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1. Summary

Parametric down-conversion (PDC) has become a common source for quantum states
of light. Nevertheless, despite a wide adoption in proof of principle experiments,
practical applications in large networks for communication or simulation remain un-
feasible due to the high demands on the performance of sources and processes.
In this thesis, we continue to develop PDC sources with the goal of increasing

the quality and size of nonclassical states. We realize a source which produced
photon pairs with high indistinguishability into a single spatial and spectral mode
[1], simplifying potential integration into a multisource quantum network. We further
demonstrate that the single-mode operation is maintained in the multiphoton regime
by measuring photon-number correlations between the two down-conversion ports
with up to 80 photons in each port [2]. This demonstrates that the few-photon regime
of current experiments based on PDC can in principle be extended into a many-
photon regime, greatly increasing the dimensionality of accessible Hilbert spaces and
the size of nonclassical states.
Complementing our work on sources, we investigate how quantum characterization

schemes can be improved or simplified to meet experimental requirements like limited
resources and imperfect detectors. We demonstrate that photon-number distributions
can be inferred using only a single avalanche photodiode and a thermal noise source
[3]. We further investigate a technique called pattern tomography [4] and apply it to
measurements with imperfect time-multiplexing detectors, which cannot be described
by a simple response model. This technique allows us to circumvent the challenging
task of full detector tomography and reconstruct low-photon-number PDC states,
heralded states and displaced states [5]. Moreover, we develop and demonstrate a
technique to infer vacuum two-mode squeezing with a phase-randomized local oscil-
lator [6]. This poses an alternative scheme to homodyne detection, which relies on a
phase-locked local oscillator. Finally, we show that nonclassical correlations can be
certified from raw click statistics, i.e. without loss inversion or tomography, even in
a regime of high losses and relatively large photon-numbers [7].

1





2. Zusammenfassung

Parametrische Fluoreszenz (PDC) hat sich zu einem Standardprozess für die Erzeu-
gung von Lichtquantenzuständen etabliert. Doch trotzt vieler erfolgreicher konzep-
tioneller Demonstrationen, bleiben echte Anwendungen wie etwa die Quantenkom-
munikation in großen Netzwerken oder die Simulation von Quantenprozessen unprak-
tikabel. Der Grund hierfür liegt unter anderem in den hohen Anforderungen an die
Erzeugung, Manipulation und Messung von Quantenzuständen.
In dieser Arbeit führen wir die Entwicklung von PDC-Quellen fort mit dem Ziel,

die Qualität und Größe von Quantenzuständen zu erhöhen. Wir implementieren
eine Quelle, die nahezu ununterscheidbare Photonenpaare in nur eine spektrale und
räumliche Mode emittiert [1]. Dies vereinfacht die potenzielle Integration in ein
größeres Quantennetzwerk mit mehreren solchen Quellen. Darüber hinaus demon-
strieren wir, dass der Einzelmodencharakter der Quelle für Mehrphotonenzustände
erhalten bleibt, indem wir Photonenzahlmessungen auf den Paarmoden der PDC mit
bis zu 80 Photon pro Mode durchführen [2]. Dies zeigt, dass aktuelle Experimente, die
mit einzelnen oder wenigen Photon arbeiten, prinzipiell in ein Multiphotonenregime
erweiterbar sind, sodass höherdimensionale Hilberträume und größere Nichtklassische
Zustände realisierbar werden.
Ergänzend zur Implementierung der Quelle untersuchen wir, wie Techniken zur

Charakterisierung von Quantenzuständen verbessert oder vereinfacht werden können,
um experimentellen Anforderungen wie etwa begrenzten Ressourcen oder nichtide-
alen Detektoren entgegen zu kommen. Wir demonstrieren, dass Photonenzahlstatis-
tiken mit nur einer Lawinenphotodiode als Klickdetektor und einem thermischen
Referenzzustand ermittelt werden können [3]. Weiterhin untersuchen wir die so
genannte Mustertomografie (pattern tomography) [4] und wenden sie auf Messun-
gen mit Zeitmultiplexdetektoren an, welche nicht durch ein einfaches theoretisches
Modell beschrieben werden können. Diese Methode erlaubt uns die vollständige De-
tektortomografie zu umgehen und diverse PDC-Zustände, konditionierte Zustände
und im Phasenraum verschobene Zustände zu rekonstruieren [5]. Ferner entwickeln
wir eine Methode zur Bestimmung der Stärke von zweimodengequetschten Zustän-
den mit einem phasenrandomisierten Lokaloszillator [6]. Dies stellt eine Alternative
zur Homodyndetektion dar, welche auf phasenstabilen Lokaloszillatoren beruht.
Letztendlich zeigen wir, dass nichtklassische Korrelationen in direkt gemessenen

Klickstatistiken, d.h. Statistiken ohne Tomografie oder Verlustinversion, nachgewiesen
werden können. Dies Funktioniert sogar in einem Regime relativ hoher Photonen-
zahlen und hoher Verluste [7].
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3. Introduction

Quantum physics show effects that are unfamiliar from our everyday world. The
biggest difference being perhaps the fact that any measurement of a quantum system
unavoidably changes its state. This interconnection between the measurement and
the system under study lies at the heart of many paradoxes like the Schrödinger cat,
which is dead and alive at the same time: Only when the observer opens the box
and looks at the cat, its fate is decided. Another example is the Einstein-Podolsky-
Rosen (EPR) paradox [8]. It describes how a quantum state can be used to allow two
parties, A and B, separated by a great distance, to predict each other measurement
outcomes instantly: If the measurement outcomes of A are described by a local prob-
ability distribution, then a measurement in B changes that probability distribution
instantly, even though the parties are far apart. This paradox demonstrates that
quantum correlations allow measurement results that cannot be described by classi-
cal probability theory. This statement can be proven by so called Bell tests [9], which
have been verified without loophole assumptions in recent experiments [10–13].
If such nonclassicality could be exploited in large quantum systems, it would lead

to numerous applications: Quantum computers can greatly outperform classical com-
puters for some numeric problems or simulate physical systems that are intractable
otherwise. Quantum communication networks can provide intrinsically secure com-
munication. And quantum metrology allows measurements with greatly enhanced
accuracy. These magnificent prospects have led to extensive research in very differ-
ent physical systems like ion traps, superconducting qubits, ultracold atoms and of
cause, quantum optics. In the race for quantum computing, superconducting qubits
[14] seem to have taken the lead recently. For quantum communication, photons
are ideal as they can be transmitted over large distances using fibers or free-space
links. However, most applications are far from real-world realizations and the ideal
implementations are unknown.
Apart from applications, there is also the fundamental question how macroscopic

a quantum system can be. Where is the border between the quantum world and the
classical world? How large can we make a Schrödinger cat and can we violate Bell
inequalities for ever increasing system sizes?
Answering these questions as well as realizing useful applications both require the

generation and measurement of large quantum states. In that process, one important
step is to verify the nonclassical properties of the state, or more generally, characterize
it.
In this thesis, we address the problems of state generation for large optical

quantum states and state characterization with minimal resources.
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State Generation: Quantum optics has the advantage over solid state or atomic
systems, that photons do not decohere by coupling to the environment. In principle,
they retain their quantum properties until the measurement and are therefore well
suited to build up large quantum systems. In realistic systems, however, optical
loss is unavoidable and constitutes another decoherence mechanism. Nevertheless,
it is a well understood mechanism and continual progress is made to reduce loss
experimentally. In the last few years, single-photon detectors have made a giant
improvement, reaching almost 100 % detection efficiency whereas before, this number
was limited to 30 %, in the technologically crucial telecom-wavelength regime. This
advancement is very exciting since photon-number measurements are so called non-
Gaussian measurements, which are necessary to overcome Gaussian no-go theorems
[15]. Performing these measurements with high efficiency opens new possibilities to
manipulate and measure quantum states of light that contain many photons.
Parametric down-conversion (PDC) is the most established process to generate

optical nonclassical states of light. It can generate two beams of light, which are
correlated in amplitude and phase. These correlations are equivalent to the EPR
example above and therefore fundamentally interesting as well as useful for a broad
range of applications. Remarkably, PDC beams can be relatively bright, containing
billions of photons and still showing intensity correlations below the shot noise limit
of coherent light [16–21]. In principle, many PDC sources can be combined to form
up ever larger quantum states. In the continuous variable cluster state framework,
10, 000 temporal modes from one PDC source have been entangled forming one of
the largest quantum states to date [22]. If photon-number measurements are to be
performed, building up large quantum states is more challenging due to the fact that
photon-number measurements are sensitive to all spectral modes. Therefore, the
states are required to be in a single-mode. This subtle point, on which we elaborate
in more detail later in the thesis, is one of the reasons why the largest states measured
with single photon detectors consisted of single photons rather than higher photon-
number states or CV squeezed states. The largest states were eight entangled single
photons [23, 24].
In this thesis, we present our implementation of a PDC source, that produces

single-mode states and therefore matches well with single-photon detectors. We argue
that it is ideally suited for large scale networks and the generation of large quantum
states with high photon numbers. Combining it with state-of-the-art detectors, we
demonstrate photon-number measurements up to 80 photons, one order of magnitude
larger than previously shown, for our type of system.

State Characterization: Classical electromagnetic fields can be described in terms
of their amplitude and phase. In a quantum description, amplitude and phase be-
come represented by the so called quadratures of the electromagnetic field, which
are mathematically analogous to position and momentum in quantum mechanics.
This analogy gives an intuition for the quadrature-description of the electromagnetic
fields. For example, the Heisenberg uncertainty principle precludes that both posi-
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tion and momentum have an arbitrary narrow probability distribution. Moreover, if
we have more than one field, the fields can be entangled in the same way quantum
particles can be entangled. In particular, the PDC states we generate, produce two
orthogonally polarized fields, which are entangled and show quadrature correlations
below the Heisenberg limit. These are exactly the EPR-type correlations that formed
the original paradox and are at the heart of continuous variable quantum optics. One
important task is therefore to verify these correlations. This can be done in many
different ways. The most generic approach is full quantum state tomography, which
gives all information about the state.
In principle, any complete set of measurements can be used to fully reconstruct

an unknown state, either in terms of quasi-probability distributions like the quadra-
tures, or the density matrix formalism. However, such state tomography can easily
double the complexity of the experiment. For example, phase-locking weak fields can
be very challenging. If the detectors are unknown, fully characterizing them can be a
complex task in itself. In this thesis, we address the question, whether it is possible
to devise measurement settings that have less stringent requirements but still pro-
vide the interesting information about a state. Can we use phase-scrambled states,
imperfect detectors, noisy reference fields and still reconstruct a quantum state or
determine interesting properties? Well, of course, the answer is yes.
In this thesis, we show that it is possible to reconstruct photon-number distribu-

tions using only a single click-detector and thermal light, usually regarded simply as
noise. We further develop a technique to reconstruct photon-number distributions
with imperfect detectors, circumventing the additional step of detector tomography.
Moreover, we demonstrate that nonclassical correlations can be verified from raw
click-statistics of multiplexed click-detectors, avoiding any state reconstruction or
loss-inversion. Finally, we demonstrate a technique to estimate the strength of EPR-
correlations in a two-mode state without a phase reference. All these techniques add
to the toolbox of quantum state-characterization to allow specialized measurements
with lowest possible resources.
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4. Basics

4.1. Parametric Down-Conversion

The process of parametric down-conversion (PDC) is a quantum-mechanical process
where one photon decays into two daughter photons with quantum correlations be-
tween them. Before we go into detail about what this really means, let us consider,
very generally, the propagation of a light wave through a dielectric medium.

4.1.1. From Nonlinear Optics to the PDC-Hamiltonian

If an electromagnetic wave travels through a medium, the charges inside the medium
will respond in some way to the driving field. This can lead to a change of the material
properties or influence the light field itself as all moving charges are themselves
sources of electromagnetic radiation. Depending on this response of the medium, new
frequency components can be generated or interactions between different frequency
components mediated. In general, the polarization of the medium ~P (ω) at frequency
ω as a response to an electric field ~E can be expanded into a power series of the
electric field:

Pi(ω) = ε0[ χ
(1)
ij (ω)Ej(ω)

+

∫
dω1dω2χ

(2)
ijk(ω;ω1, ω2)Ej(ω1)Ek(ω2)

+

∫
dω1dω2dω2χ

(3)
ijkl(ω;ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) + ...], (4.1)

where we use the convention to sum over pairs of indices. The expansion coefficients
χ(i) are referred to as electric susceptibilities of order i. Incorporating energy conser-
vation, the notation with the semicolon in the arguments implies that ω = ω1 + ω2

for the second term and ω = ω1 + ω2 + ω3 for the third term. All quantities as a
function of time can be obtained from the Fourier transform

P (t) =

∫
dωP (ω)e−iωt. (4.2)

For most processes in nonlinear optics, the susceptibilities χ can be assumed to be
constant. This is justified, if the frequencies involved in a particular process are far
from any resonances and the frequency widths are not very large. Then, applying
the Fourier transform, the polarization simplifies to

Pi(t) = ε0[ χ
(1)
ij Ej(t) + χ

(2)
ijkEj(t)Ek(t) + χ

(3)
ijklEj(t)Ek(t)El(t) ] + ... (4.3)
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It relates to the displacement field (external field) ~D by

Di(~r, t) = ε0Ei(~r, t) + Pi(~r, t). (4.4)

The first term in the expansion with coefficient χ(1) is linear in the electric field and
can be related to the refractive index of the material by n2 = 1 + χ(1). The second
χ(2)-term is the first non-linear term and responsible for frequency-doubling and
frequency-mixing between different frequency components. In a quantum description,
it leads to the process of parametric down-conversion (PDC), which we are especially
interested in. Moreover, this second term is responsible for the Pockels effect, i.e.
a linear change of the refractive index with an applied electric field. The χ(3)-term
can be associated with self-phase-modulation, four wave mixing and the Kerr effect,
which is a quadratic change of the refractive index with an applied electric field. Since
the most interesting term for us is the χ(2)-term and χ(3) is significantly smaller than
χ(2), we drop the χ(3)-part in the following.
To derive a quantum Hamiltonian, one needs an expression for the energy of the

system, which for electromagnetic fields is given by [25]

H(t) =

∫
d3r

(∫ ~H(t)

0

~B(t) · δ ~H ′(t) +

∫ ~D(t)

0

~E(t) · δ ~D′(t)
)
, (4.5)

whereas ~H = ~B/µ0 for a non-magnetic medium. Note that this integral is not equal
to the well known expression 1

2

∫
d3r( ~B ~H + ~E ~D), which holds true only for a linear

medium. In our case, we insert expression 4.4 into 4.5 and get

H =

∫
d3r

(
1

µ

∫ ~B

0

~B′ · δ ~B′ + ε0

∫ ~E

0

E ′i(δE
′
i + χ

(1)
ij δE

′
j + χ

(2)
ijk[(δE

′
j)E

′
k + E ′jδE

′
k]

)
=

1

2

∫
d3r(

1

µ0

BiBi + ε0(1 + χ
(1)
ii )EiEi)︸ ︷︷ ︸

H0

+
2

3
ε0

∫
d3rχ

(2)
ijkEiEjEk︸ ︷︷ ︸

HI

. (4.6)

Here we used the symmetry χijk(ω;ω1, ω2) = χikj(ω;ω2, ω1). The summation is
performed over all indices and χ

(1)
ij is assumed to be diagonal for simplicity. This

means that our coordinate system is oriented along the optical axes of the crystal.
Moving towards an interaction picture, we separate the Hamiltonian into a free part
H0, describing a free propagation with a refractive index n2

ii = 1 + χ
(1)
ii and the

interaction part HI , describing the mixing of three fields.
The quantization of the electromagnetic field in a nonlinear medium can be rather

involved [26, 27]. Most people follow the approach for a free (vacuum) electromag-
netic field, see e.g. [28, 29]. Essentially, the vector potential is expanded into plane
waves and the following electric field operators are obtained:

Êi(~r, t) = i
∑
k

√
~ωk

2ε0nkiV

(
âkεkie

i(~k~r−ωkt) − â†kε∗kie−i(
~k~r−ωkt)

)
, (4.7)
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where ω is the angular frequency, V a mode volume in which the field is contained (can
tend to infinity) and ~ε a unit polarization vector. The summation index k = (~k, s)

labels the wavevector ~k and the polarization s ∈ {1, 2}. A similar expansion is found
for the magnetic field. At the end of the day, operators âk, â†k obey the standard
commutation relations and

Ĥ0 =
∑
k

~ωk(â†kâk +
1

2
) (4.8)

becomes the Hamiltonian of a harmonic oscillator. In the interaction picture, oper-
ators without an explicit time dependence evolve according to

i~
d

dt
Ô(t) = [Ô(t), Ĥ0]. (4.9)

For example, the annihilation operator becomes simply âk(t) = âk(0)e−iωkt. The
interesting dynamics of the system are contained in the interaction Hamiltonian,
which is why Ĥ0 is often dropped entirely.
The state in the interaction picture evolves with HI according to the Schrödinger

equation

i~
d

dt
|ψ(t)〉 = ĤI(t)|ψ(t)〉 (4.10)

with the formal solution

|ψout〉 = T exp

(−i
~

∫ ∞
−∞

dtĤI(t)

)
|ψin〉. (4.11)

Note that ĤI(t) is a function of time as the fields contain oscillating plane waves.
The time ordering operator T is necessary because Ĥ(t)I does not commute with
itself for different times, leading to several non-trivial effects [30–32]. It turns out
that time ordering does not play a role in the low pump-power regime. Even though
we stay in this regime for the major part of this thesis, for the highest pump powers
we use, time ordering could play a role [30]. Nevertheless, we neglect the effect in
our theoretical model and just note that the model might become inaccurate at high
pump powers. This allows us to write

|ψout〉 ≈ exp

(−i
~

∫ ∞
−∞

dtĤI(t)

)
|ψin〉. (4.12)

Before we insert the fields Ê into ĤI let us simplify the situation to a realistic scenario.
We assume that the fields propagate collinear along z through a waveguide of length L
with only one transverse mode, described by the field distribution ξ(x, y), normalized
as
∫

dxdy|ξ(x, y)|2 = 1. That can be interpreted as reducing the mode volume V
to the waveguide. The length of the waveguide still allows many longitudinal plane
modes. However, in the x− and y− dimensions, only one mode is allowed. This
reduces the problem to one dimension and allows us to simplify the summation

11



∑
k =

∑
kz
. Converting the sum to an integral, we can replace

∑
kz
→ 1

∆ω

∫
dω

with the mode spacing ∆ω = 2πc
L
. This substitution also changes the delta function

δk,k′ → ∆ωδ(ω−ω′) such that, to maintain the usual commutation relations, we have
to introduce continuous mode field operators âk →

√
∆ωâ(ω). Then we obtain [29]

Êi,ω0(~r, t) = i

∫
dω

√
~ω0

4πcε0n(ω0)

(
ξi(x, y)âi(ω)ei(k(ω)z−ωt) − ξ∗i (x, y)â†i (ω)e−i(k(ω)z−ωt)

)
,

(4.13)
whereas ω ≈ ω0, known as the rotating wave approximation. Let us assume that we
have three fields present in the process, which have all zero overlap with each other,
either due to non-overlapping frequencies or orthogonal polarizations. We label their
central frequencies by ω1, ω2 and ω3. Each polarization component i is a sum of the
three fields:

Êi(~r, t) = Êi,ω1(~r, t) + Êi,ω2(~r, t) + Êi,ω3(~r, t). (4.14)

Inserting Êi(~r, t) into ĤI ∼
∫

dzχ
(2)
ijkÊiÊjÊk, we get 27 terms. Some of these terms

are always zero. For example the term Ê3
ω1

can never fulfill energy conservation.
Terms like Ê2

ω1
Êω2 correspond to second harmonic generation or type I PDC, where

type I means that both output ports have the same polarization. Again, many of
these terms are zero because the nonlinearity is zero for a given crystal. For all
other terms that are allowed in principle, we can engineer only those processes to
be efficient, which are of interest to us. To discuss this further, let us look only at
terms like Êω1Êω2Êω3 , where all three fields are different. Due to the fact that the
electric fields commute, we always get six terms with the same nonlinearity from the
permutations of (ω1, ω2, ω3) and we can write

−i
~

∫ ∞
−∞

dtĤI(t) =
−2iε0

3~

∫
dtdzχ

(2)
ijkÊiÊjÊk (4.15)

=4χ(2)−iε0
~

∫
dtdzÊω1Êω2Êω3 (4.16)

=B

∫
dtdzdω1dω2dω3

[
O1 exp {i(k1 + k2 + k3)z − i(ω1 + ω2 + ω3)t} â1â2â3

+O2 exp {i(k1 + k2 − k3)z − i(ω1 + ω2 − ω3)t} â1â2â
†
3

+O3 exp {i(k1 − k2 + k3)z − i(ω1 − ω2 + ω3)t} â1â
†
2â3

+O exp {i(k1 − k2 − k3)z − i(ω1 − ω2 − ω3)t} â1â
†
2â
†
3

−h.c.
]

(4.17)

Here, we have collected all constants into B and the overlaps Oi, which are only
different with respect to the positions of the complex conjugate sign.

B =
χ(2)

2

√
~ω01ω02ω03

ε0π3c3n1n2n3

O =

∫
dxdy ξ1(x, y)ξ∗2(x, y)ξ∗3(x, y) (4.18)
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Note that the dimension of the overlap term is m−1. It can also be associated with
an effective mode area O = 1/

√
Aeff , which is roughly the area of the waveguide

cross-section.
In Eq. 4.17 we can identify various processes. For example â1â

†
2â
†
3 means that one

photon is annihilated at frequency ω1 and two photons are created at frequencies
ω2 and ω3. Similarly, â1â2â

†
3 means that two photons are annihilated at frequencies

ω1 and ω2 and one photon is created at frequency ω3. We can directly carry out
the z integral using

∫ a
−a dxeixy = 2

y
sin(ay) = 2a sinc(ay). The t integral results in

delta functions with factors 2π and allows us to eliminate ω1. These two integrals
can be directly interpreted as the momentum and the energy conservation conditions
of the process. These are slightly different for the four cases. In the first case,
ω1 + ω2 + ω3 = 0 can never be fulfilled such that the strange looking term a1a2a3

is always zero. The other terms correspond to sum-frequency generation, difference-
frequency generation or parametric down conversion, depending on the labellings of
the fields. Let us assume that energy and momentum conservation are only fulfilled
for the last term, i.e. ω1 = ω2 + ω3 and k1 − k2 − k3 = ∆k ≈ 0. This assumption
also allows us to neglect all other terms like second harmonic generation. We further
assume that the interaction happens in a crystal of length L. The output state can
then be written as

|ψout〉 = exp

{
2πBO

∫
dω2dω3L sinc

[
∆k(ω2, ω3)L

2

]
︸ ︷︷ ︸

φ(ω2,ω3)

â1(ω2 + ω3)︸ ︷︷ ︸
A(ω2+ω3)

â†2(ω2)â†3(ω3)−h.c.

}
|ψin〉.

(4.19)
The function φ(ω2, ω3) is called phasematching function. For a bright coherent pump
field |A〉 in mode 1, which is the case for most PDC processes, we can replace â1 and
â†1 by a complex amplitude A and A∗ since â|A〉 = A|A〉 and â†|A〉 ≈ A∗|A〉. Note
that this approximation only holds for a large A, which is well justified for the pump
field. This makes the Hamiltonian bilinear and easy solvable. For convenience, we can
express the amplitude A in terms of the pulse energy I and a normalized frequency
distribution α(ω1) = α(ω2 + ω3) as

A(ω2 + ω3) =

√
I

~ω1︸ ︷︷ ︸
α0

α(ω2 + ω3)

∫
dω1|α(ω1)|2 = 1, (4.20)

4.1.2. Periodic Poling

Nonlinear crystals with a high χ(2) nonlinearity usually have a crystal structure with
a dipole moment of the unit cell. Some of these crystals are ferroelectric, meaning
that the dipole moment can be inverted by applying a strong electric field. On an
atomic level, this means that at least one atom per unit cell moves to a different
position. If a certain symmetry is present, this mirrors the crystal structure, thus
inverting the crystal axis and changing the sign of the nonlinear coefficient. [33]
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L

Λ

Until now, we have assumed that χ(2) is just a constant and collected it into the con-
stant B. By applying a periodic electric field and inverting domains along the prop-
agation direction, the nonlinear coefficient becomes a function of position χ(2)(z) =
(−1)b2z/Λcχ(2)(0). Going back to Eq. 4.17, the z integral will be

∫
dzχ(2)(z)ei∆kz,

which is essentially a Fourier transform of χ(2)(z). The main Fourier component will
be 2π

Λ
and just shifts the phase matching as ∆k → ∆k ± 2π

Λ
. Additionally it reduces

the efficiency of the process by a factor of 2/π. For complicated poling patterns,
more Fourier components play a role. One particular goal is to achieve a Gaussian
phasematching function through special poling patterns [34, 35]. Interestingly, exper-
imental imperfections, which change the waveguide properties along z, for example
a temperature gradient in the diffusion process, have essentially the same effect. Ex-
perimentally measured phasematching functions thus often have a shape that is closer
to a Gaussian function rather than to a sinc function.

4.1.3. Spectral Decomposition

The spectral properties of the PDC process are entirely described by the joint spectral
amplitude (JSA)

f(ωs, ωi) = φ(ωs, ωi)α(ωs + ωi), (4.21)

where we have relabeled the fields 2 and 3 to signal (s) and idler (i). As can be
seen above from Eq. 4.19, the phasematching function φ depends on the momentum
mismatch and is therefore a function of the crystal properties and the periodic poling.
The pump function α is the spectral amplitude of the pump beam.
Two examples of the JSA are shown in figures 4.1 and 4.2. The JSA visualizes

the spectral correlations between the signal and idler fields. If the JSA is a circle,
a frequency measurement of a signal photon does not yield any information about
the frequency of the corresponding idler photon [36, 37]. If the JSA is a narrow line
along the diagonal or anti-diagonal, signal and idler are perfectly correlated and will
always be measured in frequency pairs. Mathematically, these correlations can be
quantified by a Schmidt decomposition [38, 39]:

f(ωs, ωi) = F
∑
k

ckφk(ωs)ψk(ωi), (4.22)

where ck are the normalized eigenvalues of f with
∑

k |ck|2 = 1 and φ, ψ the orthonor-
mal eigenvectors. The term

F =

√∫
dωsdωif(ωs, ωi)f ∗(ωs, ωi) (4.23)
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ωs

ω
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φ(ωs, ωi)

ωs

=

α(ωs, ωi)
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f(ωs, ωi)

0

1

a.
u
.

Figure 4.1.: Left: An ideal phasematching function for the material KTP at around
1550 nm. Center: A Gaussian pump envelope function. Right: Joint spectral
amplitude, showing only small correlations between ωs and ωi due to the sinc
side lobes in φ(ωs, ωi).

ωs

ω
i ×

φ(ωs, ωi)

ωs

=

α(ωs, ωi)

ωs

f(ωs, ωi)

0

1
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u
.

