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In this thesis, we analyze the vulnerability of pairing-based cryptographic schemes
against physical attacks like side-channel attacks (SCAs) or fault attacks (FAs).
Compared to well-established cryptographic schemes, for example, from standard
elliptic curve cryptography (ECC), less is known about weaknesses of pairing-based
cryptography (PBC) against those attacks. Reasons for this shortcoming are the
complexity of PBC and a missing consensus on parameters, algorithms, and schemes,
e.g., in the form of standards. Furthermore, the structural difference between ECC
and PBC permits a direct application of the results from ECC. To get a better
understanding of the subject, we present new physical attacks on PBC.
In an attack on pairing-based encryption schemes, one argument of the pairing

is secret and the other argument is known to the attacker. With respect to SCAs,
it seems easier to attack the pairing computation in the case where the secret is
the second argument of the pairing. So far, it was not completely clear how much
protection it offers to use the secret as the first argument of the pairing. To show
that both choices are equally vulnerable, we present new attacks for the case where
the secret is the first argument of the pairing.

With respect to FAs on the pairing computation, we introduce a framework for
the analysis of erroneous computations that covers all techniques from previous
attacks. Based on this framework, we describe two new attacks. The novelty of
the attacks is that they consider both steps of the pairing computation, the Miller
algorithm and the final exponentiation. Furthermore, to the best of our knowledge,
we provide the first practical realization of an FA on pairings that includes both
steps of the computation.

So far, all previous investigations concentrate on the pairing computation itself.
But elliptic curve scalar multiplication (ECSM) with a secret scalar is also used in
PBC. In several pairing-based signature schemes, the base point of the ECSM is the
image of a hash function that maps strings to the elliptic curve. The computation
of the hash function uses point decompression as a bulding block. We present an
FA on point decompression such that points are decompressed to a singular curve
where the discrete logarithm problem is trivial. This allows us to compute the secret
scalar and hence, to break the corresponding signature schemes. Consequently, we
provide a practical realization of our attack for the pairing-based short signature
scheme of Boneh, Lynn, and Shacham.

Our results, including the practical realizations of our attacks, show that physical
attacks are a threat for PBC and need further investigation. Our work also shows
that the community should agree on parameters, algorithms, and schemes to reduce
the complexity of PBC with respect to physical attacks.
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Chapter 1.

Introduction

In this thesis, we study attacks on cryptographic implementations that exploit
physical properties during the execution of an algorithm. More specifically, we are
interested in attacks on cryptographic schemes that use bilinear pairings on elliptic
curves as a building block.

1.1. The story of Alice and Bob

Let us consider the following scenario: Alice and Bob live in different corners of the
world. Bob likes to send his private news to Alice via the Internet and, in times
of online dating, he likes to do this even before he has met Alice personally for
the first time. Bob could post his message on the social medias in the clear, like
everybody does today. Maybe Bob is old-fashioned, but he prefers to communicate
confidentially. Furthermore, he does not trust the Internet because Alice’s big sister
Eve eavesdrops all communication in and out of the house.

What can Alice and Bob do? In 1976, Diffie and Hellman [DH76] introduced the
concept of asymmetric encryption that partly solves their issue. In an asymmetric
encryption scheme, Alice as the recipient of a message, has a so-called public-private
key pair. We can think of this pair as a snap-lock with a matching key. Here, the
snap-lock represents the public key and the key represents the private key. The
public key is used to encrypt, respectively lock, messages. The private key is used
to decrypt, respectively unlock, messages. With asymmetric encryption, the story
of Alice and Bob goes like this:

1. First, Alice executes a key generation algorithm to generate a secret private
key sk and a corresponding public key pk.

2. She publishes her public key pk in a public key directory on the Internet.

3. Bob downloads Alice’s public key pk to encrypt his message M for Alice with
this key. He obtains a ciphertext C that he sends to Alice over the Internet.

4. Alice retrieves the ciphertext C and with her matching secret key sk she is
able to recover the message from the ciphertext.

For a secure asymmetric encryption scheme, of course, nobody is able to compute
the secret key from the public key; and nobody is able to decrypt the ciphertext
without knowledge of the secret key.

1



Chapter 1. Introduction

The first published instantiation of an asymmetric encryption scheme was pre-
sented in 1978 by Rivest, Shamir, and Adleman [RSA78] and named after the
authors: the Rivest-Shamir-Adleman (RSA) cryptosystem. Many instantiations
of asymmetric encryption are known today and used by all of us, for example, in
Transport Layer Security (TLS).

Unfortunately, asymmetric encryption still does not solve all the problems of
Alice and Bob. How can Bob be sure that he really uses the public key of Alice for
encrypting his secret message? Suppose nosy Eve publishes her own public key, but
in the name of Alice. Then Bob might encrypt his message for Alice with Eve’s key.
Eve eavesdrops the ciphertext and decrypts it with her private key. The standard
approach for solving this problem are certificates. Alice, before publishing her
public key, asks a trusted certification authority to issue a signed certificate that
confirms that this key belongs to the identity Alice. Then Bob, before encrypting
his message for Alice, checks that the key he downloaded is really certified for Alice.
In a huge infrastructure like the Internet (of Things), this results in a complicated
public key infrastructure.

A solution to get rid of the multitude of authenticated public keys is identity-based
encryption (IBE). In IBE, the public encryption key of Alice does not depend on
her secret decryption key anymore. Instead, Bob uses a unique string that encodes
Alice’s identity, for example, her email address alice@home.de. Furthermore, the
trusted certification authority is replaced with a trusted private key center that
issues private keys for users like Alice. Then Bob encrypts his message with a
combination of Alice’s identity alice@home.de and the public key of the private key
center. Hence, Bob has to retrieve only the authenticated public key of the private
key center to encrypt messages for arbitrary identities. This results in a simplified
public key infrastructure, especially in large-scale networks with authenticated
identities. The concept of IBE was already introduced in 1985 by Shamir [Sha85].
But the first fully functional scheme was given by Boneh and Franklin [BF01] in
2001. The construction is based on pairings, like most of the efficient constructions
of IBE and more powerful primitives like attribute-based encryption (ABE).

We remark that today, confidential communication is not the only objective of
cryptography. For example, we like to authenticate our communication, we like
to sign contracts over the Internet, we like to pay anonymously in the Internet,
and we like to play mental poker over the telephone. Research has worked hard
on all of these applications and came up with solutions for many more of them.
For example, digital signature schemes were already defined by Diffie and Hellman
[DH76]. Digital signatures are publicly verifiable and provide authenticity, integrity,
and non-repudiation. Hence, with respect to authenticity and non-repudiation,
they are the counterpart of classical pen and paper signatures and, additionally,
provide integrity of the message.

2



1.2. Modern cryptography: from fuzzy to fussy

1.2. Modern cryptography: from fuzzy to fussy

Modern cryptography started in the second half of the 20th century. The central
aspects of modern cryptography are: “emphasis on definitions, precise assumptions,
and rigorous proofs of security” [KL08]. Hence, for any cryptographic primitive,
the first step is to formally define its syntax, its functionality, and its security.
Another important paradigm of modern cryptography is Kerckhoffs’ principle that
requires that security solely relies on the secrecy of keys and not on the secrecy of
algorithms.

1.2.1. Asymmetric encryption

To get an impression of what modern cryptography looks like, we come back to
asymmetric encryption. Regarding the syntax, an asymmetric encryption scheme
consists of three polynomial time algorithms:

1. A key generation algorithm that generates a public-private key pair.

2. An encryption algorithm that takes as input a public key and a message and
outputs a ciphertext.

3. A decryption algorithm that takes as input a private key and a ciphertext
and outputs a message.

Assume that a ciphertext was computed by the encryption algorithm for a given
message and a given public key. The functionality of an asymmetric encryption
scheme requires that the decryption algorithm recovers the original message when
it is executed on this ciphertext and the private key that corresponds to the public
key that was used for encryption.
The definition of security is more involved. Informally, we like to say that

an encryption scheme is secure if no polynomial time adversary can gain any
information about the message of a given ciphertext without knowledge of the
corresponding secret key. Furthermore, this should still hold true, even if the
adversary is able to query the decryption of additional ciphertexts for the same
target secret key. This informal description of security can be formalized and is
called indistinguishability against chosen ciphertext attacks, or IND-CCA security.
Today, this is accepted as the right notion of security for encryption schemes. For
the formal definition we refer, e.g., to Definition 10.24 of [KL08].

Based on the definitions for syntax, functionality, and security of a cryptographic
primitive, schemes for this primitive can be described. Then it is proven, relative
to clearly stated hardness assumptions, that a particular scheme satisfies the
corresponding definitions.

1.2.2. The discrete logarithm problem

We now introduce a concrete hardness assumption that plays an important role in
this thesis: the discrete logarithm (DLOG) problem. Let G be a cyclic group of

3



Chapter 1. Introduction

Figure 1.1.: Black-box attacks versus physical attacks (http://xkcd.com/538/):
Often secure schemes can be broken at much lower costs by exploiting physical
properties of the implementation.

order n with generator g and let h ∈ G. Given (G, n, g, h), the discrete logarithm
(DLOG) problem is to compute an integer α such that gα = h. Here, α is called
the DLOG of h to the basis g. Informally, the DLOG problem is hard in a group
G if no polynomial time algorithm can solve the DLOG problem with significant
success probability over the random choices of h.

One possible candidate for a family of groups where the DLOG problem is hard
are elliptic curves. An elliptic curve is a curve defined by a cubic equation in x and
y of the form

y2 = x3 + a4x+ a6.

On the set of points P = (x, y) that satisfy this equation, we can define an
abelian group. Traditionally, this group is written as an additive group. For a
point P on the curve and a positive integer α we write αP to denote the sum
P + P + · · ·+ P , α times. We call the computation of αP from α and P elliptic
curve scalar multiplication (ECSM). Hence, the DLOG problem is to compute α
from P and αP , i.e., to invert ECSM. Elliptic curve cryptography (ECC) is based
on the assumption that the DLOG problem on elliptic curves is hard. The reason
to believe in this assumption is that, for suitable elliptic curves, the best known
algorithms to solve the DLOG problem with significant probability have exponential
run time. And indeed, the security of wide-spread schemes like the elliptic curve
integrated encryption scheme (ECIES) and elliptic curve digital signature algorithm
(ECDSA) relies on the hardness of the DLOG problem on elliptic curves.

1.3. The real world: getting physical

The standard security definitions like IND-CCA security are based on black-box
models where we assume that an adversary is only able to observe or manipulate the

4
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1.3. The real world: getting physical

h← g
for αi ← αt−2 . . . α0 do

h← h2

if αi equals 1 then
h← hg

end if
end for

time

po
w
er

Figure 1.2.: On the left, we see the standard square and multiply algorithm for
computing h = gα for a t-bit integer α with binary representation αt−1 . . . α0. On
the right, we see the low-pass filtered power consumption of an AVR ATmega163
during the computation. More specifically, we see the processing of one byte
10110001 (binary) of α. It is clearly possible to distinguish bits of α that are set
to 1 (wide pulse) from bits that are set to 0 (narrow pulse).

public input and output of cryptographic algorithms. But in practice, implementa-
tions of these algorithms are executed on real hardware and the involved secret keys
are physically stored. Therefore, in practice, often more powerful adversaries occur
that do not adhere to the black-box model and that exploit physical properties.
Basically, there are two types of physical attacks:

Side-channel attacks (SCAs) In a (passive) side-channel attack (SCA), the ad-
versary observes different physical properties during the execution of a cryp-
tographic algorithm such as power consumption, timing, or electromagnetic
(EM) radiance.1

Fault attacks (FAs) In an (active) fault attack (FA), the adversary tampers with
the executing device prior to or during the execution of a cryptographic
algorithm, for example, by means of electromagnetic pulses, nuclear radiation,
or laser beams.

Both types of attacks might give the adversary auxiliary information about inter-
mediate states of the algorithm, additional to the information he gains from the
output of the algorithm in a black-box attack. This additional information might
enable the attacker to break the system or to reduce the costs of an attack (cf.
Figure 1.1).

In Figure 1.2 we see an example for an SCA based on the power consumption of
a cryptographic device that computes h = gα from the most significant bit (MSB)
to the least significant bit (LSB). For the bits of α that are set to 1, a squaring is
followed by a multiplication and a wide pulse occurs. For the bits that are set to 0,

1 The term SCA is sometimes used to refer to both, passive as well as active physical attacks.
As, e.g., [MOP07] we use SCA only to refer to passive physical attacks.
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only squaring is computed and hence, we observe a narrow pulse. This allows us to
directly read off α from the power profile of the computation.

One early example of an SCA is described by the former British intelligence
officer Peter Wright in [Wri87]: In 1956, during the Suez Crisis, the British broke
the Egyptian Hagelin mechanical cipher machine with an acoustic SCA to eavesdrop
the communication between Egypt and the Soviet Union. In academia, one of
the first SCAs was described in 1996 by Kocher in [Koc96]. Boneh, DeMillo, and
Lipton [BDL97] described the first FA in 1997 that targets an implementation of
RSA. This attack, also known as the Bellcore attack, was shown to be practical
in [Aum+03]. Since then, numerous new attacks have been presented every year
[Wag12].

With respect to SCAs on modern ciphers, the first attacks were based on infor-
mation leakage through timing [Koc96] and power consumption [KJJ99]. Attacks
based on electromagnetic radiance followed [QS01; GMO01]. More and more physi-
cal side-channels were exploited, for example photonic emission [FH08; Sch+13],
and again, acoustic noise [GST14]. The techniques to access this information also
improved: Starting with reading of bits directly from the power consumption of
a device in simple power analysis, today, powerful tools that use statistics like
differential power analysis (DPA) [KJJ99] exist.

For FAs, more and more different fault injection techniques were developed over
time. Examples include clock and power glitches [AK96], laser beams [SA02], or
EM disturbance [HS07]. Furthermore, different techniques to exploit these faults
were proposed such as differential fault analysis [BS97; BMM00], safe-error analysis
[YJ00], weak-curve based analysis [BMM00], and sign-change attacks [BOS06].
Today also higher order attacks are practical. These are attacks where multiple
side-channels are combined [Mes00] or multiple faults are introduced within one
execution [KQ07].

Even though also examples exist where SCAs as well as FAs are carried out
remotely [BB05; GMM15], typically, the adversary requires physical access to the
device that contains the target key. One may wonder why we consider attacks
where an adversary already has physical access to the device that stores the target
key. The reason is that in many applications, the secret key is stored on special
tamper-protected hardware, like a smart card, such that not even the legitimate
owner of the key can access it directly. This prevents cloning of keys or protection in
case of theft. For example, in a pay TV application a regular subscriber should not
be able to clone and distribute the decryption key. Another example is electronic
signatures according to the German Digital Signature Act [BRD01]. To issue
qualified signatures, the signing key has to be stored on a device like a smart card
that prevents cloning of the key. We see that cryptographic implementations on
smart cards are a profitable target of physical attacks.

6
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1.4. Pairing-based cryptography

In pairing-based cryptography (PBC) the basic building block is a cryptographic
pairing, i.e., a map

e : G1 × G2 → GT

for groups G1, G2, and GT . Throughout this thesis, as for all cryptographic pairings
used today, G1 and G2 are subgroups of an elliptic curve that is defined over a finite
field. Furthermore, GT is a subgroup of the field’s multiplicative group. Usually, we
assume that a pairing satisfies two functional properties: bilinearity, i.e., linearity
in both arguments, and efficiency. To be useful in cryptography, also some security
properties are required, e.g., that it is hard to invert the pairing for both of its
arguments.

In cryptography, the first application of pairings was destructive. Menezes,
Okamoto, and Vanstone [MOV93] used pairings to reduce the DLOG problem on
certain elliptic curves to the DLOG problem in a finite field. Hence, they showed that
the DLOG problem on some elliptic curves, especially so-called supersingular curves,
has sub-exponential complexity. In 2001, Boneh and Franklin gave a constructive
application and instantiated an efficient IBE scheme based on pairings. Today
numerous schemes other than IBE use pairings as their building blocks. Examples
include attribute-based encryption [SW05], key agreement [Jou04], non-interactive
zero-knowledge proofs [GOS06], short signatures [BLS04b], group signatures [BS04],
or threshold and blind signatures [Bol03].

The adoption of pairings in cryptographic applications is followed by the request
for efficient implementations. Over the past years, research efforts led to pairings
that have efficient implementations and can be implemented on resource constrained
devices such as smart cards [SCA06; GK15]. This clears the way for the application
of PBC in adversarial environments where physical attacks are relevant.

Starting in 2001, PBC is a relatively young field of research. And although PBC
uses methods from ECC, the vulnerability of PBC against physical attacks is not
well understood. In nearly all ECC-based schemes, the secret is a scalar multiplier
of a point on the curve. In PBC, the secret plays different roles. It can either be a
scalar like in ECC [BLS04b] or it is a point on the curve [BF01; CC03]. This point
can be a generator and input to elliptic curve scalar multiplication [CC03]. But it
can also be an argument of the pairing [BF01]. Furthermore, it depends on the
concrete application whether it is the first argument or the second argument of the
pairing. Finally, various pairings such as Weil pairing, Tate pairing, Ate pairing,
and Eta pairing exist. The situation appears much more complex than for RSA or
ECC where the secret is simply a scalar that is the input of an exponentiation or a
scalar multiplication.

7
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1.5. Thesis statement and contribution

On the one hand, in the black-box model, the community agreed on models for
the security of many cryptographic primitives. On the other hand, many years
after the first publications of physical attacks, there is still no agreement on how to
model physical adversaries. Attempts to formalize SCAs like [MR04; DP08; SMY09;
DDF14] often result in impractical constructions and still they do not capture all
practical attacks. Hence, there is an ongoing dispute between theory and practice
[KM13]. In practice, it is therefore still inevitable to design countermeasures that
are specialized on one or several types of physical attacks. Then, an implementation
that is secure in the black-box model is hardened with these countermeasures
to resist the designated attacks. For this approach, an important first step is to
understand vulnerabilities of cryptographic schemes to physical attacks. Although
the first attacks on RSA were already published in 1996, this analysis is still ongoing
and possibilities for new attacks are discovered regularly. The same holds for ECC.

Despite the complexity of PBC, the effort that has been spent on the analysis of
physical attacks is much smaller for PBC than for RSA or standard ECC. Even
though there are some results that analyze the vulnerability of pairings to passive
attacks [PV04; WS06; Kim+06; MFN09; GC11; UW14] as well as to active attacks
[PV06; WS07; Mra09; BMH13; Las+14; LFG13] there are still some open questions.

The goal of this thesis is to analyze PBC with respect to physical attacks
and to discover new vulnerabilities. With this contribution, we would
like to prevent mistakes in future implementations. Furthermore, our
results provide input for the design of new countermeasures and for risk
assessment.

More specifically, in this thesis we answer several questions that were raised in the
context of physical attacks on PBC:

1. The pairing computation is not symmetric in its arguments. Whelan and
Scott [WS06] investigate the question if it is more secure in the context of
SCAs, and especially a DPA, to use the secret as the first or as the second
argument of the pairing. They conclude that using the secret as the first
argument might be more secure, especially when finite field multiplications
are targeted in the SCA. This is not generally the case because it was already
shown that the pairing is vulnerable to a DPA of finite field additions, also
in the case where the first argument is secret [MFN09; GC11]. In Chapter 4
we complement this work and show that the pairing computation with secret
first argument is similarly vulnerable to a DPA of finite field multiplications.

2. Most pairings are computed in two steps: Miller algorithm and final expo-
nentiation. Whelan and Scott [WS07] conjecture that this two-step approach
offers some protection against FAs on the pairing computation. Furthermore,
several attacks on the pairing computation analyze either the Miller algorithm
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[Mra09; BMH13; Las+14] or the final exponentiation [LFG13], but ignore the
other step. In Chapter 5 we develop a framework for the analysis of FAs on
pairings that combines the analysis of both steps. Furthermore, in Chapter 6
we present new second order attacks in the context of our framework that
consider the Miller algorithm and the final exponentiation.

3. Previous investigations of physical attacks against PBC restrict to the pairing
computation itself. But in PBC also other building blocks are combined in
a different way from standard ECC. For example, in various pairing-based
signature schemes, strings are hashed to a point on an elliptic curve and the
result is used as input for ECSM with a secret scalar. The question is if this
offers new vulnerabilities to physical attacks. In Chapter 7 we show that
this is the case by presenting a new FA that applies to several pairing-based
signature schemes.

4. So far, most FAs on PBC were described only theoretically. Especially it was
an open question if second order attacks on the complete pairing computa-
tion, including Miller algorithm and final exponentiation, are practical. In
Chapter 8, we show that this is the case. Therefore, we present the practi-
cal realization of one of our second order FAs on pairings from Chapter 6.
Furthermore, we also present the practical realization of our attack against
pairing-based signature schemes from Chapter 7.

1.6. Publications related to this thesis

This thesis is based on the following publications with substantial contribution of
the author:

[BG15] Johannes Blömer and Peter Günther. “Singular Curve Point Decom-
pression Attack.” In: Proceedings of Fault Diagnosis and Tolerance
in Cryptography (FDTC) 2015. Ed. by Naofumi Homma and Victor
Lomné. IEEE Computer Society, 2015, pp. 71–84.

[BGL13] Johannes Blömer, Peter Günther, and Gennadij Liske. “Improved Side
Channel Attacks on Pairing Based Cryptography.” In: Proceedings of
Constructive Side-Channel Analysis and Secure Design (COSADE)
2013. Ed. by Emmanuel Prouff. Vol. 7864. LNCS. Springer, 2013,
pp. 154–168.

[Blö+14] Johannes Blömer, Ricardo Gomes da Silva, Peter Günther, Juliane
Krämer, and Jean-Pierre Seifert. “A Practical Second-Order Fault
Attack against a Real-World Pairing Implementation.” In: Proceedings
of Fault Diagnosis and Tolerance in Cryptography (FDTC) 2014. Ed.
by Assia Tria and Dooho Choi. IEEE Computer Society, 2014, pp. 123–
136.
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Furthermore, the author of this thesis also contributed to the following publica-
tions that are related to PBC:

[BGK13] Johannes Blömer, Peter Günther, and Volker Krummel. “Securing
Critical Unattended Systems with Identity Based Cryptography — A
Case Study.” In: Proceedings of Mathematical Aspects of Computer
and Information Sciences (MACIS) 2013. 2013, pp. 98–105.

[BGL14] Johannes Blömer, Peter Günther, and Gennadij Liske. “Tampering
Attacks in Pairing-Based Cryptography.” In: Proceedings of Fault
Diagnosis and Tolerance in Cryptography (FDTC) 2014. Ed. by Assia
Tria and Dooho Choi. IEEE Computer Society, 2014, pp. 1–7.

[GK15] Peter Günther and Volker Krummel. “Implementing Cryptographic
Pairings on Accumulator based Smart Card Architectures.” In: Proceed-
ings of Mathematical Aspects of Computer and Information Sciences
(MACIS) 2015. Ed. by Ilias S. Kotsireas, Siegfried M. Rump, and
Chee K. Yap. Vol. 9582. LNCS. Springer, 2015, pp. 151–165.

1.7. Organization of this thesis

This thesis is organized as follows:

Chapter 2 In this chapter, we define the notation and give the required mathemat-
ical background, especially on elliptic curves and cryptographic pairings. We
collect several theorems with relevance for PBC that are otherwise scattered
over the literature. Because we provide cross references in later chapters, the
reader may feel free to skip this chapter.

Chapter 3 In this chapter, we give background information on implementations
and applications of pairings in cryptography. Our outline exceeds the pure
mathematical definitions and provides information on terminology and typical
implementations of ECC and PBC as far as required to understand this thesis.
Furthermore, it presents examples for different types of cryptographic schemes
from ECC and PBC that are relevant for this thesis.

This chapter is meant to understand the setting of our attacks. But together
with Section 2.2 and Section 2.3 it provides a brief introduction into PBC,
especially for the novice in the field. The reader that is familiar with PBC
may skip this part because we later on refer to the corresponding definitions.
Nevertheless, to get a quick idea of what kind of schemes we target with our
attacks, we suggest Section 3.3.

Chapter 4 This chapter presents the first new results of this thesis. Based on our
work from [BGL13; BGL11], we present passive SCAs on pairing-based en-
cryption schemes. We show that unprotected implementations of pairings are
vulnerable to a DPA of finite field multiplications. We do this by identifying
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multiplications in the pairing computation that are suitable for a DPA and
that allow recovery of the secret key. We present three attacks that all exploit
common efficient representations of points on an elliptic curve.

Chapter 5 In this chapter, we introduce a framework for the analysis of FAs on
pairings. It summarizes the existing techniques and presents them in a
consistent way. Initially, our motivation was to provide a first step towards
the automated analysis of FAs on pairings. But the framework also provides
a better understanding of potential vulnerabilities of pairing computations
against FAs. We apply the framework to some existing attacks from the
literature.

Chapter 6 This chapter is based on our results from [Blö+14]. We present two
new FAs on pairings that we analyze based on the framework from Chapter 5.
Previous attacks target either the Miller loop or the final exponentiation,
whereas for a complete attack on a relevant pairing, both steps have to be
considered. We present an attack in the instruction skip model that includes
both steps of the pairing computation. In [Blö+14] we presented an attack
that completely removes the final exponentiation. For some implementations,
this is not possible. In this chapter, we extend the results of [Blö+14] and
present a new technique to attack the final exponentiation without completely
removing it. Finally, we apply this technique to the combination of the
optimal Ate pairing with Barreto-Naehrig (BN) curves [Ver10].

Chapter 7 In this chapter, we present our results from [BG15] where we introduced
a new weak curve attack on ECC. We show that in the instruction skip model,
it is possible to mount a FA such that compressed points are decompressed to a
singular curve. Singular curves are weak and this allows us to solve the DLOG
on the singular curve. Our attack has applications in point decompression,
hashing to elliptic curves, and random point sampling. Furthermore, it can
be mounted on real schemes. Most vulnerable are a class of pairing-based
signature schemes that hash strings to elliptic curves like, for example, the
Boneh-Lynn-Shacham (BLS) short signature scheme.

Chapter 8 In this chapter, we give detailed background information on the practical
realization of some of our attacks from Chapter 6 and Chapter 7. We describe a
setup to implement instruction skips by means of clock glitching. Furthermore,
we describe a strategy to identify parameters of the attacks like, e.g., timings
of the clock glitches. We also identify suitable target instructions in the
assembly of the target implementation to realize our concrete attacks. Finally,
we give information on the results of our experiments. Our positive results
show that instruction skips are a realistic threat.

Chapter 9 In this chapter, we conclude and address open questions for future work.
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Chapter 2.

Mathematical background

In this chapter, we introduce our notation and the required mathematical back-
ground. As part of this, we collect material on PBC that is scattered over different
sources like, e.g., [Sil09; BSS05; Gal12; JN09]. In Section 2.1 we introduce our
notation and start with some basic definitions mainly based on [Sil09]. In Section 2.2
we give background information on elliptic curves with focus on applications in
PBC. Finally, in Section 2.3, we define cryptographic pairings.

2.1. Basic definitions and notation

In this section, we give some basic definitions and fix our notation. With respect to
the basic notation we mostly adhere to [Lan02] and only introduce notation when
it deviates from [Lan02]. In the glossary on page 151 we give an overview of the
notation.

2.1.1. Sets and integers

Let S be a set. With #S we denote the cardinality of S. If S is ordered we write
[a, b] for the closed interval from a to b.

For x, n ∈ N with x < 2n we denote the zero-padded n-bit binary representation
of x with dxen2 ∈ {0, 1}n. For a, b ∈ {0, 1}∗, we write a.b for the concatenation
of a and b. For n1, . . . , nk ∈ N we write gcd(n1, . . . , nk) for the greatest common
divisor of n1, . . . , nk. For n,m ∈ N, we write n|m if n divides m, n - m if n does
not divide m, and n ‖ m if n|m but n2 - m.

Definition 2.1. Let q ∈ N, a ∈ Z, and α0, . . . , αn−1 ∈ [−b(q − 1)/2c , d(q − 1)/2e]
such that a =

∑n−1
i=0 αiq

i. Then we define the weight of a in base q as wq(a) =∑n−1
i=0 |αi|.

We call an element a ∈ Z light or heavy with respect to q if wq(a) is small or
large, respectively. The Hamming weight of a is defined as HW(a) = w2(a).

2.1.2. Rings and fields

We use blackboard bold letters K and L for arbitrary fields and Fq for the field
with q elements. With K we denote the algebraic closure of a field K, and with K+
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Chapter 2. Mathematical background

and K∗ we denote the additive and the multiplicative subgroup of K. For a rational
function f = g/h ∈ K(x1, . . . , xn) with polynomials g, h ∈ K[x1, . . . , xn] we define
the degree of f as deg(f) = max{deg(g),deg(h)}, and with mon(f) we denote the
monomials that occur in f . We write µn ⊆ K for the n-th roots of unity in K, i.e.,
the roots of xn − 1. With Φn(x) we denote the n-th cyclotomic polynomial.

With σq we denote the Frobenius automorphism over Fq. For f ∈ Fq[x1, . . . , xn]
we write f q(x1, . . . , xn) for the reduction of f modulo σq, i.e., for the polynomial
where σq is applied to each coefficient of f(x1, . . . , xn).

The extension Fqk/Fq is a Fq vector space of dimension k and we assume that,
for a given basis, elements in Fqk/Fq are represented as coefficient vectors over Fq.
Let q = pk for a prime p and a ∈ Fq with representation (a0, . . . , ak−1) ∈ Fkp. Let
b be the LSB of a0. Then we define (−1)b as the sign of a. For p = 2, we write√
a ∈ Fq for the unique square root of a. For p > 2, we write

√
a ∈ Fq2 for the

positive square root of a. For any i ∈ N we also write ap−i to denote the unique
element b in Fq with bpi = a.

2.1.3. Algebraic sets

We write An(K) = Kn for the n-dimensional affine space over K, and with Pn(K)
we denote the associated projective space. We abbreviate An(K) with An and
Pn(K) with Pn. Usually, we use capital letters for elements in An and Pn and call
them points. For a finite field Fq we define the q-th power Frobenius map as

πq : An(Fq) → An(Fq)
(a1, . . . , an) 7→ (aq1, . . . , a

q
n).

(2.1)

For P ∈ A2 we write x(P ) and y(P ) for the x-coordinate and the y-coordinate
of P , respectively. Furthermore, with (X : Y : Z) ∈ P2 we denote the equivalence
class that is associated with (X/Z, Y/Z) ∈ A2.
Let F ⊆ K[x1, . . . , xn]. The affine algebraic set of F is defined as

V (F) = {P ∈ An | f(P ) = 0 for all f ∈ F}.

Similarly, we define the projective algebraic set V (F) ⊆ Pn for a set of homogeneous
polynomials F . We also abbreviate V ({f1, . . . , fm}) with V (f1, . . . , fm). Let L ⊆ K
and F ⊆ K[x1, . . . , xn] with X = V (F). We define the L-rational points of X as
X(L) = X ∩ An(L). For an irreducible algebraic set X defined over K, we write
K(X) for the function field of X.
Now we introduce the Weil restriction of scalars, a formalization of writing a

polynomial equation over Fqk in n variables as a system of polynomial equations
over Fq in kn variables. We use Weil restriction of scalars in our analysis of FAs
on pairings in Chapter 5 and Chapter 6. The following definition is based on
Definition 5.7.3 of [Gal12]:
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Definition 2.2. Let {θ1, . . . , θk} be a basis for Fqk as a Fq vector space. Let
x1, . . . , xn be coordinates for An and x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k be coordinates
for Akn. For i ∈ [1, n] define φi : Ak → A1 by φi(xi,1, . . . , xi,k) =

∑k
j=0 xi,jθj and

φ : Akn → An

(x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k) 7→ (φ1(x1,1, . . . , x1,k), . . . , φn(xn,1, . . . , xn,k)).

Let S ⊆ Fqk [x1, . . . , xn] and let X = V (S) ⊆ An be an affine algebraic set over Fqk .
For each polynomial f(x1, . . . , xn) ∈ S write φ∗(f) = f ◦ φ as

f1θ1 + f2θ2 + · · ·+ fkθk

with f1, . . . , fk ∈ Fq[x1,1, . . . , xn,k]. Define S′ ⊆ Fq[x1,1, . . . , xn,k] to be the set of
all such polynomials over all f ∈ S. The Weil restriction of scalars of X with
respect to Fqk/Fq is the affine algebraic set Y ⊆ Akn defined by Y = V (S′).

The Weil restriction of scalars preserves Fqk rational solutions of S from Defini-
tion 2.2. The following theorem is a corollary of Theorem 5.7.7 from [Gal12].

Theorem 2.3. Let X ⊆ An be an affine algebraic set over Fqk . Let Y ⊆ Akn be
the Weil restriction of X. Then φ from Definition 2.2 is a bijection between Y (Fq)
and X(Fqk).

2.2. Elliptic curves

In this section, we give some background information on elliptic curves with focus
on applications in cryptography and, especially, pairings. In Section 2.2.1 we define
elliptic curves. In Section 2.2.2 we define the group law for elliptic curves. In
Section 2.2.3 we give background information on the structure of singular curves
that we exploit in our attacks from Chapter 7. In Section 2.2.4, we define twists
because they have important applications in PBC. In Section 2.2.5 we provide the
necessary background information on the structure of torsion subgroups of elliptic
curves that is useful to understand implementations of PBC.

2.2.1. Weierstrass equations

To simplify matters, we restrict to fields K of characteristic not equal to 2 or 3 from
now on. For the general case, we refer to [Sil09]. For a4, a6 ∈ K a homogeneous
equation of the form

Y 2Z = X3 + a4XZ
2 + a6Z

3 (2.2)

is called short Weierstrass equation defined over K.
Based on Section III.1 of [Sil09] we define:

15



Chapter 2. Mathematical background

Definition 2.4. For a short Weierstrass equation of the form (2.2) define the
discriminant ∆ = −16(4a34 + 27a26). A singular Weierstrass equation is a
Weierstrass equation with ∆ = 0. A Weierstrass equation with ∆ 6= 0 is called
smooth. The j-invariant of a smooth Weierstrass equation is defined as j =
−1728(4a4)

3/∆.

For smooth Weierstrass equations, we define:

Definition 2.5. An elliptic curve is the projective algebraic set E ⊆ P2 of a
smooth Weierstrass equation of the form (2.2). We write E/K to denote that the
Weierstrass equation of E is defined over K.

Let E be an elliptic curve defined by a Weierstrass equation (2.2). With O :=
(0 : 1 : 0) we denote the point at infinity of E. If we de-homogenize (2.2) with
respect to Z we obtain

y2 = x3 + a4x+ a6. (2.3)

Hence, we can consider E as the affine algebraic set defined by (2.3) together with
the additional point O. To ease notation we use the affine representation (2.3) of
E whenever possible.
For finite fields, we can bound the number of Fq-rational points of a curve (cf.

Chapter V, Theorem 1.1 of [Sil09]):

Theorem 2.6 (Hasse). Let E/Fq be an elliptic curve. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Now, we define a quantity that is often used to characterize elliptic curves over
finite fields (cf. Chapter V, Remark 2.6 of [Sil09]):

Definition 2.7. Let E/Fq be an elliptic curve with

#E(Fq) = q + 1− t

for t ∈ Z. We call t the trace of Frobenius of E(Fq).

Based on the trace of Frobenius we distinguish two types of elliptic curves
according to the following definition (cf. Definition 9.11.3 of [Gal12]):

Definition 2.8. Let E/Fq be an elliptic curve with #E(Fq) = q + 1− t. Then E
is called ordinary if gcd(q, t) = 1 and supersingular if gcd(q, t) > 1.

Because the DLOG problem is sub-exponential on supersingular curves [MOV93],
they are avoided in standard ECC. But in PBC they are frequently used (see also
Definition 3.1, and Theorem 3.4 in Chapter 3).
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2.2.2. Group law

The following operation turns an elliptic curve E into an abelian group with neutral
element O (cf. Section III.2 of [Sil09]):

Definition 2.9. Let E be an elliptic curve given by a Weierstrass equation (2.3).
Let P1, P2 ∈ E with O 6∈ {P1, P2}, P1 = (x1, y1) and P2 = (x2, y2).

1. Define −P1 = (x1,−y1).

2. Define P1 +O = O + P1 = P1.

3. If P1 = −P2 define P1 + P2 = O.

4. If P1 6= −P2

a) If P1 = P2 set

λP1,P1 =
3x21 + a4

2y1
. (2.4)

b) If P1 6= P2 set

λP1,P2 =
y2 − y1
x2 − x1

.

Set x3 = λ2P1,P2
− x1 − x2, and y3 = λP1,P2(x1 − x3) − y1. Then define

P1 + P2 = (x3, y3).

Let n ∈ Z. With [n] : E → E, we denote the multiplication-by-n map that maps
a point P ∈ E to nP = P + · · ·+ P , n times. We call the computation of nP also
elliptic curve scalar multiplication (ECSM).

Remark 2.10. An implementation of ECSM that implements the group operation
like in Definition 2.9 does not use the parameter a6 of (2.3). We exploit this fact
in our attack of Chapter 7.

2.2.3. Singular curves

Singular cubic curves, i.e., curves with a singular Weierstrass equation (cf. Defini-
tion 2.4) play the central role of our attack in Chapter 7. A singular curve contains
singular points where the partial derivatives of (2.3) vanish simultaneously. For a
curve E given by a Weierstrass equation, we denote the set of non-singular points
with Ens. Note that by definition, Ens = E for elliptic curves.

In Definition 2.9 we introduced a group law for the points on an elliptic curve.
The non-singular points Ens of a singular curve define also an abelian group under
this operation. The following theorem describes the structure of this group. It
summarizes Theorem 2.29 and Theorem 2.30 of [Was03] and adapts Theorem 2.30
of [Was03] to curves in short Weierstrass form (see also Section III.2, Proposition 2.5
of [Sil09]).
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Chapter 2. Mathematical background

Theorem 2.11. Let E/Fq be a singular curve defined by a short Weierstrass
equation (2.3).

1. If a4 = a6 = 0, then E has a singular point at S = (0, 0) and the map
φ+ : Ens(Fq)→ F+

q defined by

O 7→ 0 and (x, y) 7→ x

y

is an isomorphism of groups.

2. If a4 6= 0 define xS = −3a6/(2a4). Then E has a singular point at S = (xS , 0).
Furthermore, with α =

√
3xS define the map φ∗ : Ens(Fq)→ F∗q(α) by

O 7→ 1 and (x, y) 7→ y − α(x− xS)

y + α(x− xS)
.

a) If α ∈ Fq, then φ∗ is an isomorphism of the groups Ens(Fq) and F∗q.
b) If α 6∈ Fq, then φ∗ is an isomorphism of Ens(Fq) and {u+ αv | u, v ∈

Fq, u2 − 3xSv
2 = 1} viewed as a multiplicative group.

Proof. For case 1 note that the partial derivatives 3x2 and 2y of x3 − y2 vanish
simultaneously at S = (0, 0) and hence S is singular by definition. According to
Theorem 2.29 of [Was03] the map φ+ is an isomorphism of groups.

For case 2a and case 2b we see that the partial derivatives 2y and 3x2 + a4 of
(2.3) vanish at S = (xS , 0) and hence S is singular. Now we translate (2.3) such
that the singular point is at (0, 0). By expanding y2 = (x+ xS)3 + a4(x+ xS) + a6
and applying the identity 4a34 + 27a26 = 0 from the discriminant of singular curves
we obtain y2 = x3 + 3xSx

2. Then, it follows from Theorem 2.30 of [Was03] that φ∗

is an isomorphism of groups.

2.2.4. Twists

Twists play an important role for the efficient implementation of PBC and hence,
they also need to be considered for implementation attacks. Furthermore, twists also
have destructive applications in FAs on ECSM. Therefore, we give some background
here. For more details about twists, we refer to [HSV06].

The following theorem shows when two elliptic curves are isomorphic in a proper
extension field:

Theorem 2.12 (Chapter III, Proposition 1.4 (b) of [Sil09]). Let E/K and E′/K
be two elliptic curves given by a Weierstrass equation (2.3). Then E and E′ are
isomorphic over K if and only if they have the same j-invariant (cf. Definition 2.4).

For elliptic curves over finite fields Fq, we give a more precise definition that
includes the extension Fqd/Fq where two curves with the same j-invariant become
isomorphic:
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Definition 2.13 (Definition II.7 of [Ver09]). Let E/Fq and E′/Fq be two elliptic
curves, then E′ is called a degree d twist of E, if there exists an isomorphism
ψ : E′ → E defined over Fqd and d is minimal.

