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I’m not sure. I’m afraid we need to use... math!

— Professor Hubert J. Farnsworth [1]





Abstract

The search for new techniques, materials and ideas to improve and develop high

efficient electrical devices is more relevant today as ever. In this doctorate thesis

ab-initio density functional theory (DFT) is used to investigate two very differ-

ent systems with very different properties. They have in common that they are

low-dimensional (1D and 2D) and that spin-orbit coupling (SOC) is necessary for

an accurate description. Therefore, at the beginning of this these, a new, high

efficient relativistic approach is introduced which allows for an inclusion of SOC

without pushing the computational limits.

The first explored system is given by indium-nanowires that self-organize on the

silicon (111) surface. This quasi one-dimensional system is famous for its re-

versible temperature-induced phase transition from a (4×1) to a (8×2) structure.

Although most properties are already studied intensively, the inclusion of SOC in

the calculations unfolds a so far unknown but large Rashba splitting, located at

the In-related bands, for both phases which is strongly anisotropic.

The second material investigated in this work is the bismuth (111) surface. The

clean surface is a challenge itself as its electronic structure highly depends on the

correct modelling. In contrast to the In-nanowires where most properties can be

described without SOC, it is essential in the case of bismuth. Dramatic alterations

in the band structure and Fermi surface are clearly the most obvious changes. The

bismuth surface has spin-split surface states, a precondition for spintronics but a

good understanding of controlled surface modification is useful for future appli-

cations. It is shown that transition metals (TMs) as well as noble metals occupy

all the same sevenfold coordinated position within the first bismuth bilayer of the

Bi(111) surface. Interestingly, the surface topography is unchanged. For the 3d

TMs this incorporation even happens barrier-free, i.e. without thermal activation.

By increasing the density of the adatoms, it is possible to create an energetically

very stable δ-doping layer of 3d TMs which, while being invisible to scanning tun-

neling microscopy (STM), leads to changes of the electronic and magnetic surface

properties.





Kurzfassung

Die Suche nach neuen Techniken, Materialien und Ideen um hocheffiziente elek-

tronische Bauelemente zu verbessern und zu entwickeln is heute aktueller denn je.

In dieser Doktorarbeit wird ab-initio Dichtefunktionaltheorie (DFT) genutzt um

zwei sehr verschiedene Systeme mit sehr unterschiedlichen Eigenschaften zu un-

tersuchen. Beiden ist gemein, dass sie von niedriger Dimension (2D und 3D) sind

und dass Spin-Bahn-Kopplung (SOC) notwendig für eine akkurate Beschreibung

ist. Daher wird zu Beginn dieser Dissertation ein neuer, effizienter relativistischer

Ansatz eingeführt, mit dem die SOC berücksichtigt wird ohne die Grenzen der

Rechenleistung zu sprengen.

Bei dem ersten untersuchten System handelt es sich um Indium Nanodrähte,

die sich selbstorganisierenend auf der Silizium (111) Oberfläche anordnen. Die-

ses quasi-eindimensionale System ist bekannt für seinen reversiblen temperaturin-

duzierten Phasenübergang von einer (4×1) zu einer (8×2) Struktur. Obwohl die

meisten Eigenschaft bereits umfassend untersucht wurden, zeigt die Integration

von SOC eine bisher unbekannte, aber große ansiotrope Rashba-Aufspaltung für

beide Phasen, lokalisiert an den In-Bändern.

Das zweite in dieser Arbeit untersuchte Materialsystem ist die Bismut (111) Ober-

fläche. Die reine Oberfläche ist schon selbst eine Herausforderung, da die elek-

tronische Struktur stark an der korrekten Modellierung hängt. Im Gegensatz zu

den In-Nanodrähten, wo die meisten Eigenschaften ohne SOC beschrieben wer-

den können, ist sie essentiell im Falle von Bismut. Große Veränderungen in der

Bandstruktur und Fermifläche sind deutlich sichtbar. Die Bismut Oberfläche be-

sitzt spin-aufgespaltene Oberflächenzustände, eine Voraussetzung für Spintronik.

Dennoch ist ein gutes Verständnis von kontrollierter Modifikation der Oberfläche

nützlich für zukünftige Anwendungen. Wir zeigen, dass Übergangsmetalle (TM)

sowie Edelmetalle dieselbe siebenfach koordinierte Position innerhalb der ersten

Bismut Bilage der Bi(111) Oberfläche besetzen. Interessanterweise wird hierbei die

Oberflächentopographie nicht verändert. Für die 3d TMs geschieht dieser Einbau

sogar barrierefrei, d.h. ohne thermische Aktivierung. Durch Erhöhung der Ada-

tomdichte ist es möglich eine δ-dotierende Lage von 3d TMs zu kreieren, welche,

obwohl unsichtbar für STM Messungen, zu Änderungen der elektronischen und

magnetischen Oberflächeneigenschaften führt.
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Chapter 1

Introduction

When Gordon Moore in 1965 formulated his famous law that the number of tran-

sistors in an integrated circuit doubles approximately every two years [2], no one

expected that it holds true even 50 years later. With the progress in solid-state

physics and engineering it is possible to build smaller and smaller devices. Today,

smartphones are equipped with devices on the scale of around 14 nm. Even though

research is already reaching the atomic scale [3, 4], it is safe to say that commercial

use is still far away. Even Moore himself predicts the ending of his law [5]:

“ I guess I see Moore’s Law dying here in the next decade or so, but

that’s not surprising. ”

It is time to think about possibilities to push technological boundaries. The

smaller the size, the more important quantum effects become. Although the idea

of Quantum computing can be dated back to the 1970s (maybe as a reaction to

Moore’s law), first realisations were made in the past years [7, 8] and culminates in

Google’s publication regarding the extraordinary speed of their quantum com-

puter [9]. Qubits can be realised in various ways and one of it is the manipulation

of the electron spin. For the success of spintronics the understanding of the under-

lying physics is essential. The Stern-Gerlach experiment showed that the magnetic

moment can couple to external magnetic fields [10–12]. Thus, external fields can

be used to control the spin. For practical application, however, magnetic fields

on the nanoscale are hard to handle. Spin-orbit coupling (SOC) can be seen as

a “built-in” magnetic field. Supriyo Datta and Biswajit Das proposed a transis-

tor based on SOC [13], cf. Figure 1.1. The Datta-Das spin field-effect transistor
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1 Introduction
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Figure 1.1: The Datta-Das spin field-effect transistor (SFET). The source contact
on the left injects spin-polarized electrons (red arrows) into a semiconductor channel.
The gate voltage controls the spin-orbit coupling (SOC) and the resulting effective
magnetic field (blue arrows). The electrons’ spins precess. The current depends on the

angle between electron and drain magnetization. Taken from [6].

(SFET) consists of two ferromagnetic contacts (source and drain) separated by

a semiconductor region, e.g a quasi-one-dimensional InGaAs/InAlAs heterojunc-

tion. The contacts act as a spin injector and spin detector. The injected electrons

are spin-polarized. Due to the SOC the spin precesses during the electron’s way

through the semiconductor. When they reach the spin detector those electrons

with their spin aligned to the drain magnetization contribute most to the current.

The current depends on the angle between electron and drain magnetization and

thus on the strength of the SOC. The SOC and with it the degree of spin precession

is tunable by the voltage applied to the gate.

Figure 1.2: Scanning electron microscope
(SEM) image of a fabricated InAs nanowire field-
effect transistor. The source/drain contacts are
Al/Al2O3. The gate electrodes consist of Ti/Au.

Taken from [14].

Not only the use of new physics, but

also the use of new material systems

can be beneficial. Most of the de-

vices today are, just like the world

around us, three-dimensional. But if

we go to lower dimensions, a whole

new world opens before us. Surfaces

can be seen as two-dimensional sys-

tems. Just like defects, they disturb

the regular periodicity of a crystal and

create new electronic states in the band

structure. Those can lead to totally

different properties. In this work bis-

muth is investigated. It is classified as

a semimetal when regarding the bulk crystal. At most points of the Brillouin zone
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exists an energy gap like in a semiconductor, but there are points where the va-

lence and conduction bands overlap making bismuth formally a metal. However,

the surface shows several clearly visible metallic surface states making the bismuth

surface a modelsystem for a 2D-metal. Due to spin-orbit coupling, those surface

state bands exhibit a strong spin splitting. This makes bismuth very valuable in

the field of spintronics and quantum computing.

But, the dimensionality can be reduced even further. In one-dimensional systems

electrons are confined in all but one direction. As a consequence of this, most

of their properties have a highly anisotropic character, e.g. resistance and con-

ductance. Furthermore, models developed for three-dimensional systems, are not

valid anymore and new physical phenomena can be discovered. For instance, the

so-called Fermi liquid model, where quasiparticles carry charge and spin character,

has to be replaced by the Luttinger liquid model [15]. Here, a spin-charge separa-

tion takes place and the resulting spin-density waves (SDW) and charge-density

waves (CDW) propagate with different group velocities.

Atomic-sized nanowires on a substrate are quasi one-dimensional systems and very

promising candidates for future electronic nanodevices. They can act as passive

interconnects – without conducting wires there are no circuits – but also as the

active devices themselves. A nanowire field effect transistor is easy to imagine

with the nanowire connecting the two contacts, c.f. Figure 1.2.

The presented work aims at improving the understanding of the one-dimensional

In-nanowires and the two-dimensional bismuth (111) surface and the possibility

of manipulation of the surface states by using ab-initio density functional theory

(DFT). For all calculations the Quantum Espresso [16] package was used. As

open-source software it allows for a direct extension with features necessary for

this work: The investigated systems contain indium and bismuth. Both elements

are heavy and as our structures consist of up to 162 atoms, a computational cost

saving handling of SOC is needed.

At the beginning, we present the theoretical background and establish a new

efficient approach to include relativistic effects in the calculations. Chapter 3

deals with In-nanowires which self-organize on the silicon (111) and deem as a

prototype for a one-dimensional nanowire. The inclusion of relativistic treatment

in our calculations reveals a large, strongly anisotropic Rashba splitting of the

In-related states. Afterwards, in Chapter 4, we change the system and go to the

two-dimensional bismuth (111) surface. At first, we determine the best way to

model the surface before we investigate the influence of adatoms. Experiments

17



1 Introduction

already indicated a subsurface incorporation of 3d transition metals (TMs) and

noble metals. In fact, our calculations reveal that they are incorporated at a highly

symmetric position within the uppermost bilayer of the surface. This incorporation

occurs even barrier-free for the 3d TMs. A high density of those subsorbates

finally leads to a energetically very stable δ-doping layer of 3d metals which results

in changes of the surface electronic density of states and the surface magnetic

properties.

18



Chapter 2

A kind of theoretical background

Most of the theoretical background needed for this work can be found in different

textbooks [17]. Hence, we just want to give a small overview by summarizing the

history of solid-state physics and quantum mechanics. Since this is a physicist’s

and not a historian’s thesis, not everything can be covered. A good and recom-

mended book, where most of the following chapter is based on, is Out of the crystal

maze: A history of solid state physics by Lillian Hoddeson, Ernest Braun, Jürgen

Teichmann and Spencer Weart [18].

2.1 Describing solids – the long way to quantum

mechanics

Since centuries people try to understand the world around them and naturally

the objects they can put in their hands, solid-state bodies. Especially during the

industrial revolution in the 19th century the call for a better understanding of

materials (e.g. steel) and thus efficiency enhancement was great. Successes like

those of the german company Krupp which increased its steel production from

5000 tons to 50000 tons within five years can be credited to new advances in

the understanding of steel [19] and helped solid-state physics to really make its

breakthrough. In the 1880s the incandescent light bulb came to private households

and became an intensively studied object in physics. In this context Heinrich

Friedrich Weber published his paper “Untersuchungen über die Strahlung fester

Körper” in 1888 where he wrote about a relation between the wavelength of light

19



2 A kind of theoretical background

emitted by a body and its temperature [20]. Although it did not gain a lot of

attention by the time of publication, this and some other findings clearly laid the

foundation for Max Planck’s famous works fifteen years later [21, 22].

With new reputation and more resources it was only a matter of time that the

electron was finally discovered, as it was already proposed, by Sir Joseph John

Thomson at the end of the 19th century [23]. This led to a series of progression

in the field of theoretical physics since the electron is essential for understanding

solids on a microscopic scale.

One of the most promising theories was the one of Paul Drude [24], later modified

by John Joseph Thomson [25] and Hendrik Antoon Lorentz [26]. It is derived

from the kinetic gas theory and assumes that the mobile electrons and immobile

ions behave like a classical gas. Drude managed for the first time to derive the

Wiedemann-Franz law κ
α

= 4
3
α2

e
T [27] on a microscopic scale.

These “classical” theories were and still are very successful in being consistent

with a lot of experiments. Unfortunately, it soon became clear that they are not

enough and fail to explain for example the electron’s role in the specific heat.

Even though, new theories lead to a better understanding of solids, we have already

seen that the experimental side did not stand still. One of the pioneers was the

theorist Max von Laue who discovered together with Walter Friedrich and Paul

Knipping the diffraction of X-rays by crystals in 1912 [28]. With this technique

it was possible for the first time to draw conclusions to the crystal structure of

a solid. Beginning with William Henry Bragg and William Lawrence Bragg [29]

the method was extended and refined more and more. Today we are able to

determine the position of the atoms in various kinds of different crystals within

a few percent. Besides, there were of course many other inventions indispensable

today, e.g. low-temperature experiments which ultimately lead to the discovery of

superconductivity by Heike Kamerlingh-Onnes [30].

Around the same time as Drude published his new theory, Max Planck derived his

black-body radiation law [21, 22]. His revolutionary idea was that energy can only

be emitted or adsorbed in quantized portions whose smallest unit corresponds to

ε = hν with h = 6.626 . . . · 10−34 Js being the later called Planck constant.