Figure 4.2.: Phasematching, pump-function and JSA for Lithium Niobate. Signal
and Idler are correlated in frequency for any pump-width.

is a normalization constant. Plugging this into Eq. 4.19 the two ω integrals become
independent and we can define new operators

Â†k =

∫
dω φk(ω)â†s(ω) B̂†k =

∫
dω ψk(ω)â†i (ω), (4.24)

which all commute due to the orthonormality properties of φk and ψk. The functions
φk and ψk define the spectral shapes of signal and idler for mode k. This transfor-
mation diagonalizes the frequency part of the Hamiltonian and the state reads

|ψout〉 = exp

{
B′
∑
k

(ckÂ
†
kB̂
†
k − c∗kÂkB̂k)

}
|ψin〉 (4.25)

=
⊗
k

Ŝk(ζk)|ψin〉. (4.26)

where ζk = −B′ck are often referred to as squeezing parameters and

Ŝk(ζk) = exp(−ζkÂ†kB̂†k + ζ∗kÂkB̂k) (4.27)
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the squeezing operators [40]. Applied to vacuum, this operator produces PDC states
that are discussed in the next section 4.1.4.
The constant B′ is of interest if someone wants to predict the squeezing strengths

in an experiment. It reads

B′ = 4BOα0FL (4.28)

= 2χ(2)

√
~ω01ω02ω03

ε0π3c3n1n2n3

Oα0FL, (4.29)

where O is the field-overlap, defined in Eq. 4.18, α0 the pump-field amplitude defined
in Eq. 4.20, F the phasematching normalization term Eq. 4.23 and L the length of
the crystal. We discuss the squeezing strength further in the next section 4.1.4. This
result for B′ is different from the coefficients obtained in [31] by a factor of 2 and by
a factor of 2/π from periodic poling. While the latter one is expected, the factor of
2 clearly means that there is an error in one of the two derivations. Additionally, we
tried to reproduced the classical equation for second harmonic generation and obtain
a discrepancy of

√
2
π
. Unfortunately, due to these discrepancies, we have to doubt

the exact value of the efficiency-coefficient B′. Nevertheless, we give some realistic
values for all the parameters in Appendix B.1 and compare them with measured
PDC efficiencies.
Regarding Eq. 4.26 for a moment, we realize that we have a product of operators in

orthonormal spaces, acting independently on the input state. This greatly simplifies
the spectral degree of freedom in PDC. From the experimental point of view, it gives
a natural basis to spectrally multiplex PDC states or operate on them [41].

4.1.4. The PDC State

The squeezing operator 4.27 applied to vacuum produces the PDC state [40]

|ζ〉 = Ŝ(ζ)|0〉 (4.30)

|ζ〉 =
1

cosh r

∞∑
n=0

(−eiφtanh r)n|n, n〉, (4.31)

where ζ = reiφ, or defining λ = −eiφtanh r

|ζ〉 =
√

1− |λ|2
∞∑
n=0

λn|n, n〉. (4.32)

This is a state with perfect photon-number correlations. These correlations can be
used to herald photon-number states (also called Fock states) by placing a photon-
number detector in one mode and thus projecting the other mode on the measured
photon number. In the low power regime, in which two- and higher-photon-number
events can be neglected, this heralding technique is widely used to produce single
photons.
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Tracing out one mode, the photon-number probabilities in the remaining mode
become pn = (1 − |λ|2)|λ|2n. This is an exponential distribution just like a Bose-
Einstein distribution of a thermal state:

P (n) = (1− e−
n~ω
kBT )e

− n~ω
kBT identifying |λ|2 = e

− ~ω
kBT . (4.33)

The mean photon number is given by

〈n〉 =
∑
n

npn = sinh2 r (4.34)

At this point we can elaborate on the scaling of the mean photon number with
experimental parameters. Staying in the low-photon-number-per-mode regime, we
approximate 〈nk〉 ≈ r2

k. From Eq. 4.29 we see that the squeezing parameter is
proportional to the nonlinear coefficient χ(2), the square root of the pump energy,√
I and the mode overlap O. That means:

〈nk〉 ∼ (χ(2))2 〈nk〉 ∼ I 〈nk〉 ∼ O2 =
1

Aeff

(4.35)

The scaling with length is a bit more complicated as it depends on the phasematching
function. Let us assume that the phasematching function shows no curvature on the
relevant scale (excluding degenerate type I for now) and is not oriented exactly at
−45 ◦. Two examples would be the phasematchings depicted in figures 4.1 and 4.2.
We can discuss two cases:

(a) The pump width σα is much narrower than the phasematching width σφ ∼ 1/L,
i.e. we have a large number of modes N ∼ σφ/σα ∼ 1/L and ck ∼ 1/

√
N ∼

√
L.

Furthermore, F ∼ σφ ∼ 1/L. That means that ζk ∼ FLck ∼
√
L and

〈nk〉 ∼ L 〈ntotal〉 ≈ N〈nk〉 ∼ const (4.36)

(b) The pump width σα is adjusted to keep the number of modes constant as the
length increases. In that case ζk ∼ FL ∼ const is independent of the crystal
length. These considerations also apply to the special case of Fig. 4.1 where
mainly one mode is present.

Remarkably, neither the crystal length nor the pump width can change the total
number of photons produced in a PDC process (in this low gain regime). Note that
in the literature, in particular for continuous wave systems, the number of photons
per bandwidth is more relevant. According to Eq. 4.36, the number of photons per
bandwidth is proportional to L.
Now let us briefly comment on degenerate type I. Here the phasematching func-

tion is oriented exactly at −45 ◦ and we assume that it has a quadratic curvature.
Repeating the considerations of case (a), we find that N ∼ 1/

√
L and F ∼ 1/

√
L.

That leads to 〈nk〉 ∼ L3/2 and 〈ntotal〉 ≈ N〈nk〉 ∼ L.
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4.1.5. Effective Mode Number

The modal properties of the PDC state are entirely described by the set {B′, ck, φk, ψk}
of squeezing parameters and their corresponding modes. However, these parameters
are experimentally hard to measure. Besides, we are trying to generate PDC states
with only one mode in this thesis. Therefore it is often sufficient to specify just an
effective mode number

K =
1∑
k |ck|4

. (4.37)

To motivate this definition, assume that we pump the PDC very weakly to generate
single photons and neglect all two-photon components. The state then becomes

|ψ〉 =
⊗
k

(|0, 0〉k +B′ck|11〉k) (4.38)

∝
∑
k

ck|11〉k. (4.39)

The probability for each mode is |ck|2 and normalization ensures
∑

k |ck|2 = 1. This
is a state of two, frequency-entangled, single photons. If all coefficients have the same
value |ck|2 = 1/N , then K = N is exactly the number of modes.
If we trace out one of the two spatial modes and relabel |1〉k ≡ |k〉, the density

matrix becomes
ρ|1〉 =

∑
k

|ck|2|k〉〈k|, (4.40)

or in matrix representation:

ρ|1〉 =

|c1|2 0 · · ·
0 |c2|2
... . . .

 . (4.41)

The purity of this state is

P = trρ2 =
∑
k

|ck|4 =
1

K
. (4.42)

Thus, the purity of heralded single photons is inversely proportional to the effective
mode number.
A similar connection exists between K and the photon-number statistics of the

marginal beam. Here, we also take higher photon-number components into account.
Each mode k in 4.32 has exponentially decaying photon-number probabilities pk(n) =
(1 − |λk|2)|λk|2n. A photon-number measurement just adds up the photon numbers
of all modes. The probability to measure N photons is then

P (N) =
∑

n1,...,nkmax

p1(n1)p2(n2 − n1)p3(n3 − n2) · · · p(N − nkmax) (4.43)

= p1 ∗ p2 ∗ . . . ∗ pkmax , (4.44)
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a convolution of all photon-number probability distributions. Therefore the photon-
number statistics between a single-mode state and a multimode state are very dif-
ferent. In the limit of many modes, the distribution becomes Poissonian, as can be
seen by evaluating the sum directly in Eq. 4.43.
In a more quantitative analysis, the photon-number distribution can be conve-

niently used to measure the number of modes. As shown in e.g. [42], the function
g(2) = 〈N2〉−〈N〉

〈N〉2 , only requiring the mean and the variance of the distribution, is
directly related to the number of modes by

K =
1

g(2) − 1
, (4.45)

provided that the number of photons per mode is not much bigger than one. Such
correlation functions as g(2) are further discussed in Sec. 4.4. To sum up, the purity
of heralded single photons, the effective mode number and the marginal second order
correlation function are all directly related to each other:

K =
1

P
=

1

g(2) − 1
. (4.46)

4.1.6. Interference-Based Characterization Techniques

Hong-Ou-Mandel Interference between Signal and Idler

The interference of two photons at a beamsplitter followed by a coincidence mea-
surement with single-photon detectors, sketched in Fig. 4.3, is a well established
method to deduce information about a biphoton quantum state. First demonstrated
by Hong, Ou and Mandel [43] to measure the duration of photon wavepackets, it
can be used as a measure of indistinguishability [44–46] and even for reconstruction
of the spectral properties of a state [47–49]. The Hong-Ou-Mandel (HOM) interfer-
ence is unaffected by loss and has been widely applied for the characterization of
single-photon states from PDC.

click

click

Figure 4.3.: Two photons interfering at a beam splitter. The photon-bunching effect of
indistinguishable photons can be observed in the coincidence-click probabilities.

Assuming that signal and idler originate from a perfect, weakly pumped PDC
source (negligible two-photon components) with a JSA f(ωs, ωi), the first non-vacuum
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term can be described as

|ψ〉 =

∫
dωsdωif(ωs, ωi)|ωs, ωi〉. (4.47)

The probability to obtain one photon in each output port of a 50/50 beam splitter
after a time delay τ between signal and idler is given by

p(τ) =
1

2
− 1

2
Re
∫

dωsdωif ∗(ωs, ωi)f(ωi, ωs)e
−iτ(ωs−ωi). (4.48)

To derive this formula, we have described the time delay as eiωτ and applied the
beam splitter transformation, see Appendix A.3. We can further define the visibility
of a HOM dip as

V = 1− p(∞)− p(0)

p(∞)
= 1− 2p(0). (4.49)

For τ = 0, the integral term is the overlap between the JSA and its mirrored coun-
terpart along the 45◦ line in the (ωs, ωi) plot. A HOM measurement hence probes
the symmetry of the state under the exchange of signal and idler, as illustrated in
Fig. 4.4. Even for strongly correlated signal and idler, the visibility of a HOM inter-
ference can be high, if they show this symmetry. For a decorrelated state as depicted
in the central plot, the visibility represents the indistinguishability between signal
and idler in terms of their spectral overlap, as one might intuitively imagine. Perfect
indistinguishability in this case requires the angle of the phasematching function to
be exactly 45 ◦. For the plots here we assumed an angle of 59 ◦, according to our
experimental situation in Chapter 5.

ωs

ωi

a)

ωs

ωi

b)

ωs

ωi

c)

Figure 4.4.: The visibility of the HOM interference is proportional to the overlap
(shaded area) of the JSA with itself under the exchange of signal and idler
(contour plots). The phasematching function is similar to Fig. 4.1 but has a
Gaussian shape. Three cases are shown: a) Positive frequency correlation with
K = 2 resulting in a visibility of V = 70%. b) Decorrelation with K = 1
resulting in V = 96.7%. c) Negative frequency correlation with K = 2 resulting
in V = 99.8%.
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Hong Ou Mandel Interference with a Reference Field

High visibilities in a HOM interference between signal and idler can be obtained
in the decorrelated as well as in the negatively correlated case. If our goal is to
distinguish these two scenarios, we need a second measure. One possibility is to
interfere the state with an independent reference beam. This can be understood as
a purity measurement of the marginal beams.
If signal and idler are correlated, tracing out the idler mode results in a mixed

signal state, described in frequency space by a density matrix ρs(ωs, ω
′
s). Being

Hermitian, this matrix must be symmetric with respect to the principal diagonal.
In the following we assume that it is a 2-dimensional Gaussian function, which is
well justified for our source as we will see in Sec. 5.3.2. It follows from straight
forward calculations that the purity of the state is given by Tr(ρ2

s) = σ2/σ1, where
σ1 and σ2 are the major and minor axes of the Gaussian function ρs(ωs, ω

′
s). The

major axis is the spectral width of the signal beam and can be measured directly
with a spectrometer. The minor axis cannot be accessed directly with a spectral
measurement but defines the coherence length of the state and hence the interference
pattern, as depicted in Fig. 4.5. By a HOM interference measurement with a known
reference field, the minor axis can be deduced from the temporal width of the HOM
dip, which is given by

δ2 =
1

2σ2
2

+
1

2σ2
β

(4.50)

where σβ is the width of the reference field. A detailed analysis of this technique
can be found in [50]. Note that a measurement of the widths is much more robust
compared to a measurement of the visibility because it is not affected by higher
photon number components and imperfect overlaps of the state in the spectral and
polarization degree of freedom.
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Figure 4.5.: Comparison of an uncorrelated PDC state (dotted black lines) to a
correlated PDC state (green, purple or solid black lines) . Left: JSA. Center:
reduced density matrix of signal. Right: HOM dip between signal and reference.
Both cases, correlated and uncorrelated, have the same marginal spectral widths.
Nevertheless, the width of the HOM dip reveals the purity of the marginal state
and hence the amount of correlations or number of modes.
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4.2. Phase Space Representation of Quantum
States

4.2.1. Quasiprobability Distributions

In quantum mechanics, measurements are statistical processes. Even though the
time evolution of a quantum state ρ is fully deterministic, measurement outcomes
can in general only be predicted with some uncertainty. For example, the position
and momentum of a particle can never be determined both with high precision at
the same time, prohibited by the Heisenberg uncertainty σxσy ≥ ~

2
. More generally,

such an uncertainty exists for all non-commuting observables:

σAσB ≥
1

2
〈|[A,B]|〉 (4.51)

For the light field, two such non-commuting observables are

x̂ =
1√
2

(â+ â†) p̂ =
−i√

2
(â− â†), (4.52)

also referred to as position and momentum, since they obey the commutation relation
[x̂, p̂] = i~. It results from the definition of the fields in Eq. 4.7 and explains why
the unperturbed Hamiltonian Eq. 4.8 is just a harmonic oscillator.
In the density matrix formalism of quantum mechanics, the states are described

by a density matrix ρ̂ and the expectation values of operators are given by

〈Ô〉 = tr(ρ̂Ô). (4.53)

One can ask the question if there is an alternative description in terms of probability
distributions. In the case of the position and momentum operators, it would be a
probability distribution W (x, p) with x, p ∈ R, that fully describes any measurement
outcomes and allows to calculate expectation values for x̂, p̂ or higher moments of
them. In general, the answer to this question is no. Essentially, this is the reason why
it is not possible to explain quantum mechanics in terms of everyday life phenomena,
which can all be described by classical probability theory. However, it turns out
that such a W (x, p) exists, if it is allowed to have negative values. For the lack of an
interpretation for negative probabilities, it is termed a quasi -probability distribution.
The negativities are quantum features that distinguish it from classical probability
theory.
One way to formally introduce quasiprobability distributions [40, 51] is as follows.

We can regard any operator Ô as a function of creation and annihilation operators
Ô = f̂(â, â†). Now, we need to identify

ρ̂↔ P (α) and f̂(â, â†)↔ f(α, α∗) (4.54)

such that the expectation value of Ô can be calculated similar to classical probability
theory:

〈Ô〉 =

∫
d2αP (α)f(α, α∗) (4.55)
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To find f(α, α∗) we would like to just replace the operators â†, â by complex variables
α∗, α. According to the inverse of 4.52, they parametrize the quadratures as α =

1√
2
(x + ip). The problem arising at this point is that f̂ depends on the order of the

operators â and â† but f(α) does not. Therefore, f̂ must be rearranged into a specific
order, denoted by :f̂ : before replacing â by α. Three types of ordering are common:

• normal ordering: all creation operators are placed to the left of all annihilation
operators, e.g. :ââ†â:N = â†â2.

• symmetric ordering: an average over all possible arrangements, e.g. :ââ†â:S =
1
3
(â2â† + ââ†â+ a†â2).

• antinormal ordering: all creation operators are placed to the right of all anni-
hilation operators, e.g. :ââ†â:A = â2â†.

If the ordering is fixed, we can use the identity

:f(â, â†): =

∫
d2α :δ(â− α):f(α, α∗) (4.56)

to rewrite
〈:f(â, â†):〉 =

∫
d2α 〈:δ(â− α):〉︸ ︷︷ ︸

P (α)

f(α, α∗), (4.57)

which is exactly the expression 4.55 we are looking for. For different orderings, we get
different distributions P (α). These are the Glauber-Sudarshan P-function P (α) for
normal ordering, the Wigner function W (α) for symmetric ordering and the Husimi
Q-function Q(α) for antinormal ordering.

The Wigner Function

Since x and p are already symmetrically ordered in their definition 4.52, their corre-
sponding quasiprobability distribution is the Wigner function which can be derived
the following way:
We rewrite the delta-function as

:δ̂(â− α): = :
1

π2

∫
d2β exp{(â† − α∗)β − (â− α)β∗}: (4.58)

= :
1

π2

∫
d2β D̂(β) exp{−α∗β + αβ∗}:. (4.59)

The operator D̂(β) = exp{βâ†− β∗â} is known as the displacement operator. It has
the property of displacing the annihilation operator: D̂(α)âD̂(−α) = â + α. Since
the displacement operator is symmetrically ordered already, we can drop the ordering
symbol and continue rewriting it as

:δ(â− α):S =
1

π2

∫
d2β D̂(α)D̂(β)D̂(−α). (4.60)
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Then the Wigner function becomes

W (α) = 〈:δ(â− α):S〉 =
1

π2

∫
d2β Tr{D̂(−α)ρ̂D̂(α)D̂(β)} (4.61)

=
2

π

∑
n

(−1)n〈n|D̂(−α)ρ̂D̂(α)|n〉 (4.62)

where we have used 〈m|
∫

d2β D̂(β)|n〉 = 2π(−1)nδmn, derived in Appendix A.1. This
is one way to relate the Wigner function to the density matrix. In this representation,
the Wigner function at the origin (α = 0) is the expectation value of the parity
operator. At any coordinate α in phase space, the state just needs to be displaced by
−α and its parity measured. In this sense, photon-number measurements are ideally
suited to measure single points of the Wigner function because they directly sample
the parity.
In Fig. 4.6 we show a few examples of Wigner functions. The Wigner function

of the coherent state is a Gaussian function whose width corresponds to the un-
certainties in the quadratures. Alternatively, one can think of the distance to the
origin as the amplitude of the state (since the photon-number operator corresponds
to 1

2
[x2 + p2 − 1]) and the angle in the x-p-plane as the phase of the field. The

squeezed state has a Gaussian distribution as well but the widths of the quadratures
are different. One quadrature has a lower uncertainty at the expense of the other,
constrained by the Heisenberg uncertainty principle ∆x∆p ≥ 1

2
. The Wigner func-

tion of the three-photon Fock state is quite dissimilar to the Gaussian examples. It
shows oscillations and has negative values. Since it is rotationally symmetric, any
marginal distribution for x, p or a linear combination cos(φ)x + sin(φ)p shows the
same probability distribution with four peaks. It is obvious, that this property can-
not be achieved with a positive two-dimensional distribution and demonstrates the
nonclassicality of this Fock state. The last example is the cat state which is a su-
perposition of two coherent states with opposite phase showing interference fringes
between them and also clear nonclassicality features.

The Glauber-Sudarshan P-function

The P-function is associated with normally ordered operators. It can be used to
calculate

〈â†mân〉 =

∫
d2αP (α)α∗mαn. (4.63)

Interestingly, the P-function has a rather intuitive interpretation: It corresponds
to the expansion of the density matrix in terms of coherent states:

ρ̂ =

∫
d2αP (α)|α〉〈α|. (4.64)
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Figure 4.6.: Wigner functions W (x, p). Top-Left: Coherent state |α〉 with α = (
√

2+√
2i), centered at x = p = 2. Top-Right: Fock state |3〉. Bottom-Left: squeezed

state with r = 0.8. Bottom-Right: Cat state |α〉 + | − α〉 with α = 2i. Green
indicates positive values and blue indicates negative values. Projections are
marginal probability distributions for x and p.

This can be easily verified by

〈â†mân〉 = Tr(ânρ̂â†m) (4.65)

= Tr

(∫
d2αP (α)|α〉〈α|α∗mαn

)
(4.66)

=

∫
d2αP (α)α∗mαn. (4.67)

If the state is a coherent state, the P-function is a delta function, i.e. a dot in phase-
space. If the state is ’narrower’ than a coherent state in some sense, as the squeezed
state, the Fock state or the cat state, the P-function becomes not well behaved,
including derivatives of delta functions. It is thus not very well suited to illustrate
quantum states in the same way as can be done using the Wigner function. However,
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it plays a central role in the definition of nonclassicality as we will discuss in Sec.
4.3.

Husimi Q-function

The Husimi Q-function corresponds to antinormal ordering. It can be written as

Q(α) = 〈α|ρ̂|α〉. (4.68)

Again, this can be verified by

〈ânâ†m〉 = Tr(â†mρ̂ân) (4.69)

=

∫
d2α〈α|α∗mρ̂αn|α〉 (4.70)

=

∫
d2Q(α)α∗mαn. (4.71)

This form also means that the Q-function is always positive, i.e. a classical prob-
ability distribution.
The three quasiprobability distributions introduced here can be transformed into

one another by (de-)convolutions with a Gaussian function [51]. The relation is
P (α)

convolution−−−−−−→ W (α)
convolution−−−−−−→ Q(α). This directly shows that the P-function is the

’narrowest’ quasiprobability distribution and hence destined to define nonclassicality
for quantum states.

4.2.2. Two-Mode Squeezed State

The PDC state is also referred to as the two-mode squeezed state. Its Wigner function
reads [40].

W (α, β) =
4

π2
exp{−2[ cosh(2r)(|α|2 + |β|2)

+ sinh(2r)(αβeiφ + α∗β∗e−iφ)]} (4.72)

or
W (α, β) =

4

π2
exp{−e2r|α + β∗e−iφ|2 − e−2r|α− β∗e−iφ|2}. (4.73)

In the limit of infinite squeezing r → ∞, the quadratures are correlated as |α +
β∗e−iφ| = 0. For φ = 0, the positions

√
2αr and

√
2βr are perfectly anti-correlated

and the momenta
√

2αi and
√

2βi are perfectly correlated. For finite r, the variance of
the correlations is V (|α+β∗e−iφ|) = e−2r. By measuring any quadrature in one mode,
the corresponding correlated quadrature in the other mode can be predicted with
an uncertainty smaller than the Heisenberg limit by a factor of e−2r, schematically
illustrated in Fig. 4.7. Of course, this does not contradict the Heisenberg uncertainty
principle but is a manifestation of the entanglement between the two modes A and B.
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αi βi

αr βr

Figure 4.7.: Schematic depiction of a two-mode PDC state. The marginal probabil-
ity distributions for each mode alone are indicated by the large circles. They
correspond to a thermal state, i.e. a ’noisy’ light field. The small circles indicate
the correlations between the two modes. If both systems are measured in the
quadrature pairs (αr, βr) or (αi, βi), the values will be strongly correlated, indi-
cated by the small circles. However, a non-matching combination like (αr, βi)
will not show strong correlations. Note that the frame of reference can be rotated
by simply introducing a relative phase delay between the two modes.

The famous paper by Einstein, Podolski and Rosen [8] started a long lasting debate
about how it might be, that by entangling two particles, it is possible to measure the
position of one particle and the momentum of the other particle, and due to their
entanglement, conclude the values for both position and momentum to an arbitrary
precision. In a modern interpretation of quantum mechanics, this paradox only
contradicts local variable theories of quantum mechanics which attempt to describe
each system A and B independently of each other. In such a theory, the statistics of
each system are predetermined and cannot be influenced by a measurement in the
other, spatially separated system. It turns out that it is not possible to formulate
such a theory in a convenient way, meaning that any quasiprobability function, in
particular the Wigner function, cannot be written as a product of two separate
functions for the systems A and B. The different sized circles in Fig. 4.7 attempt to
illustrate this in the sense that one gets big or small variations in one mode depending
on the choice of measurement in the other mode.

4.3. Nonclassicality

There are several definitions of nonclassicality, since it is such a general term. We
would like to mention two popular notions here: nonclassical correlations [52] moti-
vated by information theory and nonclassicality motivated by quasiprobability dis-
tributions [51].
The first case is closely related to entanglement. If two systems A and B share

some information that cannot be explained by classical information theory, then they
share non-classical correlations. A number of specific definitions exist from quantum
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discord [53] to EPR entanglement [9, 54], with a hierarchy as sketched in Fig. 4.8. A
typical example for an EPR entangled state is the Bell state 1√

2
(|00〉 + |11〉), which

features perfect correlations in the zz basis as well as in the xx and yy bases. This
allows to construct Bell inequalities that witness the EPR entanglement.
However, all these definitions focus on the correlations between two or more sys-

tems. The type of states used, is irrelevant for the correlations. For example, classical
correlations can be shared by single photons, if they are only used to transmit classical
bits. One such example is a mixture of photon-number correlated states:

ρ̂ =
∑
n

pn|n, n〉〈n, n| (4.74)

This state has no off-diagonal terms meaning that it has no phase information. Since
it is a mixture of separable states, it features no entanglement. Furthermore it has
no quantum discord, as is shown for example in [55]. One could also say that this is
due to the fact that we cannot find two non-commuting observables, like amplitude
and phase, which both show strong correlations. Only the amplitude-, i.e. photon-
number correlations are present, which can be well described classically, by using
balls instead of photons, for example. This seems strange because the state can still
be used to herald single photons or Fock states in general. And single photons can
be send onto a beam splitter to generate entanglement [56]. The output modes of
the beam splitter just need to lead to A and B and we have an entangled state
again. Hence, with a very common element from an optics lab, a beam splitter,
a separable state can be converted into an entangled state. Note that this does
not violate any local-operation-and-classical-communication (LOCC) [57] rules, since
distributing the state is a non-local operation. But using a beam splitter and sending
photons through space does not require quantum operations and is not particularly
hard to do, which motivates the following definition of nonclassicality.
The second nonclassicality criterion focuses on the type of state, rather than on

correlations between two parties. We have already introduced quasiprobability distri-
butions, which are functions that describe the distribution of observables. Depending
on the operator ordering of the observables, there is the Q function, the Wigner func-
tion and the P function. It turns out that P is the ’sharpest’ of the quasiprobability
functions, i.e. if P is positive, the other functions are positive too. Nonclassicality
is now defined as P having negative values anywhere in phase space. If P is positive
everywhere, then all possible observables of a state can be described by a positive,
i.e. classical probability distribution and the state is defined as classical. This rather
formal definition has a simple, intuitive interpretation, since the P -function is the
expansion of the density matrix in terms of coherent states:

ρ̂ =

∫
d2αP (α)|α〉〈α|. (4.75)

It means that coherent states, represented by a delta-P-function, are the ’narrowest’
classical states. All states that can be expressed as a classical mixture of coherent
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quantum
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Figure 4.8.: Nonclassicality criteria. Orange definitions are based on information
theory, going from the weakest quantum discord to the strongest EPR entan-
glement (also called Bell-nonlocality). The definition in terms of the P -function
stands apart as it is a more fundamental definition, not based on information-
theoretical arguments, but on the phase-space representation of the state. In
particular, quantum discord and P -nonclassicality are entirely different as there
exist states, which are part of one but not of the other. However, entanglement
is a subclass of P -nonclassicality.

states are also classical states. If a state cannot be expressed in that way, i.e. P < 0
for some α, the state must be non-classical. Single photons for example are very
non-classical with a P -function that is not very well behaved, let alone positive. Our
example from above, where we used a non-entangled state to produce an entangled
state by simple operations, can now be explained by the fact that we used a non-
classical resource, namely the single photon. From this perspective, we can also define
nonclassical correlations in the quasiprobability framework. If a bipartite state is non-
classical, but the local states (i.e. traced out over the other system) are classical, the
nonclassicality must lie in the correlations between the two systems. We can call this
nonclassical correlations, which is not to be confused with nonclassical correlations
in the information-theoretical framework.
In general, the definitions of nonclassicality based on quasiprobability distributions

and based on information-theory are inequivalent [55]. We illustrate this point in Fig.
4.8.

