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Abstract 

Driving simulators have been used successfully in various application fields for dec-

ades. They vary widely in their structure, fidelity, complexity and cost. Nowadays, driv-

ing simulators are usually custom-designed for a specific task and they typically have a 

fixed structure. Nevertheless, using the driving simulator in an application field, such as 

the development of the Advanced Driver Assistance Systems (ADAS), requires several 

variants of the driving simulator. Therefore, there is a need to develop a reconfigurable 

driving simulator which allows its operator to easily create different variants without in-

depth expertise in the system structure. In order to solve this challenge, a Design 

Framework for Developing a Reconfigurable Driving Simulator has been developed. 

The design framework consists of a procedure model and a configuration tool. The pro-

cedure model describes the required development phases, the entire tasks of each phase 

and the used methods in the development. The configuration tool organizes the driving 

simulator’s solution elements and allows its operator to create different variants of the 

driving simulator by selecting a combination of the solution elements, which are like 

building blocks. The design framework is validated by developing an ADAS reconfigu-

rable driving simulator and by creating three variants of this driving simulator. 

Zusammenfassung  

Fahrsimulatoren werden seit Jahrzehnten erfolgreich in verschiedenen Anwendungsbe-

reichen eingesetzt. Sie unterscheiden sich weitgehend in ihrer Struktur, Genauigkeit, 

Komplexität und in ihren Kosten. Heutzutage werden Fahrsimulatoren in der Regel in-

dividuell für eine spezielle Aufgabe entwickelt und haben typischerweise eine festgeleg-

te Struktur. Bei der Nutzung eines Fahrsimulators in einem Anwendungsbereich wie der 

Entwicklung von fortgeschrittenen Fahrerassistenzsystemen (FFAS) werden jedoch 

mehrere Varianten des Fahrsimulators benötigt. Es besteht daher Handlungsbedarf für 

die Entwicklung eines rekonfigurierbaren Fahrsimulators, der es dem Betreiber des 

Fahrsimulators ermöglicht, ohne umfassende Fachkenntnisse  problemlos  verschiedene 

Varianten zu erstellen. Um diese Herausforderung zu bewältigen wurde eine Entwick-

lungssystematik  für die Entwicklung eines rekonfigurierbaren Fahrsimulators entwi-

ckelt. Die Entwicklungssystematik besteht aus einem Vorgehensmodell und einem Kon-

figurationswerkzeug. Das Vorgehensmodell beschreibt die benötigten Entwicklungs-

phasen, die vollständigen Aufgaben jeder Phase und die in der Entwicklung eingesetz-

ten Methoden. Das Konfigurationswerkzeug organisiert die Lösungselemente des Fahr-

simulators und ermöglicht dem Betreiber des Fahrsimulators, durch Auswählen einer 

Kombination von Lösungselementen nach dem Baukastenprinzip verschiedene Varian-

ten des Fahrsimulators zu erstellen. Die Entwicklungssystematik wird durch die Ent-

wicklung eines rekonfigurierbaren FFAS-Fahrsimulators und durch die Erstellung von 

drei unterschiedlichen Varianten dieses Fahrsimulators validiert. 
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1 Introduction 

Heading towards autonomous driving, modern automobiles today are no longer just 

pure mechanical devices. Rather they are equipped with various sensors and electronic 

control units (ECUs), which monitor the vehicle and its environment, as well as control 

the vehicle behaviour [Trä05]. Most of the automotive manufacturers develop modern 

systems which help the vehicle driver in the complex driving task. Such systems are 

called Advanced Driver Assistance Systems (ADAS). ADAS support and help the driv-

er in his driving tasks, raise traffic safety, increase efficiency of energy, and provide a 

comfortable drive [KCF+10]. 

The development and testing of the in-vehicle systems, such as ADAS, is a challenge 

due to their complexity and dependency on the other vehicle systems, initial conditions, 

and the surrounding environment. The testing of ADAS in reality leads to significant 

efforts and cost. Therefore, virtual prototyping and simulation are widely used instru-

ments in the development of such complex systems [GPD+06]. 

Virtual prototyping is well-established in facilitating the development of new vehicle 

systems and components [Mey07]. It is the process of building, simulating, and analys-

ing virtual prototypes. Virtual prototypes are the digital representations (models) of the 

real prototypes. It allows the verification of the properties and the functions of the prod-

uct in the early development phases without having to build a real prototype. This saves 

time and costs [GEK01]. One of the most useful virtual prototyping tools in the automo-

tive field are driving simulators. 

Driving simulators allow the ADAS developer to investigate the interaction between the 

human driver, the ECU virtual prototype and the vehicle, while the human driver steers 

a virtual vehicle in a virtual environment. Driving Simulators rank among the most 

complex testing facilities used by automotive manufacturers during the development 

process. They are based on close collaboration of different simulation models at runtime 

[Neg07]. These partial models represent dedicated aspects of the different vehicle com-

ponents, as well as the vehicle environment [EFG+03], [Kau03].  

Driving simulators vary in their structural complexity, fidelity and their cost. They 

range from simple low-fidelity, low-cost driving simulators such as computer-based 

driving simulators to complex high-fidelity, high-cost driving simulators such as high-

end driving simulators with complex motion platforms [WH09]. 

1.1 Problem Definition 

Driving simulators are considered as one of the most complex test rigs used in the de-

velopment of automotive systems. Using driving simulators in ADAS development re-

quires different driving simulator variants. Each variant should be equipped with differ-

ent levels of detail relating to all its entire models, in order to perform different test 



Page 6  Chapter 1 

methodologies, e.g. Software-in-the-Loop (SiL), Model-in-the-Loop (MiL), Hardware-

in-the-Loop (HiL), or Driver-in-the-Loop (DiL) [GPD+06]. For example, testing ADAS 

in SiL focuses on testing the ADAS basic functions and control algorithms. Therefore, it 

does not require a motion platform or a detailed vehicle model. However, testing the 

same ADAS in DiL focuses on the interaction between the driver, the vehicle and the 

system. That is why it requires a motion platform and a detailed vehicle model. 

Nowadays, existing driving simulators are usually task-specific devices which are indi-

vidually custom-developed by suppliers for a specific usage during the ADAS devel-

opment. These driving simulators can only be configured by a driving simulator expert. 