There is only a limited number of twists for a given curve:

Theorem 2.14 (Proposition 6 of [HSV06]). Let E/Fq be an elliptic curve with
j-invariant j and let p ≥ 5 be the characteristic of Fq. Then the set of twists of
E is canonically isomorphic with F∗q/(F∗q)d where d = 2 if j 6∈ {0, 1728}, d = 4 if
j = 1728, and d = 6 if j = 0.

Note that the possible degrees of the twists correspond to the orders of elements
in F∗q/(F∗q)d and hence they divide d. We see that for fields of large characteristic,
only special curves with j ∈ {0, 1728} have twists of degree d > 2.
For an explicit list of the twist of a curve, including the corresponding isomor-

phism, we refer to Section 1.4 of [Ver09] or to Section IV.A of [HSV06].

2.2.5. Torsion points

Let E be an elliptic curve defined over a field K. The n-torsion points of E are
defined as

E[n] = ker([n]) = {P ∈ E | nP = O}.

Furthermore, define E(K)[n] = E[n]∩E(K). Torsion subgroups of an elliptic curve
are important in the context of PBC because they define the domain of pairings.
Therefore, we give some background information on torsion points and their efficient
representation. We will see that twists play an important role in this context. From
now on, to emphasize that an integer is prime we denote it with r, while we use n
for general integers.

The following theorem describes the structure of E[n] in the case of curves over
finite fields (cf. Chapter III, Corollary 6.4 (b) of [Sil09]):

Theorem 2.15. Let E/Fq be an elliptic curve an let n ∈ Z with gcd(q, n) = 1.
Then

E[n] ' Z/nZ× Z/nZ.

Hence, for a prime r, E[r] is a 2-dimensional Z/rZ vector space.
We now show which extension Fqk/Fq we need to consider such that E[n] is

contained in E(Fqk). Therefore, we define:

Definition 2.16. For Fq and n ∈ N define the embedding degree of Fq (re-
spectively q) and n to be the smallest positive integer k = k(q, n) ∈ N such that
n|qk − 1.

Hence, the embedding degree k(q, n) defines the smallest extension field Fqk of
Fq such that the n-th roots of unity µn are contained in Fqk . The following theorem
shows that for primes r, the embedding degree also defines the extension field that
we have to consider to obtain E[r]:
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Theorem 2.17 (Theorem 1 of [BK98]). Let E/Fq be an elliptic curve and let r be
a prime with r|#E(Fq) and r - q − 1. Then E[r] ⊆ E(Fqk) if and only if r|qk − 1.

On E, the Frobenius map πq from (2.1) is an endomorphism of groups called the
Frobenius endomorphism. Theorem 2.15 shows that E[n] is the direct sum of two
cyclic subgroups of order n. Based on πq, we define two subgroups that provide
efficient representations of E[n]:

Definition 2.18. Let E/Fq be an elliptic curve and n ∈ N with gcd(n, q) = 1. We
define:

G1(E,n, q) = E[n] ∩ ker(πq − [1]) = E(Fq)[n]

G2(E,n, q) = E[n] ∩ ker(πq − [q]).

Usually, we write G1 = G1(E,n, q) and G2 = G2(E,n, q) if the definitions of
E, n, and q are clear from the context. From Theorem 2.15 we see that we can
represent E[n] with G1 and G2 as long as G1 6= G2. A sufficient condition is given
as follows:

Theorem 2.19. Let E/Fq be an elliptic curve, r a prime with gcd(r, q) = 1 and
r|#E(Fq). Furthermore, let k > 1 be the embedding degree of q and r. For G1 and
G2 from Definition 2.18 it holds that

E[r] = G1 ⊕G2.

Proof. See Lemma 1.60 of [Nae09].

Because πq is an endomorphism of groups and because E[r] ' (Z/rZ)2 we
denote G1 and G2 also as the 1-eigenspace and the q-eigenspace of the Frobenius
endomorphism. Now we show that for ordinary curves (cf. Definition 2.8), G2 can
efficiently be represented based on twists. We first need the following theorem:

Theorem 2.20 (Theorem II.10 of [Ver09]). Let E/Fq be an ordinary elliptic curve
admitting a twist of degree d. Assume that a prime r > 6 satisfies r ‖ #E(Fq)
and r2 ‖ #E(Fqd). Then there exists a unique twist E′ of degree d such that
r ‖ #E′(Fq).

This provides a different representation of G2 (cf. Section V of [HSV06]):

Theorem 2.21. Let E/Fq and r be as in Theorem 2.20 and G2 ⊆ E[r] be as in
Definition 2.18. Let E′ be the unique twist from Theorem 2.20 with isomorphism
ψ : E′ → E. Then G2 = ψ(E′(Fq)[r]).

Remark 2.22. Now let E/Fq be an elliptic curve with a twist E′ of degree d.
Furthermore let r > 6 be a prime with r ‖ #E(Fq) and let k be the embedding
degree of q and r such that d|k. Based on Theorem 2.20 and Theorem 2.21 we
obtain the representation G2 = ψ(E′(Fqk/d)[r]). We see that with a twist of degree
d, we can reduce the size of the representation of G2 ⊆ E(Fqk) by a factor of d.
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2.3. Pairings

In cryptography, a pairing is a non-degenerate, bilinear map e : G1 ×G2 → GT with
groups G1,G2, and GT . We are only interested in pairings that are defined based on
elliptic curves E/K with G1,G2 ⊂ E and GT ⊂ K∗. To define pairings, we introduce
the concept of divisors in Section 2.3.1. Then, in Section 2.3.2, we define the Tate
pairing with the help of divisors. Because pairings are interesting for application
in cryptography, a lot of research was done to find pairings that can be computed
more efficiently. Examples are the Ate pairing [HSV06], R-Ate pairing [LLP09],
Eta pairing [Bar+07], and optimal pairings [Ver10]. We present two examples, the
reduced Tate pairing and the reduced Ate pairing in Section 2.3.3.

2.3.1. Divisors on elliptic curves

In this section, we introduce a useful tool to describe functions on elliptic curves.

Definition 2.23. Let E be an elliptic curve. A divisor on E is a finite formal
sum

D =
∑
P∈E

nP [P ] (2.5)

with nP ∈ Z. Furthermore

1. The support of D is defined as

supp(D) = {P ∈ E | nP 6= 0}.

2. The degree of D is defined as

deg(D) =
∑
P∈E

nP .

3. The sum of D is defined as

sum(D) =
∑
P∈E

nPP.

To define the divisor of a function on an elliptic curve, we need the definition
of the order ordP (f) ∈ Z of a function f ∈ K(E) at a point P ∈ E. The exact
definition requires additional background and therefore, we refer to Section II.1 of
[Sil09]. We say that f has a zero of order n at P if n = ordP (f) > 0 and we say
that f has a pole of order n at P if n = ordP (f) < 0.
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Definition 2.24. For an elliptic curve E/K and a function f ∈ K(E)∗ define the
divisor of f as

div(f) =
∑
P∈E

ordP (f)(P ).

A divisor D on E/K is called a principal divisor if it is the divisor of a function
f ∈ K(E)∗. Two divisors D1 and D2 on E are equivalent, written as D1 ∼ D2, if
D1 −D2 is a principal divisor. We now give a distinguishing property of principal
divisors:

Theorem 2.25 (Corollary 3.5 of [Sil09]). Let E/K be an elliptic curve an D be
a divisor on E. Then D is a principal divisor if and only if deg(D) = 0 and
sum(D) = O.

The following theorem shows that principal divisors define functions up to
constant multiples:

Theorem 2.26 (Corollary 7.7.13 of [Gal12]). Let E/K be an elliptic curve and
f, g ∈ K(E)∗. Then div(f) = div(g) if and only if f = cg for some c ∈ K∗.

Together with the following theorem this shows that divisors are a useful tool to
describe functions on elliptic curves:

Theorem 2.27 (Lemma 7.7.4 of [Gal12]). Let E/K be an elliptic curve and let
f, g ∈ K(E)∗. Then

1. div(fg) = div(f) + div(g)

2. div(1/f) = −div(f)

3. div(fn) = n div(f) for n ∈ Z.

Now we define what it means to evaluate a function at a divisor:

Definition 2.28. Let E/K be an elliptic curve and D a divisor on E as in (2.5)
of Definition 2.23. Furthermore, let f ∈ K(E)∗ with supp(div(f)) ∩ supp(D) = ∅.
Then define

f(D) =
∏
P∈E

f(P )nP .

2.3.2. The Tate pairing

Now we are able to define the Tate pairing with the help of divisors:

Definition 2.29 (Definition II.15 of [Ver09]). Let E/Fq be an elliptic curve and
n ∈ N with n|#E(Fq) and gcd(n, q) = 1. Let k be the embedding degree of q and n.
Then the Tate pairing is the map

tn : E(Fq)[n]× E(Fq)/nE(Fqk)→ F∗qk/(F
∗
qk)n

(P,Q) 7→ fn,P (DQ),
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where fn,P ∈ Fq(E) with div(fn,P ) = n [P ]− n [O] and DQ ∼ [Q]− [O] such that
supp(DQ) ∩ {O, P} = ∅.

The Tate pairing is well-defined (cf. Lemma 26.3.2 of [Gal12]), and the following
properties make the Tate pairing interesting for cryptographic applications:

Theorem 2.30 (Theorem II.16 of [Ver09]). The Tate pairing from Definition 2.29
satisfies the following properties:

1. Bilinearity: For P1, P2 ∈ E(Fqk)[n] and Q1, Q2 ∈ E(Fqk)/nE(Fqk) it holds
that

tn(P1 + P2, Q1) = tn(P1, Q1) tn(P2, Q1) and
tn(P1, Q1 +Q2) = tn(P1, Q1) tn(P1, Q2).

2. Non-degeneracy:

a) For all P ∈ E(Fqk)[n] with P 6= O there exists a Q ∈ E(Fqk) such that
tn(P,Q) 6∈ (F∗q)n.

b) For all Q ∈ E(Fqk) with Q 6∈ nE(Fqk) there exists a P ∈ E(Fqk)[n] such
that tn(P,Q) 6∈ (F∗q)n.

The Tate pairing is defined based on a function with divisor satisfying n [P ]−n [O].
Now we define a family of functions that we use in Section 3.2.2 to iteratively
construct a function with this divisor:

Definition 2.31. Let E/K and P ∈ E. With n ∈ Z we define theMiller function
miln,P ∈ K(E) for n and P to be the unique normalized function with divisor

div(miln,P ) = n [P ]− [nP ]− (n− 1) [O] .

The existence of such a function follows from Theorem 2.25. For the definition
of a normalized function we refer to Definition 4 of [Mil04].

Lemma 2.32. Let E be an elliptic curve and P ∈ E[n]. Then div(miln,P ) =
n [P ]− n [O].

Proof. Because P ∈ E[n] it holds that nP = O. Then, the statement follows
directly from the definition of miln,P .

2.3.3. Reduced pairings

We see in Definition 2.29 that the Tate pairing maps to cosets of (F∗
qk

)n and not to
unique representations in F∗

qk
. For the reduced Tate pairing, the result of the Tate

pairing is exponentiated with (qk − 1)/n. This maps elements in (F∗
qk

)n to 1 and
we obtain unique representations in the n-th roots of unity µn ⊆ F∗

qk
.
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Reduced Tate pairing

We define a version of the reduced Tate pairing that is typically used in cryptographic
implementations:

Definition 2.33. Let E/Fq be an elliptic curve and r > 4 be a prime with r|#E(Fq)
and gcd(r, q) = 1. Furthermore, let k > 1 be the embedding degree of q and r. Then
we define the reduced Tate pairing as

t̂r : E(Fq)[r]× E(Fqk)[r]→ µr

(P,Q) 7→

{
1 if Q ∈ E(Fq)
milr,P (Q)(q

k−1)/r else.

Note that compared to Definition 2.29, we restrict to primes r and a Fq-rational
first argument P ∈ E(Fq). Furthermore, we use the normalized instantiation milr,P
for a function with divisor r [P ]− r [O]. Finally, the domain of the second argument
of the reduced pairing is E(Fqk)[r] instead of E(Fq)/rE(Fqk) and milr,P is evaluated
at the point Q and not at the divisor DQ.

Theorem 2.34. The reduced Tate pairing t̂r from Definition 2.33 defines a non-
degenerate, bilinear pairing if r3 - #E(Fqk).

We prove the theorem in a sequence of lemmas that are of independent interest.
The first lemma shows that we can use E[r] to represent E(Fqk)/rE(Fqk) (cf.
Exercise 26.3.10 of [Gal12]):

Lemma 2.35. Let E/Fq be an elliptic curve, and r be a prime with gcd(r, q) = 1
and r|#E(Fq). Furthermore, let k > 1 be the embedding degree of q and r. If
r3 - #E(Fqk) it holds that E[r] is a set of representatives for E(Fqk)/rE(Fqk).

Proof. We first show that E(Fqk) contains no points of order r2. Because k > 1
it follows from Theorem 2.17 that E[r] ⊆ E(Fqk). With gcd(r, q) = 1 and E[r] ⊆
E(Fqk) it follows from Theorem 2.15 that E(Fqk) has a subgroup isomorphic to
Z/rZ⊕ Z/rZ. If we assume that E(Fqk) has a point of order r2, then E(Fqk) has
a subgroup isomorphic to Z/r2Z⊕Z/rZ of size r3. This is a contradiction because
r3 - #E(Fqk).
Now we show that every coset of rE(Fqk) contains exactly one element of

E[r]. Because E[r] ⊆ E(Fqk) it holds that E(Fqk)/rE(Fqk) and E[r] are of the
same size. Hence, it remains to show that the canonical projection from E[r] to
E(Fqk)/rE(Fqk) is injective, or equivalently, that it has trivial kernel. Assume
there exists a P ∈ E[r] ∩ rE(Fqk) with P 6= O. Then there exists a Q ∈ E(Fqk)
with rQ = P . Hence, ord(Q) - r but ord(Q)|r2. Because E(Fqk) does not contain
points of order r2 and because r is prime this is a contradiction.

The following lemma shows that we can set t̂(P,Q) = 1 for the case where both
arguments P and Q are elements of E(Fq)[r]:
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Lemma 2.36. Let E/Fq be an elliptic curve and let r be a prime. Let k > 1 be
the embedding degree of q and r, and P,Q ∈ E(Fq)[r]. Then tr(P,Q) ∈ (F∗

qk
)r.

Proof. This is a corollary of [BSS05, Lemma IX.8].

The next lemma shows that we can replace the divisor DQ in Definition 2.29 by
the point Q if we restrict the first argument to E(Fq)[r]:

Lemma 2.37. Let E/Fq be an elliptic curve, r > 4 be a prime with gcd(q, r) = 1
and embedding degree k > 1, P ∈ E(Fq)[r], and Q ∈ E(Fqk)\E(Fq). Then

tr(P,Q)/milr,P (Q) ∈ (F∗qk)r.

Proof. This follows from Lemma 26.3.11 of [Gal12].

Hence, in the setting of this lemma, we can compute the reduced Tate pairing
with only one application of the Miller function milr,P . In summary, Theorem 2.34
follows from Theorem 2.30, Lemma 2.35, Lemma 2.36, and Lemma 2.37.

Reduced Ate pairing

We finally define the reduced Ate pairing that is often more efficient than the
reduced Tate pairing and therefore used in many practical implementations.

Definition 2.38. Let E/Fq be an elliptic curve and r be a prime with r|#E(Fq)
and gcd(q, r) = 1. Furthermore, let k > 1 be the embedding degree of q and r.
Define λ = q mod r. Let G1 and G2 be as in Definition 2.18. Then the (reduced)
Ate pairing is defined as

ateλ : G2 ×G1 → µr

(P,Q) 7→

{
1 if Q = O
milλ,P (Q)(q

k−1)/r else.

Note that compared to the reduced Tate pairing, the Miller function milr,P is
parameterized with an element P ∈ G2 while it is evaluated at an element Q ∈ G1.
Let t be the trace of Frobenius of E(Fq). From Definition 2.7, we see that

t− 1 = q mod r. Hence, λ = t− 1 provides a possible parametrization of the Ate
pairing. For other choices, we refer to [Ver10]. From |t| ≤ 2

√
q (see Theorem 2.6

and Definition 2.7) and r ≈ q it follows that the bit length of t is approximately
half the bit length of r. We will see from Algorithm 3.4 for computing milr,P (Q) or
milλ,P (Q) that this makes implementations of the reduced Ate pairing potentially
more efficient than implementations of the reduced Tate pairing. The following
theorem shows when the Ate pairing has the desired properties:

Theorem 2.39 (Theorem II.22 of [Ver09]). Let r, k, and λ be defined as in
Definition 2.38. Define c = (λk − 1)/r. Then ateλ defines a non-degenerate,
bilinear pairing if and only if gcd(c, r) = 1.
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The proof in [Ver09] actually shows that ateλ(P,Q) = t̂(Q,P )τ for a constant
τ ∈ Z. Hence, the Ate pairing can be considered as a special case of the reduced
Tate pairing with arguments restricted to G1 and G2.
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Chapter 3.

Pairing-based cryptography

In this chapter, we give background information on implementations of PBC. In
Section 3.1 we start with some definitions related to the groups that act as domain
an codomain of pairings. Furthermore, we present concrete instantiations of such
pairing groups. In Section 3.2 we provide algorithms that are frequently used in
ECC and PBC. We later refer to these algorithms in order to explain our attacks. To
motivate our attacks, we present examples for pairing-based schemes in Section 3.3.

3.1. Pairing groups

From Section 2.3, we know that a pairing is defined based on three groups G1, G2,
and GT where G1 and G2 are subgroups of an elliptic curve and GT is a subgroup
of the multiplicative group of a finite field. We start with some useful definitions
related to these pairing groups.

3.1.1. Definitions

The literature on PBC typically distinguishes between four different types of pairing
groups. The types are defined in various ways (cf. [GPS08; CCS07; CHM10; CM11]).
We give a definition that is based on Section A.10.2 of [IEE13]:

Definition 3.1. For E/Fq let r be a prime dividing #E(Fq) and let k be the
embedding degree of q and r. Furthermore, based on G1(E, r, q) and G2(E, r, q)
from Definition 2.18 we define the following four types of pairing groups (G1,G2,GT ):

1. Type 1: E supersingular (cf. Definition 2.8) and G1 = G2 = G1.

2. Type 2: G1 = G1 and G2 = 〈Q〉 for Q ∈ E[n]\(G1 ∪G2).

3. Type 3: G1 = G1 and G2 = G2 or G1 = G2 and G2 = G1.

4. Type 4: G1 = G1 and G2 = E[r].

From an implementation perspective, Type 3 groups are most important: For
example, the Ate pairing from Definition 2.38 is explicitly defined on Type 3 groups.
Furthermore, based on Theorem 2.19 and Theorem 2.21, with Type 3 groups we
obtain an efficient representation of the torsion points E[r] that also results in more
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efficient pairing computations (see [BLS04a; CM11]). Finally, we can transfer the
computation of the Tate and the Ate pairing on Type 2 and Type 4 groups to the
computation on Type 3 groups (see [KP06; CM11]).

In practice, an elliptic curve based (sub-)group is instantiated based on so-called
domain parameters (cf. [ANS99] and [Ant+03]):

Definition 3.2. ECC domain parameters are a tuple D = (Fq, E,R, r, c) with

1. A finite field Fq defined by a proper description.

2. An elliptic curve E defined by two field elements a4, a6 ∈ Fq and the corre-
sponding Weierstrass equation (2.3).

3. A point R ∈ E(Fq) of prime order r defined by two field elements xR, yR ∈ Fq
as R = (xR, yR)

4. The order r of R.

5. The cofactor c of r defined as #E(Fq) = cr.

Now, we can instantiate a tuple of pairing groups (G1,G2,GT ) based on ECC
domain parameters D1 = (Fq, E1, R1, r, c1) and D2 = (Fq, E2, R2, r, c2) with G1 ⊆
E1(Fq)[r], G2 ⊆ E2(Fq)[r], and GT ⊆ F∗q . The case E1 6= E2 occurs for Type 3
groups when we represent G2 = G2 based on Theorem 2.21 such that E2 is a twist
of E1.

Because we present an invalid point attack in Chapter 7 we define what it means
for a point to be valid with respect to given domain parameters:

Definition 3.3. A point Q = (xQ, yQ) is valid with respect to domain parameters
D = (Fq, E,R, r, c) if Q ∈ 〈R〉 and if Q is of order r.

3.1.2. Efficient representation of twists

We know from Theorem 2.21 that we can represent G2 ⊆ E(Fqk) efficiently based
on twists (cf. Definition 2.13) with an isomorphism ψ : E′ → E that induces
the isomorphism ψ : E′(Fqk/d)[r] → G2. In this section, we show how the twist
from Theorem 2.21 is typically instantiated because in Chapter 4, we exploit some
properties of this instantiation for an SCA.
For a curve E with a twist E′ of degree d ∈ {2, 4, 6}, Fqk and ψ are typically

defined such that Fqk = Fq[X]/(Xd − a) = Fqk/d(α) for αd = a and

ψ(O) = O and ψ(x, y) = (α2x, α3y). (3.1)

Let y2 = x3 + a4x+ a6 and y2 = x3 + a′4x+ a′6 be the defining equations of E and
E′, respectively. Then it holds that

a4 = α4a′4 a6 = α6a′6. (3.2)
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For more background, we refer to Section V of [HSV06].
Let P ′ ∈ E′(Fqk/d) and P = ψ(P ′) with P = (xP , yP ) and P ′ = (x′P , y

′
P ). If we

write xP and yP as vectors with respect to the basis {1, α, · · · , αd−1} of Fqk as a
Fqk/d vector space and with αd = a ∈ Fq we obtain:

d xP yP

2 [ax′P , 0] [0, ay′P ]

4 [0, 0, x′P , 0] [0, 0, 0, y′P ]

6 [0, 0, x′P , 0, 0, 0] [0, 0, 0, y′P , 0, 0].

(3.3)

On the one hand, this sparse representation of elements in G2 results in efficient
implementations of pairings [Beu+10]. On the other hand, we present an SCA in
Chapter 4 that exploits exactly this sparseness.

3.1.3. Concrete instantiations of pairing groups

In this section, we provide exemplary instantiations of pairing groups. Therefore,
we define two families of elliptic curves. One family is an example for a family of
supersingular curves and the other family is an example for a family of ordinary
curves (cf. Definition 2.8).
For the following theorem see Section 1.3.1 of [Ver09]:

Theorem 3.4. Let q and r be primes with q > 3 and q = −1 mod r. Then there
exists a supersingular elliptic curve E defined over Fq with #E(Fq) = q + 1 = cr.
The embedding degree (cf. Definition 2.16) of q and r is k = 2, and the curve can
be given by the equation

1. E : y2 = x3 + a6 with a6 ∈ F∗q if q = 2 mod 3,

2. E : y2 = x3 + a4x with a4 ∈ F∗q if q = 3 mod 4.

This family of supersingular curves is the standard choice to instantiate Type 1
pairings (cf. Definition 3.1). The following theorem shows that this family of curves
attains the largest possible embedding degree for supersingular curves over large
prime characteristic fields:

Theorem 3.5. Let E/Fq be a supersingular elliptic curve and q > 3. Furthermore,
let n|#E(Fq). Then the embedding degree k of q and n fulfills k ≤ 2.

Proof. See Theorem IX.20 of [BSS05].

To balance the conjectured exponential complexity of the DLOG problem in
E(Fq) and the sub-exponential complexity of the DLOG problem in F∗

qk
, larger

embedding degrees are required [FST10]. For the 128 bit security level, k = 12 is
recommended [FST10]. This motivates the following family of ordinary curves:

29



Chapter 3. Pairing-based cryptography

Theorem 3.6 (Theorem 2.2 of [Nae09]). Let u ∈ Z be an integer such that

q = q(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 and

r = r(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are prime numbers. Then there exists an ordinary elliptic curve E defined over Fq
with #E(Fq) = r. The embedding degree of q and r is k = 12, and the curve can be
given by the equation

E : y2 = x3 + a6 with a6 ∈ Fq.

The trace of Frobenius (cf. Definition 2.7) over Fq is given by t = t(u) = 6u2 + 1.

The curves of Theorem 3.6 are also called BN curves because they were first
described by Barreto and Naehrig in [BN06].

Corollary 3.7. Let E be a BN curve from Theorem 3.6. Then E has j-invariant
j = 0, and admits a twist of degree d = 6.

Proof. That j = 0 follows from Definition 2.4 together with the Weierstrass equation
of E. Then, with Theorem 2.14 and q = 1 mod 6, it follows that E admits a twist
of degree d = 6.

Because BN curves admit a twist of degree d = 6 we can represent G2 already
over Fq2 (cf. Remark 2.22). That makes implementations of PBC that are based
on BN curves more efficient. Therefore, on the one hand, BN curves are very
popular in PBC. On the other hand, in Section 4.3, Section 6.3, and Section 7.2
we introduce attacks that exploit properties of curves with j-invariant 0 like BN
curves.

3.2. Algorithms and implementations

In this section, we define algorithms that are used as building blocks for the
implementation of PBC. To simplify notation, we discard the domain parameters
(cf. Definition 3.2) from the argument list of the algorithms.

3.2.1. Point encoding

Several applications in ECC like point decompression, random sampling of points,
and hashing to elliptic curves map to affine points on an elliptic curve. This is
what we call point encoding. For a more formal definition we refer to Section 4.3
of [BF03]. In Chapter 7, we present a fault attack on point encoding. Therefore,
we now give additional background information on algorithms for point encoding.
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Point compression

Let Fq be a field with characteristic p > 3. A point P ∈ E(Fq) with P = (xP , yP )
can be uniquely represented with dlog2(q + 1)e + 1 bits as (xP , b) ∈ Fq × {0, 1}
where (−1)b is the sign of yP as defined in Section 2.1.2. This strategy is called
point compression and the compression function is defined as follows:

Compress : Fq × Fq → Fq × {0, 1}
(x, y) 7→ (x, (1− sign(y))/2) .

(3.4)

We see that point compression halves the representation size of points on elliptic
curves. Therefore, it is part of many elliptic curve-based schemes and related
standards like, e.g., IEEE 1363 [IEE00; IEE13]. The function Compress is injective
on E(Fq) and we denote its inverse, the decompression function, with Decompress.
Now, before a compressed point is used as argument of ECSM or of a pairing, it
can be completely recovered based on Decompress.
The function Decompress can be computed based on the short Weierstrass

equation y2 = x3 + a4x+ a6 of E. Algorithm 3.1 lists an example implementation.

Algorithm 3.1 Algorithm Decompress for decompressing points.
Input: b ∈ {0, 1}, x, a4, a6 ∈ Fq
Output: (x, y) with y2 = x3 + a4x+ a6
1: procedure Decompress(x, b)
2: v ← x2 . v = x2

3: v ← v + a4 . v = x2 + a4
4: v ← v ·x . v = x3 + a4x
5: v ← v + a6 . v = x3 + a4x+ a6
6: if

√
v ∈ Fq then

7: v ←
√
v

8: y ← (−1)bv
9: return (x, y)

10: else
11: return O
12: end if
13: end procedure

Similar implementations are proposed in standards [IEE00; IEE13] and used in
real-world implementations, for example in Open Secure Socket Layer (OpenSSL).
The basic idea of the algorithm is to evaluate the right hand side x3 + a4x+ a6 of
(2.3) for the input (x, b) and then take the square root to find a matching y such
that (x, y) is on E. The bit b selects between the two possible square roots ±y. If
x is not the x-coordinate of a point in E(Fq) and hence, x3 + a4x + a6 is not a
square in Fq, the algorithm returns O.
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Algorithm 3.2 Algorithm SamplePoint for sampling uniformly in E(Fq)[n]\{O}.
Input: E : y2 = x3 + a4x+ a6, n ∈ N with #E(Fq) = cn
Output: P ∈ E(Fq)[n]\{O}
1: procedure SamplePoint
2: repeat
3: Sample (x, b) uniformly at random from Fq × {0, 1}. . sample

compression
4: U ← Decompress(x, b) . decompress to point
5: P ← cU . map to subgroup
6: until P 6= O
7: return P
8: end procedure

Random point sampling

Based on point decompression, we define an algorithm for sampling points uniformly
at random in E(Fq)[n]\{O} that is shown in Algorithm 3.2. A similar implementa-
tion is proposed in IEEE 1363 (cf. Appendix A of [IEE00; IEE13]). The idea of
the algorithm is to sample a compressed representation in Line 3, decompress it to
a point on the curve in Line 4, and map it to the subgroup with correct order in
Line 5. This process is repeated until the compression of a point in E(Fq) has been
sampled and hence, a non-trivial point is returned by Decompress.

Hashing to subgroups of elliptic curves

Some pairing-based protocols require that arbitrary strings are hashed to the
domain G1 or G2 of the pairing. Examples are the IBE scheme from [BF03] or the
short signature scheme from [BLS04b] that we both present in Section 3.3.

We can transform Algorithm 3.2 for random point sampling into an algorithm for
hashing to the subgroup E(Fq)[n] of an elliptic curve. Basically, we replace sampling
from Fq × {0, 1} in Line 3 of Algorithm 3.2 by a hash function to Fq × {0, 1}. The
details of the algorithm are given in Algorithm 3.3 and similar implementations
were proposed, for example, in Section 5.2 of [BF03], in Section 3.3 of [BLS04b], or
in Section 6.3.3 of the IEEE standard 1363.3 for IBE [IEE13].
As building blocks, we use Algorithm 3.1 and a hash function H : {0, 1}∗ →

Fq × {0, 1} that can be built based on any standard cryptographic hash function.
Based on H, in Line 4, the concatenation of the message M with a fixed length t-bit
representation of a counter i is hashed to (xP , b) ∈ Fq × {0, 1}. Then, in Line 5,
the result is decompressed to E(Fq) and mapped to E(Fq)[n] in Line 6. We repeat
this process up to 2t times to increase the chance that we hash the input to the
compression of a point. Note that with Theorem 2.6, approximately every second
element in Fq × {0, 1} is a valid compression. Hence, the probability of failure
heuristically decreases exponentially in 2t.
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Algorithm 3.3 Algorithm HashToCurve for hashing to E(Fq)[n].
Input: M ∈ {0, 1}∗, E : y2 = x3+a4x+a6, hash function H : {0, 1}∗ → Fq×{0, 1},

n ∈ N with #E(Fq) = cn, t ∈ N
Output: P ∈ E(Fq)[n]
1: procedure HashToCurve(M)
2: i← 0
3: repeat
4: (x, b)← H

(
M. diet2

)
. hash to Fq × {0, 1}

5: U ← Decompress(x, b) . decompress to point
6: P ← cU . map to subgroup
7: i← i+ 1
8: until P 6= O or i = 2t

9: return P
10: end procedure

3.2.2. Miller algorithm

In Section 2.3, we introduced cryptographic pairings, or more specifically, the
(reduced) Tate and the (reduced) Ate pairing. For a given curve E, both pairings
are defined based on the so-called Miller function miln,P from Definition 2.31 with
n ∈ Z and P ∈ E. In [Mil04], Victor Miller introduced an efficient algorithm to
evaluate miln,P at arbitrary points Q ∈ E. The algorithm is therefore called Miller
algorithm. In this section, we give more background information on this algorithm
because it is the subject of our analysis in Chapter 4, Chapter 5, and Chapter 6.
We start with the definition of the algorithm for affine coordinates. Then we explain
how it can be computed for Jacobian coordinates.

Affine coordinates

The basic building block of the Miller algorithm is the equation of a line through
two given points P1, P2 ∈ E that is defined as follows:

Definition 3.8. Let E/K be an elliptic curve given by (2.3). Let P1, P2 ∈ E\{O}
with P1 = (x1, y1) and P2 = (x2, y2). We define LP1,P2(x, y) ∈ K(E) as follows:

If P1 = −P2, define

LP1,P2(x, y) = x− x1.

If P1 6= −P2, let λP1,P2 be as in Definition 2.9 and define

LP1,P2(x, y) = y − y1 − λP1,P2(x− x1).

For the special case where P1 = −P2, we also write VP1(x, y) = LP1,P2(x, y) and
for P1 = P2, we write TP1(x, y) = LP1,P1(x, y).
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Here, LP1,P2(x, y) is the line through P1, P2, and −(P1 + P2) as it occurs in the
addition of P1 and P2. In the case P1 = −P2, this is the vertical line through P1

and −P1. In the case P1 = P2, it is the tangent to E at P1. We obtain:

Lemma 3.9 (Lemma 1 of [Mil04]). Let P1, P2, LP1,P2, and VP1 be as in Defini-
tion 3.8. Then

div(LP1,P2/VP1+P2) = [P1] + [P2]− [P1 + P2]− [O] .

The following theorem gives us a recursive approach to construct miln,P based
on Definition 3.8:

Theorem 3.10. Let E/K be an elliptic curve. For n ∈ N and P ∈ E let miln,P ∈
K(E) be as in Definition 2.31. Then it holds that

mili+j,P = mili,P · milj,P ·LiP,jP /V(i+j)P . (3.5)

Proof. With Definition 2.31 and Lemma 3.9 it follows that both sides have the
same divisor. Because miln,P is normalized the claim follows from Theorem 2.26.
See also Lemma 2 of [Mil04].

Now we can construct mil2i,P from mili,P and TiP /V2iP by setting j = i in (3.5)
and mili+1,P from mili,P and LiP,P /V(i+1)P by setting j = 1. This allows us to

Algorithm 3.4 Miller algorithm for computing miln,P (Q).

Input: n =
∑N−1

j=0 nj2
j with nj ∈ {0, 1} and nN−1 = 1, P,Q ∈ E

Output: miln,P (Q)

1: R← P , b← 1
2: for j = N − 2 . . . 0 do
3: b← b2 ·TR(Q)/V2R(Q)
4: R← 2R
5: if nj = 1 then
6: b← b ·LP,R(Q)/VR+P (Q)
7: R← R+ P
8: end if
9: end for

10: return b

efficiently evaluate miln,P for arbitrary n ∈ N at Q ∈ E by scanning n from its
most significant bit to its least significant bit. The corresponding algorithm is
shown in Algorithm 3.4.

Remark 3.11. We can improve the efficiency of Algorithm 3.4 when it is used to
compute the reduced Tate or Ate pairing from Definition 2.33 and Definition 2.38,
respectively. Assume Type 3 pairing groups (cf. Definition 3.1) with even embedding
degree k. It was observed in [BLS04a] that in this case, V2R(Q) in Line 3 and
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VR+P (Q) in Line 6 are elements in Fqk/2 . Hence, they cancel out by exponentiation
with

(
qk − 1

)
/r and need not to be computed. This technique is now a standard

technique in PBC and called denominator elimination.

Jacobian coordinates

Jacobian coordinates are a special form of weighted projective coordinates that are
often used in implementations because of their efficiency. We present an attack in
Section 4.4 that exploits the representation of R from Algorithm 3.4 in Jacobian
coordinates. For a point (X : Y : Z) 6= O in Jacobian coordinates the corresponding
affine representation is given as (X/Z2, Y/Z3). For the computation of P3 = P1+P2

in Jacobian coordinates, we refer to Section 3.2.1 of [Coh+06].
Now, we show how to transform LP1,P2(x, y) from Definition 3.8 to Jacobian

coordinates. Therefore, let E be given by a short Weierstrass equation (2.3) and
let Pi = (Xi, Yi, Zi) for i ∈ {1, 2}. For P1 6= P2 we define

AP1,P2 = Y2Z
3
1 − Y1Z3

2 , BP1,P2 = Z3
2 (X2Z

2
1 −X1Z

2
2 )

and for P1 = P2 we define

AP1,P2 = 3X2
1 + a4Z

4
1 , BP1,P2 = 2Y1. (3.6)

We obtain the line functions for Jacobian coordinates by clearing denominators
after substituting xi = Xi/Z

2
i and yi = Yi/Z

3
i in LP1,P2(x, y) from Definition 3.8:

LP1,P2(x, y) = BP1,P2(yZ3
1 − Y1)−AP1,P2(xZ2

1 −X1). (3.7)

In affine coordinates, the computation of λP1,P2 from Definition 2.9 requires a costly
division. We see from (3.7) that we avoid the division if we represent R from
Algorithm 3.4 in Jacobian coordinates.

3.2.3. Final exponentiation

To compute the reduced pairings from Section 2.3.3, the result of Algorithm 3.4 is
raised to the power of

(
qk − 1

)
/r. This step of the pairing computation is also called

the final exponentiation. In order to understand our attacks from Chapter 6, we now
explain how the exponentiation with

(
qk − 1

)
/r is usually computed. For d ∈ N,

let Φd(x) be the d-th cyclotomic polynomial. It holds that xk − 1 =
∏
d|k Φd(x).

We obtain the following lemma:

Lemma 3.12. For the field Fq and a prime r let k be the embedding degree of q
and r (cf. Definition 2.16). For d|k it holds that r|Φd(q) if and only if d = k.

Proof. Since r|qk − 1 by Definition 2.16 and because qk − 1 =
∏
d|k Φd(q) it holds

that the prime r divides at least one of the factors Φd(q). Assume that r|Φd(q)
for d < k. Because Φd(q)|qd − 1 it follows that r|qd − 1. This is a contradiction
because the embedding degree k is the smallest integer such that r|qk − 1. Hence
r - Φd(q) for d|k and d < k. Hence, r must divide Φk(q).
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With Lemma 3.12 we can write the exponent of the reduced Tate pairing as

qk − 1

r
=
qk − 1

Φk(q)

Φk(q)

r
.

Based on this factorization, the final exponentiation is typically performed in
two steps: In the first step, the exponentiation with the factor (qk − 1)/Φk(q) is
computed; and in the second step, the exponentiation with Φk(q)/r is computed.
The first factor is light in the sense of Definition 2.1. Hence, exponentiation with
this factor can be computed based on efficient applications of the q-th power
Frobenius automorphism σq and a few multiplications and divisions in Fqk . For
the second factor, a standard square-and-multiply approach can be used. For more
details and more advanced techniques, we refer to [Sco+09].

Remark 3.13. On the one hand, we explained that the small weight of (qk−1)/Φk(q)
helps us to speed up the final exponentiation. On the other hand, in Chapter 6 we
use this property to mount fault attacks on the final exponentiation.

3.3. Pairing-based schemes

In this thesis, we analyze cryptographic schemes with respect to implementation
attacks. To motivate our analysis we introduce examples of pairing-based encryption
and signature schemes in Section 3.3.1 and Section 3.3.2, respectively. To describe
our attacks and attacks of previous work independently from concrete schemes,
we introduce three abstract protocols in Section 3.3.3. These protocols subsume
applications of real-world schemes like decryption or signature queries that are
relevant for our subsequent analysis of vulnerabilities against physical attacks.
Vulnerabilities of our abstract protocols do not always transfer to vulnerabilities of
the concrete schemes. Nevertheless, our analysis of the abstract protocols helps us
to identify critical elements also in concrete implementations.

3.3.1. Pairing-based encryption schemes

In this section, we present examples of pairing-based encryption schemes. First, we
present the IBE scheme of Boneh and Franklin [BF03] as an archetype for pairing-
based encryption schemes. Then we outline the decryption algorithm of the ABE
scheme from Rouselakis and Waters [RW13] to give a more complex application of
pairings. Common to both schemes as to most pairing-based encryption schemes is:

1. The secret decryption key is a point on the curve.

2. During decryption, a pairing is computed where one argument of the pairing
is the secret key and the other argument is a component of the ciphertext.

This motivates our analysis from Chapter 4, Chapter 5, and Chapter 6 where we
analyze the vulnerability of the pairing computation against physical attacks.
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Identity-based encryption

We start with the definition of the IBE scheme BasicIdent from [BF03]. As in
[CM11], we translate the scheme from the Type 1 setting (see Definition 3.1) with
G1 = G2 to the Type 2 or Type 3 setting:

Definition 3.14. The scheme BasicIdent consists of four polynomial time algo-
rithms that are defined as follows:

1. Setup: On input a security parameter λ select l ∈ N and domain parameters
(cf. Definition 3.2) D1 = (Fq, E1, R1, r, c1) and D2 = (Fq, E2, R2, r, c2) that
define pairing groups (G1,G2,GT ) of prime order r. Furthermore select a
bilinear map e : G1 × G2 → GT , hash functions HashToCurve : {0, 1}∗ → G2
and H : GT → {0, 1}l. Pick s uniformly at random from Z/rZ and compute
Ppub = sR1. Output

pk = (D1, D2, e,HashToCurve,H, Ppub) (3.8)

as public parameters and s as secret master key.

2. Extract: On input an identity ID ∈ {0, 1}∗, public parameters pk of the
form (3.8), and a secret master key s: compute PID = HashToCurve(ID) and
output ID’s private key QID = sPID.

