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period ts TS∈  

0
,  p tmiM ∈N  Inventory of product p P∈  at the end of  mid-term planning time-period 

tm TM∈  

0
,  p tsiS ∈N  Inventory of product p P∈  in short-term period ts TS∈  
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ts TS∈  

,m pReSϖ  Initialization of the number of completely used steel coils of the actual lot 

relevant for machine m M∈ , product p P∈  in the first short-term period 

 minTS TS∈  

,m pSlSϖ  Initialization of the slack variable, representing the cumulative quantity of 

uncompleted batches relevant for machine m M∈ , product p P∈  in the 

first short-term period  minTS TS∈  

,
mtnc

m pbinSϖ  Initial maintenance binary state of product p P∈  in the first short-term peri-

od  minTS TS∈  of the rolling horizon 



xi 

,m pbinxMϖ  Initial production binary state of product p P∈  in the first mid-term planning 

time-period of the rolling horizon 

,
mtnc

m pcmSϖ  Initial cumulated progress of maintenance in per cent of product p P∈  in the 

first short-term period  minTS TS∈  of the rolling horizon 

, ,m p qcsSϖ  Initialization of set-up progress of a set-up from product p P∈  to product 

q P∈  at machine m M∈  in the first short-term period  minTS TS∈  in per 

cent 

,m pcwSϖ  Initialization of coil change status. 

=1, if a coil is currently changed at machine m M∈  for p P∈  in the first 

short-term period  minTS TS∈  (0, otherwise) 

,
mtnc

m pfmSϖ  Initial binary state for a completed maintenance of product p P∈  in the first 

short-term period  minTS TS∈  of the rolling horizon 

piMϖ  Initial inventory of product p P∈  in the first mid-term planning time-period 

of the rolling horizon 

piSϖ  Initial inventory of product p P∈  in the first short-term period  minTS TS∈  

of the rolling horizon 

,m plotMϖ  Initial lot of product p P∈  in the first mid-term planning time-period of the 

rolling horizon 

,m plotSϖ  Initial lot of product p P∈  in the first short-term period  minTS TS∈  of the 

rolling horizon 

pmbinMϖ  Initial maintenance binary state of product p P∈  in the first mid-term plan-

ning time-period of the rolling horizon 

,m pmlSϖ  Initialization of minimal lot size achievement. 

=1, if minimal lot size was currently achieved at machine m M∈  is produc-

ing product p P∈  in the first short-term period  minTS TS∈  (0, otherwise) 

pmpMϖ  Initial maintenance percentage of product p P∈  in the first mid-term plan-

ning time-period of the rolling horizon 

pmpSϖ  Initial maintenance percentage of product p P∈  in the first short-term period 

 minTS TS∈  of the rolling horizon 

, ,m p qmstSϖ  Initialization of the minimal set-up time variable. 

=1, if a set-up from product p P∈  to product q P∈  at machine m M∈  

was finished in the first short-term period  minTS TS∈  (0, otherwise) 

,m pprodSϖ  Initialization of production. 

=1, if machine m M∈  is producing product p P∈  in the first short-term 

period  minTS TS∈  (0, otherwise) 

, ,m p qrSϖ  Initialization of machine set-up. 

=1, if machine m M∈  is currently being set up from product p P∈  to 

product q P∈  in the first short-term period  minTS TS∈  (0, otherwise) 



xii 

,m psSϖ  Initialization of machine status. 

=1, if machine m M∈  is set up for product p P∈  in the first short-term 

period  minTS TS∈  (0, otherwise) 

tsteamsSϖ  Initialization of the number of set-up teams in the first short-term period 

 minTS TS∈  

tsM  Mid-term period length in hours 

tsS  Short-term period length in hours 

 

 



1 

1 Introduction 

Customer satisfaction is of substantial interest for companies, which want to sustain 

their success.1 This prioritization determines the targets of production planning and con-

trol, as it is a part of corporate planning.2 Lot sizing and scheduling are related to pro-

duction planning,3 especially in multi-variant serial shop fabrication.4 Due to the influ-

ence on lead times, on flexibility and on the adherence to promised delivery dates, lot 

sizing and scheduling has an impact on delivery serviceability. Despite its importance 

for productivity, lots and schedules are often planned without using mathematical meth-

ods that will guarantee the optimality of the plans.  

The basic problem has already been formulated as a mixed-integer linear program 

known as the Discrete Lotsizing and Scheduling Problem (DLSP)5. This formulation 

cannot, however, be applied in practice6 as important aspects are disregarded. Dynami-

cally changing customer demands and unexpected events7 complicate the basic prob-

lem. Inventory costs, sequence-dependent set-up costs, time-dependent production costs 

and so on are further examples of complicating factors. Personnel planning has to be 

focused as it influences overall costs significantly, especially selecting cheaper shifts for 

personnel-intensive tasks. Several technical and organizational restrictions in produc-

tion, like the consideration of sequence-dependent set-up times, batched production, 

maximum lot sizes and maintenance of dies, make the calculation of feasible solutions 

more difficult. In this work, a lot sizing approach is presented, which considers all the 

mentioned as well as further aspects. 

Due to the constantly changing environment, it is not useful to spend too much effort 

calculating detailed lot sizes and schedules for long planning horizons. Accordingly, the 

relevant operative and rolling planning horizon is split into two consecutive levels: On 

the first level, rough mid-term production plans are calculated, taking into consideration 

all the relevant costs and constraints using an extension of the basic Capacitated Lot-

                                                 

1 See e.g. [LG09]. 
2 See [Kur11], p.29, or [Paw07]. 
3 See e.g. [KS01], pp.40–91. 
4 See [Tem06], p.1 and [AIKTF08], p.110. 
5 See e.g. [Fle90]. 
6 The research project was executed in cooperation with a supplier to the automotive industry. Extensions 

are based on practical circumstances. 
7 In production practice, unexpected events can be machine or die malfunctions resulting in smaller pro-

duction outputs and capacity reductions. 
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Sizing Problem (CLSP).8 For the short-term, the resulting lots are detailed within the 

next planning level. An extension of the DLSP determines maintenance of the dies, per-

sonnel schedules, raw material and loading equipment, as well as procurement and de-

tailed production scheduling, all of which minimize the overall costs.  

                                                 

8 See e.g. [BY82]. 
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2 Problem Statement / Problem Decomposition 

The subject matter of this work is to give appropriate operative production plans which 

define lot sizes and schedules in capacitated production environments. The considered 

plant consists of different product stages: 

Figure 1: Product Stages 

First, supplied raw material is stocked. The raw material is then processed in the mold-

ing presses stage. After that, half-finished parts are stocked before they are washed, pol-

ished and/or hardened. The need for passing parts through sub-processes as well as the 

material flow through sub-processes depends on the part. These steps, pooled in the 

black box (see figure 1), are neglected in this work, as the processing lead times are 

similar and because of high capacities. After that, finished parts are stocked and later 

assembled as final products, which are dispatched to the final customer. In this work, 

the focus is laid on the molding presses stage. The following sections describe the prob-

lem in further detail. 

As competitiveness can only be sustained by satisfying customer needs, availability of 

supply is of great importance. The first section is dedicated to describing the obligatory 

guarantee of availability and characterized customer demands. In order to satisfy de-

mands, several manufacturing resources are required. Being one of the major cost driv-

ers, human resources have to be considered in production plans. Available machines as 

well as raw material and molding tools, from now on referred to as “dies”, must be used 

as efficiently as possible in order to produce at minimum cost. Lots and batches underlie 

constraints induced by production requirements which are described in the restrictions 

section. Lastly, the problem is broken down into smaller sub-problems that must be 

solved, and which are detailed in the last section. The goal and the necessities for each 

sub-problem are outlined. The broken-down problem and solution approaches for the 

sub-problems constitute the lot sizing concept. 

Half-Finished 

Part Stock 

Molding Blackbox 
 

Assembling Dispatching 

Raw Material 

Stock 

Finished Part 

Stock 

Finished Product 

Stock 
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2.1 The Necessity of Guaranteeing Availability to Customers 

The long-term goal of manufacturing producing companies is to be successful. In par-

ticular, six strategic factors of success or competitive advantages9 are named in the liter-

ature: costs, quality, flexibility, time, product variety and service.10 An aspect of logisti-

cal service quality is the company’s ability to deliver the correct amount of ordered 

products at the agreed time. This becomes more important as customers have higher 

exigencies towards supply availability due to the request of higher flexibility at low 

costs in a volatile and competitive environment.  

The change from stock-oriented to more flexible just-in-time or even just-in-sequence 

production,11 which is induced by the shift from a sellers’ to a buyers’ market, forces 

the necessity of coupling production systems12 along the supply chain in order to fulfill 

changing customer demands as quickly as possible. An established communication be-

tween partners is a precondition for that. The basic interconnection between customers 

and their suppliers is the transfer of orders. Therefore, orders placed and the way in 

which they are placed have to be examined.  

In particular, this work deals with the production and delivery of parts for the automo-

tive industry. The sample company is a first and second tier supplier which produces 

seat parts and seat components for cars. The problem properties, which are described in 

the next sub-sections, can be found at other automotive suppliers and even in different 

industries. First, the customers’ orders are characterized, and then the flexibility is ex-

plained and put into contrast with induced costs. 

                                                 

9 According to[Sim88], a competitive advantage is a performance which is better than the performance of 
a competitor if the following criteria are met: 

1. The performance has to be an important feature for the customer 
2. The performance has to be recognized and realized by the customer 
3. It should not be possible for competitors to copy the performance quickly and the performance 

should be sustainable 
10 See [KB05] (p.6 et seqq.), [KG83] (p.27 et seqq.), [Eid91] or [BGG89]. 
11 The main concept of just-in-time production is the initiation of goods and services by a customer order 

[Dan09] (p.1300). Just-in-sequence production is often considered as an evolution of just-in-time pro-
duction for a production environment with a high number of variants [TDS9]. 

12 The composition of a production system is described in [Dan09](translation): “A production system 
consists of (elementary) working systems, which represent the smallest unit of a combination of poten-
tial factors operating resources and workforce and which can execute one or more classes of transfor-
mations.” 
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2.1.1 Characterization of Customer Orders 

As the fulfillment of customer demands is a competitive advantage from the viewpoint 

of an automotive supplier, it is considered in this work and analyzed in the case in ques-

tion in further detail in this sub-section. Customers of the selected company are Original 

Equipment Manufacturers (OEM) as well as first tier suppliers. The plant which is be-

ing examined delivers its products not only to external customers but also to other 

plants within the company, called internal customers.  

Customer orders13 are transmitted and updated electronically via the installed Enterprise 

Resource Planning (ERP) system. This enables the customer to be rather flexible and to 

change orders quickly. Although there exist long-term forecasts of sales for each prod-

uct, which are necessary to dimension required capacities correctly, demands vary de-

pending on the final consumer demand. Especially on the mid- and short-term horizon, 

seasonal reasons, marketing campaigns, stock increments or reductions along the supply 

chain or other accounts effect fluctuation of demands. This work concentrates on the 

operative level. A major problem to consider is therefore the satisfaction of altering cus-

tomer orders with available but limited and fixed capacities at minimal costs on a short-

term horizon.  

An analysis of customer orders and order changes made some characteristics observa-

ble. Demand planning is carried out in a hierarchical way. As stated before, forecasts 

exist for about two years which serve as a basis for calculating required manufacturing 

capacities as well as required human resources. The results are input for shorter time-

periods. Yearly demand forecasts are apportioned to each month. These calculations are 

adapted and corrected, applying the expert knowledge of production planners and using 

statistical methods, so that suitable monthly demand forecasts are available. More prob-

lematic are demand forecasts in shorter time-periods. As most customers apply just-in-

time or even just-in-sequence principles in their production systems, orders are often 

modified regarding the amount or/and the exact delivery time due to changes in the cus-

tomer environment. Relevant information about customer disruption concerning produc-

tion or supply is not transmitted instantly. The differences between real and forecast 

orders depend on the time to the planned delivery.  

                                                 

13 In this work, dependent demands as well as independent demands (see [OLL93] for a description of 
both terms) are available in the considered production. As the considered stage is at the beginning of 
the production process, the types do not have to be differentiated.  
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Figure 2: Customer Demand Characterization 

The farther away the planned order date, the greater the variance of the exact delivery 

time and ordered amount. Experience has shown that starting from today orders from 

day one to three are not changed by the customer and can be considered as fixed. From 

day four to fourteen, orders change slightly. After that, order time and amount are no 

longer guaranteed and the production is confronted with high order variation.14  

As the customer usually does not reveal information about process problems to the sup-

plier but instead asks for just-in-time supply, the supplier has to adapt to this situation. 

The resulting questions are how the supplier can adapt to such volatile environments 

and how much the expected flexibility costs.  

2.1.2 Flexibility vs. Costs 

Due to the development from a sellers’ market to a buyers’ market, production princi-

ples have changed from push to pull. Today, material and products are no longer pushed 

into production (push principle) but available orders are realized (pull principle). This 

requires flexibility in production as the equalization of the order inflow with the produc-

tion plan needs rapid reactions.15 Automotive OEMs in particular exact accurate and on-

                                                 

14 See [Tha97] for a basic description of delivery request systems. See [VDa96], [VDA91] and [VDA96] 
for further details. 

15 See [Wan05]. 
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time delivery of ordered goods at low costs. This sub-section is dedicated to the prob-

lem each supplier has to deal with: the balance between flexibility and costs. 

The great number of different definitions16 is a result of heterogeneous terms and di-

verse definitions about the dimensions of flexibility and the varied understandings of 

the delimitations of flexibility stretching to other terms like agility or adaptability.17 

Horvárth and Mayer give a definition in the context of manufacturing. They consider 

flexibility as the ability to advance production in the short term and to keep freedom of 

action in the long term. As bordering areas like personnel management, finance or pur-

chasing have a great impact on flexibility, they have to be reconciled with production.18 

Schmigalla defines flexibility as the capability of a production system, which is consid-

ered to be fixed during a defined time horizon, to adapt to changing requirements in-

duced by the range of products and the technological process without changing the 

numbers of elements and without changing the structure.19 Handrich combines two def-

initions and describes flexibility as the ability to adapt to changed environmental condi-

tions which can occur in the future. Flexibility can generally be described as the ability 

to change within defined dimensions and scenarios.20 

A standardized classification of flexibility types in entrepreneurial practice does not 

exist. Some authors make a classification on a time basis and others classify flexibility 

types according to system-dependent dimensions. A classification of flexibility types, 

which also groups the types according their time frame, is given by REFA.21 

Flexibility Type Quantitative Description Time Frame 

Flexibility of extension Effort to make extensions  
Long term 

Flexibility of adaptations Effort to make modifications 

Flexibility of products 
Number of different component parts, 
degree of freedom at machine scheduling  

Short term Redundancy of production Number of alternative means of production 

Flexibility of amount 
Restrictions of additional shifts or reduced 
hours 

Figure 3: Flexibility Types According to REFA 

                                                 

16 See [SM98].  
17 See [KK05],[KB05]. 
18 See [HM86]. 
19 See [Sch95]. 
20 See [Han02]. 
21 See [Rog09]. 
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A classification of flexibility by Sethi and Sethi22 is made according to system depend-

ent dimensions. Eleven flexibility types are differentiated and scopes of flexibility are 

identified within group flexibility types.  

Scope of Flexi-

bility 
Type of Flexibility Description 

Flexibility of 
compo-

nent/basis 

Flexibility of machine 
Variety of operations at one machine without 
set-up 

Flexibility of material flow 
Ability to produce various parts efficiently us-
ing different flow paths 

Flexibility of workflow Possibility of different workflows 

Flexibilities of 
the system 

Flexibility of process 
Ability to produce various parts without recon-
figuration or rebuilding within the system 

Flexibility of process se-
quence 

Possibility of producing a part in different se-
quences 

Flexibility of product 
range 

Ease of introducing new products 

Flexibility of production 
quantities 

Ability to work economically at different work-
loads 

Flexibility of extensions 
Effort to adapt the flexibility and the ability to 
work 

Aggregated 
Flexibilities 

Flexibility of production 
program 

Stability of the system to produce different 
variants without changing resources 

Flexibility of production 
Variety of production of the system to produce 
parts without rebuilding but with set-ups 

Flexibility towards market Ability of the system to react to market changes 

Figure 4: Flexibility Types According to Sethi and Sethi 

This way of classifying flexibility by means of system-dependent dimensions is also 

used in a similar classification carried out by Tempelmeier.23 

Another classification is made by Wildemann,24 which is based on a differentiation be-

tween quantitative, qualitative and time flexibility.  

Group Quantitative Flexibility Qualitative Flexibility Time Flexibility 

Differentiation 
Adaptation to varied 
quantities and structures 

Adaptations to new manu-
facturing tasks 

Time necessary to change 
production tasks 

Characteristics 

Ability to 
- Expand 
- Compensate 
- Store 

- Versatility, ability to set 
up 

- Manufacturing redundan-
cy 

- Ability to rebuild  

- Permissive throughputs 
- Automated changes 

Figure 5: Flexibility Types According to Wildemann 

Essentially, most definitions refer to the availability of freedom of action, the availabil-

ity of freedom for decisions, or the possibility of varying something in conjunction with 

                                                 

22 See [SS90]. 
23 See [TK93]. 
24 See [Wil87]. 
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changes.25 Since uncertainty as well as unpredictable environmental changes overbur-

den the technical and organizational adaptability, it is important to consider the change-

ability of production systems regarding structure and available resources. All in all, it 

can be said that flexibility of a production system, which is characterized by its adapta-

bility and changeability to counteract environmental changes, creates and extends the 

technical and organizational scope for action.26 The initial generation of flexibility and 

sometimes the sustainment of flexibility are related to time27 and consequently to 

costs.28 By considering only some aspects of Sethi and Sethi’s classification, it is easy 

to find examples:  

1. Flexibility of machine: A machine which can execute a variety of operations 

without set-up is more expensive than a simple machine designed to do only one 

task. 

2. Flexibility of production quantities: In order to cope with different workloads, 

capacities of production requirements have to be adapted. Capacity extensions 

are often related to investments (i.e. machines) and take time. Capacity reduc-

tions are also limited as former invested capital is bound up in, amongst other 

things, buildings, machines or the specialized know-how of the personnel.  

3. Flexibility of production program: Changes in the production program influence 

many entities of the production system. Overall flexibility costs are induced by 

the sum of the flexibility costs for all influenced entities. If considering, for ex-

ample, only influenced machines, the sum of adaptation costs has to be calculat-

ed.  

Flexibility enables adaption to market dynamics, in other words, changing customer 

demands. Investments in capacities to gain flexibility have to generate an adequate ad-

vantage. Instead of obtaining further entities to increase production capacity, the usage 

of the available ones should be analyzed and improved. A way to improve productivity 

quickly and with less financial investments is to automate and optimize planning. One 

goal of this work is to free capacity as a consequence of optimized planning resulting in 

larger flexibility to satisfy varying customer demands. Another goal is to make deci-

                                                 

25 See [Dor86].  
26 See [Rog09].  
27 [Hop89] identifies several types of period for an activity for improving flexibility to take effect. The 

time to perceive a change is taken into account, as well as the time to decide the activity, to realize the 
activity and finally the time the activity needs to take effect. 

28 See [Hal99]. 
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sions faster and to reduce the delay time of activities executed as a reaction to chang-

es.29 

In the next section, requirements which are necessary for production in the considered 

production stage are described in detail. The flexibility of each requirement is analyzed 

in order to describe planning decisions’ degrees of freedom.  

2.2 Restrictions  

In [Ame06], a restriction is defined as “Something that restricts; a regulation or limita-

tion.” A more precise and suitable definition is given in [Agn02]: “A condition that im-

poses a constraint on the possible values of a variable or in the domain of arguments of 

a function.” This definition in the mathematical sense is useful for the purpose of this 

work. 

In production there are many technological and organizational aspects which restrict 

decisions in many dimensions. Restrictions complicate decision making significantly. 

Without restrictions, it would be easy to satisfy all customer demands in the considered 

practical case. The required workforce, machines, dies, raw materials and loading 

equipment mentioned and described are necessary to produce and, consequently, they 

are also necessary to satisfy customer demands. These resources are not ubiquitous; 

they are only available in limited amounts. Different flexibility degrees pose a further 

challenge during decision making, as every requirement has to be considered individual-

ly and the interrelation between the requirements complicates the problem. Hence, the 

availability of resources has to be considered over time. As production does not run 

without production factors, the consideration of existing limitations of production fac-

tors30 is essential during the preparation or planning31 of production. Gutenberg32 char-

acterizes and groups production factors as follows: 

                                                 

29 See [Hop89] for further details. 
30 Production factors are the inputs of a production [Dan09]. 
31 According to [WVW00], “planning is a notional anticipation of future events” (translated). In [Lut], 

planning is defined as “basic management function involving formulation of one or more detailed 
plans to achieve optimum balance of needs or demands with the available resources.” In [Hah96] 
(translated), production planning is defined as notional anticipation of future events through a system-
atic preparation of decisions and a systematic decision taking. It contains the decision process to 
search, evaluate and choose between solution alternatives to solve a problem in a target oriented way”. 
He further states that planning as well as control are the most important leading and management tasks.  

32 See [Gut83]. 
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Figure 6: Classification of Production Factors according to Gutenberg 

First, production factors can be subdivided into dispositive factors and elementary fac-

tors, which have direct influence on the production process. Object-related work direct-

ly influences the production process and manufacturing resources as well as raw materi-

al. Human work, which is dedicated to management and control of the companies’ busi-

ness processes, is further subdivided by Gutenberg into original factors and derivative 

factors. The following sub-sections describe those production factors which are relevant 

for the considered production stage. Starting with a detailed description of the human 

workforce, the most important manufacturing resources as well as needed materials are 

described.  

2.2.1 Workforce 

This section is dedicated to defining and describing relevant problem details about the 

workforce. Regarding Gutenberg’s classification of production factors, planning and 

object related work is relevant. Beginning with a definition, human work and related 

processes in the actual practical case are described. Lastly, available flexibility and costs 

are mentioned and described. 

A workforce is “the total number of workers employed by a company on a specific job, 

project, etc.”33 or “all the people working or available to work, as in a nation, company, 

industry, or on a project.”34 There exist several other words expressing the workforce in 

a company. Definitions for personnel are similar: “The body of persons employed by or 

active in an organization, business, or service”35 or “persons employed in any work, 

                                                 

33 See [Agn02]. 
34 See [Ame06]. 
35 See [Ame06]. 
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enterprise, service, establishment, etc.”36 Another term often used to describe the pro-

duction factor “Human work” is “Human Resource”: the “scarcest and most crucial re-

source that creates the largest and longest lasting advantage for an organization. It re-

sides in the knowledge, skills, and motivation of people, is the least mobile of the four 

factors of production, and (under right conditions) learns and grows better with age and 

experience which no other resource can.”37 For the purpose of this work, there can be 

found a suitable definition in [Beu96] (translation):”Human work is a potential factor 

with the inborn and trained ability to do corporal and mental work”.  

In the case study, different types of workers are necessary in order to keep production 

running. In this document, only those workforce types are mentioned and described 

which are relevant to keeping production running on an operative timescale. First, pro-

duction planners will be described. Production planners are responsible for planning and 

scheduling production on a specified subset of machines.38 As production planners pos-

sess detailed expert knowledge about products and processes, it is difficult to replace 

them. Machines are not necessarily compatible with each other. Commutability of plan-

ner–machine assignments is therefore impeded. Because of the emerging risk, the re-

sulting dependency of the company on specialized workers is not desirable. In the case 

study, workers with specialized skills are required to change the dies of the machines. 

These workers, called machine operators, are assigned to a single machine. Despite 

comparably expensive working hours, machine operators are not explicitly considered 

during production planning and scheduling. If the assigned machine is already set up, 

the machine operator controls the production process, books the number of produced 

parts and replaces used and empty raw material units. Machine operators also help other 

machine operators during the die change at their machines. Although the time needed to 

change dies can be significantly reduced by having machine operators as set-up helpers, 

it does allow for the planning of parallel changes of dies at different machines. A set-up 

includes all tasks involved in the changing of one part for another. The used die has to 

be released and transported to the maintenance department. The new die has to be car-

ried to and mounted on the machine. As a precondition before serial production can 

start, first a number of produced parts have to be quality checked. Dimensions are 

measured and compared with specifications. Depending on the part, this is sometimes 

done by machine operators and sometimes by specialized personnel. In both cases a 

limited number of measurement instruments are required to do this. Stackers, who are 

                                                 

36 See [Agn02]. 
37 See [Lut]. 
38 In the case study, every production planner has to create production plan schedules for between two 

and six machines.  
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only needed for bigger or more delicate parts, are another type of worker. Stackers do 

not have to be highly skilled and their working hours are comparably cheap. They pick 

up formed parts and put them into boxes. The transport of finished parts to their next 

process destination is done by forklift operators, who are not studied in this work. 

As in many processes where automation using machines instead of humans is not prof-

itable, production often relies on the availability of a workforce. Human work is, com-

pared to the machines and other intangible assets, flexible and tasks for workers can be 

changed to a certain extent. Nevertheless, human creativity cannot be replaced by ma-

chines, and human work is one of the major cost drivers in production. Therefore, in-

duced costs have to be considered and minimized during production planning. Costs of 

workers basically depend on the workers’ experience, responsibilities, and on the work 

that is carried out as well as on the time and day a worker is deployed. Hourly wages 

depend on the type of worker. The working hours of stackers, for example, are less cost-

ly than the hourly wages of machine operators. Another difference between working 

types is how costs are treated. Stackers have to be available at the machine for the 

whole production time. Some parts do not need stackers, as they simply fall into boxes. 

In the case study, costs for stackers are part of the manufacturing costs of the parts.39 In 

contrast, planners, machine operators and measurement personnel are not calculated as 

direct manufacturing costs at the part level but rather as indirect manufacturing costs. In 

the long term, it is possible to change labor capacity by dismissing or employing people 

or by qualifying already available employees. Flexibility regarding labor capacity in the 

short term can be achieved by using more or less production shifts40 within given con-

straints.41 The day is divided into three shifts42 and there exist three day types43 with 

different cost factors for working hours.  