This is done by exchanging one or more of their entire components. Existing driving 

simulators do not allow their operator to change the system architecture or to exchange 

simulation models without in-depth knowledge of the driving simulator’s components 

and structure. 

The development of a driving simulator is a costly and complex task; the testing and 

training of ADAS often requires more than one configuration of a driving simulator. 

That is why there is a need for developing a reconfigurable driving simulator that allows 

the system operator to reconfigure it in a simple way without in-depth expertise in the 

system. 

1.2 Objectives 

The aim of this research work is to develop “A Design Framework for Developing a 

Reconfigurable Driving Simulator”. The purpose of this design framework is to support 

developers to develop a reconfigurable driving simulator. Moreover, it should support 

the operators of these reconfigurable driving simulators to easily create different driving 

simulators variants. 

Based on the requirements of the driving simulator, the design framework should de-

scribe the required development phases which are necessary for the development. Addi-

tionally, it should describe the variant creation phases in order to create the desired vari-

ant of the developed reconfigurable driving simulator. The core of this design frame-

work is the procedure model which structures and defines the required development and 

variant creation phases. The procedure model should organize all the tasks that have to 

be carried out in each phase and should describe the methods or algorithms to be used in 

fulfilling each task. In addition, a configuration tool should be prototypically imple-

mented. This configuration tool should organize and store the driving simulator’s solu-

tion elements and should allow the driving simulator’s operator to create different vari-

ants of the driving simulator by selecting a combination of the solution elements which 

are like building blocks. 

The applicability of the design framework should be verified by developing ADAS re-

configurable driving simulators and by creating three variants of it.  
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1.3 Approach 

In order to achieve these objectives, chapter 2 describes the problem area of this re-

search and states a detailed problem analysis. It starts with the definition of key terms 

and the classification of the work in the context of the research activities. In this con-

text, driving simulators will be briefly introduced in terms of their history, application 

fields, classification and structure. Driving simulators are typical mechatronic systems. 

Therefore, the development processes of mechatronic systems and their specification 

techniques will also be briefly described. The focus of this work is on the usage of driv-

ing simulators in supporting design, development, testing and training of ADAS. There-

fore, the ADAS development process and the usage of the driving simulators in the 

ADAS development will also be described. Then, the problem is described and the re-

configurable driving simulator term is defined. Finally, the requirements of the design 

framework are defined. 

Chapter 3 analyses the state of the art. It starts with a short review of an existing meth-

od for the selection of the driving simulator in the automotive field. Then, seven driving 

simulators are identified as previous approaches towards developing a reconfigurable 

driving simulator. The seven identified driving simulators are classified into four cate-

gories: low-level, mid-level, high-level and multi-level driving simulators. The final two 

sections of this chapter identify the call for action and describe the main solution ap-

proach. 

Chapter 4 is the core of this work. It describes “A Design Framework for Developing a 

Reconfigurable Driving Simulator”. This chapter describes the design framework and 

its main components. The procedure models, their phases as well as the entire tasks of 

each phase are described in detail. The entire tasks and results of the procedure model 

are presented with the help of two existing driving simulators as a case study. 

Chapter 5 describes the implementation prototype of the configuration tool. Addition-

ally the design framework is validated by a validation example. The validation example 

is the development of ADAS reconfigurable driving simulator and the creation of three 

task-specific variants of this driving simulator. 

Chapter 6 contains the summary of the work and an outlook on future work.  

The appendix provides additional figures and information. 
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2 Problem Analysis 

The main aim of the problem analysis is to define the requirements of the reconfigurable 

driving simulator design framework. This chapter is going to clarify the problem area. 

Section 2.1 defines the main terms and expressions, and then it describes the classifica-

tion of the work based on the defined terms. Section 2.2 describes the fundamentals of 

the driving simulators. Section 2.3 describes the mechatronic system, its development 

processes, their specification techniques and a short description of the reconfigurable 

mechatronic systems. Section 2.4 gives an overview of the advanced driver assistance 

systems, their classification, development cycle, and the useful usage of the driving 

simulators during the ADAS development cycle. Section 2.5 describes the problem and 

section 2.6 defines the reconfigurable driving simulator term. Finally, section 2.7 de-

fines the requirements of the design framework. 

2.1 Definition of Terms and Classification of the Work 

This work describes “A Design Framework for Developing a Reconfigurable Driving 

Simulator”. According to DUMITRESCU, a design framework consists of a generic pro-

cedure model and its related supporting tools e.g. functions, methods, algorithms, etc. as 

well as the related software tools. The design framework supports the development pro-

cess of technical systems [Dum11, p. 5f.], [DAG12].  

The main objective of this work is to support the development of driving simulators. 

The term “development” comprises the required tasks and activities needed to solve a 

technical problem. This results in a technical system [Kre12, p. 9]. The main objective 

of the design framework is to develop a reconfigurable driving simulator. The term “re-

configurable” is an adjective of the verb “reconfigure” which means “to arrange the 

elements or setting of something” [Oxf14-ol]. The OXFORD DICTIONARY OF ENGLISH 

defines the term simulator as:  

“A machine designed to provide a realistic imitation of the controls 

and operation of a vehicle, aircraft, or other complex system, used for 

training purposes” [Oxf14-ol]. 

Driving simulators are typically designed and built for a special purpose in order to 

support a specific analysis task. During this work, driving simulators are used for sup-

porting the development of Advanced Driver Assistance System (ADAS). Driving 

simulators are considered as virtual prototyping tools, which allow the investigation of 

mechatronic system aspects, environment, and the interaction between the driver and 

the vehicle systems [Kre12, p. 9], [CDF+07, p. 2], [Zee10, p. 157f.]. This work de-

scribes a design framework to develop a reconfigurable driving simulator whilst consid-

ering the ADAS testing and training requirements. 
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This work is a part of the TRAFFIS project (German acronym for Test and Training 

Environment for Advanced Driver Assistance Systems), which is funded by the Euro-

pean Union and the Department for Economy, Energy, Industry, Mid-Tier Business, 

Skilled Crafts and Trades of North Rhine-Westphalia, Germany.  