3. Encrypt: On input a message M ∈ {0, 1}l, an identity ID ∈ {0, 1}∗, and
public parameters pk of the form (3.8) choose k ∈ Z/rZ uniformly at random.
Then compute PID = HashToCurve(ID) and

C1 = kR1 C2 = M ⊕H(e(kPpub, PID)).

Output (C1, C2) ∈ E1 × {0, 1}l as the ciphertext.

4. Decrypt: On input a ciphertext (C1, C2) ∈ E1 × {0, 1}l, an identity ID,
the identity’s private key QID, and public parameters pk of the form (3.8):
compute and output M = C2 ⊕H(e(C1, QID)).

The Type 1 version of this scheme is IND-CPA secure in the random oracle
model if the computational bilinear Diffie-Hellman (CBDH) problem is hard. For
the Type 2 and Type 3 versions with G1 6= G2 the hardness assumptions have to be
slightly adapted. For a detailed discussion on this topic, we refer to [CM11]. In
[BF03] the Fujisaki-Okamoto transform [FO13] is used to transform BasicIdent into
the scheme FullIdent that is IND-CCA secure in the random oracle model. Hence,
in the black-box setting, this scheme can be considered as secure. We will see in
Chapter 4 and Chapter 6 that this is not necessarily true under physical attacks.
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Attribute-based encryption

Pairings cannot only be found in IBE but also in more complicated schemes, e.g.,
from ABE. For example, consider the key policy ABE scheme from [RW13]. As
part of the decryption, a product of the following form is computed:

B =
∏
i∈I

(
e(C0,Ki,0) e(Cτ(i),1,Ki,1) e(Cτ(i),2,Ki,2)

)ωi
where the Ci,j ∈ G1 are components of the ciphertext, the Ki,j ∈ G2 are components
of the recipient’s secret key, and the ωi ∈ Z can be computed from the ciphertext.
Then B ∈ GT is used as input of a key derivation function (KDF) or it is used to
recover the encrypted message asM = C/B for a ciphertext component C ∈ GT . We
see that, similar to BasicIdent, the arguments of the pairings are a key component
and a component of the ciphertext. Furthermore, the result of the pairing is used
to decrypt the message. Different from BasicIdent, not a single pairing, but of a
product of pairings is computed.

3.3.2. Pairing-based signature schemes

In this section, we present examples of pairing-based signature schemes. Common
to most pairing-based signature schemes is that pairings are used only for signature
verification and not for signature generation. Hence, different from pairing-based
encryption schemes, the secret key is not an argument of the pairing. Therefore,
the pairing itself is less interesting for physical attacks.

We present two types of schemes that differ in the role of the signing key. First,
we define the short signature scheme of Boneh, Lynn, and Shacham [BLS04b]. Here,
the secret signing key is a scalar that is used as input for ECSM. Then we outline
the identity-based signature scheme of Cha and Cheon [CC03]. Here, the secret
signing key is a point on the curve. Common to both schemes is that ECSM is
computed on the image P of the function HashToCurve defined by Algorithm 3.3.
We exploit this property in one of our attacks from Chapter 7.

Signature schemes with secret scalar

The key extraction procedure of an IBE scheme can be transformed into a secure
signature algorithm by interpreting the identity ID as the message, the master
secret key as the signing key, and the identity’s private key as signature under
message ID [BF03]. This is sometimes called the Naor transform and, when applied
to the scheme from Definition 3.14, leads us directly to the BLS signature scheme
from [BLS04b]:

Definition 3.15. The BLS signature scheme consists of three polynomial time
algorithms that are defined as follows:

1. Setup: On input a security parameter λ select domain parameters (cf. Def-
inition 3.2) D1 = (Fq, E1, R1, r, c1) and D2 = (Fq, E2, R2, r, c2) that define
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pairing groups (G1,G2,GT ) of prime order r. Furthermore select a bilinear
map e : G1 × G2 → GT , and a hash function HashToCurve : {0, 1}∗ → G1.
Pick s uniformly at random from Z/rZ and compute Ppub = sR2. Output

pk = (D1, D2, e,HashToCurve, Ppub) (3.9)

as public key and sk = (pk, s) as secret key.

2. Sign: On input a message M ∈ {0, 1}∗ and a secret key sk = (pk, s) compute
P = HashToCurve(M) ∈ G1, Q = sP , and output σ = Q as signature.

3. Verify: On input a message M , a signature σ ∈ G1, and a public key pk of
the form (3.9), output 1 if and only if e(σ,R2) = e(HashToCurve(M), Ppub).

Note that signatures consist of just one G1 element. For example, let q = pk and
assume the pairing e is instantiated with the reduced Tate pairing t̂ : E(Fp)[r]×
E(Fq)[r] → µr (cf. Definition 2.33). In this case, G1 = E(Fp)[r] and with point
compression signatures are only of size log p, i.e., approximately half the size of
ECDSA signatures. As it was analyzed in [Cha+10], this scheme is especially efficient
if it is instantiated with BN curves from Theorem 3.6. Under the computational
Diffie-Hellman (CDH) assumption, the scheme provides existentially unforgeable
signatures in a chosen message attack and hence, we consider it as secure in the
black-box setting. Again, we will see in Chapter 7 that this is not the case under
physical attacks.
The basic structure of the BLS scheme can be found also in other signature

schemes with interesting properties. Examples include the threshold signature
scheme and the multi-signature scheme from [Bol03], the aggregate signature scheme
from [Bon+03], or the signcryption scheme from [LQ04].

Signature scheme with secret point

Another type of pairing-based signature scheme is the identity-based signature
scheme from Cha and Cheon [CC03]. Here, and identity ID has a secret key DID on
an elliptic curve E. To compute a signature for ID under a messageM we first draw
a nonce s ∈ Z/rZ uniformly at random and then compute P = HashToCurve(ID),
Q = sP , and V = (s+ H(M,Q))DID. The signature is the tuple σ = (Q,V ). We
see that the secret is a point on an elliptic curve while ECSM is computed on a
nonce s and the image P of HashToCurve.

3.3.3. Abstract protocols

Now we define three abstract protocols between two parties A and B. These
protocols resemble, for example, decryption or signature queries. Later in an attack,
A will take the role of an attacker on the secret key of B. A’s queries model the
ability of an adversary to effect B’s computations on the secret key. B’s answers
model the information that A gains during the interaction.
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Definition 3.16. For domain parameters D = (Fq, E,R, r, c), and B’s secret
s ∈ Z/rZ define the protocol Decompress-And-Multiply as follows:

1. A sends a tuple (xP , b) ∈ Fq × {0, 1} to B.

2. B computes P = Decompress(xP , b) ∈ E(Fq) with Algorithm 3.1.

3. B computes Q = sP and returns the result to A.

This protocol is related to key-agreement and encryption schemes from ECC like
Elgamal (cf. Section 20.3 of [Gal12]) when ciphertexts are compressed as described
in Section 3.2.1. Here, we can consider a decryption query from A to B as an
invocation of Decompress-And-Multiply. In Chapter 7, we present an FA on this
protocol.

Definition 3.17. Let e : G1 × G2 → GT be a pairing. For i = 1 let Q ∈ G2 be
the secret of B and for i = 2 let P ∈ G1 be the secret of B. Define the protocol
Pair-Argument-i as follows:

Pair-Argument-1 Pair-Argument-2

1. A sends P ∈ G1 to B.

2. B computes a = e(P,Q) ∈ GT
based on Algorithm 3.4.

3. B returns a to A.

1. A sends Q ∈ G2 to B.

2. B computes a = e(P,Q) ∈ GT
based on Algorithm 3.4.

3. B returns a to A.

This protocol resembles decryption queries for pairing-based encryption schemes
like the IBE and ABE schemes from Section 3.3.1. For example, the connection
to the scheme from Definition 3.14 is as follows: Assume that A queries B for the
decryption of the ciphertext (C1, C2). Then B will compute e(C1, QID) with his
private key QID as part of the decryption. If A has, for some reason, access to
this value, then this can be considered as an invocation of Pair-Argument-1 with
P = C1 and Q = QID. In Chapter 4 we present SCAs on Pair-Argument while in
Chapter 5 and Chapter 6 we present FAs on this protocol.

Definition 3.18. For domain parameters D = (Fq, E,R, r, c), and B’s secret
s ∈ Z/rZ define the protocol Hash-And-Multiply as follows:

1. A sends a message M ∈ {0, 1}∗ to B.

2. B computes P = HashToCurve(M) ∈ E(Fq) with Algorithm 3.3.

3. B computes Q = sP and returns the result to A.

This protocol resembles pairing-based signatures schemes from Section 3.3.2. In
the BLS signature scheme from Definition 3.15 for example, signature requests are
an invocation of Hash-And-Multiply: Assume A queries B for a signature under a

40



3.3. Pairing-based schemes

message M . To generate the signature, first, B hashes M ∈ {0, 1}∗ to P ∈ G1 by
means of HashToCurve. The result P = HashToCurve(M) is used as base-point
for the ECSM with the secret key s. Finally, the result of the ECSM is released as
the signature σ = Q = sP . In Chapter 7, we present a FA on this protocol.
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Chapter 4.

Side-channel attacks on pairings

In this chapter, we analyze implementations of the protocol Pair-Argument from
Definition 3.17 to identify vulnerabilities of pairings against SCAs. Based on our
work from [BGL13], we introduce new attacks on the reduced Tate and the reduced
Ate pairing from Definition 2.33 and Definition 2.38, respectively. Our attacks use
a DPA of the multiplication in finite fields and exploit standard optimizations for
efficient implementations of pairings. We remark that we use Pair-Argument as an
abstraction of IBE and ABE decryption from Section 3.3.1, but that our results
from this chapter directly apply to those concrete applications.

The chapter is structured as follows: In Section 4.1, we give a short introduction
into the problem. Then we outline related work and our contribution. In Section 4.2,
we present an attack for the Tate pairing in affine coordinates. In Section 4.3,
we present an attack for the Ate pairing in affine coordinates. In Section 4.4, we
present an attack for the Tate and the Ate pairing in projective coordinates.

4.1. Introduction

A powerful tool in the context of SCAs is a differential power analysis (DPA)1. In
the setting of a DPA, the attacker targets a binary operation where one operand is
part of the secret and the other operand is under control of the attacker. Basically,
this allows the attacker to predict the hypothetical output of the operation, based
on the knowledge over the controlled operand and on different key hypotheses.
Then he correlates the hypotheses with his measurements to find the (partial) key
with the highest correlation. To be able to apply a DPA-based attack, the attacker
requires some control over one argument of the operation, while the secret has to be
computable from the other argument. Now we identify operations in Pair-Argument
that are vulnerable to a DPA.

Cryptographic pairings are defined based on finite fields and hence, suitable binary
operations for a DPA in the context of Pair-Argument are finite field additions or
finite field multiplications. At the heart of Pair-Argument is the computation of a
pairing on arguments P and Q with Algorithm 3.4, where one argument is secret

1The term correlation power analysis is sometimes understood as a generalization of differential
power analysis. We use the term differential power analysis for a statistical analysis, independent
of the underlying statistical test, or the concrete physical side-channel (cf. page 161 of
[MOP07]).
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and the other is under control of an attacker. Looking closer at Algorithm 3.4, we
see that the central computations that involve those points are the evaluation of
TR(Q)/V2R(Q) in Line 3 and LP,R(Q)/VR+P (Q) in Line 6. We do not consider
V2R(Q) and VR+P (Q) because they are usually not computed due to denominator
elimination (see Remark 3.11). Both, TR(Q) and LP,R(Q), have a similar structure
and we concentrate on TR(Q). We see from Definition 3.8 that with R = (xR, yR)
and Q = (xQ, yQ) the term TR(Q) expands to

TR(Q) = yQ − yR − λR,R (xQ − xR) . (4.1)

Here λR,R is the slope of the tangent through R as defined in (2.4) of Definition 2.9.
The point R is a multiple of the argument P , and hence R and λR,R depend only
on the argument P of the pairing.

From (4.1), we directly identify three possible operations for a DPA that depend
on secret and public argument of the pairing: the addition yQ − yR, the addition
xQ − xR, and the multiplication λR,R(xQ − xR). In this thesis, we assume that a
multiplication is better suited for a DPA than an addition (see Remark 4.2 later in
this section). Therefore, our goal in this chapter is to identify computations that
involve modular multiplications on secret and public argument of the pairing and
we concentrate on the computation of λR,R(xQ − xR).

We see from Definition 3.17 that in an attack on Pair-Argument-1, Q is secret
and P and therefore also λR,R are under our control. With knowledge about xR,
we can build hypotheses for the second factor (xQ − xR) from hypotheses for xQ.
We are in the setting of a DPA to recover xQ, and hence also Q.

For Pair-Argument-2, P is secret and Q is under our control. We see that
both factors λR,R and (xQ − xR) depend on the secret and it is not immediately
possible to apply a DPA. Hence, it seams easier to attack Pair-Argument-1 than
Pair-Argument-2 with a DPA of the finite field multiplication. Consequently, a
DPA for Pair-Argument-1 on the multiplication λR,R(xQ − xR) has been described
before [WS06]. The authors of [WS06] conclude:

“We assessed the three candidate pairing algorithms based on the attack
on both paths that a secret can take. From this we found that although
none of the algorithms assessed proved to be resistant to SCA, Tate
and Ate if implemented with the secret being stationed in the first
parameter [(Pair-Argument-2)] could withstand such attacks. [. . . ]

From our findings we recommend two straightforward deterrents to
protocol designers implementing pairing-based protocols to protect
against SCA:

1. If implementing the Tate or Ate pairing, ensure that the secret
parameter is positioned in the first parameter (i.e., the secret takes
the P path).

[. . . ]”
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We show in this chapter that it is possible to apply a DPA on the modular
multiplication λR,R(xQ − xR) also for the case Pair-Argument-2 where P is secret.
We exploit some standard representations of P and Q that are typically used
in efficient implementations. We conclude that one should not rely on inherent
countermeasures for secure pairing implementations.

4.1.1. Related work

In [Whe+09] an introduction on SCAs on pairing computations is given. The
presentation explains the basic techniques such as DPA and reviews some SCAs
on pairings from literature. In the following, we give an extended overview of the
related literature.
In [PV04] SCAs were considered for the first time in the context of PBC. Here,

the authors identify finite field multiplications in (4.1) that can be used for a DPA.
They consider pairings on supersingular curves in characteristic 3. In this case, the
term (4.1) has a special form that allows the authors to attack both cases, secret P
and secret Q. In addition to the attack, the authors also propose countermeasures
based on the randomization of P or Q.

In [WS06] DPA-based attacks on the Tate pairing, the Ate pairing, and the Eta
pairing were analyzed. As part of their analysis, the authors of [WS06] describe a
concrete DPA of the multiplication in finite fields. Similar to [PV04], they show
that the Eta pairing for fields of characteristic 2 is vulnerable to a DPA-based
attack for secret P and for secret Q. Furthermore, they show how to attack the
multiplication in (4.1) for the Tate and the Ate pairing if the second argument Q
represents the secret (Pair-Argument-1). Based on this result, they conjectured
that it may be more difficult to attack implementations of the Tate and Ate pairing
if the first argument of the pairing is the secret.
In [Kim+06] the vulnerability of the Eta pairing on supersingular curves in

characteristic 2 is analyzed. Similar to [WS06], the authors of [Kim+06] conclude
that this pairing can be attacked in both cases, secret P and secret Q. They
furthermore propose randomization of projective coordinates as a countermeasure.

In [STO08] a new countermeasure is proposed for the Eta pairing in characteristic
3. The authors claim that this countermeasure is more efficient than previous
countermeasures such as point blinding or randomized projective coordinates. In
[CHK08] the authors improve the efficiency of countermeasures that are based on
randomized projective coordinates for the case of pairings over fields of a small
characteristic.
In [MFN09] an attack on the Tate pairing is presented for the case where the

first argument P is secret (Pair-Argument-2). The authors of [MFN09] assume
that the secret is represented in Jacobian coordinates and use a DPA of a modular
multiplication and a DPA of a modular addition to recover the secret P . Further-
more, they perform a circuit simulation to provide evidence for the feasibility of
their attack.

In [PM11] an attack based on a DPA of finite field multiplications is performed.
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The authors practically perform the DPA for their field programmable gate array
(FPGA) implementation of the Tate pairing on fields of characteristic 2. Hence,
they show that the former theoretical attacks are also relevant in practice.

In [GC11] the authors propose a DPA-based attack on the Tate pairing over BN
curves. They perform the DPA on an addition in the line computation similar to
the addition (xQ − xR) in (4.1). The attack is presented for the case where Q is
secret. Because the addition (xQ − xR) is symmetric in both arguments this is
not crucial for the attack. The attack is practically performed on an FPGA-based
platform and hence the authors show that a DPA of the modular addition on
unprotected implementations is also possible.

In [UW14] a DPA-based attack on the Ate pairing over BN curves is performed.
The authors target the multiplication in (4.1). The attack can be applied to
both cases, secret P and secret Q. The reason is that BN curves have a twist of
degree d = 6. This introduces additional structure for P that can be exploited.
The authors of [UW14] successfully perform their attack on an FPGA and an
ARM Cortex-M0. Hence, they show that attacks based on a DPA of modular
multiplications are a serious threat for relevant pairings.

4.1.2. Our contribution

The results that we present in this chapter are mostly based on our results from
[BGL13]. There we presented passive attacks on the reduced Tate pairing in affine
and in projective coordinates that we recall in this chapter. Additionally we show
how our techniques from [BGL13] can be applied to the reduced Ate pairing.
In [WS06] attacks on Tate and Ate pairing were presented for the case of Pair-

Argument-1 where the second argument Q is the secret. We extend these attacks to
Pair-Argument-2 where P is secret. Furthermore, in [MFN09] and [GC11] attacks
on projective coordinates were described that require a DPA of finite field additions.
We present our results from [BGL13] that show how the DPA of the addition can
be avoided. In some more detail, our contribution is as follows:

1. In Section 4.2 we present our attack from [BGL13] on the reduced Tate
pairing in affine coordinates. In this attack, we exploit the structure of G1

(see Definition 2.18) to transfer the attack of [WS06] from the setting of
Pair-Argument-1 to the setting of Pair-Argument-2. Our attack is limited
to the case where the embedding degree (cf. Definition 2.16) fulfills k > 2.
To perform our attack, we exploit that k > 2 together with P ∈ G1 implies
x(Q) 6∈ E(Fq). This allows us to separate xQ and xR in λR,R (xQ − xR) from
(4.1). As we explained in Section 3.1.3 the condition k > 2 is fulfilled for
efficient pairing implementations.

2. In Section 4.3 we present an attack on Pair-Argument-2 when instantiated
with the Ate pairing in affine coordinates. In [BGL13] we already exploited
the special structure of G2 (see Definition 2.18) for an attack on the reduced
Tate pairing. In Section 4.3 we now apply a similar technique to attack the
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Secret Coordinates Pairing k d

Q affine Tate and Ate all all [WS06]
Q Jacobian Tate and Ate all all [MFN09]
P affine Tate > 2 all Section 4.2 ([BGL13])
P affine Ate ≥ d ≥ 4 Section 4.3, [UW14]
P Jacobian Tate and Ate all all Section 4.4 ([BGL13])

Table 4.1.: Summary of attacks on the reduced Tate and the reduced Ate pairing
over large prime fields. Only attacks that are solely based on a DPA of the modular
multiplication are considered. Here the columns k and d list the constraints of
our attack on the embedding degree and the twist degree, respectively.

reduced Ate pairing that we did not publish so far. For our attack, we require
that G2 is represented based on twists with degree d ≥ 4 in the form of
(3.1) from Section 3.1.2. Again, this allows us to separate xQ from xR in
λR,R (xQ − xR). We remark that the structure of G2 has also been exploited
implicitly in [UW14] for an attack on the Ate pairing over BN curves.

3. In Section 4.4 we present an attack on the reduced Tate and the reduced Ate
pairing when computed in (weighted) projective coordinates. For the case
of the reduced Tate pairing, we already described the attack in [BGL13]. In
Section 4.4 we show that the Ate pairing is also vulnerable to this attack. The
attack applies equally to Pair-Argument-1 and Pair-Argument-2 and uses a
DPA to recover the z-coordinate of R. Our attack relies on implementations
in mixed coordinates [Coh+06, Section 13.2.2] that are typically used for
efficiency reasons. This allows us to express the z-coordinate of R as a rational
function in P and compute P from this coordinate. Different from the attacks
in [MFN09] and [GC11] that require a DPA of the finite field addition in case
of secret P , our attack only requires a DPA of the multiplication.

In Table 4.1 we give an overview of our results and related work that target the
pairing computation with a DPA of the modular multiplication.
Concerning the impact of our results, today the most efficient implementations

use projective coordinates and hence are vulnerable to our attack from Section 4.4.
Some results indicate that pairing implementations in affine coordinates become
more relevant for modern processors [Aca+13]. These implementations use the Ate
pairing and rely on high degree twists. Therefore, they are vulnerable to our attack
from Section 4.3. We conclude that SCAs have to be considered for implementations
of Pair-Argument-1 and Pair-Argument-2 and that countermeasures are required
in an environment where implementation attacks are relevant.

Our attacks on Pair-Argument from Definition 3.17 exploit leakage at an internal
state of Algorithm 3.4. For the attacks, we require that the pairing is computed
on the secret argument and a public argument that is controlled by the attacker.
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Because we target an internal state, we do not assume access to the result of the
pairing computation. Hence, our attack on Pair-Argument directly implies an
attack on IBE or ABE decryption from Section 3.3.1.

4.1.3. Side-channel analysis of modular multiplication

At the beginning of this section, we described a DPA as a tool to solve the problem
of recovering one argument of a binary operation in an SCA. Now, we give a formal
definition of the problem when the operation in question is a multiplication. The
definition adapts the definition of the hidden multiplier problem from [Bel+15] to
our application:

Definition 4.1. Let a ∈ Z, B ⊆ Z, and σ ∈ R. Furthermore, let Oa( · ) be an
oracle that on input b ∈ B:

1. Samples ε according to a Gaussian distribution with mean µ = 0 and variance
σ.

2. Returns HW(a · b) + ε.

The hidden factor problem (HFP) for (a,B, σ) is to recover a with oracle access
to Oa( · ).

The connection to our application is as follows: We assume that elements over a
field Fq with prime q are represented as integers in [0, q−1]. Then a in Definition 4.1
represents a fraction of a secret element in Fq like, for example, one machine word
of the secret. Furthermore, B represents a set of multipliers that we can choose in
the attack. The definition of B depends on the concrete application. For example,
it might contain the x-coordinates of points in E(Fq)[r] that are under the control
of an attacker on Pair-Argument. The response HW(a · b) + ε of the oracle realizes
the so-called Hamming weight model [MOP07]. Here, an attacker can observe the
Hamming weight of intermediate results disturbed by Gaussian noise with variance
σ. Note that the definition can easily be adapted to other leakage models like, for
example, the Hamming distance model [MOP07].

Definition 4.1 captures observations that we can make in a practical measurement
and allows us to abstract from a concrete side-channel. In our analysis, we try to
identify instances of the HFP in Pair-Argument, or in other words, we describe
SCAs against Pair-Argument that reduce the recovery of the secret argument of
the pairing to instances of the HFP. We do not provide own approaches to solve
the HFP itself, e.g., by a DPA. For this matter we refer, for example, to [WS06;
UW14; Hut+09; Bel+15] and references therein.

Remark 4.2. So far, we always preferred to target a multiplication and not an
addition. To give an intuition for this preference, consider the LSB of the secret
argument. On the one hand, in an addition the influence of the LSB on the resulting
sum is local. The reason is that the probability of a carry drops exponentially with
increasing significance of the bits. On the other hand, for a multiplication the LSB
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of one argument effects at least half of the bits of the product. Hence, we assume
that it is more difficult to distinguish two key hypotheses with small Hamming
distance in a DPA of the addition than in a DPA of the multiplication.

4.2. Analysis of the Tate pairing in affine coordinates

In this section we present an attack on the reduced Tate pairing t̂(P,Q) from
Definition 2.33. In this case, P ∈ E(Fq). Furthermore we assume that the
embedding degree fulfills k > 2.

4.2.1. Identify operands for side-channel

We fix an iteration j of Algorithm 3.4 and analyze λR,R (xQ − xR) from (4.1) that
is computed in Line 3 of Algorithm 3.4. We exploit the following property in our
attack:

Lemma 4.3. For E/Fq, let r be a prime with r|#E(Fq) and gcd(r, q) = 1. Let
Q ∈ E[r] with Q 6∈ E(Fq). Furthermore, let k > 2 be the embedding degree of q and
r. Then it holds that x(Q) 6∈ Fq.

Proof. Assume Q ∈ E[r] with Q 6∈ E(Fq) and x(Q) ∈ Fq. Because the Weierstrass
equation (2.3) has a degree of 2 in y it holds that y(Q) ∈ Fq2 . It follows that Q ∈
E(Fq2). With Q ∈ E[r] and Q 6∈ E(Fq)[r] we obtain a subgroup 〈Q〉 ⊆ E(Fq2)[r]
different from E(Fq)[r]. From Theorem 2.15, it follows that E[r] ⊆ E(Fq2). With
Theorem 2.17 this implies k ≤ 2, a contradiction to k > 2.

Because R is a multiple of P , we obtain R ∈ G1 ⊆ E(Fq). From the definition
of λR,R (cf. Definition 2.9) it follows also that λR,R ∈ Fq. For a non-degenerate
pairing it holds that Q 6∈ G1 (cf. Lemma 2.36). Furthermore, from Lemma 4.3
and the fact that k > 2, we see that xQ 6∈ Fq. Let Fqk = Fq(θ) and write
xQ =

∑k−1
i=0 x

(i)
Q θ

i. If we express the product λR,R (xQ − xR) in (4.1) with respect
to the basis {1, θ, . . . , θk−1} of Fqk we obtain

λR,R (xQ − xR) = λR,R

(
x
(0)
Q − xR

)
+
k−1∑
i=1

λR,Rx
(i)
Q θi.

Because xQ 6∈ Fq it holds that there exists an i ∈ [1, k − 1] with x(i)Q 6= 0. In Pair-
Argument-2, P and hence λR,R is fixed. Furthermore, we are able to control Q and
therefore also x(i)Q . We obtain an oracle OλR,R( · ) for the HFP from Definition 4.1

that we can query on different elements b = x
(i)
Q . If we assume an algorithm for

solving this HFP instance, we learn λR,R.

49



Chapter 4. Side-channel attacks on pairings

4.2.2. Recover secret from side-channel information

To recover the secret P from λR,R we proceed in three steps. First, we compute
candidate solutions for R. Based on this, we compute candidates for P . Finally,
we verify all candidates to identify P .

Compute candidates for R

From (2.4) we obtain

λR,R =
3x2R + a4

2yR
.

We can write λR,R as a rational function in the coordinates (xR, yR) of R. Hence, for
fixed λR,R we clear the denominator to obtain the polynomial f(x, y) = −2yλR,R +
3x2 + a4 with root R. Together with the Weierstrass equation F (x, y) = y2 − x3 −
a4x − a6 of E we define the algebraic set X = V (f(x, y), F (x, y)). It holds that
R ∈ X(Fq). Hence, we enumerate X(Fq) to find candidates for R. This can be
done based on appropriate tools like Groebner bases techniques or resultants. We
find at most six candidates:

Lemma 4.4. The algebraic set X(Fq) contains at most six elements.

Proof. First note that F (x, y) is irreducible of degree 3. Furthermore, f(x, y)
is of degree 2. Hence, F (x, y) and f(x, y) have no common factors. Then it
follows from Bezout’s Theorem (cf. Theorem 10 in Section 8.§7 of [CLO96]) that
#X(Fq) ≤ #X ≤ deg(f) deg(F ) = 6.

Compute candidates for P

We know that R = nP for some n that is uniquely determined from Algorithm 3.4,
the target iteration j, and the order r of P . Because r is prime, in Z/rZ the
multiplicative inverse n−1 of n exists. Hence, from a candidate R̃ for R we can
compute a candidate P̃ = n−1R̃ for P .

Verify candidates

Finally, we can verify each candidate P̃ to identify P . For Pair-Argument-2, where
we assume that the attacker has access to the result of the pairing computation, we
can obtain a = t̂(P,Q) for secret P and fixed Q. Then we search for the candidate
that fulfills the relation t̂(P̃ , Q) = a.
Another way to identify P is to test the functionality of all candidates in the

corresponding protocol. For example, in BasicIdent, we could simply check if a
candidate point P̃ is a functional decryption key for the attacked identity.
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4.2.3. Summary of the analysis

To summarize, we made the reasonable assumption that the embedding degree
fulfills k > 2. This enabled us to find a component of xQ − xR ∈ Fqk as a vector
in Fqk/Fq that is independent from R and hence P . This allowed us to define an
oracle for the HFP and to apply an SCA similar to the one presented in [WS06]
also for the case where the first argument P is secret.

4.3. Analysis of the Ate pairing in affine coordinates

In this section we present an attack on the reduced Ate pairing from Definition 2.38.
In this case, P ∈ G2 ⊆ E(Fqk) and Q ∈ G1 ⊆ E(Fq). Let E′ be a a degree d twist of
E with d ≥ 4, d|k, and Fqk = Fqk/d(α). We assume that ψ is defined as in (3.1) on
page 28 and that G2 is represented based on Theorem 2.21 as G2 = ψ(E′(Fqk/d)[r]).
Hence, there is a unique P ′ ∈ E′(Fqk/d) such that P = ψ(P ′).

4.3.1. Identify operands for side-channel

Again, we target the multiplication λR,R (xQ − xR) from (4.1) for a fixed iteration
j of Algorithm 3.4. Let R′ ∈ E′(Fqk/d) with R′ = (xR′ , yR′) and R = ψ(R′) =

(α2xR′ , α
3yR′). Furthermore, let λR′,R′ ∈ E′(Fqk/d) be the slope of the tangent

TR′(x, y) to E′ at R′. Let y2 = x3 + a4x + a6 and y2 = x3 + a′4x + a′6 be the
defining equations of E and E′, respectively. With (3.2) from page 28 it holds that
a4 = α4a′4 and hence

λR,R =
3
(
α2xR′

)2
+ α4a′4

2 (α3yR′)
= αλR′,R′ .

We obtain
λR,R (xQ − xR) = αλR′,R′

(
xQ − α2xR′

)
. (4.2)

For d ≥ 4 we sort terms in (4.2) with respect to the basis {1, α, . . . , αd−1} of
Fqk = Fqk/d(α):

λR,R (xQ − xR) = λR′,R′xQ α− λR′,R′xR′ α3.

Hence, we successfully separated xQ from xR′ .
With λR′,R′ ∈ Fqk/d and xQ ∈ Fq the multiplication λR′,R′ ·xQ involves k/d

multiplications in Fq. We consider Fqk/d/Fq as a Fq vector space with basis

{1, θ, . . . , θk/d−1}. With λR′,R′ =
∑k/d−1

i=0 λ
(i)
R′,R′θ

i we write

λR′,R′xQ =

k/d−1∑
i=0

λ
(i)
R′,R′xQ θ

i.

In Pair-Argument-2 the first argument and hence λR′,R′ is fixed while the second
argument Q is under our control. For all i ∈ [0, k/d − 1] we obtain an oracle
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O
λ
(i)

R′,R′
( · ) for the HFP from Definition 4.1 that we can query on different elements

b = xQ. If we assume an algorithm for solving this HFP instance, we learn λ(i)R′,R′ .

We repeat the analysis for k/d times to recover λ(0)R′,R′ , · · · , λ
(k/d−1)
R′,R′ and hence the

complete λR′,R′ .

Remark 4.5. Note that with a twist of degree d = 2 this attack is not possible. To
see this, let α2 ≡ a0 + a1α in Fqk = Fqk/d(α). For (4.2) we now obtain

αλR′,R′
(
xQ − α2xR′

)
= αλR′,R′ (xQ − a0xR′ − a1xR′α) .

Hence, xQ and −a0xR′ are added in Fq and we are not able to separate xQ from
xR′ as required for the attack.

4.3.2. Recover secret from side-channel information

To recover the secret P ′ from λR′,R′ we proceed exactly as in Section 4.2 with the
only difference that we perform all computations on E′(Fqk/d) and not on E(Fq).

First, we use the equation of λR′,R′ to define f(x, y) = −2yλR′,R′ + 3x2 +a′4 with
root R′. Then we use the Weierstrass equation F (x, y) = y2 − x3 − a′4x − a′6 of
E′ to define X = V (f(x, y), F (x, y)) with R′ ∈ X(Fqk/d). We enumerate X(Fqk/d)
with appropriate tools and obtain at most six candidates for R′. From candidates
for R′ we compute and verify candidates for P ′ as in Section 4.2.
We remark that the enumeration of X(Fqk/d) is more complex than it has been

for the Tate pairing because we work over the larger field Fqk/d .

4.3.3. Summary of the analysis

To summarize the attack: We made the assumption that E′ admits a twist of degree
d ≥ 4. Furthermore we assumed that the target implementation uses the sparse
representation from (3.3) for elements in G2. As in Section 4.2 this enabled us to
find a component of xQ − xR ∈ Fqk as a vector in Fqk/Fqk/d that is independent
from R and hence P . Based on this we were able to define an oracle for the HFP
and apply an SCA similar to the one presented in [WS06] also for the case where
the first argument P is secret.

In [BGL13] we already used the sparse representation of G2 to present an attack
on the Tate pairing. More specifically, we used the sparseness of (4.2) to target
either the multiplication of b = TP (Q) and L2P,P (Q) in Line 6 during the first
iteration of Algorithm 3.4 or the squaring of b = TP (Q) in Line 3 during the second
iteration of Algorithm 3.4.

We remark that in the attack on the Ate pairing from [UW14], the sparseness of
(4.2) was exploited for the special case of BN curves (cf. Section 3.1.3) that have a
twist of degree d = 6.
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4.4. Analysis of pairings in projective coordinates

In this section, we present an attack on the reduced Tate and the reduced Ate pairing.
This time, we assume that the variable point R of Algorithm 3.4 is represented in
Jacobian coordinates. Furthermore, we assume that the arguments P and Q are
still given in affine coordinates, or equivalently, that their z-coordinates are set to
1. These so-called mixed coordinates are typically used in efficient implementations
(cf. Section 13.2.2 of [Coh+06]).

Here, we present the attack for Jacobian projective coordinates that we introduced
in Section 3.2.2. We remark that the same attack applies to other forms of (weighted)
projective coordinates.

4.4.1. Identify operands for side-channel

Again, we fix an iteration j of Algorithm 3.4 and analyze the tangent line TR(Q)
from (4.1). Let R = (XR, YR, ZR) be a fixed representative of R in Jacobian
coordinates. From (3.6) and (3.7) we obtain the following representation of (4.1)
for Jacobian coordinates:

TR(Q) = 2YR
(
yQZ

3
R − YR

)
−
(
3X2

R + a4Z
4
R

) (
xQZ

2
R −XR

)
. (4.3)

There are two obvious operations that lead to instances of the HFP: the multipli-
cation of yQ with Z3

R and the multiplication of xQ with Z2
R. The outline of the

attack is similar for both cases and we continue with the computation of xQZ2
R.

Reduced Tate pairing

For the case of the reduced Tate pairing it holds that ZR ∈ Fq and xQ ∈ Fqk .
For Fqk = Fq(θ), we express xQ with respect to the basis {1, θ, . . . , θk−1} as
xQ =

∑k
i=0 x

(i)
Q θ

i. Then, we expand the product xQZ2
R:

xQZ
2
R =

k−1∑
i=0

x
(i)
Q Z

2
R θ

i.

In Pair-Argument-2 we can control Q, and hence also x(i)Q for i ∈ [0, k − 1] while
P and therefore also ZR is fixed. We obtain an oracle OZ2

R
( · ) for the HFP from

Definition 4.1 that we can query on different elements b = x
(i)
Q for an i ∈ [0, . . . , k−1].

If we assume an algorithm for solving this HFP instance, we learn Z2
R.

Reduced Ate pairing

For the case of the reduced Ate pairing, it holds that xQ ∈ Fq and ZR ∈ Fqk . This
time, we express Z2

R as Z2
R =

∑k−1
i=0 Z

(i)
R θi. We expand the product xQZ2

R:

xQZ
2
R =

k−1∑
i=0

xQZ
(i)
R θi.
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For each i ∈ [0, k− 1] we obtain an oracle O
Z

(i)
R

( · ) for the HFP from Definition 4.1.
We can can query the oracle on different elements b = xQ. If we assume an
algorithm for solving these HFP instances, we learn Z(i)

R for each i ∈ [0, k−1]. This
allows us to recover the complete Z2

R.
Remark 4.6. If we make the same assumption as in Section 4.3 that G2 is represented
based on a degree d twist E′ of E, then we can write R = ψ(R′) for R′ ∈ E′(Fqk/d)
with ψ from Definition 2.13. Then ZR ∈ Fqk/d and only k/d instances of the HFP
have to be solved.
In Section 4.3 this efficient representation of G2 was crucial in order to mount

the attack. Here, this representation reduces the number of HFP instances by a
factor of d but is not necessarily required.

4.4.2. Recover secret from side-channel information

The point R in iteration j of Algorithm 3.4 is a fixed multiple of the point P . Let
R = nP for some n ∈ N. Now we express the multiplication-by-n map [n] : E → E
as a rational map of projective algebraic sets of the form [n] = (ψX , ψY , ψZ). We
assume that we know the implementation of Algorithm 3.4, and especially the
concrete implementation of the group law in projective coordinates. We recursively
apply this implementation to variables (x, y, z) to explicitly construct ψX , ψY ,
and ψZ . Now we use the assumption that P is normalized with z-coordinate
1. We de-homogenize [n] by setting z = 1 to obtain ψX , ψY , ψZ ∈ Fq[x, y] and
ψZ(P ) = ZR. Hence P is a root of the polynomial f(x, y) = ψZ(x, y)2 − Z2

R.
With the Weierstrass equation F (x, y) = y2−x3−a4x−a6 we define the algebraic

set X = V (f(x, y), F (x, y)). Then P ∈ X(Fqk). Hence, we can find P by first
enumerating X(Fqk) and then verifying candidates as in Section 4.2. Note that
for the Tate pairing with P ∈ E(Fq) we can restrict our search to X(Fq) for an
improved efficiency.
From the addition and doubling formulas for projective coordinates (see, for

example, Section 13.2 of [Coh+06]), we see that n and the degree of f(x, y) grow
exponentially in the attacked iteration j. Hence, we have to apply the attack for
small j. More precisely, for Jacobian coordinates ψZ(x, y) is well known. Here,
it holds that ψZ(x, y) = cψn(x, y) where ψn is the n-th division polynomial (see
Section 3.2 of [Was03]) and c ∈ Fqk is a constant that depends on the concrete
implementation of the group law. On E, ψn(x, y)2 and hence f(x, y) can be written
as a univariate polynomial in x of degree n2 − 1 [Was03, Lemma 3.5].

Example 4.7. For a small example, assume that we target the second iteration of
Algorithm 3.4 and that no addition in Line 7 occurs in the first iteration. Then
j = 2, n = 2, and R = 2P . From the group law in Jacobian coordinates it follows
that ZR = 2yP . We obtain f(x, y) = 4y2P −Z2

R of degree 2. On E, we can substitute
y2P = x3P + a4xP + a6 to obtain a univariate polynomial of degree n2 − 1 = 3.

We performed the analysis for randomly chosen P ∈ E(Fq)[r] with a Pari/GP
[PAR12] based implementation. We computed X(Fq) by factoring the resultant of
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f(x, y) and F (x, y) over Fq to obtain x-coordinates of X(Fq) that we extended to
y-coordinates based on the Weierstrass equation F (x, y). We were able to recover
P from Z2

R for j ≤ 5 and fields of size log(q) = 1024 in a few minutes.

Remark 4.8. The recovery of P from ZR is exactly where our our analysis differs
from [MFN09]. In [MFN09], with knowledge of Z2

R, a second DPA on the modular
addition of xQZ2

R−XR in (4.3) is used to recover XR. From ZR and XR, the point
R can be recovered based on the Weierstrass equation in Jacobian coordinates.
Then P can be computed as P = n−1R. We avoid the additional DPA of the
addition with our algebraic approach.

4.4.3. Summary of the analysis

In summary, we described how to apply the HFP to recover the z-coordinate
of an intermediate point. We assumed a normalized argument P = (xP , yp, 1)
of the pairing. This assumption is reasonable because it offers more efficient
implementations. We showed that under this assumption it is possible to recover
the secret point P directly from the obtained z-coordinate if one of the early
iterations of Algorithm 3.4 is attacked.
With respect to the recovery of the z-coordinate, our attack is similar to the

attack of [MFN09]. But while [MFN09] require a DPA of a modular multiplication
and a modular addition to obtain P , our algebraic approach avoids the DPA of the
addition.
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Chapter 5.