                                                 

39 In the case study there exist four cost types for parts: direct material costs, indirect material costs, direct 
manufacturing costs per piece and indirect manufacturing costs. 

40 Short-term manpower planning on an individual level has to consider legal, organizational and personal 
aspects which are disregarded in this work. 

41 Labor capacity can be adapted only within defined limits. Long-term employment contracts limit reduc-
tion in labor capacity, and required technical schooling and limited availability of appropriate workers 
restricts an increase in labor capacity. 

42 A shift can be defined as follows: 1. A group of workers who work for a specific period 2. the period of 
time worked by such a group.[But03] 

43 Shifts in case study: morning shift: 06:00–14:00; late shift: 14:00–22:00; night shift: 22:00–06:00. 
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Workday 

Cost Factor: 1 
Sunday 

Cost Factor: 1.7 
Bank Holiday 

Cost Factor: 2.5 
Morning Shift 
Cost Factor: 1 

1 1.7 2.5 

Late Shift 
Cost Factor: 1.1 

1.1 1.87 2.75 

Night Shift 
Cost Factor: 1.2 

1.2 2.04 3 

Figure 7: Cost Factors of Different Day and Shift Types 

Besides object-related work, other production factors are relevant. The next sub-sections 

describe consumable production factors.  

2.2.2 Machines 

According to Gutenberg,44 machines are elementary production factors. This sub-

section is dedicated to defining and describing relevant problem details about machines. 

First, a definition is formulated. Then, the elementary production factor itself and relat-

ed processes in the case study are described. Lastly, the available flexibility and costs 

are mentioned and described. 

A device that applies force, changes the direction of a force, or changes the 

strength of a force, in order to perform a task, generally involving work done 

on a load. Machines are often designed to yield a high mechanical advantage 

to reduce the effort needed to do that work. A simple machine is a wheel, a 

lever, or an inclined plane. All other machines can be built using combina-

tions of these simple machines; for example, a drill uses a combination of 

gears (wheels) to drive helical inclined planes (the drill-bit) to split a material 

and carve a hole in it.45 

In this work, the focus is laid on the molding presses production stage. This first stage 

influences the rest of the production and can be seen as a bottleneck as all products have 

to be processed at this stage and the available machines are limited in production ca-

pacity. The analyzed production depends on the machines as only machines can apply 

appropriate pressures46 on the molds to cut and form steel parts. Before production 

starts, steel coils47 have to be fixed in the coiler. The machine pressure, production 

speed and diverse other adjustments have to be carried out by machine operators. Serial 

                                                 

44 See [Gut83]. 
45 See [The05]. 
46 Depending on the machine, pressures between 500 tons and 1,500 tons can be applied. 
47 See sub-section 2.2.4 for further details on raw materials. 
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production can start after checking the quality and dimensions of the part. Every pass,48 

the machine pulls raw material by a defined infeed and applies pressure on the installed 

die,49 which cuts and forms the parts. The produced half-finished parts fall onto a short 

conveyor belt. Bigger or more delicate parts can be picked from there by stacking per-

sonnel. Other parts fall directly into boxes. The pass counter is used to determine the 

number of produced parts. Filled boxes, provided with a control card,50 are then placed 

by machine operators in a dedicated space, where they are collected and transported by 

forklift operators. On each machine, several dies,51 which have to be compatible with 

the machine, can be installed. The initial installation of a die on a machine is very time 

intensive52 as precision adjustments have to be made by machine operators and mainte-

nance personnel. As the used stamping machines are relatively huge,53 high investments 

leading to high capital commitment have to be made. Monetary aspects and limited 

space impede fast adaptations of available machine production capacity. In contrast to 

machine-related fixed costs, which are important for making strategic investment deci-

sions but less relevant during operative production planning, variable costs, including 

amongst other things operating supplies, have to be considered in order to calculate 

time-dependent production costs.  

The sample machine’s cost center positions are grouped into four cost categories: pri-

mary or secondary variable costs, and primary or secondary fixed costs. The following 

table shows how these costs are defined in terms of the case study.  

                                                 

48 Depending on the machine, on the installed die and on the part which has to be produced, 15–30 passes 
per minute are possible. 

49 See sub-section 2.2.3 for detailed information about dies. 
50 The control card contains information on the content of a box as well as the next production steps.  
51 In the case study, there are about 10–20 dies assigned to each machine. 
52 As it is not very easy for the initial installation process to be standardized and it is difficult to estimate 

time for precision adjustments, between two and four shifts have to be reserved. 
53 Depending on the type, machines are about 14m x 4m x 5m in size. 
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 Variable Costs Fixed Costs 

Primary 
Costs 

- Variable Wages 
- Variable Personal Extra Expenses 
- Tools and Dies 
- Basic and Maintenance Material 
- Consumable Material 
- Maintenance 
- External Labor 

- Fixed Wages 
- Fixed Personal Extra Expenses 
- Depreciation 
- Debt service 

Secondary 
Costs 

- Energy 
- Maintenance 
- Overheads and Management 
- Maintenance 

- Production Planning  
- Occupancy  
- Security  
- Cleaning  
- Overheads and Management 
- Further Internal Services 
- Maintenance 

Figure 8: Classification of Cost Factors at Machines 

The investments which have to be put into machines are high. It follows that deprecia-

tion and debt services are of high relevance in the sample cost center.54 Consequently, 

adaptations to available machine capacity are only possible in the long term. Flexibility 

can only be gained by other means.  

Because of the number of produced variants and because of changes to the products and 

the product portfolio, it is not possible to obtain one specialized machine for each prod-

uct as this would generate high investment costs and small capacity utilizations. A way 

of obtaining flexibility in production, at the same time keeping investment costs at a low 

level, is to assign multiple products to a single machine55 using different dies. Although 

there are machines which are constructed in the same way, they are not identical. Thus, 

time-intensive initial precision adjustments of dies are machine-specific. Consequently, 

machine-die assignments are set on a mid-term time horizon and considered as fixed for 

operative planning. The production speed, in this case expressed by passes per minute, 

is also set during the initial installation of a die on a machine. The production speed has 

an upper limit. Higher speeds result in lower quality of parts.  

To sum it up, the capacity of a single machine can be flexibly shared so that multiple 

parts can be produced on one machine in a limited way. Considering flexibility types by 

Sethi and Sethi,56 the described machines match with different ones. There is a certain 

                                                 

54 In the case study, primary and secondary costs are nearly equal. More than 50 % of the primary costs 
consist of depreciation and debt service of the machine. The next highest primary costs are maintenance 
costs and costs for basic and maintenance material. The sum of variable and fixed personal expenses is 
about 10 % of the total primary costs. The sum of overheads and management, maintenance and occu-
pancy costs set 75 % of secondary costs. The sum of energy, production planning and further internal 
service costs are about 20 % of total secondary costs. 

55 Twenty to forty products are assigned to one machine in the case study. 
56 See [SS90]. 
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flexibility of product range, as several products can be produced on one machine. Quan-

tities can be adjusted to a limited extent (flexibility of production quantities). Extensions 

can be installed using new dies that are compatible with the machine (flexibility of ex-

tensions) and new parts can then be produced (flexibility of program / flexibility of pro-

duction). Capacity adaptations are possible to a limited extent. These enable machines 

to adapt towards market changes (flexibility towards market). Other flexibility types, 

like machine, material flow and workflow, process or process sequence flexibility are 

not available from the considered machines. In order to be able to produce different 

products on a single machine, exchangeable dies are required. In the next sub-section, 

dies are defined and described in further detail. 

2.2.3 Dies 

Other elementary production factors are the dies. In this section, it is explained what 

dies are. Further, it is described which production processes require a die and it is clari-

fied which restrictions exist. 

In the [Ame06], a die is defined as “a device used for cutting out, forming, or stamping 

material.” The definition is specified by further explanations describing what a die is. A 

die is “an engraved metal piece used for impressing a design onto a softer metal, as in 

coining money”; “one of several component pieces that are fitted into a diestock to cut 

threads on screws or bolts”; “a part on a machine that punches shaped holes in, cuts, or 

forms sheet metal, cardboard, or other stock”; or “a metal block containing small coni-

cal holes through which plastic, metal, or other ductile material is extruded or drawn.” 

In [Agn02] a die is defined as “a shaped block of metal or other hard material used to 

cut or form metal in a drop forge, press, or similar device” or “a tool of metal, silicon 

carbide, or other hard material with a conical hole through which wires, rods, or tubes 

are drawn to reduce their diameter.” From the perspective of the case study, the first 

definition fits in particular. In this case, the die is a device for cutting out, forming and 

stamping metal. 

For forming and shaping parts out of steel, exchangeable dies are used. As dies57 allow 

the production of several parts by a single machine, and as they are as cost-intensive as 

a whole machine, usage provides the ability to cope with product variety. Nevertheless, 

investments have to be done to construct a new die with a mold to form and shape parts. 

                                                 

57 The dies used in the case study are about 8.5m x 2.5m x 2m in size and can weigh up to 10 tons. 
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One die can produce either two or four identical parts, or two or four different parts.58 

The dies used are multi-stage dies which complete several process steps or stages59 in 

succession without any buffers between each stage. The raw material is transformed 

into half-finished parts, which only need to be washed, polished, and/or hardened. Each 

sub-stage of a die is responsible for a part-specific transformation. Raw material is cut 

and formed according to part specifications. Oil is used during the cutting process in 

order to cool the material and the die, to improve the quality of the cuts and to reduce 

abrasion of the dies’ molds and tools. Each stage has to be considered during initial pre-

cision adjustments when a die is firstly installed on a machine as well as during adjust-

ments after setting up the die on its standard machine. That is the reason for the long 

set-up and adjustment times.60 Initial precision adjustments have to be finished by peo-

ple in the maintenance department together with machine operators. Regular set-ups of 

dies can be completed by machine operators. Two different types of set-ups can be dif-

ferentiated: internal set-ups and external set-ups. Internal set-ups are completed in the 

machine. That means that both halves of the die remain installed in the machine during 

the changing of molds and/or tools of the die. Internal set-ups are only possible if the 

set-up’s starting part and the target part use the same base and the set-up can be com-

pleted by simply changing some molds and/or tools. Alternatively, a set-up is completed 

externally. An external set-up is carried out by uninstalling the whole die from the ma-

chine. Molds and/or tools are changed outside the machine, which requires use of a set-

up table whose availability is limited.61 Whereas internal set-ups block the machine dur-

ing the whole set-up time, production can continue during external set-ups. Neverthe-

less, internal set-ups applied to similar parts can reduce adjustment times. Besides the 

set-up table, further resources are needed during set-up like the crane for the dies and 

the measuring room as well as measuring personnel for first part checks. Set-up times 

are sequence-dependent, obeying the triangle inequality.62 The sequence of production 

therefore has an influence on the loss of production capacity, personnel costs for set-ups 

and the usage of previously named shared set-up resources. The dies’ cutting compo-

                                                 

58 In the case study, if different parts are produced, they always have a certain relation to each other dur-
ing the next production steps. Usually the left-hand part and the right-hand part are produced simulta-
neously with a single die, in the knowledge that both parts will later be needed simultaneously. 

59 According to the classification of manufacturing methods presented in [Dan09] (p.300), the process 
steps of the multi-stage dies in the case study are different types of metal forming and cutting. Surfac-
ing, modification of material properties and assembling of parts is carried out in separate machines in 
further process steps as described at the beginning of chapter 2. 

60 Regular set-ups on the standard machine take 1.5–8 hours. 
61 A set-up table is a special piece of equipment which is used to prepare dies outside the machine. 
62 The triangle inequality for set-ups states that a set-up from a to b to c always takes more time than a 

direct set-up from a to c. For detailed geometrical explanations see [KK01] chapter 1.3. 
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nents and tools for foraminating steel become frayed,63 so they have to be maintained. 

During maintenance, the components of the dies are replaced, polished or sharpened. 

Maintenance is carried out every time the die is dismounted from the machine.  

The use of exchangeable dies enables the sequenced production of multiple products on 

a single machine and facilitates savings in machine investments. Nevertheless, dies also 

have to be designed, built and the initial sample inspection has to be done, which is re-

lated to costs.64 The investment expenses impede the stocking up of a number of alter-

native dies for a product. Hence, operational flexibility is reduced due to the required 

maintenance of dies, which takes several days.65 In some cases, dies can be adapted by 

changing only some tools or molds in the die in order to produce similar products. This 

is done to reduce initial investments for dies but reduces flexibility as one base die is 

used for more than one product and maintenance intervals have to be considered for all 

produced products. Although in this case only some components of the die have to be 

replaced, the machine is blocked for several hours if set-up is done internally. 

2.2.4 Raw Material 

Raw material is a consumable production factor. In this section, raw material is defined 

and described. Only relevant processes which are related to raw material are described. 

After that, costs and flexibility aspects of raw material are described. 

There exist several definitions for raw material. “Basic substance in its natural, modi-

fied, or semi-processed state, used as an input to a production process for subsequent 

modification or transformation into a finished good.”66 In [Agn02], raw material is de-

fined by two alternatives: “material still in its natural or original state, before processing 

or manufacture” or “anything that is capable of being processed, converted, changed, 

etc. to produce something else.”67 Another two different definitions are as follows: “an 

unprocessed natural product used in manufacture” or “unprocessed material of any 

kind.”68 As the raw material in this case is already processed and the steel is not in its 

natural or original state, none but the first definition can be applied. In this case, raw 

material is a basic substance used as an input to a production process for subsequent 

transformation. 

                                                 

63 In the case study, dies have a durability of approximately 50,000 parts. 
64 In the case study, dies cost between €500,000 and €2,000,000. 
65 Maintenance of one die takes three days in the case study. 
66 See [Lut]. 
67 See [Agn02]. 
68 See [Ame06]. 
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The most important raw material for the analyzed production is steel. In this case, it is 

delivered in coils of band steel.69 Other operating supplies, like oil, energy or cleaning 

supplies are not considered in this work. Depending on the part, different steel types of 

different compositions and dimensions70 are required for production.  Raw material is 

ordered one year in advance, depending on demand forecasts. The supply of material is 

guaranteed within contractually defined increases or decreases of demands within a def-

inite time horizon. The time between order and delivery on an operative timescale is one 

day. In the case study, a local inventory covering the next three days of production is 

sufficient to guarantee supply availability in the short term. The required steel has to be 

transported on a crane driven by a machine operator to the machine which is running 

out of raw material. Some machines have a dedicated space where the next steel coil can 

be placed some time before it is needed. If this is the case, the change can be executed 

fluently without the disruption of other machines running out of steel at the same time. 

The raw material unit is then put into the decoiler, and fixed and adjusted to the ma-

chine. During the fixing stage,71 the production at the machine has to be stopped. Be-

cause of relatively small tolerances of the steel, production can usually continue as be-

fore. In exceptional cases, a die cannot be adapted to the used steel coil. Then, the coil 

has to be replaced, if possible. Removal of a steel coil from the decoiler is very danger-

ous as the high tension force of the furled band steel is difficult to control and can seri-

ously injure workers. Another reason to avoid coil removal is that there is a possibility 

that removed raw material can no longer be used. Problems during the fixing stage of a 

previously used steel coil occur especially if the size of the coil falls below 50 % of the 

maximum diameter. The unusable raw material has to be scrapped. Very important for 

the stamping process is that the composition, thickness and width of the used band steel 

are always within defined tolerances. Variations in the length of the coiled band steel 

and variations of the coil weight are not important for product quality. But these varia-

tions influence the output of one coil regarding the amount of produced parts without 

changing the coil.  

As the half-finished parts after the stamping presses are at the beginning of the value 

chain, raw material costs make up a major percentage of the value of the parts. In the 

present case study, between 60 % and 85 % and an average of 77 % of the half-finished 

part value consists of raw material costs. The cost structure of the parts cannot be 

changed due to lot size planning. In the considered case, only two of the 16 used raw 

material types are shared among six parts. Hence, the usage of alternative raw material 

                                                 

69 About 10 steel suppliers deliver requested, specialized steel. 
70 In the case study, steel is between 0.8 cm and 1.5 cm thick and between 31.3 cm and 65.7 cm wide.  
71 The changing of the coil including required tasks takes about 15 minutes. 
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for the production of a part is constrained because of this technological restriction. 

Without flexibility in raw material sharing among different products, lot size planning 

has only a very small influence over improving the availability of half-finished parts 

whenever raw material is missing. The supply of raw material is a precondition for pro-

duction. Although the costs for raw material and the proportion of raw material costs to 

the half-finished part costs cannot be reduced by lot size planning, scrap can be reduced 

if production batches and lots consider the coil size. The availability of raw material can 

also be improved by giving production plans in advance.   

2.2.5 Loading Equipment 

Loading equipment, that is, the boxes or cases used in production, is part of the sup-

plies. As loading equipment is also relevant, this section is dedicated to describing the 

loading equipment used and to explain relevant related processes. Costs and flexibility 

of loading equipment are described as well. 

There exist different types72 of loading equipment. Depending on the stamped part and 

subsequent processes, a specific loading equipment type is chosen. Box types with dif-

ferent capacities can be classified into four major groups: small boxes, medium boxes, 

large boxes73 and non-returnable cardboard boxes, whose size will not be distinguished 

any further. First, the selection of the box type depends on the size of the produced part. 

Stability of the parts restricts the amount of parts put into one box as well as the way 

boxes have to be filled. Small, stable parts can fall into boxes, whereas others have to be 

picked from the belt by stackers and put into cushioned boxes in separated layers. Other 

boxes are filled with parts by robots. The subsequent process steps of the parts also in-

fluence the type of loading equipment used. The most important example is parts which 

are transported to internal or external customers overseas. As the return of empty boxes 

takes too much time and is costly, only non-returnable cardboard boxes are used. An-

other example is that some parts have to be cleaned of the oil used to improve the 

stamping process. These parts often pass through the washing system inside the boxes, 

with the consequence that the varnish of the boxes is damaged. It is therefore preferred 

to use boxes without varnish for these parts.   

The following table summarizes the main part-loading equipment type relations. 

                                                 

72 About six different types of relevant loading equipment are used. 
73 Depending on the used loading equipment, between 130 and 3,000 parts are bundled into one loading 

equipment unit. 
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Part Properties 

Small 

Box 
Medium Box 

Large 

Box 

Non-

returnable 

cardboard 

box 
Size Stability 

Small 
Damageable X (only with inlays)  

All (Overseas 
Destinations) 

Stable  X X 

Large 
Damageable   X 

Stable   X 

Figure 9: Loading Equipment Mapping according to Part Properties 

Boxes become oily and dirty over time. Dirty loading equipment deteriorates the quality 

of the contained parts. Consequently, boxes have to be cleaned. As the cleaning process 

is outsourced in the case study, lead and transport times have to be considered when 

guaranteeing availability of the correct boxes at the desired time. 

Because of part properties, it is not possible to use every loading equipment type for 

every part. Flexible substitution of loading equipment types is impeded. The flexible 

use of different loading equipment types is also reduced by successive processes. As 

described before, parts with overseas destinations have to be packed into non-returnable 

loading equipment and parts to be washed should be placed into boxes without varnish. 

Investments needed in loading equipment are much less than for dies or machines. Nev-

ertheless, fixed capital has to be minimized. The limited available space required for 

loading equipment is also a problem, reducing the possibility of reserving large amounts 

of loading equipment of every type. Besides investment costs for loading equipment, 

other costs are relevant for loading equipment including loading equipment manage-

ment costs, cleaning and loading equipment maintenance costs. These costs are not de-

pendent on production planning. Therefore, they can be disregarded in this work.  

2.2.6 Batches 

According to [Ame06], a batch is “an amount produced at one baking” or “a quantity 

required for or produced as the result of one operation.” The most suitable definition, in 

[Agn02], states that a batch is a “group or set of usually similar objects or people, espe-

cially if sent off, handled, or arriving at the same time.” 

The molding presses production stage considered has restrictions regarding batch sizes 

produced. As the changing of steel coils reduces the time available for production the 

changing of coils should be avoided when they are not completely used. Another reason 

is the danger posed to workers, due to the steel coils’ tension force, if they have to 

change a coil which has not been completely used. Consequently, the batch size is de-

fined by the size of the coil currently used. The exact amount of parts which can be pro-
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duced with one coil can only be estimated by dividing the coil weight by the charge 

weight of the part which has to be produced. In coupled production, the charge weight 

of all simultaneously produced parts has to be taken into account. Although inevitable 

small variations of the material fall within part production tolerance margins, they ac-

cumulate and influence the output amount of one coil. Consequently the exact produc-

tion output and also the exact production time for one batch can only be estimated. In 

practice, the average coil size is calculated for planning production output and time and 

this is precise enough to estimate batch production ends. On the basis of the estimated 

production output and time, a batch-wise production can be planned, in which produc-

tivity reductions due to coil changes, the estimated time of a coil change, and required 

raw material units, can be planned.  

2.2.7 Lots 

Among other definitions, the [Ame06] defines a lot as “Miscellaneous articles sold as 

one unit.” This definition is not appropriate for the purpose of this work. A precise defi-

nition for a production lot, which is suitable for this work, can be found in [Dep01]. 

There, a lot is defined as “Specifically, a quantity of material all of which was manufac-

tured under identical conditions and assigned an identifying lot number.” 

Lot sizes at the considered molding presses production stage have to obey restrictions as 

well. The smallest lot size is defined by the smallest possible batch size which is in turn 

estimated using average coil sizes. As the production is executed batch-wise, lot sizes 

can only be integer multiples of raw material units, that is, the coils. The maximum lot 

size depends on the die’s lifespan. In order to keep the quality of the parts high and to 

prevent broken dies, the number of produced parts is limited. This number defines the 

maximum lot size. Since in some cases different parts use the same die, the sum of the 

cumulated production quantity for all these parts has to obey the maximum lot size. In 

other cases, different parts are produced simultaneously in coupled production. In this 

case, the cumulated production has to be considered separately, although both parts are 

using the same die. This is because the parts produced in coupled production use differ-

ent cavities of the die. These cavities are frayed equally during production and not addi-

tionally. As the maintenance of the dies has great influence on the lot restrictions, dif-

ferent applicable maintenance trigger methods have to be taken into account. The first 

alternative would be to start maintenance just after dismounting a die from the machine 

after production. Another possibility is to carry out maintenance on the die before the 

defined maximum lot size is about to exceed. In this case, the cumulative production 
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quantity has to be memorized between productions. The cumulative production quantity 

is in both cases reset during maintenance.  

Apart from restrictions induced by raw material and die maintenance, set-ups have to be 

considered. Required times for set-ups are mainly influenced by the changing of the 

dies. A set-up consists of two main tasks: the changing of the die and the adjustment of 

the die. The changing of the die comprises the provision of required set-up material, 

including the new die, the dismounting of the installed die, the mounting of the new die 

and the removal of the old die and set-up material. The set-up and adjustment effort 

depend on the sequence of mounting the dies on the machine. As described in section 

2.2.3, times depend on whether set-ups are executed internally or externally, too. As 

follows, set-up times are sequence dependent. In 2.2.1, it was described that skilled, 

specialized personnel are needed to carry out the set-ups. The limited availability of 

these personnel has to be taken into account during the definition of lots. 

In summary, the lots’ starting and ending times depend on the workforce and machine 

capacities, the sequence-dependent set-ups of dies, the dies’ lifespans, and die mainte-

nance, as well as the size of raw material units.  

2.3 Two-Level Capacitated Lot Sizing in Production Control 

Changes in the production environment on an operative timescale, especially changing 

customer demands,74 make it senseless to define detailed production schedules for the 

long term. In order to cope with decision complexity and speed up planning, the calcu-

lation effort is reduced by splitting the planning horizon into time-based levels. Being a 

flexible but also costly resource, the production factor of human work is considered 

within both planning levels on a different level of detail. Depending on the planning 

level, requirements and related restrictions are considered in different ways. The follow-

ing two sub-sections describe how the two planning levels are defined and separated in 

practice. It is also described which decisions on the basis of which data have to be taken 

at each level and which of the formerly described restrictions have to be considered.  

2.3.1 Mid-Range Level 

On an operative time-horizon, there are still many decisions to be taken which have a 

great impact on the success or failure of satisfying customer demands at minimal costs. 

Because of changing customer demands and other changes in the production system, 

                                                 

74 See 2.1.1 for a detailed description of how customers make their orders. 
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like inventory differences due to rejections or refinishing operations, a planning horizon 

of two weeks is enough to guarantee the availability of required production factors.  

Today, planners consider different input data to define production lots and schedules. 

First, monthly demand estimates, which are generated by program planners with yearly 

demand forecasts and customer contracts, are considered. The use of monthly demand 

estimates to plan production lots for the next two weeks guarantees that demand chang-

es on a tactical time horizon are regarded during lot sizing. Product start-ups or run-offs 

or seasonal demand fluctuations can easily be managed. Although demand estimates do 

not meet short-term customer demands, they enable production planners to create plans 

which can satisfy customer demands with higher success. Secondly, production plan-

ners consider the declared customer orders of the next two weeks, which are fixed with 

small tolerance margins.75 At the mid-range planning level it is decided which amount 

of which part is produced on which day during the next two weeks in order to fulfill 

customer demands. Production lots of parts which are personnel-intensive are ideally 

positioned in those days76 which are cheaper in terms of workforce costs. The capacity 

of machines limits the production amount per day whereas different production speeds 

of different parts are taken into account. The availability of the dies, which is first and 

foremost determined by maintenance, is also planned. Maintenance intervals and maxi-

mum lot sizes restrict planners’ decisions. Planned lots already have to be dimensioned 

in a way that enables complete coils to be used. Otherwise, the capacity utilization as 

well as the produced amounts would not be calculated correctly and the plans would not 

be suitable for practice. With determined production amounts for the whole mid-range 

planning horizon, it is possible to order the required amounts of raw material coils. The 

disposition of loading equipment depends on the information about production amounts 

and times defined by production planners, as loading equipment has to be cleaned of 

residual oil and dirt before usage, which takes time.77  

The mid-range planning horizon slides forward every day by one day. This rolling plan-

ning horizon scheme guarantees that changes in the production environment are proper-

ly taken into account.78 On the basis of the calculated mid-range planning results, a de-

tailed short-range scheduling is carried out. Since the results of the mid-range planning, 

that is, the production lots, take capacity restrictions into account, it can be guaranteed 

                                                 

75 See 2.1.1 for a detailed description of customer demands and contracted change tolerances. 
76 See 2.2.1 for a chart of shifts’ cost factors.   
77 As in the case study, cleaning is carried out by a specialized company, and loading equipment has to be 

transported, both of which take time. See chapter 2.2.5 for details. 
78 One alternative to a continuous rolling planning horizon scheme is a connected planning scheme. A 

description of both concepts can be found in [Ste07]. 
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that short-range planning tasks are feasible. The next sub-section describes the decisions 

made for the short-range planning horizon and which data are used to determine produc-

tion schedules.  