4.4. Correlation Functions

Correlation functions, first introduced by Glauber [58], are one way to characterize
quantum states. Most generally, the n-th order correlation function for a single mode
can be defined by

g(n)(t1, ..., tn) =
〈â†(t1) · · · â†(tn)â(t1) · · · â(tn)〉
〈â†(t1)a(t1)〉 · · · 〈â†(tn)â(tn)〉 . (4.76)
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Intuitively, it might be understood in the following way: We destroy n particles at
times t1...tn, create them again at the same times, and calculate the overlap with
the original state. The denominator is just a normalization with respect to the mean
photon numbers. For example, we consider the second order correlation function
(integrating over the second time variable)

g(2)(τ) =

∫
dt 〈â†(τ + t)â†(t)â(τ + t)â(t)〉

[
∫

dt 〈â†(t)â(t)〉]2 . (4.77)

If the state is a train of single photons, then for τ = 0 the value will be zero,
but for τ → ∞, the value will be one. This is the anti-bunching effect of single
photons in a continuous field as emitted by true single photon sources. For coherent
continuous wave states, g(2)(τ) = 1 is completely independent of τ , since coherent
states are eigenstates of a. And for a train of pulses, i.e. light with periodic amplitude
modulations, g(2)(τ) will contain peaks with the distance of the pulses, as expected
from a classical intensity-correlated signal.
In the scope of this thesis, we work with ultra-short pulses of ∼ 1 ps length and

single photon detectors with integration times of about ∼ 1 ns. In that case, we have
to integrate the correlation function 4.76 over the whole pulse. It turns out [42], that
the resulting correlation function can be written as

g(n) =
〈: (
∑

k Â
†
kÂk)

n :〉
〈∑k Â

†
kÂk〉n

, (4.78)

where Ak are broadband operators, usually associated with the Schmidt decomposi-
tion of our PDC state, and : . : donates normal ordering. We can now simply plug
in the PDC mode operators from the Heisenberg picture,

Âout
k = cosh(rk)Â

in
k + sinh(rk)B̂

in†
k (4.79)

B̂out
k = cosh(rk)B̂

in
k + sinh(rk)Â

in†
k , (4.80)

and calculate all correlation functions for our PDC state. This leads, for example,
to the well known result that g(2) = 1 + 1

K
in the low pump regime, where K is the

Schmidt mode number.
From the experimental point of view, we can just write

g(n) =
〈: N̂n

tot :〉
〈N̂tot〉n

, (4.81)

where N̂tot = â†â is the total number of photons in all the modes, and â =
∑

k Âk =∫
dω â(ω) =

∫
dt â(t). Such correlation functions can be measured directly in an

experiment using a multiplexing network with at least n ports and a click-detector
in each mode [59]. In Appendix C.1 we show this for g(2).
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Correlation functions are closely related to photon-number measurements. In fact,
we can use (omitting the hats above the operators)

a†nan = a†(n−1)(aa† − 1)an−1 (4.82)
= a†(n−1)a(a†a− 1)an−2 (4.83)
= a†(n−1)a2(a†a− 2)an−3 (4.84)
= a†(n−1)an−1(a†a− n+ 1). (4.85)

and hence

a†nan =
n−1∏
l=0

(a†a− l), (4.86)

to obtain

〈â†nân〉 =
∑
k

n−1∏
l=0

(k − l)pk, (4.87)

where pk are the photon-number probabilities. That means that if we measure
photon-number probabilities, we can directly calculate correlation functions. It also
points out that photon probabilities and correlation functions are equivalent descrip-
tions of a part of a quantum state. Nevertheless, there is a fundamental difference
between correlation functions and photon-number probabilities: The correlation func-
tions are loss tolerant, due to their normalization. When a state undergoes losses,
N̂tot → ηN̂tot, the transmission η cancels out in Eq. 4.81. This is one of the reasons
for their popularity in quantum optics experiments. However, the problem of losses
is by no means solved by switching to correlation functions. It is merely hidden in
the normalization. Losses still impact the precision of a measured value. Especially
for higher order correlations, the precision will still scale roughly as ηn, because the
probability to register an n-photon event scales roughly as ηn compared to a lossless
case. Therefore, statistical and systematic errors will have a stronger impact. For
the simplest model of Poissonian statistical errors, the uncertainty for f events is

√
f

and thus for n-photon events, the errors increase by η−n/2. In this sense, the loss
tolerance of correlation functions is deceitful.

4.5. Quantum Measurements

Most measurements in quantum mechanics can be thought of as projective mea-
surements onto a sub-Hilbert space. However, a general description of measurement
requires the so called positive operator valued measure (POVM) [54]. It is realized
by operators that are not projections, i.e. performing a measurement a second time
changes the state again. The probability to measure the outcome associated with a
POVM π̂n and a state ρ̂ is

pnρ = tr(ρ̂π̂n). (4.88)

The π̂n are Hermitian and sum to unity but are not orthonormal and not projective.
Therefore there can be more operators than dimensions of the Hilbert space. The
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density matrix after the measurement becomes

ρ̂′ =
M̂nρ̂M̂

†
n

tr M̂nρ̂M̂
†
n

, (4.89)

where π̂n = M̂ †
nM̂n. The M̂ ’s are not unique and not Hermitian.

Non-projective measurements can be interpreted as projective measurements on a
larger Hilbert space, stated by Neumark’s dilation theorem [60]. Since the measure-
ment generally takes place in a larger Hilbert space given by the actual experimental
implementation, the number of measurement outcomes can be much larger than the
dimensions of ρ̂. Restricting the description to the smaller space of ρ̂ requires the
introduction of the POVMs π̂n.
Eq. 4.88 is the starting point of all quantum tomography schemes. In state to-

mography, the π̂n are assumed to be known and the task is to find the state ρ̂ best
explaining the measured probabilities fnρ sampled from pnρ. In detector tomography,
a set of states ρ̂i is assumed to be known and the best fitting π̂n are sought. In gen-
eral, one can think of quantum tomography as a multidimensional fitting problem.
We introduce quantum tomography more thoroughly in Chapter 6.
In the following we would like to elaborate on two basic measurement schemes

available in quantum optics, balanced homodyne detection and photon-number re-
solved detection.

50/50

n̂
ρ

|α〉

n̂
+/- |m〉〈m|

ρ
|n〉〈n|

η
|α〉

ρ
|n〉〈n|

η → 1
|α〉

Figure 4.9.: Left: Balanced homodyne detection. A bright coherent field |α〉 is over-
lapped at a 50/50 splitter and impinges onto linear photodiodes. Center: Weak-
field homodyne detection. A weak coherent field is used with photon-number
resolving detectors. Right: Direct Probing. A nearly transmissive beam splitter
and only one photon-number resolving detector is used.

4.5.1. Balanced Homodyne Detection

Balanced homodyne detection [61] is the method of choice if one wants to measure
the phase-space quadratures x̂ and p̂ as introduced in Sec. 4.2. A schematic is shown
in Fig. 4.9. The advantage of homodyne detection is that a bright local oscillator can
be used and only the intensities 〈n1〉τ and 〈n1〉τ have to be measured. The brackets
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indicate that all detectors have some integration time τ . In a pulsed system, we
could assume that the integration time is much smaller than the pulse distance such
that the photon number for each pulse is measured. Even in a continuous wave
system, the integration time does not play a role as long as one is not interested in
high frequency components beyond the bandwidth 1/τ . Hence, we can drop the time
filtering and calculate the difference of the two output currents:

Ŝ = n̂1 − n̂2 (4.90)

=
1

2
(â† + b̂†)(â+ b̂)− 1

2
(â† − b̂†)(â− b̂) (4.91)

= â†b̂+ b̂†â (4.92)
= â†α + âα∗ (4.93)
= |α|(â†eiφ + âe−iφ) (4.94)
= |α|x̂φ, (4.95)

where we have used the beam splitter transformation, see Appendix A.3. Depending
on the phase of the local oscillator, all possible quadratures can be measured, in
particular x̂ for φ = 0 and p̂ for φ = i.
If we have multiple modes in our signal, or signal and local oscillator are not

perfectly matched, we can expand the local oscillator in modes of our signal (confer
sec. 4.1.3) and obtain

Ŝ =
∑
k

n̂
(k)
1 − n̂(k)

2 =
∑
k

|α(k)|x̂(k)
φ . (4.96)

The quadratures of each mode are scaled by the corresponding local oscillator. If the
local oscillator is matched to the one single mode we are interested in, all other modes
do not contribute to the measurement. Similarly, if there is a mismatch, part of the
local oscillator will measure vacuum. This is equivalent to introducing losses to the
system, as losses are modelled by a beam splitter with a transformation x̂φ → τ x̂φ +
σx̂vac

φ . This corresponds exactly to Eq. 4.96 with |α(0)| = τ and |α(1)| = σ. Hence,
imperfect mode overlap is indistinguishable from losses in homodyne detection.
The experimental realization of such a homodyne setup [62] is challenging because

both output ports have to be balanced perfectly despite bright light on the detectors
and sensitive electrical circuitry. For many measurements, however, the aim is not to
sample the full quadrature distribution, but only measure its variance [63]. In that
case, it is common to apply a frequency filter to the output signal to remove the mean
value |α|〈xφ〉 together with slow varying drifts in the electronics. For continuous wave
experiments, those frequencies are usually chosen to lie above the bandwidth of the
laser, filtering out most instabilities in the setup. At any time step ∆t > τc, where
τc is the coherence time of the laser, the quadrature value is completely random,
sampled from its probability distribution p(x̂φ) =

∫
dxφ+π

2
W (x, p). Therefore, infor-

mation like its variance can be deduced at any filtering frequency below the detector
bandwidth.
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4.5.2. Photon-Number Resolved Detection

Photon-number measurements on the state itself or after an interference with a ref-
erence state as depicted in Fig. 4.9 are an alternative to homodyne detection. Let us
regard the configuration depicted in Fig. 4.9 on the right. The highly transmissive
beam splitter with a coherent state at the second input port acts as a displacement
operator D̂(α′), where α′ = α

√
1− η, see Appendix A.3. Therefore, such a detector

measures photon-number statistics of the displaced state. The outcome probabilities
are given by

pn = 〈n|D̂(α′)ρ̂D̂(−α′)|n〉. (4.97)
You might recall, that this is exactly what we need to measure the Wigner function
at specific points in phase space, see Eq. 4.62. For this fact, this scheme is named
’direct probing’ [64–66] and has been used to reconstruct the Wigner function of
heralded single photons [67].
The direct-probing scheme as well as the more general scheme sketched in Fig. 4.9

(center), are also referred to as weak-field homodyne detection [68] in the literature.
Such photon-number resolved detection with a reference field, usually using only
one port of the beam splitter, has been applied to show the violation of a Bell-type
inequality [69], characterize superposition states [70] or probe coherences across Fock
layers [71]. The scheme in the central sketch of Fig. 4.9 offers the most flexibility
in the choice of reference states and beam-splitter transmittivities. In the limit of
very high photon numbers, at which the discrete character of photon numbers can
be neglected, this setup becomes a standard homodyne setup.
There are two fundamental differences between homodyne detection and the photon-

number based approaches. First, photon-number measurements, in contrast to quadra-
ture measurements, are so-called non-Gaussian measurements. They allow to over-
come Gaussian no-go theorems [15], enabling continuous-variable entanglement dis-
tillation [72, 73] or the preparation of exotic states like cat states [74, 75]. Second,
photon-number measurements are sensitive to all modes. In Eq. 4.96, unmatched
modes for which αk = 0 do not contribute to the measurement. This can be seen
as an advantage if those modes are considered to be a noise source. With photon-
number detectors, all modes are measured because they are not amplified by the
local onscillator. The unmatched modes just don’t interfere with the reference field.
This can also be seen as an advantage, if characterization of the source is the primary
goal of the setup. If non-overlapping modes show distinct features from overlapping
modes [76], more complete information about the source can be obtained.

4.5.3. Losses

Linear optical loss can be modeled by a beam splitter. If n photons impinge on a
beam splitter with transmittivity η, the probability for m photons to pass the beam
splitter is given by the binomial distribution

Lmn(η) =

(
n
m

)
ηm(1− η)n−m. (4.98)
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The photon-number probabilities before and after losses are related by

p′m =
∑
n

Lmnpn. (4.99)

For a perfect photon-number detector with an efficiency η, the POVMs in the photon-
number basis are given by

π̂m =
∑
n

Lmn(η)|n〉〈n|. (4.100)

Another common type of detector is the so called on/off or click detector, which is a
binary detector sensitive to a single photon but incapable of distinguishing between
different numbers of photons. It has two POVM elements which are

π̂0 =
∑
n

(1− η)n|n〉〈n| and π̂1 = 1− π̂0 (4.101)

where (1− η)n is the probability to reflect all n photons at the beam splitter.
The matrix Lmn can be inverted analytically and reads [76]

(L−1)mn =

(
n
m

)
(−1 + η)n−m

ηn
. (4.102)

In principle, no information is lost and losses can be fully inverted by∑
n

(L−1)mnp
′
n = pm. (4.103)

However, the alternating sign and the η−n scaling already shows that it becomes ex-
perimentally unfeasible for very low efficiencies and high photon numbers. This turns
out to be a very fundamental problem. Even with more sophisticated tomographic
techniques, the photon-number space that can be reconstructed ultimately remains
limited by the losses in the experiment.
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5. A Source for Quantum Optics

Quantum optics is a broad field with a wide range of applications in communication
[77], metrology [78] and computation [79–83]. Without going into detail about spe-
cific designs and protocols, we can ask, what the main ingredients are, to achieve a
quantum enhancement in some application over classical alternatives.
Most importantly, nonclassicality has to come in at some point. This can be a

nonclassical state to start with or a nonclassical measurement that effectively projects
onto a nonclassical state.
The second ingredient is high-dimensionality. Many sources have to be entangled

with each other to cover a large distance in communication or outscale a classical
system in metrology or computation. Since photons do not interact easily with each
other, the basic element to achieve high dimensionality is a beam splitter. Even with
one beam splitter and two single photons, the Hong-Ou-Mandel (HOM) effect can
be demonstrated, where both photons always end up in the same detector due to
a genuine quantum effect, namely photon bunching. Most applications in photon
based systems rely on such a quantum interference at beam splitters [79, 81, 83, 84].
However, in real systems, imperfections degrade the quantum interference. In

particular, distinguishability or mixedness of quantum states are one of the main
limitations in quantum applications today. In the simplest case of the HOM inter-
ference, distinguishability leads towards the classical 50% chance for both photons
to end up in different detectors.
Another main limitation in most applications are losses. In a communication link,

photon loss limits the data rate and requires complicated structures like repeaters to
compensate for it. In computation, loss is even more critical. The least demanding
error-correction codes require losses below 1% [85, 86]. All experimental implemen-
tations with optical states fall short of this demand by a large amount. Nevertheless,
progress is being made with current system efficiencies close to 80% [12, 13].
Optical states have one significant advantage over all other physical implementa-

tions. They do not decohere in the same way as other systems because they do not
interact with their environment. While this is certainly a problem when building
up a large system, it is an advantage when maintaining a large system and mov-
ing it around in the lab or between distant locations. This makes photonic systems
excellent candidates to study quantum effects of large or even macroscopic states,
provided they can be generated. In principle, optical quantum states with thousands
of photons are generated in laboratories today. The challenge is to measure their
quantum character and more importantly, access and characterize that huge space.
Utilizing higher photon numbers with photon-number detectors is one possible route
in that direction.
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All in all, the ideal source we envision should generate high dimensional pure
quantum states that can be measured with high efficiency. In this chapter we present
the implementation and characterization of a PDC source optimized towards that
goal.

5.1. Source Engineering

In section 4.1.3 we have introduced the Schmidt decomposition as a means to quantify
the spectral properties of a PDC source. Generic PDC sources produce a multitude
of spectral Schmidt modes. Each mode contains a two mode squeezed state with
orthogonal polarizations, which can be used to split the two modes into channel A
and B. Unfortunately, all single photon detectors available today are insensitive
to the spectral degree of freedom directly1. Suppose we use such a detector on a
spectrally multimode PDC source to herald single photons by placing it in channel
A. Then after the measurement, confer Sec. 4.1.5, the state in channel B is left as
a mixture ρB ∼

∑
k ck |1〉k〈1|k. Interfering two such states at a beam splitter will

reduce the HOM visibility depending on the number of modes and render the source
useless for multiplexing in a larger network.
The most elegant solution to this problem is to develop a mode-selective measure-

ment like a quantum pulse gate [41] which selectively operates on single spectral
modes by utilizing frequency conversion. Unfortunately, this rather new method still
introduces significant losses. Homodyne detection is a more established measurement-
based approach, which only measures one spectral mode and ignores all others. How-
ever, this limits possible measurements to quadrature measurements and excludes
photon-number measurements.
The most simple and widely used approach to achieve single mode operation is

spectral filtering [36, 44, 87–92]. The drawback here is that perfect decorrelation
can only be achieved in the limit of a small bandwidth, leading to longer pulses and
reducing the brightness of the source significantly [93]. Even more critically, spectral
filtering unavoidably introduces losses [94].
Our approach is to engineer the PDC source such that it produces only one spectral

mode. Then, ideally, no spectral filtering is required [37, 95]. To achieve that, the
JSA has to be separable. In the (ωs, ωi)-plane, the phasematching function needs to
have a positive slope, which in turn depends on the group velocities as follows [96].
To find an expression for the orientation of the phasematching function, we expand
the phasematching condition ∆k = 0 around ω0

s , ω0
i and ω0

p = ω0
s + ω0

i and get

0 = ∆k =
∂ks
∂ωs

∆ωs +
∂ki
∂ωi

∆ωi −
∂kp
∂ωp

(∆ωs + ∆ωi), (5.1)

1This is not quite true for transition edge sensors, since they resolve the energy of the photon.
However, the resolution is very low.
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where ∆ω = ω − ω0 and ∂k
∂ω

= 1
v
is the inverse of the group velocity. The slope is

∆ωi
∆ωs

=

1
vp
− 1

vi
1
vs
− 1

vp

=
1− vp

vi
vp
vs
− 1

. (5.2)

It is positive, if the pump group velocity lies between the signal and idler group
velocities:

vs < vp < vi or vi < vp < vs (5.3)

One suitable material fulfilling this condition is potassium titanyl phosphate (KTiOPO4

or KTP) for wavelengths above 1300 nm, in particular at telecommunication wave-
lengths around 1550 nm for the process y → y + z, meaning that the pump is y-
polarized and signal and idler are y- and z-polarized, respectively [33]. This process
is associated with the d24 nonlinear coefficient which is approximately d24 = 2.6 pm

V
=

χ(2)/2 [97, 98]2. If the slope of the phasematching is positive, the width of the pump
beam can be chosen to produce a decorrelated JSA.
This principle has first been demonstrated in a different material, potassium di-

hydrogen phosphate (KDP), at 830 nm using a bulk crystal [99]. Already in this
first experiment, very high single-photon purities of 95 % could be achieved. How-
ever, the wavelengths were not ideal and signal and idler had very different spectral
widths. The process described above was then realized in a KTP waveguide at tele-
com wavelengths around 1540 nm [100]. Again, good single-mode operation with
a Schmidt-mode number of K = 1.25, obtained from a marginal g(2) measurement,
could be achieved. Here, the increased conversion efficiency due to a waveguide struc-
ture was remarkable: A pulse energy of only 75 pJ3 was sufficient to generate PDC
states with a mean photon number of 2.5. In this thesis, we use essentially the same
source.
Additionally to decorrelation, indistinguishability between signal and idler is de-

sirable, as it allows both modes to be used in a network. Ideal indistinguishability
could be realized if the angle of the phasematching function in the (ωs, ωi)-plane was
exactly 45 ◦, corresponding to vs + vi = 2vp. In that case, signal and idler would
have the same spectral widths. Using the bulk group-velocities of KTP, the cor-
responding wavelength is at 1585 nm, very close to the ideal telecom-wavelength of
1550 nm. Such decorrelated and degenerate sources in bulk KTP have been realized
in different experiments [34, 101–105] and showed remarkable properties in terms of
single-photon purities and signal-idler indistinguishabilities.
For a waveguide source such as ours, the wavelengths for perfect indistinguisha-

bility are difficult to predict, because the group velocities depend on the waveguide
structure. Using a realistic waveguide model4, it shifts to around 1700 nm, see Fig.

2Note that there exist two conventions for the crystal axes of KTP swapping x ↔ y and hence
d24 ↔ d15. This leads to some confusion in the literature.

3This was measured behind the waveguide, whereas in this thesis we measure pump-pulse energies
in front of the waveguide.

4The refractive indices were provided by Helge Rütz. They are based on a waveguide model
presented in [106] and the commercial eigenmode-solver RSoft.
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5.1. The predicted angles are in good agreement with a measured value of 59 ◦ [96]
at 1572 nm. Unfortunately, wavelengths around 1700 nm are incompatible with stan-
dard telecommunication technology and the common InGaAs avalanche photodiodes
are insensitive in that range. We therefore choose to operate at around 1550 nm and
accept a slight distinguishability between signal and idler.
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Figure 5.1.: Angle of the phasematching function for degenerate type II PDC in
KTP. An angle of 45 ◦ is of particular interest because signal and idler become
perfectly indistinguishable. For our wavelengths around 1550 nm, the angle is
around 60 ◦, strongly dependent on the exact waveguide dimensions. Note that
the small waveguide of 3µm× 5µm only guides light below ∼ 1600 nm.

Concerning the crystal length, we have already seen in sec. 4.1.3 that it does
not affect the efficiency of the process. Therefore, we choose experimentally feasible
parameters of a crystal length of L = 8 mm requiring a pump FWHM of around
2 nm, corresponding to 440 fs long pulses. Shorter crystal lengths are generally less
susceptible to imperfections in the waveguide production process. However, too short
pulses are more susceptible to dispersion effects if we want to interfere different
beams like the signal and local oscillator, even though dispersion does not affect the
separability of the JSA in this regime very much [107, 108]. We briefly analyze the
effect of dispersion in Appendix B.2. Another important limitation of short pulses
is self phase modulation in the crystal, which is a third-order effect in the electric
field caused by a non-zero χ(3) coefficient or cascaded second order processes [109].
Self phase modulation changes the pump spectrum significantly, limiting the usable
pump peak-intensities.
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5.2. Experimental Setup

5.2.1. Source

A schematic of our experimental setup is shown in Fig. 5.2. The nonlinear medium
consists of a periodically poled KTP waveguide engineered to produce decorrelated
and degenerate signal and idler modes at 1536 nm. Our chip was commercially pur-
chased from ADVR and has the following parameters: a length of 8 mm, waveguide
dimensions of about 4µm× 6µm and a poling period of 117µm. To pump the crys-
tal, we use pulsed light from a Ti:sapphire laser (Chameleon from Coherent) or a
frequency doubled beam from an OPO (Chameleon Compact OPO from APE).

ppKTP WG

PDC LP  BP PBS

ND

spectral
shaping

spectral
shapingSHGOPO

1536nm

768nm

D
et

ec
ti

on

Ti:Sapph

Figure 5.2.: Setup. A Ti:sapphire laser pumps an optical parametric oscillator (OPO),
producing pulsed light at 1536 nm. Part of that light is frequency doubled by
second harmonic generation (SHG). Both beams are spectrally shaped using a 4-f
line to a length of around 0.5 ps. The pump beam is coupled into the periodically
poled KTP waveguide. A long pass (LP) filter removes the pump after the down-
conversion process and a band pass (BP) filter suppresses the sinc-sidelobes of
the phasematching function. Signal and idler are split at a polarizing beam
splitter (PBS) and analyzed with different detection configurations.

A crucial part of the experiment is the spectral shaping of the pump. We employ
a 4f -spectrometer, consisting of two gratings, two lenses and one slit in the center,
all separated by the focal length of the lenses. The width of the spectrum can be
narrowed by reducing the width of the slit. Additionally, the slit is tilted, effectively
reducing the resolution of the spectrometer, to produce Gaussian spectral shapes
rather than square-like shapes. We adjust the slit to filter the ∼ 5 nm pump down
to 2 nm (corresponding to 0.45 ps) and the ∼ 15 nm reference down to ∼ 4 nm (cor-
responding to 0.9 ps). Note that the pump- and down-conversion wavelengths differ
by a factor of two. The spectrum of both, pump and reference beams, is measured
and monitored by an optical spectrum analyzer (OSA).
If we use the Ti:sapph directly to pump the source, we can reach pulse energies of

up to 2.5 nJ in front of the waveguide.
We use aspheric lenses for in- and outcoupling of the waveguide and into fibers

in the detection part of the setup. Behind the waveguide, we employ a longpass
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filter (Semrock LP02-808RU-25) to block out the pump beam and a bandpass filter
(Semrock NIR01-1535/3-25) with an FWHM of 8 nm. This bandpass filter is the
second crucial part of the experiment because the PDC generates background signal
over a wide spectral range [110]. The bandpass filter is chosen such that it blocks as
much background signal as possible without affecting the PDC signal itself.

5.2.2. Detectors

Before continuing with the characterization of the source, we would like to take a
detailed look at the three different types of detectors used in this thesis. These
are avalanche photo diodes, superconducting nanowire detectors and transition edge
sensors.