The project consortium consists of the Heinz Nixdorf Institute – University of Pader-

born; dSPACE GmbH, a worldwide provider of solutions for the development and test-

ing of automotive control units; Varroc Lighting Systems GmbH, a worldwide automo-

tive components’ supplier in the vehicle lighting field; ILV UG & Co.KG, one of most 

modern traffic safety and training centres in Europe; and UNITY AG, a technology-

oriented consulting firm for strategies, processes and systems. The objectives of the 

TRAFFIS project are: supporting industrial development, testing, and training of the 

modern ADAS with the help of a reconfigurable driving simulator, as well as the trans-

fer of know-how and project results to research centres and industry. 

2.2 Driving Simulators 

Vehicle driving is one of the most common activities worldwide. Nevertheless, it is a 

dangerous and complex task. Driving is an interaction between the driver, the vehicle, 

and the vehicle environment. It requires full mental and motoric concentration as well as 

total attention to a multitude of possible traffic scenarios, and could be disturbed by 

many factors [ARC11, p. 1]. The driving simulators were initially developed to support 

the driver training programs [FCR+11]. Due to the rapid increase of the performance of 

electronics and computing power, driving simulators are used nowadays in a wide range 

of applications. In the next sections, driving simulators are discussed in detail: section 

2.2.1 states the early history of driving simulators, section 2.2.2 describes the applica-

tion fields of driving simulators, section 2.2.3 describes the classification of the driving 

simulators and the driving simulators’ guidelines, and section 2.2.4 defines the struc-

tures and components of driving simulators. 

2.2.1 Early History of Driving Simulators 

The idea of using simulators in driving training issues originates from the first flight 

simulator which was developed in the early 1910s. The first known flight simulator 

used for training was developed by the French aircraft manufacturer ANTOINETTE circa 

1910. The ANTOINETTE flight simulator was a mechanical device which used to train 

pilots on using the cockpit controllers [All09, p. 1f.]. As shown in Figure 2-1, the AN-

TOINETTE flight simulator was a simple cockpit equipped with a similar aircraft control-

ler. The movement of the cockpit was produced by the instructors according to the pi-

lot’s interaction with the controller.  
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Figure 2-1:  The first known flight simulator in1910: ANTOINETTE's rudimentary flight 

simulator [Ook14-ol]. 

The widespread use of flight simulators inspired researchers to apply the same concept 

for road vehicles.  

The vehicle driver interacted continually with the surrounding environment. Therefore, 

in order to simulate a vehicle drive, the visual representation of the surrounding envi-

ronment had to be illustrated. The first attempts to develop a driving simulator were 

developed in 1934 by MILES & VINCENT. It was built to provide people with an obliga-

tory drivers’ test to highlight the high rate of traffic accidents. The MILES & VINCENT 

device consisted of a driving cabin with usual controllers, a movable light projector 

driven by motors, and miniature models which represented the vehicle environment. It 

allowed a driver to change the vehicle speed and driving direction. According to the 

speed and direction, the light projector moved over the miniature models and produced 

a shadow of them on a screen. The driver could then see an illusion of the driving situa-

tion on a screen [MV34]. Figure 2-2 shows the MILES & VINCENT driving simulator. 

The miniature models approach continued to be used for many years. In 1972, WEIR & 

WOJCIK had enhanced the MILES & VINCENT ideas by using a video camera. They 

mounted the miniature models over a rotating model belt. The video camera was 

mounted over a motor-driven stand. It could be translated to the right and to the left and 

could also be tilted along its vertical axis. The video camera moved according to the 

driver input and delivered the recorded scene to a screen in the front of the driver 

[WW71], [CH11], [HS11]. 
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Figure 2-2:  The first known driving simulator in 1934: MILES & VINCENT driving 

simulator [MV34, p. 254]. 

Driving simulators are rapidly evolving. This is due to the rapid development of digital 

computers, Central Processing Units “CPU” and Graphical Processing Units “GPU”. 

The digital computers allowed more complex models and 3D visualization to be simu-

lated and represented in real-time [ARC11]. The first driving simulator with a motion 

platform was developed by Volkswagen in the early 1970s. This driving simulator had a 

3 degrees of freedom motion platform [CH11]. The number of driving simulators had 

increased worldwide by the early 1970s: 28 driving simulators were developed and used 

[Slo08]. During the 1980s, many automobile manufacturers, e.g. Volkswagen and Mer-

cedes-Benz, developed driving simulators in order to investigate the interaction between 

the driver and vehicle systems [Str05]. 

2.2.2 Driving Simulators Application Fields 

Driving simulators have a wide range of applications. SLOBE categorized the driving 

simulators’ area of use in three main fields: research, training and entertainment 

[Slo08]. FISCHER et al. categorized the driving simulators’ area of use in three main 

fields: engineering, medicine and psychology [And11], [FCR+11], [Kan11]. Merging 

both categorizations results in that driving simulators are usually used in research ap-

proaches in engineering, medicine and psychology as well as being used for training 

and entertainment issues. The wide range of driving simulators application fields can be 

categorized and stated as follows: 
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 Using driving simulators in research: Driving simulators are used in research 

for the following purposes: 

o Engineering research: 

 Evolution of interior and exterior vehicle design. 

 Design, test and evaluation of new in-vehicle systems e.g. Ad-

vanced Driver Assistance Systems (ADAS) [FCR+11]. 

 Early validation of roadway geometries [CH11]. 

 Supporting the testing of traffic control devices [CH11]. 

 Investigating the influences of signs and signals on the driver ac-

tivities [FCR+11]. 

o Medical research [FCR+11]: 

 Investigation of the patient's driving ability. 

 Investigation of medication side effects on the driving ability. 

o Physiological research [FCR+11]:  

 Finding out the human limitations in certain driving situations. 

 Drivers’ rehabilitation after accidents. 

 Using driving simulators in training [Str05]:  

o Supports the driving training for driving school students who apply to 

get a driving license. 

o Supports road safety training programs. 

o Supports emergency driving training on public roads. 

 Using driving simulators in entertainment:  

o Computer and video games [Slo08]. 

o Edutainment. 