2.3.2 Short-Range Level 

As detailed lot sizing and scheduling is complex and takes time, it is not practicable to 

create plans far in advance, which then have to be recalculated every time something 

affecting the production changes. Hence, detailed planning is only used for a time hori-

zon where as many parameters as possible are fixed. In this case, the contractual fixing 

of customer demands for the next three days is a suitable limitation for a detailed plan-

ning horizon.  

A plan generated for this short range of three days has to take into account all the re-

strictions that the mid-range planning considers, plus those restrictions which are neces-

sary to calculate feasible detailed schedules. First, there are the workforce restrictions 

and costs. In contrast to mid-range planning, where workforce distribution is done on a 

daily basis, short-range plans are able to allocate the workforce to smaller time units. 

Cost differences for shifts have to be taken into account. The usage of the limited ma-

chine production capacity is calculated for the short-range level to a higher level of de-

tail, taking the same parameters into account as in mid-range planning. Sequence-

dependent set-up times have to be regarded. The time used for set-ups of dies reduces 

production capacity at the machine which is currently set-up. Additionally, maintenance 

times and intervals are important in short-range planning. The calculation is made as in 

mid-range planning but to a shorter, more detailed timescale. The timing and the point 

of time for coil changes are planned in the short-range timescale. The reduction of pro-

duction capacity is therefore automatically taken into account. Last but not least, load-

ing equipment is planned depending on the planned production.  



27 

3 State of Art 

After having described the problem in the previous chapter, the current approaches 

available in the literature are reviewed. First, available concepts and methods designed 

to improve service availability are presented. After that, available approaches to im-

prove flexibility are presented. Then, several methods for planning the requirements are 

listed. Available decomposition approaches as well as lot sizing methods are described 

in the last sub-section.  

3.1 Improvement of Delivery Service Availability 

As the customers’ purchasing decisions are influenced by the suppliers’ delivery service 

availability, the importance of logistical service quality has increased during recent 

years.79 According to Zibell,80 the logistical service level can be evaluated by the fol-

lowing components: 

- Delivery time: Time between the order and the delivery 

- Willingness to supply: Proportion of orders which can be promised to be deliv-

ered 

- Delivery reliability: Proportion of deliveries delivered on or before the promised 

date 

- Delivery flexibility: Time-based scope for the customer to change orders 

- Delivery quality: Quality and state (e.g. damage) of the delivered goods 

- Willingness and readiness to provide information on the status of the customer 

order 

 

 

                                                 

79 Compare [Paw07]. 
80 See [Zib40]. 
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Figure 10: Buying Criteria according to Pawellek 

In order to be able to improve service availability, evaluation methods for service avail-

ability, which are presented in the next sub-section, are needed. Depending on the situa-

tion, different methods for improving supply service availability can be applied. These 

are presented afterwards. 

3.1.1 Evaluation of Delivery Service Level 

In order to improve the service availability, the service level has to be evaluated. 

Pawellek81 defines a basic performance indicator for the service level: 

*100Number of Deliveries within Agreed Time
Service Level

Number of Orders
=

 

The number of deliveries/orders can be replaced by the monetary value.  

A more differentiated evaluation is presented in the VDA recommendation 5001.82 With 

the presented method, it is possible to differentiate quantity variance as well as delivery 

schedule variance. A method for measuring flexibility and comparing it with completed 

deliveries is also presented.  

                                                 

81 See [Paw07]. 
82 See [VDA94]. 
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The next sub-section is dedicated to methods which can be used to improve supply 

availability. 

3.1.2 Methods for Improving Supply Availability 

There are several ways to improve supply availability. One way to improve supply 

availability is to plan demands using statistical methods. The first sub-section describes 

the methods used for demand planning. In the second sub-section, the methods used for 

fulfilling demands are described. 

3.1.2.1 Demand Planning 

On the one hand, there exists demand uncertainty, induced by the variation in planned 

or estimated demand and realized sales. On the other hand, the goal is to fulfill customer 

demand. Many decisions, including, for example, those on the procurement of raw ma-

terial or components with long lead times, have to be made before the customer submits 

his order.83 Therefore, demand planning is necessary in order to “improve decisions 

affecting demand accuracy and the calculation of buffer or safety stocks to reach a pre-

defined service level.”84 Depending on the planning horizon, different methods can be 

applied to obtain results for demand planning tasks, which can be structured in the same 

way as in the demand planning framework presented by Kilger and Wagner.85  

Demand 

Planning 

Structures 
 

- Structuring products, customers and time 
- Structuring input and output of demand plan-

ning 
- Aggregation and disaggregation 

Demand 

Planning 

Process 
 

- Phases of demand planning process 
- Participants in demand planning process 
- Statistical forecasting 
- Judgemental and consensus forecasting 

Demand 

Planning 

Controlling 
 

- Definition of basic metrics 
- Aggregation rules for forecast accuracy metrics 
- Dealing with exceptions 
- Technical implementation of KPIs 
- Incentives and responsibility 

Figure 11: Demand Planning Framework by Kilger and Wagner 

                                                 

83 See [SK08]. 
84 See [SK05], p.139. 
85 See [SK08], p. 133. 
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In order to improve accuracy, demand planning data is structured, often on the basis of 

products or product families, customers or regions, and time. Demand planning is sub-

divided into a long-term aggregated demand prognosis level, in which demands for sev-

eral periods are forecast and subdivided into a short-term prognosis level.86 In order to 

plan demands, statistical forecasting techniques are used.87 A problematic aspect of 

forecasting techniques, however, is that they are usually wrong.88 Uncertainty about real 

demands has to be considered. Demand planning has to be controlled using defined 

basic metrics and key performance indicators.89  

The next sub-section is dedicated to determining how the actual customer demand can 

be satisfied.  

3.1.2.2 Demand Fulfillment 

The planning process dedicated to determining how actual customer demands are satis-

fied is called demand fulfillment. “The demand fulfillment process determines the first 

promise date for customer orders.”90 Traditionally, the inventory is checked and orders 

are quoted against it. If there is not enough inventory available, production lead times 

are taken into account in order to provide achievable order promises. As constraints e.g. 

capacity limitations are not taken into account, infeasible quotes may be calculated. 

Nowadays, demand fulfillment solutions contain more sophisticated methods, which 

improve the generation of reliable quotes, the searching for feasible quotes and the in-

crease of profitability. These methods91 generate plans for future supplies from the sup-

pliers on the basis of demand forecasts, even beyond the already existing scheduled or-

ders.92  

Depending on the product and the production environment, demands are satisfied from 

stock (make-to-stock) or produced after the receipt of the order (make-to-order). In 

make-to-stock environments, production is forecast driven. Customer orders can then be 

served with short lead times as only transport and order processing times arise. The 

                                                 

86 See [GT09], p.148. Data warehouses and online analytical processing (OLAP) tools can be used for this 
purpose. See [SK05], p.142. 

87 Compare e.g. [GLM04], [SK05], [GT09]. 
88 See [Nah97]. 
89 In section 3.1.1 some metrics for logistical service quality were introduced. 
90 See [SK05], p.179. 
91 The newest approaches can be found under the available-to-promise concept. Examples of improved 

available-to-promise approaches can be found in [CZB02], [JSJK02], [XTKC03]; an overview is pre-
sented in [Pib05]. 

92 See [SK05]. 
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main restriction to fulfilling an order is the availability of stock. In make-to-order envi-

ronments, procurement is driven by forecast; production is driven by customer orders. 

Consequently, order fulfillment depends on procurement time and capacities. Produc-

tion time and capacities have to be considered as well.93  

Planned demands and feasible order promises are preconditions to planning the pro-

curement of resources as well as production.  

3.2 Flexibility vs. Costs  

Planning can be considered as the notional anticipation of future actions in order to 

achieve set objectives in an economically advantageous way94. Consequently, plans can 

reduce costs if actions are executed in compliance with the planned specifications. Pro-

duction control, which is one of the most important leading and management tasks95, is 

defined as the reaction on the actual events and the resulting plan deviations on a short-

term96. But otherwise, adaptations, which may be necessary due to environmental 

changes, are limited and therefore decision flexibility is reduced. Demands are planned, 

and feasible order promises are given, on the basis of uncertain parameters. The main 

causes of uncertainty are:97 

- Exact demand is not assured 

- Actual times (e.g. replenishment) differ from planned times 

- Real amounts (e.g. production or delivery quantities) differ from planned times 

- Documentation is erroneous (e.g. available stock) 

All uncertainties can be reduced by investments or contracts but they are never com-

pletely eliminated and are related to costs. Consequently, the flexibility required to be 

able to adapt to upcoming situations has to be obtained by other means. There exist dif-

ferent possibilities for improving flexibility through different planning approaches. 

3.2.1 Total or Complete Planning 

Ideally, complete, unchangeable information is used to plan cost-optimal activities for a 

long horizon. During total planning, it is assumed that the whole problem can be solved 

                                                 

93 See [SK05]. 
94 A definition of planning can be found in chapter 2.2.  
95 See [Hah96]. 
96 Translated from [Krü96].  
97 Following [GT09]. 
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in one planning step and this means that the planning horizon equates to the length of 

the total horizon Ttotal.
98 Therefore, all interdependencies have to be known in ad-

vance,99 which is usually not the case in practice.  

3.2.2 Cyclic Planning 

If the cyclic planning approach is applied, the total horizon Ttotal is subdivided into 

smaller, consecutive, non-overlapping planning horizons Tc consisting of several peri-

ods. Planning for the next planning horizon Tc’ is carried out after |Tc| periods. Actual-

ized data as well as system state information gained from the previous planning hori-

zons are used. Decisions made are fixed for all periods of the planning horizon Tc’.
100  

3.2.3 Rolling Planning 

The rolling planning approach minimizes the problems of information dynamics and 

time-based interdependencies related to the previously described approaches. At each 

planning step, decisions for π periods are fixed. Decisions related to the other |Tc|-π pe-

riods are revised and corrected depending on actualized data. Decisions for the π peri-

ods are implemented. Consequently, |Tc|/π planning steps are executed and |Tc|/π-1 are 

fixed once. Comparable to the cyclic planning approach, several plans are generated 

considering the end state of the planned system. In contrast to cyclic planning, the roll-

ing planning approach enables flexible reaction to environmental changes. 

A result of applying the rolling horizon approach, when considering changes in infor-

mation, is that less planning errors are made. Due to frequent changes in plans, high 

flexibility is expected from the planned resources. These adaptations, also known as 

planning nervousness, lead to organizational difficulties in fulfilling the changed plans 

and a consequence of this may be fewer acceptances of the planning procedure.101 

An additional problem related to the rolling planning approach, whenever a planning 

horizon smaller than the relevant planning horizon is taken into account, 102 is that in-

ventories at the end of the horizon are minimized in order to reduce inventory holding 

costs for the actual plan. This negatively influences adherence to delivery dates after the 

                                                 

98 See [SKH03]. 
99 See [Bre04]. 
100 See [SKH03], [KS01]. 
101 See [SKH03]. 
102 See [Heu03]. 
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planning horizon and possibly leads to higher set-up and production costs. In order to 

improve planning quality and to reduce nervousness, ending inventories have to be set 

for each planning step.  

There already exist methods for reducing the negative side effects of rolling planning 

approaches. Fisher et al. present a concept which calculates an ending inventory on the 

basis of the economic order quantity (EOQ).103 Information about future average de-

mands after the planning horizon has to be available. Heuvel extends the planning hori-

zon so that amounts can be calculated using the Wagner–Whitin algorithm.104 The Peri-

odic Order Quantity (POQ) is the quotient of the average demand and the EOQ and 

determines the extension of the horizon. Another approach, which is also based on in-

formation available after the defined planning horizon, is presented by Stadtler.105 Using 

the heuristic by Groff,106 the Time Between Orders (TBO) value is calculated, in order 

to determine for how many periods the amount produced within one period can meet the 

demands. With an adapted Wagner–Whitin algorithm and the usage of the calculated 

TBO, an inventory level can be determined to reduce set-up costs which otherwise 

would occur. 

So far, planning approaches with different flexibility and cost-optimality characteristics 

as well as methods to reduce negative side-effects of the rolling planning approach have 

been presented. Still missing are the methods for how workforce, production, set-ups, 

maintenance and coil changes are planned within the planning horizon. Alternatives for 

these factors will be described in the next sections. 

3.3 Methods for Planning Requirements  

3.3.1 Workforce Planning 

Workforce or personnel planning can be defined as an ordered, information-processing 

process, whereas during its progress, the values of personnel variables are set anticipato-

rily, so that entrepreneurial targets are met.107 Personnel variables can represent all as-

pects of availability and specificity problems on the individual or categorical level.108  

                                                 

103 See [FRZ01], for details about their presented Ending Inventory Valuation concept. 
104 See [WW58]. 
105 See [Sta00]. 
106 See [Gro79]. 
107 Translated from [Kos93]. 
108 See [Spe]. 
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Depending on the focal point of personnel planning variables, nine categories of per-

sonnel planning can be differentiated, which are determined by combinations of variable 

characteristics. In this work, personnel planning characterized by variables determining 

the availability of personnel on a categorical level is relevant.109 As follows, methods 

for the so-called collective personnel planning110 are presented and evaluated. Catego-

ries can be differentiated into categories of activities and categories of qualifications.111 

Moreover, a goal is to integrate personnel planning into corporate planning including 

the calibration of all planning areas. For that reason the simultaneous planning approach 

has been introduced, in order to guarantee optimality. Depending on the case in ques-

tion, theoretical simultaneous planning approaches may be able to be used in practice 

because of difficulties in obtaining relevant data and the high calculation effort required. 

Consequently, the traditional approaches of using successive planning still dominate 

planning procedures.  

In the literature there exist several approaches and methods for workforce planning. The 

approaches can be distinguished by their area of application:112 

Figure 12: Differentiation of Personnel Planning Approaches according to Rossi 

The three types of workforce planning approaches with general application areas can be 

distinguished by their time-based relationships. If the operating time is longer than the 

daily working time of employees, shift scheduling is necessary, and the working time is 

organized in shifts. In shift scheduling, it is decided which shifts are required to satisfy 

the necessary workforce. Decisions about working time and time points as well as 

breaks are made. If the operating time lasts longer than the average period of working 

                                                 

109 Specificity problems, like skill enhancement planning or the design of incentives, are not considered 
here as they are not relevant for lot sizing. Availability planning on an individual level, that is, indi-
vidual worker disposition, is omitted as well. Although it is relevant to dispose each worker in accord-
ance to company agreements (e.g. maximum working hours, holidays etc.), this problem is disregard-
ed, too. 

110 See [Kos75] and [Dru75]. 
111 See [Kos75], [Str76] (S.28 ff), [Vie99] (S.18 ff). 
112 See [Ros07]. 
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days of employees, days off have to be respected. Days off scheduling is dedicated to 

matching the off or working days of workers, taking into consideration days off during 

the week or at weekends over a period of several weeks. The combination of shift and 

days off scheduling is known as tour scheduling. In tour scheduling, shifts as well as 

days off are planned for each worker. Furthermore, there are models with specific appli-

cation areas. Because of special characteristics and further restrictions, it is difficult to 

classify them into general approaches. Crew scheduling, bus driver scheduling, nurse 

scheduling, course scheduling, timetabling or audit-staff scheduling can be differentiat-

ed. In [EJKOS04], there is an overview of workforce planning approaches.  

Crew scheduling examples can be found in [BMR04], where a new solution is presented 

to calculate multiple depot crew schedules which takes into consideration the time it 

takes for a crew to return to the starting depot, and limits of elapsed time and working 

time. Another crew scheduling approach is presented by [SFD98], in which the opera-

tional airline crew scheduling problem is described. The described problem consists of 

modifying personalized monthly assignments planned for airline crew members on an 

operative timescale in response to a given flight plan. Crew scheduling is a problem 

which is often analyzed from an airline perspective. Among other scheduling problems, 

especially for airlines, crew scheduling approaches are described in [Suh95].  

Examples of methods for bus driver scheduling are [VH02], [BGL01], and [WW95], 

where schedules are calculated for bus drivers on an operational timescale. Different 

approaches to improving the performance of the solving of presented problems like heu-

ristics or column generation methods are also presented. 

An overview of nurse scheduling problems is given in [BCBv04]. The authors discuss 

the role of nurse scheduling in hospitals’ personnel planning and review several nurse 

scheduling approaches in the literature. 

Course scheduling, timetabling and audit staff methods and reviews are presented in 

[Bor00], [Sch99], [PVH03], [Hib01], [Wer97], [DE97], [Sal95] and [Fun02]. They will 

not be explained here as their restrictions and the practical background does not match 

the purpose of this work.  

The available approaches concentrate on workforce scheduling. These generalized ap-

proaches do not consider any production restrictions. These methods have to be adapted 

in order to be usable for the presented problem. The methods with defined application 

backgrounds do not precisely match the problem described.  



36 

3.3.2 Machine Planning 

In this section, machine planning approaches are subdivided into order release methods 

and scheduling methods. Relevant approaches are presented and discussed. 

3.3.2.1 Order Release Methods 

The order release determines the point in time at which the production can handle an 

order. An order release starts with material procurement and after this has happened the 

material usually cannot be used for other orders. The order release influences inventory 

and machine utilization. Order release methods can be classified as follows:113 
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Figure 13: Classification of Order Release Methods according to Lödding  

As the immediate order release ignores utilization, lead times and inventory, they will 

not be analyzed in this work. The appointment-based order release is the basis of most 

production planning and control systems. A precondition is that superordinate planning, 

which determines a list of orders and starting appointments, is provided in advance. It is 

possible to describe the appointment-based order release by the following rule:114 

In the appointment-based order release, an order is released when its planned start 

time has been reached or exceeded and the required material is available. 

                                                 

113 See [LW05]. 
114 Translated from [LW05] p. 313. 
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A centralized order release method controlling the inventory is the constant work in 

process approach (CONWIP).115 This procedure is controlled by the following rule: 

An order is released whenever the inventory of the considered production line falls be-

low a defined threshold. The order with the highest priority is then selected from the 

order list. The order list contains unreleased orders with a planned start time, which is 

situated within a defined planning horizon. 

Another centralized order release method is the bottleneck control. The basic rule of this 

approach is as follows: 

Whenever an order has been finished by the bottleneck working system, a new order is 

released. 

The bottleneck control approach subdivides the manufacturing into an inventory-

controlled part which incorporates the bottleneck working system instead of being be-

hind the bottleneck working system. A centralized order release approach supporting the 

leveling of the working system-specific utilization is called workload control.116 The 

main parameters for this procedure are inventory limits of the working systems. Its 

basic idea can be described thus: 

Detain orders which pass overloaded manufacturing entities. The load of the manufac-

turing entities is based on the analysis of inventory and already released orders. 

The load-dependent order release117 is centralized and considers system-specific utiliza-

tion. Its basic rule can be summarized as follows: 

An order is released whenever the utilization threshold or inventory threshold is not 

exceeded adding another order. 

In its basic approach a periodic order release was proposed. An event-based order re-

lease is possible as well. A centralized order release considering the utilization of the 

working system is the order release using linear programming.118 The basic rules are: 

A list containing all unreleased orders is available. Release orders if the inventory dif-

fers from a previously planned level. 

The workload is balanced using optimization software and requires a lot of parameters. 

The number of parameters complicates the method but an adaptation to a specific pro-

duction system is possible. An example of a decentralized order release approach with-

                                                 

115 See [SWH03], [SZ03], [HS96]. 
116 [Jen78], [BW81], [KTH89]. 
117 [Bec80], [Wie92]. 
118 [ID74]. 
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out leveling working system-specific utilization is the POLCA119 control (Paired-Cell 

Overlapping Loops of Cards with Authorization). The production is subdivided into 

closed loops, where cards are used to control the inventory. A precondition of the POL-

CA control is the availability of an order list which has been generated in advance. A 

POLCA card, which provides the authorization of production, is assigned to a pair of 

manufacturing sections. A superordinate production planning and control system de-

fines earliest order release dates using backward scheduling. The following rules are 

used in the POLCA concept: 

1. A manufacturing entity is allowed to execute an order, when the order release 

date is exceeded and a card is available. Otherwise, the order is blocked 

2. The manufacturing entity checks whether other orders can be executed, if an or-

der is blocked. 

3. One card is added to the executed order at the first manufacturing stage and 

stays until the order reaches the last manufacturing stage. Then the card is freed 

and can be used for the next order. 

The decentralized inventory-based manufacturing control is another decentralized order 

release method without leveling of working system-specific utilization. On the basis of 

customer orders, a list of orders has to be generated in advance. The orders are stored in 

a list and released by decentralized inventory control cycles on the basis of the invento-

ry from the next manufacturing stage. The exact rules used in this approach are availa-

ble in [Löd01]. 

The following table summarizes the evaluation of the discussed approaches on the basis 

of the description presented in [Löd01]: 

                                                 

119 [Sur98]. 
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Figure 14: Comparison of Order Release Methods 

The presented approaches are suitable for planning production at machine level. The 

presented approaches are suitable for planning production at machine level, although 

many practical restrictions are not taken into consideration as they are outside the scope 

of this study. 

3.3.2.2 Sequencing Methods 

Sequencing methods determine which of the orders in the queue is processed next. Se-

quencing has a great influence on the logistical service quality, especially in situations 

where the order queue is long or inventory is high.120 

The first sequencing approach is the First-In-First-Out (FIFO) rule. In this case, it is not 

possible to re-sequence the orders. Disadvantages are the interdiction of adaptations to 

planned schedules or the enforcement of standard lead times in every case. Although 

improvements responding to changes to orders cannot be achieved and flexibility is not 

available, several advantages can be obtained by using this method, like simplicity and 

calculability of lead times.  

Further, there exist the earliest planned start date and the earliest planned end date rules. 

These rules change the order according to the planned execution date of an order and 

                                                 

120 See [Löd01] p. 443–457 for more information on the described methods. 
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can improve e.g. serviceability towards the customer. It has to be assumed that the start 

and end dates of orders have been calculated in advance. 

Another sequencing approach is the selection of an order by the minimal slack. The 

term “slack” is defined as the time until the planned end date of the order, which is not 

used for processing or minimal transition times. It is calculated as follows: 

 0 , plan i min i

max

i I i I

i I

Slack time ED T PT TT
∈ ∈

≠

= − − −∑ ∑  

planED  = Planned end date of an order 

0T  = Planning date 

iPT  = Processing time of process i I∈  

,min iTT  = Minimal processing time of process  i I∈  

I  = Set of processes 
 

The basic idea is that delays are more probable for orders with a smaller slack time val-

ue than orders with a higher slack time value. On this basis, it is possible to consider 

future disturbances during order sequencing. One disadvantage is that the order se-

quence can be changed although there are no variations to the planned schedule. 

In order to improve the performance, sequences can be improved using various simple 

methods. If set-up times are sequence dependent, the order with the lowest set-up costs 

is selected. The application of this approach risks orders related with high set-up times 

being delayed for a relatively long time.  

The Extended Work in Next Queue (XWINQ)121 is another approach. The basic order 

prioritization criterion is the inventory of the precedent and the subsequent working 

system. The lower the inventory, the higher the priority of an order. This method aims 

to reduce material flow breaks at consecutive manufacturing stages. Disadvantages are 

that the inventory is not a suitable criterion for reducing material flow breaks in an envi-

ronment where numerous machines have to be controlled. The method does not differ-

entiate between bottleneck systems and non-bottleneck systems. Moreover, planned 

order dates are ignored.  

With the shortest operation time rule, the orders are sequenced according to their pro-

cessing time. Orders with less processing time have a higher priority. Advantages are 

low inventories, short to medium lead times, a low medium order delay, and high ser-

                                                 

121 This concept is presented in [CMM03]. 
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viceability. Disadvantages are that positive effects depend on inventory levels and that 

unimportant and important orders are equally prioritized.  

3.3.3 Maintenance Planning of Dies 

Maintenance takes time and restricts productive time but is necessary in order to guar-

antee error-free production. In this work, maintenance of the dies required for produc-

tion has to be considered, as production is not possible during maintenance. Conse-

quently, maintenance influences availability and productivity and the selection of an 

appropriate maintenance strategy is important.122 According to [RF10] and [Mat02], 

maintenance strategies can be differentiated as follows: 

 

Figure 15: Classification of Maintenance Strategies  

In [War09], maintenance strategies are differentiated as follows: 

- Condition-Based Maintenance: 

It is possible for sensors or trained personnel to control and monitor the status of 

a component and to change the component in good time. 

- Time-Based Maintenance: 

Inspection of component is done after prescribed time-periods, which is deter-

mined by experience. 

- Damage-Based Maintenance: 

The maintenance of a component is executed after the component is damaged. 

Reduced availability is the consequence. 

As it is not possible to monitor the status of all the components of a die during produc-

tion in the analyzed case, condition-based maintenance planning is not applicable. 

Availability is the most important. This is the reason why damage-based maintenance is 

excluded. In this work, maintenance does not depend on time but on production lots and 

the number of produced parts, as the components of the dies are frayed during the 

                                                 

122 See [Mat02] for practical relevance of the selection of the best maintenance strategy. 
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stamping process. As maintenance can be regarded as a logistical process,123 planning 

improves the serviceability of maintained production factors.  