Avalanche Photodiodes

An avalanche photodiode (APD) is a diode which is biased high enough for a single
photo electron to be accelerated above the energy needed to excite other electrons
and cause an avalanche. As soon as the avalanche becomes electrically detectable,
a quenching circuit brings the diode back into its original state. APDs are the
cheapest single photon detectors available. However, their quantum efficiency is
limited especially in the infrared wavelength range. The best commercially available
detectors feature up to 30 % efficiency at 1550 nm. To reach these efficiencies they
need to be gated, meaning that they are active only in a predefined time-window.
There are two types of noise in APDs: Dark counts and afterpulses. Dark counts are
probabilistic counts that have not been triggered by an optical signal. Afterpulses
are dark counts conditioned on previous count events. In figure 5.3 we plot the click
probabilities as a function of time after any click-event. The empirical fit

pap = α exp

{
nβ

γ

}
+ δ(1− δ)n (5.4)

seems to describe these afterpulse-probabilities very well, where n counts the gates
since a click-event and (α, β, γ, δ) are fit parameters. The last term δ(1− δ)n is the
probability to get a normal click after exactly n events, where δ is the click-probability
per event. We used two different APD models: The id201 from ID Quantique and
the CPDS1000 from Nucrypt. These two devices differ primarily in their allowed
repetition rate. The parameters for the fits shown in the plots are

id201 : (α, β, γ, δ) = (0.064, 0.59, 1.21, 0.010) (5.5)
CPDS1000 : (α, β, γ, δ) = (0.031, 0.40, 1.08, 0.003) (5.6)

Dark-count probabilities are usually of the order of 10−4 and do not affect most
measurements. If they do, they can be modelled quite accurately, since they are
independent of the signal. Afterpulses on the other hand occur at a significant
fraction of the signal rate and are very hard to model theoretically. They can even
dominate over the actual signal in time-multiplexing experiments.
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Figure 5.3.: Afterpulse probabilities. Left: idQuantique id201 gated at 1 MHz oper-
ating at around 22 % detection efficiency; Right: NuCrypt CPDS-1000-4 gated
at 40 MHz with unknown detection efficiency. The total afterpulse-probability
for both plots is around 12 %. This value is highly dependent on the biasing
and hence the detection efficiency of the detectors. Note that the first bar in the
right plot is missing due to details in the electronics of that device.

Superconducting Nanowire Detectors

Superconducting nanowire single-photon detectors (SNSPD) [111, 112] are narrow
wires cooled down to about 1 K and biased close to the critical current. If a pho-
ton gets absorbed, it locally breaks the superconductivity and creates a normally-
conducting region, which expands over the whole wire due to the inductance of the
wire. The resulting jump in the resistance can be directly detected electronically.
The current drops and stays low for a certain time given by the inductance of the
circuit. During that time, the wire cools down and becomes superconducting again.
SNSPDs can have detection efficiencies > 90 %[112], low jitters < 40 ps and low

dead-times < 20 ns. They have no afterpulses and almost no dark counts, behaving
like perfect click-detectors. Commercial SNSPDs (Quantum Opus, Photon Spot,
SingleQuantum, Scontel, idQuantique) have emerged in the past two years advancing
many experiments that crucially depend on detection efficiencies.

Transition Edge Sensors

A transition edge sensor (TES) [113] is a calorimetric detector. It operates at the
transition between the superconducting and normally-conducting state, making it
very sensitive to tiny temperature variations. By coupling it to a superconducting
quantum interference device (SQUID), the energy absorbed in the TES can be di-
rectly measured with a resolution below the energy of a single photon. This is usually
the case up to about 20 photons. Beyond that point sub-shot-noise resolution can be
maintained to about 1000 photons [114]. Typical voltage-traces after amplification
are shown in Fig. 5.4. These are actual PDC traces we took at the National Institute
of Standards and Technology (NIST) in Boulder, Colorado, USA, in the scope of a
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collaboration. The height and shape of the pulses contains information about the

0 10 20 30 40 50 60 70 80
time [a.u.]

0.0

0.2

0.4

0.6

0.8

1.0
vo

lta
ge

[a
.u

.]

0 50 100 150 200 250
overlap [a.u.]

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

[a
.u

.]

12 photons

Figure 5.4.: Left: 500 individual traces from a PDC beam at 1535 nm. The dis-
cretization of the energy absorbed can be directly seen in the raw pulses. Right:
Histogram of overlap-integrals (see main text for details). The calibration trace
for this specific histogram was obtained from coherent light with a mean photon
number of 12.

energy and hence the number of photons absorbed. Since the traces are relatively
noisy, some further analysis is required to assign a photon-number to every voltage
pulse with low uncertainty. We choose a method based on an overlap integral with
a trace-template V̄ (t) [115]

O =

∫
dtV (t)V̄ (t), (5.7)

where V (t) is the trace of a particular event and

V̄ (t) =
1

N

N∑
i=1

Vi(t) (5.8)

is the average trace over a large number of events. This trace-template can in principle
be taken from the data itself. This works well if the traces are very similar, for
example for coherent states with a limited spread of photon numbers. In our case,
we expect a very broad distribution due to the photon-number statistics of PDC
states with a low Schmidt number. Averaging over all traces has the disadvantage
that traces with high photon number, which occur less likely and have a different
shape than traces with low photon number, will have less distinct overlap values.
Therefore, we take a multi-template approach where we calculate several templates

from the responses to different coherent states. To get a good resolution for all photon
numbers, we use 20 different input-power settings for the coherent light with mean
photon numbers up to 100, calculate the average traces V̄n(t) for each of them and
assign photon-number bins to overlap values assuming a Poissonian photon-number
distribution. The overlap histogram with one such template is shown in Fig. 5.4,
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clearly showing the discretization of the overlaps and hence the photon number.
Since Poissonian distributions are relatively narrow, this calibration is only reliable
around the respective mean photon numbers of its template. For each unknown
detection event, we calculate the overlaps with all 20 templates giving 20 photon-
number estimations, ideally all the same, and take that particular estimation that
is closest to the mean photon number of its template. This method extends the
range over which we can reliably resolve photon numbers as compared to the one-
template approach and even gives reliable estimations of photon numbers beyond
the single-photon resolution regime. The clustering of the overlaps can still be seen
up to 20 photons in a histogram, allowing for cross checking the calibration simply
by counting peaks. This also allows us to estimate systematic errors coming from
changes in the detector response between the calibration measurement and the real
measurement. In that case, the peaks of the histogram will not lie in the center of the
photon-number-bins. By rescaling the templates slightly, we can deliberately over or
underestimate photon numbers, giving an estimate of systematic uncertainties.

5.3. Characterization in the Single-Photon Regime

Most PDC sources are used in the single photon regime, meaning that they are
weakly pumped to produce much less than one photon on average per pulse. For this
regime, a number of characterization techniques have been established to benchmark
the quality of the states, in particular of the heralded single photons. We have already
introduced Hong-Ou-Mandel (HOM) interference experiments in Sec. 4.1.6. They
can be used to deduce the indistinguishability between signal and idler as well as the
purity of heralded single photons, which in turn is defined by the effective Schmidt
number.
Alternatively to HOM interference measurements, information about the separa-

bility of the state can be inferred from the joint spectral intensity (JSI) |f(ωs, ωi)|2.
This function can be measured by a two-mode spectrometer capable of measuring
the wavelength shot-to-shot in a coincidence configuration. We implement this mea-
surement with dispersive fibers and APDs, which we will shortly describe in more
detail.
A third measure is the second order correlation function (see Sec. 4.4)

g(2) =
〈a†2a2〉
〈a†a〉2 =

〈n2〉 − 〈n〉
〈n〉2 . (5.9)

It gives some information about the photon-number statistics of the marginal beam.
For a decorrelated PDC state, the marginal statistics are thermal with g(2) = 2 and
for a strongly correlated state, the marginal statistics are Poissonian with g(2) = 1
[92]. The relation between the Schmidt number and the marginal Glauber correlation
function is given by g(2)(0) = 1 + 1/K [42].
All three methods for source characterization have already been applied in the lit-

erature. However, there is no ideal measurement: A JSI measurement is affected by
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a low spectral resolution and cannot resolve correlations hidden in the phase of the
JSA. Furthermore, it is blind to any non spectral correlations. A g(2) measurement
is sensitive to correlations in all degrees of freedom, but is, unfortunately, strongly
affected by detector dark counts and non-PDC background signal. The HOM inter-
ference measurement requires the exact knowledge of spectral widths of signal and
reference fields. Therefore it makes sense to apply all three techniques and carefully
compare their results as we do in the following.

5.3.1. Measurement Settings

All the measurements in this section are done with APDs (either Id Quantique id201
or NuCrypt CPDS-1000-4). The repetition rate of the id201 is 1MHz and of the
CPDS-1000-4 40MHz. We measure raw coincidence vs single ratios, i.e. Klyshko
efficiencies [116–119] , defined in Appendix B.3, of up to 20.5% for the signal beam
and 15.5% for the idler beam. Corrected for the detector (id201) efficiencies of
approximately 25% and 22%, these values correspond to coupling efficiencies into
the SMFs of roughly 80% in one arm and 70% in the other arm. All the different
measurement configurations are shown in Fig. 5.5.

& &&&

Figure 5.5.: Scheme of different measurement settings. a) JSI measurement; b) g(2)(0)
measurement; c) HOM interference between signal and idler; d) 2-fold or 3-fold
HOM interference with a reference field. The Id Quantique detectors(1 MHz)
are used for the JSI measurement and the NuCrypt detectors (40 MHz) for the
rest.

5.3.2. Spectral Intensity

We characterize the spectral properties of our source with a fiber spectrometer [120]
(see first frame of Fig. 5.5). Signal and idler travel through dispersive fibers before
impinging onto two APDs. Different wavelengths arrive at different times. By scan-
ning the gating times of the APDs, a joint spectral intensity (JSI) distribution is
obtained from coincidence click rates. Similarly, the marginal spectral distribution
of signal and idler are obtained from the single click rates. The resolution of the
fiber spectrometer is limited by the gate width of the APDs and the length of the
fiber. We use the id201 with a gate width of approximately 1.5 ns and about 8 km of
dispersion-shifted fiber per mode, resulting in a spectral resolution of 1.8 nm for the
JSI and 0.9 nm (both fibers combined) for the marginal spectra.
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The JSI and the marginal spectral distributions with and without the bandpass
filter are shown in Fig. 5.6. The bandpass filter has a width of 8 nm and one can
see from the comparison of the unfiltered with the filtered spectrum in Fig. 5.6 that
background signal is suppressed directly outside of the PDC range while the PDC
spectrum itself is mostly unaffected. The spectra of signal and idler have Gaussian
shapes and their widths at FWHM, obtained from Gaussian fits, are 5.2 nm and
4.0 nm, respectively. Assuming that the finite resolution is effectively a convolution
with an 0.9 nm wide Gaussian, the true widths can be estimated to be 5.1 nm and
3.9 nm.
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Figure 5.6.: a) Marginal idler spectra for the decorrelated case with and without
the bandpass filter (BF). One can see that the spectral filter fits nicely the
idler spectrum, touching it only slightly at the very edges. b) Signal and idler
spectra with the bandpass filter. Bottom: Measured joint spectral intensity
for anticorrelation (c) and decorrelation (d). The pump widths are 0.5 nm and
2.1 nm, respectively.

The JSI measurement in the decorrelated case shows a smooth, slightly elliptical
shape as expected from the marginal measurements. The Schmidt decomposition
of the JSI yields a Schmidt number of only 1.001. This suggests that the state is
indeed decorrelated, even though we have to keep in mind that this measurement
gives only a lower bound on the Schmidt number due to the fact that it is only an
intensity measurement and the resolution is rather low. However, the smooth shape
of the JSA as well as of the marginal spectra supports the assumption of Gaussian
phasematching- and pump spectral profiles.
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Despite the nice shape of the JSI, there might still be correlations hidden in the
phase of the JSA or correlations in other degrees of freedom. To compare this result
with a non-spectral measurement, we measure the second order Glauber correlation
function g(2) with a 50/50 fiber coupler [92], as depicted in the second frame of
Fig. 5.5 and explained in more detail in Appendix C.1. We find raw values of
1.83 ± 0.025 and 1.86 ± 0.02 for signal and idler, respectively. These values pose
an upper bound on the correlations present in the PDC source. The corresponding
Schmidt numbers are 1.20 and 1.16. This seems to be in slight disagreement with
the JSI. One possible explanation are background events. From comparison of the
filtered with the unfiltered spectra, we conclude that the background still remaining
under the PDC spectrum makes up for approximately 1.9 % of the total count rates.
Since background signal has a Poissonian photon-number distribution, it strongly
degrades the g(2) value. Correcting for these background events [110], we get values
of 1.90 and 1.94, which is in better agreement with the JSI measurement. We would
like to note that the raw value of g(2) = 1.86 is among the highest compared to other
PDC sources [92, 100, 121, 122] indicating that the amount of background events is
relatively low.

5.3.3. Interference Measurements

To demonstrate the indistinguishability between signal and idler we interfere them
at a 50/50 fiber coupler, as sketched in the third frame of Fig. 5.5. The coincidence
rate versus a delay of one of the beams is shown in Fig. 5.7. The measurement
is done with a pump energy as low as 0.6 pJ per pulse leading to a mean photon
number of 0.002. We obtain a visibility of (94.8± 0.6)%, which is among the highest
values reported in the literature for PDC sources without narrow-band filtering. It
is close to the theoretical value of 96.7% for the decorrelated case. Part of that small
deviation from the theoretical value is caused by our fiber coupler which has a slightly
uneven coupling ratio of 49.1/50.9. The high agreement between measurement and
theory shows that the states overlap perfectly in all degrees of freedom and the
indistinguishability between signal and idler is indeed very high.
As discussed in the theory section, a robust method for verifying the decorrelation

of the PDC state is to measure the purity of the marginal beams by HOM interference
with a reference field. As the reference field, we use part of the original laser beam and
attenuate it to the single photon level. All three beams, signal, idler and reference are
coupled into single mode fibers and the count rates are recorded with the APDs, as
sketched in Fig. 5.5. We record two-fold and three-fold coincidences, where by two-
fold we mean coincidence events behind the beam splitter disregarding the third APD
and by three-fold we mean triple coincidences between all three output ports. The
heralding with the second PDC beam in the three-fold case increases the visibility of
the interference [88]. The results are shown in Fig. 5.8. As expected, the visibility
in the three-fold case is higher than in the two-fold case. It depends on the spectral

5All uncertainties given in this whole Chapter correspond to the 1σ standard deviation.
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Figure 5.7.: HOM interference between signal and idler.

overlap between the two beams as well as the mean photon numbers which for this
measurement are 0.006 for the marginal beam and 0.08 for the reference beam. For
calculating the purity of the state, we use the width of the dip rather than the
visibility, as discussed in Sec. 4.1.6. Both two-fold and three-fold curves have similar
widths of 1.33 ± 0.02 ps and 1.28 ± 0.04 ps. Taking into account the spectral width
of the Gaussian reference field of 4.5 nm and the signal spectral width of 3.9 nm, we
calculate a purity of 82.1±1.7 % and 86.7±4.3 %. These values are in good agreement
with the raw g(2)(0) values. Compared to other PDC sources without narrow-band
filtering, Mosley et. al [99] have shown higher purities around 95 % by measuring the
HOM interference between two independent PDC sources. Our measured purities are
slightly below this value but still in the same range, demonstrating excellent source
performance. Similar values have been obtained in [123], who also utilized HOM
interference with a coherent field.
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Figure 5.8.: two-fold (left) and three-fold (right) HOM interference between signal
and reference.

In conclusion, we have implemented a source with remarkable properties in terms
of pump-efficiency, purity and symmetry. The HOM interference between signal and
idler showed a high visibility of 94.8 %. The purity values for signal and idler obtained
from g(2), JSI and interference with a reference beam reveal a purity of above 80 %.
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5.4. Characterization in the Multiphoton Regime

Here we pump the PDC in a regime with mean photon numbers of the order of 20 and
measure these numbers shot-to-shot with TES detectors. This experiment was done
in collaboration with the National Institute of Standards and Technology (NIST)
in Boulder, Colorado, USA. The high photon-number components at these pump
powers dramatically increase the size of the Hilbert space from 22 = 4 (no photon or
one photon per mode) to 802 = 6400 (up to 80 photons per mode). An interesting
question from the experimental point of view is whether the state remains single mode
despite the high pump powers. We show that this is indeed the case and characterize
the photon-number distribution of the state in various ways in this section.
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Figure 5.9.: Setup with TES. We pump the process with a Ti:Sapph directly to get
high pump powers up to 1.5 nJ per pulse. We use two TES-configurations, where
we either send each mode onto one TES or split it at a 50/50 coupler and send
onto two TES. In the first case, we get detection efficiencies up to 64 % and 68 %,
including all losses in the setup.

Measurement Settings

We employ TES detectors as depicted in Fig. 5.9 to measure the photon numbers of
signal and idler. We either use two TES per mode with a 50/50 fiber beam splitter
to increase the photon-number resolution at higher photon numbers or one TES per
mode for lowest possible losses. The repetition rate of the experiment is around
200 kHz and the system detection efficiencies (as we will determine in Sec. 5.4.2) are
up to 64 % and 68 % for signal and idler respectively, including all losses. To analyze
the traces of the TES, we apply the scheme described in the detectors-section 5.2.2.
We get single-photon resolution up to 10 to 20 photons depending on the detector. Of
course, we can also measure higher photon numbers than 20, but with an uncertainty
bigger than one photon.
Additionally, we use an APD with known Klyshko-efficiency and calibrated at-

tenuators to measure mean photon numbers up to 80. This different measurement
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configuration is due to the fact that it took place in Paderborn, where we had slightly
more power available (2.5 nJ rather than 1.5 nJ).

5.4.1. Photon-Number Statistics

The measured photon-number probabilities for a state with a mean photon num-
ber of 20 are shown in Fig. 5.10. The statistics are very close to what we expect
from a single-mode PDC state. The distribution decays exponentially along the di-
agonal as can be seen from the logarithmic plot. The vacuum component is still
the highest element despite measured mean photon numbers of 11 and 9 in each
mode. This directly reveals the single-mode character of the state; for a multimode
state, the mixture of different thermal distributions would tend towards a Poissonian
distribution as the number of modes increases. For a coherent state, the vacuum
component wold be almost zero at these mean photon numbers. To quantify the
singlemodeness, we calculate the second order autocorrelation function (confer Sec.
4.4) g(2) = 〈n2〉−〈n〉

〈n〉2 , where n is the photon number, on the marginal distribution of
each mode. For thermal statistics, g(2) = 2 and for Poissonian statistics g(2) = 1.
For the state shown in Fig. 5.10 we obtain 1.89(3) and 1.87(3) for signal and idler,
respectively. These values are slightly higher but in good agreement with the values
measured in the single-photon regime. They correspond to effective mode numbers
K = 1/(g(2)(0)− 1) of 1.12(4) and 1.15(4), where 1 would be the ideal case.

Figure 5.10.: Raw photon-number correlation matrix of the state 〈n〉 = 20 with
exponentially decaying diagonal elements. Inset shows the probabilities on a
logarithmic scale.

We see no dependence of the effective mode number on pump power. In our
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setup with the highest possible pump powers and an APD for mean photon-number
measurements, the source generates states with a mean photon number of 80, cor-
responding to a gain of r = 2.9. The mean photon number as a function of pump
power is shown in Fig. 5.11 and follows the expected curve of a single mode state. On
the one hand, this confirms that the process remains single mode beyond the regime
that we can access with our TES setup. On the other hand, mean photon numbers
of 80 are already in a regime, where time ordering can be expected to play a role [30,
32, 124] which should cause a deviation from the shown theory curve. Whether an
ignored effect like self-phase modulation or broadening of the PDC spectra beyond
the filter bandwidth is compensating the mean photon number accidentally, or time
ordering only sets on beyond mean photon numbers of 80, remains to be investigated
in further measurements.
Coming back to the photon-number distribution, the correlations between signal

and idler should be apparent in the width along the diagonal ns−ni. To encapsulate
this criterion, one figure of merit is the noise reduction factor [17] NRF = Var(ns−ni)

〈ns+ni〉 .
For ideal PDC with a detection efficiency of η, the NRF is equal to 1−η. We measure
values below 0.4, see Fig. 5.11, in those cases where we use one TES on each mode, in
agreement with the measured efficiencies of around 66%. This corresponds to 4.2 dB
of correlated photon-number squeezing not corrected for losses. In the case where
we use two TES on each mode, the NRF is higher due to slightly lower and more
asymmetric efficiencies in that configuration.
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Figure 5.11.: Left: Mean photon number in one mode versus pump power measured
with a low efficiency APD. The excellent fit with only one fit parameter α indi-
cates that the state stays single-mode up to at least 80 photons. Right: Noise
reduction factor (NRF) for different mean photon numbers, showing the non-
classical correlations of the state. Statistical error bars in both plots are smaller
than the data points.

Photon-number correlations can be used to herald states with sub-Poissonian
photon-number distributions, by conditioning on a certain outcome in one mode.
One figure of merit for sub-Poissonian statistics is the heralded g(2) value, i.e. the
g(2) in one mode conditioned on a certain outcome in the other mode. For ideal n-
photon Fock states g(2) = 1−1/n. Values below 1 indicate nonclassical sub-Poissonian
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statistics. Even heralding on a 50-photon event, the measured states fulfill this non-
classicality criterion as shown in Fig. 5.12. With increasing photon number, the
transition from strongly nonclassical states to classical states becomes apparent as
they become harder to distinguish. Producing larger nonclassical states would re-
quire reducing the losses in the heralding mode. At the current efficiencies, the 50
photon event happens about twice per second with a PDC mean photon number of
7.
As a benchmark for the experimental quality of the measurements and the source,

we calculate the parity 〈(−1)n〉 of heralded Fock states, see Fig. 5.12. Negative parity
can only be observed with detection efficiencies above 50 %, in principle. For one and
three-photon heralded states, we see negative parities of −0.131(1) and −0.013(2) in
the raw heralded data, which again is a sufficient condition for nonclassicality. For
higher heralded states, the parity tends to zero and is obscured by statistical errors.
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Figure 5.12.: Left: Heralded g(2) as a nonclassicality measure for a state with 〈n〉 = 7.
The shaded blue area accounts for worst-case systematic errors stemming from
the analysis of the TES response. Error bars are statistical errors. The heralded
states stay nonclassical up to around 50 photons. Right: Parity of heralded
states. The one- and three-photon states show negative parity, which can only
be observed for system efficiencies above 50 %, thus demonstrating the high
quality of our data.

5.4.2. Loss Inversion

The excellent agreement with theory indicates that the limiting factor is the loss in
our setup. To get a glimpse of how our states would look like without losses, we fit a
model to the data. The model consists of a state that can be described as a mixture
of a (spectrally) multimode PDC state, a coherent state and a thermal state:

ρ = ρPDC(nPDC, K)⊗ ρα(nαs , n
α
i )⊗ ρth(nth

s , n
th
i ), (5.10)

where n are the respective mean photon numbers and K the effective mode number
of the PDC state. We expect K to be low since the marginal g(2) measurements
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Figure 5.13.: Inferred states before losses. Main graph: High power state (〈n〉 = 20)
using a parameter fit to the data. Inset: Low power state (〈n〉 = 1.4) using full
loss inversion without assumptions about the state.

suggest K ≈ 1.13. We hence choose exponentially decaying coefficients c2
k for each

(spectral) mode, whereas
∑

k c
2
k = 1 and K = 1/

∑
k c

4
k. Such exponentially decaying

coefficients are a reasonable approximation for low effective mode numbers [42].
The losses are described by a standard beam-splitter model with transmissions

ηs and ηi in the two beam paths. The photon-number probabilities are given by
pout
kl =

∑
mn L

s
km(ηs)L

i
ln(ηi)p

in
mn, and Lkn(η) =

(
n
k

)
ηk(1 − η)n−k. In Eq. 5.10, the

photon-number distributions of the three contributions are independent. That means
that the total photon-number distribution pin is a convolution of the three individual
distribution. This can be implemented numerically in a straight forward way.
Finally, we minimize the weighted sum of the least square differences∑

mn

((pmeas
mn − pout

mn)/σmn)2, (5.11)

where pmeas
mn are the measured photon-number probabilities, pout

mn the probabilities of
the expected state after losses and σmn = 1/N +

√
pmeas
mn /N estimates for the sta-

tistical error due to N total events. Effectively, this is a fit with eight parameters
(ηs, ηi, nPDC, K, n

α
s , n

α
i , n

th
s , n

th
i ). Allowing Poissonian and thermal background statis-

tics covers most optical and electrical background signals while keeping the number
of free parameters very low.
The fit result for the state with 〈n〉 = 20 is shown in Fig. 5.13 and has the fit

parameters
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ηs ηi nPDC K nαs nαi nth
s nth

i
43.13(3)% 52.12(4)% 20.30(2) 1.097(1) 0.14(12) 0.38(5) 0.00(12) 0.00(5)

The fidelity with the data is 99.98%. The largest contribution in photon number
by almost two orders of magnitude is the PDC. Possible sources for the background
contributions might be fluorescence or so called nonlinear Cherenkov radiation in
waveguides [125, 126], which is a non-collinear process where only one of the down-
converted modes is guided spatially and the other mode is radiated into the substrate.
Additionally, there might be numerous non-optical sources for Poissonian background
statistics.
Compared to our previous measurements, this fit allows us to evaluate the effects

of losses and background independently of the PDC state. The standard Klyshko-
approach to measure quantum efficiencies assumes perfect photon-number correla-
tions. If background is present, this method underestimates the true detection effi-
ciencies of the setup. In the case of our more efficient two-TES setup configuration
with the 〈n〉 = 7 state, the fit suggests efficiencies of 64% and 68%. In comparison,
a Klyshko based calculation [127] yields 60% and 64%, which is 4% lower. From the
fit-result, we can claim that our maximum efficiencies are up to 68%. The systematic
uncertainties on this value, estimated by varying parameters in the TES-trace anal-
ysis, are around 3%. The efficiencies for the large state of 43% and 52% are lower,
due to an extra pair of fiber beam splitters and probably a worse alignment of the
setup.
The mode number K = 1.10 given by the fit is also not affected by the background.

We can compare this number to the other measurements of K in this chapter, based
on the marginal g(2) in the high-power regime with 〈n〉 = 20 as well as in the single
photon regime with 〈n〉 < 1, and based on the interference measurement with a local
oscillator in the single photon regime:

〈n〉 < 1 〈n〉 = 20

g(2) → K 1.16(3) and 1.20(3) 1.126(40) and 1.143(40)
purity→ K (interf. with ref.) 1.15(6) and 1.22(3) -

fit→ K - 1.097(1)

fit→ g(2) → K - 1.116 and 1.142

These numbers are surprisingly consistent with each other and the differences can be
explained by the presence of background. For the bright state, we can calculate the
g(2) of the loss-inverted state and conclude that the background increases the inferred
K slightly, by 0.019 and 0.045, consistent with the values inferred from the g(2) of the
raw statistics. In the single photon regime the effect of background can be expected
to be larger, simply due to the exponential scaling of the PDC photon numbers with
pump power opposed to a presumably linear scaling of the background.
As a side remark, we also perform a general loss inversion [128] with physical

constraints but no assumptions about the photon-number distributions. More details
about the method will be given in Sec. 6.1 and Appendix C.2. This method is limited
to low-power states due to the large parameter space. For a state with 〈n〉 = 1.4,
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shown in Fig. 5.13(inset), we restrict the photon number space to < 15 photons,
resulting in 152−1 free parameters. Again, the inverted state resembles the expected
PDC state very well.