2.2.3 Driving Simulators’ Classification and Guidelines 

Driving simulators vary in their structural complexity. Therefore, there is a need to clas-

sify them. A classification attempt was done by JAMSON. In this attempt, he classified 

driving simulators according to their utility, usability and cost.  JAMSON distinguishes 

between them as follows: 
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“Utility (or fidelity) describes the degree to which the simulator’s 

characteristics replicate the driving task faithfully. Its usability, on the 

other hand, describes how versatile the simulator is in terms of ease of 

reconfiguration from study to study. Research simulators would ideal-

ly have good usability, whereas training simulators may focus on 

strong utility. The financial outlay in the development of a driving 

simulator is often intrinsically linked to its utility and the ability of the 

simulator to excite the three main sensory modalities. This often leads 

to a classification based on cost.” [Jam11, p. 12-3]. 

That leads to classifying driving simulators into three main categories: low-level, mid-

level and high-level driving simulators. 

Low-Level driving simulators: They have restricted fidelity, high usability i.e. the 

ability of simulating different scenarios, and they are usually low-cost driving simula-

tors. Typically, they have a single display which provides a narrow horizontal field of 

view and a gaming steering wheel as a Human-Machine-Interface (HMI) [Jam11, p. 12-

3f.]. 

Mid-Level driving simulators: They have a greater fidelity than the low-level driving 

simulators, high usability and they are mid-cost driving simulators. Typically, they have 

multiple displays which provide a wide horizontal field of view, a real vehicle dash-

board as an HMI and sometimes they are equipped with a simple motion platform 

[Jam11, p. 12-4]. 

High-Level driving simulators: They have great fidelity, high usability and they are 

high-cost driving simulators. Typically, they almost have a 360 degrees horizontal field 

of view and a complete real vehicle as an HMI which is mounted on a high-end motion 

platform with at least 6 degrees of freedom [Jam11, p. 12-4]. 

Driving Simulators Guidelines 

Due to the wide variation of driving simulators’ structural complexity, fidelity and usa-

bility, a lot of research institutes and governmental organizations have defined guide-

lines for using driving simulators in a specific task. These guidelines determine the es-

sential prerequisites that have to be fulfilled by a driving simulator in order to be suc-

cessfully used in a specific task. 

The most known guidelines are those which define the prerequisites of using driving 

simulators in driving training approaches. For example, on 15 July 2003, the European 

Parliament and the European Council stated and published the directive 2003/59/EC 

regarding “the initial qualification and periodic training of drivers of certain road vehi-

cles for the carriage of goods or passengers”. This directive allows the usage of a top-of-

the-range simulator in the periodic training approaches [EUP03]. Based on this di-

rective, “the German Federal Ministry of Transport, Building and Urban Development” 

published a recommendation/guideline regarding the usage of a powerful driving simu-
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lator in the training approaches [IHK07]. This guideline defines the prerequisites and 

specifications which have to be fulfilled by a driving simulator in order to be used in the 

training approaches. For example, it defines that a driving simulator should have a min-

imum of a 180 degrees horizontal field of view; the motion platform should have a min-

imum of one rotational degree of freedom for the pitching motion with circa +/- 10 de-

grees and a minimum of one translational degree of freedom with circa 5 cm range of 

motion [IHK07]. 

2.2.4 Driving Simulators’ Structures and components 

Driving simulators consist of various components. There are many available publica-

tions which describe driving simulators’ structure and components. ALLEN et al. de-

scribe the essential driving simulator as follows:  

“The major elements of a typical driving simulator as summarized in 

Figure 2.1 include: cueing systems (visual, auditory, proprioceptive, 

and motion), vehicle dynamics, computers and electronics, cabs and 

controls, measurement algorithms and data processing and storage.” 

[ARC11, p. 2-2] 

Figure 2-3 shows ALLEN et al. illustration of the driving simulator’s functional compo-

nents. 

 

Figure 2-3:  Functional components of driving simulators according to ALLEN et al. 

[ARC11, p. 2-2]. 
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Based on these publications: [ARC11, p. 2-2f.], [Kre12, p. 23ff.], [Neg07, p. 22ff.], 

[Zee10, p. 159f.], [NDW09, p. 40f.], [Kau03, p. 11ff.], [KG11], the driving simulators’ 

components could be classified in three categories: hardware components, software 

components and resources as follows: 

 Driving simulators’ hardware components: The most essential hardware 

components are described as follows: 

o Input device: It is the Human-Machine-Interface input device which 

provides the essential required signals for driving a virtual vehicle. The 

input signals are typically: acceleration pedal position, brake pedal posi-

tion, steering wheel angle and gear selector position.   

o Visualization and acoustic devices: The visual devices display the 

computer-generated virtual scene to the driver. They are typically screens 

or projectors. The acoustic device (e.g. speakers) generates tones, ac-

cording to the simulated environment sounds.  

o Motion platform: This is a mechatronic device which contains a mech-

anism, which generates motion according to the simulated vehicle 

movements to produce an illusive haptic feeling of being in motion. 

 Driving simulators’ software components 

o Applications: There are many software applications that support the op-

eration of driving simulators. They usually support the modelling of the 

simulation models, e.g. environment creation software, as well being a 

part of the simulation run-time calculations e.g. visualization software. 

They also allow the analysis of the simulation results.  

o Models: They are the mathematical representation of the entire vehicle 

components and vehicle’s environment. The models have to be calculat-

ed and executed during simulation run-time in order to simulate their 

represented components e.g. vehicle models, other traffic participants 

models, environment models, etc. 

o Interfaces: They interface the diverse hardware and software compo-

nents of a driving simulator with each other. 

 Driving simulators’ resources 

o Computers: They provide the required computing power in order to ex-

ecute the different applications, models, and interfaces of a driving simu-

lator.  

o Computer interfaces: These are resource components which interface 

hardware components with the simulator computers by converting the 

physical signals to their respective information signals. 
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The mentioned components of driving simulators indicate that a driving simulator is a 

typical mechatronic system. It consists of a mechanical mechanism e.g. the motion 

platform, electronics components e.g. hardware interfaces, control components e.g. mo-

tion platform controller as well as information technology components e.g. the various 

software and simulation models.  

2.3 Mechatronic Systems 

The term “Mechatronic” was initiated by merging the two terms: “Mechanics” and 

“Electronics”. The term “Mechatronic” was initially presented in Japan in 1969 by K. 

KIKUCHI [HTF96]. The term “Mechatronic” refers to the extension of mechanical sys-

tem functions by using electronics components. It has been broadened due to the usage 

of microelectronics and information technology. Nowadays, it describes the interaction 

between mechanics, electrics/electronics, control and software components [Sch89], 

[MDR91], [Wei92]. 