There are already several reviews on maintenance planning approaches available. One 

example of such a review is [CP91], which deals with maintenance and replacement 

models for multi-unit systems. Approaches are partitioned into topical categories like 

machine interference/repair models or inspection/maintenance models. Other, newer 

reviews on maintenance planning approaches are presented by Dekker et al. who differ-

entiate approaches by their stationary or dynamic character or by the type of their appli-

ance in case studies or in decision support systems.124  

[SK09] presents, in a generalized way, how modern information technologies can be 

applied to improve maintenance processes, especially planning. It is said that real bene-

fits arise when maintenance planning tools become integrated communicatively with 

other planning systems. Therefore, concepts in which production planning as well as 

maintenance planning are executed simultaneously are relevant for the purpose of this 

work. In [AJA07], an integrated lot sizing and preventive maintenance strategy satisfy-

ing demands without the allowance of backlogging minimizing production and mainte-

nance costs is presented. The authors make use of a mixed-integer linear program to 

solve experiments in order to obtain an optimal integrated production and maintenance 

strategy. Another approach is presented in [ST10]. The authors propose a method to 

determine simultaneously the period of preventive maintenance and the job sequence 

for two parallel machines in order to minimize the makespan with the result that a shop 

improves coordination between maintenance planning and production scheduling and 

improves shop efficiency. 

Nevertheless, the consideration of relevant restrictions is not sufficiently integrated and 

therefore the presented approaches cannot be adapted to solve the problem described in 

this work. 

3.3.4 Raw Material Procurement Planning 

The purpose of raw material procurement planning is to satisfy the demands of produc-

tion factors resulting from previously planned lots and generated schedules in a cost-

effective way taking into consideration already existing suppliers.125  

Corsten identifies the main goals of procurement planning in general:126  
                                                 

123 See [RF10]. 
124 Examples of reviews on maintenance planning approaches are [Dek96], [DWv97], [DS98].  
125 See [Ste05]. 
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- Guarantee of supply (assurance of material quality, flexibility and quantity; 

spreading risks of procurement, maintaining independence, etc.) 

- Cost effectiveness (low capital commitment, reduction of costs, etc.) 

- Safe disposal (ecologically acceptable materials)   

There exist several approaches designed for cost-effective procurement planning. One 

of the first such approaches in systematic procurement planning was introduced by 

Andler,127 in which the economic order quantity was defined. Many other research pa-

pers were published on the topic of purchase order sizing, but assumptions were made 

which do not reflect practice, like constant demand, unlimited capacities, constant prices 

and quantity discounts as well as multiple suppliers, none of which can be considered in 

the scope of this study.  

Therefore, existing approaches were extended and can be found in the literature. Ap-

proaches to order sizing under quantity discounts are classified in [BP96] or [MR98]. A 

review on lot sizing models considering dynamic demands128 is given in [BGv84].  

In the Uncapacitated Multi-Supplier Order Quantity Problem with Time-Varying All-

units Discounts129 the sum of inventory costs and order costs, which consists of fixed 

and variable costs, is minimized. Besides other constraints, it is guaranteed that no de-

lays can occur. Supplier-dependent discount levels are introduced. Last but not least, a 

heuristic is presented to solve the model. Besides constraints, which were already inte-

grated in [T02], further aspects like supplier capacity limits, limited customer inventory 

capacities, limited period-dependent supplier capacities and supplier-dependent mini-

mum purchase quantities are modeled in [Rei02]. With the approach presented in 

[Sta07], multiple products as well as different discount types are supported. 

Although integrated procurement and production planning concepts are available,130 it is 

not desirable in the analyzed case to influence the production plans since procurement 

as the raw material replenishment method can be disregarded for production in this case. 

Another more important argument against the available integrated approaches is that, 

according to the author’s reviews, the literature is missing approaches which consider 

all relevant aspects of procurement and production planning simultaneously.131  

                                                                                                                                               

126 See [CC95], p.573–586. 
127 See [And29]. 
128 Examples are [Laf85], [Ben86], [HM02], [BS93], [CHK96], [Sil79], [CHK00], [KFW03a], [HS03]. 
129 See [T02]. 
130 Overview examples are [GD92]. 
131 Examples of further integrated procurement production approaches are [Lee05], [Bal99], [San11], 

[BAS]. The latest developments of advanced planning systems (e.g. [Sta05]) do not consider practical 
restrictions in the required detail. 
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The reviewed approaches might be suitable for the cases described and provide concepts 

which are suitable for developing further procurement planning methods, but the inte-

gration into a planning method designed to solve the problem as was described in chap-

ter 2 is not available. The consideration of immanent technical and organizational re-

strictions available is not supported by the presented approaches.  

3.4 Two-Level Capacitated Lot Sizing in Production Planning 

Minimizing the sum of set-up and inventory holding costs was already picked out as a 

central theme in [And29]. Since the assumptions made, such as endless production ca-

pacities and inventory capacities as well as static demands, are not practicable in most 

cases, further approaches have been developed. An extension of the economic order 

quantity considering dynamic demands was presented in [WW58]. According to the 

knowledge of the author, the first approach to solving the capacitated lot sizing problem 

with dynamic demands, which is considered as one of the most important and at the 

same time most difficult problems in production planning,132 was presented in [Eis75]. 

Several adaptations added further aspects to the basic capacitated lot sizing problem in 

order to model further aspects, and planning results have become more practicable. But 

the consideration of further practical constraints is often related to higher model com-

plexity. In order to reduce complexity, problem decomposition is often used as an ac-

cepted approach in practice. The first sub-section below is dedicated to decomposition 

and hierarchical production planning approaches. After that, mid-range lot sizing meth-

ods are depicted and their suitability for the previously described problem is analyzed. 

Short-term lot sizing methods, which have to define more detailed schedules, are de-

scribed in the sub-section after that. Last but not least, available integrated short- and 

mid-term approaches are briefly explained and their usability for solving the problem is 

discussed. 

3.4.1 Decomposition Approaches and Hierarchical Production 
Planning 

A basic approach to solving complex planning problems is their division into partial 

models. Optimization problems can be obtained which are solvable with less effort.133 

                                                 

132 See for example [KFW03b]. See [BY82], [FLR80] for complexity analyses of the capacitated lot siz-
ing problem in the single-item case, and [CT90] for a multi-item complexity analysis of the capacitat-
ed lot sizing problem. In [MMv91], it is shown that finding a feasible solution is NP-complete for 
problems with set-up times. 

133 See [Sta88]. 
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According to [KS89], discrepancies between theoretical recommendations of operations 

research and practical requirements as well as practical limitations of production plan-

ning can be solved using hierarchical production planning by employing three devices: 

1. Separation of distinct planning areas defined by organizational units and coordi-

nation by a few, controlled interfaces 

2. Use of the natural time-structure of the planning process 

3. Reduction of data by aggregation 

The first approaches of hierarchical production planning and scheduling were presented 

in [HM73] and [Gab76]. In [HM73], the authors describe a hierarchical planning and 

scheduling system for a multiple plant and multiple products with a seasonal demand 

situation. Optimal decisions at an aggregate level, which are termed “planning”, provide 

constraints for the detailed decision-making level at which schedules are defined. Alt-

hough the described restrictions do not match the problem previously described, the 

presented concept of decomposing the problem in planning and scheduling decisions 

seems to be useful. Based on this work, a similar approach is presented in [Gab76]. 

Both references form the basis of later works on hierarchical production planning and 

scheduling.134 First, developments on the provided basis were reviewed [HO85], includ-

ing another proposition for a method for manufacturing control which subdivides medi-

um-term and short-term decisions. Examples of newer approaches in hierarchical pro-

duction planning are usually specific and designed to solve a particular problem. Exam-

ples are [Sta88], in which a method of hierarchical lot sizing is proposed, [KS89], which 

provides a review on problems and methods to solve production planning in hierarchies, 

[HG01], which deals with a hierarchical and product-based decomposition to plan pro-

duction of a steel plant, and [WI07], which presents a hierarchical production planning 

method looking at uncertainty in demands. Another hierarchical production planning 

approach using Karmarkar’s algorithm135 is available in [YZJ04]. The hierarchical pro-

duction planning approach in [ASv11] only considers production capacities on a weekly 

basis and does not define schedules. The most promising approach is presented in 

[OT07]. Many practical circumstances, like the multi-product environment or the batch 

processes, are similar to those available in the previously described problem. But most 

aspects are still missing. Examples are the consideration of lots, and maintenance- or 

sequence-dependent set-up times during the scheduling process. According to the 

knowledge of the author, there are no approaches available which simultaneously con-

                                                 

134 See [BT93] for further information on hierarchical production planning. 
135 See [ARVK89] for a detailed description of how Karmarkar’s algorithm can be used to solve linear 

programs.  
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sider production and scheduling restrictions as well as personnel planning aspects in an 

integrated hierarchical method. 

3.4.2 Mid-Term Lot Sizing  

In the last sub-section, available hierarchical production planning and decomposition 

approaches were briefly described and their suitability to the problem in question ana-

lyzed. As the available approaches do not cover every requirement, it is necessary to 

analyze concepts which are used for lot sizing at a mid-term level only, without integra-

tion into a hierarchical planning approach.  

In mid-range lot sizing, detailed schedules are not necessary, as dynamic input parame-

ters in reality change very often.136 But in the analyzed case, it is necessary, when plan-

ning production, to consider the available capacities, which are mainly reduced by set-

ups and coil changes. Maintenance has to be considered as well as different cost factors. 

Capacitated lot sizing can therefore be modeled with big buckets.137 The basic capaci-

tated lot sizing model can be described thus:138 

Assumptions: 

- Several products J are produced on a single shared resource. 

- The resource is limited in capacity. 

- The planning horizon is finite and divided into T periods. 

- The demand is dynamic but deterministic. 

- Production depends on machine state, which can be changed by set-up. 

- Resource capacity is reduced by set-ups. A set-up incurs set-up costs. 

- The target is the minimization of the sum of holding and set-up costs 

Sets: 
 J  Set of products 

 T  Set of periods 
 

                                                 

136 Besides dynamic demands, production is related to uncertainties. The initial system state, that is, for 
example, initial inventories or initial machine states, can change over time and the longer the planning 
horizon the greater the difference from planned system state to real system state.  

137 The differentiation into small- and big-bucket models concerns the relative length of the time-periods 
with respect to the expected length of a production lot [Sue05]. “‘Big’ and ‘small’ bucket indicates 
how long a period of a calendar, which is used in a production system, a node or a point in a model, is 
in relation to the density of events set to the original production.” (translated from [Dan99] p. 255).  

138 Compare the formulation and explanation available in [Sue05].  
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Data: 
 

ja  Consumption of capacity to produce one unit of item j J∈  (=production 

coefficient) 
 

jtb  Large number, not limiting feasible production quantities of product 
j J∈  in period t T∈  

 tc  Available capacity in period t T∈  

 
jtd  Demand for j J∈  in period t T∈  (with 

jTd  including final inventory, if 

given for the planning horizon T) 
 

jth  Inventory holding cost for one unit of j J∈  in period t T∈  

 
jsc  Set-up cost for product j J∈  

 
jst  Set-up time for product j J∈  

 

Variables: 
 

jtI  Inventory of j J∈  at the end of t T∈  

 
jtX  Production quantity of item j J∈  in period t T∈  (lot size) 

 
jtY  Set-up variable (=1, if a set-up operation for item j J∈  is performed in 

period t  =0 otherwise) 
 

 * *jt jt j jt

j J t T j J t T

Min h I sc Y
∈ ∈ ∈ ∈

+∑∑ ∑∑  (1)  

 1jt jt jt jtI X d I− + = +  ,  j J t T∀ ∈ ∈  (2)  

 * *j jt j jt t

j J j J

a X st Y c
∈ ∈

+ ≤∑ ∑   t T∀ ∈  (3)  

 *jt jt jtX b Y≤  ,  j J t T∀ ∈ ∈  (4)  

 00,     0,     0jt jt jX I I≥ ≥ =  ,  j J t T∀ ∈ ∈  (5)  

 { }0;1jtY ∈  ,j J t T∀ ∈ ∈  (6)  

 

The sum of holding and set-up costs are minimized in the objective function (1). The 

inventory balance constraints (2) guarantee that all demands are met in time. Available 

capacity is shared by production (
jtX  ) and set-up operations ( 

jtY ) due to constraints 

(3). Production variables 
jtX  are coupled with set-up operations 

jtY , by constraint (4). 

Equations (5) and (6) define non-negativity as well as binary conditions. 

Reviews of the capacitated lot sizing problem are presented.139 In [BRG87], the authors 

present a classification of production planning problems differentiating between single-

level and multiple-level problems which are then subdivided into problem groups with 

                                                 

139 The author does not claim that the list of reviews is complete. The list is a small subset of available 
reviews. 
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unconstrained or constrained resources. They evaluate research work using computa-

tional effort, generalization, optimality, simplicity and testing as evaluation criteria. In 

[Mv88], the authors compare available heuristic approaches for solving the multi-item 

single-level capacitated lot sizing problem. They differentiate between single resource 

heuristics and methods based on mathematical programming. On the basis of computa-

tional results, suggestions are given for the appliance of the diverse heuristics in indus-

try. In many review papers, extensions to the basic problem formulations were dis-

cussed in order to model practical aspects. In [TTM89], a review of capacitated lot siz-

ing models is presented including set-up times. [KSv94] provide a structure for batching 

research and models on the basis of a distinction of batching issues and related decision 

levels. The authors define process design, activity planning and activity control to clus-

ter research results. In [YL95] lot sizing models with random yields in production were 

reviewed and procurement costs were considered as well. [KFW03a] concentrate on 

single-level lot sizing problems and variations. Moreover, heuristic and exact solution 

approaches are discussed. Extensions to basic lot sizing models for industrial applica-

tions are collected and summarized in [JDZ05]. Examples of actual reviews formed on 

the basis of the latest research results are [QK08] and [UP10]. In [QK08], a literature 

review suitable for practitioners as well as scientists is presented, including formula-

tions of capacitated lot sizing problems with back-orders, set-up carry-over, sequencing, 

parallel machines, multi-level product structures and overtime. A classification contain-

ing various approaches available in the literature and based on the characteristics of the 

planning horizon, the number of items, the order quantity, the frequency of review, lead 

times, capacities, demand properties, and stocking points is presented in [UP10]. 

According to the knowledge of the author, formulations which precisely match the 

problem are not available. Nevertheless, parts of other formulations can be used. There 

is only some literature available regarding simultaneous lot sizing and personnel plan-

ning. One example is [JMN05]. The target of the authors was to minimize the costs re-

lated to human resources needed in the process, linked with a lot sizing production plan. 

Another example of model extensions is the use of linked lot sizes in order to correctly 

represent capacity consumption due to set-ups. Basic models using linked lot sizes can 

be found in [DEWZ93], [Haa94] or [Tv85], in which a heuristic approach is presented 

to solve the previously presented problem. An example of a modeling framework which 

includes set-up carry-over is available in [GMS95]. In [SG99], multiple products are 

supported to be produced in one period. In the literature, capacitated lot sizing models 

and solution approaches considering batch-wise production are available. Examples are 

[AES93], [SWS06] and [van07]. Sample approaches, which are dedicated to mainte-

nance and planning production lots simultaneously, are [CK05], [CRR08], [NFM10] 

and [BBH10].  
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All the presented approaches are well suited for the specifically analyzed and solved 

problems. But, according to the knowledge of the author, there is no approach available 

which integrates all required points into a single concept.  

3.4.3 Short-Term Lot Sizing  

In this section, available reviews and approaches for short-term lot sizing are described. 

Selected lot sizing approaches have to support scheduling and other aspects which are 

described in chapter 2. Therefore, small-bucket140 problems in particular will be de-

scribed in this section. Although it was stated141 that the discrete lot sizing and schedul-

ing problem has an edge over the continuous set-up lot sizing problem142 regarding per-

formance and practical relevance, other small-bucket problems and their extensions will 

be analyzed in order to find a solution to the problem. 

One of the first contributions to the research on the discrete lot sizing and scheduling 

problem was presented in [LT71].143 In [Sch82], the first extensions were formulated to 

model sequence-dependent set-up costs and a product-based decomposition approach 

was presented. In [vKKSv90], the complexity of the discrete lot sizing and scheduling 

problem was analyzed in further detail. A general formulation of the discrete lot sizing 

problem is available in [Fle90]:144  

Assumptions: 

- Products ∈j J  are produced on a single shared resource. 

- The resource is limited in its capacity. 

- The finite planning horizon is divided into T periods. 

- The demand is dynamic but deterministic. 

- Only one product can be produced in a period. 

- Full capacity is used if a product is produced within a given period (all-or-

nothing assumption). 

- The change of a set-up state of a resource incurs set-up costs. 

- The minimization of the sum of holding costs and set-up costs is the target. 

                                                 

140 A differentiating definition is provided in [Dan99] p. 255.  
141 See [SKKW91]. 
142 See [KS85].  
143 The application of the discrete lot sizing problem in practice has been important ever since the first 

contributions to research. The model formulated in [LT71], for example, was used in an automated 
production-scheduling system for a tire company. In another very early example, presented in [vV83], 
sequence-dependent set-up times are modeled. 

144 The model and its explanations are adaptations of the formulations presented in [Sue05] and [Fle90]. 
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Sets: 
J  Set of products 
T  Set of periods 

 

Data: 

jp  Production speed for j J∈   

jtd  Demand of j J∈  in period t T∈   

jh  Inventory holding cost for one unit of j J∈  per period 

jsc  Set-up cost for product j J∈  

jtss  Safety stock of product j J∈  at the end of period t T∈  

 

Variables: 

jtI  Inventory of j J∈  at the end of t T∈  (with 0jI  for the initial inventory) 

jtZ  Set-up state variable (=1, if item j is set-up at the end of period t, = 0 oth-
erwise) (with 0jZ  representing the initial set-up state) 

 

 ( ), 1 0, j jt j t j jt

j J t T

Min sc max Z Z h I=

∈ ∈

 − + ∑∑  (1)  

 , 1jt j t j jt jtI I p Z d−= + −  ,j J t T∀ ∈ ∈  (2)  

 1jt

j J

Z
∈

≤∑   t T∀ ∈  (3)  

 { },  0,1jt jt jtI ss Z≥ ∈  ,j J t T∀ ∈ ∈  (4)  

 

The target of the model is to minimize the sum of holding and set-up costs (1). As pro-

duction has to be at full capacity or not at all in each period, the model formulation does 

not rely on production variables , jtX  which are replaced by  *j jtp Z  in the inventory 

balance constraints (1). Constraint (3) limits the number of simultaneous set-up states 

jtZ  in one period. Constraints (3) and (4) define non-negativity and binary conditions 

on the decision variables. 

Reviews of the discrete lot sizing and scheduling problem are available in the literature. 

Examples are [DK97], which also contains reviews of big-bucket models, and [JD08], 

which contains a review of relevant extensions to lot sizing and scheduling models, es-

pecially for industrial applications.  
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Several extensions to the discrete lot sizing and scheduling model were formulated to 

cover practical constraints.145 In [JD98], the discrete lot sizing and scheduling problem 

is solved with sequence-dependent set-up costs and times on a single machine. [JD04] 

provide an adaptation of the basic model supporting start-up times, which can be frac-

tions of the time bucket, multiple alternative machines with different efficiencies, mul-

tiple capacitated resources and backlogging. Another approach, which supports set-up 

times as well as earliness and tardiness penalties, is presented in [SLM10]. One of the 

first approaches of batch-oriented scheduling can be found in [AADT92], in which the 

problem is stated, a complexity analysis given, and a heuristic solution approach is pro-

vided. Batch production and consequent complexity is considered in [BJH00], too. The 

paper [JD98] is another example of batch-oriented scheduling.  

The papers [AGH99], [AGH98] and [LC00] are examples of scheduling problems 

which consider the maintenance of machines but not the maintenance of the required 

resources, which is the case with the dies in the current problem. 

The most suitable approach implementing several relevant aspects of the discussed 

scheduling problem is presented by Suerie.146 In his work, basic concepts for modeling 

period-overlapping actions are introduced. With the presented fundamental model, 

building blocks, batch production, and maximum lot sizes, as well as period-

overlapping set-up times and maintenance, can be introduced in any formulation by 

adapting them to the specific situation. 

Although all aspects required to solve the presented problem have already been dis-

cussed in the literature, there is no contribution available which combines all the re-

quired aspects into a single approach. Also, the most promising work by Suerie147 has to 

be adapted in many directions. Sequence-dependent set-up times, and further activities 

like coil changes or the use of set-up personnel, are only a small excerpt of the charac-

teristics it is necessary to add.  

3.4.4 Integrated Mid- and Short-Term Lot Sizing  

Another promising approach is the combination of mid-term and short-term planning, 

termed a general lot sizing and scheduling problem. A fundamental research contribu-

tion is formulated in [FM97]. In this approach, the schedules are independent of prede-

                                                 

145 The list of approaches is not complete. The depicted approaches are only a small subset of the ap-
proaches available in the literature. 

146 See [Sue05]. 
147 See [Sue05]. 
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fined time-periods and hence a generalization of known models using restricted time 

structures is provided.148  

Assumptions: 

- Products ∈j J  are produced on a single shared resource. 

- The resource is limited in its capacity in each big-bucket period t. 

- Each big-bucket period consists of a set of small-bucket periods s. 

- The finite planning horizon is divided into T big-bucket periods. 

- The demand is dynamic but deterministic. Demand data is based on the big-

bucket periods. 

- In each small-bucket period s at most one product has to be produced. 

- Set-up states are maintained across periods. 

- The change of a set-up state of a resource incurs set-up costs and consumes re-

source capacity. 

- The number of set-up operations per big-bucket periods is not limited by the 

number of products as the triangle inequality149 does not have to hold. 

Sets: 
J  Set of products 

tS  Set of (small-bucket) periods forming a (big-bucket) period t 

T  Set of periods 
 

Data: 

ja  Consumption of capacity to produce one unit of item j J∈  (=production 

coefficient) 

tc  Available capacity in period t T∈  

jtd  Demand of j J∈  in period t T∈   

jh  Inventory holding cost for one unit of j J∈  per period 

jminlot  Minimal lot size for product j J∈  
sd

ijsc  Sequence-dependent set-up cost, if a set-up operation from product i J∈  
to product j J∈  is performed  

sd

ijst  Sequence-dependent set-up time, if a set-up operation from product i J∈  
to product j J∈  is performed 

 

                                                 

148 See [Sue05].  
149 For detailed geometrical explanations of the triangle inequality see [KK01] chapter 1.3.  
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Variables: 

jtI  Inventory of j J∈  at the end of t T∈  (with 0jI  for the initial inventory) 

jtZ  Set-up state variable (=1, if item j J∈  is set-up at the end of period t T∈

, = 0 otherwise) (with 0jZ  representing the initial set-up state) 
sd

ijtY  Sequence-dependent set-up variable (=1, if a set-up operation from i J∈  
to j J∈  is performed in period t T∈ , =0 otherwise) 

 

 * *sd sd

jt jt ij ijt
j Jj J t T i J t T

j i

Min h I sc Y
∈∈ ∈ ∈ ∈
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s S

I X d I−

∈
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a X st Y c
∈∈ ∈ ∈ ∈
≠

≤∑∑ ∑∑∑   t T∀ ∈  
(3)  
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js js

j

c
X Z

a
≤  , ,  tj J t T s S∀ ∈ ∈ ∈  (4)  

  1js

j J

Z
∈

=∑  ,j J t T∀ ∈ ∈  (5)  

 1 1sd

ijt is jsY Z Z−≥ + −  ,j J t T∀ ∈ ∈  (6)  

 1*( )jt j is jsX minlot Z Z −≥ +  , , tj J t T s S∀ ∈ ∈ ∈  (7)  

 00,     0,     0jt jt jX I I≥ ≥ =  ,  j J t T∀ ∈ ∈  (8)  

 { } 00, 0;1 , 0sd

ijt is iY Z Z≥ ∈ =  , , , ti j J t T s S∀ ∈ ∈ ∈  (9)  

 

Minimizing the sum of the holding costs and sequence-dependent set-up costs is the 

objective, represented in (1). In (2) inventory balance constraints are formulated. The 

capacity limitation in (3) is based on big-bucket periods and guarantees that production 

as well as set-up activities do not exceed available limits. Production variables 
jtX  and 

set-up state variables isZ  are coupled in (4). Restriction (5) is introduced to guarantee 

that the set-up state at the end of each small-bucket period is well defined. Set-up opera-

tion sd

ijtY  variables and set-up state variables isZ  are coupled in (6). Constraint (7) have 

to be introduced because of a missing triangle inequality.150 A minimal production is 

enforced in order to avoid direct set-up changes ( i j k→ → , instead of i k→ ) without 

production and without consuming capacity. Non-negativity and binary conditions are 

stated in (8) and (9).  

                                                 

150 The triangle inequality does not have to hold in every situation. Especially in the chemical industry, 
where cleaning processes are modeled by an additional “cleaning” product, the triangle inequality no 
longer holds [FM97]. 
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In [KS05], it is shown that the basic general lot sizing and scheduling approach is lim-

ited to the case where the production state between two consecutive periods is con-

served if the available capacity of the proceeding period exceeds the minimum batch 

quantity. Minimum batch sizes are modeled in [JZ08] but batch-oriented production is 

not supported.  

In [Mey00], sequence-dependent set-up times were added to the basic general lot sizing 

and scheduling problem. The method was only tested with 18 products and other as-

pects like batch-oriented production are missing. 

According to the author’s research, further relevant model enhancements are not yet 

available, although the general lot sizing and scheduling approach seems to be a promis-

ing methodology for modeling production planning problems, especially regarding per-

formance issues. Nevertheless, modeling of cross-machine constraints and aspects 

which require time continuity like set-up times, maintenance times or coil change times 

are supported in a better way by the fundaments of discrete lot sizing and scheduling.  
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4 Action Points 

Although some ideas of the concepts and methods presented in the state of the art are 

useful and can be transferred, they are not satisfactory for solving the described prob-

lem. Even the combination of the approaches does not suffice to solve the problem in 

every detail. This section describes the action points—those things that still have to be 

done—in order to be able to plan lot sizes in production control, considering relevant 

restrictions and taking required resources sufficiently into account. As it is not useful to 

calculate detailed schedules for long-term situations in volatile environments with 

changing information, the planning horizon is split into two.  

 
 

Figure 16: Split Planning Horizon 

In the case study, detailed schedules are necessary for the first three days and infor-

mation about demands can be assured for the next 14 days. Therefore, the short-term 

planning horizon starts today and ends with day three. The mid-term lot sizing starts at 

the end of day 3 and ends with day 14.  