5.4.3. Potential in Continuous Variable Applications

In continuous variable experiments, squeezing [29] is the most important resource.
The main limitations for squeezing are usually pump power, noise, overlap with a
reference field and optical loss. From our photon-number distribution we know that
pump power and noise are not the limiting factors. If we assume that our spectra are
mainly Gaussian, a high overlap with a reference beam should also be achievable in
a realistic setup. The main limitation is thus the optical loss of 32% in the current
setup. A direct measurement of continuous variable (CV) squeezing with these values,
assuming a good mode overlap, should show above 4 dB of two mode squeezing. For
comparison, the highest squeezing directly measured in a single pass, pulsed system
is 5 dB [129] and in a continuous-wave cavity system 12.7 dB [63]. Measuring high
squeezing would be the first step if we really want to combine several such sources
to form very large quantum states.
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Figure 5.14.: Squeezing of a type I source with uniform losses along the waveguide.
We assume here losses between 3.6 % (0.2 dB/cm) and 10 % (0.66 dB/cm). At a
mean photon number of 20, squeezing of 17 dB is realistic. With increasing pump
power, the Heisenberg limit V (x)v(y) ≥ 1/4 becomes increasingly exceeded.
However, the squeezing is not limited in principle. Even 25 dB of squeezing
might be experimentally feasible.

To improve the performance of the source at this stage would require to reduce
the losses further. The main loss contributions in our setup come from the coupling
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to single-mode fibers of around 80% and 85% for the two ports and the linear op-
tical elements with a total transmission of about 90%. With on chip integration of
polarizing beam splitters and detectors, of which both have been demonstrated [130,
131], the total efficiencies could go up to above 90%. This would push the size of
possible nonclassical states to hundreds of photons and allow world record squeezing
measurements. The ultimate goal would be an efficiency around 99%, allowing 20 dB
of squeezing, at which fault tolerant quantum computation with CV cluster states
becomes possible [86].
Ultimately, the squeezing producible with the source is limited by the losses inside

the crystal. One might expect that this sets a bound on the achievable squeezing
similar to cavity-based systems where the limit is given by the round-trip loss. For a
single-pass source however, such a hard limit is not present [132]. In Fig. 5.14 we plot
the expected squeezing for type I PDC for realistic loss parameters, using the equation
given in [132]. Even though it is a type I process, we expect the corresponding plot
for a type II process to be very similar. We conclude that squeezing above 20 dB
is experimentally feasible, provided that the detection itself allows to measure such
values.

5.5. Conclusion

We have shown that our ppKTP source is capable of producing near single mode
states with about 1.1 spectral modes and heralded single photon purities around 85 %.
Remarkably, the single mode character remains unchanged in the high-pump regime.
With state-of-the-art photon-number detectors, we demonstrated that the higher
photon numbers of the state are accessible, drastically increasing the dimensions
per optical mode. We found that the performance of the setup, e.g. the size of
nonclassical states or potential squeezing, is limited mainly by optical loss. Even
though we achieved detection efficiencies up to 68 %, further improvement is possible
and constitutes the next step in the realization of very large optical quantum states
in such a pulsed, photon-number based implementation.
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6. Characterization of Quantum
States

6.1. Introduction to Tomography

In imaging, tomography is the process of reconstructing an object from projective
measurements. Say a two dimensional object, like a slice through the human body, is
described by a density f(x, y). Then a transmission measurement under some angle θ
in the (x, y) plane, e.g. an X-ray scan, gives information about the integrated density

g(θ, y) =

∫
dxfθ(x, y), (6.1)

where fθ(x, y) is rotated by θ with respect to f(x, y). The map f(x, y) → g(θ, y) is
known as the Radon transform. By taking measurements from all possible angles,
no information is lost and the image can be reconstructed by the inverse Radon
transform.
Homodyne detection is exactly analogous as it projects theWigner functionW (x, y)

onto a quadrature xθ. Explicitly, distributions

g(q, θ) =

∫ ∞
−∞

W (q cos θ − p sin θ, q sin θ + p cos θ)dp (6.2)

are measured and the inverse Radon transform can be written as [61]

W (q, p) = − P
2π2

∫ π

0

∫ ∞
−∞

g(q, θ)

(q cos θ + p sin θ − x)2
dx dθ, (6.3)

where P is the Cauchy’s principal value. The numerical implementation of this for-
mula is challenging due to the singularity such that some filtering of the data is
always required. However, algorithms from classical imaging can be readily applied.
See e.g. [62] for the first tomography of squeezed states. The inverse Radon trans-
form is one example from the toolbox of continuous-variable optical quantum state
tomography [133].
For the description of a general measurement, including homodyne tomography,

we have to start from
pn = tr(ρπn), (6.4)

where ρ is the density matrix of the quantum state, πn the POVM operators and pn
the probability to get outcome n. In an experiment, the measurement is performed
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N times, resulting in a measured distribution fn, sampled from the real probability
distribution pn. The distribution fn has statical uncertainties due to a final number
of measurements and systematic errors resulting from a non-ideal setup, or in other
words, an inaccurate description of the measurement apparatus. Now, what is a good
estimation for the state ρ that produced the measured distribution fn?
There are various different approaches to answer this question and estimate the er-

rors of the estimation. A nice comparison of different methods for the reconstruction
of a single qubit, the simplest possible quantum state, is given in [134]. Maximum
likelihood approaches [135, 136] are conceptually the best, since they search for the
most probable state, given the measured data. It has been applied for time mul-
tiplexed photon-number measurements in e.g. [137]. We however prefer the least
square approach, mainly for its simplicity and straight forward numerical implemen-
tation. We follow the formulation in [128].
For state tomography, the least square approach is the minimization of the distance

minimize
ρ

{||f − p(ρ)||}, (6.5)

with the standard L2 norm ||a|| =
√∑

i(|ai|2). f is the vector of the measured
probabilities fn and p is the vector of the theoretical predictions pn = tr(ρπn). They
can be expressed in matrix form by choosing any specific basis, e.g. the photon-
number basis

ρ =
∑
ij

rij|i〉〈j| πn =
∑
kl

θnkl|k〉〈l|. (6.6)

Then
pn = tr(ρπn) =

∑
ij

rijθ
n
ji. (6.7)

For detectors, which are insensitive to the optical phase, the POVMs are diagonal in
the photon-number basis, which reduces the state to a vector rii. In any case, this
least square approach is a convex optimization problem [138], since the L2 norm is a
convex function. The physical constraints are that r is positive semi-definite and has
a trace of one. Such convex optimization problems with constraints are well known
and can be solved very efficiently.
Detector tomography can be formulated in a very similar way:

minimize
Θ

{||f − p(Θ)||}, (6.8)

where Θ is a tensor with elements θnij. Here, we are looking for POVMs πn, assuming
a set of known states ρm. The physical constraints are that

∑
n πn = 1 and πn > 0.

Note that each πn has the dimension of ρ. Compared to state tomography, the size
of the problem (number of elements in f) becomes roughly squared.
Since the number of free parameters can become very large, especially in detector

tomography, it is beneficial to incorporate some of our knowledge about the physical
implementation into the problem. When we did the loss inversion in section 5.4.2,
we reduced the number of parameters from 6400 to eight, by restricting ourselves to
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particular states that we expect to be present. This is an extreme example that might
not deserve the term tomography any more but is better described as a least square
fit of a model to the data. A more general example of using additional information,
is detector tomography with lossy photon-number detectors. We know that their
probabilities should be distributed smoothly, meaning that the probability to detect
e.g. 4 photons conditioned on an input of 6 photons should not be too different from
the same event conditioned on an input of 7 photons. In [128] the idea was put
forward to use a regularization term to penalize such unrealistic results. The authors
added a cost term S =

∑
k(θ

n
k − θnk+1)2, which penalizes large differences between

neighboring POVM elements. Then

||f − p(Θ)||+ γS (6.9)

needs to be minimized. The factor γ should be chosen as small as possible such that it
does not affect the result too much. The regularization term helps to select the most
realistic solution out of many, almost equally minimizing, solutions. Our numerical
implementation of this least square approach is further discussed in Appendix C.2.
In the following, we use this method to characterize a time multiplexing detector.

6.2. Time-Multiplexed Detection with InGaAs
APDs

To obtain photon-number resolution with ’click’ detectors, a common approach is to
split the signal pulse into several spatial or temporal modes and count the clicks.
Multiplexing in time [137, 139, 140] is particularly favorable, because only one or
two detectors are sufficient. Such a scheme is shown in Fig. 6.1 with a total of eight
bins.

APD1

APD2

50/5050/5050/50

TMD

time

afterpulsing

Figure 6.1.: Schematic of a fiber-integrated time-multiplexing detector. One input
pulse is distributed into 8 bins by beam splitters and delay lines. With ideal
detectors, photons are distributed statistically into the eight bins. However, in
particular for InGaAs APDs, dark counts and afterpulses are detrimental effects
that cannot be neglected.

Since there is no interference happening, the photons can be treated as independent
classical particles. If Pm is the probability that m photons enter the TMD, we can
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relate the output probability by a linear model

pα =
D−1∑
m=0

MαmPm, (6.10)

whereD is a cutoff dimension to keep the state-space finite. The outcome distribution
pα can be any detector response we choose. For example, we can choose to sum up
the number of clicks. In that case, for a TMD with n bins, there are n+ 1 indices α.
We can also take the full detector response, where each bin takes a value of zero or
one. In that case there are 2n responses α.
The matrix M contains all information about the TMD, including afterpulses and

dark-counts. However, non-linear effects with respect to the photon-number distribu-
tion are not included. One such example would be a change of detection efficiencies
with increasing click-rates. This can happen if the APDs do not have enough time to
recover between clicks. The afterpulse probabilities shown in Fig. 5.3 indicate that
even though the APDs can be gated with a gate distance of 1µs, some relaxation
process takes up to 20µs. If the average distance between two clicks is significantly
lower than that, such effects might build up and change the parameters of the APD.
Therefore, the bin distances of the TMD as well as the overall repetition rate of the
experiment must be chosen carefully to avoid saturation effects and stay in a regime
where the linear model is accurate.
For a theoretical model of M , let us assume that we do not have any dark-counts

or afterpulses. Further, we take the number of clicks as our detector response. Then
the TMD model, introduced in [139, 141], has to take into account only two effects:
losses and the statistical distribution into bins. Surprisingly, losses occurring at any
stage in the TMD can be modeled by a single beam splitter in front of the TMD.
This can be described by the matrix equation Pi(η) =

∑
j LijPj, with the binomial

distribution

Lij =

(
j
i

)
ηi(1− η)(j−i). (6.11)

The statistical distribution of m photons into n bins is a more involved combinatorial
problem. For equal bin-probabilities, an expression can be found in [140]. For unequal
bin-probabilities please see [141] and [142]. This results in an upper diagonal matrix
C, such that the measured click-probabilities are given by

pclick
n =

∑
km

CnkLkmPm. (6.12)

The model 6.12 works well for detectors like SNSPDs or Si-APDs which show no or
very low afterpulsing. In principle, afterpulsing can be incorporated into the model
as well, because it is again a combinatorial problem, however, a very complicated one.
Instead, we perform detector tomography as described above. We use a set of well
calibrated coherent input states and reconstruct the POVMs. The result is shown in
Fig. 6.2. The similarity between the reconstruction and the CL-model is strikingly
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high. However, when we look at the difference, there is a systematic shift to higher
click numbers. This directly shows the effect of afterpulsing on the click statistics.
Whether or not this renders the standard model inaccurate depends on the goal of a
specific measurement. After all, the absolute deviations are only of the order of 1 %.
Nevertheless, for reconstructions of full photon statistics, which are very sensitive to
small errors due to the low efficiency of the detector, such errors might already be
too large. In that case, detector tomography becomes necessary.

Figure 6.2.: Detector tomography of an eight-bin TMD. Color-coded are the proba-
bilities to count a certain number of clicks (measured photons) conditioned on
a certain number of input photons. Top-left: Reconstructed POVM elements.
Top-right: Model-POVM elements for an indeal TMD. Bottom: The difference
of the two. The shift to higher click counts can be explained by the afterpulsing
effect. For example, there is a chance to get two clicks, if just one single photon
was present.

6.3. Pattern Tomography

6.3.1. Introduction

There is a large number of publications on state tomography and detector tomogra-
phy. Interestingly, these two types are often performed independently of each other,
probably because the detectors can be described sufficiently well by a model and the
detector tomography only functions to verify that. However, restricting the class
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of detectors to such that can be described well by a model unnecessarily reduces
available resources.
If we want to include all detectors to our toolbox, in principle, we have to perform

detector tomography first before we use them for state tomography. Not only is this
one additional step, but a much more complex one due to the huge parameter space
of detector tomography. Pattern tomography [143–145], is an answer to exactly this
question: How to do state tomography with unknown detectors? It works as follows.
We start with a limited number of probe states σ(ξ), similar to detector tomography,
to measure the detector responses to these states with outcome probabilities

p
(ξ)
i = tr(Πiσ

(ξ)). (6.13)

These responses are called patterns. The trick is now to expand the unknown state
in the same basis of probe states,

ρ ≈
∑
ξ

cξσ
(ξ). (6.14)

In the experimentally favorable scenario, where σ(ξ) are coherent states, the obtained
coefficients cξ correspond to a discrete version of the Glauber-Sudarshan P -function.
The more probe states are used, the closer one gets to the actual P -function of the
original state ρ. Now we can express the response of the detector to this state by

p
(ρ)
i =

∑
ξ

cξtr(Πiσ
(ξ)) =

∑
ξ

cξp
(ξ)
i . (6.15)

Due to a finite number of measurements, we measure the distributions f (ρ)
i and f (ξ)

i ,
drawn from p

(ρ)
i and p(ξ)

i . Therefore we get

f
(ρ)
i '

∑
ξ

cξf
(ξ)
i . (6.16)

From this equation, we can find coefficients cξ, and thus the state, under the physi-
cality constraints that ρ is positive semidefinite and tr(ρ) = 1. One way to do this is
to minimize the sum of least squares∑

i

|f (ρ)
i −

∑
ξ

cξf
(ξ)
i |2 (6.17)

with appropriate constraints. In [4], our theory collaboraturs and we present in detail
an efficient algorithm and illustrate it with an example of homodyne detection.
Pattern tomography has two main advantages over a two-step approach. Firstly,

the detectors don’t have to be fully characterized, significantly reducing the required
number of probe states. Secondly, the probe states give a natural truncation of the
Hilbert space. It is not necessary to artificially cut the Hilbert space at a certain
photon number, thus avoiding systematic errors or an overly large Hilbert space.
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6.3.2. Partial Tomography as Pattern Tomography

Partial tomography is the estimation of a subset of parameters of the full state.
Ideally, such an estimation requires a much lower number of measurements compared
to full state tomography. For example, one could be interested in only a few photon-
number components of a two-mode state. To check the strength of the correlation
between signal and idler, only one anti-diagonal line of probabilities ρmn withm+n =
const might be sufficient. Another example is the parity of a single-mode state
S =

∑
n(−1)nρn, where ρn = 〈n|ρ|n〉. The parity is an extreme case as it is only a

single parameter to estimate.
Pattern tomography allows to perform partial tomography in the same way as

full tomography. To illustrate this, let us assume that we are only interested in the
first four photon-number components ρn with n < 4 of a single-mode state. These
components can be expressed in the photon-number components of the probe states:

ρn =
∑
ξ

cξσ
(ξ)
n (6.18)

Choosing four linearly independent probe states σ(ξ) with photon numbers below four
is sufficient to find ρn in this subspace. Finding the coefficients cξ is done in the same
way as in full tomography, for example by minimizing the least squares in Eq. 6.17.
The fact that we have much more measurement outcomes than free parameters is
not a problem and actually the more common case for least-square fits. Interestingly,
the state itself can live in a much larger photon-number space. This only means that
we cannot use the constraint that all probabilities sum to one. However, the probe
states should be confined to the subspace of interest as good as possible. This is
crucial to obtain an accurate estimation. Otherwise, we will be fitting the higher
photon-number components as well, smearing out our information about the subset
of interest.
Applying this to parity estimation, we get

S =
∑
ξ

cξ
∑
n

(−1)nσ(ξ)
n . (6.19)

In this case only two probe states are sufficient, one with parity +1 and one with
parity −1. These probe states should have equal photon-number probabilities in the
full photon-number space of the state. Unfortunately, such probe states are very
hard to come by. If we use coherent states instead, we have to use much more than
two to sample the whole space sufficiently.

6.3.3. Application to Two-Mode States

Experimental Implementation

In the following, we apply pattern tomography to two-mode states, using a two-mode
TMD, sketched in Fig. 6.3.
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Figure 6.3.: Schematic of a two-mode TMD. Both inputs of the TMD are used,
whereas one is delayed by a large amount to arrive at a later time. The purple
shaded pulses correspond to the first pulse and the green shaded to the second
pulse.

The model for a two-mode TMD is a straight forward extension of Eq. 6.10:

pαβ =
∑
m,n

MαmβnPmn (6.20)

Due to the specific implementation, where the signals of the two modes arrive con-
secutively at the same APDs, and the afterpulse effect, the response cannot be fac-
torized into two independent TMDs. This complicates the analysis of the data but
minimizes the experimental resources: We still need only two APDs for two-mode
photon-number measurements. The details of the experimental setup are shown in
Fig. 6.4.
The experiment is performed in two steps. First, a set of coherent states is mea-

sured. Second, the quantum states are measured with the same detector settings.
Generating coherent states at the single photon level with known mean-photon num-
bers is a non-trivial task. We use the simple approach of measuring a reference power
with a standard power meter and attenuating the beam with calibrated neutral den-
sity (ND) filters by roughly nine orders of magnitude.
For the attenuation, we tested two types of ND filters: free space and fiber-coupled.

We observed that some of the free space filters introduce a significant beam displace-
ment and thus change the fiber-coupling behind the filter. We thus had to perform
the calibration by measuring the power behind the fiber and take care to place the
attenuators in exactly the same way for the actual experiment. The fiber-coupled
attenuators did not suffer from this difficulties and are therefore preferable. An-
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Figure 6.4.: The two setups for pattern tomography. (a) Probe-state generation
and measurement. Coherent states are generated using an optical parametric
oscillator (OPO) ass before. The repetition rate is lowered by an acousto-optical
modulator (AOM). Motorized half-wave plates (HWP) followed by polarizing
beam splitters (PBS) allow us to vary the attenuation and generate a set of probe
states. The intensity of the probe states is measured with standard power meters
(PM), then further attenuated by neutral density filters (NDF) and coupled
into the single-mode fibers of the time multiplexing detector (TMD). (b) State
generation, identical to the previous chapter.

other source of error is a drift in the offset of the power meter. The power meter
should therefore not be used close to its sensitivity limits. According to the man-
ufacturer (Thorlabs), our power meter has an uncertainty of 5 %. Additionally, we
get statistical uncertainties from the calibration of the attenuators. By repeating the
calibration measurement several times, we estimate that the total uncertainty there
is also around 5 %. The absolute uncertainty should therefore not exceed 10 %. This
is a conservative estimation for the absolute power calibration. Additional to that,
there are drifts in the power meter and the fiber incoupling. From comparing the
incoupling efficiency before and after a long measurement, we measure a difference
of 5 %. All these errors are given in relative units, because they scale linearly with
power. Other errors, such as a constant background signal, might also be present, but
are much smaller than these relative errors. To give an example of the raw reference
signal of the power, we show the raw monitoring signal in Fig. 6.5.
The absolute calibration error does not produce significant systematic errors. Since

coherent states remain coherent states after losses, a miscalibration of their power will
result in a misestimation of the total detection efficiency. To understand what effect
that has on state tomography, it is useful to divide the setup into two parts. One part
can be regarded as state preparation and the other part as detection. A meaningful
position for the border is inside the fiber that leads to the TMD, because that is the
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Figure 6.5.: Reference power for one of the two input ports. Each plateau is about
60 s long and is linked to the corresponding measurement. The power is changed
with half-wave plates (HWPs), rotated by a constant amount at each step. The
little spikes at high and low power levels correspond to the HWP going through
a maximum or minimum. No measurement is taken, while the HWPs move.
Several such runs produced 235 two-mode probe states to be used for pattern
tomography.

part at which the state could be actually used in an imaginable larger network to
combine it with other states. The calibration of the coherent states makes the state
tomography tolerant to losses that happen after the reference point of the calibration,
which is also inside the fiber that leads to the TMD. That means that all TMD losses
and APD efficiencies are accounted for by this tomographic reconstruction. Losses
that happen on the state preparation side, however, are not accounted for and will be
present in the reconstructed state. If we now misestimate the powers of the reference
states, we effectively shift the border between state preparation and measurement
to either direction. If it is on the state preparation side, we automatically perform
a slight loss-inversion on the state. If it is on the measurement side, the states will
look more lossy than they actually are. Both effects are not dramatic, as the system
efficiency up into the fibers is only around 70 %. Making an error of 10 % in the
calibration would be equivalent to spending a few more hours on optimizing the
incoupling to 80 %. Only for significant calibration errors, above the total losses in
the state preparation part, the reconstruction would produce unrealistic states that
never existed in the setup.
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Reconstruction of Coherent states and PDC states

Here, we present our results for the reconstruction of different states with pattern
tomography, performed in collaboration with our theory partners from the group of
Zdenĕk Hradil in Olomouc, Czech Republic, and with Luis Sánchez-Soto in Madrid,
Spain. We take into consideration a fixed number of patterns with amplitudes below
a given threshold αmax ≈ 2. This threshold is important, because afterpulsing seems
to be more pronounced for stronger states, indicating that the total power on the
APDs is getting too large and the linear model becomes invalid.
Each probe-measurement consists of the two amplitudes of the probe states α1 and

α2 and the patterns, or responses, fα,β. (Note that the indices here do not refer to
the amplitudes of coherent states but just count the 216 different detector responses,
corresponding to all possible click combinations.) For each probe-pattern, we register
about Nξ = 4.2 × 106 events. This corresponds to a measurement time of 60 s per
setting. In total, we use 235 different settings.
The states that we want to characterize, are produced with the same PDC source,

that was characterized in chapter 5. For most of the states, the number of events per
measurement is NPDC = 21 × 106. With these numbers, the statistical noise is in-
significant (except, perhaps, for heralded detections) and the reconstruction accuracy
is governed by systematic errors and afterpulsing effects.
The reconstruction of a state is repeated 100 times with randomly chosen probe

subsets of sizeM < 235. These subsets are sampled with replacement from the initial
set of probe states, i.e. the same probe can be drawn multiple times. Such resampling
is known as nonparametric bootstrapping [146]. It allows to estimate errors without
error propagation or assumptions about the underlying distributions. In this way,
the redundancy in the data is propagated into the final estimate by averaging over
the samples and the variation between the samples is used to estimate the associated
errors.
To check the performance for different parameter sets, we first perform a cross-

validation [147], to verify whether the estimated state is consistent with the observed
data sample. To this end, we check the quality of the reconstruction with random sets
of coherent states discarded from the probes, but with the same amplitude threshold
(in this case, α < 1). We quantify the accuracy in terms of the well-motivated
infidelity 1 − F (ρest, ρtrue), where F is the fidelity between the estimate and the
true state. We compare these results with the standard approach of performing
detector tomography first and doing state tomography with the obtained POVMs.
In Fig. 6.6, we plot the infidelity for both methods as a function of nmax, which is the
maximum dimension of the matrix Pmn (i.e., 0 ≤ m,n ≤ nmax). Except for very small
reconstruction dimensions, patterns largely outperform detector tomography. Indeed,
this latter technique fails for nmax greater than 5, whereas data-pattern tomography
improves remarkably as nmax increases. In both cases, the number of probes slightly
enhances the performance. To get the data in the Fig. 6.6, we have used linear
estimation and we have ignored the positivity constraint. Once one does that, we
get infidelities of the order of 1 %, which amounts to errors of a few percent for
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Figure 6.6.: (Color online) Average infidelity versus the dimension of the reconstruc-
tion space nmax. The number of patterns employed is indicated by symbols:
squares (50 patterns), triangles (80 patterns) and circles (150 patterns). Open
symbols are used for standard detector tomography and filled ones for data-
pattern tomography.

the reconstructed elements of Pmn. More probes give somewhat better results, but
small sets of probes can be surprisingly good. This is due to a small variation of
patterns with respect to the probe states, characterized by a small number of principal
components in the singular value decomposition of the joint probability distribution
of probes and patterns. Formulated in another way, the TMD has a certain symmetry
between different outcomes. If it was a perfect TMD with equal splitting ratios and
detection efficiencies, there would be only 9 different outcomes (photon numbers
0-8). This is one of the rare cases where asymmetry in detection efficiencies and
splitting ratios is useful, increasing the number of principal components and hence
the capability to reconstruct large states.
To compare reconstructed PDC states with theory, we assume the PDC distribu-

tion
P lossless
mn =

〈n〉n
(1 + 〈n〉)1+n

δmn , (6.21)

together with a finite detection efficiency η which is taken into account by a Bernoulli
distribution:

Pmn =
∞∑
k=m

∞∑
`=n

(
k
m

)(
`
n

)
ηn+m(1− η)k+`−n−mP lossless

k` . (6.22)

From the zero-detection probabilities of coherent probes with known amplitudes,
the quantum efficiency of detectors was estimated to be 0.22 ± 0.01. Further, the
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Figure 6.7.: (Color online) Two-mode reconstruction of the PDC2 state. Left panel:
Complete photon-number distribution, withM = 50 probes. Right: Comparison
with the theoretical model. Circles with error bars represent the experimental
results, whereas theory is indicated by squares.

coupling efficiency was estimated to 75%. This, in turn, enables to calculate the
mean photon numbers of the PDC states: we generated three different ones, denoted
PDC1, PDC2 and PDC3, with 〈n1〉 = 0.11, 〈n2〉 = 0.76, and 〈n3〉 = 1.34, respectively.
These numbers were used to predict the two-mode statistics through Eqs. (6.21) and
(6.22).
In Fig. 6.7 we plot typical results of two-mode TMD measurements for PDC2.

