1)].

For our calculations, we use α = 0.5. Since f is linear, the implicit midpoint method

corresponds to the Crank–Nicolson method [19]. In the implemented code, we apply

this method for the Maxwell’s equations. Since the chosen method is implicit, a

linear algebraic equation system arises and has to be solved. FEniCS also provides

several preconditioners, we choose an iterative solver of Krylov type, namely the

parallel preconditioner Hypre [24].
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5.1 Identification of Geometric Objects

One of the main issues of the real-life problems presented in Chap. 1 is the detection

of geometric objects in a predefined computational domain. In this section, we

concentrate on the identification of ellipsoids resp. spheres and a cuboid. First,

some results using an indicator function are presented and second, a similar test

case is solved via a shape optimization method.

5.1.1 First Results: Approach Using Indicator Function

A similar test scenario has been analyzed using the approach based on an appropriate

indicator function. This indicator function determines the material distribution

within the discretized domain and is described in Sec. 3.

The test-setup is the following

• 3D case: discretized Cartesian grid into 503 grid cells

• FDTD-approach for solving the PDEs

• modulated Gaussian pulse as excitation

• 100 timesteps, smoothing parameter h = 0.001

• automatic differentiation for computing the derivatives (ADOL-C, [29])

• target functional of tracking type

• BFGS optimization algorithm [12]

The whole test scenario was implemented in the script language Python.

Testcase Ellipsoid In this test setup, we want to determine the significant param-

eters of an ellipsoid. These are the center c and the length of the semi-principal axes

r in x, y, and z direction. A suitable formulation of an indicator function is given

in Sec. 3. To generate the reference data, an ellipsoid of radius rx = ry = rz = 5 is

placed into the middle of the computational domain (see also Tab. 5.1). Then we

perform a forward simulation using the FDTD-approach and measure and store the

primitive field values at a predefined sink. For the optimization part, we have to

define an initial guess. Here, the radius in x direction is modified to rx = 6. Then we
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cx cy cz rx ry rz
reference data 25 25 25 5 5 5
initial guess 25 25 25 6 5 5

Table 5.1: Testcase ellipsoid: reference data and initial guess.

repeat the forward simulation with the initial guess and compare the characteristic

field values at the sink in an L2-norm. Furthermore, we compute the gradient of

the objective function. In advance, one has to define suitable termination criteria,

e.g., the relative reduction of the objective function is smaller than a predefined

parameter or the norm of the gradient is smaller than a predefined parameter. As

soon as one termination criterion is satisfied, the optimization process stops.

Analyzing the optimization results, one can recognize a significant decrease in the

magnitude of the objective function (c.f. Fig. 5.1). Also, the value of the initial

guess rx = 6 converges to the reference value 5. The decrease of the relative error

of rx is displayed in Fig. 5.2. Therefore, one can conclude that this approach is

satisfying for very simple cases.

Figure 5.1: Testcase ellipsoid. Reduction of objective function.
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Figure 5.2: Testcase ellipsoid. Relative error of rx.

Considering other geometric objects, these results cannot be transfered. One of

those examples is described in the following.

Testcase Cuboid The subject of this task is to identify the location of a cuboid in

a predefined computational domain (cf. Fig. 5.3). For the identification of the sig-

Figure 5.3: 2D representation of cuboid.

nificant parameters of a cuboid, an appropriate indicator function has to be defined.

For a cuboid it is given by

I(x, y, z) =
∏

i={x,y,z}

1

2

(
i+ di√

(i+ di)2 + h2
− i− di√

(i− di)2 + h2

)
,

where di are the semi-axis in x, y, and z direction and h a small smoothing parameter.

Therefore, we consider a testcase with 6 parameters, namely the center ci and the
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semi-axis di, to be determined.