This partition can be adapted. It is important that both planning horizons are intercon-

nected so that the information can be transferred. As shown in the state of the art, there 

exist many research contributions based on linear programs which aim to solve produc-

tion planning tasks. The representation of practical problem instances can be realized in 

a relatively short time. Available commercial solver software, developed over a number 

of years, works efficiently with modern hardware, and implemented algorithms are test-

ed. Therefore, the implementation of individual algorithms for the described problem is 

m = Index of mid-term planning peri-
ods 

n =  Index of short-term planning peri-
ods 

l =  Last short-term period 

k =  Index of first mid-term period after 
short-term planning horizon 

  n=l-1 n=l         n=1 n=2        

m=0                       m=k-2                    m=k-1        

 

m=0          m=k-2       m=k-1      m=k        m=k+1        …                                           m=mmax 
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rejected and linear programming techniques are used.151 The following chapters de-

scribe the aspects which have to be taken into account in each of the sub-problems, dis-

tinguished by their planning horizons. Last but not least, both approaches have to be 

coupled. 

4.1 Mid-Term Lot Sizing 

The mid-term lot sizing method has to generate valid, cost-effective production plans so 

that customer demands are satisfied. Cost factors influencing the results are all time-

dependent. Production costs, set-up costs, maintenance costs and inventory holding 

costs have to be considered. Dynamics in demands and changes in the production sys-

tem have to be factored into the planning procedure. Therefore, a rolling planning hori-

zon is necessary, which takes updated information into account. In order to reduce nega-

tive side-effects of the rolling horizon scheme, like planning nervousness, simultaneous 

out-of-stock situations for more than one product, or the resulting risk of losing supply 

availability, a method is required which calculates expected ending inventories for each 

product. During planning, several practical conditions have to be taken into account. 

First, differences in production costs depending on the required personnel workload on 

the day have to be taken into account. Machines only have limited capacity, which has 

to be considered. Capacity is consumed by set-up or production activities and depends 

on the part produced or set-up. For production of the parts, dies are necessary, which 

have to be maintained after producing certain parts. Since during maintenance the dies 

are not available for production, maintenance has to be considered in mid-term lot siz-

ing. Some dies provide two or more cavities for the same or different products which 

are then produced in coupled production. The provision of raw material has to be im-

proved by calculating required steel coils. Production lots have to be integer multiples 

of raw material units. As the declared customer demands can be much smaller than the 

production output of one steel coil, production capacity consumption has to be calculat-

ed on the basis of the output of the steel coils.  

                                                 

151 In [Kur11] (p. 49) it is said that the difficulties of solving optimization problems for practical instances 
have been reduced due to the development of efficient algorithms and improved hardware perfor-
mance. In [Kal02] (p.36) it is stated that practical problem instances can usually be solved to optimali-
ty using linear programs as the resulting problem matrix is sparse. 
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4.2 Short-Term Lot Sizing and Scheduling 

The short-term lot sizing and scheduling method has to generate valid, cost-effective 

operative production schedules. Set-up costs, inventory holding costs, production costs, 

and personnel costs for set-up teams, as well as maintenance costs, have to be consid-

ered. The results of the mid-term planning horizon, represented by expected ending in-

ventories and declared customer demands, have to be used to calculate production lots 

and schedules which satisfy customer demands. The use of costly set-up teams during 

expensive shifts has to be minimized. As the set-up teams are available shift-wise, set-

ups should be concentrated into a few shifts if total costs are to be reduced. Production 

of workforce-intensive parts should be carried out during cheaper shifts, but only if cus-

tomer demands permit this and the sum of the costs does not increase. Generated short-

term production plans have to consider the limited capacity of machines, which is re-

duced by production, set-ups or coil changes. Different production speeds depending on 

the product, sequence-dependent set-up times, and times for coil changes, need to be 

taken into account. In short-term lot sizing and scheduling, maintenance of the dies has 

to be considered. During maintenance, production of the related parts is not possible. 

Some dies have several cavities which produce different parts simultaneously. Hence, 

coupled production has to be taken into account as well. Coil changes have to be 

planned according to the coil size and the calculated production output.  

4.3 Coupling of Mid-Term and Short-Term Planning 

Another action point is to couple mid-term and short-term planning approaches. As the 

mid-term planning method has broader information about upcoming demands, planned 

production quantities have to be transferred to the short-term planning method. As the 

short-term planning method possesses information about the actual system state, it is 

necessary to communicate planning results from the short-term planning method to the 

mid-term planning method in order to guarantee that both procedures are based on up-

to-date information and to be able to generate feasible and practicable planning results.  

In summary, interfaces between both planning approaches and between the actual state 

of the production system and the planning procedure have to be defined by using the 

means available in linear programming. 
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5 Concept 

After describing relevant action points, this chapter is dedicated to defining the concept 

for solving the previously described problem. The first sub-chapter describes and ex-

plains a prioritization of goals and requirements. Another topic is the decomposition of 

the problem. Then, mid-term lot size planning is explained. All required inputs and de-

termined outputs are defined and clarified. After that, short-term schedule planning is 

explained using the same structure. Last but not least, coupling of both partial models as 

well as the integration into the real production is clarified in the following sub-section. 

5.1 Goals, Requirement Prioritization and Decomposition of 
the Problem 

As was said in section 2.1, it is essential for competitiveness that customer demands are 

satisfied as much as possible. The guarantee of supply availability is therefore the high-

est goal which has to be considered in the planning procedure. The requirements for 

achieving this goal are capacitated. The importance of each requirement depends on the 

flexibility to adapt capacity and its costs. The next priorities in the planning procedure 

are machine and workforce utilization. As the specialized machines entail high invest-

ments, the capacity of the machines, which cannot be adapted flexibly on a day-to-day 

basis, has to be used in the best possible way. The influence on the operative variable 

costs leads to the necessity of improving workforce capacity utilization, especially set-

up time utilization. Both priorities are closely related to each other as the available 

workforce capacity influences the productivity of the machines and vice versa. Parallel 

set-ups at different machines have to be avoided, if only one single set-up team is avail-

able. As the production depends on dies which are individually designed and construct-

ed for each product and are often only available in limited amounts, lot sizes are limited 

due to maximum die life. In combination with the coil sizes, which are the raw material 

units used, lot and batch sizes are restricted. These are the last two priorities which have 

to be regarded in the planning procedure. Due to the quick response to demands of raw 

material and loading equipment suppliers, availability does not affect planning and is 

therefore not regarded during lot sizing. As described by Domschke, Scholl and Voß in 

their textbook, the target is to minimize the overall costs. Other targets like the maximi-
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zation of the service level or uniform capacity utilization are modeled using con-

straints.152 

As stated before, the production system states as well as inputs like demand data can 

vary in reality and it is therefore not useful to spend a lot of effort in calculating detailed 

plans for a long horizon. Hence, it makes sense to subdivide the planning problem into 

sub-problems where the decision spectrum and decision detail of the sub-problems de-

pend on the time and relevance for the actual production. Considering the mentioned 

priorities, two planning horizons are identified for operative production lot sizing. Dur-

ing mid-range planning, which starts on day 4 and ends with day 14 in the case study, 

production amounts to satisfy customer demands are defined on a daily basis consider-

ing given restrictions for lots and batches. Machine capacity limits and capacity utiliza-

tion due to set-ups, coil changes and part production are calculated. As maintenance of 

dies takes time and can impede the production of parts, it is also considered during mid-

range planning. Mid-range planning outputs serve as a planning basis for neighbored 

processes like raw material supply, the personnel planning department, loading equip-

ment logistics, the die maintenance department etc. which then are responsible for 

providing requirements. The production cost, maintenance cost and personnel cost dif-

ferences between days are considered, too. A more detailed differentiation of costs on 

the basis of shifts, for instance, is not possible in mid-term planning, but it is in short-

term planning because of a higher planning granularity. In short-term planning, the 

same restrictions are taken into account but in a more detailed way. Other restrictions 

are added as well to generate a detailed production schedule for, in this case, the first 

three days. Besides customer demands, machine utilization and worker utilization - es-

pecially utilization of set-up teams - are considered. The avoidance of parallel set-ups at 

different machines reduces the loss of machine capacity due to missing set-up personnel 

and keeps set-up teams continuously working. Therefore, set-up-dependent set-up times 

are explicitly planned, as set-ups reduce production capacity. Maximum die life is never 

exceeded. Coil changes are explicitly planned as they reduce production capacity, too.  

The next sections describe how the sub-problem is modeled. Which inputs are required 

to calculate the values of the desired output variables representing planning decisions is 

also discussed. 

                                                 

152 In [DSV97], 11 criteria for classifying lot sizing problems were identified: the level of information, 
time-based development of model parameters, the selection of the planning horizon, the number of 
products, the number of production stages, the consideration of capacities, characterization of relevant 
costs, the consideration of backlogs, production speeds, the transfer-type of the product and the targets 
are differentiated to classify lot sizing problems. 
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5.2 Mid-Term Lot Sizing Considering Multidimensional Re-
strictions 

Within this section, the model for mid-term lot size planning is described and explained 

in detail. First, relevant inputs are defined and calculations to obtain specific parameters 

are explained. The following sub-chapter is dedicated to the outputs expected. After 

that, the model is elucidated in detail. 

5.2.1 Input  

This sub-section is dedicated to the inputs of the mid-term lot size planning. First, fi-

nancial parameters are explained and some are calculated by given parameters. After 

that, parameters for variable initialization are determined. Then, production parameters 

are explained.  

5.2.1.1 Financial Parameters  

Calculation of lots and the distribution of calculated lots along the mid-term planning 

horizon require several input data. In order to generate optimal plans, relevant costs 

have to be considered during lot size planning. Inventory holding costs inv

pcM  are prod-

uct dependent. They include capital commitment, which is calculated on the basis of the 

selling price 
pprice  of a product multiplied by a given interest rate ir

cM , as well as 

warehousing costs w

pcM  applying to a part. 

*w ir inv

p p pcM price cM cM+ =  

Next, set-up costs have to be taken into account. Sequence dependency of set-ups is not 

considered in mid-term planning. Consequently, it is enough to consider average esti-

mates for set-up costs ,
setup

p tMcM . Maintenance costs ,
mtnc

d tmcM  have to be taken into account 

because otherwise, plans would be generated which provoke more maintenance, induc-

ing too-high maintenance costs. In order to be able to guarantee availability, an ending 

inventory is set. Achieving this ending inventory has less priority than fulfilling an-

nounced, fixed customer demands. Consequently, it is desirable to use production ca-

pacity for announced demands instead of using it to fill the inventory. That means that it 

is possible to fall below the desired ending inventory and to lose the guarantee of avail-

ability. This risk is taken into account with the cost factor for imputed stock-outs so

pcM , 
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which consist of the selling price of a product 
pprice  multiplied by a defined factor 

representing the consequences cc  of the inability to supply to customers:  

 * so

p pprice cc cM=  

Lastly, production costs ,
prod

p tmcM  have to be taken into account. The costs are period and 

part dependent. They are based on given manufacturing costs and on the day-type fac-

tor. 

 , ,* prod

p t p tmpco dtc cM=  

5.2.1.2 Parameters for Variable Initialization  

Besides costs, inventory, lot and maintenance parameters have to be considered. The 

available inventory level has to be transmitted to the model. This is done by initializing 

the parameter 
piMϖ , which defines the initial inventory level for each product. Planned 

lots have to obey several restrictions. Lots can overlap periods and, among other varia-

bles, die maintenance is controlled and triggered by the lot variable. Therefore, it is nec-

essary to initialize the lot variable, too. The parameter ,m plotMϖ  is used to transmit the 

actual cumulative quantity of the lot. The initial production state is defined by 

,m pbinxMϖ . Maintenance states and maintenance progress are considered in the model. 

That is the reason why the parameters 
pmbinMϖ  and 

pmpMϖ  are necessary to initial-

ize whether maintenance is actually going on or not with respect to the maintenance 

progress. 

Another parameter which has to be defined is the desired ending inventory used to guar-

antee availability. The parameter 
peiM  has to be set for each product p P∈ . Fixed val-

ues for ending inventories are not suitable because of missing adaptability and flexibil-

ity. Changes in customer demands or product run-outs are difficult to consider. Moreo-

ver, fixed-ending inventory levels are always either too small, resulting in supply short-

falls, or too large, resulting in high inventory holding costs and inventory risks. An al-

gorithm for calculating flexible, self-adapting ending inventory levels has been de-

signed. On the basis of the last production days and monthly demand forecasts 
pdfM , 

the ending inventories are calculated easily, although information about capacities, ex-

act demands and production times after the planning horizon are missing. As this situa-

tion fits the preconditions of the economic order quantity, the economic order quantity 

can be used as a basic component: 
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,

*

2* *12*

( )
*

setup

p tm

t TM
p

yw yir

p p

cM

dfM
TM

i p
cM price cM

∈

=
+

∑

 

Then, a function has to be defined, which determines the last production day of a prod-

uct: 

Let ϕ :undefined mid-term period 

{ } :Φ ϕ  

Let ( ) ( ) ( ) : , Φ,   , , :P TM TM p tm p tm tmλ λ→ =֏∪  

A function that determines the last production mid-term period 

 Φtm TM∈ ∪  of product  p P∈ : ( ),p tmλ τ=  

(F1) 

Ending inventory of p P∈  is calculated depending on the value of ( ),p tmλ τ= .  

If τ ϕ≡  and Φϕ ∈  the last production mid-term period could not be defined.153 Then, 

the ending inventory is set to the economic order quantity ( )*:peiM i p= . 

If TMτ ∈ , the ending inventory is interpolated assuming that the last production lot of 

p P∈ , ending in mid-term period τ , equates the economic order quantity ( )*
i p  and 

assuming that the exit speed of a product154 is constant with 
30

pdfM
: 

( )*
max: *( )

30
p

p

dfM
eiM i p TMτ= − −  

This method has two main advantages: First, the ending inventory is dynamically calcu-

lated. Monthly demand variations are taken into account so that the planned inventory is 

always on an adequate level. The second advantage is the generation of stabilized pro-

duction sequences by considering the last production period. The planning method for 

the mid-term horizon - the model on which the planning method is based is described in 

the next sub-section - guarantees that the production capacity of one mid-term period is 

never exceeded. The interpolation of every product’s stock depending on the last day of 

production results in the avoidance of simultaneous stock-outs of too many products 

which could not be produced due to resulting missing daily production capacity. The 

consequence of avoiding simultaneous stock-outs of products is that the production se-

                                                 

153 This is especially the case at product start-ups. 
154 The exit speed of a product is calculated by dividing the monthly demand forecast by the length of a 

month. To ease calculation an average of 30 days is used. 
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od. In this case, one mid-term period is one day. One period155 consists of the time tmtM  

less break time tmbtM . The remaining time cannot be used completely for production. 

There exist some tasks like cleaning or small maintenance tasks which cannot be 

planned in detail but estimated on the basis of experience. These tasks reduce the max-

imum utilization. Therefore, it has to be reduced by the maximum degree of utilization 

of the machine m M∈  factor mudM . Monthly demand forecasts are available and rep-

resented by 
pdfM . Exact demands announced by customers, which are contractually 

fixed with small tolerances, are stored in ,p tmdM . The average set-up time for a product 

is expressed in 
pstM . Maintenance of dies takes more than one period. The average 

maintenance progress per mid-term time-period is defined by the parameter ,m pmpM . 

Production lots have to be designed as integer multiples of raw material units. The size 

of the steel coils is stored in the batch size parameter 
pbs  for each product p P∈ . The 

size of steel coils varies. As the variance is not crucial, and a direct consideration of the 

individual coil size would increase complexity, average values are taken into account. 

First, a set p
C  is defined. This set groups the coils c C∈  which can be used as raw ma-

terial units for the production of a product p P∈ . With this set, it is possible to calcu-

late the average size, that is, the average weight of the coils 
pavgcs , depending on their 

matching with a part p P∈ : 

1
: ( )*

p
p p

c C

avgcs size c p P
C∈

= ∀ ∈∑  

The average weight of a coil is not suitable for defining lots directly. With the charge 

weight of a product, the number of parts which can be produced from one coil is calcu-

lated (
pcout ). In this calculation, the number of parts produced simultaneously has to be 

taken into account. Any potential remainder has to be ignored. 

1
: *p

p

p p

avgcs
cout

chw CP

 
 =
  

 

The interrelation between the mid-term planning method and the short-term planning 

method prohibits the simple use of the average output of the coils 
pcout  as batch-size. 

As explained in section 5.3, batches and lots have to fit to short-term periods. In order to 

avoid discrepancies, this has to be considered during mid-term planning. The batch-size 
                                                 

155 In the case study, one mid-term period is defined by a day containing 24 hours of time-based capacity, 
which is then further reduced by break time and machine utilization. 
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has to be defined in the same way as in short-term planning, where the size of short-

term periods, that is, the time-based length, is considered: 

: * * *60  
* *60

p

p p

p

cout
bs tsS pt

tsS pt

 
=  
  

 

Last but not least, maximum and minimum lot sizes 
pmaxlot  and 

pminlot  have to be 

parameterized. The absolute minimum for a lot is the batch size 
pbs . A higher mini-

mum lot size can also be set, if necessary. The maintenance of a die overlaps several 

mid-term time-periods.156 Therefore, the maintenance time has to be converted into a 

number of maintenance periods: 

 : p

p

mtnc
mtM

tsM

 
=  
 

 

Having defined and explained the calculation of all relevant inputs, the expected outputs 

have to be declared and explained in further detail. This is done in the next sub-section. 

5.2.2 Output 

The result of the planning model, which is described in the next sub-section, is repre-

sented by values of defined variables. First, there is the production variable 
0

, ,  m p tmxM ∈N , which is used to store the amount of parts produced on machine m M∈  

in a mid-term period tm TM∈ . If production is running on, the binary variable 

, ,m p tmbinxM  is activated. Then, the inventory variable 0
,  p tmiM ∈N  is used to get the 

amount of parts available in the inventory. The variable 0
,  p nmiM ∈N  is used to evaluate 

the gap between the achievable inventory and the desired ending inventory level  peiM

at the end of the planning horizon. Another variable named 0
, ,  m p tmlotM ∈N  stores the 

cumulative quantity of the amount actually produced since the last die maintenance. 

Set-ups are managed by binary variables , ,m p tmbinsM  and , ,m p tmbinsrM . The former is 

activated if a product change is necessary. On this basis, capacity reductions and set-up 

costs are planned. The latter represents the case where a set-up requiring only low effort 

is executed. This is the case whenever products with different identifications but which 

                                                 

156 In the case study, maintenance takes about 70 hours. That corresponds to three mid-term periods in the 
model. 
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are very similar or even identical are produced consecutively.157 The variables
0

, ,  m p tmbcM ∈N  serve as counting variables for complete batches. Die maintenance is 

managed by three other variables: the binary variable , ,m p tmbinmM , indicating whether 

maintenance is actually going on; a progress variable , ,m p tmcmM , storing the percentage 

of the maintenance progress; and, last but not least, the binary variable , ,  m p tmfmM , rep-

resenting the completion of maintenance. 

5.2.3 Model 

The mid-term horizon, which is in this case a planning period between day 4 and day 

14, is modeled using a big-bucket linear programming model. In one time-period, it is 

possible that multiple actions like production of several parts, set-ups or coil changes 

are planned.  

In order to define whether two products are produced in coupled production, whether 

two products have to use the same die, or whether a product can be produced with a 

machine, the following functions are used.  

Let {0,1}=B  and 

( ) ( ): , , ( , ) , :P P p q p q bγ γ→ =֏B ���   

A function that determines whether two products  ,p q P∈  are produced in 

coupled production: 

( ), 1p qγ = , if ,  p q are produced in coupled production. 

(F2) 

Let {0,1}=B  and 

( ) ( ): , , ( , ) , :P P p q p q bδ δ→ =֏B ���   

A function that determines whether two products  ,p q P∈  are produced with 

the same die: 

( ), 1p qδ = , if ,  p q are produced with the same die. 

(F3) 

                                                 

157 In the case study, there are several products which are identical but which have different identification 
numbers. The reason for that is to ease the differentiation between different subsequent processes. 
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Let {0,1}=B  and 

( ) ( ): , , ( , ) , :P M p m p m bρ ρ→ =֏B ���   

A function that determines whether a product  p P∈  can be produced with 

machine m M∈ : 

( ), 1p mρ = , if  p can be produced with m . 

(F4) 

As products which are produced in coupled production use the same die, it is clear that 

the following expression applies: 

( ) ( ), ,p q p qγ δ→   

Target function: 

min Z =  ( ), , , , ,* setup

m p tm m p tm p tm

m M p Ptm TM

binsM binsrM cM
∈ ∈ ∈

−∑ ∑ ∑  

, , ,* prod

m p tm p tm

m M p Ptm TM

xM cM
∈ ∈ ∈

+ ∑ ∑ ∑  

, , ,* mtnc

m p tm d tm

m M p Ptm TM

binmM cM
∈ ∈ ∈

+ ∑ ∑ ∑  

, * inv

p tm p

p Ptm TM

iM cM
∈ ∈

+∑ ∑  

, *
∈

=

+ ∑ so

p n p

max

p P

n TM

miM cM  

The target function of the mid-term lot sizing consists of several main components: 

First, estimated set-up costs are calculated. The sequence dependency of set-up costs is 

ignored, except in the case where no set-up is needed for two parts.158 In addition, pro-

duction costs, which vary depending on the day,159 are another component of the target 

function. Being only an aggregated model, shift-based costs are ignored. Then, mainte-

nance costs are also considered and calculated. Then, inventory holding costs are con-

sidered. Last but not least, imputed stock-out costs for each product for the last period 

of the rolling planning horizon are calculated and inserted into the target function. 

Whenever ,p nmiM  is greater than 0, the availability of product p cannot be guaranteed. 

                                                 

158 In the case study, there are parts which are identical but have different part numbers in order to differ-
entiate them from ones needed in subsequent production processes. These parts are produced sequen-
tially but do not induce set-ups at the machines. 

159 Differentiation of production costs depending on the days can be read in 2.2.1.3. 
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The estimated sum of the costs for the consequences160 is calculated by multiplying 
so

pcM  for every product. 

The linear programming model consists of several restrictions describing practical con-

ditions. A basic condition for all lot sizing models is a constraint which sets all inputs 

equal to outputs. In this case, this is done by the inventory balance equation. 

, 1 , , , , p tm m p tm p tm p tm

m M

iM xM dM iM−

∈

+ = +∑  

 ;p P tm TM∀ ∈ ∀ ∈  
(1)  

The inventory balance equation (1) guarantees that announced demands are covered 

either by the inventory available until t TM∈  and/or by manufactured products during 

the mid-term period t TM∈ . Hence, production is necessary to cover demands. But, 

production capacity is limited and has to be restricted.  

, ,

1
* *m p tm p

p P p

xM pt
CP∈

∑  

( ), , , ,

1
* *m p tm m p tm p

p P p

binsM binsM stM
CP∈

+ +∑  

( )*tm tm mtM btM udM≤ −  

;m M tm TM∀ ∈ ∀ ∈  

(2)  

Available production capacity, which is calculated on the basis of times, cannot be ex-

ceeded. The upper limit is calculated by the available day production time multiplied by 

the maximum degree of utilization experienced which represents capacity losses due to 

coil changes, cleaning, and other minor works on the machine which are not explicitly 

planned. The rest of the available capacity is then shared by production and set-up 

times, in both cases considering coupled production (2). 

, , , ,* 0m p tm p m p tmxM maxlot binxM− ≤  

 ; ;m M p P tm TM∀ ∈ ∀ ∈ ∀ ∈  
(3)  

, , , , 0m p tm m p tmxM binxM− ≥  

 ; ;m M p P tm TM∀ ∈ ∀ ∈ ∀ ∈  
(4)  

Binary variables , ,m p tmbinxM , which indicate the production of a product in a mid-term 

period, are activated by restrictions (3) and (4). The maximum lot size parameter for 

                                                 

160 High contract penalties are the consequence in the short term. In the long term, competitive advantage 
is endangered. 
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product p is taken as Big-M. The indication variables for production are necessary to 

model further practical aspects and are used in other restrictions described later.  

, , , , 0m p tm m q tmlotM lotM− =  

; ;m M tm TM∀ ∈ ∀ ∈  

( ), , 1p q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(5)  

, , , , 0m p tm m q tmbinmM binmM− =  

; ;m M tm TM∀ ∈ ∀ ∈  

( ), , 1p q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(6)  

, , , , 0m p tm m q tmfmM fmM− =  

; ;m M tm TM∀ ∈ ∀ ∈  

( ), , 1p q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(7)  

, , , , 0m p tm m q tmcmM cmM− =  

; ;m M tm TM∀ ∈ ∀ ∈  

( ), , 1p q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(8)  

, , , , 0m p tm m q tmxM xM− =  

; ;m M tm TM∀ ∈ ∀ ∈  

( ), , 1p q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(9)  

Constraint (9) models coupled production. The solution space is reduced by valid ine-

qualities (5) to (8), which are based on the same function ( ),p qγ  calculating whether 

two products are manufactured in coupled production. 

, , , , , , 1m p tm m p tm m p tmlotM xM lotM −≤ +  

 ; ;m M p P tm TM∀ ∈ ∀ ∈ ∀ ∈  
(10)  

, , , , , , 1 , ,*(1 )m p tm m p tm m p tm p m p tmlotM xM lotM maxlot binmM−≥ + − −  

 ; ;m M p P tm TM∀ ∈ ∀ ∈ ∀ ∈  
(11)  

( )
( )

, , , ,

, 1

, 0

1
m p tm m q tm p

qq P

p q

p q

p q

lotM lotM maxlot
CP

δ

γ

∈

≠

=

=

+ ≤∑  

; ;  m M tm TM p P∀ ∈ ∀ ∈ ∀ ∈  

(12)  

Constraints (10) and (11) define lot variables , ,m p tlotM . If , ,m p tmbinmM  is not active, that 

means that no maintenance is planned in period tm ; the combination of (10) and (11) 

constrain , , , , , , 1m p tm m p tm m p tmlotM xM lotM −= + . Restriction (12) guarantees that the abra-
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sion of a die is correctly taken into account. As a die can be used for multiple products, 

the lot size, that is, the cumulative production amount, has to be calculated for all relat-

ed parts.  