Strong signal-idler correlations are observed and the agreement with the theory is
pretty good. In Fig. 6.8 we show the reconstructions of the marginal signal states,
i.e. the state with traced out idler mode, for two different pump intensities. Best
fits to Bose-Einstein distributions are almost indistinguishable from the experimental
results.
Next, we analyze heralded states, conditioned on single or double detection in the

signal mode. By double detection we mean here a click at detector A accompanied
by a simultaneous click at detector B. Double detections at any single detector are
discarded to avoid doubles caused by afterpulsing. Heralded single- and especially
two-photon states are difficult to reconstruct, since we are picking out quite a small
subset of all the detection events. Besides, afterpulsing creates artificial signal-idler
correlations, whose strength depends on the distance of the signal detection from the
first idler time bin. This leads to larger reconstruction errors.
Reconstructed single-and two-photon heralded idler states from two different PDC

states are shown in Fig. 6.9. To get theoretical predictions, we again assume an
inefficient coupling (0.75) of the PDC state and calculate the post-measurement idler
state Pi from the pre-measurement P as

Pi =
Trs(E P E

†)

Trs,i(E P E†)
, (6.23)
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Figure 6.8.: (Color online) Single-mode signal reconstructions (dots) of PDC1 (left)
and PDC2 (right), both withM = 30 probes. Best fits to Bose-Einstein distribu-
tions (squares) are also shown. The reconstruction errors are almost negligible
and cannot be appreciated.

where Ê†Ê is the POVM element describing the single/double detection in the signal
mode and Trs,i indicates trace over the signal/idler. All states and POVM elements
are diagonal here. From the measured photon-number probabilities, we calculate
the parity of the states and hence estimate the value of the Wigner function at the
origin for the single-photon heralded states. The results are W (0) = −0.72 ± 0.06
(PDC1) and W (0) = −0.30 ± 0.09 (PDC2). This agrees with the calculated values
W (0) = −0.77 (PDC1) and W (0) = −0.29 (PDC2), respectively and confirms the
nonclassicality of these states. With more intense PDC inputs, single detection in
the signal tends to leave a mixture of Fock states in the idler. This explains why the
nonclassicality of heralded states decreases with increasing pump intensity.
Finally, we also simulate heralded states as post-measurement states based on

the results of full two-mode tomography. To this end, we perform 100 two-mode
reconstructions for each measured PDC state. The idler post-measurement state is
calculated based on a thought single or double signal detection. The statistics of the
resulting ensemble of heralded states is shown in Fig. 6.10, along with the theoretical
predictions. These predictions based on the full two-mode reconstructions are less
accurate than the single-mode heralded ones. The latter is more direct. In heralded
detections, what helps is that the dimension of the search space is reduced and the
dominating vacuum or even single-photon terms are eliminated, which improves the
accuracy. Nevertheless, it is nice to see that the agreement between single- and
two-mode measurements is actually pretty good. The two-mode predictions improve
with increasing intensity, as one could expect. More intense PDC states have larger
higher-order Pmn components, which are easier to extract.
In conclusion, this data analysis shows that pattern tomography works, when stan-

dard detector tomography fails. It is thus a very robust method. With only two
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Figure 6.9.: (Color online) Reconstructed single-photon (left) and two-photon (right)
heralded idler states generated from PDC1 (top) and PDC2 (bottom), withM =
80 probes. Squares denote again the corresponding theoretical predictions.

low-cost single photon detectors, that are plagued by afterpulses and low detection
efficiencies, pattern tomography can reconstruct low photon-number states and help
characterizing quantum states.
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Figure 6.10.: (Color online) Heralded single-photon (left) and double-photon (right)
idler states as predicted from the reconstructed two-mode photon-number dis-
tributions of PDC3, with M = 80 probes.

Partial Tomography on Displaced PDC States

In anticipation of the next chapter 6.5, in which we estimate squeezing in a mode
selective way, we discuss here the reconstruction of displaced states. The setup
we use is an extension of the previously mentioned setup with the addition of a
reference field, that overlaps with the signal, as sketched in Fig. 6.11. Our goal
here is to use this data to test partial tomography. Following our two examples in
the introduction, we try to estimate the antidiagonal photon-number probabilities
(elements with m+n = const) of a two-mode state and the parity of heralded states.

ppKTP WG

PDC LP  BP PBS
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Figure 6.11.: The setup is essentially equivalent to the setup used for HOM interfer-
ences in Capter 5. The new element here is the displacement operator, consisting
of a half wave plate (HWP) and a PBS, set to reflect 90% of the PDC mode.
The power of the reference, and hence the amplitude of the displacement, is
monitored with a power meter (PM).

For the anti-diagonal terms, we restrict Pmn up to four photons in each mode
and we address exclusively the anti-diagonal elements P40, P31, P22, P13, P04. Without
displacement, the anti-diagonal should be symmetric around P22; with displacement,
it is expected to become biased towards P40. This is because the displacement adds
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Figure 6.12.: Partial tomography of antidiagonal photon-number probabilities for
two-mode states with varying displacements in one mode. Error bars are only
shown for one set of points to avoid symbol clustering.

intensity and the photon-number correlations become weaker. In full tomography,
with the same photon-number limit (m,n ≤ 4), the space has a dimension 5×5 = 25.
Thus we need at least 25 linearly independent probe states of size 25 each. For partial
tomography, we only have a space dimension of 5. And hence our states need only
have a size of 5 (the five anti-diagonal terms). In Fig. 6.12 we use 10 probes with
their five relevant terms each to reconstruct the anti-diagonal elements of interest.
The data follows the expected behavior and the data points have moderate error
bars.
The second example is the parity. Here, we compare the results obtained from

partial tomography with full tomography. In the first case, we directly obtain a
parity in terms of the parities of the probe states. In the second case we reconstruct
photon numbers and calculate the parity from them. The result is shown in Fig.
6.13. The two methods agree up to the two-click heralded states. For the three-
click heralded state, partial tomography fails entirely, while the full tomography still
works. This seems surprising at the first glance, because partial tomography requires
less information. However, the three-click events are rather unlikely (in a PDC state
with a mean photon number of 1.1 in this case) such that statistical noise becomes
present and systematic errors like afterpulsing have a stronger effect. The essential
difference between full tomography and partial tomography in this case is that we
implement physical constraints for full tomography, whereas this cannot be done for
partial tomography. The former rejects unphysical estimates and effectively performs
better with noisy data. In Fig. 6.13 we compare full tomography with and without
physical constraints. It is apparent that the latter case produces unphysical results
that lead to an unphysical parity estimation with huge error bars.
In conclusion, partial tomography is very powerful in reducing the experimental

75



0

0.4

0.8

1.2

0 1 2 3

S

heralding clicks

partial tomography
full tomography

-0.8

-0.4

0

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12

P
n

n

full tomography
partial tomography

Figure 6.13.: Partial tomography vs. full tomography of the parity S of heralded,
non-displaced states. While the agreement is very good up to two-click states,
partial tomography fails for the three-click herald due to the fact that the re-
construction is not constrained to physical results. On the right, we compare
the reconstructed photon-number probabilities between full tomography with
constraints and full tomography without constraints, labeled partial tomogra-
phy. This leads to negative photon-number probabilities and hence meaningless
parities with huge error bars.

and numerical costs. The number and dimensionality of probe states can be drasti-
cally lowered. However, care must be taken when noisy data is analyzed. In contrast
to partial tomography, full tomography allows to implement physical constraints and
thus reduce the search space to the physical world. It is therefore more robust than
partial tomography when noise and systematic errors are present.

6.4. Tomography by Noise

6.4.1. Introduction

Noise is a quite general term that is used for many unwanted processes in an ex-
periment. Quite generally, unwanted processes can be described by a coupling to
an environment, that introduces excitations of the system. If that environment is
large and at thermal equilibrium, it will introduce thermal excitations. That means
that the probability for an excitation decays exponentially with its energy. In optics,
such thermal excitations do not exist directly, because black body radiation at room
temperature contains photons in the far-infrared range and has close to no photons in
the visible or near-infrared range. Imagine though that we opened our light-shielded
windows in the lab and let some sunlight enter the experiment. Then it could be
described as a thermal noise source, provided that we filter the sunlight to the mode
of interest to us. Specifically, the light would need to be filtered in spectrum, time
and space to match with the quantum states. Such filtering is quite demanding and
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Figure 6.14.: Scheme for tomography by noise. A thermal light source is overlapped
with the state at a beam splitter and impinges onto a click detector.

would probably leave close to no photons in the mode of interest. Fortunately, we
can produce thermal light by other means.
The general idea of tomography by noise is to take a well known noise source,

in our case thermal light, and use it for state characterization. The essence of the
scheme is simple: using a beam splitter, we mix a known thermal source with the
signal and measure it with a click detector, as sketched in Fig. 6.14. Varying the
intensity of the noise, we can build a set of measurements, sufficient for the infer-
ence of the photon-number distribution of the state. This detection scheme is even
more minimalistic than the multiplexing scheme as it requires only one mode and
one single-click detector. The idea for such a tomography by noise comes from our
collaborator Dmitri Mogilevtsev from Minsk, Belarus. The analysis of the data pre-
sented in this section was done in collaboration with him and with Natalia Korolkova
from St Andrews, UK.
The probability of registering a signal for a phase insensitive detector is generally

given by

pj =
N∑
m=0

Πjmρmm, (6.24)

where the elements Πjm = 〈m|Πj|m〉 are related to the jth element of positive valued
operator measure (POVM), Πj, which describes a measurement performed on the
signal. N + 1 is the dimension of the subspace of all possible signal states. We have
only one on/off detector (with two POVM elements) and hence we have to find a
way to generate at least N + 1 different POVM elements. This can be achieved with
our noise-scheme by varying the mean photon number of the probe, i.e. varying the
temperature of the thermal noise. Let us suppose that the probe completely overlaps
with the signal at the detector, which has a detector efficiency η. If we now register
’no click’ events, that is the detector does not fire when a signal impinges on it, we
obtain POVM operator matrix elements for such a measurement [148, 149]:

Πjm = yj(1− yjη)m, , (6.25)
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where yj = 1/(1 + ηnj) and nj is the mean photon number of the thermal probe.
Thus, we get N + 1 different POVM elements for N + 1 different probe mean photon

numbers. Since we can represent the system (Eq. 6.24) as pj/yj =
N∑
m=0

(1−yjη)mρmm,

it means that using thermal state probes provides us with measurements, which
should provide enough information to reconstruct elements ρmm. This result is very
similar to another simple scheme [150], also requiring only one on/off detector. That
scheme relies on a set of precalibrated attenuators to change the efficiency of the
detector, which results in a set Πjm = (1−ηj)m, where ηj are the detector efficiencies
corresponding to different attenuator settings. Comparing these two methods, our
approach does not need additional calibration beyond the calibration of the on/off
detector. To collect the necessary information about the mean photon number of the
probe, it is sufficient to block the signal and use the detector itself to measure nj.

6.4.2. Taking into Account the Mode Overlap

In practice, when mixing the signal and probe field at a beam splitter, we have to take
into account an imperfect mode overlap of the fields. Before deriving the expressions
for a mode overlap 0 < µ < 1, let us regard the case µ = 0, i.e. no overlap at
all between the signal and the probe field. In that case, the probability to detect a
no-click event, is just the product of probabilities

Πjm = yj(1− η)m. (6.26)

Note that yj is the probability to have no photons in a thermal state and (1 − η)m

the probability to loose m photons. Comparing this equation with Eq. 6.25 for
perfect mode overlap µ = 1, all elements are linearly dependent with respect to the
photon-number distribution. In other words, changing yj only multiplies a factor to
the vacuum probability and we cannot estimate the photon-number distributions.
Now we move to the general case with two imperfectly overlapping fields. If the

signal a and the probe b interfere on a beam-splitter and afterwards impinge on the
detector, the probability to register ’no click’ is given by [76]:

pj = Tr{: exp{−η(Ta†a+ (1− T )b†b+

x(a†b+ b†a))} : ρσj}, (6.27)

where a†, a and b†, b are the creation and annihilation operators of signal and probe
modes; σj is the density matrix of the jth probe field; T is the transmissivity of the
beam-splitter; x =

√
µT (1− T ), µ is the overlap parameter; :: denotes the normal

ordering operator. For the perfect overlap, Eq. 6.27 results in a straightforward
relation:

Πjm =
N∑

n,k,l=0

(1− η)kσnj|Ukl
mn|2. (6.28)
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Quantities σnj = (nj)
n/(1 + nj)

n+1 are diagonal matrix elements of the jth thermal
probe state. The operator U describes the rotation performed by the beam splitter.
It has the following matrix elements in the Fock-state basis:

Ukl
mn =

√
k!l!m!n!

k∑
g=0

l∑
h=0

tg+hrk+l−g−h(−1)k−g

g!h!(k − g)!(h− l)! ×

δm,l+g−hδn,k+h−g. (6.29)

Here t =
√
T is the amplitude transmission coefficient and r =

√
1− T is the ampli-

tude reflection coefficient, respectively. For the zero-temperature noise, nj = 0, Eq.
6.28 gives a well-known expression for a ’no click’ event probability for a damped
signal:

psignal =
N∑
k=0

(1− Tη)kρkk. (6.30)

Now let us represent the probe thermal state as a mixture of coherent states, |α〉,
[148]:

σj =
1

πnj

∫
d2α exp{−|α|2/nj}|α〉〈α|. (6.31)

Then, in the case of the perfect overlap, the probability of ’no clicks’ for the thermal
probe can be expressed through the probability of “no clicks" for the coherent probe
(given in Ref.[76]):

pj =
1

πnj

∫
d2α exp{−|α|2/nj} ×

〈: exp{−ηT (a† + να∗)(a+ να)} :〉a, (6.32)

where ν =
√

(1− T )/T . Notice, that this formula is equivalent to the expression
for pj given by POVM elements in Eq. 6.28 for N → ∞. The POVM elements for
an imperfect overlap can be derived representing Eq. 6.27 for the probability of ’no
click’ for the thermal probe in the form similar to Eq. 6.32:

pj =
n̄j
µnj

1

πn̄j

∫
d2α exp{−|α|2/n̄j} ×

〈: exp{−ηT (a† + να∗)(a+ να)} :〉a. (6.33)

The quantity n̄j is the ’modified’ average number of thermal photons of that part of
the thermal field which is actually overlapping with the signal:

n̄j = µnj/(1 + (1− µ)(1− T )ηnj). (6.34)

Comparing the expression 6.33 with Eqs. 6.32, 6.28 for the perfect overlap, we obtain
the relation for the POVM elements in case of the imperfect overlap:

Πoverlap
jm =

n̄j
µnj

N∑
n,k,l=0

(1− η)kσ̄nj|Ukl
mn|2, (6.35)

79



where σ̄nj are the diagonal matrix elements of the thermal state with the average
number of photons n̄j in the Fock state basis. Eqs. 6.34 and 6.35 point to a number
of important conclusions. First of all, for the zero overlap, the ’modified’ average
number of photons is also zero, n̄j = 0. As follows from Eqs. 6.30 and 6.35, the
resulting ’no click’ probability factorizes,

pj(µ→ 0)→ psignalpterm, (6.36)

where pterm = 1/(1+(1−T )ηnj) is the ’no click’ probability for the thermal probe with
the vacuum instead of the signal. For a weak probe, when (1− µ)(1− T )ηnj << 1,
the actual situation can be modelled by having two probe modes, the one completely
overlapping with the signal with average number of photons equal to µnj, and the
non-overlapping one with average number of photons equal to (1−µ)nj. This behavior
has also been found in [76] for coherent probe states. When the probe is strong,
(1−µ)(1−T )ηnj >> 1, it follows from Eq.(6.34), that the part of the probe actually
interfering with the signal remains constant, n̄j ≈ µ/(1−µ)(1−T )η. In other words,
too strong thermal probe will wash out effects of interference and destroy a possibility
to reconstruct the signal. The optimal regime is the moderate levels of thermal probe.

6.4.3. Setup

4f 
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IrisRSD
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Figure 6.15.: Again the setup is very similar to all our setups with a reference beam.
The difference here is that the reference has thermal statistics, realized with a
rotating speckle disk (RSD) followed by irises. Instead of using the TMD, we
use a single APD in the mode that overlaps with the reference. Two more APDs
are used to herald single- and two-photon states as well as to estimate the mode
overlap between signal and reference by HOM interference.

Here we use again the same source as in Chapter 5. The setup is depicted in Fig.
6.15. The new element now is the rotating speckle disk. It generates pseudo-thermal
light in the following way. For each position of the speckle disk, a random interference
pattern is created. After spatial filtering by irises and the final fiber incoupling, the
intensity shows an exponential, hence thermal, probability distribution. We verify
this by slowly rotating the disk and using an APD as a power meter. The distribution
of the mean photon number is shown in Fig. 6.16. For the actual measurement, it
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is not required to have independent mean photon numbers from pulse to pulse, as
long as enough settings are sampled. We verify this by a measurement of g(2) > 1.9,
confirming close-to-perfect thermal statics.

Figure 6.16.: Pseudo-thermal statistics. For each position of the rotating speckle disk,
the photon-number statistics are Poissonian with a certain mean photon number.
The probability distribution (in arbitrary units) of this mean photon number for
different spot positions on the speckle disk is shown here. The exponential fit is
almost perfect, indicating that only a small coherent background remains in the
beam.

The calibration parameters of our scheme are the mode overlap between signal and
probe µ and the overall efficiency η. To determine the mode overlap, we adjust our
variable beam splitter to 50/50 and measure a Hong-Ou-Mandel dip. The overlap
is calculated from the visibility of the dip as described in [88] to be µ = 0.45. The
decrease from unity comes possibly from a spectral mismatch in the 4-f setup or a
spatial mismatch while coupling into the fiber. The detection efficiency is measured
using the Klyshko scheme (confer Appendix B.3) from which we obtain η = 0.15.
To generate a set of probe states, we rotate a HWP and measure the mean photon
numbers nj for each setting from counts in APD1 (see setup Fig. 6.15) with a
physically blocked PDC beam.

6.4.4. Results

Fig. 6.17 shows the results of reconstruction for the heralded single-photon state.
A total of 150 measurement points were used for the inference. For each thermal-

81



0 50 100 150

0.83

0.84

0.85

0.86

0.87

p
j

(a)

0 50 100 150
0

1

2

3

4

j

n
j

(b)

0 1 2 3
0

0.5

1

n

ρ
n
n

(c)

0 200 400 600
0

0.5

1

k

ρ
0
0
,ρ

1
1

(d)

Figure 6.17.: Reconstruction of a heralded single-photon state. (a) ’No click’ proba-
bility (red dots) versus measurement setting, produced by stepwise rotation of
the HWP (hence the oscillation). Crosses depict the same probability of ’no
clicks’ on the APD for the signal alone; solid line shows probabilities estimated
by Eq. 6.35 for the result shown (c). (b) Average number of thermal photons,
nj, of the reference field. (c) Inferred photon-number probabilities of the her-
alded single-photon state. (d) Estimated values of vacuum (blue crosses) and
single-photon (black dots) components of the signal obtained via bootstrapping.

probe setting 107 events were recorded. The reconstruction was done using least-
square estimation with non-negativity constraints [144]. The detection efficiency
η = 0.15 and the overlap µ = 0.45 were assumed. Fig. 6.17 (d) visualizes the
estimated values of vacuum and single-photon components of the signal obtained
via bootstrapping the data, similar to our analysis in Sec. 6.3. Our reconstruction
procedure for the single-photon state gives the following value of the single-photon
component ρ11 ≈ 0.905 ± 0.07. This estimate conforms well with the result from
pattern tomography shown in the previous chapter.
Fig. 6.18 shows experimentally obtained data for the heralded two-photon state and

the thermal state. In Fig. 6.18 (a) only a part of the measured data is shown. Here,
when varying the thermal probe intensity, 600 different values of the reference-field
intensity were taken. The average photon-number distribution shown in Fig. 6.18 (b)
is close to a thermal distribution with an average number of photons equal to 0.17.
Relatively large values of variances might be explained by a drift of detection effi-
ciency, suggested by the count rates of heralded states as shown in Fig. 6.18 (c). The
drift corresponds to a relative efficiency change of about 15%. This was not present
in the measurement used for the heralded single photon, presented in Fig. 6.17. The
exact experimental reason for the drift is unknown. It could be explained by a drift
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Figure 6.18.: (a, b) Reconstruction of a thermal state. (a) Red dots show experi-
mentally collected probability of ’no clicks’ for the unheralded signal overlapped
with the thermal probe. Crosses depict the relative number of ’no clicks’ on
the APD for the signal alone; solid line shows probabilities estimated by Eq.
6.35 for the average reconstruction result shown in (b). (c) Efficiency drift over
the time of the measurement. Shown are the ’no-click’ probabilities without the
reference for heralded single photons (red line) and heralded two photons (black
dots). (d) Experimentally inferred photon number probabilities of the heralded
two-photon state, obtained accounting for the efficiency drift.

of the single-mode-fiber incoupling over the total measurement time of two hours.
One of the powerful features of our method is the possibility to account for these

variations in efficiency. For the estimation of the detection efficiency, we need to use
the data for the signal state not mixed with the reference. For example, if we take
the single-photon state, use Eq. 6.30 and the experimentally measured probability
psignal as shown in Fig. 6.17, we can compute the actual values of η. The drift in the
detection efficiency η is reflected in the varying value of pj for the heralded single-
photon signal without the reference, as depicted by the solid red line in Fig. 6.18 (c).
Ideally, this should be a straight line, as it is approximately for the data set with a
low field intensity, used for the single-photon state reconstruction (pj in Fig. 6.17 (a),
solid line). For the data set with the higher field intensity, as used for the two-photon
reconstruction, this is not the case anymore (Fig. 6.18 (c)). To account for this, we
incorporated the calculated actual efficiency values in the expression for the POVM
elements, Eq. 6.35, when inferring ρnn for the generated two-photon state, shown in
Fig. 6.18 (d). The obtained results for the two-photon signal are again quite similar to
the results obtained with the data-pattern technique and the TMD, shown in Fig. 6.9.
It should be emphasized that imperfections of the setup do not lead to reconstruction
artifacts in our scheme. For example, the vacuum component of the reconstructed
signal remains very low despite a rather noisy character of the data. Also, the result of
reconstruction does unambiguously show that despite low efficiencies of the detection,
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the scheme produces states with large two-photon component. All these features are
preserved even if no correction for varying detection efficiency is performed for the
two-photon state, although the relative errors are much higher then.
In conclusion, we have demonstrated both theoretically and experimentally that

reconstruction by noise is indeed feasible and provides a lucid, robust tomographic
tool. By merely mixing the signal with a thermal noise and measuring statistics of
the resulting field on the on/off detector, we can collect data sufficient for inferring
photon-number distributions of different signal fields. Moreover, the reference field
for each setting can be calibrated using the same on/off detector. The scheme has
proven to be quite robust with respect to noise and drifts affecting the measurement
set-up. We believe that such a scheme can become a simple, inexpensive and efficient
working tool of quantum diagnostics. Potentially, even spectrally filtered light from
such incoherent sources as an incandescent lamp can be used as the probe. Perhaps,
one could even do a quantum state reconstruction with daylight.

6.5. Squeezing Estimation without
Phase-Reference

In Sec. 4.2.2, we have introduced the two-mode squeezed state and discussed the
correlations between its quadratures x and p. Here, our goal is to characterize these
correlations experimentally. This is a challenging task, because any known scheme,
most prominently balanced homodyne detection, requires two reference fields with
known phases relative to each other and to the two squeezed modes. While con-
ceptually simple, phase-locking pulses at the single photon level is experimentally
difficult. Nevertheless, it is possible and has been done multiple times in the lit-
erature. Here, however, we ask the question whether it is possible to estimate the
amount of squeezing without a phase-locked local oscillator.

6.5.1. Phase Averaged Two-Mode Squeezed State

First let us reformulate the Wigner function of the two-mode squeezed state from
Eq. 4.72:1

W (α, β) =
4

π2
exp{−2[cosh(2r)(|α|2 + |β|2)

+ sinh(2r)(αβeiφ + α∗β∗e−iφ)]} (6.37)
= f(|α|, |β|) exp{−2 sinh(2r)(αβeiφ + α∗β∗e−iφ} (6.38)
= f(|α|, |β|) exp{−2 sinh(2r)(|α||β|eiφsum + |α||β|e−iφsum} (6.39)
= f(|α|, |β|) exp{−4 sinh(2r)|α||β| cos(φsum)}, (6.40)

1We regard a pure two-mode-squeezed state here for simplicity. The Wigner function can be
extended to mixed Gaussian states simply by allowing independent strengths for the squeezed
and anti-squeezed quadratures.
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Figure 6.19.: Left: Amplitude correlations in the phase-averaged Wigner function of
the two-mode squeezed state with squeezing parameter r = 1.5. Right: Vac-
uum state as a special coherent state, which has the strongest possible classical
correlations.

where φsum is the sum of the signal-, idler- and pump-phase. In this form it becomes
immediately clear that averaging over one of the fields completely destroys the phase-
correlations of the state. Doing so, we get

Wavg(α, β) =
1

2π

∫ 2π

0

dφsumW (α, β) (6.41)

=
4

π2
exp[−2 cosh(2r)(|α|2 + |β|2)] I0 (−4 sinh(2r)|α||β|) , (6.42)

where I0 =
∫ 2π

0
d φex cos(φ) is the modified Bessel function of the first kind. For

completeness, we can also write the state in density matrix formalism

ρav =
1

2π

∫ 2π

0

dφ |reiφ〉〈reiφ| (6.43)

=
1

2π
(1− |λ|2)

∫ 2π

0

∑
m,n

|λ|n|λ|meiφ(n−m)|n, n〉〈m,m| (6.44)

= (1− |λ|2)
∑
n

|λ|2n|n, n〉〈n, n|. (6.45)

This is a classical mixture of photon-number correlated states without any entan-
glement or quantum discord. The amplitude correlations in phase space, however,
remain strong as can be seen in Fig. 6.19. Compared to vacuum or two coherent
states in A and B, these correlations are stronger and show the nonclassicality of the
state.
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6.5.2. Direct Probing

The amplitude correlations that remain after phase-averaging the two-mode squeezed
state cannot be seen in correlations of the real or imaginary parts of the quadratures
any more, as would be measured by homodyne detection. This is obvious, since we
averaged over the squeezed- and anti-squeezed variables. In fact, the quadratures of
the two fields are completely uncorrelated. Only with a full state tomography, the
Wigner function can be reconstructed and the amplitude correlations revealed.
Using a photon counting scheme, however, we can sample the Wigner function

directly. We have shown in Eq. 4.62, that the Wigner function at a point α in phase
space can be expressed as

W (α) =
2

π

∑
n

(−1)n〈n|D(−α)ρD(α)|n〉 (6.46)

This can be straightforwardly extended to the two-mode case:

W (α, β) =
4

π2

∑
m,n

(−1)m+n〈m,n|DA(−α)DB(−β)ρDA(α)DB(β)|m,n〉. (6.47)

The displacement operation can be implemented by an asymmetric beam splitter and
a coherent state, as already noted in Sec. 4.5.2.
A crucial point of this direct-probing scheme is the mode overlap between the

reference field and the signal. While in homodyne detection a non-perfect mode
overlap is equivalent to losses, in direct probing, it has a different signature. Let
us assume that the state consists of different modes, for example spectral or spatial
modes. The state can then be written as a product state in an orthogonal basis

ρ =
⊗
m

ρm. (6.48)

From Eq. 6.46 we get

W (α) =
∑

n(−1)n
∑
{nm|

∑
m nm=1}

∏
m〈nm|ρm(αm)|nm〉 (6.49)

=
∑
{nm}(−1)

∑
m nm

∏
m〈nm|ρm(αm)|nm〉 (6.50)

=
∏

mWm(αm). (6.51)

The measured Wigner function is the product of all Wigner functions. One important
example is a single-mode state and a non-unity overlap M with the local oscillator.
In that case, we decompose the local oscillator into two parts, one part with perfect
overlap and one orthogonal part with no overlap. Then the measured Wigner function
is a product of the state- and vacuum Wigner functions with modified displacements:

W (α) = Wstate(
√
Mα)Wvac(

√
1−Mα). (6.52)

This behavior is fundamentally different from loss and can be used to estimate both
the loss of the state and the overlap with the local oscillator. For the purpose of state
characterization, this is certainly an advantage as it gives more information about
the state.
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6.5.3. The Idea

The phase averaged Wigner function in Fig. 6.19 features correlations between α
and β for all values, including β = 0. This suggests a very simple experiment to
measure these correlations: We restrict the measurement to β = 0, meaning that
no displacement in B is needed, and sample the Wigner function for different values
of α. This idea is illustrated in Fig. 6.20. The resulting function W (α, 0) should
show a distribution, which width depends on the squeezing. We plot W (α, 0) in
Fig. 6.21 for realistic parameters including non-perfect overlap with the reference.
In principle we can extract two quantities from a curve like that. The value at the
origin is related to the total losses in the setup and the width of the distribution
is related to the squeezing. Unfortunately, the overlap is also related to the width
of the distribution as it corresponds to a rescaling of the overlapping local-oscillator
amplitude and hence the width of the Wigner functions. However, the effect of a
reduced mode overlap is rather small, since even for a low value of 70%, the curves
widen only slightly. Therefore, we just interpret it as a reduction on the measurable
squeezing.