Framework for the analysis of fault
attacks on pairings

In this chapter, we turn from passive attacks to active attacks. We introduce
a framework for the systematic analysis of fault attacks on pairings, or more
specifically, on the protocol Pair-Argument from Definition 3.17. Although several
fault attacks on the pairing computation were described in the literature, to the
best of our knowledge, no systematization of fault analysis of pairings exists. In this
chapter, we close this gap and provide a unified framework that helps to estimate
the efficiency of current and future attacks and that helps to automate the analysis
of new attacks. We already took the first steps into this direction in the analysis of
our fault attack on pairings in [Blö+14], but in this generality we did not publish
this framework so far.
The outline of this chapter is as follows: In Section 5.1 we give background

information on pairing inversion, we present related work, and we outline our
contribution. In Section 5.2 we provide our framework for the analysis of fault
attacks on pairings. In Section 5.3 we provide additional background information
on the tools of the framework. In Section 5.4 we apply the framework to selected
attacks from the literature.

5.1. Introduction

We see from Definition 3.17 that a key recovery attack without faults on Pair-
Argument has to invert the pairing in one of its arguments. In order to understand
how faults can facilitate this task, we give some background information on pairing
inversion. In Section 5.1.1 we start with a formal definition of pairing inversion
and outline the basic algebraic approach to the problem. We will conclude that
in general, second order faults are required for an attack. Then, in Section 5.1.2
we introduce the hidden root problem (HRP) from [Ver08] that connects pairing
inversion with fault attacks on pairings. The HRP and the techniques of [Ver08]
to approach the HRP are an important part of our framework. In Section 5.1.3
and Section 5.1.4 we summarize related work and our contribution, respectively.
In Section 5.1.5 we shortly explain how FAs on Pair-Argument relate to FAs on
concrete pairing-based schemes.
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5.1.1. Pairing inversion

The problem of pairing inversion has been studied in the literature, for example in
[Sat07; GHV08]. Typically, pairing inversion is defined as follows (cf. Definition 1
of [GHV08]):

Definition 5.1. Let i ∈ {1, 2}, (G1,G2,GT ) be pairing groups, and e : G1×G2 → GT
be a bilinear pairing. Furthermore, let Pi ∈ Gi be fixed. Given Pi and a ∈ GT , the
fixed argument pairing inversion (FAPI)-i problem is to compute P3−i ∈
G3−i such that a = e(P1, P2).

We see that FAPI-i corresponds to the analysis of Pair-Argument-i for i ∈ {1, 2}.
For pairings that are useful in cryptography, the problem of FAPI can be considered
as hard. For example, if both the FAPI-1 problem and the FAPI-2 problem can
be solved efficiently for (G1,G2,GT ), then also the CDH problem can be solved
efficiently in G1, G2, and GT (cf. Section III of [GHV08]).
Now we outline an approach to solve FAPI because it leads us to the analysis

of fault attacks on pairings. To make it more explicit, we give our description
for the reduced Tate pairing from Definition 2.33. For now, assume an attack
on Pair-Argument-1: i.e., that the second argument of the pairing is secret. For
the groups G1,G2 ⊆ E(Fqk)[r] (cf. Definition 2.18) let a = milr,P (Q)(q

k−1)/r be
the result of the reduced Tate pairing on input P ∈ G1 and Q ∈ G2. We can
now consider pairing inversion as a two-step process consisting of exponentiation
inversion (EI) and Miller inversion (MI) [GHV08]:

1. Exponentiation inversion: Compute the
(
qk − 1

)
/r-th roots of a to find b in

the image of milr,P (x, y) on the domain G2.

2. Miller inversion: Compute solutions of b = milr,P (x, y) for fixed b to find Q.

It is shown in Section VII.D of [GHV08] that the degree of non-degenerate pairings
is large, at least in the order of r. Hence, at least one of

(
qk − 1

)
/r or deg(milr,P ) is

large. If
(
qk − 1

)
/r is large, EI is difficult because we do not know how to efficiently

identify the
(
qk − 1

)
/r-th root b of a that fulfills milr,P (Q) = b. If deg(milr,P ) is

large, for MI, we need to solve a polynomial equation of large degree. In general,
this is also difficult.

We conclude that in general, two faults are required to attack a pairing. With the
first fault, we reduce the degree of the Miller function milr,P (x, y) to facilitate MI.
With the second fault, we introduce an algebraic structure into the final exponent to
facilitate EI.

5.1.2. The hidden root problem

Assume a fault is introduced into the computation of milr,P (Q) such that its secret
argument can be described as the root of a small-degree polynomial. In this case
we are left with EI. In [Ver08], Vercauteren studies this problem. We start with
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the definition of the (subfield) HRP that is basically an adaption of the definition
from [Ver08] to our notation:

Definition 5.2. Let D1 and D2 be algebraic sets defined over Fqk . Let e ∈ N with
e|qk − 1 and {fx : D2 → Fqk}x∈D1 be a family of keyed maps. Let S ∈ D1 be fixed.
The hidden root problem is the problem to recover S with oracle access to fS( · )e.
If D1 is defined already over a proper subfield Fqd of Fqk , we call the HRP also
subfield HRP.

We demonstrate the connection of the HRP to fault attacks on PBC in an
example.

Example 5.3. Consider the protocol Pair-Argument-2 from Definition 3.17 and
let the pairing be instantiated with the reduced Tate pairing from Definition 2.33
with G1 = E(Fq) and G2 = G2 ⊆ E(Fqk). Let S ∈ G1 be the secret key of B.
Furthermore, assume an attacker A is allowed to query B for the computation of
the pairing on elements Q ∈ G2. Then A introduces a fault at Algorithm 3.4 such
that TS(Q)e from Definition 3.8 is computed in place of milr,S(Q)e. This gives
A an oracle for the function TS( · )e. With Di = Gi and S ∈ D1, we are in the
setting of Definition 5.2. Even more specifically, because S is already defined over
Fq ⊂ Fqk , this is an instance of the subfield HRP.

Vercauteren [Ver08] gives an approach for solving the HRP. A crucial step in
the analysis is, for a given exponent e, to find an integer u < (qk − 1)/e such that
ue =

∑
i≤0 εiq

i has a small weight wq(ue) (cf. Definition 2.1).
Let Φk(x) be the k-th cyclotomic polynomial. Vercauteren concludes that the

approach is not efficient for final exponents of the form e =
(
qk − 1

)
/r where r is

a proper divisor of Φk(q) with a large cofactor. For the reduced Tate and reduced
Ate pairing, this is typically the case:

Lemma 5.4. For E/Fq with r|#E(Fq) let 2 < k < 105 be the embedding degree of
q > 2 and r. Then Φk(q)/r ≥ q/4.

Proof. For k < 105, the coefficients of Φk(x) are in {0,−1, 1} with leading coefficient
1 [Lan02]. With n = deg(Φk(x)) it follows that Φk(q) ≥ qn−

∑n−1
i=0 q

i. For q > 2 it
holds that

∑n−1
i=0 q

i ≤ qn/2 and hence Φk(q) ≥ qn/2. From Lemma 3.12 we see that
r|Φk(q). Because r|#E(Fq) it follows from Theorem 2.6 that r ≤ 2q and hence
Φk(q)/r ≥ (qn/2)/(2q). For k > 2 it holds that n ≥ 2 and the claim follows.

Hence, for fault attacks on the reduced Tate and the reduced Ate pairing, the
approach of [Ver08] is efficient only if also faults at the final exponentiation are
considered. In this chapter, we extend the approach of [Ver08] into this direction.
We also give more background information on the individual steps from above.
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5.1.3. Related work

Several fault attacks on pairings use a fault to facilitate MI: e.g., [PV06; WS07;
Mra10; Mra09; BMH13] and in Section 6.1.1 we give a more detailed overview of
existing attacks. All those attacks reduce the degree of milr,P (Q) as a function
in the secret argument by means of faults. In the case where the final exponent
already has a special structure, one fault is sufficient. Indeed, as we will see in
Section 6.1.1, all fault attacks on a complete pairing computation that use only
one fault assume a special structure of the final exponent [PV06; WS07]. Only a
few attacks target the final exponentiation to facilitate EI. Exceptions are [LFG13]
and our attacks from Chapter 6. Even though several theoretical fault attacks on
pairings were published, so far no systematization of the analysis exists. The only
work in this direction is [Ver08] which studies the HRP and provides a systematic
approach to solve it.
Because the analysis of fault attacks on pairings is related to pairing inversion,

we now give some examples from literature that study FAPI. In [GHV08] Galbraith,
Hess, and Vercauteren give an extensive overview of pairing inversion. They relate
the hardness of pairing inversion to problems like the CDH problem and the bilinear
Diffie-Hellman (BDH) problem. Furthermore, it was already observed in [GHV08]
that some pairings have a Miller function of polynomial degree such that MI can be
solved algebraically in polynomial time. The authors of [GHV08] remark that this
approach quickly becomes inefficient for growing degrees of the Miller function and
that it might be faster to solve FAPI by computing the DLOG in F∗

qk
. Furthermore,

in [GhS07] and [Sat13], FAPI is studied for the case where the exponent has a
special algebraic structure that allows to reduce FAPI to MI.

There is a line of work, including for example [KO12] and [Cha+14], that reduces
FAPI of more general pairings to EI of so-called auxiliary pairings with a small
degree Miller function. For this reduction, an oracle for EI on the auxiliary pairing
is required in order to access the output of the auxiliary Miller function. Galbraith
argues in [Gal13] that EI cannot be well-defined without reference to the solution
of pairing inversion and he doubts that this approach leads to interesting insights
to pairing inversion.

5.1.4. Our contribution

Based on [Ver08], we describe a general framework for the evaluation of FAs on
pairings with the goal to provide a unified approach for analyzing previous and
future attacks. Our framework considers faults in both steps, Miller algorithm and
final exponentiation, of the pairing computation. Our main contribution of this
chapter is to present the techniques from [Ver08] with focus on fault attacks on
pairings. Furthermore, we extend the work of [Ver08] in some details:

• In Section 5.2.1 we define a formal model for fault attacks on pairings that,
additionally to [Ver08], also covers error terms in Fq that are introduced at
fault injection. Based on our definition, we are able to give a unified analysis
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for either case where the first argument P or the second argument Q of the
pairing is secret.

• In Section 5.3.2 we provide prototypes that show how to express relevant
attacks from literature with our model.

• In Section 5.3.3 and Section 5.3.5 we give more details on how faults at the
final exponentiation can be handled by the analysis.

• The analysis of [Ver08] uses Weil restriction of scalars from Definition 2.2. In
Section 5.3.6 we give a detailed description of how Weil restriction of scalars
applies to the analysis.

• In Section 5.4 we apply our framework to the attacks from [PV06] and [LFG13].
The goal is to demonstrate the individual steps of our analysis. Furthermore,
the systematic analysis of those attacks highlights their basic ideas.

We remark that our contribution of this chapter has not been published so far.

5.1.5. Application to concrete schemes

In the abstract protocol Pair-Argument, A has access to the result a = e(P,Q) of
the pairing computation. For our attacks, also as for previous attacks on pairings,
access to a is required. One the one hand, this shows that the result of the pairing
computation has to be protected carefully to prevent attacks. On the other hand,
in [CKM15] the authors argue that in most pairing-based schemes, the adversary
cannot directly access the result of the pairing computation. The reason is that in
a practical system like BasicIdent from Definition 3.14, a KDF or a hash function
is applied to map e(P,Q) to {0, 1}∗. Hence, to turn an attack on Pair-Argument
into an attack on a real scheme, the KDF has to be inverted by other means, for
example, by an additional fault.

5.2. Description of the framework

In this section, we define our framework for the analysis of FAs on pairings. In
Section 5.2.1 we give the necessary definitions and in Section 5.2.2 we outline the
steps of the analysis.

5.2.1. Models for fault attacks on pairings

Now we introduce two models. We use the first model to describe an attack. With
the second model, we describe the input of the mathematical analysis.
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Model for the attack

Inspired by the HRP [Ver08] from Definition 5.2, we model fault attacks on pairing
computations based on an oracle that allows us to evaluate a set of functions that
depend on the targeted secret:

Definition 5.5. Let D ⊆ An be an algebraic set defined over Fq. We say that an
attack implements an oracle for a setM⊆ Fq(x1, . . . , xn) of rational functions, if,
for all f ∈M, the attack allows us to evaluate f on the elements of D.

The idea is thatM models a set of functions that an attacker can realize in an
attack by modifying the pairing computation by means of faults. As in Definition 5.2
these functions will depend on the secret S. With oracle access toM, it will be
the attacker’s task to recover the secret S. Here, D represents the domain of the
pairing’s public argument. For example, the attack from Example 5.3 implements an
oracle for the setM = {TS(x, y)e} on the domain D = G2 ⊆ E(Fqk). Furthermore,
D also models faults in Fq that are introduced by the attack. Hence, depending on
the fault model and different from Definition 5.2, the attacker has not necessarily
full control over the arguments of the functions inM. We provide examples later
in Section 5.3.2 and Section 5.4.2.

Model for the secret

Now we give a definition that describes the secret argument S of the pairing by a
set of rational functions. This is what we call a model for a secret S:

Definition 5.6. Let S ∈ E(Fq) and F ⊂ Fq(x1, . . . , xn). We say that F is an
Fq-rational model for S if there exists (α1, . . . , αn) ∈ An(Fq) with the following
properties:

1. For all f ∈ F it holds that f(α1, . . . , αn) = 0.

2. S can be efficiently computed from (α1, . . . , αn).

If, additionally, the degree of every element in F is bounded by d, then we say that
F is a degree-d model for S.

We see that a model for a secret S encodes S as a solution of a system of rational
equations. Furthermore, to be a solution of the model is a necessary and not a
sufficient condition for encoding S. Hence, in general, the model does not uniquely
determine S.
In an attack that implements an oracle for a setM of rational functions in the

sense of Definition 5.5, there is a canonical way to deduce a model for a secret
S ∈ E:

1. Let fS ∈M and a = fS(Q) be the response of the oracle on input Q.

2. With P = (x, y), add a− fP (Q) ⊆ Fq(x, y) to the model.
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3. Add the Weierstrass equation (2.3) that defines E to the model.

For the attack from Example 5.3 we obtainM = {TS( · )e} and a = TS(Q)e. Let
P = (x, y). Then, f(x, y) = a− TP (Q)e together with the Weierstrass equation of
the curve define a model for S. As we will see in Section 5.3.2, there are examples
where the canonical approach fails because the resulting initial model has too large
degree.

Remark on notation

The descriptions of oracle and model depend on whether the first or the second
argument of the pairing e(P,Q) is the secret. The reason is that P parameterizes
functions such as milr,P (x, y) or TP (x, y) that occur during the pairing computation
while these functions are evaluated at Q. Furthermore, we see from Definition 3.8,
that these functions are not symmetric in P and Q. In order to give a unified
description for either case, we sometimes move P from a parameter to an argument,
or more generally:

Definition 5.7. Let D1 and D2 be algebraic sets defined over Fq. Furthermore, let
{fP : D2 → Fq}P∈D1 be a family of maps. We identify this family with the map

f : D1 ×D2 → Fq
(P1, P2) 7→ fP1(P2).

Furthermore, for D1 ⊆ An(Fq), D2 ⊆ Am(Fq), P1 = (x1,1, . . . , x1,n), and P2 =
(x2,1, . . . , x2,m) we also write

f(x1,1, . . . , x1,n;x2,1, . . . x2,m) = f(P1, P2).

5.2.2. Steps of the analysis

After we defined an initial model F for a secret S according to Definition 5.6 we
perform a sequence of model transformations. The goal is to end up with a model
F ′ of low degree that contains only polynomials. Hence, this new model defines an
algebraic set V (F ′) that contains S, or more precisely, that contains an element
(α1, . . . , αn) ∈ V (F ′) such that S can be efficiently computed from this element. If
the model contains enough independent relations such that V (F ′) is of dimension
zero and furthermore, if the degree of the model F ′ is small enough, we can use
standard tools to enumerate all elements of V (F ′) and eventually compute S.

We now give an overview of the single steps of the analysis. Later, in Section 5.3,
we provide more details on the individual steps.

1. Oracle queries: We query the oracle from Definition 5.5 for our fault attack
to collect a set of erroneous pairing results in Fqk .

For details, we refer to Section 5.3.1.
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2. Initial model: Based on the erroneous pairing results from the previous
step, we define an initial model F ⊂ Fqk(x1, . . . , xn) for the secret S (see
Definition 5.6).

For details, we refer to Section 5.3.2.

3. Model transformations: To compute S from F , we first perform several
transformations on the elements of F as outlined in the next steps.

a) Combine exponents: Let F ⊆ Fqk(x1, . . . , xn) with elements of the
form

f(x1, . . . , xn)e1 − a1
. . .

f(x1, . . . , xn)em − am.

In this step, we combine these functions to one function f (x1, . . . , xn)e−
a with e = gcd

(
qk − 1, e1, . . . , em

)
.

For details, we refer to Section 5.3.3.

b) Rescale exponents: Let F ⊆ Fqk(x1, . . . , xn) with f (x1, . . . , xn)e −
a ∈ F . Assume there exists a u ∈ Z with u 6= ord(a) and wq(ue)� wq(e)
(cf. Definition 2.1). Then we replace f (x1, . . . , xn)e−a with the function
f (x1, . . . , xn)ue − au.
For details, we refer to Section 5.3.4.

c) Split exponents: Let F ⊆ Fqk(x1, . . . , xn) with f (x1, . . . , xn)e−a ∈ F .
In this step, we first factor e into e = lh with small wq(l) and small h.
Then we compute b1, . . . , bh ∈ Fqk with bhi = a. Finally, we continue with
h copies F1, . . . ,Fh of F . In the copy Fi we replace f (x1, . . . , xn)e − a
with f (x1, . . . , xn)l− bi. We perform the subsequent steps for each copy.

For details, we refer to Section 5.3.5.

d) Transformation to the base field: Let F ⊆ Fqk(x1, . . . , xn). In
this step, we clear denominators and use Weil restriction of scalars to
transform F into a model in Fq[x1,1, . . . , xn,k] with kn variables.

For details, we refer to Section 5.3.6.

e) Fix variables: Let F ⊆ Fq[x1,1, . . . , xn,k]. First, we fix variables from
{x1,1, . . . , xn,k} that represent elements that are either known to us or
can be guessed with high probability. Then, we proceed with one copy
of F for each guess.

For details, we refer to Section 5.3.7.

4. Compute solutions: Let F1,F2, . . . ⊆ Fq[x1,1, . . . , xn,k] be the outcome of
our transformations. In this step, we first compute

X =
⋃
i≥1

V (Fi)(Fq).
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Then we compute candidates for the secret S from X.

For details, we refer to Section 5.3.8.

5. Verify candidates: In this step, we verify each candidate of the previous
step to identify S. For the verification, we can use the corresponding public
key or a non-erroneous pairing computation.

For details, we refer to Section 5.3.9.

5.3. Background information on each step of the
framework

In this section, we give details on the individual steps of the analysis that we
introduced in the previous section. An important measure that determines the
efficiency of step 4 in Section 5.2.2 are the number of monomials that occur in
F1,F2, . . . . We can bound the number of monomials based on the degree and the
number of variables that occur in F1,F2, . . . :

Lemma 5.8. Let f(x1, . . . , xn) be a polynomial of degree deg(f) = d. Then

# mon(f) ≤
(
d+ n

d

)
.

Proof. Consider the set S = {1, x1, . . . , xn} of size n + 1. We can think of a
monomial as a multiset M of size d over the elements in S. Multiset, because
every variable can occur multiple times in a monomial and because the order of
the variables does not matter. Furthermore, the 1 elements inM allow monomials
of degree less than d. The number of multisets of size d over a set of size n+ 1 is
given as (

d+ (n+ 1)− 1

d

)
.

The common rationale behind the individual steps of our analysis therefore is to
reduce the degree of the models while keeping the number of variables as small as
possible.

5.3.1. Oracle queries

In step 1 of Section 5.2.2, we query our fault oracle, i.e., we perform our fault
attack to gather information about the secret S. The more queries we issue on
independent inputs, the more information we potentially obtain on S. Furthermore,
more constraints on S will potentially increase the efficiency of step 4.
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5.3.2. Initial model

In step 2 of Section 5.2.2, we define an initial model F for a secret S according
to Definition 5.6. To end up with a model of small degree in step 4, we already
need to define the model in this step such that the number of its variables and its
degree are as small as possible. How to define the model strongly depends on the
faults we introduce in the attack, but we provide examples that cover all attacks
we are aware of.

In our examples, we always consider the reduced Tate pairing from Definition 2.33.
For groups G1 ⊆ (Fq)[r] and G2 ⊆ E(Fqk)[r] the pairing can be computed as
e(P,Q) = milr,P (Q)(q

k−1)/r. We first concentrate on the Miller step milr,P (Q) of
the pairing computation and handle the final exponentiation with

(
qk − 1

)
/r at

the end of this section.

Model for attacks without faults in Fq

In this section, we consider fault attacks where the initial model F consists of
functions of the form

f(x1, y1;x2, y2)
c − b with b = bξ11 b

ξ2
2 (5.1)

for b1, b2 ∈ Fqk and c, ξ1, ξ1 ∈ Z.

Example 5.9. Possibly the simplest example is an attack where the loop of
Algorithm 3.4 is terminated in the first iteration after Line 3 has been computed
and where the final exponentiation is completely skipped. This attack implements
an oracle for the function f(x1, y1;x2, y2) = mil2,P1(P2) with P1 = (x1, y1) and
P2 = (x2, y2).
For the result b1 = mil2,P (Q) of an oracle query on P and Q we follow the

canonical approach described in Section 5.2.1 to define the model by

f(x1, y1;x2, y2)− b1 (5.2)

and the Weierstrass equation (2.3) of the curve. With ξ1 = 1, ξ2 = 0, c = 1 the
function (5.2) is of the form (5.1).

For S ∈ {P,Q} this results in a model for S, because for the query on P and Q,
(P,Q) is a root of (5.2) and obviously we can efficiently compute S from this tuple.

We presented an attack with an initial model similar to this example in [Blö+14].
For a detailed description, see also Section 6.2. Now, we give a more complicated
example where c 6= 1 in (5.1):

Example 5.10. We assume an attack with two erroneous pairing executions. In
both executions, the final exponentiation is completely skipped. For the first
execution, we assume that no fault is introduced during the computation of Algo-
rithm 3.4. For the second execution, we assume that a fault is introduced such that
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the multiplication in Line 3 with TR(Q)/V2R(Q) in iteration i of Algorithm 3.4 is
skipped. Let Ri be the value of R at the beginning of iteration i in Algorithm 3.4,
i.e., Ri = tiP for some ti ∈ Z. With P1 = (x1, y1) and P2 = (x2, y2) this attack
implements an oracle for the functions

f1(x1, y1;x2, y2) = milr,P1(P2)

f2(x1, y1;x2, y2) = milr,P1(P2)

(
V2tiP1(P2)

TtiP1(P2)

)2N−i−1

.

To see this, note that the factor TRi(Q)/V2Ri(Q) is squared for N − i − 1 times
for the computation of milr,P (Q) and that this factor is removed for the second
execution.
Let b1 = f1(P,Q) and b2 = f2(P,Q) be the result of oracle queries on input P

and Q. We introduce variables x3, y3 that represent Ri and with b1 and b2 we
define the model F by the function(

T (x3, y3;x2, y2)

V ([2](x3, y3);x2, y2)

)2N−i−1

− b1
b2

(5.3)

together with the Weierstrass equation (2.3). Remember that [2] : E → E denotes
the multiplication-by-2 map and that this map is given by rational functions (cf.
Definition 2.9). Finally, with c = 2N−i−1, ξ1 = 1, and ξ2 = −1 (5.3) is of the form
(5.1).

From the definition of f1, f2, and Ri, it follows that (Ri, Q) is a root of (5.3).
Furthermore P can be efficiently computed on E from Ri with P =

(
t−1i mod r

)
Ri.

Hence we obtain a model in either case S = Q or S = P .

Now, we give an example with ξ2 = −2:

Example 5.11. Again, we assume an attack with two erroneous pairing executions.
For both executions, the final exponentiation is skipped. For the first execution,
we assume that no fault is introduced during the computation of Algorithm 3.4.
For the second execution, we assume that a fault is introduced such that the last
iteration of Algorithm 3.4 is completely skipped.
With P1 = (x1, y1) and P2 = (x2, y2), this attack implements an oracle for the

functions
f1(x1, y1;x2, y2) = milr,P1(P2)

f2(x1, y1;x2, y2) = mil(r−1)/2,P1
(P2).

To see this, note that Algorithm 3.4 processes r from the MSB to the LSB. Hence,
a skip of the last iteration corresponds to skipping the LSB of r. Because r is
an odd prime it holds that the erroneous computation of Algorithm 3.4 evaluates
mil(r−1)/2,P1

(P2).
Let b1 = f1(P,Q) and b2 = f2(P,Q) be the result of oracle queries on input P

and Q. For RN−1 = ((r − 1)/2)P we introduce variables x3, y3 and with b1 and b2
we define the model F by the function

T (x3, y3;x2, y2)− b1b−22 (5.4)
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and (2.3). With c = 1, ξ1 = 1, and ξ2 = −2 the function ion (5.4) is of the form
(5.1).

We claim that (RN−1, Q) is a zero of (5.4). To see this, note that RN−1 is the
value of R at the beginning of iteration N − 1 in Algorithm 3.4. Because P is
of odd order r it holds that 2RN−1 = −P . By comparing divisors, we obtain
V2RN−1

= LP,2RN−1
and V2RN−1+P = 1. Hence, it holds that

b1 = b22TRN−1
(Q)

and it follows that b1b−22 = TRN−1
(Q) = T (RN−1, Q).

An attack with an initial model like in this example is given in [Mra09].

Model for attacks with faults in Fq

We also consider faults that modify finite field elements in Fq according to a random
distribution. If we are not able to predict the value of the modified field elements,
we need to represent them by additional variables in the model. Therefore, we
consider models F ⊆ Fqk(x1, y1, x2, y2, x5, . . . , xn) where x5, . . . , xn represent the
faults in Fq. For most of the practical attacks, only one fault in Fq and hence, only
one additional variable x5 is required. For an example, we modify Example 5.10:

Example 5.12. We assume an attack with two erroneous pairing executions.
For both executions, the final exponentiation is completely skipped. For the
first execution, we assume that no fault is introduced during the computation
of Algorithm 3.4. For the second execution, we assume that a transient fault is
introduced into the x-coordinate of Q in the computation of TR(Q) in iteration i
of Algorithm 3.4, such that TR(Q) is replaced by TR(x(Q) + δ, y(Q)) with δ ∈ Fq.
Let Ri be the value of R at the beginning of iteration i in Algorithm 3.4, i.e.,

Ri = tiP for some ti ∈ Z. With P1 = (x1, y1) and P2 = (x2, y2), this attack
implements an oracle for the functions

f1(x1, y1;x2, y2) = milr,P1(P2)

f2(x1, y1;x2, y2;x5) = milr,P1(P2)

(
Tt1P1(x2 + x5, y2)

TtiP1(x2, y2)

)2N−i−1

.

Let b1 = f1(P,Q) and b2 = f2(P,Q, δ) be the result of oracle queries on input P ,
Q and δ. We introduce variables x3, y3 that represent Ri and with b1 and b2 we
define the model F by(

T (x3, y3;x2, y2)

T (x3, y3;x2 + x5, y2)

)2N−i−1

− b1
b2

(5.5)

and (2.3). With c = 2N−i−1, ξ1 = 1, and ξ2 = −1 the function (5.5) is of the form
(5.1) but with an additional variable x5.

From the definition of f1, f2, and Ri, it follows that (Ri, Q, δ) is a root of (5.3).
Furthermore P can be efficiently computed from Ri on E by P =

(
t−1i mod r

)
Ri.

Hence we obtain a model in either case S = Q or S = P .
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An attack with an initial model like in this example is given in [WS07] . Another
case where additional variables are introduced is an attack on masked implementa-
tions. Here, the mask as an element defined over Fqk , is represented by variables.
Examples are given in [PSM11; MF15].

Extend models to the final exponentiation

So far, we always assumed that the complete final exponentiation is skipped in the
attacks and hence, we did not consider it in the definition of the model. In this
case, our initial model was always given by a function of the form (5.1).
It is straight forward to extend our models to the case where a fault during

the final exponentiation modifies the exponent into an erroneous exponent ẽ. We
simply need to replace a function of the form f(x1, . . . , xn)c−b ∈ F from (5.1) with
f(x1, . . . , xn)cẽ − bẽ. This transforms a model for an attack where the complete
final exponentiation is skipped into a model where the exponent is modified into ẽ.
For the additional case where a fault is introduced in Fq during the exponentiation
we give an example in Section 5.4.2 .

5.3.3. Combine exponents

In step 3.a of Section 5.2.2, we invert coprime factors of the occurring exponents to
reduce the degree of the model. Let F ⊆ Fqk(x1, . . . , xn) be a model for the secret
S. Suppose, F contains a set of functions of the form

f(x1, . . . , xn)e1 − a1
f(x1, . . . , xn)e2 − a2

. . .

f(x1, . . . , xn)em − am

(5.6)

with ai = bei for a fixed b ∈ Fqk .
In this step, we replace the functions in (5.6) by a single function f (x1, . . . , xn)e−

a where e = gcd
(
qk − 1, e1, . . . , em

)
. We can determine a based on the extended

Euclidean algorithm (EEA):

Lemma 5.13. Let a1, . . . , am ∈ F∗
qk

and e1, . . . , em ∈ N. Define e = gcd(qk −
1, e1, . . . , em). Then, there are u0, u1, . . . , um ∈ Z with e = u0(qk− 1) +u1e1 + . . .+
umem. Furthermore, the system

xe1 = a1

xe2 = a2

. . .

xem = am

(5.7)

has either no or exactly e solutions in Fqk . In the latter case, define a =
∏m
i=1 a

ui
i .

Then the solutions of (5.7) are the e-th roots of a in Fqk .
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Proof. By repeated application of the EEA we can compute u0, . . . , um as required.
Now assume (5.7) has a solution x0 ∈ Fqk . Let x′0 = x0ξ be any element in F∗

qk
.

It holds that (x0ξ)
ei = aiξ

ei . Furthermore aiξei = ai for all i ∈ [1,m] if and only
if ord(ξ)|e. Hence ξ ∈ µe, the e-th roots of unity. Because e|qk − 1 it holds that
µe ⊆ F∗

qk
. Hence, if (5.7) has one solution x0, then all solutions are given by the

coset x0µe.
Finally,

xe0 = x
u0(qk−1)
0

m∏
i=1

xuiei0 =
m∏
i=1

auii = a.

This lemma shows that a simultaneous zero of (5.6) is also a zero of the function
f (x1, . . . , xn)e − a. Hence, replacing (5.6) with f (x1, . . . , xn)e − a will transform
a model F for a secret S into a new model for S.
The typical application where our model contains a system like (5.6) occurs in

an attack on the final exponent. Suppose b is the erroneous result of the Miller
algorithm on fixed inputs P and Q, modeled by f(x1, . . . , xn), and e1, . . . , em are
exponents resulting from different faults during the final exponentiation. Hence, we
obtain a1, . . . , am with ai = bei as results of the erroneous pairing computations.

5.3.4. Rescale exponents

In step 3.b of Section 5.2.2, we reduce the weight (see Definition 2.1) of exponents
because their weight will determine the degree of the model in step 3.d. We reduce
the weight of an exponent by multiplication with an appropriate factor u.
Let F ⊆ Fqk(x1, . . . , xn). Consider a function in F of the form

f (x1, . . . , xn)e − a (5.8)

with a ∈ Fqk . First we compute u ∈ Z such that wq(ue)� wq(e) and ue 6= qk − 1.
Then we replace (5.8) in F with the function

f (x1, . . . , xn)ue − au.

If F is a model for the secret S, then the result of this transformation obviously
is also a model for S. If gcd(qk − 1, u) 6= 1, the new model might have additional
solutions. But as long as we obtain a non-trivial relation, i.e., ue 6= qk − 1, we
can counteract this by adding more independent equations to the model based on
additional queries to the oracle in step 1 of Section 5.2.2.
In most applications, we can find u as a divisor of (qk − 1)/e. But [Ver08] also

give a more general approach to find u based on lattices. They define the lattice
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that is spanned by the rows of the matrix

B =


e 0 0 . . . 0

−q 1 0 . . . 0

−q2 0 1 . . . 0
...

...
...

. . .
...

−qk−1 0 0 . . . 1

 .

The next lemma shows that we can find multiples of e with small weight based on
this lattice:

Lemma 5.14. Let v be a vector in the lattice spanned by the rows of B. For
w = (1, q, q2, . . . , qk−1) with transpose wT it holds that e|vwT .
Proof. Let v = (v0, . . . , vk−1). From the form of B it follows that v0 = ne −∑k−1

i=1 viq
i for some n ∈ Z. Hence, ne =

∑k−1
i=0 viq

i = vwT and therefore e|vwT .

By definition of w, the vector v defines a q-ary representation of vwT . According
to Definition 2.1, a short v with small `1-norm provides a light multiple of e.

5.3.5. Split exponents

In step 3.c of Section 5.2.2 that is complementary to step 3.b, we invert a small
factor of the exponents to decrease the degree of the resulting models.
Let F ⊆ Fqk(x1, . . . , xn) and assume F contains a function of the form

f (x1, . . . , xn)lh − a (5.9)

with light l (cf. Definition 2.1) and small h. Then we compute the h-th roots
b1, . . . , bh of a. Finally, we replace F with h copies F1, . . . ,Fh where in Fi, we
replace (5.9) with

f (x1, . . . , xn)l − bi. (5.10)

We obtain a new model for the secret S:

Lemma 5.15. If F is a model for S, then there exists an i ∈ [1, h] such that Fi is
a model for S.

Proof. If F is a model for S, then there exists a zero α = (α1, . . . , αn) of (5.9) such
that S can be efficiently computed from α. Let b = f(α1, . . . , αn)l. Then bh = a
and hence b ∈ {b1, . . . , bh}. Therefore, there exists an i ∈ [1, h] such that α is also
a zero of (5.10). Hence, Fi is a model for S.

How to choose l and h depends on the concrete application. On the one hand, a
large h may help to decrease wq(l). This enables us to reduce the degree of the
models in step 3.d. On the other hand, a large h introduces more models. This
increases the complexity for computing all candidate solutions in step 4. Hence, in
this step, we need to find a trade-off between the number of new instances and the
reduction of the degree.
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5.3.6. Transformation to the base field

In step 3.d of Section 5.2.2, we finally exploit light exponents. According to
Lemma 5.8, the number of monomials of a function of the form f(x1, . . . , xn)e is
bounded by (

edeg(f) + n

e deg(f)

)
. (5.11)

In this step, we transform a function of the form f (x1, . . . , xn)e−a ∈ Fqk(x1, . . . , xn)
into a system of polynomial equations in Fq[x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k] that
has kn variables. The following theorem summarizes the central property of this
transformation. It shows that the degree of the resulting system depends on wq(e)
rather than on e itself:

Theorem 5.16. Let a ∈ Fqk and

f (x1, . . . , xn)e − a ∈ Fqk(x1, . . . , xn). (5.12)

There is a set of polynomials F = {f1, . . . , fk} ⊆ Fq[x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k]
with degree at most wq(e) deg(f) such that the Fqk-rational zeros of (5.12) are in
one-to-one correspondence with the algebraic set V (F)(Fq).

According to Lemma 5.8, the number of monomials of F is bounded by(
wq(e) deg(f) + kn

wq(e) deg(f)

)
.

Hence, the theorem shows that we can replace the dependency on e in (5.11) by a
dependency on wq(e) at the expense of increasing the number of variables from n
to kn.
We now perform the transformation that we apply to an element of the form

(5.12) in order to give a constructive proof of Theorem 5.16.

Clear denominator

First let f = g/h with g, h ∈ Fqk [x1, . . . , xn]. Then, we clear denominators of (5.12)
and obtain

g(x1, . . . , xn)e − ah(x1, . . . , xn)e. (5.13)

Clear exponent

Now, let (ε0, ε1, . . . ) be the q-ary representation of e from Definition 2.1, i.e., in
particular e =

∑
i≥0 εiq

i. We expand (5.13) into∏
εi>0

g(x1, . . . , xn)εiq
i
∏
εi<0

h(x1, . . . , xn)|εi|q
i

− a
∏
εi>0

h(x1, . . . , xn)εiq
i
∏
εi<0

g(x1, . . . , xn)|εi|q
i
.
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Note that exponentiation with qi is a linear map on Fqk . Based on this, we apply
the exponents to the coefficients of g and h. With the qi-th power Frobenius maps
πqi : An → An we obtain:∏

εi>0

gq
i
(πqi(x1, . . . , xn))εi

∏
εi<0

hq
i
(πqi(x1, . . . , xn))|εi|

− a
∏
εi>0

hq
i
(πqi(x1, . . . , xn))εi

∏
εi<0

gq
i
(πqi(x1, . . . , xn))|εi|. (5.14)

Weil restriction of scalars

Now we construct the Weil restriction of scalars of the algebraic set defined by
(5.14) with respect to Fqk/Fq. Let {θ1, . . . , θk} be a basis for Fqk/Fq and let φ be
as in Definition 2.2. We abbreviate x = x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k. According
to Definition 2.2 we replace πqi with πqi ◦ φ = φq

i ◦ πqi to obtain∏
εi>0

gq
i
(φq

i
(πqi(x)))εi

∏
εi<0

hq
i
(φq

i
(πqi(x)))|εi|

− a
∏
εi>0

hq
i
(φq

i
(πqi(x)))εi

∏
εi<0

gq
i
(φq

i
(πqi(x)))|εi| (5.15)

in Fqk [x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k]. Note that φ is a bijection from Akn(Fq) to
An(Fqk) and hence, the Fqk -rational roots of (5.14) are in one-to-one correspondence
with the Fq-rational roots of (5.15).

Because πqi(P ) = P for every P ∈ Ank(Fq) we keep the Fq-rational roots fixed
when we drop the πqi and replace (5.15) with∏
εi>0

gq
i
(φq

i
(x))εi

∏
εi<0

hq
i
(φq

i
(x))|εi| − a

∏
εi>0

hq
i
(φq

i
(x))εi

∏
εi<0

gq
i
(φq

i
(x))|εi|. (5.16)

Like in Definition 2.2, we sort terms of (5.16) with respect to the basis {θ1, . . . , θk}
to obtain

k∑
j=1

fj(x)θj with fj(x) ∈ Fq[x]. (5.17)

With F = {f1, . . . , fk} the algebraic set Y = V (F) ⊆ Akn is the Weil restriction
of scalars of the algebraic set X that is defined by (5.16). By Theorem 2.3, the map
φ defines a bijection from Y (Fq) to X(Fqk) that provides us with the one-to-one
correspondence of Theorem 5.16.
Finally, from (5.16) we see that

max{deg(f1), . . . ,deg(fk)}

≤ max

{
deg(g)

∑
εi>0

εi + deg(h)
∑
εi<0

|εi| , deg(h)
∑
εi>0

εi + deg(g)
∑
εi<0

|εi|

}
.
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By definition, deg(g) ≤ deg(f) and deg(h) ≤ deg(f). Hence, with Definition 2.1
we obtain

max{deg(f1), . . . ,deg(fk)} ≤ deg(f)
∑
i≥0
|εi| = deg(f) wq(e).

This concludes the proof of Theorem 5.16.
Remark 5.17. Let i ∈ [1, n] and assume the variable xi in (5.12) represents an
element a of a proper subfield Fqd ⊂ Fqk . Without loss of generality, let {θ1, . . . , θd}
be a basis for Fqd/Fq. Then, a ∈ Fqd is represented as a =

∑d
i=1 aiθi with ai ∈ Fq.

Hence, we can restrict to the Fqd-rational solutions for xi by setting xi,d+1, . . . , xi,k
to 0 in F = {f1, . . . , fk}. This reduces the number of variables and hence the
number of monomials.
The case where S is defined over a proper subfield Fqd of Fqk often occurs in

practice. Take the reduced Tate pairing for an example. Here, the first argument
P of the pairing is already defined over Fq: i.e., if S = P we even get d = 1 for the
variables that represent P . Furthermore for Type 3 pairings (cf. Definition 3.1) and
with Theorem 2.21, the second argument Q can be represented based on a twist
E′ of E. Then, for S = Q it holds that Q ∈ E′(Fqd) if the twist is of degree k/d.
For example, in the case of BN curves with k = 12 that admit a twist of degree 6,
it holds that Q ∈ E′(Fq2). Note that we use these properties in our attacks from
Chapter 6. Finally, for variables that represent faults in Fq we also obtain d = 1.