, , , , 1m p tm m p tmbinmM binxM+ ≤  

 ; ;m M p P tm TM∀ ∈ ∀ ∈ ∀ ∈  
(13)  

In (13), it is guaranteed that no production is planned simultaneously with die mainte-

nance. 

, , , , 0m p tm m p tmbinmM cmM− ≤  

 ; ;m M p P tm TM∀ ∈ ∀ ∈ ∀ ∈  
(14)  

, , , , , 1 , , , ,*  m p m p tm m p tm m p tm m p tmmpM binmM cmM cmM fmM−+ = +  

 ; ; : 0m M p P tm TM t∀ ∈ ∀ ∈ ∀ ∈ >  
(15)  

Constraints (14) and (15) manage the die maintenance progress, whereas (14) guaran-

tees that the progress variable , ,m p tmcmM  is greater than 0 whenever die maintenance 

, ,m p tmbinmM  is active; (15) guarantees that the defined daily maintenance progress fac-

tor ,m pmpM  is correctly added to , ,m p tmcmM  until die maintenance is finished, indicated 

by , , m p tmfmM . 

, , , ,m p tm m q tmbinmM binmM− = 0 

; ;m M tm TM∀ ∈ ∀ ∈  

( ), , 1p q P p q p qδ∀ ∈ ∧ = ∧ ≠  

(16)  

Maintenance variables for all other parts produced with the same die are connected and 

activated or deactivated by (16). 

Maintenance can be triggered in two different ways: The first way is to start die mainte-

nance directly after a die change. Another possibility is to start die maintenance after a 

defined maximum cumulative quantity. The first two restrictions describe the first op-

tion. The latter option is modeled by the following restriction.  

( )

, , , , , , , 1

,

1
*

m p tm mp tm m q tm m p tm
q P q

p q

binmM binxM binxM binxM
CP

δ

−
∈

∧

+ + ≥∑  

 ; , ; : 0m M p q P tm TM tm∀ ∈ ∀ ∈ ∀ ∈ >  

(17)  
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Depending on the maintenance rule used, restriction (17) is either inserted into the mod-

el or not. Restriction (17) is necessary to represent the case where maintenance is started 

after changing production to another product which is not being produced with the same 

die. If maintenance in a previous period , , 1m p tmbinxM − is active, production is either con-

tinued or finished, indicated by , ,m p tmbinmM , in the actual mid-term period tm TM∈  

(17). If finished, maintenance is activated in the following mid-term period  tm TM∈ , 

indicated by , ,m p tmbinmM . 

, , 1 , , , , 1 , , 2m p tm m p tm m p tm m q tmbinmM binxM binxM binxM+ −− − − ≥ −  

: 0; tm TM tm m M∀ ∈ > ∀ ∈  

( ), , 1p q P p q p qδ∀ ∈ ∧ = ∧ ≠  

(18)  

, , 1 , , , , 1 , , 1 2m p tm m p tm m p tm m q tmbinmM binxM binxM binxM+ − +− − − ≥ −  

: 0; tm TM tm m M∀ ∈ > ∀ ∈  

( ), , 1p q P p q p qδ∀ ∈ ∧ = ∧ ≠  

(19)  

Maintenance of the die used to produce p P∈  is started in a mid-term period

 ( 1)tm TM+ ∈ , when production of product p P∈ , which has been started in at least 

two mid-term periods before, is changed to product q P∈  in a mid-term period 

tm TM∈ . In propositional logic, this can be represented like this: 

( ), , , , 1 , , , , 1 , , 1m p tm m p tm m q tm m q tm m p tmbinxM binxM binxM binxM binmM− + +∧ ∧ ∨ →  

: 0; tm TM tm m M∀ ∈ > ∀ ∈  

( ), , 1p q P p q p qδ∀ ∈ ∧ = ∧ ≠  

The algebraic formulation can be found in (18) and (19). 

, , 1 , , 0m p tm m p tmbinxM binsrM− − ≥  

 ; ; : 0m M p P tm TM tm∀ ∈ ∀ ∈ ∀ ∈ >  
(20)  

, , , , 0m p tm m p tmbinxM binsrM− ≥  

 ; ; : 0m M p P tm TM tm∀ ∈ ∀ ∈ ∀ ∈ >  
(21)  

, , 1 , , 1m p tm m q tmbinxM binsrM−− − ≥ −  

 m M∀ ∈  

( ), , 0p q P p q p qδ∀ ∈ ∧ = ∧ ≠  

: 0tm TM tm∀ ∈ >  

(22)  
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, , , , 1m p tm m q tmbinxM binsrM− − ≥ −  

 m M∀ ∈  

( ), , 0p q P p q p qδ∀ ∈ ∧ = ∧ ≠  

: 0tm TM tm∀ ∈ >  

(23)  

Period-overlapping lots are represented by restrictions (20) to (23). As no set-up is nec-

essary, no capacity reduction has to be calculated for the actual mid-term period if pro-

duction is continued from previous periods (20), (21). Restrictions (22) and (23) are the 

algebraic formulation of the expression 

, , , , 1 , ,( )m p tm m p tm m p tmbinsrM binxM binxM−→ ∧  

: 0; tm TM tm m M∀ ∈ > ∀ ∈  

( ), , 0p q P p q p qδ∀ ∈ ∧ = ∧ ≠  

This expression activates the set-up reduction whenever a product is produced in two 

consecutive mid-term time-periods. 

, , , ,*m p tm p m p tlotM bs bcM m=  

 ; ;m M p P tm TM∀ ∈ ∀ ∈ ∀ ∈  
(24)  

As real capacity usage for production has to be calculated correctly,161 batch-wise pro-

duction dependent on steel coil sizes has to be considered in mid-term lot sizing already, 

constraint (24) is inserted. It constrains planned lots to integer multiples of raw material 

units.  

,p TM pmin
iM iMϖ=  

 ; minp P TM TM∀ ∈ ∈  
(25)  

, ,p TM p TM pmax max
miM iM eiM+ ≥  

 ; maxp P TM TM∀ ∈ ∈  
(26)  

Restrictions (25) and (26) define starting and ending inventories. Missing amounts at 

the end of the planning horizon are saved in ,p nmiM  and inserted into the target func-

tion in order to consider the loss of guarantee of availability towards the customer. 

                                                 

161 Customer demands vary within the product portfolio. High runners’ demands are usually higher than 
the output of a steel coil. In contrast, there exist some low runners, whose demands within the consid-
ered time horizon are smaller than the output of a steel coil. As it is a practical constraint to produce in 
batches of raw material units, that is, in integer multiples of steel coil outputs, capacity utilization has 
to be calculated on the basis of the production time for a whole coil instead of the production time for 
a relatively small customer demand. 
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, , ,m p TM m pmin
lotM lotMϖ=  

 ; ; minp P m M TM TM∀ ∈ ∈ ∈  
(27)  

, , ,m p TM m pmin
binxM binxMϖ=  

 ; ; minp P m M TM TM∀ ∈ ∈ ∈  
(28)  

Equations (27) and (28) set the initial values for the lot variable or the state of the binary 

production variable. 

, minp TM pmbinM mbinMϖ=  

 ; minp P TM TM∀ ∈ ∈  
(29)  

, minp TM pmbinM mbinMϖ=  

 ; minp P TM TM∀ ∈ ∈  
(30)  

, minp TM pmpM mpMϖ=  

 ; minp P TM TM∀ ∈ ∈  
(31)  

Last but not least, restrictions (29) to (31) initialize the variables which are relevant for 

maintenance regarding the first mid-term period of the rolling horizon.  

5.3 Short-Term Scheduling Considering Multidimensional Re-
strictions 

This section contains the description and explanations necessary for understanding the 

model for short-term schedule planning. Parameters are elucidated in the first sub-

section. Then, the outputs are explained. Lastly, the model is explained in detail con-

taining all the restrictions required to consider practical conditions.  

5.3.1 Input 

In this sub-section, inputs of the short-term lot size planning are determined. First, fi-

nancial parameters are described and some are calculated by other parameters. After 

that, parameters for variable initialization are determined. Lastly, production parameters 

are explained. 
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5.3.1.1 Financial Parameters 

During short-term schedule planning, diverse costs have to be taken into account in or-

der to achieve cost-optimal plans. First,   inv

p STc p P∈ , inventory holding and capital com-

mitment costs of a product for a single short-term period are parameterized. Sequence-

dependent set-up costs , , ,
setup

m p q tsc  STp P∈  have to be regarded as well. Set-up costs depend 

on the time-period in which they are executed. This is similar with production costs 

, ,  prod

m p ts STc p P∈  and maintenance costs , ,
mtnc

m p tsc  STp P∈ , which are machine-, product- and 

period-dependent. In order to calculate the costs of the plans correctly, coil change costs 

, ,
cc

m p tsc   STp P∈ are parameterized. Set-up team costs are calculated and stored separately 

in team

tsc  STp P∈  for each short-term period.  

5.3.1.2 Parameters for Variable Initialization 

In order to be able to link the system state in reality with planning, the relevant data has 

to be transmitted to the planning method. This is done by parameter settings for variable 

initialization. The following parameters have to be set with updated values determined 

in real production. 

First, there is the initial inventory 
piSϖ  representing the actual inventory of products 

STp P∈ . In order to couple short-term and mid-term lot size planning, 
peiS  is set. The 

coupling of the partial models is explained in further detail in section 5.4. The current 

real world production is initialized using , ,   m p t STprodS p Pϖ ∈ . Parameter ,m plotSϖ  

 STp P∈ is used to define the initial cumulative quantity of a production lot. If the mini-

mal lot size is exceeded in the initialization short-term period, the parameter ,m pmlSϖ  

STp P∈  is set to 1. Maintenance has to be considered in mid-term planning as well as in 

short-term planning. Maintenance state and maintenance progress are initialized with 

pmbinSϖ  STp P∈  and 
pmpSϖ  STp P∈ . The actual set-up state of a machine is im-

portant for the planning method. The machine status is initialized with binary variable 

,m psSϖ  STp P∈ . It is possible that a machine is in the process of being set up when 

planning starts. This is done by setting the value of the binary variable , ,m p qrSϖ  

, STp q P∈ . In combination with the binary parameter , , ,m p q tsmstSϖ  , STp q P∈ , which is 

set to 1 if the set-up was finished in the short-term period ts TS∈ , and the parameter 

, ,m p qcsSϖ  , STp q P∈ , representing the set-up progress, the set-up of a machine m M∈  
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from product STp P∈  to product STq P∈  during the first planning period for short-term 

planning can be transmitted completely from the real production world to the model. 

The number of available set-up teams is initialized with parameter teamsSϖ  and limited 

by tsteamLimS . Last but not least, real production statuses of coil changes have to be 

transmitted to the model. The parameter ,m pReSϖ  STp P∈  initializes the number of 

completely used steel coils of the actual lot. The initialization of the slack variable 

,m pSlSϖ  STp P∈  guarantees that the coil usage is modeled correctly, and then the pa-

rameter ,m pcwSϖ  STp P∈  sets the value of the corresponding variable for the coil 

change.  

5.3.1.3 Production Parameters 

Production parameters are necessary for describing the relevant production. Basically, 

all parameters define capacity limits and capacity usages for different actions or entities. 

The production speed parameter ,  p mpptS  STp P∈  defines how many products of 

STp P∈  can be produced on a machine m M∈  in one short-term period. The demand of 

one product STp P∈  in the short-term period ts TS∈  is set. As in the actual practical 

case, demands are available on a daily basis. As the periods of the short-term planning 

are shorter, available demand data has to be transformed beforehand. In this case, de-

mands announced for the mid-term period tm TM∈  are transformed into demands of 

the final short-term period of the mid-term period ( 1)tm TM− ∈ . Consequently, it is 

guaranteed that ordered products are available on time. Maximum and minimum lot 

sizes are parameterized, defining values for 
pmaxlot  and 

pminlot  STp P∈ , as in mid-

term planning. The calculation of the batch size parameter was already explained in 

5.2.1.3. As the model, which is described in further detail in section 5.3.3, underlies the 

all-or-nothing assumption, set-up times, which are given in minutes, have to be convert-

ed to a number of corresponding short-term planning periods using the parameter tsS , 

which represents the length of a short-term period: 

,
,   ,

*60
p q

p q ST

stMin
st p q P

tsS

 
= ∈ 
 

 

 

As the parts’ usage of loading equipment differ from each other, ,p ltverbPLT  STp P∈  is 

determined. The parameter ltkapaLT  limits the capacity of a loading equipment type.  
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5.3.2 Output 

The result of the planning method is represented by values of variables used in the mod-

el. In this sub-section, variables for short-term planning are described.  

First, there are the variables , ,m p tsprodS  STp P∈  and , ,m p tsxS  STp P∈ . The values of the-

se variables determine whether production of a product STp P∈  is taking place at ma-

chine m M∈  in the short-term planning period ts TS∈  accordingly the production 

amount. The set-up status is stored in variable , ,m p tssS  STp P∈ . The calculated inventory 

is stored for every product in each short-term period in ,p tsiS  STp P∈ . The cumulative 

quantity of produced products of the current lot can be obtained by reading variable 

, ,m p tslotS .  STp P∈ . The auxiliary variable , ,m p tsmlS  STp P∈  determines whether the min-

imal lot size was already exceeded. A product change is then possible. The number of 

completed batches, that is, completely used coils, is stored in , ,m p tsreS  STp P∈ . In order 

to be able to model coil usage on the basis of a cumulative production quantity, a slack 

variable , ,m p tsrlS  STp P∈  is introduced. The binary variable , ,m p tscwS  STp P∈  is set true 

when a coil is changed. Sequence-dependent set-ups are represented by , , ,m p q tsrS  

, STp q P∈ . The corresponding binary variable is set true when a machine is being set up 

from product STp P∈  to product STq P∈  during the short-term period ts TS∈  whereas 

p q≠  and ( ), 0p qγ = . With binary variables , , ,m p q tmstS  and real variables , , ,m p q tscs , the 

end or the progress of a set-up are managed. The variable tteams  defines how many set-

up teams are required within a short-term period ts TS∈ . Binary indicator variables 

,
r

m tsbinS , ,
prod

m tsbinS , and ,
cw

m tsbinS  enable the identification and separation of activities on 

machines during a short-term period. Another binary variable , ,
mtnc

m p tsbinS  STp P∈  repre-

sents the maintenance activity. 

5.3.3 Model 

The short-term horizon, which is in this case a planning period between day 1 and day 

3, is modeled using a small-bucket linear programming model. The all-or-nothing as-

sumption applies. Consequently, it is not possible that different actions like production, 

set-up or coil changes are planned in one single time-period.  
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The model’s target function consists of several components. The first component is the 

sum of set-up team costs. Then, the sum of sequence-dependent set-up costs is added. 

The costs are activated depending on the value of the binary variables , , ,m p q tsrS  

, STp q P∈ . The sum of the coil changing costs is added as well as the sum of the pro-

duction costs and maintenance costs. These costs depend on the time-period in which 

they are created. The sum of inventory holding costs is finally added.  

Let {0,1}=B  and 

( ) ( )σ : TS,TS , ( , ) , :u v u v bσ→ =֏B ���   

 
The above is a function which determines whether two short-term periods 

,u v TS∈  belong to the same shift s S∈ . 

( ), 1u vσ = , if ,  u v are part of the same shift. 

(F5) 

, 1 , , , , p t m p t p ts p ts

m M

iS xS dS iS−

∈

+ = +∑  

 ; :   ST minp P ts TS ts TS∀ ∈ ∀ ∈ >  
(1)  

An inventory balance equation (1) guarantees that the input equals all outputs and that 

the inventory is always correctly filled. 

, , , , ,*p m m p ts m p tspptS prodS xS=  

; ; STm M ts TS p P∀ ∈ ∀ ∈ ∀ ∈  
(2)  

The production output , ,m p tsx  is calculated by constraint (2), multiplying the production 

amount per period with the corresponding binary production variable. 

Target function: 

 min Z =  * team

ts ts

ts TS

teams c
∈
∑  

( )

, , , , , ,

, 0

*
ST

ruest

m p q ts m p q ts

q Pm M p P ts TS

p q

p q

rS c

γ

∈∈ ∈ ∈
=

≠

+ ∑ ∑ ∑ ∑  

, , , ,* cw

m p ts m p ts

STm M p P ts TS

cwS c
∈ ∈ ∈

+ ∑ ∑ ∑  

, , , ,* prod

m p ts m p ts

STm M p P ts TS

xS c
∈ ∈ ∈

+ ∑ ∑ ∑  

, , , ,*mtnc mtnc

m p ts m p ts

STm M p P ts TS

binS c
∈ ∈ ∈

+∑ ∑ ∑  

, *p ts p

STp P ts TS

iS kl
∈ ∈

+ ∑ ∑  
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, ,

1
1

| |
ST

m p ts

p P p

sS
CP∈

=∑  

;m M ts TS∀ ∈ ∀ ∈  

(3)  

Restriction (3) guarantees that during one short-term period, a machine is always set to 

produce only one product, or one product with all other coupled products. Therefore, 

set-up states are always well defined and it is not possible that a machine has no set-up 

state. 

, , , ,m p ts m q tssS sS− =0 

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ,  , 1STp q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(4)  

, , , ,m p ts m q tsprodS prodS− = 0 

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ,  , 1STp q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(5)  

, , , , 0m p ts m p tsprodS sS− ≤  

 ; ;STm M p P ts TS∀ ∈ ∀ ∈ ∀ ∈  
(6)  

The interconnection of set-up state variables and the interconnection of production vari-

ables in the case of coupled production are modeled with restrictions (4) and (5). As 

production of a certain part requires the machine to be in the corresponding set-up state, 

it is necessary to introduce (6), which ensures this. 

 , , 1 , , , , , 1m p ts m q ts m p q tssS sS rS− + − ≤  

 ( ), , 0 ;STp q P p q p qγ∀ ∈ ∧ = ∧ ≠  

 ; : minm M ts TS ts TS∀ ∈ ∀ ∈ >  

(7)  

A set-up state change requires a set-up which is modeled with the variables , , , m p q tsrS . In 

order to represent the coherence of set-up state variables and set-up variables, (7) is es-

sential.  

, , , ,
r

m p q ts m tsrS binS≤  

( ), , 0 ;STp q P p q p qγ∀ ∈ ∧ = ∧ ≠  

;m M ts TS∀ ∈ ∀ ∈  

(8)  
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( ) ( )

, , , ,

, 0 , 0

* max *r

m p q ts m ts p q

ST STST STq P q Pp P p P

q p p q q p p q

rS binS CP CP

γ γ
∈ ∈∈ ∈

≠ ∧ = ≠ ∧ =

 
 

≤  
 
 

∑ ∑∑ ∑  

;m M ts TS∀ ∈ ∈  

(9)  

( )

, , , ,

, 0

r

m p q ts m ts

STST q Pp P

q p p q

rS binS

γ
∈∈

≠ ∧ =

≥∑∑  

;m M ts TS∀ ∈ ∈  

(10) 

Restrictions (8) to (10) control the activation of the binary indication variable for set-

ups , r

m tsbinS . In restriction (9), the maximum number of all possible 

( ),  :   , 0 STp q P q p and p qγ∈ ≠ =  combinations is taken as Big-M.  

, , ,
cw

m p ts m tscwS binS≤  

, ; ;STp q P m M ts TS∀ ∈ ∀ ∈ ∀ ∈  
(11) 

, , , * cw

m p ts m ts ST

STp P

cwS binS P
∈

≤∑  

;m M ts TS∀ ∈ ∈  

(12) 

, , ,
cw

m p ts m ts

STp P

cwS binS
∈

≥∑  

;m M ts TS∀ ∈ ∈  

(13) 

Restrictions (11) to (13) are necessary to control the activation/deactivation of the bina-

ry indication variable for coil changes , cw

m tsbinS . As Big-M, the cardinality of the product 

set STP  is considered.  

, , ,
prod

m p ts m tsprodS binS≤  

; ;STp P m M ts TS∀ ∈ ∀ ∈ ∀ ∈  
(14) 

, , , * prod

m p ts m ts ST

STp P

prodS binS P
∈

≤∑  

;m M ts TS∀ ∈ ∈  

(15) 

, , ,
prod

m p ts m ts

STp P

prodS binS
∈

≥∑  

;m M ts TS∀ ∈ ∈  

(16) 
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Similar to the previously defined control of the binary indication variables, ,
prod

m tsbinS  is 

activated/deactivated. Restrictions (10), (13) and (16) are redundant but improve model 

performance by reducing solution space. 

, , , 1prod r cw

m ts m ts m tsbinS binS binS+ + ≤  

;m M ts TS∀ ∈ ∈  
(17) 

Restriction (17) guarantees that the exclusive activities of production, set-up and coil 

changes are never done simultaneously at one single machine. Modeling of sequence-

dependent set-up times in combination with coupled production has to be correctly 

achieved. Erroneous set-up state changes, shown in the following illustration, in which 

machine states are no longer well defined, have to be eliminated. 

Part D

Part E

Part A

Part B

Part C

Die 0815

Die 4711 Die  4712
rm,A,D,t=1

rm,A,E,t=1

sm,A,t-setup time =1

sm,B,t-setup time=1

sm,C,t-setup time=1

sm,D,t+1=1

sm,E,t+1=1

sm,F,t+1=1

sm,G,t+1=1
Part GPart F

rm,C,F,t=1

rm,B,F,t=1

rm,C,G,t=1

rm,B,G,t=1

 

Figure 18: Erroneous Modeling of Set-up State Changes at Coupled Products 

,, , , , , p qm p q ts m p ts strS sS −≤  

( ); , : , 0;STm M p q P p qδ∀ ∈ ∀ ∈ =  

,: min p qts TS ts TS st∀ ∈ > +  

(18) 

,, , , , , p qm p q ts m q ts strS sS +≤  

( ); , : , 0;STm M p q P p qδ∀ ∈ ∀ ∈ =  

,: max p qts TS ts TS st∀ ∈ < −  

(19) 
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( )
( )

''
, ', , , '',

''

' '' '
'' , 0

, '

' '

' 0

'

1
1

| | * | |m q ts m p q ts

ST ST
p P q P p q
p q q q

p q q q

p q

sS mstS
CP CP

γ

γ

∈ ∈

≠ ≠
≠ =

=

≤ − ∑ ∑  

; ; ' STm M ts TS q P∀ ∈ ∀ ∈ ∀ ∈  

(20) 

Restrictions (18) to (20) prevent the set-up state variable from taking incorrect values 

after set-up. With (18), a set-up from product p  to q  ( , STp q P∈ ) is avoided whenever 

the set-up state that exists before set-up 
,, ,  

p qm p t stsS − is not set correctly to p . Restriction 

(19) works in a similar way: a set-up from product p  to q  ( , STp q P∈ ) is avoided 

whenever the set-up state that exists after set-up 
,, ,  

p qm q t stsS + is not correctly set to q . 

These restrictions are only valid for a subset of TS  as 
,, , max p qm q TS stsS +  is not defined. Ad-

ditionally, (20) guarantees that the set-up state , ',  m q tssS is never set true when another 

set-up is completed, indicated by , , ' ,'m p q tsmstS .  

, , , , , , 1m p q ts m p q tscsS rS +≤  

; : ; maxm M ts TS ts TS∀ ∈ ∀ ∈ <  

( ), , 0STp q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(21) 

, , , 1 , , , , , , , , ,

,

1
m p q ts m p q ts m p q ts m p q ts

p q

csS rS mstS csS
st

− + = +  

; ;m M ts TS∀ ∈ ∀ ∈  

( ), , 0STp q P p q p qγ∀ ∈ ∧ = ∧ ≠  

(22) 

Inequality (21) sets the cumulative set-up time , , ,m p q tscsS , which represents the progress 

of a set-up in per cent, to 0 whenever the set-up, managed by binary variable , , ,m p q tsrS , is 

deactivated. Equality (22) saves the cumulative set-up time and sets the variable 

, , ,m p q tsmstS  true, when a set-up was finished. For every period in which a set-up is taking 

place, the progress percentage per set-up period  
, ,

1 *60

p q p q

tsS

st stMin
=  is added to , , ,m p q tscsS  .  

, ', , , '', ,  m p q ts m p q tsrS rS=  

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ( ) ( )', '',  ', '' 1 ', 0 '', 0STp p q P p p p q p qγ γ γ∀ ∈ ∧ = ∧ = ∧ = ∧  

' '' ' ''p p p q p q≠ ∧ ≠ ∧ ≠  

(23) 
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, , ', , , '',  m p q ts m p q tsrS rS=  

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ( ) , , : , '' 1 , 0' '' ' 'STq q p P q q p qγ γ∀ ∈ = ∧ = ∧  

( ), '' 0 ' '' ' ''p q q q q p q pγ = ∧ ≠ ∧ ≠ ∧ ≠  

(24) 

The set-up of coupled products is managed by (23) and (24). These restrictions are nec-

essary to activate all set-up variables correctly in order to be able to model the practical 

situation in which products are produced simultaneously with one single die. The fol-

lowing figure illustrates how the set-up and set-up state variables are set, so that product 

changes of coupled products are correctly modeled. 

 

Figure 19: Correct Modeling of Set-up State Changes for Coupled Products 

', , , , '', ,  m p q ts m p q tsmstS mstS=  

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ( ) ( )', '',  ', '' 1 ', 0 '', 0STp p q P p p p q p qγ γ γ∀ ∈ ∧ = ∧ = ∧ = ∧  

'' ' '''p p p q p q≠ ∧ ≠ ∧ ≠  

(25) 

, , ', , , '',  m p q ts m p q tsmstS mstS=  

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ( ) ', '', : ', '' 1 , ' 0q q p P q q p qγ γ∀ ∈ = ∧ = ∧  

( ), '' 0 ' '' ' ''p q q q q p q pγ = ∧ ≠ ∧ ≠ ∧ ≠  

(26) 

, ', , , '', ,  m p q ts m p q tscsS csS=  

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ( ) ( )', '',  ', '' 1 ', 0 '', 0STp p q p P p p p q p qγ γ γ∀ ∈ ∈ ∧ = ∧ = ∧ = ∧  

'' ' '''p p p q p q≠ ∧ ≠ ∧ ≠  

(27) 
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, , ', , , '',  m p q ts m p q tscsS csS=  

; ;m M ts TS∀ ∈ ∀ ∈  

( ) ( ) ', '', : ', 1 , ' 0''STq q p p P q q p qγ γ∀ ∈ ∈ = ∧ = ∧  

( ), '' 0 ' '' ' ''p q q q q p q pγ = ∧ ≠ ∧ ≠ ∧ ≠  

(28) 

Although restrictions (25) and (26) are sufficient to model the described case, further 

redundant equalities (27) to (28) are introduced in order to make the solution space 

smaller.  