During this work, the definition of “Mechatronic” is considered, according to HA-

RASHIMA, TOMIZUKA und FUKUDA, as described in the VDI-guideline 2206 “Design 

methodology for mechatronic systems” [VDI2206], as follows: 

“[Mechatronics is]... the synergetic integration of mechanical engi-

neering with electronic and intelligent computer control in the design 

and manufacturing of industrial products and processes” [HTF96, p. 

1]. 

According to the VDI-guideline 2206 [VDI2206] and DUMITRESCU [Dum11, p. 8], a 

typical mechatronic system structure consists of 4 main units: a basic system, sensors, 

actors and information processing.  These four main units of the mechatronic system 

form the system closed control loop. Additionally, the mechatronic system environment 

and the Man-Machine-Interface have to be considered. Figure 2-4 shows the basic struc-

ture of a mechatronic system. 

The basic system is usually a mechanical, electromechanical, hydraulic or pneumatic 

structure or a combination of them. The sensors are generally responsible for determin-

ing some of the basic system variables and conditions. The variables determined by sen-

sors are the input of the information processing unit. Regarding the sensors input, the 

information processing unit regulates the system variables, in order to follow a pre-

defined desired manner of the basic system. The regulation of the system is done by the 

actors unit [VDI2206]. 
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Figure 2-4:  Basic structure of a mechatronic system according to [VDI2206, p. 14] 

and [Dum11, p. 8]. 

The mechatronic system units are interfaced together with the help of three types of 

flows as follows [VDI2206]: 

 Material flows: Material flows describe the exchange of materials such as gas-

es, liquids or solids. 

 Energy flows: Energy flows describe the exchange of any form of energy such 

as mechanical, thermal or electrical energy. 

 Information flows: Information flows describe the information exchange be-

tween the system units, e.g. the measured variables. 

2.3.1 Development of Mechatronic Systems 

The VDI-Guideline 2206 “Design methodology for mechatronic systems” describes a 

development procedure of mechatronic systems based on the V-model which is com-

monly used in the software engineering development process. The software engineering 

V-model had been adapted to meet the mechatronic development approaches. Figure 2-

5 shows the V-model as a macro-cycle containing the modelling and model analysis 

[VDI2206, p. 29]. 
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Figure 2-5:  The V-model as a macro-cycle [VDI2206, p. 29]. 

The V-model defines the essential generic tasks which have to be carried out in order to 

develop a mechatronic system as follows [VDI2206, p. 29f.]: 

 Requirements: The definition of the product requirements is the starting point 

of the development. The requirements define the essential tasks which have to 

be accomplished. Additionally, the requirements are used to evaluate the product 

after completing the development. 

 System design: The main objective of this task is to define a cross-domain solu-

tion concept. Therefore, the system function has to be divided into sub-functions 

which can be fulfilled by solution elements or active structures. 

 Domain-specific design: The developed cross-domain solution concept has to 

be further concretized. Typically, this concretization is done based on the in-

volved domains. 

 System integration: In this task, all individual results from various involved 

domains have to be integrated together. 

 Assurance of properties: The development progress has to be continually 

checked against the solution concept and the defined requirements. 

 Modelling and model analysis: The system properties have to be continually 

assured and analysed with the help of models and computer-aided tools. 

 Product: The result of the micro-cycle is either the product or increasing of the 

product maturity.  
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2.3.2 Specification Techniques of Mechatronic Systems 

The development procedure of mechatronic systems based on the V-model shows that 

the development process starts with the definition of the requirements. Based on these 

requirements, the cross-domain solution concept has to be carried out. There is a gap 

between the two tasks. Usually, the requirements describe the overall system require-

ments in general and they are usually hard to interpret for all the involved domains. 

Therefore, there is a need to close this gap by developing a domain-spanning descrip-

tion of the solution concept. Especially, in the early design phases, this is called “princi-

ple solution” [GAC+13, p. 8], [GFD+09, p. 201]. 

A suitable specification technique for the domain-spanning description of the principle 

solution of mechatronic systems has been developed within the Collaborative Research 

Centre 614 “Self-optimizing Systems and Structures in Mechanical Engineering”, of the 

University of Paderborn. This specification technique is called CONSENS – “Concep-

tual Design Specification Technique for the Engineering of Complex Systems”. 

There have been many attempts towards the establishing of such a specification tech-

nique. An overview of the previous attempts is described by GAUSEMEIER et al. 

[GFD+09, p. 207ff.]. The conclusion of the state of the art investigation results is: 

“The analysis of the current state of the art shows that there are a lot 

of approaches on specifying mechatronic systems. One part of the ap-

proaches focuses on kinematic, dynamic and controlling behavior. 

Other approaches give priority to communication relations, operating 

procedures of the system and state transitions. All of the analysed ap-

proaches just fulfill a single part of the requirements on the addressed 

specification technique, stated in Sect. 3. This applies especially for 

the aspect of a holistic description of the principle solution. Further-

more, the analyzed approaches do not provide a widespread transition 

from the domain-spanning specification towards the domain-specific 

concretization.” [GFD+09, p. 209] 

Therefore, the CONSENS specification technique is used for the driving simulator de-

velopment task during this work as a mechatronic specification technique. 

CONSENS – “Conceptual Design Specification Technique for the Engineering of 

Complex Systems” 

CONSENS is used in order to describe the discipline-specific principle solution of a 

complex mechatronic system. It divides the principle solution description into 7 aspects 

which are mapped into partial models. The principle solution description consists of a 

coherent system of partial models as shown in Figure 2-6 [GGT13, p. 3]. The specifica-

tion of the principle solution is usually done by several modelling iterative. 
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Figure 2-6:  The coherent partial model of the specification technique - CONSENS 

[GGT13, p. 3]. 

The CONSENS partial models are described as follows [GGT13, p. 3f.]: 

 Environment: The environment partial model defines the external influences 

which affect the system under development. 

 Application scenarios: The application scenario describes some system opera-

tional application scenarios of the system in terms of, way of use, operation 

models, etc.. 

 Requirements: This partial model collects and organizes the system require-

ments which need to be covered and implemented during the development pro-

cess.  

 Functions: The functions partial model describes the system and its entire com-

ponents’ functionality in a top down hierarchy. 