“ It was as if the ground had been pulled out from under one, with no

firm foundation to be seen anywhere upon which one could have built. ”

20



2.1 Describing solids – the long way to quantum mechanics

Albert Einstein’s quote from 1949 [31] displays the impact of Planck’s new theory.

The great agreement between theory and experiment proved this ansatz right.

Albert Einstein himself used energy quanta, photons, to explain the photoelectric

effect [32]. The astonishing consequence is the particle nature for light. Hence, it

is safe to say that Planck’s thoughts mark the beginning of quantum mechanics.

“ Can nature possibly be so absurd as it seemed to us in these atomic

experiments? ”

— Werner Heisenberg 1958 [33]

Planck’s idea brought new life into physics. 1913 Nils Bohr wrote his famous paper

“On the Constitution of Atoms an Molecules” where he provided an explanation

for the spectral lines of hydrogen based on the works of Planck and Einstein [34].

Ten years later Louis de Broglie stated that particles can exhibit wave character-

istics and waves can exhibit particle characteristics [35], another ground breaking

insight.

With the ground of Planck, Einstein, Bohr, de Broglie and others a complete

new theory was developed within the following years. At the beginning it was a

common approach to take classical mechanics but to “quantize” certain quanti-

ties. This resulted in a lot of different quantization rules for various situations.

In 1925 Werner Heisenberg, Max Born and Pascual Jordan formulated the ma-

trix mechanics [36–38] which brought all those rules together in a, at this time,

very complex and very abstract way: Matrices represent physical properties that

evolve in time. In the 1920s the mathematics of matrices was not very widespread.

Thus, Heisenberg’s theory did not gain the popularity it deserved. Around the

same time, Erwin Schrödinger formulated an alternative approach to quantum

mechanics, the so-called wave mechanics [39]. The most famous formula of this

theory is with no doubt Schrödinger’s equation1

i
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (2.1)

or in a stationary, many-particle form

ĤΨ
(
{rj}, {Rn}

)
= EΨ

(
{rj}, {Rn}

)
. (2.2)

1In this work atomic units are used except as noted otherwise. This means r̃ = r
rB

with

rB = ~2

me2 and Ẽ = E
EH

with EH = ~2

2me2B
. The tilde is neglected for better view.
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2 A kind of theoretical background

Both theories, Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics,

seem very different but in fact they are totally equivalent as proven by Schrödinger

himself [40] and American physicist Carl Eckart [41]. It should be noted that there

exists a third formulation of quantum mechanics. Richard Feynman, build on the

work of Paul Dirac [42, 43], developed the path-integral formulation of quantum

mechanics [44]. Here, all possible paths of a motion of a particle are taken into

consideration and not just the path with the stationary action as it is the case

in Hamilton’s principle. The different paths have different weights. The path

integral, or functional integral, over those paths results in a so-called quantum or

probability amplitude.

2.2 Density functional theory – Efficiency

Schrödinger’s equation in the presented form (Eq. (2.2)) fully describes a many

body system but is way too complex to just use it. The density functional theory

(DFT) provides an innovative concept to reduce the computational costs consid-

erably [45, 46]. Instead of searching for the ground state wavefunctions, the DFT

searches for a ground state density n(r). This reduces the number of degrees of

freedom from 3Nel to 3.

We do not want to go into detail since there are a lot of excellent books which ad-

dress the analytics behind density functional theory [17]. However, the Hohenberg-

Kohn theorems as the basis of DFT, should not go unmentioned [45]:

Theorem 2.1. The ground state energy can be described as a unique functional

E[n] of the electron density n(r) which is given by the expectation value

n(r) = 〈Ψ|
N∑
i=1

δ(r − ri) |Ψ〉 . (2.3)

Theorem 2.2. The ground state density minimizes the ground state energy of the

system, i.e. one has to deal with a variational problem:

E0 = E[n0] ≤ E[n] (2.4)

⇒ δE[n(r)]

δn
= 0 with the side condition

∫
n(r)d3r = N (2.5)

⇒ δ

δn

{
E[n(r)]− µ

(∫
n(r)d3r −N

)}
= 0 . (2.6)
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2.2 Density functional theory – Efficiency

Following these theorems, Kohn and Sham suggested a separation of E[n] [46]:

E[n(r)] = Ts[n(r)]+

∫
v(r)n(r)d3r+

1

2

∫
n(r)n(r′)

|r − r′|
d3rd3r′+Exc[n(r)] . (2.7)

Ts[n] represents the kinetic energy of non-interacting particles. Up to this point,

everything is still exact. With the ansatz n(r) =
∑N

l=1 |φl(r)|2 containing the

non-interacting single-particle orbitals φl(r), an expression for Ts[n] can be found.

It also leads to the Kohn-Sham equations:

{∇
2

+ v(r) +
1

2

∫
n(r′)

|r − r′|
d3r +

∂Exc[n(r)]

∂n(r)

}
φl(r) = εlφl(r) (2.8)

All unknown many-body effects of E[n] are put into Exc[n], the so-called exchange-

correlation function. The real problem of DFT is that it is not possible to find an

expression for Exc (apart from an analytical solution for the homogenous electron

gas) and approximations have to be made. The two most famous appoximations

are the local density approximation (LDA) (ELDA
xc = ELDA

xc [n(r)]) and the gener-

alized gradient approximation (GGA) (EGGA
xc = EGGA

xc [n(r),∇n(r),∇2n(r), ...]).

Both have to be determined numerically, e.g. with quantum Monte Carlo simula-

tions, comparison with experimental data etc. There are a lot more possibilities

to build a functional, e.g. hybrid functionals where an admixutre of Hartee-Fock

exchange is included. But often accuracy comes with higher computational effort.

One has to choose the functional fitting best to the problem. Common to all is

that they are not able to describe all effects, especially quasiparticle effects [47, 48].

In this work we use norm-conserving PBE-functionals, spin-polarized GGA func-

tionals suggested by Perdew, Burke and Ernzerhof [49]. The reason is simple: The

systems, we want to investigate, consist of a high number of heavy atoms. This

alone justifys the use of PBE-functionals as they provide a good balance between

accuracy and computational effort, at least for the present problems. Addition-

ally, spin-orbit coupling (SOC) becomes very important. In the following section,

a new efficient approach is introduced, but the current implementation is only

usable with norm-conserving pseudopotentials.
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2 A kind of theoretical background

2.3 Relativistic quantum mechanics

As the title already mentions, this work deals with the influence of spin-orbit

coupling on the electronic structure of different systems. For all calculations, we

use the Quantum Espresso package [16]. It already provides a spinor-based

relativistic approach proposed by Andrea Dal Corso using full-relativistic pseu-

dopotentials [50]. This method is very accurate but has two main problems: It is

computationally demanding, which makes it difficult to use for big systems. And,

the use of special pseudopotentials makes it less flexible and decreases the com-

parability with scalar-relativistic calculations. As part of this work, a new, fast

method was developed that intends to avoid these problems.

As a starting point for the following derivation we choose the Dirac equation in

the presence of external fields

(
cα ·

(
p̂ +

1

c
A
)

+ βmc2 + V (r)− Erel
)
Ψ = 0 (2.9)

in the Foldy-Wouthuysen transformed gauge-invariant form [51, 52]

ĤFW = Î
[
c2 +

(
p̂ + 1

c
A
)2

2
− p̂4

8c2
− 1

8c2
∇ ·E + ϕ

]
−σ̂
[µB

2
B +

i

8c2
∇×E +

1

4c2
E ×

(
p̂ +

1

c
A
)]

.

(2.10)

The first term of Equation (2.10) consists of the Darwin term and the kinetic

energy correction which, in this form not well converging [53, 54], can be covered

by using scalar-relativistic pseudopotentials. Without magnetic fields (B = 0,

A = 0, ∇×E = −1
c
∂tB = 0), the second part of ĤFW reduces to

∆ĤSO =
1

4c2
σ̂ ·
(
∇V (r)× p̂

)
. (2.11)

This term is known as the second-order approximation [55] and can be already

found in Pauli theory. Together with scalar-relativistic pseudopotentials which

include relativistic kinetic energy corrections, we get a proper relativistic descrip-

tion of electrons. Both, relativistic kinetic energy and spin-orbit coupling, are

included. The use of the same pseudopotentials allows for a direct comparison

of the scalar-relativistic and the SO-including calculations. So far, the method is

only implemented for norm-conserving pseudoptentials exclusively. An extension

to ultrasoft pseudopotentials is planned.
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2.3 Relativistic quantum mechanics

The so-called “Pauli-type” theory can now be further improved for heavy elements

by using the zero-order regular approximation (ZORA) [56, 57]. With the Dirac

Hamiltonian expanded in terms of E
2c2−V , we get

∇̃V = ∇

[
2c2

1− V
2c2

]
=

1(
1− V

2c2

)2 · ∇V . (2.12)

With V ≈ −Z
r

the prefactor and thus the spin-orbit coupling is reduced with

increasing atomic number.

For this (and further) work, the presented theory was implemented in the Quan-

tum Espresso package [16] by applying a two component version of Blöchl’s

projector-augmented wave (PAW) transformation [58]

T̂ = Î +
∑
R,m

[
|φR,m〉 − |φR,m〉

]
〈pR,m| (2.13)

on ∆ĤSO. Even though projectors |pR,m〉 consist now of two components set

up from scalar-relativistic components, they work just like in the original PAW

transformation and are used to reconstruct the all-electron spinors |ψ〉 = T̂ |ψ〉
from the pseudospinors |ψ〉. The transformed all-electron Hamiltonian is given by

∆ĤSO = T̂+∆ĤSOT̂

=
1

4c2

[
σ̂ ·
(
∇̃Vps(r)× p̂

)
+
∑
R

∑
n,m

|pR,n〉 fR,nm 〈pR,m|︸ ︷︷ ︸
=F̂NL

R

]
(2.14)

with the matrix elements

fR,nm = 〈φR,n| σ̂ · ∇̃Vae(r)× p̂ |φR,m〉 − 〈φR,n| σ̂ · ∇̃Vae(r)× p̂ |φR,m〉 (2.15)

The nonlocal part
∑

R F̂NL
R reconstructs the all-electron contribution to the spin-

orbit coupling.

By taking into account that (with more than 99 %) the major part of the spin-orbit

coupling comes from the augmentation region, the first term of Equation (2.14)

and the second term of Equation (2.15) are both small; in addition they nearly
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2 A kind of theoretical background

(a) side view (b) top view

Figure 2.1: Schematic view of the Bi(111) bilayer. It is structurally similar to
graphene but split into two sublattices separated by 1.67 Å. In blue the unit cell con-

sisting of two Bi atoms is marked.

cancel each other. It remains

∆ĤSO =
1

4c2

∑
R,n,m

|pR,n〉 〈φR,n|
1

r

∂Vae(r)

∂r
× σ̂ · L̂ |pR,m〉 〈φR,m| , (2.16)

the reconstruction-only form which decreases the computational costs significantly.

Here L̂ stands for the angular momentum operator.

A perfect first test system to validate the presented method is the Bi(111) bilayer.

As can be seen in Figure 2.1, it is structurally similar to graphene but the sublat-

tices split up into two sublayers separated by 1.67 Å [60, 61]. Figure 2.2 compares

the band structure of the bilayer calculated for different cases. Relativistic effects

play indeed an important role here. Not only the kinetic energy correction but

also the spin-orbit coupling lead to dramatic changes in the band structure. Below

the Fermi energy EF , three bands can be found with mainly p-character. At the Γ

point, those bands cover a range of 0.5 eV in the scalar-relativistic case, whereby

the second and third band are even degenerate. In the relativistic cases these

two bands are separated by around 1.5 eV leading two an overall spreading of all

three bands in a range of 2.3/2.5 eV (ZORA/full-relativistic) up to 3 eV (Pauli).

In comparison with the full-relativistic reference band structure, the Pauli-type

calculation reproduces the correct dispersion of the valence bands but underesti-

mates the band gap and overestimates the overall splitting of the bands. With

the ZORA both can be corrected and especially at the Fermi energy, the bands lie

ontop of each other.

Another quick test can be done for graphene. In the absence of spin-orbit coupling

(SOC) it shows no energy gap but the typical Dirac points. Different theoretical
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Figure 2.2: Band structure of a single Bi bilayer calculated in the non-relativistic case,
the scalar-relativistic approximation, the full-relativistic approach by Dal Corso and the
presented implementations of Pauli and ZORA-type spin-orbit Hamiltonians, where the
relativistic band structure is reconstructed from scalar-relativistic pseudopotentials.

Taken from own publication [59].

works have already predicted that SOC will lead to a gap opening at the K point

and thus the existence of a low-temperature spin quantum Hall effect [62]. The

energy gap ranges from relatively high 0.1 meV (tight-binding model) [62] over

much lower 0.00086 meV (density functional theory (DFT) with full-relativistic

LDA pseudopotentials) [63] to 0.05 meV (all-electron DFT) [64]. With our ap-

proach, using norm-conserving PBE pseudopotentials, we can get energy gaps over

a big range depending on the used method and pseudopotential (see Table 2.1).

There are nearly no differences of the values between the ZORA and Pauli ap-

proach. This proves that the ZORA only becomes really important when dealing

with heavy atoms. In contrast to the Bi band structure where we could find no
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2 A kind of theoretical background

deviation if using the full-potential (Equation (2.14)) or the reconstruction-only

(Equation (2.16)) approach, we can see here obvious differences. When using a

pseudopotential without including the d levels, we get a two orders of magnitude

lower gap for the reconstrction-only approach as when using the full-potential

version. If d electrons are included, we get (for all variations) a reasonable gap

opening of 0.049 meV. This proves that the gap depends critically on the basis

set. If the basis is too small, the gap opening becomes very small, too. The miss-

ing d electrons, or for another reason a too small basis, can explain the value of

0.00086 meV of [63].