PDC
phase

averaging

a b

Figure 6.20.: (a) The scheme to sample the full Wigner function. If the phases of
all fields are known, we see correlations (small circles) between systems A and
B within broad probability distributions for each system alone (large circles).
(b) Phase averaging the state destroys the phase correlations, but keeps the
amplitude correlations intact. In particular, choosing the point β = 0 in B
reduces the spread of α in A below the Heisenberg limit of a vacuum state.

In principle, the overlap could be estimated independently, if we used a Wigner
function with a known shape, preferably with oscillations for ’sharp’ features. Fock
states are examples which fulfill this requirement; confer the Wigner function of the
three photon Fock state in Fig. 4.6. If the overlap rescales the oscillations, while
losses affect the value at the origin, we can determine both values independently.
Let us now briefly compare our method with other schemes that are based on

photon-number measurements alone, without a reference field. In principle, such
schemes can also be used to infer the squeezing of a state [151], because a phase-
averaged state like in Eq. 6.45 only has diagonal elements in its density matrix.
However, a photon-number measurement ignores the modal structure of the state.
Therefore, we have to make assumptions about this structure, if we want to estimate
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Figure 6.21.: Wigner function of a PDC state for β = 0 as it would be measured
by direct probing for realistic parameters (red solid line) with gain r, efficiency
η and mode overlap M . The losses affect the value at α = 0 and the overlap
broadens the distribution. The width of the curve is smaller than the vacuum
reference due to squeezing.

the squeezing. Such an assumption can be that the state is a pure state or, more
realistically, that it can be described by a certain modal composition as we did in
our eight-parameter fit of the bright state in Sec. 5.4.2. The direct-probing scheme
we present here does not require any assumptions about the modal properties due to
the fact that it is mode-selectiv. The squeezing we estimate is the squeezing in the
mode of the local oscillator, similar to homodyne detection. In principle, we could
also estimate the anti-squeezing by calculating the marginalW (|α|), disregarding the
second mode. This could then be used to estimate the purity of the state.

6.5.4. Experimental Results

Here we use again the setup shown in Fig. 6.11, with our PDC source, a reference field
in one of the two arms, and the TMD with InGaAs APDs. We use pattern tomogra-
phy to obtain photon-number distributions for different displacements α. From these
photon-number distributions we calculate the parity and hence the Wigner function.
The error estimations are done with bootstrapping as in the pattern-tomography
section of this thesis.
The main result is the measured Wigner function, shown in Fig. 6.22 with the

reduction of its width due to squeezing. To compare the experimentally obtained
results with theoretical predictions, one has to know the reference displacements, as
well as the squeezing r and the coupling efficiency η. Displacements are determined
by measuring the reference beam alone and comparing its probabilities for vacuum-
detection events with those of the coherent probes. A least-square fit is sufficient
for this purpose. Additionally, the original undisplaced PDC state is measured to
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Figure 6.22.: Measured (normalized) Wigner functions S = W (α, 0)/W (0, 0) for the
two-mode squeezed state with high overlap and with zero overlap. The zero
overlap case is equivalent to measuring vacuum, since any non-displaced state
is a constant factor, which is removed by the normalization. The reduction in
width is strongly within the error bars and agrees well with theory.

estimate the squeezing parameter r ≈ 0.6 and coupling efficiency η ≈ 0.75: these are
the values for which the theory provides the best fit.
With the same set of data, we can also look at displaced heralded states. The sim-

plest, nontrivial case is the heralded single photon. Unfortunately, heralding with our
TMD becomes very nontrivial due to the afterpulse effect. Since the heralding event
is taken from the ’raw’ data, pattern tomography does not account for it. Afterpuls-
ing can be ignored for weak undisplaced PDC states, but, for large displacements,
afterpulses make a significant fraction of the small number of genuine idler detections
(more than 10% in our case). This is illustrated in Fig. 6.23 (top), where the idler
single-click detection rate is plotted as a function of the reference-beam intensity
|α|2. Without afterpulsing, the idler rates should stay constant, while we observe a
linear increase of the idler detection rate with |α|2. After a single idler detection,
the post-measurement state of the signal mode is Ps = Tri(E P E

†)/Trs,i(E P E
†),

where E†E = Π1s is the operator describing the idler detection, and Trs,i indicates
tracing over both signal and idler modes. To deal with afterpulses, we construct
the measurement operator as an incoherent superposition of signal and idler single
detections, E†E = [1 − x(α)]Π1i + x(α)Π1s. The contribution of afterpulses for a
given displacement is estimated from Fig. 6.23 (top).
The measurement for the displaced heralded single-click states is summarized in

Fig. 6.23 (bottom). For high overlap, we expect the parity to trace the Wigner
function of the heralded signal state, which can be approximated by a single-photon
state. The negativity around the origin is apparent in the red curves. For no overlap,
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Figure 6.23.: Top: Observed idler singles rate (dots) for different signal displacements
of a PDC state with r ≈ 0.6. Best linear fit is also shown (line). Bottom: Parities
of single-click heralded states measured with high overlap (red symbols) and no
overlap (blue symbols) and r ≈ 0.6. Solid (broken) lines show theory with
afterpulses included (ignored), respectively. Notice that the afterpulses tend to
decrease the measured parity of the displaced signal mode.
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the measured parities remain negative for all displacements. The two cases can be
discriminated, showing the distinct effect of the overlap.
In conclusion, we have demonstrated that squeezing can be estimated without a

phase reference in a mode-sensitive way. The mode sensitivity makes this method
superior to a photon-number measurement without a reference field. However, the
afterpulsing effect proved obstructive in the measurement of heralded states and the
error bars in the squeezing measurement do not yet allow to use this method as a
precise measurement of the actual squeezing. Further improvements, especially on
the detector side, could overcome these issues to make these measurements more
reliable.

6.6. Correlation Functions and Nonclassicality

We have introduced nonclassicality based on the phase-space description of quantum
states in Sec. 4.3. By that definition, a state is classical if and only if the P -function is
positive everywhere. However, measuring the P -function or even the Wigner function
can be challenging as we have seen in the previous chapter. If we just want to verify
the nonclassicality of a state, the knowledge about the full quantum state is not
required. Can we formulate simpler conditions to verify nonclassicality? It turns
out that correlation functions, which we introduced in Sec. 4.4, are well suited for
this task. From the experimental point of view, they can be measured in a loss-
tolerant way using photon-number detectors or multiplexed click-detectors. From
the theoretical point of view, they can be used to formulate nonclassicality criteria in
quite a general way. We will describe this connection in this section and then present
experimental results using our data from the TES measurement as well as data from
a TMD measurement.

Single Mode States

The connection between correlation functions and the P -function is simple: Since the
correlation functions are normally ordered, their expectation value can be directly
calculated using the P -function:

〈a†nan〉 =

∫
d2αP (α)α∗nαn =

∫
d2αP (α)|α|2n. (6.53)

Imagine now the two-dimensional phase space with a classical distribution P (α).
Correlation functions are just expectation values for moments of |α|2, which is the
distance to the origin in phase space. In the case of a dot, i.e. ρ is a coherent
state, 〈|α|2n〉 = 〈|α|2〉n and hence all g(n) = 1. In the case of a broader distribution,
〈|α|2n〉 > 〈|α|2〉n and hence g(n) > 1. This means that g(n) ≥ 1 is a necessary condi-
tion for classicality and therefore g(n) < 1 is a sufficient condition for nonclassicality.
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Two Mode States

Correlation functions can be straightforwardly extended to the two-mode scenario,
by defining

g(m,n) =
〈a†mamb†nbn〉
〈a†a〉m〈b†b〉n . (6.54)

In this case, nonclassicality conditions are a bit more difficult to define, since corre-
lations between the two fields can be large for quantum as well as for classical states.
We follow here the approach presented in Refs. [152, 153]. The idea is that we can
formulate a nonclassicality condition for any operator f̂(â†, â, b̂†, b̂) by using

〈 : f̂ †f̂ : 〉 =

∫
d2α d2β P (α, β)f(α∗, α, β∗, β). (6.55)

If the P -function is a classical probability distribution, P ≥ 0, then 〈 : f̂ †f̂ : 〉 > 0 for
all f̂ . Consequently, if

〈 : f̂ †f̂ : 〉 < 0 (6.56)

for some f̂ , then P is not a classical distribution. Fortunately, there is a systematic
way of testing different functions f̂ , by defining the vector

~̂
f = ( 1, n̂a, n̂b, n̂2

a, n̂an̂b, n̂
2
b , n̂3

a, n̂
2
anb, n̂an̂

2
b , n̂

3
b , ..., n̂Nb ). (6.57)

This vector contains increasing powers of n̂a and n̂b in all possible arrangements.
The precise form of ~̂f is not fixed. We could also choose any other function. In this
way, however, the powers of the operators are ordered and give us a hierarchy of
correlation functions, depending on the value of N .
The condition in Eq. 6.56 can be checked by constructing the matrix

M = 〈 : ~̂f
† ~̂
f : 〉 =


〈 : f̂ †1 f̂1 : 〉 〈 : f̂ †1 f̂2 : 〉 · · · 〈 : f̂ †1 f̂N : 〉
〈 : f̂ †2 f̂1 : 〉 〈 : f̂ †2 f̂2 : 〉 · · · 〈 : f̂ †2 f̂N : 〉

...
... . . . ...

〈 : f̂ †N f̂1 : 〉 〈 : f̂ †N f̂2 : 〉 · · · 〈 : f̂ †N f̂N : 〉

 . (6.58)

Each element of M is essentially a correlation function with different powers. It
is shown in [152] that if M has at least one negative principal minor, the state is
nonclassical. We can also formulate that if M has at least one negative eigenvalue,
the state is nonclassical. This condition can be easily checked numerically, if we have
access to correlation functions of the form of Eq. 6.54 (where the normalization is
not important).
In conclusion, this construction for two-mode fields poses a nonclassicality condi-

tion based on correlation functions. It contains a hierarchy taking into account higher
and higher orders of correlations. Some states might reveal their nonclassicality only,
if higher orders of correlations are considered.
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6.6.1. Experimental Results for High-Order Correlation
Functions
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Figure 6.24.: Correlation functions. (a) g(n) for heralded states from a PDC state
with 〈n〉 = 1.4. Experimental results are shown on the left and theoretical
predictions on the right. Values smaller than one imply nonclassicality. Note
that correlation functions of higher order than the heralded photon number
(lower triangular part of the matrix) should be treated with care. (b) g(m,n) for
a PDC state with 〈n〉 = 20.

From the photon-number measurements presented in Sec 5.4, we can calculate any
correlation function according to Eq. 4.87. In Fig. 6.24, we show single mode g(n)

of heralded states and two mode g(m,n). For the single-mode case, remember that
g(n) < 1 is a sufficient condition for nonclassicality. This is fulfilled for all heralded
states except vacuum, which has a g(n) = 1 as expected for Poissonian background
noise. Remarkably, the values become lower for higher orders. For example, the g(6)

for the heralded 10-photon state is below 0.5. On the one hand, this increases the
confidence of the nonclassicality criterion. On the other hand, the statistical and
possibly systematic errors for higher-order correlations increase significantly.
We estimate the uncertainties of the values by performing a simple Monte-Carlo

simulation: In the two-mode case, based on the measured photon-number probabil-
ities, we draw measurement frequencies from 8.2 · 106 events and calculate the cor-
responding correlation functions. From 10000 such trials, we calculate the standard
deviations. In the single-mode case, we perform the same Monte-Carlo simulation,
though this time based on theoretical probability distributions, due to relatively low
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Figure 6.25.: Correlation functions g(n) for heralded states from a PDC state with
〈n〉 = 7. Top: Comparison of experiment and theory. Bottom left: Simulation
with 8.2 · 106 events. Bottom right: Expected standard deviation from a Monte-
Carlo simulation. Only the region left of the bright area is reliable with the
given statistics.

numbers of heralded events for higher photon numbers. For example, the 35-photon
herald happens only about 1000 times. The results of this error analysis are shown in
Fig. 6.26 for the two-mode g(m,n) and in Fig. 6.25 for the heralded g(n). The statisti-
cal uncertainties dominate already above g(10). Also, errors for correlation functions
of order n for heralded states on photon numbers < n are large, as can be expected,
since the dimensionality of the heralded state is not large enough. However, the
general agreement with theory is very good. The two-mode correlations allow us to
calculate values up to g(40,40) with relatively low uncertainties. Since the g(m,n) has
no upper bound, the values become very large.

To show nonclassicality, we can apply Eq. 6.58. Unsurprisingly, the nonclassicality
condition is fulfilled for all orders with very high significances. Instead of going into
detail here, we rather move on to the next section, in which we demonstrate this
technique on data from less perfect detectors.
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Figure 6.26.: Left: g(m,n) for the state with 〈n〉 = 20. Right: Relative error obtained
from a Monte-Carlo simulation based on the measured probability distribution.
Values up to g(40,40) seem reliable. The asymmetry in the two modes arises from
asymmetric detection efficiencies.

6.7. Certifying Nonclassicality with Click Detectors

In the previous section we used TES detectors to measure photon numbers. We
assumed that the TES are perfect photon-number detectors, which is a very good
approximation in that case. However, TES are very expensive as they need to operate
in the mK-range and require complicated electronics. Typically, detectors which
directly measure photon numbers like the TES are not available. Using a multiplexing
scheme with click detectors, like our TMD with APDs, is much more common. To
measure the photon-number distribution with such a scheme requires advanced data
post-processing, for example using pattern tomography as we did in sec. 6.3. In
this section, our goal is not to obtain the photon-number statistics of the state, but
simply verify its nonclassicality. Remarkably, this can be done using the raw click
statistics, without loss inversion or any other type of tomography. To this end, we
collaborate with Jan Sperling, Martin Bohmann and Werner Vogel from Rostock,
who are experts on nonclassicality and click statistics.

The model of a TMD detector we introduced in Sec. 6.2, Eq. 6.12 contains a loss
term and a convolution term. The convolution term in particular is crucial for the
analysis of nonclassicality. Imagine for example a classical Poissonian photon-number
distribution as the input into the TMD. Due to the chance of photons ending up in
the same bin, the measured click statistics might show a sub-Poissonian (narrower
than Poissonian) distribution, which is a signature of nonclassicality. This effect is
also present if the number of photons is one order of magnitude below the number of
bins and might lead to fake nonclassical signatures. The proper theoretical detection
model for such devices is a quantum version of the binomial statistics [154]. It can
be used to derive nonclassicality criteria for the raw statistics as described in the
following.
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6.7.1. Nonclassical Moments of the Click Statistics

Perfect photon-number measurements (for one mode) can be described by [28, 51]

pk = 〈: (ηn̂)k

k!
e−ηn̂:〉, (6.59)

where pk is the probability to measure k photons and η is the efficiency of the detector.
From this starting point, it is shown in [154, 155] that the probability to measure kA
clicks within the N = 8 time-bins assigned to the signal A together with kB clicks
from the signal B is described through the joint click-counting:

ckA,kB =〈:
(
N

kA

)
m̂N−kA
A (1̂A − m̂A)kA

×
(
N

kB

)
m̂N−kB
B (1̂B − m̂B)kB :〉,

(6.60)

with : · : denoting the normally ordering prescription and m̂i = e−Γ(n̂i/N) for the modes
i = A,B. In general, Γ can be an unknown detector response being a function of the
photon-number operators n̂i. For example, a linear form of the response function is
Γ(n̂i/N) = ηn̂i/N+ν, with η and ν being the quantum efficiency and the dark-count
rate, respectively.
In Ref. [155] it has been demonstrated that the matrix of click moments M (KA,KB)

is non-negative for any classical light field,

0 ≤M (KA,KB), (6.61)

where M is defined as in Eq. 6.58. The superscript (KA, KB) defines the highest
moment of each subsystems within the matrix M . For instance, the single-mode and
bipartite, second-order matrices of click moments are

M (2,0)=

(
1 〈:m̂A:〉

〈:m̂A:〉 〈:m̂2
A:〉

)
, M (0,2)=

(
1 〈:m̂B:〉

〈:m̂B:〉 〈:m̂2
B:〉

)
,

and M (2,2)=

 1 〈:m̂A:〉 〈:m̂B:〉
〈:m̂A:〉 〈:m̂2

A:〉 〈:m̂Am̂B:〉
〈:m̂B:〉 〈:m̂Am̂B:〉 〈:m̂2

B:〉

 , (6.62)

respectively. The needed moments can be directly retrieved from the measured click
counting statistics [155],

〈:m̂lA
A m̂

lB
B :〉 =

N−lA∑
kA=0

N−lB∑
kB=0

(
N−kA
lA

)(
N−kB
lB

)(
N
lA

)(
N
lB

) ckA,kB . (6.63)

This directly allows us to formulate nonclassicality conditions for the click-statistics.
We might further define the term ’nonclassical correlations’ in the following way:
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The marginal states at A and B are classical, while the total state is nonclassical.
Then we have nonclassical Kth-order click correlations if

M (K,0) ≥ 0, M (0,K) ≥ 0, and M (K,K) � 0. (6.64)

This means that bothKth-order single-mode marginals are classical and the bimodal,
Kth-order correlation matrix is nonclassical. Intuitively, applied to our photon-
number correlated state, this condition means that the marginal distributions are
broad, while the photon-number correlations are narrow. In order to genuinely cer-
tify such nonclassical correlations, it is sufficient to consider the minimal eigenvalues
of the click-moment matrices eA, eB, and eAB of M (K,0), M (0,K) and M (K,K), respec-
tively. Now, the definition in Eq. 6.64 is rewritten as

eA ≥ 0, eB ≥ 0 and eAB < 0. (6.65)

This method will serve as our approach to determine Kth order quantum correlations
between the subsystems A and B.

6.7.2. Experimental Results

Second-order correlations

First, let us focus on second-order click correlations, cf. Eq. 6.62, which include the
information about the mean values, the variances, and the covariance of the joint
click counting statistics [155]. In Fig. 6.27, we plot the measurement results. Using
the approach in Eq. 6.65, the minimal eigenvalues eAB (top), eA (bottom, left), and
eB (bottom, right) are shown in dependence of the energy per pulse. The single-mode
matrices are non-negative, eA ≥ 0 and eB ≥ 0, whereas the cross correlations are
nonclassical, eAB < 0. Thus, we verified the quantum nature of the second-order
click correlations between the spatial modes A and B.
In order to compare our measured results, a simple theoretical model is used. We

assume that a pure two-mode squeezed state is generated, and the detectors are de-
scribed via a plain linear response function: Γ(n̂/N) = ηn̂/N + ν. For a two-mode
squeezed state, the gain parameter r depends on the pump power P as r = ξ0

√
P .

The proportionality constant ξ0, the quantum efficiency η, and the dark count rate
have been fitted using the standard method of least squares. They are η = 9.6%,
ν = 0.51, and ξ0 = 0.087 (µW)−1/2. With these values, we estimate total mean
photon numbers to be 0.9 . . . 15 photons for the pump powers 50 . . . 403µW or en-
ergies 0.7 . . . 5.8 nJ. Already this simplified model yields a good agreement with the
measured results, which highlights the excellent performance of the engineered PDC
source; cf. dashed lines in Fig. 6.27. The inset in the upper plot shows the extrapola-
tion of the quantum correlations, eAB < 0, for higher pump energies. At some point,
the mean photon number is so high, that these correlations saturate and eventually
vanish. A high squeezing level and a classical laser light with a large coherent am-
plitude result in the same signal – all time-bins are occupied with a large number of
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Figure 6.27.: The left plot shows the minimal eigenvalue eAB (black bars) of the ex-
perimentally obtained matrix of moments M (2,2) depending on the pump energy
Epump. Error bars are given as gray areas. The dashed curve is the theoreti-
cal prediction. The inset depicts the continuation of the theoretical curve for
higher energies including saturation effects. The right plots show the minimal
eigenvalues eA and eB of M (2,0) (left) and M (0,2) (right), respectively, a ten stan-
dard deviations error bar, and the theoretical prediction. Since the bimodal
correlations are negative and the single-mode reductions are non-negative, we
successfully determined nonclassical correlations between the modes A and B.
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photons. Therefore, at high photon numbers, the signals of nonclassical and classi-
cal states cannot be discriminated. Thus, the recorded quantum correlations of the
former state must decrease due to the saturation of click counting devices, which is
automatically included in the click counting theory. Let us emphasize again that the
states have been generated for pump powers ranging over almost one order of mag-
nitude. Verifying nonclassical photon-photon correlations in this comparably large
domain is typically considered a challenging task, but can easily be accomplished
with our TMD click counters. To illustrate the broad range of amplitudes for which
this method could be used, we plot in Fig. 6.28 the minimal eigenvalues of the the-
oretically obtained second order matrix of click moments. For very small and very
large mean photon numbers n̄, the minimal eigenvalues converge to 0. For large n̄,
the saturation effects of the APDs diminish correlations, which is correctly displayed
by the theory via the decay of correlations. However, still for a mean photon number
of 150, we could reliably certify nonclassicality with an eight-bin TMD.

Figure 6.28.: The minimal eigenvalues eA = eB of M (0,2) = M (2,0) (left) and eAB of
M (2,2) (right) are plotted depending on mean photon number n̄ and the quantum
efficiency η (fixed dark count rate ν = 0.51; for a better visualization, we plot
−eAB). The single-mode eigenvalues eA = eB are positive for any value of n̄ > 0
and η > 0, while the bipartite case shows negativities for all these parameters,
−eAB > 0.

Higher-order correlations

Let us study higher-order quantum correlations. They become particularly meaning-
ful when second-order criteria fail to properly characterize the state. For example,
the third and fourth order moment relate to the so-called skewness and the flat-
ness (or kurtosis), respectively. The highest possible order of moments one can infer
from N = 8 time bins for each mode is given by K = 8 in Eq. 6.65 yielding a full
characterization of the measured click counting statistics.
The bound for a classical signal, M (K,K) ≥ 0, is given by the eigenvalue ecl. = 0.

Thus, the signed distance, in units of standard deviations, of the experimentally
obtained minimal eigenvalue, e = e ± ∆e, to this classical bound leads to a signed
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Figure 6.29.: The signed significances Σ of the largest negativities of the full matrix of
click momentsM (8,8) are shown. The highest significance levels of nonclassicality
between the subsystems is verified for our highest energy. In this region the
impact of the click-counting theory is most pronounced.

significance,

Σ =
e− ecl.

∆e
=

e

∆e
, (6.66)

representing a signed relative error. A negative significance, Σ < 0, verifies the non-
classicality with a significance of |Σ|. Typically, Σ . −3 is a significant verification
of the negativity, whereas Σ ≈ 0 cannot be distinguished from the classical bound 0.
In Fig. 6.29, the significance levels of the full eighth order quantum correlation are

given. The single-mode, signed significances forM (8,0) andM (0,8) can be found in [7].
There are no significant eighth order, single-mode correlations, M (8,0),M (0,8) & 0 –
the largest single-mode negativities are in the order of Σ ∼ −10−5. Additionally, the
significance of negativities in M (8,8), cf. Fig. 6.29, are in the range of 2.7 . . . 10.6 for
the energies 0.7 . . . 5.8 nJ, respectively. Hence, for most of the energies, a significant
eighth-order nonclassical correlations between the modes A and B is certified. Re-
markably, the significance even increases with the energy which is due to an improved
signal-to-noise ratio with increasing mean photon numbers, because the no-click event
has a much lower probability in this regime.
On the one hand, one would typically not use such comparably high intensities in

our measurement setup, because the difference between photo-counting theory and
click-counting is quite pronounced in this regime. This can also be seen when an-
alyzing the data on purpose with the inappropriate photoelectric detection model.
Then, the single-mode signed significances evaluate to −2.4 . . .−13, cf. [7], suggest-
ing fake nonclassicality which worsens with increasing pump power. On the other
hand, our consistent treatment in terms of the click statistics correctly identifies
this higher-order bimodal correlations while showing, as expected for our source, no
nonclassicality in the single-mode marginals.
In summary, we have shown in this section that we can certify nonclassicality

using time-multiplexed detectors over one order of magnitude of intensities, and mean
photon numbers up to 15. This is possible despite low detection efficiencies of 10%
and without any corrections for imperfections or related post-processing techniques.
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7. Conclusion and Outlook

Conclusion

In this thesis, we generated quantum states using an engineered type-II parametric
down-conversion (PDC) source and characterized them with a variety of methods.
In the low pump-power regime, we heralded single photons and showed that they

have a high purity of 85 %. Additionally, the signal and idler photons where nearly
indistinguishable with a Hong-Ou-Mandel visibility of 95 %. These results are com-
parable with achieved benchmarks in the literature. Additionally, the source showed
a high down-conversion efficiency, which can be attributed to the single-mode oper-
ation in the spectral degree of freedom and the use of a waveguide. The exceptional
performance lies in the combination of all these characteristics in one single source.
The singlemodeness allows potentially to combine several such sources without intro-
ducing further losses and to perform photon-number measurements with very high
efficiency.
In our collaboration with NIST, where we used transition edge sensors (TES),

we achieved efficiencies of up to 68 %. Here, we investigated the properties of the
quantum states in a high-pump-power regime with mean photon numbers up to 20.
Remarkably, the single-mode character persisted in this regime, which is very fortu-
nate, since a number of nontrivial effects could be expected to degrade that property.
With the TES, we were able to show photon-number correlations up to 80 photons
in a single-mode state. Such large states can already be considered macroscopic and
constitute a resource for the generation of a variety of nonclassical states. We showed
that high-order correlations are present and accessible by calculating two-mode cor-
relation functions up to order 40, again demonstrating the huge dimensionality of
the state and its potential as a resource for quantum optics.
The second part of this thesis was concerned with the characterization of quantum

states. One of our main results here was the inference of squeezing without a phase
reference. The fact that this is possible is surprising at first, since the phase-averaged
state does not contain entanglement, but the photon-number correlations allowed us
to circumvent this problem. Using photon-number detectors and a reference field
with an unknown phase, we probed the two-mode Wigner function at several points
around the origin, where one mode was fixed exactly at the origin. This allowed us
to estimate the squeezing in a mode-selective way and without assumptions about
the purity of the state. The experimental simplicity makes this method an appealing
alternative to the established homodyne detection scheme.
We further investigated how InGaAs APDs, which have low detection efficiencies
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and relatively high afterpulsing probabilities can be used to reconstruct the photon-
number distribution of a state or prove its nonclassicality. To reconstruct photon-
number distributions, we applied two schemes: Pattern tomography and inference
by noise.
Pattern tomography reconstructs the state in a basis of probe states, rather than

a pre-chosen basis like photon number. It avoids truncation errors and the need
for full detector tomography. We showed that with pattern tomography, a time
multiplexing scheme, which is particularly susceptible to afterpulsing effects, can
be used to reconstruct the photon-number distribution of quantum states in a few-
photon regime. This included the distributions of heralded single- and two-photon
states and the reconstruction of the Wigner function from statistics of displaced
single photons and of displaced two-mode squeezed states. Even though pattern
tomography proved to be able to deal with the afterpulsing effect, it is reliable only
in the linear regime of the detector response. If the count rates increase, the detectors
show accumulation effects, meaning that their response depends on the mean photon
number of the state and not just on the detected photon number of the current pulse.
This generally limits such detectors to a low-click-probability regime.
Tomography by noise is a minimalistic scheme to measure the photon-number dis-

tribution of a state, requiring only a single click detector and a reference field with
a thermal photon-number distribution. With this method, we successfully recon-
structed single-photon and two-photon heralded states, as well as thermal states. It
is surprising that this method worked despite the low efficiencies of 13 %. It shows
the power of tomographic techniques to extract information from strongly convolved
data.
Finally, we applied the theory of click statistics to our two-mode time-multiplexed

detection. Without performing any loss inversion or tomography, we proved nonclas-
sical correlations between the two modes. Since the raw data was used directly, this
method worked even for mean photon numbers of 15 on an 8-bin detector with low
efficiencies of 10 %. It is a simple and reliable tool to test the classicality of quantum
states.