, , , ,
mtnc mtnc

m p ts m q tsbinS binS=  

( ); ; , : , , 1STm M ts TS p q p P p q p qδ∀ ∈ ∀ ∈ ∀ ∈ ∈ ≠ =  
(29) 

, , 1 , , ,
mtnc

m p ts m p q tsbinS mstS+ ≥  

( ) ( ); ; , : , , 0 , 0STm M ts TS p q p P p q p q p qδ γ∀ ∈ ∀ ∈ ∀ ∈ ∈ ≠ = ∧ =  
(30) 

Restrictions (29) and (30) activate maintenance. Equation (29) activates maintenance of 

all products whose production is based on the same die. Inequality (30) activates the 

maintenance variable after having terminated a set-up. This is the first way that mainte-

nance is triggered. This inequality is not introduced into the model, if the maintenance 

is triggered by cumulative production.  

, , 1 , , 1 , , , , ,* *mtnc mtnc mtnc mtnc

m p ts m p ts m p m p ts m p ts

tsS
cmS binS mpM fmS cmS

tsM
− ++ = +  

; ; STm M ts TS p p P∀ ∈ ∀ ∈ ∈ ∈  
(31) 

, , , ,
mtnc mtnc

m p ts m p tsfmS binS≤  

; ; STm M ts TS p p P∀ ∈ ∀ ∈ ∈ ∈  
(32) 

Maintenance progress is modeled with restrictions (31) and (32). Every maintenance 

period, ,* m p

tsS
mpM

tsM
 is added to the cumulated maintenance progress variables 

, ,
mtnc

m p tscmS . When maintenance is finished, indicated by , ,
mtnc

m p tsfmS  set true, the progress 

variable is reset to 0.  

, , , , 1 , ,m p ts m p ts m p tslotS lotS xS−≤ +  

; : ;min STm M ts TS ts TS p p P∀ ∈ ∀ ∈ > ∀ ∈ ∈  
(33) 
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, , , , 1 , , , ,* mtnc

m p ts m p ts m p ts p m p tslotS lotS xS maxlot binS−≥ + −  

; ; STm M ts TS p p P∀ ∈ ∀ ∈ ∀ ∈ ∈  
(34) 

Restrictions (33) and (34) allow , ,m p tslotS  to be the cumulative production quantity until 

the next maintenance takes place, which resets the lot variable.  

( )

, , 1 , , , , ,

, 0

| |
p

m p ts m p t m p q ts

qSTq P

p q

p q

minlot
lotS xS rS

CP

δ

−
∈

≠

=

+ ≥ ∑  

if 
pminlot > 

pbs , otherwise 

( )

, , 1 , , , , ,

, 0

| |
p

m p ts m p ts m p q ts

qSTq P

p q

p q

bs
lotS xS rS

CP

δ

−
∈

≠

=

+ ≥ ∑  

; : ;minm M ts TS ts TS∀ ∈ ∀ ∈ >  

STp P∀ ∈  

(35) 

( )
( )

, , , ,

, 1

, 0

1
m p ts m q ts p

qSTq P

p q

p q

p q

lotS lotS maxlot
CP

δ

γ

∈

≠

=

=

+ ≤∑  

; ;  STm M ts TS p P∀ ∈ ∀ ∈ ∀ ∈  

(36) 

Inequalities (35) and (36) set the lot variables correctly and guarantee that available 

practical constraints regarding lots are considered. Depending on the relation between 

the set minimal lot size and the batch size, a different restriction for the minimal lot size 

is relevant for model (35). In (36) the lot size is constrained to the maximum lot size 

defined by the die. As other products are produced by using and fretting the same die, 

the cumulative production quantity of all products has to be considered.  

, , , , , ,*
m p ts p m p ts m p ts

lotS bs reS slS= +  

; ;  STm M ts TS p P∀ ∈ ∀ ∈ ∀ ∈  
(37) 

, , , ,*
m p ts p m p ts

rlS bs prodS≤  

; ; STm M ts TS p P∀ ∈ ∈ ∈  
(38) 

, , , , 1 , ,*
p m p ts m p ts m p ts

bs cwS slS slS−≥ −  

; : ;  min STm M ts TS ts TS p P∀ ∈ ∀ ∈ > ∀ ∈  
(39) 
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( ), , , , 1 , ,*p m p ts m p ts m p tsbs prodS prodS slS+− ≤  

; : ;  max STm M ts TS ts TS p P∀ ∈ ∀ ∈ < ∀ ∈  
(40) 

, , 1 , , , , 1 , ,* pmntc

m p ts m p ts m p ts m p ts

p

maxlot
binS cwS reS reS

bs
+ −+ + =  

; : ;min max STm M ts TS ts TS ts TS p P∀ ∈ ∀ ∈ > ∧ < ∀ ∈  

(41) 

Restrictions (37) to (38) model the coil-oriented production depending on the deter-

mined batch size 
pbs . Equality (37) is used to model the relation between lots and 

batches. The slack is introduced to be able to model period-overlapping batches. It can 

be seen as a cumulative quantity of the actual batch. The variable , , 0m p tsslS >  can only 

apply when production is going on, which is also modeled by valid inequality (39). Ine-

qualities (40) and (41) activate the coil change variable. For the activation of , , 1
mntc

m p tsbinS + , 

p

p

maxlot

bs
 is calculated as Big-M. The reason for introducing the binary maintenance 

variable into this equation is that the restriction has to be deactivated in the case of 

maintenance, as otherwise, the model would be infeasible. This is because of the rela-

tion between the cumulative quantity of used coils and the variable for the cumulative 

quantity of the lot , ,m p ts
lotS , which is reset at the beginning of the die maintenance pro-

cess.  

,
r

m ts ts

m M

binS teams
∈

≤∑  

ts TS∀ ∈  

(42) 

ts tsteams teamLimS≤  

ts TS∀ ∈  
(43) 

u vteams teams=  

( ),  , 1u v TS u vσ∈ ∧ =  
(44) 

The number of required set-up teams is determined by (42). A limitation of available 

teams is modeled with inequality (43). Actually, the number of parallel set-ups at differ-

ent machines is limited by the number of available set-up teams, because set-up teams 

are the most cost-intensive requirement. The upper limit could also be determined by 

other requirements. Equality (44) is dedicated to activating the set-up team variables for 

a whole shift. This is because in practice set-up personnel are only available shift-wise. 



86 

Depending on the capacity situation and on the cost benefit, set-ups are bundled into 

cheaper shifts as a consequence of restriction (44).  

,
, , , ,  0p lt

m p lt m p ts

ts TSlt

verbPLT
reqLT xS

kapaLT ∈

− + ≤∑  

; ;STlt LT p P m M∀ ∈ ∀ ∈ ∀ ∈  

(45) 

The department responsible for the disposition of loading equipment has to take care 

that the correct type of loading equipment is available on time and in the correct 

amounts. Required loading equipment is calculated in (45), taking into consideration the 

capacity of the boxes. Consequently, management of loading equipment is simplified 

and can be improved. 

, minp TS piS iSϖ=  

STp P∀ ∈  
(46) 

, maxp TS p
iS eiS≥  

STp P∀ ∈  
(47) 

Variables have to be initialized with practical values in order to link the real production 

with the model for planned production. First, initialization equations (46) and (47) de-

termine the inventory at the beginning and the ending inventory of the short-term plan-

ning horizon. The latter one is important for the linkage of the mid-term and short-term 

planning methods. Details about the interconnection can be read in the next sub-section. 

, , ,minm p TS m p
lotS lotSϖ=  

; STm M p P∀ ∈ ∈  
(48) 

, , ,minm p TS m pmlS mlSϖ=  

; STm M p P∀ ∈ ∈  
(49) 

, , ,minm p TS m pReS ReSϖ=  

; STm M p P∀ ∈ ∈  
(50) 

, , ,minm p TS m pslS SlSϖ=  

; STm M p P∀ ∈ ∈  
(51) 

, , ,minm p TS m p
cwS cwSϖ=  

; STm M p P∀ ∈ ∈  
(52) 



87 

Equations (48) to (52) initialize the values for lots and batches. Numerical as well as 

binary variables are set to the values corresponding to the system state in reality. 

, , ,minm p TS m psS sSϖ=  

; STm M p P∀ ∈ ∈  
(53) 

, , ,minm p TS m p
prodS prodSϖ=  

; STm M p P∀ ∈ ∈  
(54) 

Binary set-up state and production variables are set in (53) and (54). 

, , , , ,minm p q TS m p qrS rSϖ ϖ=  

( ); , : , 0STm M p q p P p qδ∀ ∈ ∈ ∈ =  
(55) 

, , , , ,minm p q TS m p qmstS mstSϖ=  

( ); , : , 0STm M p q p P p qδ∀ ∈ ∈ ∈ =  
(56) 

, , , , ,minm p q TS m p qcsS csSϖ=  

( ); , : , 0STm M p q p P p qδ∀ ∈ ∈ ∈ =  
(57) 

minTS
teamsS teamsSϖ=  (58) 

Variables representing set-up state and the progress and finish of set-up as well as team 

variables are initialized in equations (55) to (58). 

, , ,min

mtnc mtnc

m p TS m pbinS binSϖ=  

; STm M p p P∀ ∈ ∈ ∈  
(59) 

 , , ,min

mtnc mtnc

m p TS m pcmS cmSϖ=  

 ; STm M p p P∀ ∈ ∈ ∈  
(60) 

 , , , 
min

mtnc mtnc

m p TS m pfmS fmSϖ=  

 ; STm M p p P∀ ∈ ∈ ∈  
(61) 

The maintenance state and progress is transferred to the model initializing the corre-

sponding variables (59) to (61).  

In this section, the short-term schedule planning model was described in detail. First, 

required inputs and calculated outputs were explained. As this model has several inter-

relations with the mid-term lot size planning model as well as with the actual production 
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system state, the coupling of the partial models as well as the integration into real-world 

production will be explained in the next section. 

5.4 Coupling of Partial Models and Integration into Real Pro-
duction  

The last part of the concept contains two topics: First, there is the coupling of the previ-

ously described and explained planning models. The coupling is important as both mod-

els are interdependent. The interdependencies are clarified in order to give an under-

standing of how both models work together. The second topic is the integration or, in 

technical terms, the interface of the planning models with production in the real world. 

This is an important aspect in order to be able to transfer the developed theoretical mod-

els into practical production planning.  

5.4.1 Coupling of Partial Models 

The previously described partial models influence each other reciprocally by using their 

output to constrain or even define the variable values of the other model. A data inter-

change is provided by the models’ input parameters for variables, which were described 

in the input sections 5.2.1.2 and 5.3.1.2 for mid-term lot size planning and short-term 

schedule planning respectively. Beginning with the mid-term lot size model, there are 

the parameters 
piMϖ , ,m plotMϖ , which define the initial inventory or the initial lot, 

,m p
binxMϖ , which sets the production status of a product, and 

p
mbinMϖ  and 

p
mpMϖ  

which define relevant maintenance variable values. The values for these parameters are 

obtained by calculating the results of the short-term schedule planning. The other inter-

face direction from the mid-term planning results to short-term planning method is done 

by setting a single parameter value 
peiS . The precondition is that the end of the short-

term planning horizon equals the beginning of the mid-term horizon: 

max minTS TM=  

First, the starting inventory for the mid-term planning is set: 

,p ts piS iMϖ→  

; :  maxp P ts TS ts TS∀ ∈ ∈ =  

Second, the production activity is transmitted, in order to be able to consider the set-ups 

in the mid-term planning horizon correctly: 
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, ,  ,m p ts m pprodS binxMϖ→  

; ; : maxm M p P ts TS ts TS∀ ∈ ∈ ∈ =  

As maintenance can be controlled by the cumulative production quantity stored in the 

, ,m p ts
lotS  variables, it is important to transfer the values to the corresponding mid-term 

parameters: 

, , ,m p ts m plotS lotMϖ→  

; ; : maxm M p P ts TS ts TS∀ ∈ ∈ ∈ =  

After that, maintenance has to be transferred correctly, otherwise it may be overlooked 

in mid-term planning that dies might not be available, and part production might be 

planned in an infeasible way. The binary indicator variables as well as the maintenance 

progress variables have to be transferred from the short-term to the mid-term planning 

parameters. The transfer of the progress is more complicated than the other transfers as 

the maintenance progress in the short-term planning depends on short-term planning 

periods and the maintenance progress in the mid-term planning depends on larger mid-

term periods; a recalculation therefore has to be made before the values are transferred. 

, ,
,

1
*  

mtnc

m p ts mtnc

m p

p p

cmS
cmS

mtM mtM
ϖ→  

, ,
mtnc

m p m pcmS mbinMϖ ϖ→  

; ; : maxm M p P ts TS ts TS∀ ∈ ∈ ∈ =  

 

This calculation is rather pessimistic. The maintenance progress during the first mainte-

nance mid-term planning period is ignored. The following figure illustrates the values 

and the linkage with an example: 

M-T Period M1 M2 
     

M-T  Mntnc 0 1 
     

M-T Prog. 0 >0 
     

S-T Period S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 
     

S-T  Mntnc 0 0 1 1 1 1 1 1 1 1 
     

S-T Prog. 0 0 >0 >0 >0 >0 >0 >0 >0 >0 
     

                
M-T Period M3 M4 M5 

M-T  Mntnc 1 1 0 

M-T Prog. >0 >0 1 

S-T Period S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 

S-T  Mntnc 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

S-T Prog. >0 >0 >0 >0 >0 >0 >0 1 1 1 1 1 1 1 1 

Figure 20: Illustration of Maintenance Interconnection of Partial Models 
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Although maintenance was started within mid-term period M1 in short-term period S03 

and the progress value at the end of M1 stored in S05 is higher than 0, the mid-term 

maintenance progress of M1 is still set to 0. This is because it is not possible to guaran-

tee in practice that maintenance starts exactly when it is purported to by the results of 

the short-term planning. Consequently, maintenance time is reserved until the end of the 

mid-term planning period M4 and production can restart with the maintained die in M5 

instead of in the middle of M4 in short-term period S18.  

The parameter settings discussed so far are all dedicated to transferring information 

from the short-term planning results to the mid-term planning method. The setting for 

an ending inventory of the short-term planning horizon is dedicated to covering the oth-

er direction. The value is obtained from previously calculated mid-term planning re-

sults. As the planning horizon moves on, the inventory levels calculated in the mid-term 

planning can later be used in short-term planning.  

This restriction, which was described in section 5.3.3, guarantees that production lots, 

brought forward by mid-term planning, are correctly considered during short-term plan-

ning. After describing the interconnection of both partial models, the next sub-section is 

dedicated to describing the integration of both models into real production.  

5.4.2 Integration into Real Production 

In the last section, it was described how the models are interconnected. In order to be 

able to turn planning results into reality, it is necessary that changes in the production 

reality are transmitted to the planning methods. Examples of changes can be inventory 

changes due to scrap or retouching work, or demand changes generated by customers. 

This section describes which parameters are changed in order to adapt the planning re-

sults to the production in reality.  

The actual situation in production can be modeled in a summarized way by obtaining 

and transferring only some relevant values. These parameters were described in 5.3.1.2. 

Besides the initialization of the variables, the demand has to be taken into account. 

Slight demand changes can be considered in the short-term planning. Therefore, the 

demand ,p tmdM  is transferred to a short-term demand ,p tsdS  by mapping small and mid-

term time-periods.  

, maxp TS piS eiS≥  

p P∀ ∈  
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This illustration shows how forward and backward interconnection of parameters and 

variables work. The integration of the planning models into the real world as well as the 

coupling of the models is visualized. 
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This illustration shows how forward and backward interconnection of parameters and 

variables work. The integration of the planning models into the real world as well as the 

coupling of the models is visualized. 
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Figure 21: Summary of Partial Model Interconnection

This illustration shows how forward and backward interconnection of parameters and 

variables work. The integration of the planning models into the real world as well as the 

coupling of the models is visualized. 
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5.4.3 Determination of Relevant Short-Term Planning Subsets 

The lots calculated in the mid-term planning define which products are produced in 

which mid-term period tm TM∈ . The short-term planning horizon only ranges over a 

subset of TM. Because of practical restrictions regarding lots and batches and because of 

the limitation of production capacity, only a subset of products STP P⊆  can be pro-

duced within the entire short-term planning horizon. Consequently, the short-term mod-

el size is significantly reduced in practical problem instances. This first sub-section de-

scribes how product subsets, which are relevant for short-term schedule planning, are 

determined. The following sub-section explains how data excluded during short-term 

schedule planning is extrapolated.  

5.4.3.1 Determination of Short-Term Relevant Product Subset 

Because of practical restrictions and limited production capacities, it is not possible in 

practice to produce the whole product portfolio during the limited short-term schedule 

planning horizon. The relevant subset of products has to be determined. 

{ },: | :
minST p TS pP p p P iS eiS= ∈ < ∪  

{ }, | : 1,  m pp p P sS m Mϖ∈ = ∀ ∈ ∪  

( ){ }| , : , 1STp p q P p qγ∈ =  

The set is defined by all products which have to be produced by the end of the short-

term planning horizon, determined by calculating the difference of the existing invento-

ry at the initialization period minTS  and the desired production amount at the end of the 

short-term planning horizon 
peiS , and then adding to all coupled products all the prod-

ucts which are actually set up in the initialization period of the short-term planning 

horizon minTS , represented by , m psSϖ .  

5.4.3.2 Extrapolation of Short-Term Irrelevant Data Sets 

Inventories, lots, batches, maintenance data, and so on are only calculated and updated 

within the short-term model for those products STp P∈  which are relevant for short-

term scheduling, in order to reduce model size and consequently improve performance. 

To guarantee data consistency and to be able to start planning at every point in time, 

data for other products, STp P∉ , has to be extrapolated. The extrapolation of most data 

is simple, as it is a simple copy process for all short-term periods: 
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,p ts p
iS iSϖ=  

, ;STp P p P ts TS∀ ∈ ∉ ∈  
(1)  

, , ,m p ts m plotS lotSϖ=  

; , ;STm M p P p P ts TS∀ ∈ ∈ ∉ ∈  
(2)  

, , ,m p ts m pmlS mlSϖ=  

; , ;STm M p P p P ts TS∀ ∈ ∈ ∉ ∈  
(3)  

, , ,m p ts m preS ReSϖ=  

; , ;STm M p P p P ts TS∀ ∈ ∈ ∉ ∈  
(4)  

, , ,m p ts m pslS SlSϖ=  

; , ;STm M p P p P ts TS∀ ∈ ∈ ∉ ∈  
(5)  

, , ,m p ts m p
cwS cwSϖ=  

; , ;STm M p P p P ts TS∀ ∈ ∈ ∉ ∈  
(6)  

The extrapolation of the maintenance variables is more sophisticated. Maintenance is 

still going on in the background and the maintenance progress values have to be adapted 

correspondingly. Therefore, the following algorithm is necessary: 

1 Do ; ; , STm M ts TS p P p P∀ ∈ ∀ ∈ ∈ ∉  

2   Do  

3 

 , , 1 , , ,*mtnc mtnc

m p ts m p m p ts

tsS
cmS mpM cmS

tsM
− + →  

 , ,1 mtnc

m p tsbinS→  

4   While , , 1 ,* 1mtnc

m p ts m p

tsS
cmS mpM

tsM
− + <  

5 If , , 1 ,* 1mtnc

m p ts m p

tsS
cmS mpM

tsM
− + ==  then  

6   , ,1 mtnc

m p tsfmS→  

 

5.5 Techniques to Improve Solution Time 

The linear programming models described in sub-sections 5.2.2 and 5.3.3 consider lots 

of sets and many elements. Many relations between elements of the sets complicate the 

model further. Moreover, lots of constraints are taken into account. Changes of the 
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model structure, decomposition techniques and relaxations are possible ways to improve 

solution time. The next two sub-sections are dedicated to describing the methods used 

for that purpose for mid-term lot size planning and short-term schedule planning. 

5.5.1 Mid-Term Lot Size Planning 

One way to improve the solution time of mid-term lot size planning models is to first 

solve a precedent model of relaxation and use the found solutions as possible starting 

solutions for the original modeled problem. The mid-term lot size planning can easily 

be relaxed by ignoring the constraint for the guarantee of availability. The guarantee of 

availability is modeled using the following constraint: 

, ,max maxp TM p TM pmiM iM eiM+ ≥  

 ; maxp P TM TM∀ ∈ ∈  

Ignoring this inequality, valid solutions, which consider real announced demands and 

inventory within the mid-term planning horizon, can be generated quickly. Although the 

generated solution is a bad solution with no availability guarantee, it is useful for reduc-

ing the search space of the original problem. 

Another way to improve solution performance is by introducing further inequalities, 

known a priori after analyzing the problem. An inequality can be calculated by carrying 

out a backward scheduling of the inventory.  

, 1 ,

1
* *

*
p tm p tm m

m M p p

iM dM tsM udM
pt CP

−

∈

≥ − ∑  

 ;p P tm TM∀ ∈ ∈  

The restriction states that the inventory , 1p tmiM −  has to be greater than the difference of 

the demand ,  p tmdM and the maximum production amount in period tm TM∈ . This ine-

quality is also applicable to improve short-term schedule planning. 

5.5.2 Short-Term Schedule Planning 

The short-term schedule planning model is very complex. Therefore, several approaches 

are necessary to guarantee processing times suitable for practice. First, two decomposi-

tion approaches will be described. After that, valid inequalities, as well as the modeling 

techniques used, are explained. 
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5.5.2.1 Using Past Solutions 

One way to improve solution performance is to use past planning solutions. Not all pa-

rameters and system states are changed from one planning run to the next. The starting 

solution has to be adapted by considering the new planning horizon. Although the val-

ues for variables relevant to the new part of the planning horizon are not set, heuristics 

implemented in optimization software are able to find feasible solutions. Especially 

when the time between two planning runs is short, this is a suitable method for generat-

ing a starting solution from past planning runs. 

5.5.2.2 Decomposition by Time Axis 

The first decomposition approach described is the decomposition by time axis. The 

short-term planning horizon represented by the set of short-term periods  TS  can be sub-

divided according to their belonging to mid-term periods TM , which is determined by 

the following function. 

( ) ( )Θ : ,   ( ) Θ :TS TM ts ts tm→ =֏  

Is a function that determines the mid-term period tm TM∈  of a short-term 
period ts TS∈  

(F6) 

With this function, the set of short-term periods can be partitioned into subsets 

( ){ }: | Θ :  tmTS tm TM tm ts ts TS= ∀ ∈ = ∀ ∈  

The short-term model can then be processed for each partition separately, as relevant 

parameters regarding demands and minimum inventories at the end of each period are 

obtained from the mid-term lot sizing solutions. After that, all solutions are merged, so 

that a solution is obtained which corresponds to the whole set of short-term periods. The 

merged solution is not optimal for the entire short-term planning horizon but suits as a 

good starting solution. 

5.5.2.3 Decomposition by Machines 

Another decomposition approach is the decomposition of the problem by machines. The 

optimization procedure is sequentially started considering only one element of the ma-

chine set M. The result is a schedule, valid for each machine. If this decomposition is 

applied, restrictions of shared resources upon machines are ignored. In the case study, 

this is the limitation of set-up teams. The fusion of the decomposed sub-solutions con-
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siders this, and calculates the amount of required set-up teams. Although a very costly 

starting solution is generated, it enables the reduction of the search space of the original 

problem.  

5.5.2.4 Valid Inequalities and Modeling Techniques 

Besides decomposition approaches, further inequalities and modeling techniques can be 

applied to improve the performance to solve the model. The Constantino163 inequality, 

for example, can be adapted to the current model. It models the logical conditions that 

production can be active in period t-1, or that a set-up is going on in period t, or that 

either production or set-up of another product is going on in period ts. 

( )

, , 1 , , , , ', , ', ,
'
', 1

( ) 1 m p ts m p q ts m q ts m q q ts
q P q q q P

q p q pp q

prodS rS prodS rS

γ

−
∈ ≠ ∈

≠ ≠≠

+ + − ≤∑∑∑  

, , ' , p q q P ts TS∀ ∈ ∈  

 

Another way to improve the solution is to use double variables instead of integer or 

Boolean variables. This depends on the variable selection and has to be tested as no 

general rule is applicable. In the case of the actual short-term model, the change of set-

up and production variables from Boolean to fractional variables with 0 and 1 as lower 

and upper limits improved performance.  

{ }, , , , ,, 0,1  m p q ts m p tsrS prodS ∈ � [ ], , , , ,, 0,1m p q ts m p tsrS prodS ∈  

 

Another improvement method is the disaggregation of restrictions. This was already 

mentioned in the model description. In this case only the restriction which guarantees 

that excluding actions cannot be executed simultaneously is disaggregated.164 

                                                 

163 See [Con00]. 
164 See section 5.3.3 for more details. 
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6 Realization 

In order to transfer the previously described theoretical concept into production reality, 

it has to be implemented and tested in realistic scenarios. In this chapter, the system 

design is described and explained. The integration into SAP is described in the follow-

ing section; and then, calculated results are evaluated and compared with manual plan-

ning results. 

6.1 System Description 

In order to improve acceptance of the realized planning method, integration into the 

existing ERP System is helpful. Users do not have to switch from one software tool to 

another and this way redundant data management is avoided. The first sub-section de-

scribes the system architecture and explains the overall structure of the implemented 

system. Although data redundancy is minimized, some data has to be stored in a system 

database in order to improve data connection speed. Another argument for separate data 

management is that data can easily be added, merged and obtained in a beneficial way 

and calculated results can be stored quickly. The used database and its data structure are 

described in the following sub-section. Finally, the software structure is described.  