For a more expanded review of the new method, systems showing a large Rashba ef-

fect and and already investigated experimentally and theoretically, are used as fur-

ther reference. The Bi-related surface alloys on noble metal substrates Bi/Cu(111)

and Bi/Ag(111) are prototype examples for large Rashba effects at the Γ point of

the Brillouin zone.

In a system where time-reversal symmetry holds, the transformation t → −t
changes the momentum of an electon from k to −k and inverts the spin. Thus,

it holds ε(k, ↑) = ε(−k, ↓). In a crystal with additional space inversion symmetry,

it even holds ε(k, ↑) = ε(−k, ↑). Time and space inversion symmetry combined

lead to ε(k, ↑) = ε(k, ↓) which means that the bands for spin-up and spin-down

electrons are degenerate (also known as Kramer’s degeneracy [67]). If the space

inversion symmetry is broken, this degeneracy can be lifted due to SOC. The in-

version asymmetry can be understood as an asymetric potential perpendicular to

the surface, V (r) 6= V (−r). Due to the now non-vanishing electric field, we get

ε(k, ↑) 6= ε(k, ↓), i.e. a momentum-dependent spin splitting is observed. Hence,

Table 2.1: Energy gap in meV for graphene calculated with different methods (ZO-
RA/Pauli full-potential/reconstruction-only) and pseudopotentials (without or with d

electrons). The gap becomes very small in the cases where the basis is too small.

pseudopotential without d with d
ZORA, Eq. (2.14) 0.03582 0.049
ZORA, Eq. (2.16) 0.00076 0.049
Pauli, Eq. (2.14) 0.03582 0.049
Pauli, Eq. (2.16) 0.00074 0.049

collinear (001), Eq. (2.14) 1.943900
collinear (001), Eq. (2.16) 2.142280
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2.3 Relativistic quantum mechanics

Table 2.2: Rashba parameters of Bi-related surface alloys, calculated at the Γ point
with different approaches (Dal Corso and ZORA/Pauli within the full-potential or
reconstruction-only version) and compared with experimental results and former all-

electron DFT calculations. Taken from own publication [59].

System [Ref.] ER [meV] ∆k [Å−1] αR [eVÅ]
Bi/Cu(111) surf. alloy Exp. [65] 13 0.032 0.82

DFT [65] 9 0.028 0.62
full-relativistic (Dal Corso) 14.5 0.032 0.89

ZORA, Eq. (2.14) 12.7 0.027 0.94
ZORA, Eq. (2.16) 12.7 0.027 0.94

Pauli, Eq. (2.14) 13.3 0.028 0.95
Pauli, Eq. (2.16) 13.3 0.028 0.95

Bi/Ag(111) surf. alloy Exp. [66] 200 0.13 3.05
DFT [66] 145 0.10 2.90

full-relativistic (Dal Corso) 144 0.082 3.63
ZORA, Eq. (2.14) 145 0.085 3.38
ZORA, Eq. (2.16) 145 0.085 3.38

Pauli, Eq. (2.14) 168 0.100 3.37
Pauli, Eq. (2.16) 168 0.100 3.37

the Rashba effect is a direct consequence of the spin-orbit coupling2. It was dis-

covered in 1959 by Emmanuel Rashba [69, 70]. The corresponding Hamiltonian

can be derived directly from the SOC-Hamiltonian (Equation (2.11)) by assum-

ing an effective potential gradient along z and introducing the so-called Rashba

parameter αR:

ĤR = αRσ̂ ·
(
ez × k

)
(2.17)

= αR
(
σ̂xky − σ̂ykx

)
(2.18)

=

(
0 αR(ky + ikx)

αR(ky − ikx) 0

)
Î (2.19)

with the eigenvalues εR± = ±αRk. If we start from an ideally parabola shaped band

with its extremum at (E,k), the Rashba effect leads to a spltting of this band into

2Related to the Rashba effect is the so-called Dresselhaus effect [68] which appears for

zinc blende structures, e.g. III-V semiconductors. The corresponding Hamiltonian is ĤD =
αD

(
σyky − σxkx

)
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two parabolas with the energies:

E± =
k2

2m∗
± αRk

=
1

2m∗
(
k ± αRm∗︸ ︷︷ ︸

∆k

)2 − α2
Rm

∗

2︸ ︷︷ ︸
ER

(2.20)

The Rashba parameter αR can thus be defined as

αR =
2ER
∆k

=
∆k

m∗
(2.21)

Table 2.2 compares all methods (Dal Corso and ZORA/Pauli within the full-

potential or reconstruction-only version) as well as former all-electron DFT calcu-

lations and the experiment regarding the characteristic quantities with ER and ∆k

being the energy and k-point shift and αR as the Rashba parameter for the two sys-

tems Bi/Cu(111) and Bi/Ag(111). In the same way as before, the reconstruction-

only and the full-potential calculations lead to exactly the same values. Those

are in good agreement with the experiment and even slightly better than the all-

electron DFT calculations. The formerly implemented relativistic method by A.

Dal Corso, too, provides satisfactory results, but at a much higher computational

costs. By using the new approach the computational time can be reduced by

30 % or even 60 % when using the reconstruction-only version. For comparison,

the scalar-relativistic calculation of such a systems only takes 8 % of the time the

full-relativistic calculation needs.
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Chapter 3

In/Si(111) nanowires

Quasi one-dimensional systems are of great scientific and technological interest.

Due to their low dimensionality these systems have special properties, e.g. quan-

tization of conductance, phase transitions and many more. Metallic nanowires are

prototype 1D systems. One of those prototypes is given by indium-nanowires that

self-organize on the silicon (111) surface. The In surface states are located almost

completely inside the Si band gap which makes it a great model for 1D systems.

Despite being one of the most investigated atomic wire systems, experimentally

and theoretically, there are still lots of properties left to study. The aim to build

smaller and smaller electronic components will profit from the understanding of

the mechanisms and properties of this atomic sized system.

Indium was first discovered and described by the German chemists Ferdinand

Reich and Theodor Richter in 1863 [71, 72]. It is a soft silver-white post-transition

metal and can be used for a wirde range of applications. InN, for example, is a

group-III-nitride and just as the famous GaN is suitable for semiconductors and

related devices [73]. In everyday life, indium is used in alloys with Cd, Zn, Bi, etc.

Those have low melting points of 50− 100 ◦C and thus can be used in thermostats

or fire sprinkler systems [74].

J.J. Lander and J. Morrisson were the first who applied indium on the silicon (111)

surface [75]. With low-energy electron diffraction (LEED) analysis, they found the

famous (4×1) reconstruction but they were not aware of the quasi-1D character of

the system they had in front of them. Angle-resolved photoemission spectroscopy

(ARPES) [76, 77] and scanning tunneling microscopy (STM) [77] measurements

30 years later confirmed the existence of metallic In-nanowires.

31



3 In/Si(111) nanowires

3.1 Crystal structure and modelling

4x1 unit cell

8x2 unit cell

Figure 3.1: Schematic view of the
(4×1) structural model for the RT
phase of In/Si(111) (top) and the
(8×2) hexagon model for the LT phase
(bottom). Taken from own publication

[59].

One of the most prominent features of the In-

nanowires on Si(111) is a temperature-driven

metal-insulator phase transition. At room tem-

perature (RT) ordered arrays of In-nanowires

are formed with a (4×1) surface periodicity,

but at low temperatures (T = 120 K) a rear-

rangement of the In double chain takes place

and, thus, hexagons are formed as can be seen

in Figure 3.1 leading to a (8×2) periodicity.

This phase transition is reversible and has a

signficant impact on the electronic properties.

Whereas the RT phase is metallic, the low tem-

perature (LT) phase becomes semiconducting

with a band gap of about 0.1 eV (cf. Fig-

ure 3.2).

Even though the (4×1) reconstruction was al-

ready discovered in 1965 [75], the corresponding

structural model was not determined until 34 years later by Bunk et al. [78]. Each

nanowire consists of two zigzag chains of In with a (4×1) surface periodicity. The

nanowires are separated by Si chains resembling the chains of the clean Si(111)-

(2×1) surface (cf. Figure 3.1 top). Shortly after the (4×1) model was established,

the semiconducting (8×2) was experimentally discovered [79]. Often seen in scan-

ning tunneling microscopy (STM) [79–83], the atomic structure of this phase was

unclear until González et al. proposed a hexagonal structural model which is in

agreement with various experimental data [84, 85]. Here, the In double chain ex-

periences a displacement of ±0.35 Å along the direction of the chain leading to a

hexagonal arrangement of the In atoms (cf. Figure 3.1 bottom)

For the simulation of the In/Si(111)-(4×1) as well as the (8×2) surface three Si

bilayers are used. The bottom layer is terminated with hydrogen. The hydrogen

layer and the bottom Si bilayer are kept fixed. Hence, we have just 34 atoms in

the (4×1) cell and 136 atoms in the (8×2) cell. As k-point sampling 16×4×1

respectively 8×2×1 were used. For both phases, a cutoff energy of 50 Ry is found

to be sufficient.
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3.2 Rashba splitting

With an atomic number of 49 Indium is a relatively heavy atom. Hence, it is

no wonder that In-containing systems often show comparatively large relativis-

tic effects [86, 87]. After an antifferromagnetic spin ordering was found in gold

chains on silicon surfaces [88], it is worth investigating relativistic effects for the

In-nanowires. For that, the relativistic approach presented in Section 2.3 is suit-

able. In its reconstruction-only form, both the (4×1) phase with just 34 atoms

and the (8×2) phase with 136 atoms can be treated without needing too much

computational time.

Stekolnikov et al.have shown that the energetic and structural properties of the

In/Si(111) surface depends critically on the treatment of the d-electrons, whether

they are treated as core or valence electrons, as well as on the use of the functional,

local density approximation (LDA) or generalized gradient approximation (GGA)

[89]. Furthermore, Kim and Cho have shown that it makes a difference whether

van der Waals (vdW) interaction is taken into account or not [90]. All in all, the

system and the phase transition depends very much on the lattice constant of the

substrate and the In-In bond length ontop.

The calculations presented in this work are all valid at absolute zero temperature.

Thus, the (8×2)-LT phase should be energetically favored. This can only be

achieved within the local density approximation. With GGA, we either get a

less stable minimum (using PW91) or no stable minum at all (using PBE) [59].

LDA, even in combination with scalar-relativistic pseudopotentials and the new

relativistic ZORA approach, (Sec. 2.3) leads to a hexagon model that is at least

≈ 7 meV per In atom more stable than the zigzag chain model.

3.2 Rashba splitting

Most of the results in this chapter can be found in the related publication:

U. Gerstmann, N. J. Vollmers, A. Lücke, M. Babilon, and W. G. Schmidt

Rashba splitting and relativistic energy shifts in In/Si(111) nanowires

Physical Review B 89, 165431 (2014)

By including spin-orbit coupling in the calculation, we have already seen for the

bismuth bilayer (cf. Figure 2.2 in Section 2.3) that the band structure reveals some

new interesting features. The band structure of the In-nanowires at Si(111) is
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Figure 3.2: Scalar-relativistic (red) and full-relativistic (blue) band structures cal-
culated for the In/Si(111) (4×1) (top) and (8×2) (bottom) phase. kx is the direction
parallel and ky the direction perpendicular to the In chains. In grey, the silicon bulk
band structure is visible which also defines the zero with its valence band maximum.
At the X point strong anisotropic Rashba splittings can be found. Taken from own

publication [59].
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3.2 Rashba splitting

(a) (4×1) (b) (8×2)

Figure 3.3: Calculated energy dispersion E(k‖, k⊥) of the In-related surface state
around the X point showing in more detail the Rashba effect that is revealed by in-
cluding spin-robit coupling in the calculation. The two spin channels are indicated by

different colors. Taken from own publication [59].

displayed in Figure 3.2. A comparison of the red scalar-relativistic band structure

with the blue full-relativistic one (here: ZORA within the reconstruction-only

version) shows that the band structure does not change its form, but the spin

degeneration of the bands is lifted. First, we bring our attention to the Γ point.

The largest energy splittings for the occupied bands can be found here. With a

value of 43 meV for the (4×1) and 39 meV for the (8×2) phase, the valence band

splitting of silicon bulk can be reproduced [96]. For the conduction bands we have

to look at the X point. The splitting acounts to 65 meV for the (4×1) and 28 meV

for the (8×2) phase at around 1.3/1.2 eV above the valence band maximum.

More interestingly a Rashba effect becomes visible at the X point for both phases.

Here, mainly the four In-related surface bands S1, S2, S3 and S4 (S̃1, S̃2, S̃3 and

S̃4) show strong shifts in k as well as strong energy splittings for both, the room

temperature (RT) phase and the low temperature (LT) phase. The Rashba effect

is well understandable as the inversion symmetry of the In-wires is broken by the

Si substrate which alone occurs for big changes in the band structure. Further

structural modifications, especially due to a charge-density wave formation in the
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3 In/Si(111) nanowires

(8×2) phase [79], underpin this. The left part of Figure 3.2 shows the Rashba-split

bands in more detail. The anisotropy of the Rashba effect becomes apparent, es-

pecially for the bands S4 of the (4×1) and all In-related bands of the (8×2) phase.

It is even more obvious when regarding a three-dimensional version of the band

structure around the X points as illustrated in Figure 3.3.