As a very simple scenario, we again only modify the parameter for the semi-axis

in x direction in the initial guess. All other parameters remain the same as in the

reference data. The concrete parameters are the following:

cx cy cz dx dy dz
reference data 25 25 25 2 7 10
initial guess 25 25 25 3 7 10

Table 5.2: Testcase cuboid: reference data and initial guess.

As one can recognize in Fig. 5.4, the optimization using the indicator approach is

not successful. Although the objective value decreases around one magnitude, the

parameter dx does not converge to the optimal value d∗x = 2. The main error of

rx is hardly decreasing (cf. Fig. 5.5). This failure of convergence is due to several

reasons. One is the choice of the smoothing parameter h and consequently, the not

sufficiently accurate representation of the geometric object. Also, other variations

Figure 5.4: Testcase cuboid. Reduction of objective function.

of the initial guess do not lead to sufficient results due to the detection of local

minima or due to the reason that the optimizer does not find a descent direction.

Another main problem for this identification task is the fact that for every different

geometric object a new mapping between the indicator function and the design
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Figure 5.5: Testcase cuboid. Relative error of rx.

parameters such as the semi-principal axes has to be defined. Especially for arbitrary

geometric objects, this additional definition becomes a problem since the approach

is not universally applicable to arbitrary objects and mistakes in the user-defined

function might arise.

Of course, the presented test cases seem to be very simple problems but even for

these cases, the limitations of the easy-to-implement approach become obvious.

5.1.2 Optimization via Shape Optimization Techniques

The proposed approach, based on the theoretical findings presented in the previous

chapters, is implemented in FEniCS. To model the geometric domain properly, a

suitable software is necessary since dolfin only provides simple built-in meshes such

as unit cubes. It is recommended to use an external tool like gmsh [26] for the gen-

eration of more complicated meshes. With a dolfin command the generated meshes

can easily be converted into the required .xml file format. For the following test-

cases, all initial meshes are generated with gmsh and furthermore, preprocessed with

a very robust CVT-based mesh deformation algorithm [61]. All other meshes within

the optimization algorithm as well as the reference solutions are processed with the

mentioned mesh deformation algorithm such that the topological equivalence with

the same connectivity can be preserved.
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5.1.3 Example: Smooth Bump

The challenge of this testcase is to reconstruct a smooth bump located in a rectan-

gular cuboid. The pulse, which we are measuring, is a near-field pulse. An overview

of the most important parameters can be found in Tab. 5.3.

parameter value

dimensions of cuboid 24 cm× 24 cm× 12 cm

wavelength Wv 299792458 ms−1

4.1 GHz ≈ 7.31 cm
center frequency fc 8.2 GHz

spread fs 4.1 GHz
scanable frequencies 4.1 GHz – 12.3 GHz

≡ waves ranging between 2.4 cm and 7.3 cm
elevation caused by bump ≈ 3.65 cm

number of timesteps 548
duration of 1 timestep 6.1 ps (→ total time 3.336 ns)

perimeter penalization δ 5 · 10−5

unknowns for one primal trajectory
for the whole domain 472 748 640 (≈ 3.52 GB storage)

Table 5.3: Test-setup smooth bump.

The bump, which we want to identify, is created on the rear side of the cuboid and

relevant for computing the reference solution. I.e., based on this modified geometry

a forward simulation is performed and later, the results serve as measured data

Fmeas. For our testcase the sigmoid function is given by

znew = z +
−Wv

2 + 2 exp(100(
√
x2 + y2 −Wv))

,

where Wv describes the wavelength of a sinusoidal pulse. The expression under

the square root defines the form of the bump, in our case the form of a sphere.

The sigmoid function has the characteristic to operate smoothly on the facet. This

is very important for the meshing process to end up with a suitable mesh for the

simulation and optimization process.

Another important element of the modeling process is the choice of the entering

pulse on Γin/out, which determines how the waves propagate through the domain.

A common choice of the pulse is a sinusoidal pulse. For our problem, we decided to
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take a truncated SINC-pulse of the following form

g(t) =
sin(2πfs(t− tc))

2πfs(t− tc)
sin(2πfc(t− tc))w(t, tc).