5.3.7. Fix variables

Let F ⊆ Fq[x1,1, . . . , xn,k]. In step 3.e of Section 5.2.2, we fix variables of F that
we either know, or that we can guess with high probability. Then we proceed with
one copy of F for each guess. There are two typical applications where we can fix
some of the variables:
To define our initial model in Section 5.3.2 independently from the situation

whether the argument P or the argument Q of the pairing is secret, we introduced
variables for both of them. Now, before computing solutions for the secret in step 4,
we fix all variables that depend on the public argument of the pairing.

Furthermore, in an attack with faults in Fq, we introduced variables that represent
these faults in the initial model. If there are enough independent equations in the
model F then the corresponding algebraic set V (F) has zero dimension and we
can solve the system to obtain candidates for the secret and for the faults in Fq.
But in some situations, it is beneficial to remove the variables that represent faults
in Fq by guessing their assignment. Of course, we can only guess assignments if
the process that introduces the faults in Fq is precise and hence has low entropy.
Examples are byte faults where one byte of the representation of an element in Fq
is disturbed. Guessing assignments might turn V (F) of positive dimension into
an algebraic set with zero dimension. Furthermore, even for a zero dimensional
algebraic set, reducing the number of variables can speed up the enumeration of its
elements by decreasing the number of monomials.
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5.3.8. Compute solutions

Let F1,F2, . . . ⊆ Fq[x1,1, . . . , xn,k]. In step 4 we first compute

X =
⋃
i≥1

V (Fi)(Fq).

Assume there exists an i ≥ 1 such that Fi is a model for S. According to
Definition 5.6, X then contains an element α = (α1,1, . . . , αn,k) such that S can be
computed from α. Hence, we are able to compute candidates for S from X.

To compute the elements in V (Fi)(Fq), we search for the simultaneous Fq-rational
roots of elements in Fi. There are various methods to solve systems of multivariate
equations and we do not discuss them here. For our applications we can typically
use standard methods that are part of a computer algebra system (CAS) like
resultants or Groebner bases techniques (see, e.g., [CLO96]).
Note that the variables that represent the y-coordinate of the secret can be

eliminated by using the Weierstrass equation (2.3) of the curve. Either this happens
implicitly in the process of solving Fi or, prior to step 3.d of Section 5.2.2, we
compute the resultant of every polynomial in the model with y2 − x3 − a4x− a6.
Computing V (Fi)(Fq) may fail for mainly two reasons. One reason is that the

model Fi defines an algebraic set of dimension greater than 0 because the defining
equations are not algebraically independent. In this case, there are a potentially
q or more satisfying assignments. Furthermore, if Fi contains a large number of
monomials, it might be computationally infeasible to compute V (Fi)(Fq) even if
it is of dimension 0. In both cases, additional constraints from oracle queries on
independent public arguments in step 1 of Section 5.2.2 might solve the problem.

5.3.9. Verify candidates

In step 5 of Section 5.2.2, we identify the secret S among the candidates that were
computed in step 4. This is possible because we are in a public key setting where
the public key corresponding to S can be used to test the functionality of candidate
solutions.

5.4. Application of the framework to previous attacks

In this section we demonstrate our framework by analyzing previous attacks from
the literature. We consider two attacks:

• In Section 5.4.1 we analyze the attack from [PV06] on the Eta pairing to
demonstrate step 2 and step 3.d of the framework from Section 5.2.2.

• In Section 5.4.2 we analyze the attack from [LFG13] on the final exponentiation
of the Tate pairing to demonstrate step 2, step 3.b, step 3.d, and step 3.e of
the framework from Section 5.2.2.
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In Chapter 6, we provide examples that demonstrate also step 3.a, and step 3.c of
Section 5.2.2.

5.4.1. Loop bound attack on the Duursma-Lee algorithm

In [PV06] an attack on the Duursma-Lee algorithm [DL03] for computing the
Eta pairing in characteristic 2 or 3 is presented. It is the first published fault
attack on pairings. Here, this attack serves as an example to demonstrate our
framework, especially step 2 and step 3.d from Section 5.2.2. We explain the case
of characteristic 3 but the attack for characteristic 2 is similar. We will see that
the low weight of the final exponent e = q3 − 1 in base q of this particular pairing
enables an efficient first order attack.

Background information on the attacked implementation

We now give the relevant details on the Eta pairing in characteristic 3. For more
background we refer to [Bar+07], Section 5 and to [DL03]. Let E : y2 = x3−x+a6
be an elliptic curve defined over F3. For Fq with q = 3m and gcd(m, 6) = 1 let
ε = 1 if m mod 12 ∈ {1, 11} and ε = −1 if m mod 12 ∈ {5, 7}. It holds that
n = #E(Fq) = 3m + 1 + ε3(m+1)/2 and that the embedding degree of q and n is
k = 6. We define Fq3 = Fq(ρ), Fq2 = Fq(σ), and Fq6 = Fq(ρ, σ) with ρ3−ρ−a6 = 0
and σ2 + 1 = 0. With µi(x1, x2) = x1 + x2 + a6, define

g(x1, y1;x2, y2) = −y1y2σ − µi(x1, x2)2 − µi(x1, x2)ρ− ρ2. (5.18)

The Duursma-Lee algorithm computes the Eta pairing η : E(Fq)[n]×E(Fq)[n]→
Fqk in characteristic 3 as a product, followed by an exponentiation with q3 − 1 (cf.
Algorithm 1 of [PV06]):

η(P,Q) =

(
m∏
i=1

g
(
x(P )3

i
, y(P )3

i
;x(Q)3

−i+1
, y(Q)3

−i+1
))q3−1

. (5.19)

Background information on the attack

The attack assumes a fault that modifies the loop bound m in (5.19) into m+ δ.
From now on, we assume that δ ≤ m. Including pairing computations without
faults the attack implements an oracle for the following functions:

f1(x1, y1;x2, y2) = η(x1, y1;x2, y2)

f2(x1, y1;x2, y2) = η(x1, y1;x2, y2)

(
m+δ∏
i=m+1

g
(
x3

i

1 , y
3i

1 ;x3
−i+1

2 , y3
−i+1

2

))q3−1
.

(5.20)
The pairing computation is executed twice, one time without fault and one time
with fault to obtain ai = fi(P,Q) for i ∈ {1, 2}.
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Analysis of the attack

The following theorem summarizes the efficiency of the attack that shows that the
analysis of the attack is most efficient for δ = 1:

Theorem 5.18. Let S ∈ {P,Q}. From a1 and a2 we can derive a model for S
that contains at most 4δ monomials.

Initial model: First we define an initial model with degree depending on δ rather
than on m. Therefore let a = a2/a1 and

f(x1, y1;x2, y2) =
δ∏
i=1

g
(
x3

i

1 , y
3i

1 ;x3
δ−i+1

2 , y3
δ−i+1

2

)
. (5.21)

We obtain a model for P and Q:

Lemma 5.19. The function

f(x1, y1;x2, y2)
q3−1 − a (5.22)

defines a model for P and Q.

Proof. We claim that
(
x(P ), y(P ), x(Q)3

m−δ
, y(Q)3

m−δ
)
is a root of (5.22). On

the one hand it holds that

f
(
x(P ), y(P );x(Q)3

m−δ
, y(Q)3

m−δ
)

=
δ∏
i=1

g
(
x(P )3

i
, y(P )3

i
;x(Q)3

m−i+1
, y(Q)3

m−i+1
)
.

On the other hand, it follows from the definition of a1, a2, and (5.20) that

a =
a2
a1

=

δ∏
i=1

g
(
x(P )3

m+i
, y(P )3

m+i
;x(Q)3

−m−i+1
, y(Q)3

−m−i+1
)q3−1

.

Because the Frobenius map πq is the identity on E(Fq) and because P,Q ∈ E(Fq)
we can drop every occurrence of 3m in the exponent. By comparing the two products
it follows that

f
(
x(P ), y(P );x(Q)3

m−δ
, y(Q)3

m−δ
)q3−1

= a.

Hence,
(
x(P ), y(P ), x(Q)3

m−δ
, y(Q)3

m−δ
)
is a root of (5.22).

Furthermore, x(Q) and y(Q) can be computed efficiently from x(Q)3
m−δ and

y(Q)3
m−δ by exponentiation with 3δ. From Definition 5.6 it follows that (5.22) is a

model for P and Q.
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Combine exponents: In this attack, only one exponent, namely q3 − 1 occurs.
Furthermore, this exponent divides q6 − 1, the order of F∗q6 , and we cannot invert
factors that are coprime to the order of elements in F∗q6 . Hence, this step does not
apply for this attack.

Rescale exponents: We see from Definition 2.1 that the weight of q3−1 in base
q equals wq(q

3 − 1) = 2. Because this is the smallest weight possible for exponents
that are not powers of q, this step does not apply here.

Split exponents: For the same reason as before, this step does not apply.

Transformation to the base field: Now we transform (5.22) into a polynomial
system over Fq as explained in Section 5.3.6. In our special case, f(x1, y1;x2, y2) is
already a polynomial and hence the denominator h of (5.13) can be set to 1. Because
P,Q ∈ E(Fq) we do not have to introduce additional variables to apply the Weil
restriction of scalars (cf. Remark 5.17). We define φ(x1, y1;x2, y2) = (x1, y1;x2, y2)
and obtain

f q
3
(x1, y1;x2, y2)− af(x1, y1;x2, y2) (5.23)

for (5.16) on page 73.
Finally, we sort terms in (5.23) according to the basis {1, σ, ρ, σρ, ρ2, σρ2} of Fqk

as a Fq vector space and rewrite (5.23) as

1∑
i=0

2∑
j=0

fi,j(x1, y1;x2, y2)σ
iρj

with fi,j(x1, y1;x2, y2) ∈ Fq[x1, y1, x2, y2]. This defines the system

F = {f0,0(x1, y1;x2, y2), . . . , f1,2(x1, y1;x2, y2)} ⊆ Fq[x1, y1, x2, y2] (5.24)

of k = 6 polynomials.

Fix variables: Define Q̃ = π3m−δ(Q). If S = P we assign (x2, y2) = Q̃
and if S = Q we assign (x1, y1) = P in F to obtain polynomials in Fq[x1, y1]
or Fq[x2, y2], respectively. From (5.18), we see that mon(g(x1, y1;x2, y2)) =
{1, y1y2, x1, x2, x1x2, x21, x22}. Hence, after fixing variables, the number of monomi-
als is bounded by 4. The function f(x1, y1, x2, y2) from (5.21) is a product of δ
polynomials of the form (5.18). It follows that the number of monomials in F after
fixing variables is bounded by 4δ. This proves Theorem 5.18.

Compute solutions: In this step, we solve the system (5.24) of polynomial
equations. With the equation of the curve we have k + 1 = 7 polynomial equations
for only two variables and it is not required to repeat the attack for adding additional
constraints to the model.
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Discussion

In [PV06] Page and Vercauteren split the analysis into the two steps exponentiation
inversion and Miller inversion. In the first step, they invert the final exponent to
find b with bq3−1 = a. In the second step, they compute the secret point from b and
the equation (5.18) of g(x1, y1;x2, y2). Note that (5.18) is sparse in the sense that
only the basis elements {1, σ, ρ, ρ2} occur. In order to be able to invert the final
exponent, this special sparse form and the special form of the final exponent is used
in [PV06] to identify the q3 − 1-th root of a that is in the image of g(x1, y1;x2, y2).
To be able to exploit the form of g(x1, y1;x2, y2), Page and Vercauteren require
either δ = 1 or they require two faults with δ = t and δ = t± 1.
In our analysis, we combine the complete inversion into one step by applying

the exponent q3 − 1 to f(x1, y1;x2, y2) and expanding f into a product with
wq(q

3 − 1) = 2 factors. Hence, our analysis shows that it is the low weight of the
final exponent e = q3 − 1 and not the special structure of (5.18) that makes this
attack efficient. Furthermore, this analysis permits an attack with one fault also in
the case where δ 6= 1.

We further remark that in the case where the Eta pairing is computed based on
the improvements from Section 5.1 of [Bar+07] with halved loop length, the final
exponent is given as (q4 + q3− q− 1)(q± 3

√
q+ 1). Then, the analysis of [PV06] is

not possible because the exponent has not the required form that allows to identify
the correct root of a. Because the exponent has a heavy factor h = q ± 3

√
q + 1 of

weight wq(h) = 3
√
q + 2 the number of monomials after step 3.d is in the order of

43
√
qδ. Hence, our analysis is also not feasible.

5.4.2. Inverting the final exponentiation with faults

In [LFG13] Lashermes, Fournier, and Goubin present an approach to invert the
final exponentiation with faults. In this section, we describe the attack based on
our framework in order to present a structured analysis and to identify the crucial
ideas of the attack.

Background information on the attacked implementation

We make a few reasonable assumptions about the implementation of the final
exponentiation. For more background, we refer to Section 3.2.3. We assume a finite
field Fpk with even extension degree k = 2d. We define q = pd and hence Fq2 = Fpk .
To ease notation, we assume that Fq2/Fq is defined by a binomial x2 − v with root
θ. Then θ2 = v and θq = −θ.
For the final exponent (pk − 1)/r = (q2 − 1)/r of the reduced pairings from

Section 2.3.3 with prime r and r|q+1 we assume that the implementation computes
a = b(q

2−1)/r in two steps (cf. Section 3.2.3):

1. t← bq−1

2. a← t(q+1)/r.
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Background information on the attack

In the attack, the computation of the exponentiation on input b is executed for
several times. In each execution i a single fault δi ∈ Fq is introduced into the
computation to obtain the output ai ∈ Fq2 . Let D ⊆ Fq be the domain of faults
that we introduce in the attack. For precise faults, we obtain small D. For example,
for byte faults, it holds that #D ≤ 256.
We define the oracle (cf. Definition 5.5) for this attack based on the following

two functions:

fν(x, y) = (xq−1 + xνqy)(q+1)/r with ν ∈ {0, 1}.

Then the faults are introduced at the computation of the final exponentiation such
that

a0 = f0(b, 0) a1 = f0(b, δ1) a2 = f1(b, δ2)

for δ1, δ2 ∈ D ⊆ Fq. Hence, a0 corresponds to the correct execution of the
exponentiation on input b. The output a1 corresponds to a fault δ1 ∈ Fq that
is introduced after the first step of the exponentiation that modifies t = bq−1

into t+ δ1 = bq−1 + δ1. The output a2 corresponds to a fault δ2 ∈ Fq during the
computation of b−1 in the first step of the exponentiation that modifies bq−1 = bqb−1

into bq(b−1 + δ2) = bq−1 + bqδ2.

Analysis of the attack

Now we outline the analysis according to Section 5.2.2. The goal is to recover the
input of the final exponentiation b based on a0, a1, and a2.

Initial model: We define a model F ⊆ Fq2(x0, x1, y1, y2) for b according to
Definition 5.6. Here x0 represents b, x1 represents t = bq−1, y1 represents δ1, and
y2 represents δ2. The model is given by the following functions:

xq−10 − x1 xq+1
1 − 1 (5.25)

(x1 + y1)
(q+1)/r − a1 (x1 + x0x1y2)

(q+1)/r − a2. (5.26)

Lemma 5.20. The functions in (5.25) and (5.26) define a model for the input b
of the final exponentiation with (q2 − 1)/r.

Proof. We claim that the assignment (x0, x1, y1, y2) = (b, bq−1, δ1, δ2) is a simulta-
neous root of the polynomials in (5.25) and (5.26). Then the claim follows from
Definition 5.6.
For b ∈ Fq2 it holds that b(q−1)(q+1) = 1 and hence, (b, bq−1) is a simultaneous

root of (5.25). From the definition of a1 and a2 we see that (b, bq−1, δ1, δ2) is
simultaneous root of (5.26).
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Hence, xq−10 −x1 encodes the relation t = bq−1 and xq+1
1 −1 encodes that t ∈ µq+1.

Note that we introduced a redundant variable x1 for xq−10 . As we will see later,
this increases the efficiency of the analysis.

Combine exponents: Because the exponents q − 1, q + 1, and (q + 1)/r that
occur in (5.25) and (5.26) divide q2 − 1, this step does not apply.

Rescale exponents: Now, we rescale the exponent (q + 1)/r of (5.26) that has
weight wq((q + 1)/r) = (q + 1)/r with the factor r to obtain the exponent q + 1 of
weight wq(q + 1) = 2. We replace (5.26) in F and obtain the model

xq−10 − x1 xq+1
1 − 1 (5.27)

(x1 + y1)
q+1 − ar1 (x1 + x0x1y2)

q+1 − ar2. (5.28)

The new system has potentially more solutions than the original system because
r|q2−1 and hence exponentiation with r kills all factors in µr. But we will see later
that the condition δ1, δ2 ∈ D allows us to counteract this with additional oracle
queries if D is sufficiently small.

Split exponents: After the previous step, only the exponents q − 1 and q + 1
occur in F . Both are already light of weight 2 and we do not apply this step.

Transformation to the base field: Based on Section 5.3.6, we transform the
functions in (5.27) and (5.28) into polynomials over Fq. For i ∈ {0, 1}, we define
φi(xi,0, xi,1) = xi,0 + xi,1θ. Because y1 and y2 represent δ1, δ2 ∈ Fq and following
Remark 5.17 we define

φ(x0,0, x0,1, x1,0, x1,1, y1, y2) = (φ0(x0,0, x0,1), φ1(x1,0, x1,1), y1, y2).

With the q-ary representations (−1, 1) and (1, 1) of q − 1 and q + 1 and with
φqi (xi,0, xi,1) = xi,0−xi,1θ we bring the functions in (5.27) and (5.28) into the form
of (5.16) on page 73. After expanding products and sorting terms with respect to
the basis {1, θ} of Fq2/Fq we obtain:

(x1,0 − 1)x0,0 + vx1,1x0,1 + (x1,1x0,0 + (x1,0 + 1)x0,1) θ (5.29)

x21,0 − vx21,1 − 1 (5.30)

1 + 2x1,0y1 + y21 − ar1 (5.31)

1 + 2x0,0y2 + (x20,0 − vx20,1)y22 − ar2. (5.32)

We are interested in Fq-rational roots of this system. Because the exponentiation
with q + 1 is the norm from Fq2 to Fq, (5.30)–(5.32) are defined over Fq. Hence,
we obtain two equations from (5.29) and three equations from (5.30)–(5.32). Fur-
thermore, the determinant (x1,0 − 1)(x1,0 + 1)− vx21,1 = x21,0 − vx21,1 − 1 of (5.29)
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as linear system in x0,0, x0,1 equals (5.30). Hence, only one of the two equations
defined by (5.29) brings new information and we remove the second equation
(x1,1x0,0 + (x1,0 + 1)x0,1)θ = 0. Finally we obtain the degree 4 model

(x1,0 − 1)x0,0 + vx1,1x0,1 1 + 2x0,0y2 + (x20,0 − vx20,1)y22 − ar2 (5.33)

x21,0 − vx21,1 − 1 1 + 2x1,0y1 + y21 − ar1. (5.34)

Fix variables: The model defined by (5.33) and (5.34) is given by a system of
four equations in six variables. If D is sufficiently small, we can guess values for
the faults δ1 and δ2 in D and assign them to y1 and y2. This reduces the number
of variables to 4.

Compute solutions: If we solve the system of (5.33) and (5.34) for each guess
of δ1 and δ2, the complexity of the analysis is quadratic in #D. The authors of
[LFG13] show how the complexity can be reduced. This is achieved by solving the
system in two steps and verify partial solutions of the first step before computing
complete solutions in the second step. Here, we benefit from the additional variable
x1 for t = bq−1 in the initial model.
With (5.34) we obtain polynomials that are independent of x0,0, x0,1, and y2.

For each guess δ̃1 of δ1 that we assign to y1 we first solve (5.34) for x1,0 and x1,1.
Because x1,0 and x1,1 represent t, we obtain candidates for t. For all candidates t̃,
we check if the answer a1 from the oracle is satisfied: i.e., we test that(

t̃+ δ̃1

)(q+1)/r
= a1. (5.35)

For each survivor t̃ of this test and each guess δ̃2 ∈ D that we assign to y2, we then
solve (5.33) for x0,0 and x0,1 to obtain candidate solutions for b. We see that this
two-step approach reduces the number of guesses that we need to consider if only a
few candidates survive the first test in (5.35).

Verify solutions: For each candidate b̃ for b from the previous step, we verify
that this candidate satisfies the remaining answers from the oracle: i.e., we test if

f0(b̃, 0) = a0 and f1(b̃, δ̃2) = a2.

If this is the case, we add b̃ to the set Sa1,a2 of surviving candidate solutions. Note
that this set contains b.

Repetitions: So far, we showed how we can compute a set Sa1,a2 of candidates
for b. To reduce the number of solutions, we query the f1 oracle for multiple
times to obtain a3 = f1(b, δ3), a4 = f1(b, δ4), . . . with associated sets of solutions
Sa1,a3 ,Sa1,a4 , . . . . Then we intersect all sets to obtain S =

⋂
i≥2 Sa1,ai with b ∈ S.

In [LFG13] the authors show by simulating the attack that for #D ≤ 210, already
one additional query to the f1 oracle with output a3 is sufficient to reduce the
number of candidates to #S ≤ 10.
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Discussion

This attack is an example where the exponent can be rescaled to an exponent of
small weight. In particular, the exponent (q+ 1)/r from (5.26) was rescaled to q+ 1
in (5.28). This enabled us to obtain small degree polynomials in (5.31) and (5.32)
by applying Weil restriction of scalars. The crucial point is that the faults δ1 and δ2
modify the element t = bq−1 ∈ µq+1 into an element with order not dividing q + 1.
Hence, the exponentiation with q+ 1 becomes non-trivial and we obtain non-trivial
equations (5.31) and (5.32). We see that without faults, i.e., with y1 = y2 = 0,
these equations are trivial after rescaling the exponent.

This attack is also an example where it is crucial to be able to guess assignments for
the fault. Otherwise, (5.33) and (5.34) is under-determined and the corresponding
algebraic set has positive dimension.
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Chapter 6.

New fault attacks on pairings

In this chapter, we present two new attacks on Pair-Argument (cf. Definition 3.17)
that we analyze based on our framework from Chapter 5: In Section 6.2 we extend
our work from [Blö+14] where we presented the first practical second order attack
on the complete pairing computation, including the Miller algorithm and the final
exponentiation. In Section 6.3, as a new result of this thesis, we introduce an attack
for the popular Ate pairing on BN curves.

In this chapter, we concentrate on the theoretical analysis of the attacks, i.e., we
show how the secret argument of the pairing can be computed from the erroneous
result of the pairing computation. In Chapter 8 and more specifically in Section 8.5,
we explain how we realized the attack from [Blö+14] in practice in order to obtain
the erroneous pairing result. We start with an overview of the related work and an
outline of our contribution.

6.1. Introduction

For a general introduction on the techniques to analyze fault attacks on pairings
we refer to Section 5.1. In this section, we present an overview of existing attacks
and summarize our contribution.

6.1.1. Related work

The first theoretical fault attack on pairing computations was published in 2004
[PV04; PV06]. Since then, various other attacks were described and also performed
in practice. There are already several surveys on the subject [Whe+09; MPV12;
BGL14; Mra+15]. Here, we give an overview of the contributions that are most
important from our point of view.

Page and Vercauteren [PV06] present a fault attack on the Eta pairing for fields
Fq of characteristic p = 2 and p = 3. They tamper with the loop counter of
Algorithm 3.4 such that either i or i+ 1 iterations are computed. Then they show
that two such outputs of Algorithm 3.4 can be used to separate a linear factor
f(P,Q) from milr,P (Q), and that the secret P or Q can be computed from the
equation of this factor. With respect to the final exponentiation, the attack targets
an implementation of the Eta pairing without a truncated Miller loop (cf. [Bar+07]).
In this case, the final exponent is given as qp − 1. Based on this special form, Page
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and Vercauteren use the linearity of the q-th power Frobenius automorphism to
invert the exponent without faults. For more details on the attack, we refer to
Section 5.4.1.

Galbraith, hEigeartaigh, and Sheedy [GhS07] show that the Eta pairing without a
truncated loop can be computed without final exponent. As in [PV06] the algebraic
structure of the exponent qp− 1 and the linearity of the Frobenius automorphism is
used to remove the explicit computation of the final exponentiation. This underlines
the result of [PV06] that shows that a final exponent with a special structure is
not an obstacle for an attack.
Whelan and Scott [WS07] extend the ideas of [PV06] to other pairings like the

Weil and the Tate pairing, as well as to other types of faults. They do not restrict
to faults that modify the structure of the Miller algorithm as in [PV06]. Also faults
that modify data like the coordinates of the points P , R, or Q in Algorithm 3.4
are considered. It is shown in [WS07] that these faults can also be used to separate
a small degree factor f(P,Q) from milr,P (Q). In the case where f(P,Q) is linear,
Whelan and Scott show how the secret can be computed from the equation of
f(P,Q). If the exponent has the special form q− 1, a first order attack on the Weil
pairing is described. In this attack, the linearity of the Frobenius automorphism is
used to invert the final exponentiation without faults. Furthermore, it is argued in
[WS07] that this attack does not apply to the Tate pairing where the final exponent
is
(
qk − 1

)
/r and has not the required special structure. Hence, Whelan and Scott

conclude that the final exponentiation can protect against first order fault attacks
in many cases.
Mrabet [Mra09] presents an attack on the Miller algorithm that applies similar

ideas as [PV06] and [WS07]. For the attack it is assumed that the loop of Algo-
rithm 3.4 is terminated after i or i+ 1 iterations. As before, a factor f(P,Q) of low
degree can be separated from milr,P (Q) and then inverted to compute the secret P
or Q. In addition to [WS07], the analysis is shown for Jacobian coordinates and also
for non-linear factors f(P,Q). With respect to the final exponentiation of the Tate
pairing, it is assumed that it can be removed by other means. Mrabet proposes to
read out the result of the Miller algorithm in test mode by means of a scan attack.
In [Mra10] the analysis of [Mra09] is extended to curves in Edwards coordinates.
As in [Mra09] it is assumed that the final exponentiation can be eliminated by
other means.

Bae, Moon, and Ha [BMH13] describe also an attack on the Miller algorithm. For
the attack, they assume that the if branch in the last iteration of Algorithm 3.4 is
skipped. For points P and Q of odd order r, this allows to isolate a linear function
from milr,P (Q). Then the equation of this function can be solved for P or Q. To
demonstrate the feasibility of their attack, Bae, Moon, and Ha use a laser pulse to
skip a branch instruction on an AVR ATmega128L. In their practical evaluation,
they do not attack a complete pairing computation. Instead, they attack a small
test program including a conditional branch and a trigger for the laser that sends a
special output in case the fault injection was successful. As in the previous attacks,
it is assumed that the final exponentiation is inverted by other means.
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So far, we described attacks that did not target the final exponentiation with
faults. To invert the final exponentiation, either exponents with a special structure
were considered, e.g., in [PV06], or it was assumed that the exponentiation can be
inverted by other means [Mra09]. Lashermes, Fournier, and Goubin [LFG13] go in
the opposite direction. They present an attack on the final exponentiation and show
how the output of the Miller algorithm can be recovered if faults are introduced
into elements in Fqk during the exponentiation with

(
qk − 1

)
/r. Inversion of the

Miller algorithm is not considered. The attack requires three pairing computations
where one fault is introduced at each exponentiation. Lashermes, Fournier, and
Goubin simulate the analysis of the attack and show that in the case of precise
faults that effect less than 10 bits of an element in Fqk , the exponentiation can be
reversed up to a few candidate solutions. For more details on the attack, we refer
to Section 5.4.2.
Lashermes et al. [Las+14] practically validate previous theoretical attacks on

the Miller algorithm. They analyze faults in elements of Fq as well as faults that
tamper with the number of iterations of Algorithm 3.4. The practical evaluation
is performed on an ARM Cortex M3 processor and EM pulses are used as the
fault injection technique. The concrete implementation is a C implementation of
the Ate pairing from the authors of the attack. The attack concentrates on the
Miller algorithm and assumes that the final exponentiation can be removed by
other means. The authors leave it as an open problem to combine their attack with
an attack on the final exponentiation like in [LFG13], to obtain a practical second
order attack on the complete pairing. Lashermes et al. also show that randomized
projective coordinates are not effective for fault attacks on the Miller algorithm.

Point blinding has been proposed as a countermeasure, especially against passive
attacks on the Miller algorithm [PV06]. Here, the secret or the public argument of
the pairing is masked by adding a random point. Park, Sohn, and Moon [PSM11]
show that this countermeasure is not always effective. They exploit the fact that
the Eta pairing in characteristic 3 is defined over Fq6 , while the secret and the point
used for randomization are already defined Fq (cf. Remark 5.17). This results in a
system of equations that can be solved for the secret as well as for the mask. The
approach of [PSM11] was generalized in [MF15] and applied also to other pairings.

6.1.2. Our contribution

This chapter contains two major contributions:

1. In Section 6.2 we analyze and extend our attack from [Blö+14].

2. In Section 6.3 we present and analyze a new fault attack on the complete Ate
pairing that we did not publish so far.

For both attacks, we use a similar new technique to target the final exponentiation.
With a fault, we skip an extension field multiplication during the final exponentiation.
This virtually introduces an additive term δ ∈ Z into the second factor of the final
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Pairing FE Target Pract. eval. Reference
Eta q2 − 1, q3 − 1 Miller no [PV04; PV06]
Eta 1 Miller no [WS07]
Weil q − 1 Miller no [WS07]
Weil 1 Miller no [Mra09; Mra10]

Tate/Ate
(
qk − 1

)
/r Miller no [WS07; Mra09; Mra10]

Tate/Ate
(
qk − 1

)
/r FE no [LFG13]

Tate/Ate
(
qk − 1

)
/r Miller yes [BMH13; Las+14]

Eta q −
√

2q + 1 Miller+FE yes [Blö+14], Section 6.2
Tate/Ate

(
qk − 1

)
/r Miller+FE no Section 6.3

Table 6.1.: Summary of related work and our contribution with respect to fault
attacks on pairings. The column FE lists the final exponent of the targeted
pairing. Here, q is the size of the base field, k is the embedding degree, and r
is the order of the pairing groups. Most previous attacks were not evaluated in
practice and consider only faults at the Miller algorithm. We remark that for
non-trivial exponents

(
qk − 1

)
/r or q −

√
2q + 1, faults at the Miller algorithm

and at the final exponentiation are required to invert the complete pairing (cf.
Section 5.1.1).

exponent (cf. Section 3.2.3) such that it is modified as follows:

(qk − 1)

Φk(q)

Φk(q)

r
 fault 

(qk − 1)

Φk(q)

(
Φk(q)

r
+ δ

)
. (6.1)

Then we show how we can invert this exponent based on two algebraic properties:

1. The small weight of the factor (qk − 1)/Φk(q) in base q (cf. Definition 2.1).

2. A small greatest common divisor of Φk(q)/r + δ and the order qk − 1 of F∗
qk
.

We give more details on both contributions in the following. Furthermore,
Table 6.1 compares our contribution with the related work.

Extension of our attack from [Blö+14] on the Eta pairing

At FDTC 2014 [TC14], we presented the first practical realization of a fault attack
on a complete pairing computation, including the Miller algorithm and the final
exponentiation [Blö+14]. Hence, we answered the question if it is possible to
practically attack the Miller algorithm and the final exponentiation simultaneously
which Lashermes et al. pose in [Las+14] also at FDTC 2014:

“[. . . ] how to properly override the final exponentiation in conjunction
with a fault attack on the Miller algorithm remains an open problem
which has to be further studied, [. . . ]
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6.1. Introduction

A complete fault attack on a pairing taking into account the final expo-
nentiation would be of interest both theoretically and experimentally.”

As in the attack from [PV06], we attacked the Eta pairing (see also [Bar+07] and
Section 5.4.1). For the concrete instantiation, we used the implementation of the
RELIC library [AG]. Compared to purely theoretical attacks like the one in [PV06]
we had to master additional difficulties with influence on the theoretical analysis of
the attack:

• Our target implementation of the Eta pairing used loop unrolling for efficiency
reasons. Hence, even though we terminated the loop of the Miller algorithm
(see Algorithm 3.4) after one iteration, we are not able to isolate a single
factor like (5.18) from page 76 as in the attack of [PV06]. This has two
consequences:

1. We cannot exploit the special form of (5.18) as it was done in [PV06] to
invert the final exponentiation.

2. The complexity of the analysis is increased compared to the attack from
[PV06].

Based on our framework from Chapter 5 we show in Section 6.2 how we deal
with this problem.

• Compared to [PV06], our target implements the more efficient version of the
Eta pairing with truncated loop length (cf. Section 6.1 of [Bar+07]). In this
case, the final exponent has not the special form qp − 1 with small weight
wq that allowed the authors of [PV06] to invert the exponentiation without
faults.

To deal with this problem, in [Blö+14], we use a second order attack to
remove the exponentiation with the second fault. More concretely, we used an
instruction skip fault to skip the call instruction to the final exponentiation
(cf. Section 8.5).

• Sometimes it is not possible to skip the complete final exponentiation with
the second fault. We observed, for example, that the compiler inlines the
code of the final exponentiation at higher optimization levels. Hence, we
cannot skip the call instruction anymore (cf. Section 8.5.4).

In Section 6.2 we extend our work from [Blö+14] and show how we can solve
this problem. In our extension, we do not assume that the final exponentiation
is completely removed. Instead, we first show how the exponent can be
modified as in (6.1) by skipping an extension field multiplication. Then we
show that the modified exponent can be inverted based on our framework
from Chapter 5. The extended attack on the final exponentiation is a new
contribution of this thesis that we did not publish so far.
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New attack on the Ate pairing

In Section 6.3 we transfer the basic concepts of our extended attack on the final
exponentiation from Section 6.2 to the optimal Ate pairing [Ver10] on BN curves —
one of the most popular settings for PBC today. This result is a new contribution
of this thesis that we did not publish so far.

We use two instruction skips to attack the Ate pairing. With the first instruction
skip, we isolate a line (cf. Definition 3.8) from the Miller function of Definition 2.31.
With the second fault we skip one multiplication within the final exponentiation
(cf. Section 3.2.3) to modify the exponent as in (6.1).

Based on our framework from Chapter 5 we show how the secret can be computed
from two erroneous pairing computations. In the analysis, we exploit the fact that
the arguments of the Ate pairing for BN curves are defined over a proper subfield
of Fqk (see Remark 5.17). Furthermore, we use the properties of the erroneous final
exponent that we described above. We show how this allows us to describe the
secret by polynomial equations of relatively small degree. To verify the efficiency of
the analysis, we simulated our attack for parameters at the 128 bit security level.

6.2. Attack on the Eta pairing

In this section, we analyze an extension of our second order attack from [Blö+14].
In [Blö+14] we used the second of our two faults to completely skip the final
exponentiation. Here, we present an attack where the final exponentiation is not
completely skipped. Instead, we use the second fault to modify the exponent such
that it can be inverted in the analysis. We note that the analysis of the basic attack
from [Blö+14] without exponentiation follows from the analysis of this section by
leaving out all steps that are related to the exponent. Here, we concentrate on the
theoretical analysis of the attack. In Section 8.5 we give details about the practical
realization of the attack and we also give a practical motivation of our extension
from this section.

6.2.1. Background information on the attacked implementation

We attack an implementation of the Eta pairing [Bar+07] in characteristic 2 on
supersingular elliptic curves. Now we recall the most important parameters of the
pairing from Section 6 and especially Section 6.1 of [Bar+07]. The Eta pairing is
defined based on the elliptic curve E : y2 + y = x3 + x over the finite field Fq with
q = 2m. For our concrete target implementation m is set to m = 271. For our case,
i.e., m = 7 mod 8, it holds that #E(Fq) = 2m + 2(m+1)/2 + 1. The embedding
degree of q and #E(Fq) is k = 4. We define the extension field Fq4 = Fq(s, t) with
s2 = s+ 1 and t2 = t+ s. Let e = (q4− 1)/#E(Fq) = (22m− 1)(2m− 2(m+1)/2 + 1)
and n = 2(m+1)/2 + 1. Define the map ψ(x, y) = (x+ s+ 1, y + sx+ t). For inputs
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6.2. Attack on the Eta pairing

P,Q ∈ E(Fq) the Eta pairing η : E(Fq)× E(Fq)→ F∗
qk

is then defined as

η(P,Q) = miln,−P (ψ(Q))e.

Algorithm 6.1 Implementation of miln,−P (ψ(Q)) on E(F2m) for m = 7 mod 8
and E : y2 + y = x3 + x.
Input: P = (xP , yP ), Q = (xQ, yQ) ∈ E(F2m)
Output: miln,−P (ψ(Q))
1: u← xP , v ← xQ
2: T ← u · v + yP + yQ + (u+ xQ)s+ t
3: u← x2P
4: L← T + v + u+ s
5: b← T ·L
6: for i = 1 .. (m− 1)/2 do
7: xQ ← xQ

2, yQ ← yQ
2

8: xP ←
√
xP , yP ←

√
yP

9: u← xP , v ← xQ
10: T ← u · v + yP + yQ + (u+ xQ)s+ t
11: b← b ·T
12: end for
13: return b

Our target implementation is similar to Algorithm 3 of [Bar+07] but adapted to
the parametrization m = 7 mod 8. It is presented in Algorithm 6.1. Different from
Algorithm 3 of [Bar+07] the first loop is unrolled and computed in Line 3–Line 5
of Algorithm 6.1 before the computation of the main loop. Because we attack the
exponentiation with e =

(
q2 − 1

) (
q −
√

2q + 1
)
, we list the target implementation

of this exponentiation in Algorithm 6.2.

6.2.2. Background information on the attack

With the first fault, we terminate the loop of Algorithm 6.1 after the execution of
the first iteration. With the second fault, we skip the multiplication in Line 6 of
Algorithm 6.2. This results in the modified exponent ẽ =

(
q2 − 1

) (
−
√

2q + 1
)
.

Define
T (x1, y1;x2, y2) = x1x2 + y1 + y2 + (x1 + x2)s+ t

L(x1, y1;x2, y2) = T (x1, y1;x2, y2) + x21 + x2 + s.
(6.2)

From Algorithm 6.1 we see that the attack implements an oracle for the function

g(x1, y1;x2, y2) =
(
T (x1, y1;x2, y2)L (x1, y1;x2, y2)T

(√
x1,
√
y1;x

2
2, y

2
2

))ẽ
. (6.3)

Let a be the result of the erroneous pairing computation on input P and Q, i.e.,
a = g(P,Q).
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Chapter 6. New fault attacks on pairings

Algorithm 6.2 Implementation of exponentiation with e =
(
q2 − 1

) (
q −
√

2q + 1
)

Input: b ∈ Fq4 with q = 2m, e =
(
q2 − 1

) (
q −
√

2q + 1
)

Output: be

1: v1 ← σq2(b) . v1 = bq
2

2: v2 ← b−1 . v2 = b−1

3: v2 ← v1v2 . v2 = bq
2−1

4: v3 ← v2 . v3 = bq
2−1

5: v1 ← σq(v2) . v1 = b(q
2−1)q

6: v2 ← v1v2 . v2 = b(q
2−1)(q+1)

7: for i← 1 . . . (m+ 1)/2 do . Exponentiation with
√

2q = 2(m+1)/2

8: v3 ← v23 . v3 = b(q
2−1)2i

9: end for
10: v3 ← v−13 . v3 = b−(q

2−1)
√
2q

11: v1 ← v2v3 . v1 = b(q
2−1)(q−

√
2q+1)

12: return v1

6.2.3. Analysis of the attack

In this section, we analyze the attack based on the approach from Section 5.2.
We leave out the steps that do not apply to this attack. Our analysis proves the
following theorem that summarizes the efficiency of the attack:

Theorem 6.1. Let P and Q be defined as in Section 6.2.2 and S ∈ {P,Q}. From
a = g(P,Q) we can derive a set of bivariate polynomial systems F1, . . . ,F5 such
that one of the systems is a model for S. The degree of F1, . . . ,F5 is bounded by 7
for S = P and by 4 for S = Q.

From Definition 5.6 we see that we can compute candidates for the secret argument
S of the pairing by solving at most five bivariate equation systems and searching
trough the resulting candidate solutions. We also see that for S = P the analysis
is potentially more complex than for S = Q because of the higher degree of the
model.