Table 3.1 compares the so-called Rashba parameters of the In/Si(111) nanowires

with different well investigated systems. The energy splitting ER is with up

to 11 meV for the LT phase in the range of that of the Bi(111) surface and

even one magnitude larger than that of other indium containing systems like In-

GaAs / InAlAs but with a similar splitting in k-space, ∆k ≈ 0.021 Å−1. The re-

sulting Rashba parameter αR = 1.047 meVÅ lies inbetween the ones of Bi/Cu(111)

Table 3.1: Calculated spin-orbit splitting at the X point for the In-related surface
bands of In/Si(111) nanowires are compared with literature data and calculations for
other surfaces (Γ point). The Rashba energy of the split states ER, the wave number
offset ∆k (from the reference point) and the Rashba parameter αR = 2ER/∆k = ~∆k

m∗

are given. Taken from own publication [59].

system [Ref.] ER [meV] ∆k [Å−1] αR [meV Å]
InGaAs/InAlAs [86, 87] <1 0.028 0.07

Cu(111) surface [91] ≈ 0 ≈ 0 ≈ 0
Ag(111) surface [92] <0.2 0.004 0.03

Au(111) surface [93, 94] 2.1 0.012 0.33
Bi(111) surface [95] 14 0.05 0.56

In/Si(111) (4×1): S1(‖ kx) 1.2 0.009 0.267
S1(‖ ky) 3.0 0.020 0.300

(4×1): S2(‖ kx) 1.6 0.022 0.145
S2(‖ ky) 2.8 0.020 0.280

(S1, S2 average) (0.248)
(4×1): S3(‖ kx) 3.4 0.013 0.523

S3(‖ ky) 2.0 0.010 0.400
(4×1): S4(‖ kx) 9.0 0.044 0.409

S4(‖ ky) 1.3 0.007 0.371
(S3, S4 average) (0.426)

In/Si(111) (8×2): S̃1(‖ kx) 11.0 0.021 1.047

S̃1(‖ ky) <0.05 <0.005 —–

(8×2): S̃2(‖ kx) <0.1 <0.001 —–

S̃2(‖ ky) <1.5 0.017 0.176

(8×2): S̃3(‖ kx) 3.6 0.007 1.028

S̃3(‖ ky) <0.05 <0.005 —–

(8×2): S̃4(‖ kx) 3.4 0.011 0.618

S̃4(‖ ky) <0.05 <0.005 —–
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3.2 Rashba splitting

(a) (4×1): S1, S2 (left: light, dark) and S3,
S4 (right: light, dark)

(b) (8×2): S̃1, S̃2 (light, dark)

Figure 3.4: Visualization of the orbital character of the In-related bands at the X
point. In the case of the RT phaes, a high px contribution of the bands located mainly
at the outer In atoms leads to the large Rashba splitting along the wire direction. Taken

from own publication [59].

and Bi/Ag(111) (cf. Tab. 2.2 in Sec. 2.3), which are known to be textbook ex-

amples for Rashba splitting. Here, the Bi atoms enhance the already present, but

nearly invisible Rashba effect of the noble metal surface. The same is true for the

In-nanowires which enhance the Rashba effect undetectable for the pure Si(111)

surface.

To understand the origin of the Rashba effect in this system, we have to go back

to theory. In Section 2.3, we have seen that the spin-orbit Hamiltonian in the

Table 3.2: Decomposition of the In 5p surface bands into the prozentual px, py,
pz contributions for the (8×2) hexagon structure and the (4×1) zigzag chains of the

In-nanowire. Taken from own publication [59].

phase band (ER)x [meV] (ER)y [meV] px [%] py [%] pz [%]
(4×1) S1 1.2 3.0 9.2 32.2 58.6

S2 1.6 2.8 4.9 22.1 73.0
S3 3.4 2.0 59.7 26.5 13.7
S4 9.0 1.3 54.8 19.3 25.8

(8×2) S̃1 11.0 0.1 68.9 16.8 14.3

S̃2 0.1 1.5 77.2 3.8 18.9

S̃3 3.6 0.1 80.6 6.9 12.5

S̃4 3.4 0.1 86.3 5.2 8.6
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3 In/Si(111) nanowires

absence of magnetic fields is, cf. Eq. (2.11):

∆ĤSO =
1

4c2
σ̂ ·
(
∇V (r)× p̂

)
(3.1)

We can now substitute p = k and assume an effective potential gradient along z,

i.e. ∇V = ∂zV ez. With effective masses m∗x and m∗y in the Rashba parameter

(αR)i = ∆k
m∗

i
we get the spin-orbit Hamiltonian in k-space (see also Equation (2.19)):

∆ĤSO(k) = (αR)y · σ̂xky − (αR)x · σ̂ykx (3.2)

It holds k = p = ∇
i
. Therefore the orientation of the p orbitals in real space

determines the orientation of the kx and ky related contribution to the Rashba

effect. In Table 3.2 the different contributions of px, py and pz to the In related

bands are listed for the (4×1) and the (8×2) phase. For the (4×1) phase, the

Rashba splittings can be well explained. Figure 3.4 shows the orbital character of

the upper surface bands S1 (orange) and S2 (blue). Both bands are localized at

the inner In atoms. They correspond mainly to orbitals with pz character, 58.6 %

and 73.0 % (cf. Table 3.2). These are oriented along the surface normal and do

not couple with available spin degrees of freedom. Hence, they do not contribute

to any in-plane splittling. The py contribution is roughly three times larger than

the px contribution and located at the outer In atoms. This results in a larger

splitting in ky direction, perpendicular to the nanowires. From this alone, we can

conclude that mainly the outer In atoms are responsible for the Rashba effect.

With our code (within the reconstruction-only version) it is possible to turn on

the spin-orbit coupling just for specific atoms and so we can easily confirm the

last conclusion. The band structure of the RT phase (Figure 3.2 (top)) changes

only slightly and the Rashba splitting is still present which means the same finding

can be transferred to the other two bands S3 and S4. Here, the correspondence

between the p orbitals and the Rashba splitting becomes even more obvious, cf.

Table 3.2 and Figure 3.4 (a) right. More than 50 % px contribution lead to a large

Rashba splitting in kx. The px orbitals provide a conductivity channel along the

wire direction and are therefore responsible for the conducting character of the

(4×1) phase.

Whereas the explanation of the anisotropic Rashba splitting is relatively straight-

forward for the (4×1) phase, it becomes more complicated for the (8×2) phase.

The four In-related surface bands S̃1, S̃2, S̃3 and S̃4 have a similar contribution

of the px orbitals as S3 and S4 of the RT phase. One would expect, thus, similar
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3.2 Rashba splitting

Rashba splittings. With a vanishing splitting perpendicular to the In-nanowires,

the anisotropy is even bigger for the LT phase. But there is one exception. The

S̃2 band’s splitting is inverted and in kx direction it is actually nearly zero even

though the contribution of the px orbital amounts to 77.2 %. The population of

the p orbitals does not provide any explanation. Again we restrict the spin-orbit

coupling to the inner and outer atoms and get the same band dispersion but some-

thing new pops up. The two In subsets show reversed spin polarization for the kx

direction of S̃2 and the ky direction of the other bands. This means a superposition

of all bands results in a cancellation of the spin-dependent splitting. Thereby, in

particular the S̃1 band shows an interesting feature. Its position to the Fermi level

defines the top of the valence bands which is 30 meV above the valence band max-

imum of the silicon bulk. Therefore the resulting Rashba effect is not protected by

the substrate. The Rashba-split S̃1 bands should easily be depopulated which may

be used for spin filtering by external fields. Experimental work into this direction

is already in preparation.
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Chapter 4

The bismuth (111) surface

Figure 4.1: Bismuth crystal. Nor-
mally a silver-white metal, it often ap-
pears colorful due to oxidation. (own

photograph)

Bismuth (Bi) is one of the first ten metals to

have ever been discovered. As early as in the

16th century, the outstanding physical proper-

ties of this material were known. Often con-

fused with other elements like lead and tin, bis-

muth was described as an own element in 1753

by French chemist Claude-François Geoffroy

[97]. It is a silver-white crystalline metal but

due to oxidation it often appears in rainbow-like

colors (Figure 4.1). Bismuth is a relatively rare

element which can be found in its pure form in

Australia, Bolivia and China. The commonest

naturally compounds of bismuth are bismuthi-

nite (Bi2S3) and bismite (Bi2O3). Pure bismuth can be obtained by reduction [74],

e.g. 2 Bi2O3 + 3 C −−→ 3 CO2 + 4 Bi.

Since bismuth is a brittle metal, it is often used in alloys with other metals like

tin or cadmium. For example, Wood’s metal (50 % Bi, 25 % Pb, 12.5 % Cd and

12.5 % Sn) has a low melting point of around 60 ◦C and is therefore used for fire

sprinkler systems and electric fuses [74].

Bismuth-209 was long regarded as the heaviest stable isotope but there have been

theoretical predictions against this assumption [98]. These predictions were exper-

imentally verified in 2003, when French researchers measured an α-decay half-life
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4 The bismuth (111) surface

of Bi of 1.9 · 1019 yr [99]. This makes bismuth one of the few elements where

radioactivity was theroretically predicted before being experimentally detected.

In the last years, a new class of materials gained a lot of attention, topological

insulators. A topological insulator has a bulk energy gap but also has conducting

surface states that are protected by time-reversal symmetry. Most realized topo-

logical insulators exhibit a strong spin-orbit coupling (SOC) and are therefore

candidates for future applications in spintronics. Prototypes for topological insu-

lators are Bi2Se3, Bi2Te3 and other Bi-containing materials. Bismuth itself cannot

be classified as a topological insulator as it has no protected surface states. How-

ever, it has spin-split surface states and can serve as a model system for some of

the properties of topological insulators [100]. Recently bismuth bilayers are found

to have even topological edge states themselves [60, 101]. A lot of former research

addresses the manipulation of electron transport in the surface states by the de-

position of adatoms [102, 103]. The adatoms at the surface influence the bismuth

layers underneath. In this work, a new type of surface manipulation is presented

where 3d transition metals (TMs) are built barrier-free into a well-defined position

within the uppermost bismuth bilayer of the bismuth (111) surface and without

changing the surface topography.

4.1 The Bi(111) surface

4.1.1 Technical details

The electron configuration of Bismuth is [Xe]4f 145d106s26p3. It is known that

in solids the s and p levels will mix but the closed-shell d-electron levels and the

core-electron levels do not change. Therefore we treat the 6d electrons as core

electrons in our pseudopotential and take only the 6p and 6s as valence electrons

into consideration, i.e. in total five valence electrons. This was carefully tested.

With PBE the, in this way, determined pseudopotential gives the best agreement

with the experimental structure of bismuth bulk and the bismuth (111) surface.

We use 3d transition metals (TMs) as adatoms wherby we choose cobalt as ex-

ample TM. The electron configuration of Cobalt is [Ar]3d74s2. As a “late” 3d

TM, the so-called 3s and 3p “semi-core electrons” can be reasonably described

within the core. The electrons of the partially filled 3d shell explicitly take part

42



4.1 The Bi(111) surface

Figure 4.2: One of the first ab initio DFT band structure calculations of bismuth bulk
done by Gonze et al. [104]. SOC is included by using full-relativistic pseudopotentials.
The only experimental values used in their work are the crystallographic parameters. At
close inspection at the L point, a small overlap at the Fermi energy between conduction
and valence bands becomes visible. Another overlap is found at the T point but vanishes

when SOC is included.

in the bonding behaviour. Hence, our norm-conserving pseudopotential contains

9 valence electrons, the 3d and 4s electrons.

3d TMs usually are magnetic. To get a converged magnetic moment, we have to

use at least a 24×24×1 Monkhorst-Pack k-point grid for a (1×1) Bi(111) unit cell.

Besides this large number of k-points, the TM atoms have the disadvantage that

they need a very high energy cut-off of 90 Ry ≈ 1225 eV.

For this work, an additional property of bismuth is important, the strong spin-

orbit effects. Because of its high mass, relativistic effects cannot be neglected. For

a structural analysis, a scalar-relativistic description is sufficient. But for all elec-

tronic properties, e.g. already the band structure, we have to use the relativistic

approach presented in Section 2.3.

4.1.2 Crystal stucture

Bismuth is a group V semimetal. This means at most points of the Brillouin

zone exists an energy gap like in a semiconductor but there are points, here the L

point, where a small overlap between valence and conduction bands can be found,

see Figure 4.2, making bismuth formally a metal. The comparison of the band

structure with and without spin-orbit coupling (SOC) reveals the importance of

including SOC in the calculation. In the calculation for Figure 4.2 this was done

by using full-relativistic pseudopotentials [104]. The shape of the band structure
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(a) side view (b) top view

Figure 4.4: Schematic view of the clean Bi(111) surface. In blue the notation for the
bulk interlayer distances (left) and the unit cell are marked (right). In the ideal bulk

it holds d12 = d34 etc. and d23 = d34 etc.

is roughly the same, but the degeneracy of the bands around the Fermi energy is

lifted. Additionally, a gap opens at the T point and gives rise to a hole pocket.

α

c =
 1

1.
80

 Å

dBL(111) = 3.94 Å

a = 4.53
 Å

Figure 4.3: Bismuth bulk structure with
the rhombohedral unit cell (red) and the
hexagonal cell. The two atoms of the rhom-
bohedral cell are marked in blue and yellow.

(after [105, 106])

Like all group V elements bismuth crys-

tallizes in a rhombohedral cell with a two-

atomic base illustrated in red in Figure 4.3.

The lattice parameter is arh = 4.72 Å and

the angle between the lattice vectors is

α = 57.35 ◦ instead of the “ideal” 60 ◦ [107].

Each atom has three nearest neighbors

and three next-nearest neighbors. This re-

sults in covalently joined bilayers along the

(111) direction (cf. also Figure 2.1 in Sec-

tion 2.3). It is possible to translate the

rhombohedral lattice into a hexagonal one

pointing in (111) direction. The lattice

parameters are then ahex = 4.53 Å and

c = 11.80 Å [107, 108]. The hexagonal cell

with its puckered bilayers is very convenient for us since we want to investigate

the Bi(111) surface.