The parameter fc describes the desired center frequency, fs the half bandwidth of

the signal and tc determines the time around which the pulse is centered. w(t, tc)

denotes the Hamming window function, which is also of sine form, and given by

w(t, tc) =

0.54 + 0.46 cos
(
π(t−tc)
tc

)
, for t ∈ [0, 2tc],

0, otherwise.

As noted in Tab. 5.3 the total time of one complete forward run is 3.336 ns. This

period of time corresponds to the travelled distance of 1m of the wave. Due to the

domain size of 12 cm, it is realistic to be able to measure all the reflections of the

object at Γin/out.

Due to the symmetry of the considered object, it is enough to compute only a

quarter section leading to a significant reduction of computation time. The quarter

of the geometry is shown in Fig. 5.6. One quarter section is discretized using 35 945

elements. Thus, 0.88 GB are required to store one primal trajectory. By exploiting

the boundary representation of the gradient, additional computational cost can be

saved.

Γnon−reflective

Γincl

Figure 5.6: Cut through the near-field test-case. A quarter of the reference geometry
shown with its discretization.
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The optimization procedure is the following: Starting with a flat rear side of the

cuboid, a forward simulation is performed. Afterwards, the gradient and the mis-

match between the simulated data and data of the reference solution is computed.

While no termination criterion is satisfied, the gradient step is performed leading

to a new mesh. With this modified mesh, we reenter the optimization loop at the

beginning with a forward simulation and repeat the above mentioned steps.

For this testcase, we obtain very convincing results for the reconstruction, which are

illustrated in Figs. 5.7 and 5.8. On the right-hand side of these figures the target

shape is displayed whereas on the left-hand side the reconstructed shape after 373

optimization steps is shown. It is remarkable that the form of the bumps nearly

perfectly coincides.

Figure 5.7: Left: reconstructed shape after 373 optimization steps. Right: target
shape.

The graph for the reduction of the objective value and the reduction of the norm

of the gradient (both in Fig. 5.9) support the observation of the quality of the

reconstruction. In Fig. 5.9 the objective value and the gradient norm are normed

for a clearer interpretation of the evolution of the specific graphs. As can be seen in

the figure, the two graphs describe a similar behavior, as one could have expected

before. The decrease in the gradient norm does not seem as significant as in the

objective norm, but this can be explained by the fact that the value of the gradient

norm is already very small in the first iteration, namely ≈ 2.33 · 10−5 whereas the

objective value is ≈ 1.32.
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Figure 5.8: Cross-sectional comparison between reconstructed bump after 373 opti-
mization steps and target bump.
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Figure 5.9: Left: relative decrease of objective value. Right: relative decrease of
gradient norm.

5.1.4 Reconstruction of a Smooth Bump within Horn Antenna

Test-Setup

The successful reconstructed bump of the testcase described in the last subsection

motivates to extend the testcase with an antenna setup. The test setup was already

presented in Chap. 1, Fig. 1.1. An overview of the most important parameters can

be found in Tab. 5.4.

In contrast to the near-field situation in the last subsection, the horn antenna and
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parameter value

waveguide geometry E-band WR229 waveguide
dimension of waveguide 5.8166 cm× 2.921 cm

attached horn Pasternack PE9862-20
dimensions of horn 59.563 cm long,

mouth: 31.496 cm× 22.225 cm
ideal frequencies 3.3 GHz – 4.9 GHz

elevation caused by bump ≈ 3.65 cm
number of timesteps 1505

duration of 1 timestep 12.2 ps (→ total time 18.36 ns)
unknowns for one primal trajectory

for the whole domain 1 202 976 600 (≈ 8.96 GB storage)

Table 5.4: Test-setup smooth bump within horn antenna setup.

waveguide have the role of a polarization filter, meaning that only linearly polarized

waves pass through. Due to the ideal frequency, denoted in Tab. 5.4, we have a

center frequency of fc = 4.1 GHz and a spread of fs = 0.41 GHz.