 Active structure: The active structure partial model structure describes the en-

tire system in more detail, namely in the form of systems’ components active 

principles. 

 Shape: The shape partial model describes the first shape demonstration of the 

product e.g. a 3D-CAD model of the system under development. 

 Behaviour: The behaviour partial model describes the states and the states tran-

sitions of the system’s behaviour. 
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2.3.3 Reconfigurable Mechatronic Systems 

The aim of this work is to define “A Design Framework for Developing a Reconfigura-

ble Driving Simulator”. In the previous section, it was clear that the driving simulator is 

a mechatronic system. This section gives a brief introduction about the reconfigurable 

mechatronic systems. 

The complexity of mechatronic systems has been encouraged by advancement in tech-

nologies and applications e.g. rapidly increasing CPUs computing power and the in-

creased performance of electronics components. This opens up new opportunities to 

develop reconfigurable mechatronic systems. 

A general definition of reconfigurable systems is stated by SIDDIQI and WECK as fol-

lows: 

“Reconfigurable systems can attain different configurations at differ-

ent times thereby altering their functional abilities. Such systems are 

particularly suitable for specific classes of applications in which their 

ability to undergo changes easily can be exploited to fulfil new de-

mands, allow for evolution, and improve survivability.” [SW08, p. 1] 

In the past few years, the usage of the term “Reconfigurable” has dramatically increased 

in published technical papers. The most widespread works related to reconfigurable 

systems have been done in the following fields: In the computing field through the in-

vention of Field Programmable Gate Arrays (FPGAs), in Reconfigurable Manufacturing 

Systems (RMS) and in Reconfigurable Machine Tools (RMT) as well as in many other 

applications. [SW08, p. 1]. 

SIDDIQI and WECK define three main requirements in order to develop a reconfigurable 

system. The requirements are described as follows [SW08]: 

1. Multiability: The system should have the ability to perform different functions 

in different times. 

2. Evolvability: The system has to be easily changeable over time by removing, 

adding and/or exchanging new functions or elements  

3. Survivability: The system has to be functional with minimum predetermined 

failure. 

During this work, only reconfigurable driving simulators are considered. Driving simu-

lators usually consist of a large number of hardware and software components which are 

combined together to build a driving simulator variant which fulfils a specific task. The 

reconfigurable mechatronic system concept could be applied to driving simulators. This 

allows reconfiguring a driving simulator structure in an easy way to fulfil a specific 

task. 
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2.4 Advanced Driver Assistance Systems 

As mentioned before, driving simulators are used in different fields of application. This 

work is focussing on the usage of driving simulators in supporting design, development, 

testing and training of Advanced Driver Assistance Systems (ADAS). The following 

section describes the ADAS system. 

Driving is one of the most popular daily activities people do. Nevertheless, it is a com-

plex and dangerous activity. The driver has to concentrate on many tasks at the same 

time. The driver’s tasks can be classified in three categories according to their priority: 

primary, secondary and tertiary. The primary driving tasks consist of the following: ve-

hicle navigation by selecting the desired route to move from a place to the next place, 

vehicle guidance in both longitudinal and lateral directions and vehicle stabilization and 

controlling of the vehicle position and velocity. The secondary driving tasks consist of 

the following: switching direction indicators, lights, windshield washer system, etc. The 

tertiary driving tasks consist of the following: controlling the audio system, air condi-

tioning, infotainment devices, etc. [ARC11, p. 1], [Neg07, p. 6ff.].  

Therefore, the automotive manufacturers are developing ADAS with the aim of helping 

the vehicle driver in the complex driving task. ADAS support and help the driver in his 

driving tasks, raise road traffic safety, increase efficiency of energy, and grant a com-

fortable drive [KCF+10].  

Using ADAS in cars and trucks has great benefits regarding accident prevention. HUM-

MEL et al. had analysed thousands of accidents’ insurance claims in Germany in order to 

investigate the safety benefits of ADAS. They found that using one ADAS such as the 

“Emergency Brake Assist System” can prevent up to 45% of a specific type of accident 

[HKB+11]. 

The definitions of the Driver Assistance System (DAS) and the Advanced Driver Assis-

tance System (ADAS) are specified during the project Response 31 as follows: 

“Driver Assistance Systems are supporting the driver in their primary 

driving task. They inform and warn the driver, provide feedback on 

driver actions, increase comfort and reduce the workload by actively 

stabilising or manoeuvring the car. They assist the driver and do not 

take over the driving task completely, thus the responsibility always 

remains with the driver. ADAS are a subset of the driver assistance 

systems.” [Res09, p. 4] 

ADAS generally interact between the driver, the vehicle and the vehicle environment. 

The vehicle environment varies rapidly based on traffic flows and driving situations. 

                                                 

1 RESPONSE 3 is a subproject of the integrated project PReVENT, which is a European automotive 

industry activity co-funded by the European Commission. The objective of the projects is to contribute 

to road safety by developing and demonstrating preventive safety applications and technologies.  
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Therefore, modern vehicles are equipped with various types of sensors which recognise 

and analyse the environment. Additionally, the sensory data which is detected by each 

sensor could be integrated together to assure its accuracy. This is called “Sensor Fu-

sion” [AWH10]. Figure 2-7 shows the different types of ADAS sensors, their positions 

and their related functions [Bed10-ol]. 

 

 

Figure 2-7:  ADAS sensor types, placement, and their main functionalities, according 

to [Bed10-ol]. 
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ADAS Classification 

GOLIAS et al. classified the ADAS according to their functionality as follows [GYA02]: 

 Driver support systems 

o Driver information systems such as: navigation devices, Traffic Mes-

sage Channel (TMC), etc. 

o Driver precipitation systems such as: night vision systems, diverse 

parking systems, etc. 

o Driver comfort systems such as: hands-free, infotainment systems, etc.  

o Driver monitoring systems such as: attention assistance system, driver 

drowsiness detection, etc. 

 Vehicle support systems 

o  General vehicle control systems such as platooning2, stop and go assis-

tance systems 

o Longitudinal and lateral control such as: Adaptive Cruise Control 

(ACC), Lane Keeping Assistance (LKA), Lane Change Assistance 

(LCA), etc. 

o Collision avoidance systems such as: intersection collision warning, 

pre-crash assistance systems, etc. 

o Vehicle monitoring systems such as: On-Board Diagnostic systems 

(OBD), tachographs, etc.  