The bismuth (111) surface consists of different layers which are arranged as bilay-

ers. The surface has a three- or sixfold symmetry with respect to the numbers of

bilayers. Figure 4.4 shows a schematic top and side view of the Bi(111) surface. As

a reference for comparing structural changes we use the so-called truncated bulk
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4.1 The Bi(111) surface

structure, i.e. the crystal is terminated with a Bi bilayer. In blue the unit cell is

marked. A lattice constant of a = 4.53 Å was experimentally derived from low-

energy electron diffraction (LEED) measurments [108]. This results in a distance

between two bilayers (long interlayer distance) in the truncated bulk structure of

d23 = d45 = ... = 2.35 Å and a short interlayer distance of d12 = d34 = ... = 1.59 Å.

In our PBE calculations the lattice constant is slightly overestimated by 2 % with

a = 4.63 Å. Therefore the interlayer distances are slightly different from the ex-

perimental values with d12 = 1.57 Å and d23 = 2.47 Å. In the following, when

referred to the (truncated) bulk, the PBE calculated one is meant for better com-

parison with the following calculations. It should be noted that the influence of

slight structural modifications (like the PBE deviation) was tested and no relevant

changes were seen in the band structure or Fermi surface. The influence of the

modification of bilayer distances was also examined by Du et al. in their recent

publication [109] (cf. Figure 4) based on relativistic all-electron calculations.

4.1.3 Modeling of the surface

The first question that arises when modeling the Bi(111) surface is how many

Bi bilayers have to be taken into account. Yu. M. Koroteev et al. have already

adressed this matter [61]. Figure 4.5 shows the change in the band structure of the

clean Bi(111) surface when increasing the number of bilayers. In a nice addition,

the large influence of SOC is illustrated for one and two bilayers. With SOC the

band structure looks very different and can change from metallic to semimetallic

where the valence and conduction band just touch the Fermi level but do not

cross it. Only for Bi(111) films with more than four bilayers the surface shows

truly metallic behavior and surface states that cross the Fermi level resulting in

electron and hole pockets. The authors stated that from ten bilayers on only minor

changes of the band structure can be expected. Figure 4.5 proves that even a slab

with six bilayers provides a nearly converged band structure and thus can be set

as a minimum number of bilayers one should take into account. As we will see

in Section 4.2 for a structural description of what happens if adatoms come into

play, three bilayers with the bottom bilayer kept fixed are sufficient. Here, the

distance from the fixed to the first free bilayer coincides automatically with the

corresponding bulk value.
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converging quickly with the film thickness, e.g., for a seven
bilayer film, relaxations of 0.6% and 6.2% were found for
!d12 and !d23, respectively.10 From the calculations of
thicker films without SOC, we know that the next interlayer
distance !d34 is a small contraction in the order of magni-
tude of !d12, while !d45 is a bit larger again, amounting to
about one third the value of !d23.10 This periodic pattern of
small contractions and expansions is also found for the three
to six BL films, decaying quickly to !d67=0.2% in the thick-
est film.

2. Electronic properties

We have concluded from the relaxations that Bi!111" bi-
layers form stable entities with strong nearest-neighbor
bonds. This is also reflected in the electronic structure: In a
single BL, the six Bi p states split into three bonding and
three antibonding states forming a gap around the Fermi
level !upper left graph of Fig. 2". As can be seen from the
comparison between the band structures obtained from cal-
culations without !blue" and with !red and/or black" spin-
orbit coupling included, in this case, SOC decreases the gap
but the semiconducting character is retained. This is quite
opposite to the bulk, where a calculation without SOC yields
metallic behavior and only inclusion of spin-orbit coupling
leads to a semimetallic electronic structure.

In the case of a two bilayer Bi!111" film, the scalar rela-
tivistic calculation !i.e., without the inclusion of spin-orbit
coupling" results in a metallic behavior and like in the
bulk only SOC leads to semimetallic properties !upper
right of Fig. 2". Without spin-orbit coupling, a band crosses
the Fermi level near "̄, a situation which is similar to the
behavior of the surface state of a Bi!111" surface7: The !111"
projected bulk band structure of Bi without SOC has a rather
large gap around the Fermi level !EF" at the zone center,
where a surface state forms. Including SOC, the valence
band reaches up to EF, pushing the surface state up in energy
!to smaller binding energies". In the case of the two BL
Bi!111" film, we can already see the precursor of this surface
state forming two bands, one above and one below the Fermi
level. In contrast to the semi-infinite surface, where the
Rashba-split surface state has degeneracies at the "̄ and M̄
points !cf., lower right of Fig. 2 and Ref. 7", here these
degeneracies are removed by the strong interactions between
the upper and the lower surface of the film !cf., Ref. 5". As
the film thickness increases, we can see that these splittings
decrease as can be expected from the increasing separation
of the upper and lower surfaces. However, the screening in
Bi is—as compared to metals—rather weak, and even 40 BL
films still show a finite splitting at M̄. Due to the almost

linear dispersion of the underlying bulk band structure,5 this
splitting can be expected to decrease by a factor 2 if the
number of layers is doubled in these films. Since the disper-
sion of the bulk bands along "-T is rather flat, the density of
quantum well states is higher at the zone center than at M̄,
where the dispersion of the bulk bands is high. This causes
the different localization lengths of the states near the "̄ and
M̄ points and the stronger splitting of the bands at the zone
boundary. The splitting of the two bands around EF decreases
faster near the "̄ point; nevertheless, the two BL and three
BL films remain semimetallic with the bands just touching

TABLE I. Structural parameters of Bi!111" films with one to six bilayer !BL" thickness: the changes of the
interlayer distance !di,j of the layers i and j !i=1 is the surface layer" are given with respect to the calculated
ideal interlayer distance of the bulk structure, di,i+1=1.667 and 2.288 Å for odd and even i, respectively.

Distance One BL Two BL Three BL Four BL Five BL Six BL

!d12 !%" 0.0 −1.0 −0.8 0.0 0.7 0.9
!d23 !%" 6.2 7.8 6.1 6.6 6.5
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FIG. 2. !Color online" Band structures of Bi!111" films with one
to six bilayer thickness as compared to a thicker !ten BL" film and
a semi-infinite !“SI”" crystal surface. In the figures for one to four
bilayers, all states which have more than 10% of their weight in the
vacuum are marked in red, and in the thicker films states located
predominantly !more than 25%, 22%, 15%, and 5% for five, six, ten
BL and the semi-infinite crystal surface, respectively" in the surface,
BLs are marked by full !red" circles. The gray bands in the SI band
structure are states from the lower, H-terminated part of the film.
All band structures were obtained for the relaxed geometries. In the
band structures for the one and two BL films, we include also the
result obtained without spin-orbit coupling !thin blue lines": in all
other results !dots and circles", SOC was included in the self-
consistent calculations.

FIRST-PRINCIPLES INVESTIGATION OF STRUCTURAL… PHYSICAL REVIEW B 77, 045428 !2008"

045428-3

Figure 4.5: Band structures of Bi(111) films with one to six bilayer thickness as
compared to a thicker (ten BL) film and a semi-infinite (“SI”) crystal surface. Taken

from [61].
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4.1 The Bi(111) surface

To get a proper simulation of a Bi(111) film, a good saturation is necessary. A

common procedure is to keep the bottom layers fixed in the ideal bulk position

and use hydrogen termination for simulating the connection to the crystal like it

was done for the In-nanowires on silicon in Chapter 3. Here, each dangling bond

of the bottom side of the slab is saturated by hydrogen, and like in most situations

a good description is achieved. However, in the case of the Bi(111) surface this

approach leads to some unwanted features in the band structure. In the lower

right corner of Figure 4.5 the band structure of a so-called “semi-infinite” (“SI”)

crystal is shown. It consists of 22 bismuth layers with hydrogen termination. The

bands resulting from the hydrogen atoms are displayed in grey. Two of them are

directly located at the Fermi energy which leads in general to a false description

of the structure. Another feature arising from the hydrogen atoms is the band

crossing of every second band at the M point which does not appear without

hydrogen termination. This point remains undiscussed in the paper, although the

same authors have shown earlier that they get the best agreement of experiment

and theory for a Bi(001) surface if they use freestanding films without termination

but with space-inversion symmetry [110]. Naturally, one would believe that when

going to the surface the space-inversion symmetry of the bismuth bulk is broken

which should lead to a disappearance of the spin degeneracy. In the experiment

this tends to become even more expected because the bismuth films are asymmetric

with one side exposed to the vacuum and the other side to the silicon. But the

opposite could be shown by Hirahara et al. in their paper [110]. Surprisingly,

the breakdown of the inversion symmetry does not have any effect on the states

around the M point.

We follow the same path and use a bismuth slab consisting of ten bilayers where

the inner six bilayers are kept fixed at their ideal (PBE) bulk position and the outer

layers can relax freely. Like this we can reproduce the band structure calculated

in Figure 3 (a) of [109] where the authors used as well a symmetric 10 bilayer slab.

With this (well-converged) slab, we can investigate the changes in the interlayer

distances in comparison with the PBE bulk calculations. At the (111) surface, only

the first bilayer is mainly affected. Both, the short and long interlayer distances

are increased by 1.9 % to d12 = 1.60 Å and by 2.4 % to d23 = 2.53 Å. All other

distances differ only slightly (< 1.5 %).

When an impurity is incorporated, as we will see later (cf. Section 4.2), inbetween

the first bilayer, the single layers of the first bilayer make room for the new atom.
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Compared to the clean Bi(111) surface, the distance is increased by more than

12 % to d12 = 1.88 Å. However, the distance between the first two bilayers is

decreased by 13 % to d23 = 2.20 Å and the distance between the second and third

(fixed at bulk positions) bilayer becomes even more bulk-like with d45 = 2.37 Å.

A detailed analysis of this symmetric slab, at first for the clean surface, is illus-

trated in Figure 4.6 (a-e). We gradually increased the number of bilayers from five

to ten. The outer two bilayers are always free to relax and the inner layers are

kept fixed at their ideal bulk position. Angle-resolved photoemission spectroscopy

(ARPES) plots around the Fermi energy always show an electron pocket followed

by a hole pocket and then again a second electron pocket [61, 111–113]. This can

only be accurately reproduced if we use at least a symmetric slab of eight layers (d)

where the highest and lowest two bilayers can freely relax and the inner four bilay-

ers are kept fixed. A reduction of layers leads to a separation of the bands at the

Fermi level and therefore a disappearance of the electron and hole pockets. This

becomes even more clear when simulating the Fermi surface. Figure 4.7 displays

a comparison of a symmetric five (a) and a symmetric nine bilayer (b) slab. The

five-bilayer structure shows only the inner electron pocket in form of a hexagon.

The outer lying hole and the second electron pocket, which are confirmed by a lot

of experiments, are only reproduced with more bilayers.

Additionally, Figure 4.6 (f) shows a comparison between the scalar-relativistic

band structure, i.e. SOC is not included, and the relativistic band structure of a

symmetric slab with ten bilayers. Although some bands can be retrieved, espe-

cially near the M point, the band structure experiences dramatic changes. Around

the Γ point the bands are degenerate. This degeneration is lifted in the SOC in-

cluding band structure. Again the Fermi surface serves as a good indicator for

differences, see Figure 4.7 (c). In the scalar-relativistic case, we can find a large

electron pocket in the center which, because of the band degeneration around Γ,

touches the outerlying hole pockets in the direction Γ−K. The electron pockets

near the M point are not closed which is in contrast to the SOC-including Fermi

surface. The large differences in the band structure and Fermi surface prove again

the necessity of SOC in all electronic calculations regarding bismuth.

Besides the number of layers, the question of the number of fixed layers arises. For

the above analysis, the outer two bilayers of the top and bottom surface were free

to relax and the inner bilayers were kept fixed. To see, if it is sufficient to let only

the outer two bilayers relax, additional tests were performed for a ten-bilayer slab
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Figure 4.6: Band structures of the clean bismuth (111) surface for symmetric slabs
with different numbers of bilayers. To get reproduce all typical features (i.e. the electron
and hole pockets) a symmetric slab of at least eight bilayers is needed. Additionally,
the scalar-relativistic band structure (i.e. SOC is neglected) for the 10-bilayer-slab is

shown in grey.
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(a) 5 BL (b) 9 BL (c) without SOC

(d) ARPES experiment. Taken from [111].

Figure 4.7: 2D plot of the Fermi surface for the clean Bi(111). A five bilayer slab
(a) only shows the central hexagonal electron pocket (a). A slab with nine bilayers (b)
reproduces all features seen in the experiment (d), an electron pocket followed by a
hole pocket and then again an electron pocket. The calculation without SOC (c) looks

totally different and cannot reproduce the experiment at all.

where different numbers (from none to eight) of bilayers can relax. The system

where all layers resp. eight layers are kept fixed, i.e. the truncated bulk, is artificial

and likely will not occur in nature.

First, we look at the total energy. As expected, the more layers are free to relax,

the more energetically favorable is the system. The difference between two and

eight free bilayers amounts to 16.5 meV. This is also visible in the band structure

illustrated in Figure 4.8. The overall shape of the bandstructure is the same for all

systems. But at the Γ point the differences become visible. For the structure with

eight free bilayers (purple), i.e. four on both sides of the slab, the energy lies even

above the Fermi energy and intersects the Fermi level at ±0.1 Å−1 around Γ, a

feature not seen in any other theoretical or experimental obtained band structure

[109, 114, 115]. This is especially visible in the paper of Ast and Höchst [115]

which includes ARPES measurements of the Bi(111) surface. The resulting Fermi

surface shows no signs of bands below kF = 0.05 Å−1 around Γ (Figure 1 in [115]).