As in the last testcase, we also perform our calculations on the quarter section to

reduce computational cost. The quarter section is discretized using 33 305 elements.

Thus, 2.24 GB are required to store one primal trajectory.

The principal procedure of the optimization process stays the same as in the last

testcase, whereas the penalty term is set to zero here. Starting with a flat plate,

the optimization process ends up with a final shape. In Fig. 5.10 the reflections

of the initial geometry, meaning the flat plate, the reconstructed geometry and the

reference measured by the antenna are shown. Here, one can notice that the signal

of the reconstructed geometry and the reference solution coincides very fine, which

may lead to the conclusion that the reconstructed shape also coincides with the

target shape. Unfortunately, this is not the case as can be seen in Fig. 5.11.

One can only guess where the bump is approximatley located, but without knowing

the target shape in advance, the findings of the reconstructed shape are limited. At

a first glance, the results seem to contradict each other, but here, one can certainly

denote that a local minimum is found. Perhaps the effect of polarization filtering by

the antenna, is not an ideal situation as well.
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Figure 5.10: Reflections of the initial geometry, the reconstructed geometry and the
reference geometry.

Figure 5.11: Reconstructed and target shape for the horn antenna testcase after 376
optimization steps.
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5.2 Scaling Tests

In this section, we analyze the scalability of our approach. In particular, we examine

the scalability in terms of strong scaling, i.e., the problem size stays fixed and the

number of processing elements is increased. The weak scaling, where the workload

assigned to each processing element stays the same and the problem size varies, is

very difficult to analyze since the meshing process is very complex and difficult to

influence.

In Tab. 5.5 significant parameters of each mesh are listed. The finest discretized

mesh, mesh #3, has around 3 times more tetrahedrons than grid #2 and around 20

times more tetrahedrons than the coarsest mesh, mesh #1. Bigger grids are difficult

to handle due to memory reasons. The enormous memory requirements are also the

reason why there were no test workable for one process for the finest grid.

All scalability tests were performed with 30 timesteps, while being aware of the fact

that a propagation through the whole domain is not possible with this unrealistic

small number of timesteps. Nevertheless, scalability results can be obtained.

number of unknowns
mesh id refinement level # of tetrahedrons for one primal trajectory

#1 0 7418 1 335 240 (≈ 10.19 MB storage)
#2 1 48230 8 681 400 (≈ 66.23 MB storage)
#3 2 139168 25 050 240 (≈ 0.19 GB storage)

Table 5.5: Significant data of tested meshes.

Scalability of the Calculation of the Target Function For the analysis of the

implemented approach, we measure the time, which is needed for the evaluation of

the target function in one iteration. Considering Figs. 5.12 and 5.13, one recognizes

that the computation for the finest grid scales best since the graph is nearly a line

whereas the graphs corresponding to the coarser meshes rather resemble curves.

The great scaling behavior, illustrated in Fig. 5.13 can be explained by a good ratio

between number of processes and mesh size. The workload for each process up to 6

processes seems to be very efficient for a significant speedup. Using 8 or 12 processes

also lead to a decrease in the runtime, but less significant.
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Figure 5.12: Calculation of target function for different refinement levels.
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Figure 5.13: Calculation of target function for refinement level 2.
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Scalability of Gradient Computation To determine the time of the gradient com-

putation, we measure the time, which is needed to calculate the gradient expression

for all timesteps of one optimization iteration. The obtained runtimes for the gradi-

ent computation are illustrated in Fig. 5.14, where the runtime is proportional to the

mesh size. Another observation of Fig. 5.14 is that for the coarsest mesh, the needed

time for the gradient computation is nearly the same independent of the number of

processes. Additionally, the computation only takes a few seconds. Analyzing the

runtime for mesh #2, one can recognize that there is a remarkable discrepancy in

the runtimes obtained by 1, 2 and 4 processes. Using more than 4 processes does not

lead to a significant reduction in runtime. The computation of the gradient of the

finest mesh was not possible by 1 process due to memory requirements. However,

for the usage of more processes, there can be a similar behavior as for mesh #2

observed. Here, the highest speed-up can be obtained for 2 and 4 processes.
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Figure 5.14: Overall runtime needed for gradient computation for increasing pro-
cessing elements.