The last few years have witnessed a phenomenal growth in wireless communication and 

its applications, such as cellular phone networks (mobile networks) and wireless fidelity 

networks (WiFi). Based on the development in the wireless communication field, many 

automobile manufacturers are developing a new generation of ADAS nowadays which 

is called Car2X (also known as vehicle-to-vehicle and vehicle-to-infrastructure com-

munications). The main objectives of the Car2X ADAS are increasing traffic safety and 

traffic flow efficiency [RF09]. 

The main idea of the Car2X systems is to equip vehicles and infrastructure with com-

munication equipment such as Dedicated Short Range Communication (DSRC), as de-

fined by the IEEE802.11p. This communication equipment allows the communication 

and the exchange of information between a vehicle and another vehicle, as well as be-

tween vehicles and the infrastructure. Figure 2-8 shows the main components of the 

                                                 

2 Platooning is an innovative method which maximizes a highway throughput. Vehicle platooning divides 

vehicles in a roadway into groups and controls their velocities simultaneously according to the traffic 

situation.  
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Car2X systems, which are vehicle stations and roadside stations, as well as types of 

communications. Vehicle-to-Vehicle communications are illustrated in green and Vehi-

cle-to-Infrastructure communications are illustrated in blue [MSK+11]. 

There are many applications of Car2X, such as emergency vehicle drive warning and 

intersection collision warning. 

  

Figure 2-8:  Car2X system components and types of communication. 

2.4.1 ADAS Development Process 

The previous section showed the future trends of ADAS and its great benefits in acci-

dent prevention. The ADAS active systems are systems which actively intervene in the 

vehicle movement by accelerating, braking or steering. In the case of an active ADAS 

giving a fail alarm or controlling the vehicle wrongly, it could be more harmful for the 

driver than if the system did not exist [CM11]. Therefore, such a safety-critical system 

must be tested extensively during its development process. 

The development of safety systems in the automotive field follows the V-model which 

was previously described in section 2.3.1. There are a lot of approaches to adapt the 

generic V-model for the development of ADAS, e.g. by MAURER [Mau09, p. 45f.], 

KLEIN et al. [KOM+09, p. 4] GIETLINK et al [GPD+06]. The testing of ADAS during the 

different design and validation phases is based mainly on the “Virtual Prototyping”.   

Virtual prototyping is defined by GAUSEMEIER et al. and translated from the original 

German text as follows:  

“A virtual prototype or a digital mock-up is an internal computer rep-

resentation of a real prototype, […]. The virtual prototype is an exten-
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sion of the digital mock-up, because in addition to the shape, there are 

other aspects taken into account such as kinematics, dynamics, 

strength, etc.” [GEK01, p. 384 f.] 

GIETLINK et al. have described the sequential design and validation phases in the devel-

opment of automotive safety-critical systems. Moreover, they defined the test method-

ologies which have to be used in each phase [GPD+06]. Figure 2-9 shows the ADAS 

design and development cycle based on the V-model. It represents the sequential design 

and validation phases in the development of automotive safety-critical systems 

[GPD+06, p. 4].  

 

Figure 2-9:  The V-model represents the sequential design and validation phases in 

the development of automotive safety critical systems [GPD+06]. 

The various used test methodologies are defined as follows [GPD+06]: 

 Model-in-the-Loop (MiL): MiL supports the early design of ADAS functionali-

ty by modelling the ADAS controller functionally. The model of the ADAS con-

troller is simulated in a closed loop together with vehicle components and envi-

ronment models. 
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 Software-in-the-Loop (SiL): After developing the ADAS functionality success-

fully in a MiL environment, the real control unit code can be generated, integrat-

ed and simulated in a closed loop together with vehicle components and envi-

ronment models under real time conditions. This is called SiL.  

 Hardware-in-the-Loop (HiL): Based on the SiL environment, in HiL a model 

component of the ADAS system (typically, the control unit) could be replaced 

by its representative real hardware component. The test HiL environment con-

sists of a combination of real and simulated components. 

 Vehicle Hardware-in-the-Loop (VHiL): Based on the HiL environment, in 

VHiL the simulated vehicle model is replaced by a real vehicle. But the vehicle 

remains operating in an indoor laboratory. 

 Rapid Control Prototyping (RCP): RCP is a test method which allows the 

ADAS developer to test and iterate their simulated ADAS functionality in a real 

vehicle with the help of RCP tools. 

 Failure Modes, Effects and Critically Analysis (FMECA): FMECA is a 

method which is used to investigate the problems that may have happened from 

a single failure of the ADAS system e.g. a shortcut in the circuit between two 

connection pins. 

GIETLINK et al. have described the different test methodologies of ADAS control units 

in combination with the vehicle components, but they did not consider the testing of 

ADAS systems in combination with vehicle components and the driver together in a 

driving simulator.  

2.4.2 Using Driving Simulators in ADAS Development 

Driving simulators are virtual prototyping tools which allow the design, testing and val-

idation of ADAS in a closed loop together with vehicle components, environment and 

driver [Eng08]. ADAS control units and vehicle components could be real, virtual or a 

combination of real and virtual components.  

In fact, they are named as standard tools for design, development and test by most of the 

automobile manufacturers. Some examples are cited as follows: Daimler Benz [Zee10], 

Volkswagen [Nor94], BMW [HN07], Toyota [Cha08], Mazda [YS08], Ford [GCB+06] 

etc. 

The benefits of using virtual prototyping and driving simulators during ADAS de-

velopment 

Using driving simulators in the ADAS design, development, and testing has the follow-

ing benefits: 
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 Time, cost and effort reduction by developing virtual prototypes instead of 

developing real prototypes. 

 Dangerous experiments which are not safe enough to be tested in reality or 

closed tracks could be executed safely in driving simulators. For example, 

emergency braking assistance, pre-crash assistance systems, etc. 

 Realising a better understanding of the ADAS by building its mathematical 

representation (modelling). 

 Driving simulators allow the developers to investigate the interaction between 

ADAS, vehicle and driver. 

 Driving simulator experiments are reproducible with the same parameters and 

conditions. 

 The experiments of driving simulators are independent of environmental condi-

tions such as weather, day/night, etc. 