Hence, it is safe to assume that two fixed bilayers are too few. All other Fermi

50



4.1 The Bi(111) surface

Figure 4.8: Band structure of a symmetric ten bilayer Bi(111). A different number
of bilayers (from none to eight) are free to relax, the remaining bilayers in the middle

of the slab are kept fixed at their ideal PBE bulk positions.

level crossings for eight (purple), six (yellow) and four (blue) free bilayers lie more

or less on top of each other. The two structures with the fewest free bilayers (green

and red) show clear discrepancies for the Fermi crossing at 0.15 Å−1. Obviously,

the uppermost two bilayers of the bismuth (111) surface are mainly responsible

for the behavior in the region of the Fermi energy.

The remaining parts of this chapter deal with the incorporation of adatoms into

the bismuth (111) surface. Figure 4.9 (a-e) presents the band structure of a cobalt-

monolayer doped bismuth (111) surface for different numbers of layers. Again, a

symmetric slab is used and the structures contain two Co atoms on both side of the

slab. All Co atoms are incorporated into equivalent, highly symmetric sub-surface

site within the uppermost bilayer, cf. Figure 4.15 in Subsection 4.2.4. A detailed

discussion of this characteristic position will follow in Section 4.2. We briefly note

here, that this δ-doping Co layer provides the most stable configuration of Co

adsorbates. For finding the best modelling, we use the (1×1) unit cell. A Co-

doped (1×1) cell corresponds to a δ-doped surface, i.e. a Co monolayer within the

first bismuth bilayer. Subsection 4.2.4 intensively deals with this sytem.

The doped surface, cf. Subsection 4.2.4, is more stable against layer-reduction

than the clean bismuth surface as can be seen in Figure 4.9. Fewer layers lead to a

lifting of the band structure by around 40 meV. Although this is not a small value,

the overall form of the band structure and especially the Fermi level crossing of

two bands (in the following called B1 and B2) remains. This is in contrast to the

clean bismuth (111) surface where in total four crossing points vanish for five and

six bilayers. For the δ-doped surface all crossings can be reproduced even with five

51



4 The bismuth (111) surface

-0.4

-0.2

0

0.2

0.4

0.6

K Γ M

EF

E
[e

V
] B1

B2

(a) 5bl

-0.4

-0.2

0

0.2

0.4

0.6

K Γ M

EF

E
[e

V
] B1

B2

(b) 6bl

-0.4

-0.2

 0

 0.2

 0.4

 0.6

K � M

 EF 

E
 
[e
V
]

(c) 7bl

-0.4

-0.2

 0

 0.2

 0.4

 0.6

K � M

 EF 

E
 
[e
V
]

(d) 8bl

-0.4

-0.2

 0

 0.2

 0.4

 0.6

K � M

 EF 

E
 
[e
V
]

(e) 9bl

-0.4

-0.2

 0

 0.2

 0.4

 0.6

K � M

 EF 

E
 
[e
V
]

(f) 10bl

Figure 4.9: Band structures of the δ-doped bismuth (111) surface for symmetric slabs
with different numbers of bilayers. Blue denotes high Co contribution whereas yellow
corresponds to high Bi contribution. Already a symmetric slab with five bilayers is

sufficient to get converged bands near the Fermi energy.
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4.1 The Bi(111) surface

(a) 5 BL (b) 9 BL

Figure 4.10: 2D plot of the Fermi surfaces for the δ-doped Bi(111) surface. The
five bilayer slab (a) already reproduces the features of the nine bilayer slab (b), a hole
pocket followed by electron pockets at the K and M point. B1 and B2 are the two
bands which cross the Fermi level and show the biggest changes when going from a five

bilayer slab to one with more bilayers.

bilayers. Thus, the Fermi surface, a little thinned out, looks similar for five or nine

bilayers, cf. Figure 4.10. The most visible discrepancy between the five-bilayer

structure and the others is the loss of the double feature of B1 at the Γ point. The

peak of the band is around 70 meV higher than for the more-layer systems. The

difference between B1 and B2 amounts to nearly 280 meV, more than double the

value as for the other systems. Furthermore, B1 at the Γ point has both Co and

Bi contributions whereas B2 has only Bi contributions. This is opposed to the

other systems where B1 is a bismuth band and B2 has contributions from both

atomic species. For all other bands and k-points the occupation of the bands stays

the same. This is due to the additional bands that come with extra layers. They

hybridize with the other bands and thus cause the double feature and the different

occupation of the bands B1 and B2. Still, five layers already reproduce all features

at the Fermi energy within a few meV. The magnetic moment, another critical

parameter for our system, is stable against changes in the number of bilayers.

With around 1µB it is the same for all tested systems.

So far, the δ-doping layer awaits experimental realisation. In the experiments pre-

sented in the following chapter, relatively low densities of cobalt (≈ 0.005 atoms/(1×1) unit cell)

are used. The Quantum Espresso package [16] used for all theoretical calcu-

lations works with periodic boundary conditions. Hence, for a totally correct

description of the experimental occurences, one would need a (14×14) unit cell.

This is definitively not calculable, especially when spin-orbit coupling is included.

We worked out that a (4×4) supercell is enough to exclude interactions between

the impurity atoms in the periodic supercells. Three bilayers can be used for the
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4 The bismuth (111) surface

structural description, but for the electronic description (e.g. for band structures)

a symmetric slab with at least five bilayers should be used. Unfortunately, it is not

possible to investigate the number of layers for low impurity densities as every-

thing above five bilayers it appears is too computionally demanding for the (4×4)

cell.

4.2 Adatom incorporation into the Bi(111) sur-

face

Most of the results in this chapter can be found in the related publications:

C. Klein, N. J. Vollmers, U. Gerstmann, P. Zahl, D. Lükermann, G. Jnawali, H.

Pfnür, C. Tegenkamp, P. Sutter, W.G. Schmidt and M. Horn-von Hoegen

Barrier-free subsurface incorporation of 3d metal atoms into Bi(111) films

Physical Review B 91, 195441 (2015)

N.J. Vollmers, C. Klein, M. Horn-von Hoegen, C. Tegenkamp, H. Pfnür, W.G.

Schmidt and U. Gerstmann

Bi(111) surface δ-doping by transition metal atoms

to be submitted (2016)

Some very recent results will contribute to a discussion of magnetotransport in a

fortcoming paper where experiments are performed by the groups of Prof Pfnür

and Prof Tegenkamp from the Leibniz-University in Hannover.

The electron transport in 2D surface electron systems such as the Bi(111) surface,

can be influenced by individual scatterers [103, 112, 116, 117]. For example, the

adsorption of bismuth itself on the Bi(111) surface leads to an increase in the

resistance [103]. Controlled doping of the near-surface region is not uncommon for

Bi2Se3 and Bi2Te3 [118–120]. Here, Fe is used as a dopant and, through thermally

activated in-diffusion, occupies different interstitial or substiutional positions [119].

In this part of the thesis, the incorporation of individual impurity atoms into the

bismuth (111) surface is shown. The related experiments were done by the group

of Prof Horn-von Hoegen from the University of Duisburg-Essen and will not be

discussed in much detail. Further information can be found in the recent doctorate

thesis of C. Klein [106] and in the related publications [121, 122].
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4.2 Adatom incorporation into the Bi(111) surface

4.2.1 Experiment

The experiments were done using ultrastable low-temperature scanning tunnel-

ing microscopy (LT-STM). The very low base temperature of 5 K allows for a

good comparison with the theoretical results that usually simulate 0 K-conditions.

Figure 4.11 (a1)-(a3) show scanning tunneling microscopy (STM) micrographs in

constant current mode after deposition of about 0.005 ML of the transition metal

(TM) impurities Fe, Co, and Ni (with 1 ML = 5.6 atoms/nm2). Eye-catching is im-

mediatly that each impurity is surrounded by a similar threefold pattern.

Cobalt was used to study these pattern in more detail. At a bias voltage of

Ubias = +2.0 V the bismuth surface looks as if nothing happend, cf. Figure 4.11

(b1). With 1) to 4) structures of unknown origin are labeled. If the bias voltage is

reduced to a value close to the Fermi level, Ubias = 1 mV, the structures 1) to 4)

are still visible, cf. Figure 4.11 (b2). Additionally, extended pattern with threefold

symmetry appear. They all have the same orientation, shape and size. As we will

see later, the number of these pattern scales with the Co density which leads to

the assumption that every pattern represents one Co atom.

In Figure 4.11 (c1) - (c3) and (d1) - (d3) one can see the STM pattern of a single

Co atom for different bias voltages in higher resolution. The pattern is not visible

at bias voltages of ±2 V but at voltages close to the Fermi energy. In comparison

with the adsorption of a bismuth atom whose STM picture results in a bright spot

visible over a broad range of bias voltages [103, 106], it seems that there are no

morphological changes in the bismuth surface when cobalt is deposited. The Co

atoms are incorporated within the surface and not ontop of it. A similar case can

be, for example, found in the publication of West et al. [119] where Fe is predom-

inantly incorporated substitutionally in the Bi2Te3 (111) surface. Here too, the

corresponding STM pictures have a threefold symmetry.

Before we come back to the theoretical point of view, an additionaly experiment

performed by the University of Duisburg-Essen is presented which investigates

what happens when the density of cobalt atoms is increased. Figure 4.12 (a-d)

shows a row of STM pictures where gradually more Co was inserted into the

bismuth surface. The number of Co pattern N scales with the Co density and

increases from 229 to around 4000 per 100 nm2. In Figure 4.13 dots illustrate

the positions of the threefold pattern with each dot representing one pattern.

The newly appearing pattern (red) do not seem to influence the ones from the

last deposition step (black) which do not change their position, but stay where
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4.2 Adatom incorporation into the Bi(111) surface

(a) N = 229
n = 23 · 10−3 nm−2

(b) N = 524
n = 52 · 10−3 nm−2

(c) N = 812
n = 81 · 10−3 nm−2

(d) N ≈ 4000
n ≈ 400 · 10−3 nm−2

Figure 4.12: STM constant current images from Co subsorbed beneath a Bi(111)
surface taken at 5 K, UBias = 50 mV, and Itunnel = 50 pA. Field of view is 100×100 nm.
Density of the threefold pattern ranges from 23 · 10−3 nm−2 (a) to 81 · 10−3 nm−2 (c)
and roughly 400 · 10−3 nm−2 (d). The yellow circles show example regions where the
particle clusters first increase (a-c), but at the end decrease (d) with increasing density.
Simultaneously, additional spots of identical shape (green circles) appear (d). Provided
by the group of Prof Horn-von Hoegen from the University of Duisburg-Essen (see own

future publication [122]).

they are. It is now clear that every threefold pattern represents one Co atom

built-in somewhere within the surface at similar positions. But the Co atom can

also form clusters as indicated by the yellow circles in Figure 4.12. They enlarge

with increasing Co density (a-c). But if the density is increased by a further

factor of five (d), they decrease again or even vanish completely. Although a

possible contribution of bismuth atoms cannot be excluded, this indicates some

kind of interaction between the cobalt atoms causing the clusters to fall apart.

Additionally marked by the green circles are several new spots. It can be assumed
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4 The bismuth (111) surface

(a) N = 229
n = 23 · 10−3 nm−2

(b) N = 524
n = 52 · 10−3 nm−2

(c) N = 812
n = 81 · 10−3 nm−2

Figure 4.13: positions of the STM pattern from the experimental STM image of
the Bi(111) surface, cf. Figure 4.12. Each dot represents one threefold shaped STM
pattern. The density of the pattern ranges from 23 · 10−3 nm−2 (a) to 81 · 10−3 nm−2

(c). The newly appearing pattern are shown in red whereas the ones from the last
deposition step are pictured in black. Interestingly, those seem not to be influenced by
the new pattern and remain at their position. Provided by the group of Prof Horn-von

Hoegen from the University of Duisburg-Essen (see own future publication [122]).

that these are the results of Co atoms staying ontop of the surface. Again, some

involvement of bismuth is also possible.

4.2.2 DFT calculations

From the experimental STM images it can be suspected that all Co atoms are

incorporated at identical subsurface sites leading all to the same typical threefold

pattern. Furthermore, this incorporation seems to proceed without any thermal

activation. By using density functional theory (DFT) calculations, we want to

provide a solid ground for this hypothesis. As shown in the section before, rela-

tivistic effects have a large impact on the electronic structure of bismuth and have

to be taken into account. However, for a structural relaxation, a scalar-relativistic

description is sufficient. All further calculations such as magnetic moments were

done with a multicomponent relativistic approach with noncollinear spin polariza-

tion as presented in Section 2.3 and implemented within the Quantum Espresso

package [16] which uses periodic boundary conditions. For an accurate descrip-

tion of the experimental conditions, it is necessary that the impurity atoms do

not interfere with each other. This is approximately the case in a (4×4) unit

cell. Still, the low experimental concentration of 0.005 atoms/(1×1) unit cell is with

0.25 atoms/(1×1) unit cell by far not achieved. But larger cells exceed our computa-

tional limits if bearing in mind the high number of k-points (6×6×1 for the (4×4)
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4.2 Adatom incorporation into the Bi(111) surface

Figure 4.14: Total energy curve for different adatom positions and different atomic
species (Fe, Co, P, and Bi), the microscopic structures of the first (I) and second
minimum (II) and the schematic migration path for a 3d TM atom (here Co) into the
Bi bulk (arrow: relaxation in interlayer position as requirement for lateral motion).

Taken from own publication [121].

cell) and the high energy cutoff (90 Ry) also needed. All in all our (4×4) cells

contain between 97 and 162 atoms.