For further analysis of the runtime, we examine the data in terms of weak scaling.

In Fig. 5.15, one can notice, that the scaling for refinement level 2 is slightly better.

Furthermore, for mesh #1 and mesh # 2 the highest speed-up can be obtained for

1 and 2 processing elements. This result agrees with the above observation.

In summary, it can be stated that the gradient computation shows a weak scaling.
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Figure 5.15: Time needed for one gradient computation for different refinement lev-
els.

5.3 Preliminary Results: Shape Quasi-Newton Methods

In the field of shape optimization, steepest descent methods are very often used.

In this thesis, we also use a steepest descent method (3.8) with a gradient smooth-

ing technique of Newton-type. As alternative shape Newton optimization methods

exploiting a Riemannian perspective can be applied. In [62] a Riemannian view

on shape optimization is discussed. Basic operations in the tangent space of shape

manifolds are transferred to classical shape optimization. This ansatz is revisited

in [64, 65, 66], and a limited memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS)

algorithm is reformulated for shape optimization. In contrast to the conventional

usage of the BFGS method in nonlinear optimization, no linesearch strategy is ap-

plied here due to additional computational cost. In the cited papers, the usage of

an l-BFGS algorithm leads to very good convergence results.

In this thesis, we reuse the proposed algorithm in an adapted form. Within this

algorithm a(·, ·) denotes a scalar product, which is given by the symmetric positive

definite stiffness matrix. Uj contains the domain representations of the gradient

and Yj is computed via Yj = Uj+1 − Uj . The vector Sj is a domain deformation

vector. The stored gradients and deformation vectors of former iterations have to

be interpolated to the current mesh in each iteration. The scalar m determines the

number of stored gradients from previous iterations. If m equals zero, a steepest
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descent method as described in Sec. 3.3 is applied.

The following algorithm only describes the l-BFGS method needed for the optimiza-

tion step within the shape optimization cycle. The operations to transfer the vectors

from the shape space to the finite dimensional space are omitted since the vectors

Uj and Sj are already finite dimensional vectors in memory.

The l-BFGS algorithm directly generates an update vector q for the shape defor-

mation. The update vector q is initially set to the current (smoothed) gradient and

is modified via the rephrased BFGS-update, which consists of two for-loops and

requires the evaluation of scalar products, where previous gradients and previous

deformation fields take part.

Data: j denotes current outer iteration number, m denotes number of stored

gradients from past iterations

Result: vector q, which serves as shape deformation

ρj = 1
a(Yj ,Sj)

q = Uj

for i = j − 1, · · · j −m do

αi = ρi · a(Si, q)

q = q − αiYi
end

q =
a(Yj−1,Sj−1)
a(Yj−1,Yj−1)q

for i = j −m, · · · j − 1 do

βi = ρi · a(Yi, q)

q = q + (αi − βi)Si
end

Algorithm 1: Adapted l-BFGS algorithm

In the presented testcase, the l-BFGS method with 5 gradients in storage is ap-

plied. Due to the storage of previous gradient information, a better convergence is

expected. As can be seen in Fig. 5.16, the l-BFGS method does not lead to better

convergence results compared to the steepest descent method with gradient smooth-

ing of Newton-type. Although the objective value obtained in the third iteration is
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slightly smaller using l-BFGS, the algorithm performs worse. This can be due to

several reasons. It turned out that the success of the algorithm is closely related to

the stepsize of the steepest descent method since the first iteration determines the

deformation field, which is reused in the l-BFGS algorithm later. In the presented