Initial model

We define the model based on (6.3). But to eliminate
√
x1 and √y1, we substitute

x1 with x21, y1 with y21,
√
x1 with x1, and

√
y1 with y1 and define

f(x1, y1;x2, y2) = T
(
x21, y

2
1;x2, y2

)
L
(
x21, y

2
1;x2, y2

)
T
(
x1, y1, x

2
2, y

2
2

)
. (6.4)

We obtain a model for P and Q:

Lemma 6.2. The function

f(x1, y1;x2, y2)
ẽ − a (6.5)

defines a model for P and Q.
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6.2. Attack on the Eta pairing

Proof. By inserting
(√

x(P ),
√
y(P );x(Q), y(Q)

)
into f(x1, y1;x2, y2) from (6.4)

it directly follows that

f
(√

x(P ),
√
y(P );x(Q), y(Q)

)ẽ
= g(P,Q) = a

and hence,
(√

x(P ),
√
y(P );x(Q), y(Q)

)
is a root of (6.5). Furthermore, we can

efficiently compute both, P or Q, from this root. Hence, the claim follows from
Definition 5.6.

Combine exponents

We apply Lemma 5.13 with e1 =
(
q2 − 1

) (
−
√

2q + 1
)
to remove the factor of e1

that is coprime to q4 − 1. It holds that

gcd
(
q4 − 1,

(
q2 − 1

) (
−
√

2q + 1
))

= (q2 − 1) gcd(q2 + 1,−
√

2q + 1).

For our choice of q = 2271 we obtain gcd(q2 + 1,−
√

2q + 1) = 5. We use the EEA
to compute u0, u1 ∈ Z with

(q2 − 1)5 = u0(q
4 − 1) + u1

(
q2 − 1

) (
−
√

2q + 1
)
.

Then we replace (6.5) with

f(x1, y1;x2, y2)
(q2−1)5 − au1

and obtain a new model for S.

Split exponents

We split (q2 − 1)5 into the light factor l = (q2 − 1) with wq(l) = 2 and the heavy
factor h = 5. Furthermore, we invert h = 5 and compute b1, . . . , b5 with b5i = au1 .
Because 5 ‖ q4 − 1 this can be done efficiently by computing

{b1, . . . , b5} = au1(5
−1 mod (q4−1)/5)µ5. (6.6)

Then we continue with five different models F1, . . . ,F5, where the i-th model is
defined by the equation

f(x1, y1;x2, y2)
q2−1 − bi. (6.7)

Transformation to the base field

Now we transform the models into polynomial systems over Fq. With P,Q ∈ E(Fq)
and according to Remark 5.17 we define φ(x1, y1;x2, y2) = (x1, y1;x2, y2) to apply
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Chapter 6. New fault attacks on pairings

the Weil restriction of scalars. The q-ary representation of q2−1 from Definition 2.1
is (ε0, ε1, ε2) = (−1, 0, 1). Hence, from (6.7) we obtain

f q
2
(x1, y1;x2, y2)− bif(x1, y1;x2, y2) (6.8)

for (5.16) from page 73. We see that the degree of (6.8) is bounded by the degree
of f(x1, y1;x2, y2).
For each bi, we sort terms with respect to the basis {1, σ, ρ, σρ}. For every

bi, together with the Weierstrass equation of the curve, we obtain a system of 5
polynomial equations defined over Fq. The system with the correct bi that fulfills

bi = f
(√

x(P ),
√
y(P );x(Q), y(Q)

)q2−1
is a model for S.

Fix variables

For the case S = P we assign (x2, y2) = (x(Q), y(Q)), and for the case S = Q, we
assign (x1, y1) =

(√
x(P ),

√
y(P )

)
. Then we continue with polynomial equations

in Fq[x1, y1] or Fq[x2, x2], respectively. From (6.2) and (6.4) we see that the degree
of (6.8) after fixing variables is bounded by 7 for S = P and by 4 for S = Q. This
completes the proof of Theorem 6.1.

Compute and verify solutions

In this step we enumerate X =
⋃5
i=1 V (Fi)(Fq) with standard algorithms. For

S = Q, the elements in X are candidate solutions. We see from the proof of
Theorem 6.1 that for S = P , and (α, β) ∈ X a candidate for P is given by (α2, β2).
Finally, we verify each candidate based on a correct pairing computation to identify
S.

6.2.4. Discussion

Now we compare the efficiency of the analysis with the efficiency of our original
attack from [Blö+14] where the final exponent was completely removed. On the
one hand, we see from (6.8) that the degree of the final model is not increased by
the factor q2 − 1 of the exponent. On the other hand, due to the heavy factor 5
of the exponent we generated five systems based on b1, . . . , b5 from (6.6) that we
need to solve. Hence, the overall complexity of the analysis is increased by a factor
of 5 compared to our attack from [Blö+14].

6.2.5. Simulation based evaluation of the efficiency

We implemented the analysis with Sage [Sag14]. We computed the candidates based
on the variety() function that uses Groebner bases techniques. We simulated 30
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runs of the attack for the more complex case where S = P and and we were able to
compute the secret from an erroneous pairing computation in less than 30 seconds
on a standard PC.

We also used a similar analysis in the practical realization of our basic attack from
[Blö+14], where the exponent was completely removed and where the secret was
S = Q. There, and consistent with our discussion in Section 6.2.4, the computation
of the secret from an erroneous pairing result took only a few seconds.
We see that in both cases, the analysis is very efficient. In practice an efficient

analysis is crucial. The reason is that in a practical attack, typically many experi-
ments have to be performed until the intended fault is injected (cf. Section 8.5)
and because we can distinguish a successful experiment from a failed experiment
only by verifying the solutions of the analysis.

6.3. Attack on the Ate pairing over BN curves

In this section, we outline an attack on the optimal Ate pairing [Ver10] over BN
curves (cf. Theorem 3.6). It exploits that BN curves have a twist of degree 6. This
allows us to reduce the number of variables in the model that we use as input for
the computation of the secret argument of the pairing. Furthermore, we introduce
a fault in the final exponentiation that allows us to invert the exponentiation with
the erroneous exponent.

6.3.1. Background information on the attacked implementation

The optimal Ate pairing is an optimization of the reduced Ate pairing from Defini-
tion 2.38. As for the reduced Ate pairing, the optimal Ate pairing relies on the fact
that with P ∈ G2 and Q ∈ G1 (see Definition 2.18) both arguments are elements
of the eigenspaces of πq.
Recall from Theorem 3.6 that a BN curve E is defined over a prime field Fq,

has prime order #E(Fq) = r, and the embedding degree of q and r is k = 12.
With u from Theorem 3.6 and LP1,P2(x, y) from Definition 3.8 define λ = 6u+ 2,
Pi = πqi(P ), and

MP (Q) = LP3,−P2(Q)LP3−P2,P1(Q)LP1−P2+P3,λP (Q).

Over a BN curve the optimal Ate pairing can be defined as follows (see Section IV
of [Ver10]):

ateBN : G2 ×G1 → µr

(P,Q) 7→ (milλ,P (Q)MP (Q))(q
k−1)/r .

(6.9)

We assume a straight-forward implementation for the computation of milλ,P (Q)
andMP (Q). We further assume that the implementation of the final exponentiation
with

(
qk − 1

)
/r is computed in two steps as described in Section 3.2.3. For our
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Algorithm 6.3 Outline of algorithm for computing the Ate pairing on BN curves

Input: P ∈ G2, Q ∈ G1, λ ∈ Z, e = (q4 − q2 + 1)/r with binary representation
e =

∑n
j=0 ej2

j

Output: ateBN(P,Q)
1: b← milλ,P (Q)
2: P1 ← πq(P )
3: P2 ← πq(P1)
4: P3 ← πq(P2)
5: b← b ·LP3,−P2(Q)
6: b← b ·LP3−P2,P1(Q)
7: b← b ·LP1−P2+P3,λP (Q)

8: b← bq
8+q6−q2−1

9: a← b
10: for j ← n− 1 . . . 0 do
11: a← a2

12: if ej = 1 then
13: a← a · b
14: end if
15: end for
16: return a

case with k = 12 and Φ12(q) = q4 − q2 + 1 we obtain

q12 − 1

r
=
(
q8 + q6 − q2 − 1

) q4 − q2 + 1

r
.

For simplicity, we assume that the exponentiation with the second factor is per-
formed by a standard square and multiply approach. The basic structure of the
complete pairing computation is outlined in Algorithm 6.3. There, we expanded
the exponentiation with e =

(
q4 − q2 + 1

)
/r because we target this computation

in our attack.

6.3.2. Background information on the attack

We assume a second order attack. The first fault is applied only optionally. If it is
applied, the multiplication in Line 5 of Algorithm 6.3 is skipped. The second fault
is always applied. It skips the multiplication in Line 13 for one bit ej = 1 of the
exponent e =

∑n
j=0 ej2

j . Hence, we modify the final exponent into

ẽ =
(
q8 + q6 − q2 − 1

) ((
q4 − q2 + 1

)
/r − 2j

)
. (6.10)

According to our notation from Definition 5.7, we re-write milλ,P (Q) = milλ(P,Q),
LP3,−P2(Q) = L(P3,−P2, Q), and MP (Q) = M(P,Q). With the definition of
Pi = πqi(P ), we see from (6.9) that this attack implements an oracle for the

96



6.3. Attack on the Ate pairing over BN curves

functions

f1(x1, y1;x2, y2) = (milλ(x1, y1;x2, y2)M(x1, y1;x2, y2))
ẽ

f2(x1, y1;x2, y2) =
f1(x1, y1;x2, y2)

L
(
πq3(ψ(x1, y1));−πq2(ψ(x1, y1));x2, y2

)ẽ . (6.11)

In the attack, we compute two erroneous pairings, one for each mode of the attack
to obtain a1 = f1(P,Q) and a2 = f2(P,Q).

We remark that we explain in Section 8.1.3 how the attack could be realized in
practice by means of instruction skips.

6.3.3. Analysis of the attack

In this section, we analyze the attack based on the approach of Section 5.2. We
leave out the steps that do not apply to this attack. Our analysis will prove the
following theorem that summarizes the efficiency of the attack:

Theorem 6.3. Let P , Q, a1, a2, and j be defined as in Section 6.3.2. Furthermore,
assume

r -
((
q4 − q2 + 1

)
/r − 2j

)
.

From a1 and a2 we can derive a degree-8 model in Fq[x1,1, x1,2, y1,1, y1,2] for P and
a degree-4 model in Fq[x2, y2] for Q.

We prove the theorem by performing the analysis of Section 5.2.2.

Initial model

From Corollary 3.7 we know that BN curves have a twist E′ of degree 6. We
define an initial model that later allows us to exploit that G2 has a very compact
representation in this case (cf. Theorem 2.21 and Remark 2.22). Therefore, let
ψ : E′ → E be the isomorphism between E′ and E. We define

f(x1, y1;x2, y2) = L
(
πq3(ψ(x1, y1));−πq2(ψ(x1, y1));x2, y2

)
(6.12)

and obtain a model for P and Q:

Lemma 6.4. Let a = a1/a2. Then the function

f(x1, y1;x2, y2)
ẽ − a (6.13)

defines a model for P and Q.

Proof. Let P ′ ∈ E′ be the preimage of P under ψ. We claim that (P ′, Q) is a zero
of (6.13). From (6.11) we see that

f(x1, y1;x2, y2)
ẽ =

f1 (ψ(x1, y1);x2, y2)

f2 (ψ(x1, y1);x2, y2)
.

Then the claim follows from the definition of a.
Furthermore, we can efficiently compute P from P ′ based on ψ. Hence, (6.13) is

a model for P and Q.
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Combine exponents

We apply Lemma 5.13 with e1 = ẽ from (6.10) to remove the factor of ẽ that is
coprime to q12 − 1. The following lemma shows that under a weak assumption on
j, q, and r, we obtain a light exponent (cf. Definition 2.1) after this step.

Lemma 6.5. Define ẽ as in (6.10). Let j ≥ 0 such that r -
((
q4 − q2 + 1

)
/r − 2j

)
.

Then it holds that gcd
(
q12 − 1, ẽ

)
= q8 + q6 − q2 − 1.

Proof. First note that with r prime and on condition that r -
((
q4 − q2 + 1

)
/r − 2j

)
it holds that

gcd(q4 − q2 + 1,
(
q4 − q2 + 1

)
/r − 2j) = gcd(q4 − q2 + 1, 2j).

Because q is an odd prime q4 − q2 + 1 is also odd. Hence gcd(q4 − q2 + 1, 2j) = 1.
Because q8 + q6 − q2 − 1 divides both, ẽ and q12 − 1, the claim follows.

From now on, we assume that the condition r -
((
q4 − q2 + 1

)
/r − 2j

)
of

Lemma 6.5 is fulfilled. As in Section 5.3.3 we use the EEA to compute u0, u1 ∈ Z
with

q8 + q6 − q2 − 1 = u0(q
12 − 1) + u1ẽ.

Then we replace (6.13) with

f(x1, y1;x2, y2)
(q8+q6−q2−1) − au1 (6.14)

and obtain a new model for S.

Split exponents

Because the exponent from (6.14) has already small weight wq

(
q8 + q6 − q2 − 1

)
=

4 we do not apply this step.

Transformation to the base field

Now we transform (6.14) into a polynomial system over Fq. We see from Remark 2.22
that ψ induces an isomorphism from E′(Fq2)[r] to G2. Hence, for P ′ with ψ(P ′) =
P ∈ G2 it holds that P ′ ∈ E′(Fq2)[r]. Furthermore, with Q ∈ G1 the point Q
is already defined over Fq. Following Remark 5.17, we need to introduce only
four variables x1,1, x1,2, and y1,1, y1,2 for the coordinates of P ′ to define the Weil
restriction of scalars from Definition 2.2. Let Fq2 = Fq(θ) and Fq12 = Fq2(α) =
Fq(θ, α). We abbreviate x = x1,1, x1,2, y1,1, y1,2;x2, y2 and define

φ : A6 → A4

(x) 7→ (x1,1 + x1,2θ, y1,1 + y1,2θ;x2, y2) .

We apply the qi-th power Frobenius maps to the coefficients of f ◦ φ with f from
(6.12). First note that the function L from Definition 3.8 has coefficients in Fq and
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hence, Lqi( · ) = L( · ). Furthermore, with θ ∈ Fq2 , and hence θqi = θq
i mod 2 , we

obtain

f q
i
(
φq

i
(x)
)

= L
(
ψq

i+3
(
x1,1 + x1,2θ

qi+1
, y1,1 + y1,2θ

qi+1
)
,

−ψqi+2
(
x1,1 + x1,2θ

qi , y1,1 + y1,2θ
qi
)

;x2, y2

)
. (6.15)

We omit the details here, but now we clear denominators of L and use the repre-
sentation

(ε0, . . . , ε8) = (−1, 0,−1, 0, 0, 0, 1, 0, 1)

of q8 + q6 − q2 − 1 in base q to write down (5.16) from page 73 for our case. As in
(5.17) we then sort terms with respect to the basis

{
θiαj

}
0≤i<2,0≤j<6

of Fqk as a
Fq vector space.

In summary, we transformed (6.14) into a system of k = 12 polynomial equations
in Fq[x]. Finally, we also apply φ to the variables of the Weierstrass equations of
E′ and E to add them as additional constraints to the model.

Fix variables

For the case where P is secret, we fix (x2, y2) = (x(Q), y(Q)) to obtain a model
in Fq[x1,1, x1,2, y1,1, y1,2]. If the secret is Q, we write P ′ ∈ E′(Fq2) as P ′ = (x1,1 +
x1,2θ, y1,1 + y1,2θ) and fix variables accordingly. This provides a model in Fq[x2, y2].

Because ψ is an isomorphism of curves it has degree 1. For example, it could be
defined as in (3.1) on page 28. Therefore the degree of (6.15) equals the degree of
L( · ). It follows from Definition 3.8 that the degree of (6.15) is bounded by 2 as
polynomial in Fq[x1,1, x1,2, y1,1, y1,2]. Similarly, the degree of (6.15) is bounded by
1 as polynomial in Fq[x2, y2].

It follows from Theorem 5.16 and wq

(
q8 + q6 − q2 − 1

)
= 4 that the degree of

the final model is bounded by 8 for secret P and by 4 for secret Q. This completes
the proof of Theorem 6.3.

Compute and verify solutions

Let F ⊆ Fq[x1,1, x1,2, y1,1, y1,2] or F ⊆ Fq[x2, y2] be the model that we obtained in
the previous step for secret P and secret Q, respectively. We enumerate V (F)(Fq)
with appropriate tools.

For secret P , this provides us with an assignment for (x1,1, x1,2, y1,1, y1,2) that
corresponds to P ′. Based on ψ ◦ φ we are then able to compute candidates for P .
In the case where Q is the secret, we will directly obtain an assignment for (x2, y2)
that corresponds to Q. Finally, we are able to verify candidate solutions based on
the result of a correct pairing computation.

6.3.4. Discussion

We see that our attack exploits two algebraic properties:
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1. The fact that the secret is defined over a proper subfield of Fqk allowed us to
transform our model from Fqk to Fq without introducing too many variables.
In our special case where we attacked a curve with j-invariant 0 that has a
twist of degree 6, G2 has a compact representation. Therefore, we had to
introduce only k/6 = 2 variables for each coordinate of elements in G2 to
apply Weil restriction of scalars (cf. Remark 5.17).

2. With (qk − 1)/Φk(q) = q8 + q6 − q2 − 1 this factor of the exponent increases
the degree of the model only by a factor of wq(q

8 + q6 − q2 − 1) = 4.

We remark that these properties are also exploited to obtain more efficient pairing
computations. The first is used to define the Ate pairing (cf. Definition 2.38), to
apply denominator elimination (cf. Remark 3.11), to simplify the computation
of miln,P (cf. Section 3.1.2), or to speed up arithmetic in G1 and G2 [GS08]. The
second property is used for an efficient implementation of the final exponentiation
(cf. Section 3.2.3 and [Sco+09]).

Our approach to attack the final exponentiation can also be transferred to other
parameters and its efficiency only depends on the concrete weight of (qk− 1)/Φk(q).
Furthermore, it can be combined with other techniques from literature to attack
the Miller algorithm.

We showed that it is sufficient to invert the heavy factor of the final exponent by
means of a fault. Therefore, our approach requires only one erroneous execution to
invert the final exponentiation. This is more efficient compared to the attack on
the final exponentiation that is proposed in [LFG13] (cf. Section 5.4.2) and that
requires three executions. We remark that the two attacks are based on different
fault models: We assume instruction skip faults, while [LFG13] assumes faults in
Fq.

6.3.5. Simulation based evaluation of the efficiency

We implemented the analysis with Sage [Sag14]. We did not perform the attack in
practice. Instead, we simulated the attack, i.e., we assumed a perfect oracle for f1
and f2 from (6.11). In our concrete case, we attacked the last iteration with j = 0
of the loop in Line 10–Line 15 of Algorithm 6.3 of the exponentiation. We repeated
the attack for 10 times for both cases, secret P ∈ G2 and secret Q ∈ G1. In both
cases, we select secret and public argument of the pairing uniformly at random in
the corresponding groups.

For the simpler case with secret Q where the model contains only two variables,
we parameterized the BN curve with u = 262 − 254 + 244 as in [Beu+10]. This
results in a 254 bit prime q and an extension field Fqk of size 3048 bits. For
this set of parameters, our assumption r -

((
q4 − q2 + 1

)
/r − 2j

)
is satisfied for

iteration j = 0. We used Sage’s variety() function that is based on Groebner
bases techniques to compute the secret. For each of the 10 repetitions, we were
able to recover the secret Q in a matter of seconds.
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For the more complex case with secret P where the model contains four variables,
we were not able to perform the analysis with a realistic size of parameters. The
reason is that our version (Version 6.1) of Sage offers no efficient implementation
to solve non-linear equations with more than two variables for fields of size q > 230.
Hence, we chose u = 78. This results in a q of size 30 bits. In this case, our
assumption r -

((
q4 − q2 + 1

)
/r − 2j

)
is also satisfied for iteration j = 0. As in

the previous case, the analysis including the computation of the secret takes only
seconds. We remark that according to [Ver08], the complexity of solving a system of
non-linear equations over finite fields Fq is dominated by the number of monomials
in the system and not by the size of q. Hence, we can expect that our analysis
is also efficient in the case of secret P for larger fields Fq, if we use a CAS that
supports these fields.
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Chapter 7.

Singular curve point decompression
fault attacks

In this chapter we present our results from [BG15]. We use instruction skip faults
to transfer the DLOG problem from a cryptographically strong elliptic curve to a
weak singular curve. We apply our technique to attack the protocols Decompress-
And-Multiply and Hash-And-Multiply from Definition 3.16 and Definition 3.18,
respectively.
This chapter is structured as follows: In Section 7.1 we introduce invalid point

attacks. Then we give an overview of related work and summarize our contribution.
We also discuss properties of our attack. In Section 7.2 we introduce our attack for
curves with j-invariant 0 (cf. Definition 2.4). In Section 7.3 we provide an attack
for general curves in short Weierstrass form. In Section 7.4, we present concrete
applications and compare both attacks. In Section 7.5 we discuss the effectiveness
of proposed countermeasures against our attacks.

7.1. Introduction

Our attack is an example for an invalid point attack, a special case of a weak
curve attack. Weak curve attacks are a category of fault attacks on ECC. Here, an
attacker tampers with the parameters a4 or a6 that define the curve, the coordinates
of points, or the curve’s field of definition. The effect is that ECSM is performed
in a different group where the complexity of solving the DLOG problem is lower.
Notable examples for attacks in this category are given in [BMM00], [Ant+03],
[CJ05], and [Fou+08a].
Attacks where the weak curve is obtained by modification of the base point of

the ECSM are often called invalid point attacks [FV12] (see also Definition 3.3).
An important observation made in [BMM00] is that many algorithms for ECSM
use only the parameter a4, and not the parameter a6 of the curve (cf. Remark 2.10
on page 17). This fact can be exploited in an attack: A fault is introduced to move
the base point onto a weak curve that shares the parameter a4 with the original
curve but uses a different parameter a6:

E : y2 = x3 + a4x+ a6 Ẽ : y2 = x3 + a4x+ ã6
P  fault P̃
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Then, an algorithm for computing ECSM on E implicitly performs ECSM of a
secret s and P̃ on the weak curve Ẽ. If the attacker is able to access the result
Q̃ = sP̃ he obtains the DLOG instance (P̃ , Q̃) on the weak curve. This result is
used to obtain the secret s on the original curve as well. For most previous fault
attacks, the notion of a weak curve is that of a curve with smooth composite order,
i.e., a curve where the largest prime factor of the curve is upper-bounded by some
smoothness parameter. On such a curve, the DLOG can be computed using the
Pohlig-Hellman approach.

Based on our outline of invalid point attacks we characterize the party B of the
protocols Decompress-And-Multiply and Hash-And-Multiply:

Definition 7.1. Consider the party B of Definition 3.16 or Definition 3.18. If B’s
implementation of ECSM does not use the parameter a6, we call B invalid point
vulnerable (IPV). If B is IPV and does not implement countermeasures such as
point validity checks or randomization, we call B first order IPV (IPV1). If B is
IPV and outputs Q only after a positive validity check or after de-randomization,
we call B second order IPV (IPV2).

Note that implementations following standards like IEEE 1363 do not use the
parameter a6 for ECSM (cf. Annex A of [IEE00]) and are IPV. With respect to the
validity check, note that Algorithm 3.1 for decompression and Algorithm 3.3 for
hashing to an elliptic curve already output points on the correct curve. Furthermore,
IEEE 1363 defines validity checks as optional. Hence, such implementations might
even be IPV1.

7.1.1. Related work

Various weak curve attacks and also invalid point attacks have been described in
the literature. For an overview, we refer to [FV12; Bar+12b; ADH12]. Here, we
review the attacks that are most relevant for us. The first invalid point attack that
is based on faults was described in [BMM00]. Here, Biehl, Meyer, and Müller show
how faults introduced in the coordinates of P prior to the ECSM can be used to
mount an invalid point attack. Antipa et al. [Ant+03] present attacks based on
weak domain parameters, and in [CJ05] Ciet and Joye showed that faults in any of
the domain parameters may result in a weak curve.
Several countermeasures have been proposed against fault attacks on ECSM

[FV12; Bar+12b]. The standard approach to defeat invalid point attacks is to check
if the result of the ECSM is on the original elliptic curve; if this is not the case, the
output is discarded. Furthermore, point compression presented in Section 3.2.1 has
sometimes been proposed as a natural countermeasure against invalid curve attacks
because decompression assures that the resulting point is on the curve defined by
a4 and a6.
It was already observed, for example in [Yen+03], that a validity check can be

attacked with a second fault. An invalid point attack that shows how validity
checks can be circumvented is the twist curve attack from Fouque et al. [Fou+08a].
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This attack is based on special implementations of ECSM that do not use the
y-coordinate of the base point P . The authors use faults to perform the ECSM on
a weak twist (cf. Definition 2.13) of the original curve that has smooth order. They
furthermore show how a second fault can be used to map the point back to the
original curve in order to pass the validity check. This attack has two limitations:
First, many standard implementations do not use the required special form of the
ECSM. Second, the efficiency of the attack depends on the smoothness of the order
of the twist.

To deal with attacks on the validity check, Dominguez-Oviedo and Hasan [DH11]
propose a countermeasure that randomizes the base point by adding a random point.
In a correct ECSM, the randomness will be removed afterwards by subtracting a
matching multiple of the random point. If a fault modifies the base point into a
point on a weak curve, the randomness will not cancel out and it is not possible to
compute the secret from the erroneous result anymore.

An attack that is related to our attack in the sense that it also reduces the DLOG
problem from an elliptic curve to the DLOG problem in a finite field is the famous
work of Menezes, Okamoto, and Vanstone [MOV93], called the MOV attack. Here,
a bilinear pairing is used to reduce the DLOG problem on E(Fq) to the DLOG
problem in F∗

qk
, where k is the embedding degree of q and r (cf. Definition 2.16).

This attack was the first application of pairings in cryptography. Different from
our work, the MOV attack does not use faults and singular curves and is efficient
only if k and hence Fqk is small. As a consequence of the attack, supersingular
curves from Definition 2.8 are now avoided for standard ECC because they have
bounded embedding degree (cf. Theorem 3.5).
In the weak curve attacks that we described so far, the notion of a weak curve

is a curve with smooth order. As we explain in the next section, singular curves
(cf. Section 2.2.3) are also weak curves and singular curves were already proposed
before our work for an invalid point attack by Karabina and Ustaoglu in [KU10].
In [KU10] it is assumed that the attacker is able to directly choose the base point
of the ECSM on the singular curve. For implementations with point validity checks
or point compression, this is not possible and the attack often does not apply in
practice. Furthermore, and different from our work, Karabina and Ustaoglu do not
consider fault attacks to circumvent this limitation.

7.1.2. Our contribution

Let E/Fq be an elliptic curve in short Weierstrass form (2.3). Let the characteristic
of Fq be p > 3. Assume a point P ∈ E(Fq) is decompressed with Algorithm 3.1 the
major building block of point encoding (cf. Section 3.2.1). Our main contribution
is to show how instruction skip faults at Algorithm 3.1 can be used to decompress
P to an invalid non-singular point P̃ on a singular curve Ẽ(Fq).

For our attack, we distinguish the two cases a4 = 0 and a4 6= 0 with a4 as in (2.3)
on page 16. According to Definition 2.4, for p > 3 it holds that a4 = 0 if and only
if the j-invariant of E equals j = 0. Based on Theorem 2.11, the DLOG problem
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on a singular curve defined over Fq can be transferred to the DLOG problem in F+
q ,

F∗q , or F∗q2 , respectively. The case F+
q occurs for curves with j = 0 and the cases F∗q ,

or F∗q2 occur for j 6= 0. For F+
q , the DLOG can be computed with a simple division

in Fq and hence can be performed in time O(log(q)3). Let

LN (a, c) = exp(c log(N)a(log logN)1−a)

be the sub-exponential function (cf. Definition 15.1.5 of [Gal12]). For computing the
DLOG in F∗q and F∗q2 there exists a constant c and sub-exponential time algorithms
with heuristic complexity in Lq(1/3, c+ o(1)) and Lq2(1/3, c+ o(1)), respectively
[Jou+06]. In all three cases F+

q , F∗q , or F∗q2 , the DLOG can be computed much
faster than the DLOG on an elliptic curve E(Fq). Hence, a singular curve is an
example for a weak curve.
We apply our technique to attack the protocols Decompress-And-Multiply and

Hash-And-Multiply from Definition 3.16 and Definition 3.18, respectively. These
protocols compute Q = sP for P,Q ∈ E(Fq) and for a secret s ∈ Z. Both protocols
have applications in ECC and PBC and hence, we can turn our attack into an
attack on real schemes like the BLS short signature scheme from Definition 3.15.
In this chapter, we concentrate on the theoretical background of the attack. In
Section 8.6 we present our practical realization of the attack for this particular
scheme.

7.1.3. Properties of our attack

Note that in an attack on Decompress-And-Multiply, A in the role of an attacker can
choose the input of decompression at B. This gives A strong control over the input
of Algorithm 3.1. In an attack on Hash-And-Multiply, A has only weak control
over the input of Algorithm 3.1. Here, Algorithm 3.1 is used as a building block of
Algorithm 3.3 and the input of Algorithm 3.1 is hashed before decompression.

We show that for every elliptic curve, there exists a set of inputs for point
decompression that is vulnerable to instruction skip faults. That means that for
every element of this set, we identify an instruction in the decompression algorithm
such that if this instruction is skipped, decompression of the corresponding element
yields a point on a singular curve. For arbitrary elliptic curves in short Weierstrass
form (2.3), the set of vulnerable elements is relatively small. Hence, to mount our
attack, strong control is required for explicitly selecting one of those elements and
the attack applies only to Decompress-And-Multiply. For curves with j-invariant 0,
it turns out that half of the inputs of point decompression are vulnerable. Therefore,
it is possible for an attacker with weak control to choose input strings that are
hashed to vulnerable elements. Hence, for those curves, the attack also applies to
Hash-And-Multiply.

With respect to efficiency, our attack is more efficient for curves with j-invariant
0 than for general curves. This is because for general curves, our attack results in
a singular curve that is isomorphic to a multiplicative subgroup of a finite field,
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where for curves with j-invariant 0, the resulting curve is isomorphic to the additive
group of a finite field where the DLOG problem is trivial. In summary, for curves
with j-invariant 0, our attack has weaker assumptions on the protocol and is more
efficient compared to general curves.

We remark that curves with j-invariant 0 are popular in ECC and especially PBC
because they have useful properties. First, they admit non-trivial endomorphisms
that can be used to speed up the ECSM [GLV01; GS08]. Secondly, they are the
only curves with twists of degree 6 (cf. Theorem 2.14). Therefore they yield the
most efficient pairings [CLN10] (see also Remark 2.22 on page 20 and Section 3.1.2).
Finally, supersingular curves, which are required to define Type 1 pairings from
Definition 3.1, often have j-invariant 0 (cf. Theorem 3.4). Consequently, curves
with j-invariant 0 are defined in standards like [Cer10]; used in applications like
Bitcoin [Bit15]; considerable effort has been spent to construct them for application
in PBC [BN06; KSS08]; and they are proposed in, e.g., [BF03] and RFC-5091
[BM07].
The efficiency of our attack for curves with j-invariant 0 also has practical

advantages. In many scenarios, first the DLOG has to be computed on the weak
curve to obtain a candidate for the secret. Then the candidate has to be verified,
e.g., based on the public key. If the fault mechanism is not very precise, a large
number of experiments has to be performed before a point on the weak curve is
obtained. Consequently, a large number of candidate DLOG instances have to be
solved. This is easily possible for our attack on curves with j-invariant 0, where the
DLOG problem on the resulting singular curve is trivial. For our attack on general
curves or for attacks that rely on invalid points with smooth order like [BMM00],
their sub-exponential run time may not be efficient enough in practice.
Usually, in our attack we are able to compute the DLOG from a single faulty

run of the protocol on a vulnerable element. This makes our attack applicable to
protocols where the exponent is a nonce and that allow us to recover the secret key
from a complete nonce. To recover the complete nonce from a single run, the attack
in [BMM00] requires that the invalid point has a large but smooth order. The
probability to obtain such a point is relatively small. Consequently, the expected
number of experiments to recover the secret is larger than in our case, and the
attack is possibly harder to realize in practice.
Furthermore, the invalid point attack from [BMM00] applied to curves with

j-invariant 0 may fail. If the orignal curve has j-invariant 0, the invalid points in
[BMM00] are on an elliptic curve that also has j-invariant 0. This implies that the
faulty curve is a twist of the original curve (see Section 2.2.4). If the twist does not
have a smooth order, the attack is not successful. In [Fou+08a] the invalid points
are always on the twist of the original curve, independent of the j-invariant. As for
[BMM00], the attack fails if the twist does not have a smooth order. Our attack
does not require curves with weak twists and is even more efficient for curves with
j-invariant 0.
Because point decompression is also used in Algorithm 3.2 for random point

sampling, our attack also applies to random point sampling for curves with j-
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invariant 0. This allows us to defeat the randomization countermeasure from
[DH11]. The basic idea is to attack decompression with one fault and random point
sampling with another fault to obtain a randomized point on the singular curve.

7.2. Attacks for curves with j-invariant 0

Now we present our attacks for curves with j-invariant j = 0, i.e., E : y2 = x3 + a6.
The attack can be applied to Decompress-And-Multiply (cf. Definition 3.16) and
Hash-And-Multiply (cf. Definition 3.18). We only present the attack on Hash-And-
Multiply in detail, because the attack on Decompress-And-Multiply follows trivially
from our description (see Remark 7.4 at the end of this section).

For the attack, assume domain parameters D = (Fq, E,R, r, c) (cf. Definition 3.2)
where Fq is of characteristic p > 3. We assume that E : y2 = x3 + a6 is defined
over Fp, i.e., a6 ∈ Fp with gcd(p, cr) = 1 and that r|#E(Fp). Note that the case
p 6= q occurs in PBC where q = pk and k is the embedding degree of p and r.

7.2.1. Description of the attack

In the attack, A takes the role of the attacker and performs the following steps in
the protocol Hash-And-Multiply with B:

A-1 For given t ∈ N, select messages M ∈ {0, 1}∗ until a message with

H
(
M. d0et2

)
= (xU , b) and

√
xU ∈ F∗q

has been found.

A-2 Send M to B. While B computes HashToCurve(M), mount an instruction
skip fault at Line 5 of Algorithm 3.1.

A-3 For B’s output Q̃ = (xQ, yQ) return key candidates s1 and s2 with

s1 = (−1)b
√
xUxQ(yQc)

−1 mod p, s2 = s1 + p.

7.2.2. Properties of the attack

The following theorem summarizes the effectivity of the attack:

Theorem 7.2. If B is IPV1 (see Definition 7.1) with secret s and if A’s instruction
skip in step A-2 successfully skips the addition v + a6 in Line 5 of Algorithm 3.1,
then either s1 = s mod r or s2 = s mod r. Furthermore, all computations of A
can be performed in time O((log q)3).

Proof. First note that in step A-1, A chooses B’s input M such that (xU , b) =
H
(
M. d0et2

)
with a square xU . According to Definition 3.18, B will now execute

Algorithm 3.1 as a subroutine of HashToCurve to compute Decompress(xU , b).
Assume A’s instruction skip in step A-2 is successful and v + a6 in Line 5 of
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Algorithm 3.1 is skipped. Because a4 = 0, in this case, the value of v in Line 6
of Algorithm 3.1 will be v = x3U . Because xU is a square in F∗q , v is also a square
in F∗q . Hence, the output of the erroneous execution of Algorithm 3.1 will be
Ũ = (xU , (−1)bxU

√
xU ). This point is an element of the singular curve Ẽ : y2 = x3.

Furthermore, with xU ∈ F∗q it holds that xU 6= 0 and hence Ũ is not the singular
point (0, 0), i.e., Ũ 6∈ Ens.
If B is IPV, the algorithm for ECSM used by B does not depend on a6. Hence,
B will perform ECSM with the cofactor c in Line 6 of Algorithm 3.3 and ECSM
with s in step 3 of Definition 3.18 in Ens. With P̃ = cŨ ∈ Ens it follows that B
will compute Q̃ = sP̃ ∈ Ens. Because B is assumed to be IPV1, B will return Q̃,
even if it is not on E.
Now we use the group isomorphism φ+ : Ens(Fq) → F+

q , (x, y) 7→ x/y from
Theorem 2.11 to map the DLOG instance to F+

q . We obtain the two equations

φ+(Q̃) = xQ/yQ

φ+(Q̃) = sφ+(P̃ ) = scφ+(U) = sc(−1)b/
√
xU .

If we solve them for s we obtain s = (−1)b
√
xUxQ(yQc)

−1 mod d, where d is the
order of φ+(P̃ ) = c(−1)b/

√
xU in F+

q . With gcd(p, cr) = 1 it holds that d = p.
Because we assumed that r|#E(Fp) the Hasse bound from Theorem 2.6 implies
r < 2p. Therefore, either s1 = s mod r or s2 = s mod r.
With respect to the time complexity, note that multiplication and inversion in

Fq can be performed in O((log q)3).

Note that it is easy for A to choose a message M in step A-1 such that it results
in a square xU . This is because in Fq every second element is a square. Hence, we
can reasonably expect that a hash function H approximately maps every second
message to a square xU .

We see from the proof of Theorem 7.2 that we recover s only modulo p. Hence, it
is crucial for the attack to work over fields of large characteristic p with r|#E(Fp).
But if this is the case, one run of the protocol is enough to recover s ∈ Z/rZ up
to one bit that selects between s1 and s2. Hence, the attack is also applicable for
protocols where s is a nonce or an ephemeral key that is refreshed in each run of
the protocol.

Remark 7.3. The same attack applies if B uses point compression for the output
Q. The reason is that point compression in (3.4) on page 31, different from
decompression, does not use the parameters a4 and a6 of the original curve E.
Hence, in a successful attack, B will output the compression of Q̃ ∈ Ẽ. Then, Q̃
can be recovered in step A-3 of the attack based on the equation of Ẽ.

Remark 7.4. The attack directly applies to the protocol Decompress-And-Multiply
because in this protocol, A has even strong control over the input of Decompress
and is able to directly choose (xU , b) ∈ Fq × {0, 1} with a square xU as B’s input.
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In Section 8.6, we practically perform the attack of this section on the BLS
signature scheme from Definition 3.15. In Appendix A.1 we give a numerical
example from the practical realization of our attack.

7.3. Attack for general curves

We now present an attack on Decompress-And-Multiply that applies to general
curves in short Weierstrass form E : y2 = x3 + a4x + a6 with j-invariant not
necessarily 0. Based on the ideas of the previous section our aim is to introduce an
error such that the ECSM is performed on the singular curve Ẽ : y2 = x3 +a4x+ ã6
with discriminant ∆ = −16(4a34 + 27ã26) = 0 (cf. Definition 2.4).

For efficiency reasons, nearly all standardized curves with a4 6= 0 have a4 = −3.
To make our description more concrete, we focus on these curves throughout this
section but our attack can also be generalized to other curves. It follows from
∆ = 0 that the corresponding singular curves are given as Ẽ : y2 = x3 − 3x± 2.

7.3.1. Description of the attack

To describe our attack, we define the set F ⊂ Fq of faults that we can introduce
at the computation v ← v + a4 in Line 3 of Algorithm 3.1. We add δ to F if
we are able to perform an instruction skip fault that modifies v ← v + a4 into
v ← v + a4 + δ. For example, in the case a4 = −3 the OpenSSL implementation1

computes x3 − 3x+ a6 as x3 − (2x+ x) + a6. Now assume we are able to skip the
addition of x or the addition of −(2x + x) = −3x. Then either x3 − 2x + a6 or
x3 + a6 is computed and we obtain F = {1, 3}.
In the attack, A takes the role of the attacker and performs the following steps

in the protocol Decompress-And-Multiply with B:

A-1 If F is empty fail.

A-2 Remove an element δ from F and define xi = ((−1)i2− a6)/δ for i = 0, 1.

A-3 Select i ∈ {0, 1} such that x3i + (a4 + δ)xi + a6 is a square in F∗q . If no such i
exists go back to step A-1.

A-4 Set b = 0 and send (xi, b) as input to B.

A-5 While B decompresses (xi, b), mount an instruction skip fault at Line 3 of
Algorithm 3.1 in order to replace the addition with a4 by an addition with
a4 + δ.

A-6 Define yi =
√
x3i − 3xi + (−1)i2, P̃ = (xi, yi), xS = (−1)i, and α =

√
3xS .

With φ∗ from Theorem 2.11 output the DLOG s′ of φ∗(Q̃) to the basis φ∗(P̃ )
in Fq(α)∗ as a key candidate.