4.2.3 Barrier-free subsurface incorporation of isolated 3d

metal atoms into Bi(111) films

First of all, we want to find the global and local minima of our systems to predict

the adsorption position of the adatoms. Figure 4.14 shows the reaction paths of

various species of adsorbed atoms with respect to the energy of the adatom in the

vacuum. These paths are calculated by keeping the z coordinate of the adatom

fixed but allowing its lateral position and the Bi within the uppermost bilayers

to relax. The nudged elastic band (NEB) approach is then used to excplicity

determine the saddle points and corresponding energy barriers [123].

By closer examination of the energy curves, it can be seen that there are mainly

two different positions where the adatom can be coordinated, on top of a Bi atom
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4 The bismuth (111) surface

(a) Side view (b) Top view

Figure 4.15: Schematic view of Co in Bi(111). Only one subsorbate positions is
occupied. The Bi atoms of the first layer move closer to the Co but do not change
height whereas the atoms of the second layer recede and move a little bit downwards.

of the first bilayer or within the first bilayer (marked with I in Fig. 4.14). More

minima, which are energetically nearly degenerate, can be found deeper in surface

(marked with II in Fig. 4.14).

Whereas Bi and P have a first minimum ontop of the bismuth surface, Fe, Co and,

as we will see later, all the other 3d TMs, go barrier-free into minimum I, without

any thermal acitivation required. This barrier-free subsorption can be understood

as a mix of two processes. First, the TM atom forms a planar configuration with

the three Bi atoms of the uppermost Bi layer. At the same time, the 3d electrons

are polarized by the second bismuth layer and the impurity is dragged further into

the first bilayer. Here it stays and forms six bonds to the first-bilayer-ligands as

well as one bond to the second-bilayer-atom right below. The outcome is a highly

symmetric position which preserves the threefold symmetry set by the bismuth

surface. Such high coordination is not untypical for 3d TMs and is for example

known from Co in CoSi2/Si(111) [124]. Figure 4.15 presents a schematic view of

this position. Blue arrows indicate the relaxation of the bismuth atoms surround-

ing the impurity. The length of the Bi-Bi bonds around the subsorbate increases

by 2 % for Sc up to 6 % for Cr. This can be mainly attributed to the downwards

relaxation of the second layer atoms. The first layer atoms move closer towards

the impurity but do not change their height and the surface remains smooth as

already indicated by the experiments.

The threefold symmetry of the highly symmetric incorporation site is also visible

in the resulting STM picture shown in Figure 4.16 (a). The three bright spots,

which form a triangle, were already seen in the experiment (cf. Figure 4.11).

Such good agreement vanishes if we look at the simulated STM pictures for the

minimum deeper in the surface (Figure 4.16 (b)). Directly at first glance, the
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(a) Minimum I

(b) Minimum II

Figure 4.16: Calculated STM image for a Co (red circle) in the highly symmetric
minimum I within the first Bi bilayer and in the asymmetric minimum II between the
first two bilayers. The bias volatage is U = 10 mV. Co assumes a ferromagnetic config-
uration in both minima with the magnetic moments 1.18µB and 1.21µB. Additionally,
the magnetization density induced by the Co atom and the noncollinear spin orientation

are displayed. Taken from own publication [121].

asymmetry of this position becomes clear. Although, there are three bright spots

in the same distance as for minimum I. The center part is, however, very different

and reveals two spots with similar intensity but only at two sides of the triangle.

This feature is definitively not visible in the experiment and therefore one can

exclude minimum II as the predominant incorporation site. Figure 4.16 (a) and

(b) also show the magnetization density induced by the Co atom in minimum I

and II as well as the noncollinear spin orientation (yellow arrows). Again, minium

I is the more symmetric structure. A lot of magnetization density is located at the

Co atom and has the shape of a curvy triangle. For minimum II it becomes more

obvious that the threefold symmetry, present in all experimental STM pictures,

is lost. The magnetization density is still localized at the Co atom but shifted in

the direction opposite to the lateral displacement of the Co. Yet, both minima

have some similarities in the spin orientation. The spin localized at the impurity

atom points in the direction of the surface normal whereas the spins localized at

the bismuth atoms point away from the impurity.
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4 The bismuth (111) surface

The comparison of the STM pictures, the magnetization densities and the spin

orientations confirm that the 3d TM atoms occupy position I which is by around

1.1 eV even more stable than any substitutional position. Together with the fact

that this type of incorporation occurs barrier-free, this sets our finding apart from

previous results, e.g. Fe in Bi2Te3 [119]. Migration into the deeper minima is

improbable due to energy barriers of 0.7 eV (Co) up to 0.9 eV (Fe). If at posi-

tion II, it is more likely for the 3d TM atom to move back into the first bilayer

which requires activation energies below 0.5 eV instead of going deeper into the

surface, thereby opening a possible mechanism for a lateral movement within the

uppermost Bi bilayer (indicated by the red arrow in Figure 4.14).

Table 4.1 shows a comparison between the minimum ontop of the surface and the

one within the first bilayer for different atomic species. It is possible to put them

into three groups:

(1) 3d TMs with a partially filled d-shell have no minimum ontop of the Bi

surface (except for Sc but with a very low energy barrier of < 0.01 eV). This

means that they go directly and barrier-free into the first bismuth bilayer

and stay there. When the atom approaches the surface and interacts with the

bismuth atoms, the 4s levels are energetically lifted and donate charge into the

d orbitals. In the case of Co the occupation of the 4s states is reduced to 0.64

Table 4.1: Calculated adsorption and incorporation energies (in eV and relative to
the respective free atom, metastable minima in brackets) for various third, fourth, and
fifth row element adatoms at or in the Bi(111) surface together with energy barriers

∆E for the incorporation into the first Bi layer.

Sc Ti V Cr Mn Fe Co Ni Cu Zn
Top (3.53) — — — — — — — — 0.49

1st BL 4.24 5.34 5.92 6.10 5.86 5.48 5.20 4.80 4.01 (0.26)
∆E < 0.01 — — — — — — — — 0.27

Pd Ag
Top (2.81) (1.71)

1st BL 3.80 1.91
∆E 0.05 0.10

Bi Pb Pt Au
Top 2.60 2.61 (0.46) (2.13)

1st BL (1.58) (1.75) 1.54 2.34
∆E 0.89 0.24 0.15 0.17
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4.2 Adatom incorporation into the Bi(111) surface

when 3 Å above the surface and to 0.47 electrons if incorporated. This results

in the formation of highly coordinated σ bonds to the neighboring atoms.

(2) 4d/5d and noble metals tend to form higher bonds and thus it is not too

much unfavorable to stay ontop of the surface. Still, they just need to overcome

a small energy barrier of up to 0.2 eV to get to their global minimum within

the first bilayer.

(3) Atoms with no partially filled d-shell cannot take avantage of the highly

coordinated bonding position within the first Bi bilayer and have their global

minimum ontop of the surface. This is also true for rather small atoms like H

or P which could be expected to slip throught the first bilayer and are then

stopped by the second-bilayer-atom.

The barrier-free incorporation is not only dependent on the existence of d-electrons

of the adatom but also on the bond-length of the substrate. Using a single Bi(111)

bilayer as a model system, we can modify its lattice constant and investigate the

influence of strain on the incorporation. For Co, barrier-free incorporation occurs

if the bilayer strain is between -5 % and +8 % of the ideal bond length. Otherwise

either the lateral distance between the Bi atoms or the distance between two

bismuth layers becomes too small. Hence, single Bi(111) bilayers on substrates

should exhibit barrier-free incorporation of 3d TM atoms when the substrate’s

lattice constant is close to that of the Bi(111) surface. This applys for example to

hexagonal BN (-2 %) and Bi2Te3 (-5 %). The famous and often investigated Bi2Se3

does not fall in this category. With a strain of 11 %, barrier-free incorporation is

not possible, but thermal activation is required to get Co into the subsurface

position.

4.2.4 Bi(111) surface δ-doping by transition metal atoms

In the last chapter, we have seen that 3d TMs take high symmetry positions if

incorporated into the Bi(111) surface. Now, we want to investigate in more detail

how the adatoms influence the structural and electronic properties of the bismuth

surface, especially if more impurities come into play. Again, we pick Co as an

example, but all results can be qualitatively transferred to the other 3d TMs.

In a first analysis, we look at pairs of Co atoms. The most stable configuration

of Co pairs is given by direct subsorbate neighbors with a distance of 0.45 Å,
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4 The bismuth (111) surface

Figure 4.17: Binding energy EB per Co atom for distant Co pairs (left), for a close
arrangement of three Co atoms (middle) and for regular lattices depending on the
cell size (right); decreasing cell size means increasing Co content. The exceptional
stability of the subsurface TM layer, where each possible characteristic subsurface site

is occupied, is manixfested by a clear increase of |EB |.

see (a) in Figure 4.17. More than 3.3 eV per Co atom can be gained by such

an incorporation of two Co atoms. To understand this high stability we have

to go back to the single incorporated Co atom: Here, the bismuth atoms of the

first layer move closer to the Co and the second layer bismuth atoms recede (see

Figure 4.15 in Subsection 4.2.3). Note, that the height of the first-layer bismuth

atoms does not change, i.e. the surface remains smooth as already indicated in

the experiments.

In the case of the nearest neighbor pair, the bismuth atoms of the first layer

that separate the two Co atoms are simultaneously pulled in the direction of

the two Co atoms. The acting forces cancel each other out and thus, instead

of moving at all, the two bismuth atoms remain in their ideal (lateral) position.

All other more distant pairs are energetically less favored. If a third Co atom is

placed close to a stable pair (cf. “3 Co atoms” in Figure 4.17), i.e. three next-

neighbor subsorbate positions are occupied, the binding energy per Co atom is

nearly unaffected (∆E ≈ 0.03 eV). Again, the bismuth neighbors shared by the

Co atoms experience opposing forces and remain in their ideal lateral position.

For the same reason is the highest possible density of Co atoms in subsurface
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4.2 Adatom incorporation into the Bi(111) surface

(a) Side view (b) Top view

Figure 4.18: Schematic view of Co in Bi(111). Every subsorbate position is occupied.
The Bi lattice shows no sign of lateral distortion and remains in its ideal (lateral) form
(cf. (b) top view). Only the atoms of the second layer move a little bit to the second

bilayer to reduce strain.

positions shown in Figure 4.18 the overall energetically most favorable. But here,

the lateral positions of all bismuth atoms are unchanged. To reduce strain, the

first bismuth bilayer is slightly shifted towards the second bilayer. This results in

a very high stability of this δ-doped structure with one Co atom per (1×1) unit

cell. In direct comparison with the lower density structures, e.g. one atom per

(4×4) unit cell, round about 0.4 eV per atom can be gained. In general it holds

that the higher the density the more energetically favorable is the system as can

be seen in Figure 4.17. Note here, that for all possible incorporations of Co, be

that isolated subsorbates, pairs or islands of subsorbates or the δ-doping layer, the

surface topography does not change at all.

In contrast to the single Co impurity the non-collinear polarization of the magne-

tization (cf. Fig. 4.16 (a)) is revoked and all spins are aligned along the surface

normal whereby the spins of the Co and of the Bi have opposing signs. Besides,

the magnetic moment per Co atom reduces from 1.57µB to 1.0µB. Still, the struc-

ture remains metallic as can be seen in the bandstructure: Figure 4.19 shows the

bandstructure of the clean Bi(111) surface (grey) in comparison with bandstruc-

ture of the δ-doped surface (colored). The changes in the bands are extreme. This

is due to a strong hybridization of the Co sublattice with the Bi host lattice (in-

dicated by redish colors in Fig. 4.19). Only at the K point and around the Fermi

energy and at the M point below -0.2 eV, i.e. regions where there are no bands of

the clean Bi(111) surface, bands can be found which are mainly Co-related (dark

blue). Those bands are spin-polarized and can be individually assigned to the spin

channels. They are mainly responsible for the magnetic moment.
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4 The bismuth (111) surface

Figure 4.19: Relativistic bandstructure of the Co/Bi(111) surface with (1×1) δ-doping
layer; colors (black/yellow) denote the Bi/Co contributions. For comparison, the bands

of the ideal Bi(111) surface are shown in grey.

The changes, especially at the Fermi energy, become more clear when we look

directly at the Fermi surface (Figure 4.20). (a) shows the Fermi surface of the

clean Bi(111) surface. The typical electron pockets shown in red and hole pockets

shown in blue are in correspondence with a lot of other publications, e.g. [61, 111–

113]. The δ-doped surface has a central hole pocket around Γ and electron pockets

at K and M . Whereas the hole pocket and the electron pocket near M are spin-

unpolarized, we have a spin-down electron pocket near the K point. Because of

the very different shape of the Fermi surface compared to the one of the clean

bismuth surface, it should be possible to identify this system with angle-resolved

photoemission spectroscopy (ARPES) measurements.

Since we started with trying to reproduce and explain STM images in the first

place, it is only logical to simulate STM pictures for systems with a higher density

of Co impurities. In Figure 4.21 STM pictures of different densities are compared

with each other and with a pair of Co atoms from the experiment. The experi-

mental twin structure (a) can be well reproduced by two Co atoms with a distance
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4.2 Adatom incorporation into the Bi(111) surface

(a) Bi(111) (b) Co/Bi(111)

Figure 4.20: 2D plot of the Fermi surfaces for the clean and the δ-doped Bi(111)
surface. The difference between both is clearly visible, especially because of the electron

pocket near K which is only present in the case of the doped surface.