testcase the stepsize of the steepest descent algorithm equals 0.5. Other tests with

stepsize = 2.5 or stepsize = 1 failed in terms of a monotone decrease of the objective

value. Another possibility is the usage of another scalar product as it is done, e.g.,

in [65]. Furthermore, the convergence of the BFGS algorithm can be accelerated by

combining the BFGS update and the smoothing of the gradient in a more sophisti-

cated way. However, Shape Quasi-Newton methods are not focus of this thesis and

there has to be done further investigative work in order to determine appropriate

parameters for this testcase.
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Figure 5.16: Comparison of objective value using steepest descent method and
l-BFGS method.

89





6
Conclusion

This work captures a wide range of aspects from electromagnetic theory over shape

sensitivity analysis to shape optimization. Challenges were solved in fields of mod-

elling, theoretical analysis, and simulation/implementation issues. This thesis con-

tributes new and beneficial results to all of the mentioned aspects. Therefore, it is

important to catch the main ideas, visions and outcoming results altogether.

6.1 Summary

In many real-life applications, we are faced with problems detecting interior struc-

tures and material distributions of geometric objects without destroying the geom-

etry. Formulating these problems as inverse electromagnetic scattering problems,

and solving these afterwards, usually lead to good results.

First, an appropriate electromagnetic problem was defined. A Galerkin method

turned out to fit best to our application. Hence, a suitable flux function covering
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discontinuities at inner interfaces had to be derived. Since different boundary condi-

tions rule on the different facets, the behavior of the characteristic variables had to be

modelled as well. Directly related to the defined (forward) problem, the derivation

of corresponding adjoint equations was indispensable to be able to perform shape

optimization. The value of one adjoint variable takes directly part in the explicit

expression of the shape gradient. Here, we only store the boundary representation

of the gradient, which leads to a high reduction of the memory requirement. To

the knowledge of the author, the theoretical derivation of the shape gradient for the

fully time-dependent 3D Maxwell’s equations and its implementation within a shape

optimization procedure, was the first of its kind.

We defined a generalized optimization problem with a tracking type target function

constrained by a linear hyperbolic partial differential system and boundary condi-

tions. We have used basic results of shape analysis from Zolésio to develop a general

formulation for the shape gradient for linear state constraints. These findings were

transferred to the target problem constrained by Maxwell’s equations.

The suggested approach, comprising simulation, gradient computation, and opti-

mization, was implemented and tested in FEniCS.

Two different testcases were examined to validate the proposed approach. The first

one was given a rectangular cuboid, where a smooth bump on the rear side had

to be identified. Here, our method yielded excellent results, since not only the dis-

crepancy between the simulated and measured data almost vanished, but also the

reconstructed geometry was almost identical to the target geometry. To extend these

convincing results, we constructed a testcase, where the smooth bump of the last

testcase was embedded within a horn antenna setup. There, the waves entered the

computational domain via a waveguide. It is noticeable, that this waveguide only

let polarized waves into the domain. As in the last testcase, we could obtain perfect

results in terms of matching the reflections. However, the reconstructed geometry

did not coincide with the reference geometry. This might be caused by the fact, that

the optimization method is a local method and probably found a local minimum,

here. Additionally, the polarization filtering might have caused problems for the

reconstruction process.

Moreover, the implemented approach was analyzed in terms of scaling. There, we

had a closer look at the computation time of the target function and of the gradient
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evaluation. We obtained good results showing that our approach scales well. There-

fore, we can also expect a good scaling behavior for larger meshes on appropriate

working machines.

6.2 Future Research Directions

The theory and software developed in this thesis provides a good basis for further

research. The results presented in Chap. 5 demonstrate the practicability of the

proposed approach. At present the reconstruction of the smooth bump within the

horn antenna setup was not as good as expected and the origin of the problem

might be the setup. Therefore, further investigations to find a suitable experimental

setup are needed. Additionally, one can think of other possible setups for different

applications.