6.1.1 Overall Architecture 

In order to understand how the system is used and how it is integrated into the business 

environment, the overall system architecture is explained in this sub-section. The fol-

lowing figure illustrates the principle of operation of the system: 
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Figure 22: Overall System Architecture 

The system can be subdivided into three main layers, as each layer works rather inde-

pendently of the others. The interconnection is achieved by interfaces which have to be 

adapted to the systems used within the affected layers. The data layer is responsible for 

supplying the system with up-to-date data. In order to facilitate the actualization, the 

active ERP system should be used as a data source, as the actuality of the data stored 

there has to be guaranteed due to other processes within the company. Only a small se-

lection of data is necessary for the lot sizing and scheduling optimization. First, the de-

fined sets of the models have to be filled with entities. A list of the parts, demands, ma-

chines, dies and molds, loading equipment, and raw material, as well as data about 

available coils, have to be transmitted. Relations between the elements of the sets are 

also important in order to be able to consider them in the planning. Besides sets, param-

eters have to be obtained from the ERP system used. Production times, part prices, and 

machine costs, as well as inventory holding costs, have to be communicated. Parts’ uti-

lization of raw material and loading equipment are also saved in the ERP and can there-

fore be used. More details about the obtained input data transmitted from the used ERP 

system can be read in the concept chapter.  

The logical layer consists of the optimization method, which was implemented in Java 

using IBM® ILOG CPLEX 12.1 optimization software. Both the mid-term lot sizing 

method and the short-term scheduling method are part of this layer. The sets and param-

eters of both models are set by the interface connecting with the subjacent layer. Some 

obtained data sets require calculations and set operations in order to transform them into 
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a suitable form. Some parameters, especially those which control the optimization pro-

cess, cannot be obtained directly or via calculations from the existent ERP data. These 

have to be input at an individually designed user interface.  

Individually designed user interfaces are part of the presentation layer. Although it 

would be possible to present these as a web interface or in an individual application, the 

acceptance of the lot sizing and scheduling tool is higher when it is directly integrated 

into the ERP software, which is used daily. Parameters can be set by production plan-

ners who possess a great deal of process knowledge. Set-up times, machine availability 

or the selection of shifts is done in specialized graphical user interfaces which are inte-

grated into the ERP system. The set parameters have to be communicated to the logical 

layer. After executing the lot sizing and scheduling methods, the results have to be pre-

sented to the end users. Depending on the department, a different presentation of the 

results is necessary. The production department gets schedules and lot plans. The 

maintenance department receives maintenance plans for the dies and plans for required 

raw material are transmitted to the purchasing department. There is also a view for re-

quired loading equipment in order to be able to better plan cleaning and transport.  

6.1.2 Database and Data Structure 

In this sub-section, the structure of the database is described, which works as fast back-

ground data storage. Although the database does not influence planning methods’ prin-

ciples of operation directly, it is useful for telling us how specific data from the ERP 

system is abstracted, stored and used. The presented database structure is an example of 

a way to manage sets, parameters and variables of a mathematical model in a relational 

database, as a match to the models’ components is given. The following illustration 

shows the database structure in detail. Explanations of contained entities are provided 

afterwards. 
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Figure 23: Database Diagram 
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First, the database can be subdivided into two main components: input and output tables 

for data storage. Visually, output tables can be distinguished from input tables by their 

grey background. Looking at input tables first, different types of input tables can be 

distinguished. There exist tables representing the sets, like parts, machines, dies, raw 

materials, coils, mid-term periods and short-term periods; and then there are tables rep-

resenting relations between these sets. The machine and the parts tables occupy a central 

position. Element-dependent properties like material costs or manufacturing costs, or 

the degree of utilization and the time that a machine can be used for per day, are saved 

in the parts table. The production speed is saved in the table representing the relation 

between parts and machine, named Part_Machine. The relations of dies with machines 

or dies with parts are defined in the similarly named tables. Parts cannot be directly re-

lated with coils because some parts consist of the same raw material. Therefore, a raw 

material table has to be introduced. The Part_Raw relation, represented by another ta-

ble, contains data about the consumption of raw material of one part that is the charge 

weight of a part. The relation to loading equipment, stored in table LE, is structured in a 

similar way. Sequence-dependent set-up times are saved in the Setup_Time table. Tech-

nically realizable part-part set-up sequences, including set-up times, are stored in this 

table. A Boolean value determines whether two parts are produced in coupled produc-

tion. Mid-term periods and short-term periods are saved in the tables titled Macroperiod 

and Microperiod respectively. Both tables contain entries about the starting and ending 

times of the periods. Additionally, every macro-period is linked to a day-type and every 

micro-period is linked to a shift-type. In these tables, additional charges are saved. De-

mands transferred from the ERP system are stored in the SAP_Demand table. The out-

put tables are highlighted with a grey background. Only a selection of the models’ vari-

ables is stored as the rest can be calculated automatically. The variable tables, which are 

relevant for mid-term planning, start with a BB in their name; tables relevant for  short-

term planning are named starting with an SB. The die maintenance tables are hybrid 

tables used for both models. Basically, all tables store the values in a similar way: If a 

binary output variable is active in the method results, an entry is made in the corre-

sponding table. In the case of integer or fractional variables, entries are made in the cor-

responding table including the value in specified columns.  

6.1.3 Software Structure 

In this section, the overall structure of the software is briefly described. The following 

figure illustrates the overall software structure. 
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Figure 24: Software Structure 

The data package is dedicated to making data available for other packages. The sub-

package SystemEnvironment contains the classes representing production-relevant ob-

jects and relations. Properties and methods are saved in these objects. The packages 

MidTerm_variables and ShortTerm_variables contain all classes representing the model 

variables. This enables the transfer of the variables, calculations of calculated variable 

values as well as an appropriate output of the results. In the Data package, classes are 

defined, some of which control the data access to the ERP system, and some of which 

manage the data storage. The models for short-term and mid-term planning are defined 

in classes which are part of the control package. Interaction between the models and 

control of communication between the top-level packages is managed by another class. 

The output package contains the classes which manage the visualization of the calculat-

ed results. In this package, variable values are interpreted and transformed into appro-

priate, understandable charts. These charts can be presented in an integrated ERP, in 

typical office suite-compatible spreadsheet formats or in an individually programmed 

graphical user interface. The first two alternatives are already implemented in subordi-

nated classes.  

6.1.4 Application Flow 

Several steps have to be passed before planning results can be obtained. The following 

activity chart represents the application flow: 
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Figure 25: Overall Application Flow Diagram 

After starting the application, the planning has to be configured. The selection of the 

planning horizon, the selection of relevant product groups, and the configuration of the 

times for short-term and mid-term optimization, as well as the activation/deactivation of 

preceding heuristics, are set. After that, the internal database has to be updated on the 

basis of ERP data.  

The following activity chart illustrates the steps which have to be completed: 
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Figure 26: Sub-process: Database Update Application Flow Diagram 

After receiving the update request from the main application, the database update pro-

cess starts to update, write or remove data from the used ERP system into the applica-

tion database. First, the sets of relevant system objects are imported, which can be pro-

cessed parallel to one another as no interdependencies have to be considered when im-

porting these basic sets. The relations between these objects have to be updated in a 

subsequent step, as the relations depend on the previously imported data. Last but not 

least, inventories and demands are updated.165 

After updating the data of the application database, only relevant datasets have to be 

read from the application database in order to present objects which are then much fast-

er to access. As there are interdependencies, not all import tasks can be executed in par-

allel. In particular those data sets representing relations need the linked objects in ad-

vance. The following flow diagram roughly visualizes the import and instantiation pro-

cess:  

                                                 

165 The interface required for obtaining the data from the SAP system was provided as a dynamic link 
library by application developers of the case study partner. 
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Figure 27: Sub-process: Instantiation and Import Flow Diagram 

The obtained data sets and parameters are stored in an object which encapsulates and 

manages the data access. On the basis of imported data sets, the lot sizing and schedul-

ing procedures are started. The procedures of both the short-term lot sizing and schedul-

ing and the mid-term lot sizing are basically the same and differ merely in details of the 

data and parameters required, variables built and restrictions modeled. 

  

Figure 28: Sub-process: Lot Sizing and Scheduling Flow Diagrams 

Results of both procedures are saved in the database and output. The mid-term lot sizing 

method makes use of the short-term lot sizing procedure’s results in order to correctly 

initialize, for example, inventory, lot or maintenance variables in the model.  
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checked in another overview contain-



110 

Short-term schedules are presented in Gantt

The displayed user interfaces

material requirements planners, the loading equipment management department and the 

personnel planning department. The management of rights and roles 

views can then be 

6.3 Evalu

6.3.1 Planning Results

The following sub

tice. Planning results were transfe

sentative subset of planning results is depicted 

show how the practical constraints are represented in the planning results.

Plans were generated for

Weingarten II 7800KN

mented Java method using IBM

customary

                                        

169 According to 
170 The visualization of the results 

term schedules are presented in Gantt

Figure 

The displayed user interfaces

material requirements planners, the loading equipment management department and the 

personnel planning department. The management of rights and roles 

can then be done by SAP managers.

Evaluation

Planning Results

The following sub

tice. Planning results were transfe

sentative subset of planning results is depicted 

show how the practical constraints are represented in the planning results.

Plans were generated for

Weingarten II 7800KN

mented Java method using IBM

tomary computer  

                                        

According to [ZB05]

The visualization of the results 

term schedules are presented in Gantt

Figure 34: Short

The displayed user interfaces170

material requirements planners, the loading equipment management department and the 

personnel planning department. The management of rights and roles 

done by SAP managers.

ation 

Planning Results

The following sub-sections present planning results which were transferred 

tice. Planning results were transfe

sentative subset of planning results is depicted 

show how the practical constraints are represented in the planning results.

Plans were generated for the

Weingarten II 7800KN. All the tests were executed using the previousl

mented Java method using IBM

computer  with an 2,4 GHz Intel

                                                 

[ZB05], Gantt charts are suitable 

The visualization of the results is

term schedules are presented in Gantt

: Short-Term Schedule Visualization in SAP

170 can then b

material requirements planners, the loading equipment management department and the 

personnel planning department. The management of rights and roles 

done by SAP managers.

Planning Results 

present planning results which were transferred 

tice. Planning results were transferred into practice for 

sentative subset of planning results is depicted 

show how the practical constraints are represented in the planning results.

the two molding presses

All the tests were executed using the previousl

mented Java method using IBM ® ILOG 

with an 2,4 GHz Intel

 

, Gantt charts are suitable 

is integrated using the SAP Graphics library BC_FES_GRA

term schedules are presented in Gantt charts169

Term Schedule Visualization in SAP

then be directly 

material requirements planners, the loading equipment management department and the 

personnel planning department. The management of rights and roles 

done by SAP managers. 

present planning results which were transferred 

to practice for 

sentative subset of planning results is depicted in order to 

show how the practical constraints are represented in the planning results.

two molding presses

All the tests were executed using the previousl

ILOG CPLEX 

with an 2,4 GHz Intel ® I5 CPU with 2 

, Gantt charts are suitable for visualizing

integrated using the SAP Graphics library BC_FES_GRA

169 integrated into SAP.

Term Schedule Visualization in SAP

directly used by production planners, raw 

material requirements planners, the loading equipment management department and the 

personnel planning department. The management of rights and roles 

present planning results which were transferred 

to practice for a period of 

in order to explain the results and to 

show how the practical constraints are represented in the planning results.

two molding presses Weingarten I 7800KN and 

All the tests were executed using the previousl

 12.1 as optimization software on a

I5 CPU with 2 GB

ing machine schedules.

integrated using the SAP Graphics library BC_FES_GRA

integrated into SAP. 

Term Schedule Visualization in SAP 

used by production planners, raw 

material requirements planners, the loading equipment management department and the 

personnel planning department. The management of rights and roles for the specific 

present planning results which were transferred 

a period of one month. A repr

explain the results and to 

show how the practical constraints are represented in the planning results.

Weingarten I 7800KN and 

All the tests were executed using the previously named impl

12.1 as optimization software on a

GB RAM. 

machine schedules. 

integrated using the SAP Graphics library BC_FES_GRA

 

 

used by production planners, raw 

material requirements planners, the loading equipment management department and the 

for the specific 

present planning results which were transferred into pra

one month. A repr

explain the results and to 

show how the practical constraints are represented in the planning results. Lot Sizing 

Weingarten I 7800KN and 

y named impl

12.1 as optimization software on a

integrated using the SAP Graphics library BC_FES_GRA. 

used by production planners, raw 

material requirements planners, the loading equipment management department and the 

for the specific 

to prac-

one month. A repre-

explain the results and to 

Lot Sizing 

Weingarten I 7800KN and 

y named imple-

12.1 as optimization software on a 



111 

6.3.1.1 Sample Mid-Term Planning Results 

First, mid-term planning results will be explained. Planned production amounts are out-

put in table form for each machine. In order to get a better overview, production 

amounts are visualized using bar charts: 
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Figure 36: Visualization of Production Amounts Weingarten I 
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Figure 38: Visualization of Production Amounts Weingarten II 
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Production speeds differ from part to part. Therefore, the utilization of a machine cannot 

be directly obtained by analyzing production quantities. For this purpose, a capacity 

utilization bar chart is provided as well: 

 

Figure 39: Combined Utilization Chart (1) 

 

Figure 40: Combined Utilization Chart (2) 
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The utilization charts show that the utilization capacity limit of 80 % is never exceeded. 

In actual practice, the maximum utilization is set to 65 %. Thirty-five per cent of the 

daily capacity is subtracted as a fixed rate for set-ups, coil changes and other machine-

related activities or smaller disruptions. In this method, a fixed set-up time is taken into 

account so that capacity is only reduced by 20 % to cover activities like coil changes 

and other machine-related activities or disruptions. 

Taking customer demands, maintenance, and so on into account, the following cost-

optimal personnel plan was calculated: 

 
Day type 

Maximum Simulta-

neously Deployed 

Staplers 

Estimated Maximum of 

Simultaneously Deployed 

Set-up Teams 

29.01.11 Working Day 2 0 

30.01.11 Sunday 2 1 

31.01.11 Working Day 4 1 

01.02.11 Working Day 4 0 

02.02.11 Working Day 4 0 

03.02.11 Working Day 4 1 

04.02.11 Working Day 4 0 

05.02.11 Working Day 4 1 

06.02.11 Sunday 2 0 

07.02.11 Working Day 2 1 

08.02.11 Working Day 2 1 

09.02.11 Working Day 4 1 

Figure 41: Personnel Mid-Term Plan 

It can be seen that this method tries to reduce personnel deployment on more expensive 

days (Sundays) in order to reduce personnel costs. As other constraints have to be con-

sidered, it is not possible to reduce the personnel needed to zero every Sunday. The ex-

act number of set-up teams can be determined during short-term planning as set-up ac-

tivities are precisely scheduled.  

The presented production plans consider maintenance of the dies. In these plans, 

maintenance is triggered after set down due to product change. There are some parts, 

like 82028724-4, produced in coupled production with 82028724-5, which are produced 

on several consecutive days in combination with other parts, that is 82028714-4.64 and 

82028724-5.64, without activating maintenance. The IDs differ although the parts are 

equal. Different IDs are used to distinguish successive processes. Accordingly, the parts 

are produced with the same dies and no product change and no maintenance is neces-

sary. Three days are required for maintenance and during this time the production of the 

related part is blocked.  
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Production quantities are based on raw material units. The number of required steel 

coils can be calculated using stored part-raw material relations and the raw material 

usage of the parts. The following table shows the planned maintenance for each die, 

calculated on the basis of the stored die-part relations.  

Furthermore, it provides a raw material procurement plan. As a result of the production 

plans, required loading equipment can be calculated. The following table shows the 

planned quantity for every loading equipment type for each day. Consequently, loading 

equipment procurement is improved due to the reliable calculations provided. 
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Figure 42: Raw Material Units Procurement Plan 

6.3.1.2 Sample Short-Term Planning Results 

The standard form for presenting short-term planning results within the short-term lot 

sizing and scheduling method are Gantt charts. The level of detail is determined by the 

granularity of the short-term planning method, which is the size of small buckets. In this 

case, each small bucket is 30 minutes long. 
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Figure 43: Short-Term Planning Result Visualization 

The presented parts show how the number of set-up teams is minimized as simultaneous 

set-ups at different machines are avoided. The number of stacking personal is mini-

mized and concentrated into shifts if possible. The different day and shift types are con-

sidered within the planning procedure and indicated by workday, Sunday, and bank hol-

iday, and further by morning shift (MS), late shift (LS) and night shift (NS). In the first 

example, stackers are necessary for both machines. Sequence-dependent set-ups are 

planned and coil changes integrated. The maintenance of the dies is activated after a 

product change. 

6.3.2 Manual vs. Automatically Generated Plans 

Up until now, the plans have been created by experts without any mathematical tech-

niques. As the presented method is designed to give decision support, it has to be com-

petitive in comparison to the abilities of the planners, at least in regular cases in which 

Start:     
31.1.2011  

6:0:0

31.1.2011  

6:30:0

31.1.2011  

7:0:0

31.1.2011  

7:30:0

31.1.2011  

8:0:0

31.1.2011  

8:30:0

31.1.2011  

9:0:0

31.1.2011  

9:30:0

31.1.2011  

10:0:0

31.1.2011  

10:30:0

End:     
31.1.2011  

6:29:59

31.1.2011  

6:59:59

31.1.2011  

7:29:59

31.1.2011  

7:59:59

31.1.2011  

8:29:59

31.1.2011  

8:59:59

31.1.2011  

9:29:59

31.1.2011  

9:59:59

31.1.2011  

10:29:59

31.1.2011  

10:59:59

Press1

Press2

Staplers 2 2 2 2 2 2 2 2 2 2

Setup 

Teams
1 1 1 1 1 1 1 1 1 1

Day Type Workday Workday Workday Workday Workday Workday Workday Workday Workday Workday

Shift Type MS MS MS MS MS MS MS MS MS MS

SETUP:

311357.85  & 311357.85  --> 82650191-

4 & 82650191-5

82650191-4 & 82650191-5

 SETUP:

520889 & 520890  --> 511360.85 & 

511359.85 

511359.85 & 511360.85 

31.1.2011  

11:0:0

31.1.2011  

11:30:0

31.1.2011  

12:0:0

31.1.2011  

12:30:0

31.1.2011  

13:0:0

31.1.2011  

13:30:0

31.1.2011  

14:0:0

31.1.2011  

14:30:0

31.1.2011  

15:0:0

31.1.2011  

15:30:0

31.1.2011  

16:0:0

31.1.2011  

11:29:59

31.1.2011  

11:59:59

31.1.2011  

12:29:59

31.1.2011  

12:59:59

31.1.2011  

13:29:59

31.1.2011  

13:59:59

31.1.2011  

14:29:59

31.1.2011  

14:59:59

31.1.2011  

15:29:59

31.1.2011  

15:59:59

31.1.2011  

16:29:59

COIL

COIL

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1

Workday Workday Workday Workday Workday Workday Workday Workday Workday Workday Workday

MS MS MS MS MS MS LS LS LS LS LS

82650191-4 & 82650191-5 82650191-4 & 82650191-5

SETUP:

511359.85 & 511360.85  --> 82028724-4  

& 82028724-5

82028724-4 & 82028724-5

31.1.2011  

17:0:0

31.1.2011  

17:30:0

31.1.2011  

18:0:0

31.1.2011  

18:30:0

31.1.2011  

19:0:0

31.1.2011  

19:30:0

31.1.2011  

20:0:0

31.1.2011  

20:30:0

31.1.2011  

21:0:0

31.1.2011  

21:30:0

31.1.2011  

22:0:0

31.1.2011  

17:29:59

31.1.2011  

17:59:59

31.1.2011  

18:29:59

31.1.2011  

18:59:59

31.1.2011  

19:29:59

31.1.2011  

19:59:59

31.1.2011  

20:29:59

31.1.2011  

20:59:59

31.1.2011  

21:29:59

31.1.2011  

21:59:59

31.1.2011  

22:29:59

COIL COIL

COIL

2 2 2 2 2 2 2 2 2 2

Workday Workday Workday Workday Workday Workday Workday Workday Workday Workday Workday

LS LS LS LS LS LS LS LS LS LS NS

82650191-4 & 82650191-5

82028724-4 & 82028724-5



118 

creative decisions and improvisation are not necessary. In this section, a comparison on 

the basis of the most important costs between manual planning results and automatically 

generated plans is provided. 

The evaluation is based on inventory holding and capital commitment costs ihcc
c ,171 set-

up costs setup
c  and manufacturing costs man

c : 

ihcc
c  = *ir

p

t TM p P

cM price
∈ ∈

∑∑  

setup
c  = ( ), , , , ,* setup

m p tm m p tm p tm

m M p P tm TM

binsM binsrM cM
∈ ∈ ∈

−∑∑ ∑  

man
c  = , , ,* prod

m p tm p tm

m M p P tm TM

xM cM
∈ ∈ ∈

∑∑ ∑  

 

Within an evaluation period of one month, the following results were obtained: 

 

Figure 44: Comparison of Manual and Automatic Planning 

                                                 

171 The capital commitment and inventory holding cost rate is set to 40 %. 
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7 Summary and Outlook 

7.1 Summary  

In this work, a method is developed for solving capacitated lot sizing problems in pro-

duction control. In order to improve competitiveness, the guarantee of availability to-

wards the customer is the focus. Lot sizing in practice is restricted due to several organ-

izational and technological constraints. Accordingly, all the restrictions which lots and 

batches are faced with are considered in the developed planning method. The considera-

tion of all available restrictions is necessary to generate feasible plans and schedules 

which can be applied in practice. 

As the production environment is subject to perpetual changes, and disruptions are 

probable, it is not useful to calculate detailed plans for a long-term horizon. Conse-

quently, a decomposition approach was presented in this work which splits up the time 

horizon according to the dynamics in demands. Rough planning of lots is carried out for 

a longer mid-term horizon. Cost-optimal production lots are calculated, taking into con-

sideration restrictions for maximum lot sizes, maintenance of the dies and batched pro-

duction. With the applied rolling horizon approach, it is not possible to guarantee avail-

ability for demands set after the planning horizon. Flexibility of the rolling horizon ap-

proach is advantageous, as the plans are constantly updated. Nevertheless, these updates 

cause high plan nervousness resulting in less user acceptance in practice. In this work, a 

method is developed which calculates useful ending inventories on the basis of monthly 

demand data to reduce problems related to the rolling horizon approach.  

The planning results of the mid-term lot sizing approach are then used to determine de-

tailed schedules within the short-term lot sizing and scheduling procedure. Under con-

sideration of all constraints, detailed schedules are calculated on the basis of the actual 

system state with the developed method.  

The presented planning method simplifies lot sizing and scheduling. The competitive-

ness is improved, as relevant products are pre-produced. The negative aspects of the 

rolling planning approach are avoided by the presented method. In an approval period of 

one month, manual plans were replaced by the generated plans and overall costs, includ-

ing set-up team costs, production costs, inventory holding costs and sequence-

dependent set-up costs, were reduced significantly. The following table summarizes the 

qualities of the method presented in this work. A ‘+’ indicates that the method supports 

the mentioned aspect already. A ‘o’ indicates that the method can easily be adapted to 



120 

support this aspect. A ‘-‘ indicates that more effort and further research has to be done 

to support this aspect. 

Workforce 
aspects 

Consideration of limited resources (e.g. setup personnel) for special activi-
ties over time + 

Consideration of shift and day dependent production costs (due to e.g. per-
sonnel costs) + 

Categorical shift planning of setup personnel + 
Personnel planning considering complete shifts o 
Individual personnel planning - 

Machine 
aspects 

Consideration of machine and part dependent production speeds and capac-
ities + 

Manual deallocation of machines + 
Capacity based production levelling + 
Shift based machine planning - 
Flexibly changing part-machine relations o 

Dies & 
Maintenance 

aspects 

Integrated preventive maintenance planning of resources (e.g. dies) + 
Consideration of maintenance times + 
Consideration of multiple dies to produce one product o 
Randomly varying maintenance times - 

Set-up  
aspects 

Coupled production  + 
Sequence dependent set-up costs and times + 
Consideration of randomly varying set-up times - 

Material 
procurement 

aspects 

Input or output oriented lots (batched production) + 
Consideration of capacity reductions due to batched production and input 
unit changes + 

Consideration of material inventory o 
Consideration of input factors varying randomly in size - 
Simultaneous orientation on inputs and outputs - 

Demand 
aspects 

Consideration of dynamic demands + 
Improvement of delivery service availability + 
Consideration of product run-outs + 
Customer based prioritization of demands o 
Ease of integration into self-controlled productions  + 

Other  
aspects 

Consideration of capital commitment limitations o 
Consideration of inventory limits o 
Multi-Level consideration  - 
Consideration of the actual production system state  + 
Applicability coupling of the big bucket and small bucket lot sizing models 
and decomposition approach in other concepts + 

Figure 45: Appraisal of Presented Method 
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7.2 Future Outlook 

The method was tested at a production plant of an automotive supplier. The object of 

investigation was a subset of the machines within the molding presses production stage. 

First, the method should be applied to plan further machines within the molding presses 

stage. As the same conditions apply to similar machines, only parameters like produc-

tion speed or set-up times have to be adapted. After that, the method should be extended 

to further production stages. In order to find an optimum for the whole production, sub-

sequent stages should be considered in a multi-stage lot sizing method. The mid-term 

planning model could be replaced by an adapted MLCLSP172. As complexity grows it 

will cause performance problems, and so heuristics and other decomposition approaches 

as well as model improvements will be essential. Other technologies like constraint pro-

gramming could also be suitable for generating feasible starting solutions.  

In summary, it is possible to improve production processes with intelligent planning 

methods. The development and transfer of methods from operations research for real-

life scenarios is still at the beginning. Nevertheless, through the improvement of hard-

ware and software solutions, combined with the scientific progress of recent years, the 

vision to optimize corporate planning in order to produce at maximum effectiveness 

comes into reach.  

                                                 

172 See [Tem06]. 
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