1we checked Version 1.0.2
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7.3.2. Properties of the attack

The following theorem summarizes the effectivity of the attack:

Theorem 7.5. If B is IPV1 (see Definition 7.1) with secret s and if A’s instruction
skip in step A-5 successfully replaces the addition v + a4 with a4 = −3 in Line 3 of
Algorithm 3.1 by v + a4 + δ, then A′s output fulfills s′ = s mod d where d is the
order of φ∗(P̃ ) in the multiplicative group Fq(α)∗.

Proof. If the instruction skip in Line 3 of Algorithm 3.1 is successful, and the
addition v + a4 in Line 3 of Algorithm 3.1 is replaced by the addition v + a4 + δ,
the value of v in Line 6 of Decompress will be xi(x2i +a4 + δ) +a6. Then, the check
in step A-3 guarantees that this is a square and hence, the output of Decompress

will be (xi, u) with u = (−1)b
√
xi(x2i + a4 + δ) + a6.

We will now show that u = yi and hence that Algorithm 3.1 will output P̃ . With
A’s choice xi = ((−1)i2− a6)/δ and with a4 = −3, we obtain

u2 − y2i = δxi + a6 − (−1)i2 = δ
(−1)i2− a6

δ
+ a6 − (−1)i2 = 0.

With b = 0 it follows that u = yi and hence Algorithm 3.1 outputs P̃ .
From the definition of yi, we see that this point is on the curve Ẽ : y2 =

x3 − 3x + (−1)i2. The discriminant of Ẽ is 0 and it follows that Ẽ is singular.
Because step A-3 ensures yi 6= 0 it follows from Theorem 2.11 that P̃ is non-singular
and hence P̃ ∈ Ens(Fq). Furthermore, if B is IPV1, it follows that B will compute
and output Q̃ = sP̃ ∈ Ẽns.

Finally, in step A-6, A will compute the DLOG in the subgroup of Fq(α)∗ ⊆ F∗q2
that is generated by φ∗(P̃ ). With Theorem 2.11 and because the order of P̃ is d,
A’s output s′ will satisfy s′ = s mod d.

We see that Theorem 7.5 is not as explicit as Theorem 7.2 in two aspects. First,
it does not guarantee that the order of φ∗(P̃ ) is large as it has been for the order of
φ+(P̃ ) in Section 7.2. It follows that we can not guarantee that enough bits of s are
recovered by the attack. Secondly, the sub-exponential complexity for computing
the DLOG in Fq(α)∗ can only be shown based on heuristic assumptions [Jou+06].
Nevertheless, for our practical attacks we can assume that d ≈ p and that the
complexity of DLOG in F∗q and F∗q2 is in Lq(1/3, c+ o(1)) and Lq2(1/3, c+ o(1)),
respectively.

Remark 7.6. The attack also applies to protocols where A is able to provide an
uncompressed input P to B and instead, B aborts if P is not on E. In this case, B
will validate that y2 = x3 + a4x+ a6 holds for the input P from A. In an attack,
A provides the input P̃ = (xi, yi) from step A-6 as B’s input. Then A attacks
the addition with a4xi in the check y2i = x3i + a4xi + a6 such that B checks if
y2i = x3i + (a4 + δ)xi + a6 holds. From the proof of Theorem 7.5 it follows that the
check will pass for the point P̃ .
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Note that Remark 7.3 from Section 7.2 for the case where B outputs Q in
compressed form also applies for the attack in this section.

To demonstrate that the attack is efficient for parameters of practical relevance,
we performed the analysis for the curve secp192r1 from [Cer10] that is defined over a
192 bit prime field Fq. We were able to compute the DLOG in F∗q with the function
znlog of Pari/GP in 39 hours on one core of a 64 bit Intel Core i5 CPU with 8 GB
of main memory. We give the complete numerical example in Appendix A.2

7.4. Concrete applications of our attacks

In this section, we point to concrete applications of our attacks on the abstract
protocols Decompress-And-Multiply and Hash-And-Multiply. Furthermore, we
compare the attack from Section 7.2 with the attack from Section 7.3 and summarize
their most important properties.

7.4.1. Pairing-based signature schemes

In Section 3.3.2 we introduced pairing-based signature schemes of the type Hash-
And-Multiply that hash the signed message to a point on the curve as input
for ECSM. Examples for such schemes that are susceptible to our attack from
Section 7.2 are given in [BLS04b; Bol03; LQ04]. Also, it was explicitly proposed
to instantiate such schemes with curves of j-invariant 0 [Cha+10]. The popular
combination of pairing-based signature schemes with curves of j-invariant 0 is an
important application of our attack. This also motivates our practical attack on an
instantiation of the pairing-based BLS short signature scheme from Definition 3.15
with BN curves from Theorem 3.6 that have j-invariant 0.

The identity-based signature scheme from [CC03] that we also outlined in Sec-
tion 3.3.2 has a different structure. Here, not the message but the identity of the
signer B is hashed: B with identity ID first computes P = HashToCurve(ID), then
computes Q = sP for a nonce s, and finally returns Q as part of the signature. In
an attack on ECSM, A recovers the nonce s first. From s and the corresponding
signature, the secret key DID of B can be computed. Our attack requires only one
invocation of the protocol. Hence, on the one hand, our attack is possible even
though ECSM is performed with a nonce. On the other hand, the attack can be
applied only if P = HashToCurve(ID) was not precomputed offline by B.

7.4.2. Encryption schemes with point compression

In elliptic curve based instantiations of encryption schemes like Elgamal encryption,
typically Q = sP is computed as part of the decryption. Here, s ∈ Z is the recipients
secret key, P ∈ E is a component of the ciphertext, and Q is an ephemeral key
that is used to recover the message. Furthermore, implementations often use point
compression to represent the component P of the ciphertext. Therefore, these
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implementations are possible candidates for our attacks on Decompress-And-Multi-
ply.
In the abstract protocol Decompress-And-Multiply A has access to the result

Q of ECSM. Furthermore, the knowledge of Q is required to mount our proposed
attacks. But in real-world applications like Elgamal, decryption queries do not
provide these elements directly. Instead, a hash function or a KDF is applied to
the output Q of ECSM and this value is released. Hence, schemes like Elgamal
are vulnerable to our attack, but only if the attacker is able to invert the KDF
or is able to access the result of the ECSM prior to the KDF. Nevertheless, our
attacks show that the result of ECSM with the secret key has to be protected in
an implementation because it is a valuable target for FAs. This situation is similar
to the situation for active attacks on Pair-Argument as discussed in Section 5.1.5.

7.4.3. Signature schemes with point compression

A direct application of our attack on Decompress-And-Multiply is the blind signature
scheme from Section 5 of [Bol03]. Here, P is the representation of a blinded message
and the blind signature under P and secret key s is Q = sP . If A asks B for the
generation of a blind signature under P , and if P is compressed, then we can apply
our attacks from Section 7.2 and Section 7.3.

Our next example is ECDSA [ANS99]. Let D = (Fq, E,R, r, c) be ECC domain
parameters, H a cryptographic hash function, and d ∈ Z/rZ be the secret key
of B. To compute a signature for message M under d, B first chooses a nonce
k uniformly at random from [0, r − 1]. Then B computes Q = kR and returns
σ = (x(Q) mod r, k−1(H(M) + dx(Q)) mod r) as the signature. Because r ≈ q,
x(Q) and hence Q can be recovered from x(Q) mod r. If R is stored in compressed
form (xR, b) = Compress(R), we can consider ECDSA signature generation as a
restricted case of Decompress-And-Multiply by setting P = R and s = k. Here,
the restriction is that the point R is fixed as part of the ECC domain parameters
and hence, an attacker has no control over the input of Algorithm 3.1. We now
argue that this is sometimes sufficient to apply our attack.

In the attack from Section 7.2 the adversary uses his weak control over the input
of Algorithm 3.1 to choose a square xU . Hence, if xR happens to be a square and
if the curve has j-invariant j = 0 we can still attack the decompression of (xR, b) as
in Section 7.2.1. For example, if ECDSA is instantiated with the curve secp256k1
from [Cer10] it is potentially vulnerable to the attack:

1. The curve secp256k1 has j-invariant j = 0 as required for our attack.

2. The x-coordinate xR of the generator R as specified in [Cer10] is a square in
Fq and hence (xR, b) = Compress(R) results in a square xR.

3. Our attack can recover the scalar in one shot and hence it can be applied to
ECDSA where ECSM is performed with a nonce k.
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Curve E : y2 = x3 + a6 E : y2 = x3 + a4x+ a6
j-invariant j = 0 j 6= 0

Section 7.2 7.3
Decompress-And-Multiply yes yes

Hash-And-Multiply yes no
Random point sampling yes no

DLOG problem reduced to F+
q F∗q or F∗q2

Complexity log(q)3 Lq(1/3, c) or Lq2(1/3, c)

Table 7.1.: Comparison of our singular curve attacks for curves over Fq.

An example that uses the combination of ECDSA and secp256k1 is Bitcoin [Bit15].
But we also remark that we are not aware of any ECDSA implementation that
stores the fixed generator R in compressed form.

7.4.4. Random point sampling

The attack from Section 7.2 also applies to random point sampling if implemented
similarly to Algorithm 3.2. Instead of hashing the message M to (xU , b), here
(xU , b) ∈ Fq × {0, 1} is sampled uniformly at random until it is a valid compression.
Then (xU , b) is decompressed to obtain a point on the curve. Hence, we can attack
the computation of Decompress(xU , b) with Algorithm 3.1 as in Section 7.2.1. If
xU is a square, we are successful. On expectation, we have to repeat the fault
injection twice, because every second element in Fq is a square.

7.4.5. Comparison of attacks

Table 7.1 shows a summary of our attacks. We see that the attack for curves with
j-invariant 0 from Section 7.2 applies to a broader class of protocols compared to
the attack for general curves from Section 7.3. For curves with j = 0, our attack can
be used to attack the protocols Decompress-And-Multiply and Hash-And-Multiply
defined in Definition 3.16 and Definition 3.18, respectively. Furthermore, it can also
be used to attack Algorithm 3.2 for random point sampling. For general curves the
attack only applies to the protocol Decompress-And-Multiply because the attacker
needs strong control over the input x of Decompress. If x is the image of a hash
function H as in Algorithm 3.3, this control is not provided.

With respect to efficiency, the attack also performs better for curves with j = 0
than for general curves. Here, the reason is that in the former case, the DLOG
problem is reduced to F+

q and in the latter case, the DLOG problem is reduced to
F∗q or F∗q2 . In F+

q , computing the DLOG is a trivial inversion while in F∗q or F∗q2 ,
sub-exponential index calculus algorithms like the number field sieve are required.
Especially if α =

√
3xS from Theorem 2.11 is not in Fq, the DLOG problem is
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reduced to F∗q2 . Here, computing the DLOG is cheaper than on the original curve,
but depending on the size of q, it still might be too expensive in practice.

7.5. Countermeasures

The first option to defeat fault injection is to detect faults by the hardware. For
example, in the case of instruction skips, redundancy can be added to detect
the modification of instructions [Bar+06]. Since hardware mechanisms are not
always available and also because they sometimes only help against special fault
injection techniques, software countermeasures are also required. Several software
countermeasures against attacks on ECC-based schemes are known. For a survey,
we refer to [FV12]. To demonstrate that countermeasures have to be implemented
carefully we discuss two countermeasures that were proposed against invalid point
attacks: point validity checks and fault infective computations based on secret
sharing. We show that both countermeasures are vulnerable to our attack.

7.5.1. Point validity checks

Especially against invalid point attacks, a point validity check of the result Q was
proposed. It basically evaluates the Weierstrass equation (2.3) for the output Q
of ECSM to verify that Q is still on E. If the verification fails, the result Q is
discarded and a failure message is returned. It was already observed in the context
of RSA, that the conditional branch of a decision procedure can be attacked with a
second fault [Yen+03; KQ07]. This is exactly what we do in our practical attack
in Section 8.6. Our results support the concern of [Yen+03] that it is difficult to
implement checking procedures such as point validity checks in a secure way.

Furthermore, it is not enough to protect the check’s branch instruction. To give
just one example, in our attacks from Section 7.2 and Section 7.3 we could inject
the very same fault that we used during decompression of P on the evaluation of
(2.3) during the check of Q. Then, Q would pass the test exactly in the case where
it is on the singular curve (cf. Remark 7.6) .

7.5.2. Fault infective computations

To deal with attacks on a decision procedure, Yen et al. [Yen+03] propose fault
infective computation for Chinese remainder theorem (CRT)-RSA. The idea of fault
infective computation is to remove an explicit check. Instead, the computation
that involves the secret is performed such that an erroneous result does not leak
information about the secret. The idea was adapted to ECSM in [DH11, Section 5]
for implementations based on the Montgomery ladder. We abstract from the
details of [DH11] that are related to the Montgomery ladder. Then the idea is
to use a random point R to split P into two shares P + R and −R prior to the
ECSM. Then ECSM is computed on both shares and the results are re-combined:
Q = s(P + R) − sR = sP . If a fault modifies P into P̃ ∈ Ẽ 6= E, P̃ and R are
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on different curves. Hence, the addition with R and subtraction with sR are not
valid group operations on Ẽ. Consequently, the mask sR does not cancel out and
Q depends on the unknown R.
As noted in Section 7.4.4, sampling R ∈ E(Fq) based on Algorithm 3.2 is

vulnerable to our attack from Section 7.2 for curves with j-invariant 0. To circumvent
the countermeasure in this case, we propose to apply a second order attack. With
the first fault, we attack the decompression of P to obtain P̃ on the singular curve Ẽ.
With the second fault, we attack the sampling of R to obtain R̃ ∈ Ẽ. If both faults
are successful all subsequent group operations are performed on the singular curve.
Hence, the output of the masked computation is Q̃ = s(P̃ + R̃) − sR̃ = sP̃ ∈ Ẽ.
Then we can apply our reduction to the DLOG problem in F+

q as in Section 7.2.
As a conclusion, we see that software countermeasures have to be implemented

carefully because they can be manipulated with a second fault. This is especially
true for curves with j-invariant 0 because in this case, even countermeasures based
on fault infective computation are vulnerable to our attack.
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Practical realization of our fault attacks

In Section 6.2 we presented an FA on Pair-Argument from Definition 3.17 and in
Section 7.2 we presented an FA on Hash-And-Multiply from Definition 3.18. There,
we described the theoretical analysis of the attacks that is required to recover
the secret key from an erroneous computation. We showed that second order
attacks are necessary for relevant attacks to either attack the complete pairing
computation or to remove countermeasures. In this chapter, we give detailed
background information on our practical realization of these attacks based on our
work from [Blö+14] and [BG15]. Especially, we show that it is possible to implement
second order attacks in the complex scenario of PBC. To realize our attacks, we
use clock glitches to implement instruction skip faults. Hence, in this chapter we
move on from the mathematical aspects of our attacks to their engineering aspects.

This chapter is structured as follows. In Section 8.1, we discuss related work and
our contribution. Then we give some background information on clock glitching,
instruction skip faults, and their applications. In Section 8.2 we describe our setup
to realize instruction skip faults. In Section 8.3 we explain how to perform second
order faults with our setup. In Section 8.4 we give background information on the
device and the software that we target in the attack. In Section 8.5 and Section 8.6
we describe our practical realization of the attacks from Section 6.2 and Section 7.2,
respectively.

8.1. Introduction

We distinguish between three different terminologies with respect to fault attacks:

1. The fault injection technique that is used to generate a fault like for example
clock glitches, voltage glitches, electromagnetic pulses, laser beams, or heating.

2. The effect of the fault on the computation and on data. Possible effects
include instruction replacement, instruction skip, erroneous load/store of
data, and erroneous branching.

3. The exploitation of the fault effect to recover the secret. This includes for
example, algorithm specific attacks, differential fault analysis, and safe-error
attacks.
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In this thesis, we use clock glitching as fault injection technique to implement
instruction skip faults. Furthermore, we exploit these faults in the algorithm
specific attacks from Section 6.2 and Section 7.2 on the pairing computation and
on point encoding in combination prior to ECSM.

8.1.1. Related work

There is a large amount of work on fault attacks with contributions to injection
techniques, fault effects, and fault exploitation. For an overview, we refer to
[Bar+06; Bar+12b; Bar+12a; KSV13].
In the following, we give some exemplary references related to clock glitching

and instruction skip faults. Furthermore, we recall the few practical realizations of
fault attacks in the context of PBC.

Clock glitching

Clock glitching is a standard technique to overclock an electronic circuit like the
CPU of a smart card controller for a short period. This technique has been used
as a fault injection technique already for a long time [AK96]. Overclocking causes
violations in the setup time of flip-flops. For a brief introduction we refer to
[Ago+10]. Clock glitching may have different effects like, e.g.:

1. Erroneous load or store of data from or to memory.

2. Erroneous fetching, decoding, or execution of instructions.

3. Erroneous updates of the program counter.

In this thesis, we target the AVR ATxmega128A1 from Atmel’s AVR family
[Atm13]. In [BGV11] the effect of clock glitching on the ATmega163 from the
Atmel AVR family was studied. The work provides an extensive analysis how
different instructions are effected depending on various parameters of the clock
glitch. This includes the description of an FPGA setup that is used to generate
clock glitches. Also background information on the AVR architecture is provided
to explain the observed effects.
Note that access to the clock of the target CPU is required to apply clock

glitching. We remark that several smart card controllers do not have an accurate
internal oscillator. Hence, they use an external clock source. Furthermore we view a
successful attack that is based on clock glitching as an indication for a vulnerability
also against other mechanisms like, e.g., voltage glitching.

Instruction skip faults

Concerning the effects of faults, we consider instruction replacement faults, or
more specifically, instruction skip faults. Instruction replacement faults are faults
where a fault is injected during instruction fetch, instruction decode, or instruction
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execution with the effect that another instruction is executed in place of the
original instruction. An instruction skip fault is the special case where the original
instruction is not executed at all or replaced with an instruction that does not effect
the data of the cryptographic algorithm. On some CPUs, for example from the
Atmel AVR family, the realization of instruction skip faults is simplified because
these CPUs ignore invalid opcodes and continue with code execution [BGV11].

Instruction replacement faults can be realized based on clock glitching. Indeed, it
has been shown that instruction replacement faults and instruction skip faults can
be achieved with various injection techniques and on various computer architectures.
Choukri and Tunstall [CT05] use voltage glitches to generate instruction skip faults
on a PIC16F877 controller. Furthermore, they exploit the instruction skips to
reduce the complexity of AES. In [KQ07] Kim and Quisquater use voltage glitches
to generate second order instruction skip faults on an AVR CPU. They use this to
attack a protected CRT-RSA implementation. As already mentioned, in [BGV11],
instruction skip faults were described as one possible effect of clock glitching on
AVR CPUs. Furthermore, in [Riv+15], instruction skip faults on ARMv7-M CPUs
were introduced by means of EM pulses.

Fault attacks on PBC

In Section 6.1.1 we gave an extensive overview of how fault attacks were exploited
in the context of PBC. Most attacks were only described theoretically and not
validated in practice. Two exceptions are [BMH13] and [Las+14].

Bae, Moon, and Ha [BMH13] use a laser pulse to implement an instruction skip
fault on an AVR ATmega128L. This fault is used to skip a conditional branch. Bae,
Moon, and Ha describe how this fault can be exploited for an attack on a pairing
computation. In their practical evaluation, they do not attack a complete pairing
computation. Instead, they attack a small test program that generates a trigger
for the laser and sends a special output in case the fault injection was successful.

In [Las+14] Lashermes et al. practically validate previous theoretical attacks on
the Miller algorithm. The practical evaluation is performed on an ARM Cortex M3
processor and EM pulses are used as the fault injection technique. Lashermes et al.
implement two effects: errors at loading data, and skipping of branch instructions.
Both effects can be exploited to attack the pairing computation (cf. Chapter 5).
As we explained in Section 5.1, most pairings require second order attacks: The
first fault is required to target the Miller algorithm and the second fault is required
to target the final exponentiation. In [Las+14] only first order attacks on the
Miller algorithm are considered. The authors attack their own implementation and
precede the target instruction with a trigger and NOP instructions. According to
[Las+14], this is not necessary but it simplifies the attack in two ways: It facilitates
synchronization with the EM pulse and it clears the processor’s pipeline for a better
reproducibility of the fault.
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8.1.2. Our contribution

Based on our results from [Blö+14] and [BG15], we present our practical realization
of the attacks from Section 6.2 and Section 7.2, respectively. Both attacks are
performed on an AVR ATxmega128A1. With respect to our attack on Pair-
Argument from [Blö+14] (cf. Section 6.2) our contribution is summarized as
follows:

1. We present the first practical realization of a fault attack against a complete
pairing computation. Different from [Las+14] that target only the Miller
algorithm, we use a second order attack to target Miller algorithm and final
exponentiation.

2. We attack an independent pairing implementation from [AG] that we did not
modify for a simpler realization of our attack. Especially, the assembly on
our final target device does not precede the target instructions with code to
simplify synchronization like triggers or NOP instructions.

3. We analyze the assembly code that was generated with avr-gcc to identify suit-
able target instructions for our basic attack from [Blö+14] and our extended
attack from Section 6.2. We perform the basic attack in practice.

4. As we explain in Section 5.1, second order attacks are an important tool for
the implementation of fault attacks against PBC, or more specifically, against
the pairing computation as part of Pair-Argument. The complexity of an
attack increases with a higher order. Especially without additional triggers,
it becomes more difficult to determine the precise timing of the glitches at
the target instructions. In Section 8.3 we give a detailed description of our
profiling strategy that we use to determine parameters of the individual
glitches.

5. In the practical realization of a second order instruction skip attack, many
experiments are required until both target instructions are skipped successfully.
Furthermore, it is not trivial to identify successful executions of the attack:
For every experiment that generates reasonable output, key candidates have to
be computed and verified. Therefore, we automated the analysis of Section 6.2
with Sage in order to perform a large number of experiments without manual
intervention.

For the realization of our attack on the BLS signature scheme from [BG15] (cf.
Section 7.2) we follow the same paradigm as before and target an independent
implementation. Therefore, our contribution here is similar:

1. To the best of our knowledge, we present the first practical realization of a
fault attack against a complete implementation of a pairing-based signature
scheme. Furthermore, we present the first practical realization of a fault
attack that exploits singular curves.
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2. We attack the implementation of [AG] of the algorithm Sign from Defini-
tion 3.15. We did not modify the implementation for a simpler realization
of our attack. Especially, the assembly on our final target device does not
precede the target instructions with code to ease synchronization like triggers
or NOP instructions.

3. We analyze the assembly code that was generated with avr-gcc to identify
suitable target instructions.

4. We added a simple countermeasure against first order attacks to the imple-
mentation of [AG] and hence, we target the implementation with a second
order attack. In Section 8.6 we describe how we determine parameters of the
individual glitches.

5. As above, we automated the analysis of Section 7.2 with Sage in order to
perform a large number of experiments without manual intervention.

While [BGV11] analyze an AVR ATmega163 that is specified for CPU frequencies
up to 8 MHz, we perform our experiments on an AVR ATxmega128A1 that is
specified for 32 MHz. Hence, overclocking and therefore also clock glitching is
potentially more difficult for the AVR ATxmega128A1. Our results show that
similar techniques as in [BGV11] can also be used to attack this device.

For both attacks, we use a setup that is similar to the setup from [BGV11]. Our
setup was developed by Gomes da Silva [Gom14] and hence, we do not account the
setup as a contribution of this thesis. Nevertheless, our results show that the setup
is applicable in complex scenarios and can be used to attack real protocols.

8.1.3. Exploiting instruction skip faults in attacks on PBC

Instruction skip faults are an important tool that can be exploited in various ways
in FAs on PBC. In the following, we describe some basic techniques that are based
on instruction skip faults and that have applications in PBC. We use some of them
in our practical attacks in Section 8.5 and Section 8.6.

Change the number of loop iterations: By skipping a conditional jump at
the end of a for or while loop we can leave the loop prematurely. This approach
has been used, for example in [CT05], to reduce the number of AES rounds. We
use this approach to realize our fault of Section 6.2, where we leave the for loop of
Algorithm 6.1 after one iteration. We give more details on the concrete realization
in Section 8.5. Furthermore, this technique can also be used to leave the loop in
Line 10–Line 15 of Algorithm 6.3 to realize our attack on the final exponentiation
from Section 6.3.

By skipping updates of loop counters, we can perform an additional iteration of
a loop. Based on this, the attack of [PV06] that we described in Section 5.4.1 can
be realized.
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Skipping conditional branches: By skipping a conditional branch instruction
or the update of a zero flag, we can also skip if or else branches. We use this
technique in Section 8.6 to eliminate the point validity check in the practical
realization of our attack from Section 7.2 (see also Remark 8.3 in Section 8.6.2).
Furthermore, this technique can also be used to skip the if branch in Line 12 of
Algorithm 6.3 for realizing our attack on the final exponentiation from Section 6.3.
Another application is the attack from [BMH13] (cf. Section 8.1.1).

Skipping finite field operations: By skipping function calls, we can skip
complete sub-routines like finite field operations. For example, in [SH08] RSA
signatures are attacked by skipping a squaring operation. To realize our attack
on the final exponentiation from Section 6.2, on the Ate pairing from Section 6.3,
or on point decompression from Section 7.2, we skip a finite field multiplication
or a finite field addition, respectively. We give more details on the realization of
skipping instructions calls in Section 8.5 and Section 8.6.

Data faults at finite field elements: It is also possible to realize faults in Fq
based on instruction skips. During an initialization or update of a field element
that usually is organized as an array of machine words, we can skip the update of
one word. This introduces a localized fault. Often, if a word is of width 16 bit or
less, this even allows us to guess the introduced fault. This is advantageous for the
analysis of fault attacks on pairings (cf. Section 5.3.7).

Redirecting output pointers: Another effect that we can realize with instruc-
tion skip faults is to redirect pointers to arguments of functions. Assume we partially
skip the initialization of a pointer. For example, we might zero the least significant
word of the pointer. Subsequent updates of the variable that is referenced by this
pointer will then modify a different memory location.

For an example, consider the variable b in Algorithm 3.4 that is used to accumulate
the result. Assume we modify the pointer that references this variable at the end
of the first iteration. Then, the loop is executed as usual, but the variable b is not
updated. This has the effect of virtually leaving the loop after one iteration. This
is useful to circumvent countermeasures that, for example, test the integrity of the
loop counter or the point R of Algorithm 3.4. This technique can also be used
to realize our practical attacks as we explain in Remark 8.1 and Remark 8.2 of
Section 8.5 and Section 8.6, respectively.

8.2. Experimental setup

In this section, we describe the setup that we use for CPU clock glitching. It was
developed as part of a Bachelor’s thesis and for more background we refer the
reader to [Gom14]. The setup is not specialized to attacks on PBC and can be
used in other scenarios. It consists of three main components: the glitcher, the
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Target
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Host
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...
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*.py
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io_trig
io_trig_1
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Figure 8.1.: Simplified block diagram of our setup. The host loads the queue of the
glitcher via io_cfg. The glitcher resets the target via io_rst and synchronizes
at io_trig with the target. According to its configuration queue it generates
the glitches on the external clock io_clk of the target. The target executes
the program under attack and communicates on the serial line io_serial with
the host. The signals io_trig_1 and io_trig_2 are used for profiling and are
implemented only by special devices (cf. Section 8.3).

host system, and the target. A block diagram of the setup is shown in Figure 8.1,
and Figure 8.2 shows a picture of the setup. The glitcher is used to generate the
external clock for the target device. It is also used to generate the glitches on the
clock signal. The host system is used to configure the glitcher and to acquire the
output of the device under attack. The target executes the attacked program. We
now describe the three components individually.

8.2.1. Clock glitcher

For the hardware of the glitcher we use the DDK [NS13]. This is a low-cost, open
source development platform which consists of an FPGA and an ARM CPU. The
FPGA is used to perform the timing critical parts such as generation of the target’s
clock signal. The ARM CPU is mainly used to interface the FPGA with the host
system. It implements a serial terminal that provides external control of the FPGA
and allows to easily automate the setup.

The glitcher uses two internal clocks: a low frequency clock at fl = 33 MHz and
a high frequency clock at fh = 99 MHz. The FPGA implements a 32-bit timer
that manages the timing of different events. The clock source of the timer is fl.
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FPGA

io_trig_2

ARM

io_cfg

io_serial

io_trig_1

io_trig

io_rst

GND

Target

Glitcher (DDK)
Host

Host
io_clk

AVR ATxmega128A1

Figure 8.2.: Picture of our practical setup: At the top, we see the target, an
AVR ATxmega128A1 as part of an Xplained evaluation board. At the bottom,
we see the glitcher, a DDK that consists of an FPGA and an ARM controller.
The glitcher provides the CPU clock of the target at io_clk. The host that
configures the glitcher via io_cfg and evaluates the output of the target at
io_serial is not shown. The unconnected signals io_trig_1 and io_trig_2
are only available on profiling devices.
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99 MHz (fh)

33 MHz (fl)

io_trig

io_clk

0 1 2 3 4 5 6 7 8 9

t1 d1 t2 d2

Figure 8.3.: The figure shows the output io_clk of the glitcher with two glitches.
The first glitch is introduced with a delay of t1 = 3 cycles of the 33 MHz clock,
measured relative to the trigger io_trig. Its duration is d1 = 2. With p1 = 1,
the 99 MHz clock is directly used to generate the glitch pattern. The second
glitch is introduced with a delay of t2 = 2 cycles of the 33 MHz clock, measured
relative to the first glitch. Its duration is d2 = 1. With p2 = 2, the 99 MHz clock
is gated in the second half of the 33 MHz clock cycle.

The glitcher provides a trigger input io_trig for synchronization with the target.
Internally, this input is basically used to reset the timer. The main functionality of
the glitcher is to generate a clock signal io_clk for the target. This output can be
switched between fl and fh. A glitch is defined by three parameters, a timestamp
t, a duration d, and a pattern p. When the timer reaches t, a glitch is generated by
a synchronized switch from fl to fh for d periods of fl, i.e., 3 · d periods of fh. The
glitcher implements two glitch patterns. For p = 1, the high frequency clock fh is
directly used to generate the glitch. For p = 2, the clock is gated during the second
half of the fl clock period.

For our second order attacks we have to perform two synchronized glitches.
Therefore, we use a queue that is implemented by the glitcher. This queue can
be filled with up to 256 triples (t1, d1, p1), . . . , (t256, d256, p256). Then, for every
element in the queue, the corresponding glitch is generated. For second order
attacks only two glitches need to be scheduled in the glitch queue. To fill the queue,
the glitcher’s internal ARM CPU listens to the serial input at io_cfg.

Figure 8.3 shows an example with two glitches. The first glitch is introduced
with a delay of t1 = 3 cycles of the 33 MHz clock, measured relative to the trigger
io_trig. Its duration is d1 = 2. With p1 = 1, the 99 MHz clock is directly used to
generate the glitch pattern. The second glitch is introduced with a delay of t2 = 2
cycles of the 33 MHz clock, measured relative to the first glitch. Its duration is
d2 = 1. With p2 = 2, the 99 MHz clock is gated in the second half of the 33 MHz
clock cycle.
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8.2.2. Host system

The host is a Linux-based system that configures the glitcher and automates the
setup. It provides two serial IO lines. One is used to configure the glitcher while
the other is used to receive the output from the target. The host system includes
a Python [Pyt14] library to interface with the glitcher. For example, this allows
an in-place analysis, e.g., based on a CAS like Sage [Sag14], and logging of the
target’s output, followed by a direct reconfiguration for the next attacks. Another
functionality provided by the host is to periodically execute a self-test routine for
testing the functionality of the setup.

8.2.3. Target

For an automated reset of the target the glitcher controls the target’s reset pin
io_rst. Furthermore, the CPU of the target device is clocked with an external
clock. We control the CPU clock by connecting the target’s clock pin to the glitcher
output io_clk.
For our concrete attacks, the target generates a trigger on output io_trig

before the computation of the target program is started. This signal is used to
synchronize the target with the glitcher. Generating the trigger on the target is
used to simplify the setup. In a real attack, it has to be generated by other means.
For example, it could be derived from sniffing the targets IO to locate the command
that initiates the attacked computation. Finally, the IO of the target io_serial is
connected to the host for initiating the attacked computation and for analysis of
the computation’s results.
For profiling, we use a special target software that provides additional triggers

io_trig_1 and io_trig_2. These signals can be connected to an oscilloscope in
order to determine the timing of glitches. For more details, we refer to the next
section.

8.3. General strategy for second order fault attacks

To configure the glitcher from Section 8.2.1 in a concrete second order attack, the
timings t1, t2, the duration d1, d2, and the patterns p1 and p2 of the glitches are
required. Here, t1 and t2 may depend on the target’s secret key. For example, in
a pairing computation that uses Algorithm 3.4 to compute milr,P (Q) with secret
argument Q, all computations of TR(Q) and LP,R(Q) prior to the first glitch depend
on Q. Hence, the timings are a priori unknown to us, which makes it challenging
to determine t1 and t2. Thus, we split the attack into two steps: profiling phase
and target phase. We use the profiling phase to find reasonable configurations
(t1, d1, p1) and (t2, d2, p2) for the two glitches. Therefore, we assume that we have
access to a profiling device that is similar to the target device. Based on the results
of profiling with the profiling device, we attack the target device in the target phase.
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We emphasize that once the profiling is completed, we do not need to repeat it
when we attack target new samples.

8.3.1. Profiling Phase

The profiling relies on two assumptions:

1. The assembly code of the target implementation is known to us.

2. We are able to execute arbitrary profiling code on a profiling device similar to
the target device.

Based on these assumptions, we first execute a profiling implementation on the pro-
filing device. For the profiling implementation, we modify the target implementation
in the following ways:

• We implement triggers io_trig_1 and io_trig_2 on two external IO pins
(cf. Figure 8.1). Here, io_trig_1 is raised immediately before the first target
instruction and io_trig_2 is raised immediately before the second target
instruction.

• We implement an emulation mode that branches over the first target instruc-
tion from the assembly. This emulates a successful skip of the first target
instruction.

These modifications allow us to determine t1 and t2, the timings of the two target
instructions, for every computation of the profiling implementation. Note that t2 is
measured relative to t1. To measure t2 we use the emulation mode because we are
interested in the delay for the case where the first fault has been successful.

We execute the profiling implementation for different secret keys, chosen uniformly
at random from the domain of the secret key, i.e., from G1 or G2 for an attack on
pairings and from Z/rZ for an attack on ECSM. As result, we obtain distributions
for t1 and t2. Since these distributions are obtained over the random choices of the
secret, we will choose t1 and t2 in the target phase accordingly.

This step of the profiling can be done either by an oscilloscope or by programming
a special profiling mode into the FPGA of the glitcher. The profiling mode counts the
number of clock cycles between the two positive edges at io_trig and io_trig_1,
and between the positive edges at io_trig_1 and io_trig_2. We give a concrete
example in Section 8.5.3.

In the next step of the profiling, we determine useful combinations of the remaining
glitching parameters d1, d2, p1, and p2. Therefore, we perform a large number of
experiments where we use the glitcher to introduce glitches shortly after edges at
io_trig_1 and io_trig_2 that are close to the target instructions. We use the fact
that we know the selected secret keys in the profiling phase. Hence, we can predict
the output of the algorithm when successfully glitching either one or both of the
target instructions. This allows us to identify successful tests and their respective
parameters.

127



Chapter 8. Practical realization of our fault attacks

8.3.2. Target Phase

In the subsequent target phase, the actual target device with the unmodified
code and the unknown secret is attacked. Therefore, we perform a sequence of
experiments with different combinations of (t1, d1, p1) and (t2, d2, p2) until we are
successful in skipping the two target instructions. We select the combinations and
their precedence based on the results of the profiling phase.

8.4. Target device and implementation

In this section, we give background information on the target hardware, an AVR
ATxmega128A1 controller [Atm13], and the target software, the RELIC toolkit
[AG], that we used for our practical realizations.

8.4.1. Hardware: AVR ATxmega128A1

We used an AVR ATxmega128A1 controller for several reasons:

• Toolchain support: With the avr-gcc compiler and the AVR ATxmega128A1
Xplained1 evaluation board, free or low-cost products are available.

• Community support: The AVR architecture is popular and enjoys large
support by the community.

• Academic significance: The AVR architecture has been used in academia for
many proof of concept realizations of attacks, e.g., [SH08; KQ07; BMH13].

• Reference setup: Our clock glitching setup from Section 8.2 has been developed
based on the AVR ATxmega128A1 in [Gom14]. Furthermore, the effects of
clock glitches on an AVR controller were already analyzed in [BGV11].

The AVR ATxmega128A1 is a controller of the Atmel AVR family with 128 kB
of flash memory and 8 kB of main memory. The AVR architecture is a reduced
instruction set computer (RISC) architecture with 8 bit and 16 bit instructions. It
has a register file with 32 registers R0. . . R31, each of 8 bit width. For even m and
n = m+1 we write Rn:Rm to denote a word register that is composed of the adjacent
byte registers Rn and Rm. The maximum specified CPU frequency is 32 MHz. Note
that this is well below 99 MHz, the frequency of the clock glitches that our setup
from Section 8.2 generates. In Table 8.1 we list the AVR instructions that are
required to follow the details of our attacks.

For more AVR ATxmega128A1 specific details we refer the reader to the device
data sheet [Atm13] and the manual [Atm12]. For details on the instruction set, we
refer to the AVR instruction set manual [Atm14].

1www.atmel.com/xplain
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Mnemonic Operand Description Operation
breq k branch if equal if z then

PC← PC + k + 1

call k call subroutine PC← k

ld Rd, Z load indirect Rd← (Z)

ldd Rd, Y+q load indirect with displacement Rd← (Y + q)

movw Rd, Rr copy register pair Rd+1 : Rd← Rr+1 : Rr
pop Rd pop register from stack Rd← STACK
push Rr push register on stack STACK← Rr
ret subroutine return PC← STACK
rjmp k relative jump PC← PC + k + 1

sbc Rd,Rr subtract with carry Rd← Rd− Rr− C
sbci Rd,K subtract immediate with carry Rd← Rd−K − C
subi Rd,K subtract immediate Rd← Rd−K

Table 8.1.: Excerpt of the AVR instruction set manual [Atm14]. Here, PC denotes
the program counter, STACK denotes the top of the stack, z denotes the zero flag,
C denotes the carry flag, Rn denotes the n-th CPU register, Y denotes R29:R28, Z
denotes R31:R30, (R) denotes the address stored in the register R, k denotes a
constant address, and K denotes constant data.

8.4.2. Software: RELIC toolkit and avr-gcc

For the concrete target implementations we used the RELIC toolkit [AG]. It
includes C implementations of finite field arithmetic, ECC, and PBC for different
hardware platforms like Atmel’s AVR family. The RELIC toolkit has also been used
in TinyPBC for the implementation of PBC in wireless sensor networks [Oli+11].
To the best of our knowledge it is the only freely available implementation of PBC
for AVR CPUs. It implements the IBE scheme from Definition 3.14, the BLS
signature scheme from Definition 3.15, as well as various pairings. The RELIC
default configuration for the AVR ATxmega128A1 is the Eta pairing from [Bar+07].

For our attacks, we use RELIC version 0.3.5 without modifications of the source
code. We compiled the library with the avr-gcc-4.x toolchain and optimization level
-O1. For optimization level -O2 we did not observe any performance improvements.
Nevertheless, we will come back to optimization level -O2 in Section 8.5.4 because
it motivates our extended attack on the final exponentiation from Section 6.2.
To understand the assembly code that we list in the following subsections, it is

useful to understand the avr-gcc calling conventions (see, for example, [GCC15]).
We do not need to understand all details and restrict to the case where 18 registers
suffice to pass all arguments of a function. In avr-gcc, pointers are of width 16 bit.
Furthermore, for all cases of our interest, avr-gcc passes arguments of functions
via CPU registers. Assume a function func with arguments a1, . . . , an. Then the
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void pb_map_etats ( fb4_t r , const eb_t p , const eb_t q ) {
pb_map_etats_imp( r , p , q ) ;
etat_exp ( r , r ) ;

}

Table 8.2.: pb_map_etats: RELIC’s top level implementation of the Eta pairing
on arguments P and Q that are referenced by pointers p and q, respectively.
The results in Fq4 is referenced by the pointer r. Note that the exponentiation
etat_exp uses the same memory for its argument as well as for the result. The
memory is referenced by the pointer r.

arguments are individually padded to a multiple of 16 bit and passed in registers
R25, R24, . . . , R8, starting with the MSBs of a1 at R25. The result is returned in
R25, R24, . . . , R18. For example, for the function with interface

int func ( int ∗a , int ∗b , int ∗c ) ;

the pointer a will be passed in R25:R24, the pointer b will be passed in R23:R22, and
the pointer c will be passed in R21:R20. The result will be returned in R25:R24.