Outlook

The source we built up during this thesis showed remarkable properties in the single-
as well as in the multiphoton regime. The Fock states and squeezed states it generates
are very basic resources in quantum optics and therefore have numerous potential
applications.
At this time, there are already experiments in preparation that use very similar

sources. The group of Ian Walmsley in Oxford is currently implementing multi-
source experiments where the singlemodeness of the states is exploited. Within our
own group, such a source is used to generate indistinguishable photons for a time-
multiplexed quantum walk [156, 157]. Furthermore, our group uses the source to
generate states for the quantum pulse gate, a device that selectively operates on
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spectral modes [158]. Here, the spectral tunability of the source is exploited, to gen-
erate single-mode as well as few-mode states. Interestingly, by shaping the pump
spectrum to a first Hermite-Gaussian mode, the source should produce exactly two
modes with equal weights. In the single-photon approximation, this state becomes a
Bell state in the spectral degree of freedom. Such Bell states in combination with the
pulse gate allow to formulate a complete framework for quantum information science
[159].
A continuation of the source characterization would be to implement a phase sen-

sitive measurement to fully access the phase-space properties of the state. We esti-
mated in this thesis that the source should show high squeezing values, surpassing
current world records for single pass sources and possibly even cavity based sources.
The measurement would require a homodyne setup or a phase-sensitive direct prob-
ing scheme. The key challenge in both cases is to implement the measurements with
a very high quantum efficiency. Besides measuring high squeezing, an interesting
question is where the limitations of the source are when going to ever higher photon
numbers. Can the single-mode character be maintained for stronger pump powers?
How large can single-mode quantum states become, generated from this source?
In the course of this thesis, we had fruitful collaborations with theory groups spe-

cialized in tomography and other sophisticated characterization techniques. There
seem to be plenty of ideas to continue this work. Currently, we are investigating with
Dmitri Mogilevtsev, the group of Zdenek Hradil, and Luis Sanchez-Soto a scheme to
find the smallest possible subspace that fully describes an unknown state. This is
interesting as it allows one to choose an appropriately small state-space for the recon-
struction as well as for refining measurements. We also plan to continue our collab-
oration with Dmitri Mogilevtsev and Natalia Korolkova to further investigate what
information about a quantum state can be inferred with a single click-detector and
appropriate reference fields. Moreover, the certification of nonclassicality we demon-
strated with Jan Sperling, Martin Bohmann and Werner Vogel could be extended to
a phase-sensitive measurement [160, 161] for inferring squeezing or entanglement.
Finally, a large new field of research is the investigation of the macroscopic char-

acter of a quantum state. We know that PDC can produce billions of photons per
mode [21]. How macroscopic is such a state? Can the single mode character of
our source be exploited here? Do losses ultimately limit the macroscopicity despite
huge photon numbers or can we play some tricks with photon-number detectors?
Besides such fundamental questions, there is the technological dream to integrate
state-manipulation and detection on chip. This would drastically decrease losses and
improve scalability of multiplexing schemes. All in all, there are enough fundamental
as well as technological questions waiting to be answered. Indeed, we see a bright
future ahead for our source.
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Appendix A.

Operators

A.1. Displacement Operator

The displacement operator is defined as

D̂(α) = exp{αâ† − α∗â}. (A.1)

It has the properties:
D̂(α)|0〉 = |α〉 (A.2)

D̂†(α) = D̂(−α) (A.3)

D̂(α)D(β) = D̂(α + β) exp{1

2
(αβ∗ − α∗β)} (A.4)

D̂(α)âD̂(−α) = â+ α (A.5)

In the main text we use:∫
d2α D̂(α) =

∫
d2α exp{αâ† − α∗â} (A.6)

=

∫
d2α eαâe−α

∗âe−|α|
2/2 (A.7)

=
∑
mn

∫
dφdr re−r

2/2rm+n(−1)neiφ(m−n) â
†mân

m!n!
(A.8)

= 2π
∑
n

∫ ∞
0

dr re−r
2/2r2n(−1)n

â†nân

(n!)2
(A.9)

= 2π
∑
n

(−1)n2n
â†nân

n!
(A.10)

and hence

〈m|
∫

d2α D̂(α)|n〉 = 2π(−1)nδmn (A.11)
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A.2. Quadrature Operators

The standard quadrature operators are defined as:

x̂ =
1√
2

(â+ â†) p̂ =
−i√

2
(â− â†) (A.12)

The Wigner function is usually parametrized as W (x, p) = W (α) with

α =
1√
2

(x+ ip), (A.13)

whereas the 1√
2
-factor is sometimes omitted in the literature. For a rotation of the

quadratures by an angle φ, we can write them as

xφ =
√

2(αr cosφ+ αi sinφ) (A.14)

xφ+π
2

=
√

2(αi cosφ− αr sinφ) (A.15)

A.3. Beam Splitter

A beam splitter is a linear unitary transformation from two input ports to two output
ports that can be described as (omitting the hats on the operators)(

a′1
a′2

)
=

(
τ −ρ
ρ τ

)(
a1

a2

)
, (A.16)

where a1 and a2 are the annihilation operators in the two ports and |τ |2 + |ρ2| = 1.
This can be used to calculate states after a beamsplitter by replacing the creation
operators that generate the state. For example:

|0, n〉′ =
n∑
l=0

√(
n
l

)
τ lρn−l|l, n− l〉 (A.17)

|1, 1〉′ = 1√
2

(|2, 0〉 − |0, 2〉) (A.18)

The latter state (where we assumed a 50/50 beam splitter) is a perfectly correlated
state, which shows no coincidence counts between the two output ports. This effect
is known as the Hong-Ou-Mandel interference [43].
The transformation in Eq. A.16 corresponds to the Hamiltonian

H = iθ(a†1a2 − a†2a1), (A.19)

where τ = cos(θ) and ρ = sin(θ). Because of this form, the beam splitter can be used
to realize the displacement operator

D(α) = eαa
†−α∗a (A.20)

108



by using an almost transparent beam splitter (θ → 0) and approximating a strong
coherent field by its complex field amplitude θa2 → α.
From equation A.16 we can also write down the transformation for the quadratures:

x′1
x′2
p′1
p′2

 =


τ −ρ 0 0
ρ τ 0 0
0 0 τ −ρ
0 0 ρ τ



x1

x2

p1

p2

 (A.21)
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Appendix B.

PDC

B.1. Gain from First Principles

According to Eq. 4.29, the gain is given by

B′ = 4BOα0FL (B.1)

To calculate the phasematching normalization term F , we assume a decorrelated
process and approximate the phasematching as

φ(ωs, ωi) = e−τ
2(ωs−ωi)2 . (B.2)

The pump spectrum is given by

α(ωs, ωi) =
4

√
2τ 2

π
e−τ

2(ωs+ωi)
2

. (B.3)

Then we obtain

F =

√∫
dωsdωi|φ(ωs, ωi)α(ωs, ωi)|2 =

4
√

2π

2
√
τ
. (B.4)

We use the following parameters:

χ(2) [m/V] 5.2 · 10−9

(n1, n2, n3) (1.76, 1.74, 1.82)
(ω1, ω2, ω3) [1/s] (2.42, 1.71, 1.71) · 1015

τ [s] 1.9 · 10−13

L [m] 8 · 10−3

O [1/m] 1.5 · 105

α0 0− 105

The pulse duration corresponds to a spectral-intensity FWHM of about 2 nm at a
wavelength of 775 nm. (The more common definition of pulse duration in terms of
its intensity FWHM would be τFWHM = 2

√
2 ln 2 τ = 447 fs.)

The overlap of 1.5 ·105 1
m
is based on the eigenmodes of a realistic waveguide. This

value was calculated by Helge Rütz.
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Figure B.1.: Mean photon number versus pump power. The fit has only the coupling
efficiency into the waveguide as a free parameter. All other parameters are
derived from first principles. The resulting coupling efficiency is lower than
expected but still reasonable.

The value of the nonlinear coefficient for our process is quite difficult to extract
from the literature. There seem to be only two papers which measure the relevant
coefficients [97, 98]. Unfortunately, they use different nomenclatures for KTP, which
means that the tensor elements d24 and d15 are swapped. It seems that this has not
been noticed when referencing this work in [33]. This means that the nonlinearity
χ(2) of our process, which we believe to be y → y+z corresponding to the element d24,
can be either 2.8 pm

V
or 5.2 pm

V
, taking the values from [97]. We believe the latter one

is correct. Additionally, this value was measured at 1313 nm, which means that the
value for our process at 1535 nm should be slightly lower. As if those uncertainties
were not enough, we cannot reproduce the SHG efficiency from classical optics up
to a factor of 2

π
with our theory. This is unfortunate and does not allow us to

reliably compare the measured mean photon numbers with theory. Nevertheless, to
get a rough comparison between theory and experiment, we use χ(2) = 5.2 pm

V
and

multiply it by our correction term
√

2
π
. The only free parameter remaining is the

coupling efficiency of the pump beam into the waveguide. In Fig. B.1 we show the
result of this fit to our measured data. The data itself and the experimental setup
are discussed in Sec. 5.4.

B.2. Chirp and Decorrelation

For simplicity, we assume a Gaussian spectral envelope function. Chirp in the spectral
domain can be described as a frequency dependent phase term in the spectrum of
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the pulse:

α(ωp) = α0 exp

{
−∆ω2

p

2σ2
p

− i(a∆ω2
p + b∆ωp)

}
, (B.5)

where ∆ωp = ∆ωs + ∆ωi and a and b are chirp parameters. 2a is usually referred
to as the group velocity dispersion (GVD). The linear term only shifts the pulse by
the group velocity. It can also be separated into independent signal and idler terms
and can be omitted from here on. To see the effect of the GVD, we also assume a
Gaussian phasematching function oriented at 45◦ in phase space:

φ = exp

{
−(∆ωs −∆ωi)

2

2σ2
φ

}
, (B.6)

leading to the phasematching function

f(ωs, ωi) = α0 exp

{
−
(

1

2σ2
p

+ ia

)
(∆ωs + ∆ωi)

2 − 1

2σ2
φ

(∆ωs −∆ωi)
2

}
(B.7)

= α0 exp

{
−
(

1

2σ2
p

+ ia+
1

2σ2
φ

)(
∆ω2

s + ∆ω2
i

)
−
(

1

2σ2
p

+ ia− 1

2σ2
φ

)
2∆ωs∆ωi

}
.

(B.8)

If we set σp = σφ, the correlation term almost vanishes and we get

f(ωs, ωi) = g(ωs)h(ωi)e
−2ia∆ωs∆ωi . (B.9)

The phase term becomes negligible if

σ2
pa << 1. (B.10)

Assuming a pump spectral width of σλp = 2 nm at λp = 775 nm (meaning σp =
1 THz) and 2a = 2 · 103 fs2, which corresponds to 5 cm of glass or 1 cm of KTP, we
get

σ2
pa ≈ 10−3 << 1. (B.11)

That means that dispersion does not play a role with the experimental parameters
chosen for this thesis. Even one meter of fiber would just introduce a dispersion of
a = 2 · 104 fs2. Only above these values, dispersion leads to correlations in the JSA
which significantly affect its separability.
Quite interestingly, regarding Eq. B.8, we could eliminate the correlation term by

a corresponding chirp in the phasematching function. This is possible in principle by
designing the poling function χ(z) accordingly. Since the phasematching function is
essentially a Fourier transform of χ(z), the inverse Fourier transform of exp{−( 1

2σ2
p

+
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ia)∆k2} should do the trick, which is

χ(z) = exp

{
i2πz

Λ

}
exp

− z2

2
(

1
2σ2

p
+ ia

)
 (B.12)

= exp

{
i2πz

Λ

}
exp

−z
2
(

1
2σ2

p
− ia

)
2
(

1
4σ4

p
+ a2

)
 (B.13)

= exp

i
2πz

Λ
+

z2

2
(

1
4aσ4

p
+ a
)
 exp

− z2

2
(

1
2σ2

p
+ 2σ2

pa
2
)
 (B.14)

or something as close as possible with the constraint that χ can only take the values
+1 or −1. We have added the 2π/Λ term here, even though it was included in
the ∆k previously. The Gaussian envelope accounts for the Gaussian envelope of the
phasematching. In case of a sinc-phasematching this would be a box-function as used
in the theory section of PDC with a length L. The new part here is the quadratic
phase, very similar to the chirp in Eq. B.5. In conclusion, a quadratic chirp of the
pump can be accounted for by a quadratic chirp of the poling momentum vector.
This does not mean that signal and idler have no chirp, but that they are separable
despite a chirp.
Reversing that argument, imperfections in the waveguide could reduce the separa-

bility of the JSA. For example, the effective refractive index can vary over the length
of the waveguide, making the effective domain width a function of position Λ(z). A
temperature variation over the length of the waveguide would have the same effect.
Here, one might try to chirp the pump on purpose to achieve a better separability.

B.3. Klyshko Efficiencies

Klyshko efficiencies [116, 118, 119] are the easiest way to characterize loss in a
PDC setup. Both signal and idler are sent onto single-photon detectors and the
coincidence- and single-click probabilities are recorded. In the low-pump-power
regime (〈n〉 << 1) the probability for a photon-pair is given by

pcc = pPDCηsηi. (B.15)

Here ηs and ηi are the probabilities for a single photon to make it to the detector and
produce a click. The probabilities for single clicks are

ps = pPDCηs (B.16)
pi = pPDCηi. (B.17)

Now we see that
ηs =

pcc

pi

ηi =
pcc

ps

. (B.18)
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Two important aspects of a real setup are not taken into account in this expressions.
Firstly, higher-order photons inevitably affect the measured values. This can be
accounted for by analyzing the scaling of the measured ηs with pump power. ηs will
depend roughly linear on the pump power. Therefore, an extrapolation to zero power
yields the correct value. Secondly, background photons, which do not come in pairs
increase the single counts and therefore reduce the calculated efficiencies. This effect
cannot be easily avoided. One option is to use photon-number resolving detectors
and fit a reasonable model to the data as we do in Sec. 5.4.2.
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Appendix C.

Miscellaneous

C.1. Measurement Scheme for Second-Order
Correlation

To measure the second-order correlation function g(2), it is sufficient to split the
state at a 50/50 beam splitter and measure it with low-efficiency click detectors, as
sketched in Fig. C.1. This works, because in the limit of a low click probability, a
click detector acts as a linear detector and can be described by the operator ηn̂, where
η is the efficiency and n̂ the number operator. Then, the coincidence probability (a
joint click in modes a1 and a2) divided by the single-click probability gives

pcc

ps1ps2

=
〈η1η2a

†
1a1a

†
2a2〉

〈η1a
†
1a1〉〈η2a

†
2a2〉

=
〈a†1a1a

†
2a2〉

〈a†1a1〉〈a†2a2〉
. (C.1)

Applying the beam splitter transformations for a↔ b and using the fact that one of
the ports is a vacuum port, we get

a†1a1a
†
2a2 ∝ (b†1 + b†2)(b1 + b2)(b†1 − b†2)(b1 − b2) = b†1(b1 + b2)(b†1 − b†2)b1 (C.2)

= b†1b1b
†
1b1 − b†1b2b

†
2b1 = b†21 b

2
1 (C.3)

and hence
pcc

ps1ps2

=
〈b†21 b

2
1〉

〈b†1b1〉2
= g(2). (C.4)

This is a very simple yet powerful measurement because it gives information about
the number of modes in a PDC state or identifies sub-Poissonian, nonclassical states.

50/50

click
ρ

click

Figure C.1.: Measurement scheme for g(2).
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C.2. Tomography using Convex Optimization

Here, we discuss the numerical implementation of a convex quadratic minimization
problem for detector tomography and state tomography. The method was introduced
for detector tomography in [128] and used in [162, 163]. However, the details of
the numerical implementation are not given in the paper. Here, we describe our
implementation in python.

The Problem

We start with detector tomography of a single phase insensitive photon-number de-
tector (though the method can be extended to multidimensional and phase sensitive
detectors). The POVM is given by

Πk =
∑
n

θkn|n〉〈n| (C.5)

and the outcome probabilities by

pk = Tr(Πkρ). (C.6)

In detector tomography, the states are known and the probabilities are measured.
We use coherent states and append another index to the equation:

pkα = Tr(Πkρα). (C.7)

In the photon-number basis this equation becomes

pkα =
∑
n

θknrnα, (C.8)

where rnk = |〈n|α〉|2. In matrix notation it can be written as

P = ΘR. (C.9)

Since the number of measurements is always finite, the measured probabilities will
not be exactly P but drawn from a multinomial distribution according to probability
distribution P. We call the matrix with measured probabilities F . The minimization
problem is then formulated as follows:

minimize {||F −ΘR||2 + γS} (C.10)

θkn ≥ 0
∑
k

θkn = 1. (C.11)

The two constraints ensure that all probabilities are positive and sum to one. The
2-norm is defined as ||A||2 =

√∑
ij |aij|2. S is a regularization factor defined as

S =
∑
kn

(θkn − θk,n+1)2. (C.12)
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The influence of S can be tuned with the parameter γ. Since S penalizes high
differences in the value of adjacent matrix elements, it ensures a smooth looking
matrix. This assumption is justified by the effect of losses on the detector.
The minimization problem is convex, quadratic (norm-2) and semidefinite (π ≥ 0)

and is therefore numerically feasible.

Implementation for Detector Tomography

Our implementation of choice is done in python using the module cvxopt. This
is a basic, powerful module for convex optimization problems. We use the solver
cvxopt.solvers.cp(). It understands the following problem:

minimize y(x) (C.13)
subject to Ax = b (C.14)

Gx � h (C.15)

where y is a scalar function, x the vector to be optimized, A and G matrices and
b and h vectors. The inequality � is understood element-wise. Since our problem
is formulated for a matrix Θ, we have to identify the vector elements of x with our
matrix elements. If Θ is a K ×N matrix, a convenient way is to ’flatten’ the matrix
by identifying

θkn = xNk+n. (C.16)

The matrices A,G and vectors g, h consist of ones and zeros:

Aij =
∑
k

δi,j+Nk bi = 1 (C.17)

Gij = −δi,j h = 0 (C.18)

To incorporate the cost-term, we minimize y(x) = g(x) + γS(x), where g(x) =
||F − ΘR||22 and S given by Eq. C.12. Note that we minimize the square of the
distance rather than the distance itself because we fount that it is numerically faster.
This should not make a difference in the final solution. The solver requires the specific
definitions of the first and second order derivatives of y(x). After careful calculations
we find that

dg

dθk′n′
= −2

∑
α

(fk′α −
∑
n

θk′nrnα)rn′α (C.19)

and
d2g

dθk′′n′′θk′n′
= 2

∑
α

δk′k′′rn′′αrn′α. (C.20)

In this notation, the first derivative is a K ×N matrix and the second derivative is
a K × N × K × N tensor. This has to be translated to a KN vector and KN ×
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KN matrix, respectively, which is just a redefinition of indices. We also need the
derivatives of S:

dS

dθk′n′
=


2(θk′0 − θk′1) n′ = 0

2(2θk′n′ − θk′n′+1 − θk′n′−1) 0 < n′ < N

2(θk′N − θk′N−1) n′ = N

(C.21)

and

d2S

dθk′′n′′θk′n′
=


2δk′k′′(δn′′0 − δn′′1) n′ = 0

2δk′k′′(2δn′′n′ − δn′′n′+1 − δn′′n′−1) 0 < n′ < N

2δk′k′′(δn′′N − δn′′N−1) n′ = N

(C.22)

Eq. C.20 and all of Eqs. C.22 are not dependent on Θ and have to be defined only
ones, using for-loops if yo want. The solver is amazingly fast which is probably due
to the knowledge of the derivatives. Please look into the python code (not provided
with the thesis) and the users guide of cvxopt under the topic nonlinear convex
optimization for further details on the implementation.
In Fig. C.2 we show simulation result for an 8−bin TMD with a detection efficiency

of 20%. This was calculated using 100 different coherent states with 0 ≤ α < 3.5,
106 events, setting photon-number contributions above 20 to zero and γ = 0.01.

Figure C.2.: The true and the reconstructed POVM elements θkn. The reconstruction
works quite well. Without the regularization function S, the elements for higher
n would fluctuate extremely between zero and one. A direct inversion method
for these parameters would not work at all, yielding unphysical results.

Implementation for One-Mode State Tomography

Since state tomography and detector tomography are very similar, the same approach
can be used. State tomography is even simpler, because it needs one index less. We
still assume phase insensitive detectors, such that only the photon-number distri-
bution of the state can be measured. Therefore, we can assume that the state is
diagonal in the photon-number basis and hence described by a vector ρ. The matrix
equation is

p = Θρ, (C.23)
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where p are the click probabilities, ρ the state to be measured and Θ the detector
matrix, possibly known from preceding detector tomography. Again, the measured
frequencies are denoted by f and we can formulate the problem:

minimize {||f −Θρ||22 + γS} (C.24)

ρn ≥ 0
∑
n

ρn = 1. (C.25)

The 2-norm is just the length of the vector. The regularization factor S can be
defined as

S =
∑
n

(ρn − ρn+1)2. (C.26)

Whereas in detector tomography, we could justify the regularization by the presence
of losses, in this case there is no such justification. The regularization will artificially
broaden the photon-number distribution. For Fock states, the effect should be the
strongest. Therefore, we can use Fock states to estimate the influence on photon-
number statistics.
The derivatives can be calculated to be

dg

dρα
= −2

∑
i

(fi −
∑
j

θijρj)θiα (C.27)

d2g

dρβdρα
= 2

∑
i

θiαθiβ (C.28)

Furthermore

dS

dρα
=


2(ρ0 − ρ1) α = 0

2(2ρα − ρα+1 − ρα−1) 0 < α < N

2(ρN − ρN−1) α = N

(C.29)

d2S

dρβdρα
=


2(δβ,0 − δβ,1) α = 0

2(2δα,β − δα+1,β − δα−1,β) 0 < α < N

2(δN,β − δN−1,β) α = N.

(C.30)

We find that γ ≈ 10−7 is sufficient to smoothen the reconstructed photon-number
probabilities whereas still maintaining fidelities above 99% for Fock states and co-
herent states. Similar to detector tomography, the smoothing improves the results.

Implementation for Two-Mode State Tomography

Only small changes have to be made to apply the previous code to two-mode to-
mography. We assume that the two TMDs are independent. The detector is then
characterized by

Θ = Θ1 ⊗Θ2, (C.31)
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where Θi are the POVMs of TMD i and ⊗ refers to the tensor product. The measured
frequencies can be characterized by a matrix f̃m,n, which gives the measured click
probabilities for m photons in TMD 1 and n photons in TMD 2. This matrix has to
be flattened to fi = fkm+n = f̃m,n, where k = N + 1 and N is the number of TMD
bins. Now we can use the formulation of Eq. C.24. We just have to be careful about
the regularization S. It should be changed to

S =
∑
mn

[(ρmk+n − ρmk+n+1)2 + (ρmk+n − ρ(m+1)k+n)2] (C.32)

with the appropriate derivatives dS
dραk+β

=



2(ρ0 − ρ1)

+2(ρ0 − ρk) α = 0, β = 0

2(2ρβ − ρβ+1 − ρβ−1)

+2(ρβ − ρk+β) α = 0, 0 < β < N

2(ραk − ραk+1)

+2(2ραk − ρ(α+1)k − ρ(α−1)k) 0 < α < N, β = 0

2(2ραk+β − ραk+β+1 − ραk+β−1)

+2(2ραk+β − ρ(α+1)k+β − ρ(α−1)k+β) 0 < α < N, 0 < β < N

2(2ρNk+β − ρNk+β+1 − ρNk+β−1)

+2(ρNk+β − ρ(N−1)k+β) α = N, 0 < β < N

2(ραk+N − ραk+N−1)

+2(2ραk+N − ρ(α+1)k+N − ρ(α−1)k+N) 0 < α < N, β = N

2(ρNk+N − ρNk+N−1)

+2(ρNk+N − ρ(N−1)k+N) α = N, β = N.

(C.33)

All these cases mean that for each entry in the k× k matrix you have to subtract its
direct neighbors (four in the middle, three at the borders and two at the corners).
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And now the second derivatives dS
dραk+βdργk+δ

=

2δ0,γ(δ0,δ − δ1,δ)

+2δ0,δ(δ0,γ − δ1,γ) α = 0, β = 0

2δ0,γ(2δβ,δ − δβ+1,δ − ρβ−1,δ)

+2δβ,δ(δ0,γ − δ1,γ) α = 0, 0 < β < N

2δα,γ(δ0,δ − δ1,δ)

+2δ0,δ(2δα,γ − δ(α+1),γ − δ(α−1),γ) 0 < α < N, β = 0

2δα,γ(2δβ,δ − δβ+1,δ − δβ−1,δ)

+2δβ,δ(2δα,γ − δα+1,γ − δα−1,γ) 0 < α < N, 0 < β < N

2δN,γ(2δβ,δ − δβ+1,δ − δβ−1,δ)

+2δβ,δ(δN,γ − δN−1,γ) α = N, 0 < β < N

2δα,γ(δN,δ − δN−1,δ)

+2δN,δ(2δα,γ − δα+1,γ − δα−1,γ) 0 < α < N, β = N

2δN,γ(δN,δ − δN−1,δ)

+2δN,δ(δN,γ − δN−1,γ) α = N, β = N.

(C.34)
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