A faster decrease of the reduction of the target function was desired by using a Shape

Quasi-Newton method. These expectations could not be satisfied by preliminary

results obtained in this thesis. However, the incorporation of Shape Quasi-Newton

methods was not focus of this thesis and can be further developed in future research.

Another challenging task, which is certainly an interesting expansion of this thesis,

is to analyze a substitution of the boundary condition at the interface Γincl by (at

least) one PDE. This PDE describes the evolution of the phase field function, in

particular how the structure of the interfaces changes with respect to time, e.g.,

for the transition between two stages. The phase field method is often applied in

materials science for the simulation of microstructure evolution during solidification.

An overview and further references are given in [73]. The incorporation of a phase

field method opens our application for many other interesting applications. Since

this incorporation will lead to additional PDEs, which have to be solved, the problem

becomes even more complex.

Another aspect that can be analyzed in future work is the consideration of geometric

uncertainties. This is quite often an important topic in real-life applications. Geo-

metric variations along a boundary of a geometric object can model changes in the

geometry due to naturally occuring wear or erosion but also due to manufacturing

imperfections. These problems may directly affect the reliability and the efficiency
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of the machines. Different approaches can be applied to incorporate geometric un-

certainties and to solve the arising problem properly, e.g. [15, 63]. To counteract the

additional computational effort caused by the more complicated task, a Karhunen-

Loève expansion is used for dimension reduction in both ansatzes. In [63] one-shot

methods are employed to solve the problem and [15] concentrates on a level-set based

approach. The modelling of the geometric variation is realized by a random velocity

field acting on the normal component of the velocity field. A noticeable challenge is

that the shape sensitivity analysis is usually defined for deterministic boundary for-

mulations, whereas for geometric uncertainties random boundaries have to be taken

into account for the derivation of the shape derivative. Details can be found in [15].

94



Bibliography

[1] E. Abenius. Time-Domain Inverse Electromagnetic Scattering using FDTD and

Gradient-based Minimization. Licentiate Thesis, 2004.

[2] R. Alcaraz and J.J. Rieta. A review on sample entropy applications for the

non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal

Processing and Control, 5(1):1 – 14, 2010.

[3] W. K. Anderson, L. Wang, S. Kapadia, C. Tanis, and B. Hilbert. Petrov-

Galerkin and discontinuous-Galerkin methods for time-domain and frequency-

domain electromagnetic simulations. Journal of Computational Physics,

230(23):8360 – 8385, 2011.

[4] F. Assous, P. Degond, E. Heintze, P.A. Raviart, and J. Segre. On a Finite-

Element Method for Solving the Three-Dimensional Maxwell Equations. Jour-

nal of Computational Physics, 109(2):222 – 237, 1993.

[5] K.E. Atkinson and W. Han. Theoretical Numerical Analysis: A Functional

Analysis Framework. Texts in applied mathematics. Springer, 2001.

[6] BiblioBazaar and J.C. Maxwell. A Treatise on Electricity and Magnetism Vol-

ume 1. A historical reproduction. BiblioBazaar, 2010.

[7] B. Bourdin. Filters in topology optimization. International Journal for Nu-

merical Methods in Engineering, 50(9):2143–2158, 2001.

[8] A. N. Brooks and T. J.R. Hughes. Streamline upwind/Petrov-Galerkin formu-

lations for convection dominated flows with particular emphasis on the incom-

pressible Navier-Stokes equations. Computer Methods in Applied Mechanics

and Engineering, 32:199 – 259, 1982.

[9] K. Buckley and P. Matousek. Non-invasive analysis of turbid samples using

95



Bibliography

deep Raman spectroscopy. Analyst, 136:3039–3050, 2011.

[10] D. Bucur and G. Buttazzo. Variational Methods in Shape Optimization Prob-

lems. Progress in Nonlinear Differential Equations and their Applications.
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Selbstständigkeitserklärung
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