8.5. Second-order faults on the pairing computation

This section describes our concrete second order fault attack from Section 6.2 on
the protocol Pair-Argument (cf. Definition 3.17). In Section 8.5.1 we give details on
the concrete implementation of pairings on our target. In Section 8.5.2 we explain
the concept of or basic attack from [Blö+14] and we identify the target instructions
of the attack. In Section 8.5.3 we give details on the concrete execution of the
attack, including profiling phase and target phase. In Section 8.5.4 we explain how
the extended attack that we analyze in Section 6.2 can be realized on our target
implementation.

8.5.1. Implementation of pairings on our target

The RELIC default configuration for AVR devices defines the Eta pairing η :
E(Fq)×E(Fq)→ F∗

qk
from Section 6.2.1 as the standard pairing. It is implemented

by the function pb_map_etats that is outlined in Table 8.2. The pairing on inputs
P and Q is computed in two steps: Miller algorithm and final exponentiation.
The Miller algorithm is implemented by the function pb_map_etats_imp similar
to Algorithm 6.1. The main loop of the Miller algorithm is implemented by a for
loop that increments a loop counter in each iteration. The final exponentiation is
implemented by the function etat_exp similar to Algorithm 6.2.

In our experiments both arguments P and Q are loaded from the internal memory.
Then η(P,Q) is computed on the target device and the output is returned on the
serial IO io_serial. We remark that loading the public argument from memory
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and not via the serial line io_serial helps to simplify the setup, but is not essential
for the attack.

8.5.2. Concept of the attack

We start with a high level outline of the attack before we go into the details of the
assembly code.

Outline

We attack an instantiation of the protocol Pair-Argument-1 from Definition 3.17.
Here, we are allowed to choose the first argument P of the pairing and the second
argument Q of the pairing is secret. According to the definition of Pair-Argument,
we attack an isolated pairing computation, including Miller algorithm and final
exponentiation. We use two faults to attack the pairing. We use the first fault to
terminate the loop of Algorithm 6.1 after the first iteration. With the second fault,
we completely skip the final exponentiation.

First, we choose an arbitrary point P ∈ E(Fq) with P 6= O and compute η(P,Q)
with secret Q on the target device. During the computation of miln,P (Q) we
introduce a fault in Line 12 of Algorithm 6.1. This fault skips the instruction
that jumps to the beginning of the loop. Hence, the loop is terminated after one
iteration. Then we introduce a second fault to skip the complete final exponentiation
of Algorithm 6.2. If both faults are successful, the target device returns the state of
the variable b in Algorithm 6.1 at the end of the first iteration. With b, we recover
Q based on the analysis of Section 6.2.

Target instructions

To understand how we attack the for loop, we refer to Table 8.3. It shows how the
compiler generates the end of the for loop. In Line 5 and Line 6 the loop counter
is decremented by 1. If the counter reaches 0, the zero flag of the CPU will be set.
In Line 7 the CPU branches over the rjmp instruction if the zero flag is set. If the
zero flag is not set, the CPU jumps to the beginning of the loop in Line 8. An
instruction skip fault that removes the rjmp instruction in Line 8 causes the loop
to terminate immediately and proceed with the code following the loop in Line 10.
Now we explain how we skip the final exponentiation. Therefore, we refer to

RELIC’s implementation of the Eta pairing shown in Table 8.2. The variable r
is a pointer to the memory that will store the argument and the result of the
exponentiation. Hence, etat_exp will overwrite the memory at r. If the call to
the function etat_exp is skipped, the memory will not be overwritten and it will
contain the erroneous result of the Miller algorithm from pb_map_etats_imp.
Table 8.4 lists the corresponding assembly of the function pb_map_etats that

implements the Eta pairing. In Line 6 and Line 7 the registers R23:R22 and
R25:R24 are initialized with the pointer r. Then, in Line 8 the computation of the
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2 ...
3 call fb4_mul_dxs ; call sparse multiplication
4 .LVL43:
5 subi r16,1 ; decr. LSB of loop counter
6 sbc r17,__zero_reg__ ; update MSB with carry
7 breq .+2 ; exit loop if zero
8 rjmp .L2 ; jump to beginning of loop
9 .LBE2:
10 subi r28,36 ; clean stack
11 sbci r29, -2 ; -"-
12 out __SP_L__,r28 ; -"-
13 out __SP_H__,r29 ; -"-
14 pop r29 ; -"-
15 ...

Table 8.3.: Assembly of Miller algorithm with conditional branch at the end of
the for loop. The assembly corresponds to Line 11–Line 12 of Algorithm 6.1
and was generated with avr-gcc. In our attack, we skip the rjmp instruction in
Line 8.

1 pb_map_etats:
2 push r28 ; save context
3 push r29 ; -"-
4 movw r28, r24 ; init pointer to result r
5 call pb_map_etats_imp; call Miller algorithm
6 movw r22, r28 ; init pointer to base
7 movw r24, r28 ; init pointer to result
8 call etat_exp ; call exponentiation
9 pop r29 ; restore context
10 pop r28 ; -"-
11 ret ; return

Table 8.4.: Assembly of the Eta pairing (pb_map_etats) with function call to
Miller algorithm (pb_map_etats_imp) and function call to final exponentiation
(etat_exp). The code was generated by avr-gcc. In our attack, we skip the call
in Line 8.
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t1 in instruction cycles Occurrence In %
422 780 1 < 0.01

424 515 1 < 0.01

424 941 1 < 0.01

427 731 1 < 0.01

431 069 1 < 0.01

581 804 3 0.01

581 903 28 0.08

582 001 7 0.02

582 002 590 1.66

582 100 30 0.08

582 101 1 763 4.95

582 111 1 < 0.01

582 199 297 0.83

582 200 32 890 92.35

Table 8.5.: Distribution of the execution time t1 of the rjmp instruction in Table 8.3,
depending on the input Q of Algorithm 6.1.

final exponentiation is called. By skipping this call, we completely skip the final
exponentiation.

Remark 8.1. Note that we can also virtually skip the final exponentiation by
redirecting the pointer r (cf. Section 8.1.3). If we introduce an instruction skip
at Line 7, we skip the initialization of the pointer r. Then, the register R25:R24
will not contain the address of the variable b from Algorithm 6.1. The subsequent
execution of etat_exp will therefore update memory at a different location. This
has the effect of virtually skipping the final exponentiation. This approach might
circumvent simple countermeasures that try to ensure the execution of etat_exp.

8.5.3. Execution of the attack

According to Section 8.3 we split the attack into two phases, profiling phase and
target phase that we explain in the following.

Profiling Phase

As explained in Section 8.3.1 we start with a profiling to estimate the timings t1
and t2 of the target instructions. In a first step, we estimated t1, the clock cycle
of the rjmp instruction in Line 8 of Table 8.3 relative to the trigger at io_trig
that is set at the beginning of the pairing computation. Therefore, we executed
approximately 35 000 experiments with random choices of Q and measured t1 for
each experiment. The distribution of t1 is given in Table 8.5.
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a)

io_trig
io_trig_1
io_trig_2

reset rjmp call

t1 t2

b)
reset rjmp call

t1 t2

Figure 8.4.: Schematic illustration of the timings of target instructions in profiling
mode. In a), we see an execution of the pairing without faults. We use io_trig
and io_trig_1 to estimate the timing t1 of the rjmp instruction. In b), we see
the execution of the pairing where we skip over the rjmp instruction in profiling
mode. The timing t2 from trigger io_trig_1 to io_trig_2 decreases because
the for loop is only executed for one iteration.

Then we determined t2, the number of clock cycles that pass between the targeted
rjmp and call instructions. To estimate this value for the situation where the
first fault has been successful we use our emulation mode of the profiling code. It
emulates the first fault by skipping over the rjmp instruction at t1. We obtained
a constant value of t2 = 28. Here, t2 is constant because if the first glitch was
successful in leaving the for loop, we see from Algorithm 6.1 and Table 8.2 that
the code executed between the rjmp at t1 and the call at t2 is independent of the
secret.

In Figure 8.4, we illustrated two measurements in profiling mode. In Figure 8.4 a),
the target generates triggers on io_trig_1 and io_trig_2 immediately before
executing the target instructions. This allows us to measure t1 relative to the start
of computation at the edge of io_trig. In Figure 8.4 b), we use the emulation
mode to jump over the rjmp instruction for simulating an instruction skip. This
allows us to measure t2 for the case where the loop is terminated successfully.

To select combinations of d1, d2, p1 and p2 of glitch width and glitch pattern we
injected approximately 40 000 faults. This took us less than 72 hours. Since we
know Q during profiling, and hence also the values of t1 and t2, we are always able
to introduce the faults at the correct instructions. Regarding the two patterns p1
and p2 depicted in Figure 8.3, both showed a high success rate. For the duration of
the glitches, we found that d1 = 3 or d1 = 5 and d2 ≤ 5 gave the best results.

Target Phase

In the attack on the target device with unknown Q, we scheduled the timing t1 of
the first glitch according to the frequency of occurrence shown in Table 8.5. We
started our experiments with t1 = 582 200 clock cycles and worked towards delays
that occurred less often during profiling.
We combined each value of t1 with each combination of d1 ∈ {3, 5}, d2 ∈ [1, 5],
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and p1, p2 ∈ {1, 2} that we determined in the profiling phase. For t2 we added a
small safety margin to the value t2 = 28 from profiling such that we used t2 ∈ [26, 30]
in the attack. Furthermore, we repeated each combination for 10 times because
even with the correct parameters, glitching is not always successful. Hence, for
each value of t1 we scheduled 2 · 5 · 2 · 2 · 5 · 10 = 2 000 experiments. For our setup,
one test requires 7.5 seconds on average. This includes configuration of the glitcher,
communication from target to host, pairing computation, and self-tests. Hence, we
are able to perform more than 10 000 experiments per day.

As we show in Section 6.2 we are able to compute the secret Q from the target’s
output if both instruction skips were successful. Furthermore, we can verify
candidate secrets based on the result of a correct pairing computation. This allows
us to recognize the original secret and hence the first successful attack.
We repeated the attack for five different secrets, drawn uniformly at random

from E(Fq). We were always successful in skipping both instructions with at least
one of the selected combinations. The analysis of the experiments showed that for
all secrets it occurred that t1 was either 582 200 or 582 101. This is in line with
the distribution in Table 8.5. Hence, for each attack we required at most 2 · 2 000
experiments. Due to the concentration of the distribution of t1 at 582 200, typically
much fewer experiments were required and it took us only minutes to be successful.

8.5.4. Extended attack on the final exponentiation

Now we present an extension of our attack for the case where the RELIC library
is compiled with optimization level -O2. This is an example where it is not
possible to completely skip the final exponentiation. Here, the reason is that the
compiler replaces the call in Line 8 of Table 8.4 by completely inlining the function
etat_exp.
It is still possible to attack the pairing at the cost of a slightly more com-

plex analysis. As explained in Section 6.2, the final exponent is given as e =(
q2 − 1

) (
q −
√

2q + 1
)
for the attacked Eta pairing. With regard to our analysis,

the RELIC implementation of the finial exponentiation is similar to Algorithm 6.2.
Now, in our extended attack, we do not use the second fault to skip the complete
final exponentiation. Instead, we use the second fault to skip the multiplication
v2 ← v1 · v2 of b(q2−1) with b(q

2−1)q in Line 6 of Algorithm 6.2. This eliminates
the term (q2 − 1)q from the exponent and finally results in a modified exponent
ẽ =

(
q2 − 1

) (
−
√

2q + 1
)
.

To see that it is actually possible to skip this particular multiplication for the
RELIC implementation, we listed parts of the assembly code that correspond to
Algorithm 6.2 in Table 8.6. It corresponds to Line 5 and Line 6 of Algorithm 6.2.
In Line 6 of Table 8.6, the Frobenius automorphism of bq2−1 is computed that
implements exponentiation with q. Then, in Line 7 up to Line 9, the register
R21:R20 is initialized with a pointer to the multiplicand v2 = bq

2−1. In Line 10,
the register R23:R22 is initialized with a pointer to the multiplier v1 = b(q

2−1)q. In
Line 11, the pointer to v2 is copied into R25:R24. This initializes the pointer that
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1 ...
2 movw r22, r28 ; init source pointer v_2
3 subi r22, 0x77 ; -"-
4 sbci r23, 0xFF ; -"-
5 movw r24, r8 ; init destination pointer v_1
6 call fb4_frb ; call frobenius map v_1 <-v_2^q
7 movw r20, r28 ; init pointer to multiplicand v_2
8 subi r20, 0x77 ; -"-
9 sbci r21, 0xFF ; -"-
10 movw r22, r8 ; init pointer to multiplier v_1
11 movw r24, r20 ; init pointer to product
12 call fb4_mul ; call multiplication of v_1*v_2
13 ...

Table 8.6.: Assembly snippet of the final exponentiation (etat_exp), generated
with avr-gcc and optimization level -O2. This part of the assembly corresponds
to Line 5 and Line 6 of Algorithm 6.2. In our attack, we skip the call in Line 12.

stores the product. Hence, the multiplication function fb4_mult overwrites the
multiplicand v2. In Line 12, the multiplication v2 ← v1 · v2 is executed. Skipping
the call to this multiplication prevents the update of v2 that stores the value bq2−1.
This has the effect of removing the term (q2 − 1)q from the exponent to obtain the
exponent ẽ.

8.6. Singular curve attack on BLS signatures

In this section, we give background information on the practical realization of our
fault attack from Section 7.2 on BLS short signatures (cf. Definition 3.15). As
explained in Section 3.3.3, BLS signatures are an example for the scheme Hash-And-
Multiply from Definition 3.18. We perform a second order attack. We use the first
fault to obtain a point on a singular curve. With the second fault, we circumvent
the point validation countermeasure (see Section 7.5) of our implementation.

In Section 8.6.1 we give details on the concrete implementation of BLS signatures
on our target. In Section 8.6.2 we explain the concept of the attack and we identify
the target instructions of the attack. In Section 8.6.3 we give details on the concrete
execution of the attack, including profiling phase and target phase.

8.6.1. Implementation of BLS signatures on our target

The RELIC library already provides an implementation of BLS signatures. Accord-
ing to Definition 3.15, to sign a message M , the target device with secret key s
computes P = HashToCurve(M), Q = sP , and returns σ = Q as a signature under
message M . In RELIC, HashToCurve is implemented similarly to Algorithm 3.3 by

136



8.6. Singular curve attack on BLS signatures

the function ep_map. This function uses the function ep_rhs as a sub-program to
compute the right hand side x3 +a4x+a6 of (2.3) in a way similar to Line 2–Line 5
of Algorithm 3.1. The function ep_rhs itself uses the function fp_add_dig to
implement the addition of x3 + a4x and a6 in Line 5 of Algorithm 3.1. Further-
more, the implementation of ECSM does not use the parameter a6 and hence, the
implementation is IPV (cf. Definition 7.1).

As a basic protection against fault attacks, we extended the implementation with
the point validation countermeasure that was discussed in Section 7.5.1: Before the
signature σ is released, the implementation calls the function check_point_valid
to check that Q is a valid point in the sense of Definition 3.3. If it is valid, the
device outputs σ = Q. If not, the device responds with an error message. Hence,
following Definition 7.1, our implementation is IPV2. The check is implemented
with an if statement and with no special protection against attacks.

To instantiate the corresponding groups G1, G2, and GT of the scheme we use
BN curves from Theorem 3.6. For the concrete parametrization, we refer to
Appendix A.1. Note that BN curves have j-invariant 0 and hence, we can apply the
attack from Section 7.2 on Hash-And-Multiply. BN curves are natively supported
by RELIC.

In our experiments the input message M is loaded from the internal memory of
the target. Loading the message from memory and not via the serial line helps to
simplify the setup, but is not essential for the attack. After the signature under M
has been computed on the target device, it is returned on the serial IO io_serial.

8.6.2. Concept of the attack

First, we give an outline of how we realize the attack. Then we show the concrete
instructions that we attack.

Outline

Recall that we use the first fault to skip the addition with a6 in Line 5 of Algo-
rithm 3.1. With the second fault, we eliminate the point validity check.
First, we choose a message M and start the signature computation for M .

For a proper selection of M we refer to Section 7.2 and more specifically to the
example in Appendix A.1. While the target computes P = HashToCurve(M)
with Algorithm 3.3 as part of the signature generation, we introduce the first
instruction skip fault. More specifically, we place the fault within ep_rhs that
corresponds to the addition with a6 in Line 5 of of Algorithm 3.1. This results in
P̃ on the singular curve Ẽ. Because BN curves have prime order r the cofactor is
c = 1 and Algorithm 3.3 outputs P̃ . Then, the target computes a faulty signature
Q̃ = sP̃ ∈ Ẽ.
Finally, the target checks the validity of Q̃. With the second instruction skip

fault, we remove a branch instruction of the check. The effect is that both, the if
and the else branch are executed such that the device outputs the invalid point Q̃.
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1 .ep_rhs:
2 ...
3 movw r30, r24 ; init pointer to a_6
4 ld r20, Z ; load a_6 into R20
5 movw r22, r28 ; init pointer to v=x^3+a_4x
6 subi r22, 0xEB ; -"-
7 sbci r23, 0xFF ; -"-
8 movw r24, r22 ; copy pointer for result
9 call fp_add_dig ; call addition of v and a_6
10 rjmp .+18
11 ...

Table 8.7.: Assembly snippet of point decompression, generated with avr-gcc.
This part of the assembly corresponds to Line 5 of Algorithm 3.1, i.e., to the
addition of x3P + a4xP and a6. In our attack, we skip the call in Line 9.

Hence, a successful attack will provide us with the DLOG instance Q̃, P̃ ∈ Ẽ that
we can analyze based on Section 7.2.

Target instructions

To understand how we attack the addition with a6, we refer to Table 8.7. It shows the
avr-gcc generated assembly code of our RELIC based implementation. Concretely,
this part corresponds to Line 5 of Algorithm 3.1 on input (xU , b) = H

(
M. d0et2

)
.

Hence, with a4 = 0 it will add v = x3U and a6. In Line 3 of Table 8.7, a pointer to
a6 is loaded into the pointer register Z (R31:R30). Then, the value of a6 is loaded
into the register R20. In Line 5–Line 7 the register R23:R23 is initialized with a
pointer to v = x3U . In Line 8 the pointer is copied to register R25:R24. Then the
function fp_add_dig is called that adds the value of a6 in R20 to the variable that
is referenced by the pointer in R23:R22. The result is written to the address in
R25:R24. Because both, R23:R22 and R25:R24 point to the same variable v, the
function fp_add_dig overwrites v with v + a6 = x3U + a6.
Now, an instruction skip fault that removes the call instruction in Line 9

prevents an update of v that is referenced by R25:R24. Hence, it virtually skips the
addition x3U + a6 in Line 5 of Algorithm 3.1. If the message M was chosen properly,
xU is a square, and hence ep_map that corresponds to HashToCurve will output
P̃ = (xU , xU

√
xU ) ∈ Ẽ.

Remark 8.2. Note that there are various other instructions that we can skip to
remove the addition with a6. For example, we can redirect the target pointer in
R25:R24 with the effect that a6 is added to data at another address (cf. Section 8.1.3)
that does not effect the subsequent computation. A further possibility in our case,
where a6 = 17 (see Appendix A.1) fits into one word, is to skip the actual arithmetic
add instruction within fp_add_dig. In fact, we found many different instruction
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1 ldd r24,Y+5 ; init pointer to signature

2 ldd r25,Y+6 ; -"-
3 call check_point_valid ; check if point is valid
4 std Y+3,r24 ; store outcome of check
5 std Y+4,r25 ; -"-
6 ldd r24,Y+3 ; load outcome of check
7 ldd r25,Y+4 ; -"-
8 sbiw r24,0 ; subtract/compare with 0
9 brne .L40 ; branch if valid

10 ...
11 call my_printf ; return error message
12 pop __tmp_reg__
13 pop __tmp_reg__
14 rjmp .L41 ; jump over signature out
15 .L40:
16 ...
17 ldd r24,Y+5 ; init pointer to signature
18 ldd r25,Y+6 ; -"-
19 call print_ep_element ; return signature
20 ...

Table 8.8.: Assembly of point validity check, generated with avr-gcc. If the result
of ECSM referenced by R25:R24 is a valid point, it is returned as the signature
in Line 19. Otherwise, an error message is returned in Line 11. In our attack, we
target the rjmp instruction in Line 14.

cycles for the targeted implementation where a fault had the effect of skipping the
addition with a6.

With the second fault, we circumvent the point validity check. The listing in
Table 8.8 shows the assembly that calls the check and evaluates its outcome. In
Line 1 and Line 2 the register R25:R24 is initialized with a pointer to the result
Q = sP of the ECSM. Then, in Line 3 the function check_point_valid that
checks the validity of Q is called. This function returns 0 for invalid points and
1 for valid points. The result is returned in R25:R24. Then, the subtraction in
Line 8 realizes a comparison with 0. If and only if the value of R24 is 0, the sbiw
instruction sets the zero flag. Hence, in the case of a valid point, where R24 is not
equal to 0, the conditional branch in Line 9 will branch over the error handling.
In the case of an invalid point, where R24 is equal to 0, no branch occurs and the
code following line Line 10 is executed, including the output of an error message
in Line 11. In Line 14, the code jumps over the branch that handles valid points.
Hence, in case of a valid point, in Line 17 and Line 18, R25:R24 is initialized with a
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pointer to the signature σ = Q. Finally, in Line 19 the signature is returned.
With our instruction skip fault, we target the rjmp instruction in Line 14 for an

invalid point. If we are successful both branches are executed and the signature is
also returned for invalid points.

Remark 8.3. There are various options to circumvent the validity check. Instead
of skipping the rjmp instruction in Line 14, it is also possible to skip the sbiw
instruction in Line 8. The reason is that in our case, the zero flag is not set at
Line 6. If we skip the sbiw instruction, even for invalid points the zero flag will
not be set. Hence, in Line 9 we branch to the output of the signature.

We conclude that it is difficult to identify and protect vulnerable instructions
and that a validity check has to be implemented carefully to be effective. This
is especially true because for both faults, we had several options for choosing the
target instructions of our instruction skip faults.

8.6.3. Execution of the attack

As described in Section 8.3 we split the attack into profiling phase and target phase.

Profiling phase

To estimate the timings t1 and t2 of the target instructions, we perform a profiling
(cf. Section 8.3.1). During the profiling, we compute a signature on the profiling
device under the same message M that we later use in the attack on the target
device.

To learn t1, the timing of the call instruction in Line 9 of Table 8.7, we use the
profiling code described in Section 8.3.1. The profiling code sets a trigger io_trig_1
before the target call instruction. This allows us to measure the number of clock
cycles between the triggers io_trig to io_trig_1 on the profiling device. Later, we
can use the estimate for t1 from the profiling also for the target device. The reason
is that t1 is independent of the secret s because s is only used in the ECSM after
the target call instruction. Therefore, we do not need to measure the distribution
of t1 over the random choices of the secret as we do it in Section 8.5.3 for an attack
on the pairing computation.
To estimate the timing t2 of the second glitch we directly use the target device

with the target key. We compute a signature for M on the target device. During
the computation, we introduce a fault at our estimate for t1 that we obtained
before. From the target’s response, we measure the time that it takes to compute a
signature and to perform the validity check. If the target responds with an error
message, we assume that the first fault was successful and that we obtained an
invalid point on the singular curve. We see from Table 8.8 that the error message in
Line 11 is returned close before the target rjmp instruction in Line 14. Hence, the
delay between the first glitch and the response of the device gives a good estimate
for t2.
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Key No. t1 t2 Experiments
1. 181 270 208 286 993 9

2. 181 270 208 421 212 65

3. 181 270 207 049 930 123

4. 181 270 208 414 882 123

5. 181 270 207 115 540 8

6. 181 270 203 383 894 183

7. 181 270 208 503 182 82

8. 181 270 208 317 830 124

9. 181 270 207 055 821 24

10. 181 270 205 729 894 70

Table 8.9.: Timing results of our attacks on 10 different secret keys. The table
lists the timings t1 and t2 of the two glitches in instruction cycles. Only the
timings of the first successful experiment for the corresponding key are given.
The last column shows how many experiments were required to extract this key.

To select combinations of d1, d2, p1 and p2 of glitch width and glitch pattern (cf.
Section 8.2.1), we re-use our findings from Section 8.5.3.

Target phase

In the attack, we tried different values for t1 and t2 centered around our estimations
from the profiling. If both faults are successful, we obtain a point on the singular
curve and we compute the DLOG from it as described in Section 7.2. The DLOG
computation on the singular curve is faster than the signature computation on the
target and hence, it is not a bottleneck for the attack. This confirms the efficiency
of our attack as discussed in Section 7.1.3.

We repeated the attack for 10 different secret keys and were always successful in
extracting the key. Table 8.9 shows the timings t1 and t2 of the first experiment
that allowed us to extract the corresponding secret. We see that the delay of the
first glitch is fixed at t1 = 181 270 instruction cycles. This confirms our observation
that the first target instruction does not depend on the secret key s. We also
see that t2 significantly depends on the secret key. Hence, we conclude that the
timing of RELIC’s ECSM implementation is not independent of the secret scalar s.
Note that based on our estimations from profiling, at most 183 experiments were
required to extract the key. In summary, the experiments confirm that our attack
is a serious threat on unprotected devices and that it has to be considered for fault
resistant implementations.
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Conclusion and future work

In this chapter, we draw a short conclusion based on our results and we present
two examples for future work.

9.1. Conclusion

In this thesis, we analyzed the vulnerability of PBC to physical attacks. In
particular, we answered some specific questions of Section 1.5 from the beginning
of this thesis:

1. Whelan and Scott [WS06] asked if using the secret as the first argument of
the pairing offers protection against SCAs. In Chapter 4 we presented new
SCAs on the computation of the Tate and the Ate pairing to show that this
is not the case.

Our attacks are based on standard optimizations for the pairing computation.
Our attack on the computation of the Tate pairing in affine coordinates
exploits that the secret is defined over the base field Fq while the public
argument is defined over the extension field Fqk . Our attack on the Ate pairing
in affine coordinates exploits the efficient representation of the secret based
on twists. Finally, our attack on the computation in projective coordinates
exploits the representation of the secret in mixed projective coordinates.

2. With respect to FAs, the results of ,e.g., [WS07; Las+14] motivate the question
how much protection is offered by the two-step computation of the pairing
composed of Miller algorithm and final exponentiation. Towards answering
this question, we presented a framework to analyze FAs on the complete
pairing computation in Chapter 5. Furthermore, in Chapter 6, we presented
concrete second order attacks based on instruction skips on the complete
pairing computation.

Our active attacks are based on the same efficient representations of the secret
as our passive attacks on the Tate and the Ate pairing in affine coordinates.
Furthermore, to attack the final exponentiation we exploit that one factor of
the final exponent has a small q-ary representation that also improves the
efficiency of implementations.
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3. So far, it was not shown that building blocks other than the pairing computa-
tion itself offer new vulnerabilities of PBC to physical attacks. To show that
this is the case, we presented an attack based on singular curves in Chapter 7
that targets point decompression. Point decompression is a building block
of other algorithms, e.g., for hashing strings to points on an elliptic curve in
pairing-based signature schemes. Hence, we were able to turn our attack on
point decompression into attacks on pairing-based signature schemes.

Our most powerful attack in the context of point decompression is based on
curves with j-invariant 0 that provide especially efficient implementations of
pairing-based primitives.

4. Prior to our results, it was not clear if FAs on PBC are really practical. In
Chapter 8 we presented the practical realization of our attacks on the pairing
computation from Section 6.2 and on point decompression from Section 7.2.
Our attacks, with applications in pairing-based encryption schemes and
pairing-based signature schemes, demonstrate that physical attacks are a
serious threat in the context of PBC.

From this outline, we see that optimized implementations that are based on
additional structure of the corresponding groups are often accompanied by additional
vulnerabilities. Nevertheless, those efficient implementations are required, especially
on resource constrained devices such as smart cards where physical attacks are
relevant. Therefore, avoiding efficient representations is not the right conclusion.
Especially because we saw that implicit countermeasures, such as placing the secret
as the first argument of the pairing or the two-step pairing computation, do not
provide a strong protection against attacks.
Hence, we require countermeasures against physical attacks on PBC. Such

countermeasures were already proposed, for example, in [PV04; Kim+06; STO08].
But the history of ECC and RSA shows that often a countermeasure against one
kind of attacks opens the way for another kind of attacks. We should take the
results of this thesis and of related previous work into account before rolling out
PBC in scenarios where physical attacks are relevant. We also conclude that in the
complex setting of PBC more work has to be done to reach the maturity of standard
ECC with respect to resistance against physical attacks. We further recommend
to pursue standardization of parameters, algorithms, and schemes to reduce the
complexity of PBC and to narrow the playground for physical attacks.

9.2. Future work

Now we give two examples for future work. The first example is related to
countermeasures against SCAs on the pairing computation and to SCAs on pairing-
based signature schemes. The second example is related to FAs on the pairing
computation.
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9.2.1. Passive attacks on point randomization and pairing-based
signature schemes

We saw in Chapter 4 that the pairing computation is vulnerable to SCAs that use
a DPA of finite field operations like multiplication or addition. In Chapter 7 we
presented FAs against pairing-based signature schemes. A further question is how
we can combine both settings into an SCA on pairing-based signature schemes.

For the type of signature schemes where the secret is a scalar as input to ECSM
like in [BLS04b], the situation is similar to standard ECC. Hence, attacks on ECSM
like [Cor99] and the corresponding countermeasure also apply here. But we also
investigated signature schemes where the secret is a point on the curve [CC03].
Here, the results from standard ECC with respect to ECSM do not directly apply.
But this does not mean that schemes like [CC03] are not vulnerable to SCAs. As
one indication we consider the attack of [Fou+08b] on the randomization of secret
exponents. In [Fou+08b] it is shown that the addition of a fixed multi-precision
integer s with a random mask r may leak information about s in an SCA. The idea
is to measure the probability of the carry bits that occur in the addition over the
random choices of r. In [Fou+08b] this technique is used to attack countermeasures
against SCAs that are based on the randomization of the secret scalar s.

As a first step, it would be interesting to analyze the practicability of this attack
on the point blinding countermeasure of [PV04]. Here, the bilinearity of the pairing
is used to mask the public argument Q before computing the pairing on input P
and Q:

e(P,Q) = e(P,Q+R)/ e(P,R).

From the Miller algorithm (cf. Algorithm 3.4 and Definition 3.8) we see that the
x-coordinates of P and R are subtracted during the computation of e(P,R). With
standard representations of finite field elements, we can consider the coordinates
also as multi-precision integers. Hence, in an SCA we can query the pairing
computation multiple times to apply the attack of [Fou+08b] on the coordinate
additions to recover the x-coordinate of P , and hence also P . Because none of the
arguments is under control of the attacker, the attack certainly makes stronger
assumptions about the SCA than the DPA on finite field multiplications that we
used in Chapter 4. Hence, the question is if this attack is a real thread.
In a second step, the technique could be transferred to ECSM of a secret base

point P with a random scalar r as it occurs, for example, in the signature scheme
of [CC03]. Consider the last iteration of a double-and-add routine for computing
rP and furthermore assume that r is odd. In this case, (r − 1)P + P is computed.
With R = (r − 1)P we obtain the addition R+ P of a random point R with the
secret point P . From the addition formula on elliptic curves (cf. Definition 2.9) we
see that the x-coordinates of R and P are subtracted as part of this computation.
Hence, we could try to apply the SCA from [Fou+08b] as before to recover P .
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9.2.2. Invalid point attacks on the pairing computation

In Chapter 6 we presented FAs on the pairing computation when one argument of
the pairing is public and the other argument is secret. In Chapter 7 we presented
invalid point attacks where the public input of ECSM is modified into an invalid
point to recover the secret scalar. This suggests an attack that combines both
approaches into invalid point attacks on the pairing computation where the public
argument of the pairing is modified into an invalid point. The question is how
we can exploit an invalid public argument, for example, on an elliptic curve with
smooth order, on a singular curve, or in a small subgroup of the original curve.
The former two cases seem difficult to analyze because the invalid public argument
is on a different curve than the secret argument. So we consider the latter case
where the public argument is in a small subgroup on the same curve as the secret
argument. Let P be the public argument of the pairing in a small subgroup of order
c. Furthermore, let Q be the secret argument of the pairing of large order r. Assume
a pairing is computed based on the Miller function miln,P from Definition 2.31 with
divisor n [P ]− [nP ]− (n− 1) [O]. Let P be of order c with r = ic+ j and j < c.
By comparing divisors we obtain:

milr,P = milic,P milj,P . (9.1)

We know from Chapter 5 that the degree of the involved functions plays a crucial
role in the analysis of FAs on pairings. If c is small, then the degrees of milc,P
and milj,P are also small. Hence, the large degree of milr,P is absorbed into the
exponent i. Therefore, a possible first step to approach invalid point attacks on
the pairings would be to answer the question if we can compute Q from milr,P (Q)
by exploiting the additional structure of milr,P from (9.1).
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Numerical examples

A.1. Singular curve attack for j-invariant 0

In this section, we give a numerical example for our attack from Section 7.2 for the
parameters that we used in the practical realization of the attack in Section 8.6. We
attack a BN curve as defined in Theorem 3.6. Our concrete instantiation of domain
parameters is the curve y2 = x3 + 17 defined over a prime field with characteristic

p = 205523667896953300194896352429254920972540065223.

The curve has prime order

#E(Fp) = r = 205523667896953300194895899082072403858390252929

and hence cofactor c = 1.
For the signed message, we chose the ASCII representation of m = “Hello world!”.

With the RELIC implementation of the hash function H that is used in HashToCurve
(cf. Section 8.6.1), this message results in H

(
m. d0et2

)
= (xU , b) with

√
xU ∈ Fp.

Then with c = 1 and b = 0, the point P̃ = (xP , yP ) with

xP = xU = 178593680027287028005098471379742442193364077343

yP = xU
√
xU = 94660545184060711272036545917981790865316334518

is on the singular curve Ẽ : y2 = x3.
In one of our attacks, the uniform selection of the secret resulted in

s = 109785787802901117004740481366937765753659896978.

That gives us the output Q̃ = (xQ, yQ) = sP̃ ∈ Ẽ with

xQ = 40532871190117267482965735164319423862598390468

yQ = 103085238587127999197783933077858660011787397349.

Finally, we recover the secret s based on Theorem 2.11:

s1 =
φ+(Q̃)

φ+(P̃ )
=
yP
xP

xQ
yQ

=

√
xUxQ
yQ

mod p.

Because r < p, we only obtain one possible candidate with s1 = s.
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A.2. Singular curve attack for general j-invariant

In this section, we give a numerical example for our attack from Section 7.3.
We use the curve secp192r1 from [Cer10] that is defined over a field Fq of size
q = p = 2192 − 264 − 1. The curve is defined as E : y2 = x3 − 3x+ a6, with

a6 = 2455155546008943817740293915197451784769108058161191238065

of prime order

r = 6277101735386680763835789423176059013767194773182842284081.

For the fault, we assume δ = −a4 = 3. This models an attack that completely
skips the addition in Line 3 of Algorithm 3.1.

It turns out that for both choices i = 0 and i = 1, we obtain a square in step A-3.
We choose i = 0 because in this case xS = (−1)i = 1 and

α =
√

3 = 2326297227347680280080327471553644541955937223163763835902

is contained in Fq. According to Theorem 2.11 this provides us with the more
efficient reduction of the DLOG problem to F∗q . For i = 0 we obtain P̃ = (x0, y0)
with

x0 = 3366349308254805903310428310405960349132903114206486228165

y0 = 2752120119983151304310814177025133128564319916601877729887.

This point is on the singular curve Ẽ : y2 = x3 − 3x+ 2.
Random sampling of B’s secret in Z/rZ resulted in

s = 1113678563645930635777463018382920452293547545942927564878

and we obtain Q̃ = sP̃ ∈ Ẽ with

xQ = 4665052203107855484719784993687553637005598487381434479215

yQ = 928861089175744755007680841945733105078722559985213649009.

Now, we apply Theorem 2.11. The images of P̃ and Q̃ under φ∗ are given as

φ∗(P̃ ) = 1544399762588312570436026623516397841564503871684736441528

φ∗(Q̃) = 1050682542392422889161194344907633478108216148696830571786.

We used the function znlog of Pari/GP [PAR12] to compute s′ as DLOG of φ∗(Q̃)
to the basis φ∗(P̃ ). According to the documentation the implementation is based
on the linear sieve index calculus method [COS86]. The computation took us 39
hours on one core of a 64 bit Intel Core i5 CPU with 8 GB of main memory.

Let d be the order of φ∗(P̃ ). In this example we obtain a ratio of r/d ≈ 2. Hence,
s ∈ {s′, s+ d} and in our particular example we find s = s′.
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Acronyms

ABE attribute-based encryption
AES advanced encryption standard

BDH bilinear Diffie-Hellman
BLS Boneh-Lynn-Shacham
BN Barreto-Naehrig

CAS computer algebra system
CBDH computational bilinear Diffie-Hellman
CCA chosen ciphertext attack
CDH computational Diffie-Hellman
CPA chosen plaintext attack
CPU central processing unit
CRT Chinese remainder theorem

DDK Die Datenkrake
DLOG discrete logarithm
DPA differential power analysis

ECC elliptic curve cryptography
ECDSA elliptic curve digital signature algorithm
ECIES elliptic curve integrated encryption scheme
ECSM elliptic curve scalar multiplication
EEA extended Euclidean algorithm
EI exponentiation inversion
EM electromagnetic

FA fault attack
FAPI fixed argument pairing inversion
FPGA field programmable gate array

HFP hidden factor problem
HMP hidden multiplier problem
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Acronyms

HRP hidden root problem

IBE identity-based encryption
IND indistinguishability
IPV invalid point vulnerable
IPV1 first order IPV
IPV2 second order IPV

KDF key derivation function

LSB least significant bit

MI Miller inversion
MSB most significant bit

OpenSSL Open Secure Socket Layer

PBC pairing-based cryptography

RISC reduced instruction set computer
RSA Rivest-Shamir-Adleman

SCA side-channel attack

TLS Transport Layer Security
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Notation

#S cardinality of the set S
⊕ direct sum of groups
〈g〉 subgroup generated by g
[a, b] interval from a to b
[n] multiplication-by-n map on an elliptic curve
dxen2 zero-padded n-bit binary representation of x
∆ discriminant of Weierstrass equation
µn n-th roots of unity
Φn(x) n-th cyclotomic polynomial
πq q-th power Frobenius map
σq q-th power Frobenius automorphism on Fq

An(K) n-dimensional affine space over K
An abbreviation for An(K)

a.b concatenation of a and b
a|b a divides b
a ‖ b a divides b exactly
ateλ reduced Ate pairing

deg(D) degree of divisor D
deg(f(x1, . . . , xn)) The total degree of f(x1, . . . , xn)

div(f) divisor of f

E/K elliptic curve E defined over field K
E[n] n-torsion points of E
E(K)[n] K-rational n-torsion points of E

Fq field with q elements
f q(x1, . . . , xn) reduction of f(x1, . . . , xn) modulo σq

G1(E,n, q) 1-eigenspace of πq on E[n]

G2(E,n, q) q-eigenspace of πq on E[n]

gcd(n1, . . . , nk) greatest common divisor of n1, . . . , nk
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Notation

HW(a) Hamming weight of an integer a

j j-invariant of Weierstrass equation

K+ additive subgroup of K
K∗ multiplicative subgroup of K
K algebraic closure of K
K(α1, . . . , αn) extension field of K generated by α1, . . . , αn
K(x1, . . . , xn) rational functions in x1, . . . , xn over K
K[x1, . . . , xn] polynomials in x1, . . . , xn over K
K(X) function field of X over K
ker(φ) kernel of φ
k(q, n) embedding degree of q and n

L/K extension field L of K

miln,P Miller function for n and P
mon(f(x1, . . . , xn)) monomials of f(x1, . . . , xn)

O point at infinity of elliptic curve
ord(g) order of g
ordP (f) order of f at P

Pn(K) n-dimensional projective space over K
Pn abbreviation for Pn(K)

sum(D) sum of divisor D
supp(D) support of divisor D

tn Tate-Lichtenbaum pairing
t̂n reduced Tate-Lichtenbaum pairing

V (F) affine algebraic set of F ⊆ K[x1, . . . , xn]

vT transpose of v

wq(a) weight of an integer a with respect to q

X(K) K-rational points of an algebraic set X
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Notation

x(P ) x-coordinate of P ∈ A2

y(P ) y-coordinate of P ∈ A2
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