Figure 4.21: (a) Experimental STM image, I = 0.05 nA, UBias = 1 mV, of two Co
impurties with a distance of about 1.5 nm (Taken from own publication [121]). (b)
Corresponding calculation. (c) Calculated STM image for three Co atoms in next
neighbor subsorbate positions (red circles). (d) Calculated STM picture for δ-doped

Co/Bi(111) surface.

of about 1.5 nm (b). At this distance the typical threefold pattern are still distin-

guishable from each other. This changes when the Co atoms come closer together,

illustrated in (c). Here, three Co atoms are placed in next-neighbor subsorbate

sites. The single pattern overlap and become slightly similar to the one of the

clean bismuth (111) surface (cf. Figure 4.22). In the case of the δ-doping layer (d)

the STM picture is exactly like the one without any impurity at all (Figure 4.22
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4 The bismuth (111) surface

Figure 4.22: Comparison of the calculated STM pictures for (a) the δ-doped surface
with red circles representing the Co atoms and (b) the clean surface. (c) and (d) show
the corresponding magnetization density. (e) compares the spin-up and spin-down STM

pictures. (f) illustrates a proposal for spin-polarized STM.

(a) and (b)). The Co atoms thus become STM-invisible. This means that such

regions where every subsorbate position is occupied can easily be mistaken for

regions with no subsorbates at all in STM measurements. However, the magneti-

zation density is only present for the doped surface (Figure 4.22 (c) and (d)). The

spin channels are clearly divided between the Co and the Bi atoms (Figure 4.22

(e)). As mentioned before, all spins are aligned along the surface normal with

opposite signs for Co (+z) and Bi (−z) and with a way bigger magnitude for Co

(Figure 4.22 (f)). This remains, even when an external magnetic field is applied in

the +z direction. Furthermore, the atomic spin directions do not change if we flip

the direction of the external magnetic field. Hence, spin-polarized STM should be

possible and result in clear different images for the two directions of the external

magnetic field and thus in different images for the clean and the δ-doped bismuth

(111) surface.

Even though the δ-doped surface is energetically favored it is useful to investigate

which processes can happen during evaporation. We assume that a subsorbate

site is already taken by a Co atom but a second atom is approaching from above.

Different scenarios can now occur as visible in Figure 4.23. The red spheres demon-

strate either the arriving Co atom or an already occupied subsorbate position. The

red circle instead indicates a free next-neighbor subsorbate position. If the new Co
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4.2 Adatom incorporation into the Bi(111) surface

Figure 4.23: Side view of Co at the Bi(111) surface. Light red empty (filled) circles
indicate possible (already occupied) positions. Dark red spheres show a new arriving
Co atom: it can (i) be adsorbed ontop of an already incorporated Co atom, overcome
a barrier of 0.06 eV and move to the next free sub- sorbate position or (ii) push the
incorporated Co atom into a neighboring free position. (iii) If the arriving Co atom
has a distance of 0.3 nm or more from an incorporated one, it goes barrier-free into the

next free subsorbate position.

atom has a distance of at least 0.3 nm from an already incorporated one, it goes

barrier-free into the next free subsorbate position. Otherwise it stays ontop of the

other atom forming a Co-Co bond with a length of 2.5 Å similar to the one of Co

bulk. Do more Co atoms arrive, they can form large clusters visible in the STM

as big bright spots (cf. yellow circles in Fig. 4.12). However, a two-atomic cluster

is not totally stable. Only a small energy barrier of 0.06 eV has to be overcome to

cause the upper Co atom to move into the next subsorbate position. In another

scenario, the upper atom pushes the incorporated atom in the next subsorbate

position via the energetically nearly degenerate fivefold coordinated position pre-

sented in Subsection 4.2.3. Here, the energy barrier is at maximum 0.2 eV. The

new arriving atom can now take the position of the pushed-away atom.

All in all, if we have a sample, grown at low-temperatures, with a high density of

Co atoms, it is likely that they will either be incorporated at subsorbate positions

or aggregate in clusters. However, a moderate temperature annealing should cause

the Co atoms to move and rearrange. The clusters break and will fill up empty

subsorbates sites around, thus forming δ-doped islands which should be stable

even at room temperature.
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Chapter 5

Summary

In the context of this work, a new approach for including relativistic effects in DFT

calculations was developed, implemented in the Quantum Espresso package and

tested on different systems. We used a spinor approach where the spin-orbit cou-

pling (SOC) enters in nonseparable form the nonlocal parts of scalar-relativistic

pseudopotentials. The major benefit of this new method is the possibility to use the

same pseudopotentials for scalar-relativistic and SO-including calculations. This

ensures a good comparability between the two without having to bear in mind

technical differences coming from different pseudopotentials. As first test systems

we used the well-studied bismuth (111) bilayer which shows big differences in the

band structure between the non-relativistic, the scalar-relativistic and the spin-

orbit including or full-relativistic approach. With our method it was possible to

reproduce the relativistic band structure within a few meV compared to the al-

ready implemented code [50] and the reference [61].

Furthermore, we used our approach to calculate the Rashba parameters for the

Bi-related surface alloys Bi/Ag(111) and Bi/Cu(111). Those systems are known

to have a large Rashba spin splitting [65, 66] and are therefore perfect reference

systems. Our results were in very good agreement with experimental values and

the ones from former theoretical work. Through our tests we were also able to

see the high improvement regarding computational time. With the reconstruction-

only approach the computational time was reduced by nearly two-thirds to 30 %

compared to the previously implemented full-relativistic approach of Andrea Dal

Corso [50]. At the moment, the method works only for normconserving pseudopo-

tentials, but we can expect a further reduction in computational costs if in the

future ultrasoft pseudopotentials may be used.
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5 Summary

After we could proof the usability and the huge reduction of computational time

of our method, we used it to investigate relativistic effects of In nanowires that

self-organize on the silicon (111) surface. We could show that both, the (4×1)

and the (8×2) phase, exhibit a large and highly anisotropic Rashba effect. Strik-

ing is that the Rashba splitting does not appear at the Γ point, as it is the case

with most other systems, but at the X point. Mainly the In-related bands are

affected. To explain the band-dependent anisotropy, the orientation and popula-

tion of the In 5p orbitals was analyzed. We could show for the room temperature

(RT) phase that the two upper bands have a large py contribution resulting in a

splitting perpendicular to the nanowires whereas the other two bands have more

px contribution and thus a splitting along the wires. The new relativistic approach

provides the possibility to turn on the spin-orbit coupling for specific atoms. By

doing so, we were able to prove that mainly the outer indium atoms are responsible

for the Rashba effect. The low temperature (LT) phase turned out to need a more

complicated explanation for the Rashba anisotropy. The inner and outer indium

atoms participate with same contributions as for the (4×1) phase but depending

on the k-direction with parallel or opposite spin polarization. Hence, only a su-

perposition of the bands where the spin-dependent splitting is either increased or

canceled, can explain the strong Rashba anisotropy.

As a second class of investigated systems, modified bismuth surfaces were used.

The bismuth (111) surface consists of different bilayers. As a first step, the best

modelling was searched for because the electronic structure of the surface highly

depends on the numbers of bilayers that are taken into account. We found that a

symmetric slab of at least eight bilayers is necessary to reproduce the band struc-

tures and Fermi surfaces from theoretical and experimental work. The electronic

structure was found to be more stable when adatoms come into play. Here, a

symmetric slab with only five bilayers already shows all relevant features for the

band structure in the region of the Fermi energy. The motivation for analyze the

influence of adatoms came from the experimental group of Prof. Dr. Horn-von

Hoegen. They deposited 3d TM on the Bi(111) surface and then examined the

sample with STM. It was found that at a bias voltage near the Fermi energy

threefold shaped pattern appear. The amount of these pattern corresponds to the

amount of adatoms that were deposited. This lead to the assumption that every

threefold pattern represents one impurity atom. With DFT calculations it was

possible to reproduce the STM pictures and furthermore define the exact loca-

tion of the adatom. It is incorporated sevenfoldly coordinated within the first Bi
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bilayer directly above a Bi atom of the second bilayer. This incorporation even

takes place barrier-free. Interestingly, the surface topography remains unchanged

and only the Bi atoms around the impurity recede a little bit or move closer to

the impurity. We used a wide range of different atomic species to perform total

energy calculations for various positions. Only 3d, 4d, 5d and the noble metals

have their global minimum within the first bilayer. But only the 3d TM occupy

this position barrier-free. For the others, a small thermal activation is necessary

to quit their local minimum ontop. All atoms without a partially filled d-shell stay

ontop of the surface.

After finding this so-called subsorbate position, we went on to higher densities of

subsorbates. As an example Co was chosen. Subsurbate pairs in next-neighbor

position turned out to be the energetically favored in contrast to pairs with higher

distances. If we fill all possible subsorbate positions, i.e. one Co atom per 1 × 1

unit cell, we can gain around 0.5 eV compared to a single Co atom. A Co layer is

built within the first bismuth bilayer. This δ-doping layer preserves the bismuth

lattice, i.e. only the second-layer bismuth atoms decent slightly. This high stabil-

ity explains the huge energy gain. Interestingly, the STM picture of the δ-doped

surface looks exactly the same like the one from the clean bismuth (111) surface.

Fortunately, the band structure and Fermi surface show very different characteris-

tics. This means that ARPES can be used to distinguish the clean from the doped

surface. Alongside δ-doped regions, we found that Co atoms can build clusters

with one atom in a subsurface position and the others ontop. However, those

clusters are not stable and temperature annealing will likely cause the atoms to

rearrange into neighboring subsurface positions. Consequently, a careful choice of

the growth conditions paired with moderate temperature annealing should result

in a δ-doping Co layer. Because of the similar incorporation behavior, δ-doping

layers of other 3d TMs should be possible.

The combination of magnetic (Co) and non-magnetic (Bi) materials is very suit-

able for any kind of magnetic surface spectroscopy, as for example spin-polarized

STM, X-ray magnetic circular dichroism (XMCD) or photo emission electron mi-

croscopy (PEEM).

73





Chapter 6

Outlook

Spin-orbit coupling (SOC) finds its way into the calculation of a wide range of

properties. X-ray magnetic circular dichroism (XMCD), the difference of two X-

ray absorption spectra, is just one example of where SOC becomes important and

can change the outcome of a spectrum.

In X-ray absorption spectroscopy (XAS) or more specific X-ray absorption near

edge structure (XANES), x-rays are used to liberate a core electron from the probe.

The arising (element-specific) adsorption edge then gives information about the

chemical environment of the sample, e.g. oxidation state, coordination, bonds etc.

In general the XAS cross section is given by [125]

σ(ω) =
2πω

I

∑
f

|Mi→f |2δ(Ef − Ei − ω) (6.1)

The XMCD cross section is then given by the difference of the XAS spectra for

right- and left-circularly polarized light:

σXMCD = σ(ε)− σ(ε∗) (6.2)

with ε = 1√
(2)

(ex + iey). XMCD is mostly applied to nonmagnetic surfaces with

magnetic adatoms or vice versa.

The total cross section can be divided into different terms:

σ = σD−D + σQ−Q + σD−Q + σD−SO1 + σD−SO2 (6.3)
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6 Outlook

σD−D, the dipole-dipole contribution is in most cases the dominating part of

the spectrum and defines the overall shape. Sometimes, s → d transitions, the

quadrupole term σQ−Q make some visible changes to the prepeak of the spectrum.

The dipole-quadrupole term σD−Q has rarely a big influence to the total spectrum

and is even zero for all systems with inversion symmetry. The just mentioned

term are already known from absorption spectra (X-ray and optical). We want to

focus on the SOC terms that arise explicitely from the inclusion of SOC, so far

not discussed in literature:

σD−SO1 = −2π2α3
∑
f

=
[
〈i| ε∗ · r |f〉 〈f |σ · (∇Vscf × ε) |i〉

]
δ(Ef − Ei − ω) (6.4)

σD−SO2 = −3π2ω2α3
∑
f

=
[
〈i| ε∗ · r |f〉 〈f |σ · (ε× r) |i〉

]
δ(Ef − Ei − ω) (6.5)

The official Quantum Espresso code contains the possibility to calculate x-ray

absorption spectra for the K-edge, i.e. exciting a 1s electron [125]. In the context

of the previous work of C. Gougoussis and M. Calandra from the Pierre and Marie

Curie Univerisity, as well as U. Gerstmann from the University of Paderborn, a

first extension to XMCD was done for the σD−D, σQ−Q and σD−Q terms [127]. As

part of the present doctorate, those implementations were improved and further

extended, especially by including the σD−SO2 term in combination with the new

relativistic method presented in Section 2.3. As a test system, iron was used. The

influence of the different terms is illustrated in Figure 6.1. The quadrupole-related

contributions σQ−Q and σD−Q have small or no influence on the total spectrum.

The dominating term is σD−D which already gets the shape of the experimental

spectrum right. The quotient between the first positive peak and the first negative

peak accounts to 1.2 in the experiment. For the σD−D term this quotient is with

0.7 too small. The σQ−Q makes things even worse by decreasing the first peak

and leading to a quotient of 0.6. Thus, we need a term that influences both,

the first and second peak. By adding the σD−SO2 term to the spectrum the first

peak increases a little bit whereas the absolute intensity of the second peak is

decreased, i.e. the quotient gets better with a value of 1 but there is still a small

error. This deviation can be ascribed to the not yet implemented term σD−SO1.

Besides the inclusion of the still missing terms, an extension to L- and M -edges

is planned and an evaluation of the so-called sum rules of XMCD spectra [128–

131]. This will become useful for additional investigation of the bismuth surface.

Related experiments are already carried out by the University of Hannover. For
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Figure 6.1: XMCD of bcc-Fe resolved into the different contributions. The experiment
(purple) is taken from [126]. The overall shape is already reproduced with the dipole
contribution, but the quotient between the first positive peak and the first negative
peak can be improved when the σD−SO2 is included. The quadrupole related terms

have nearly zero influence on the spectrum.

application onto systems like those presented in Section 4.2, an explicit influence

of the description of relativistic effects (scalar-relativistic or full-relativistic, i.e.

with multicomponent spinors) will probably become important.
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III, edited by C. É. Guillaume (Gauthier-Villars, Paris, 1900) p. 138.
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