2.5 Problem Description 

Driving simulators are complex mechatronic systems which consist of mechanical, elec-

tronic, control and software components. They vary in their cost, structural complexity 

and validity from low-level to high-level driving simulators. These simulators are suc-

cessfully used in different fields of applications. 

Driving simulators are powerful virtual prototyping tools, which allow the design, test-

ing and validation of in-vehicle systems such as ADAS in a closed loop together with 

vehicle components, environment and driver. The ADAS development process needs 

different test environments e.g. SiL, MiL, HiL etc. Each of these test environments re-

quires different driving simulator structures and different levels of detail of the driving 

simulator components.  

Despite the fact that the development of driving simulators is costly and complex, the 

available driving simulators in the market nowadays are usually special purpose facili-

ties. They are individually developed by suppliers for a specific task. These driving 

simulators could not be reconfigured or in the best case, they have some exchangeable 

components. Only a driving simulator expert can modify the system architecture or ex-

change one or more of its entire components. The existing driving simulators do not 

allow the system operator to change the system architecture or to exchange simulation 

models without in-depth know-how of the driving simulator system and its architecture. 

Therefore, there is a need to develop A Design Framework for Developing a Reconfigu-

rable Driving Simulator. This design framework defines the main development steps 

towards developing a reconfigurable driving simulator. Moreover, it allows driving 

simulator operators without in-depth expertise in the system to reconfigure a driving 
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simulator easily according to their individual preferences. The design framework should 

consist of the following essential components: 

 Procedure model:  It should define the required tasks systematically in order to 

develop a reconfigurable driving simulator and the variant creation phases. 

Moreover, it should consider the different mechatronic disciplines and has to 

simplify the system complexity. The procedure model should consider the dif-

ferent ADAS development environments. 

 Supporting tools: In order to develop a reconfigurable driving simulator, there 

are a lot of methods and algorithms that should be used. The used methods and 

algorithms contain existing approaches. Also, new approaches have to be de-

veloped. The methods and algorithms have to be organized within the proce-

dure model. 

 Software tool: The design framework should be supported by an easy-to-use 

software tool, which allows the operator to reconfigure a driving simulator 

without in-depth knowledge of the system. 

2.6 Reconfigurable driving simulator definition 

There are a large number of existing driving simulators, which vary from high-level 

facilities to low-level driving simulators e.g. computer games. In most of their descrip-

tions or brochures, they are defined as a “reconfigurable driving simulator”. Therefore, 

the term “reconfigurable driving simulator” has to be clearly-defined with the help of 

two questions: “Which driving simulator components could be reconfigured?” and 

“Who can reconfigure the driving simulator?”. Based on the answers of the questions, 

the term “Reconfigurable Driving Simulator” will then be defined. 

Which driving simulator components could be reconfigured? 

The term “reconfigurable driving simulator” is sometimes misused instead of using 

the term “driving simulator with exchangeable components” or the term “driving 

simulator with parameterized models”. As mentioned in section 2.2.4, driving simu-

lators consist of various components. These components are classified into three catego-

ries: hardware, software and resources. There are many driving simulators which have 

exchangeable hardware components e.g. vehicle mock-up, motion platform, visuali-

zation system. Other driving simulators have exchangeable software components e.g. 

vehicle model, traffic model, etc. Most driving simulators have parameterized simula-

tion models e.g. a parameterized vehicle model to simulate different vehicle types, pa-

rameterized traffic models to simulate different traffic scenarios, etc. 

Who can reconfigure the driving simulator? 

The term “reconfigurable driving simulator” is sometimes misused instead of using the 

term “modular driving simulator” or “configurable driving simulator”. Many driv-
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ing simulators could be customised individually by their manufacturer according to 

the customer requirements. These are “modular driving simulators”. Some driving 

simulator components could be exchangeable or some components could be added or 

removed. These are configurable driving simulators which can be reconfigured or 

upgraded only by their manufacturer or developer. 

Reconfigurable driving simulator definition 

A driving simulator is reconfigurable when different configurations can be used opti-

mally in different tasks at different times. The reconfiguration should be feasible by the 

operator without in-depth expertise in the system structure. The operator can create dif-

ferent configurations by changing the system structure (adding or removing some of its 

entire components) and by exchanging the entire system components with other suitable 

components. 

2.7 Requirements of the Design Framework 

Based on the problem analysis, the essential requirements of the Design Framework for 

Developing a Reconfigurable Driving Simulator have been formed. In the next section, 

the essential requirements of the design framework procedure model, the reconfigurable 

driving simulator and the configuration tool are clarified. 

2.7.1 Requirements of the procedure model 

The procedure model is the design framework core. It defines the required phases in a 

hierarchy in order to develop and create variants of a reconfigurable driving simulator. 

Each phase contains entire tasks. These tasks have to be carried out in order to achieve 

the phase objectives. The following requirements of the procedure model have to be 

fulfilled: 

R1 – Systematic procedure: The development and variant creation phases should be 

systematically described with the help of a procedure model. The procedure model 

should support driving simulator developers in order to develop a reconfigurable driving 

simulator. Additionally, it should support a reconfigurable driving simulator’s operator 

in the creation of task-specific driving simulator variants. 

R2 – Complexity reduction: Driving simulators are complex mechatronic systems 

which use several technologies varying from computer graphics to controlling of motion 

platforms. Therefore, the procedure model should reduce the complexity of the system 

for the developers of the driving simulators. Additionally, the procedure model should 

take in consideration that the operators of the driving simulators do not have in-depth 

expertise in driving simulator technologies. Nevertheless, they have to be able to create 

task-specific driving simulator variants.  
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R3 – Domain-Spanning: Driving simulators are mechatronic systems. They consist of 

mechanical components, electronics components, control components, and software 

components. Therefore, the procedure model should consider dealing with these differ-

ent mechatronic domains. Moreover, the developers of a driving simulator, which are 

typically an interdisciplinary design team, should be able to understand and use the pro-

cedure model. 

R4 – High potential for automation: Some tasks of the procedure model use several 

function and algorithms. These functions and algorithms should have a high potential to 

be performed automatically with the help of a computer-aided tool. 

2.7.2 Requirements of the reconfigurable driving simulator 

The main objective of the design framework is to develop a reconfigurable driving sim-

ulator. It should fulfil the following requirements: 

R5 – Driving simulator reconfigurability: The design framework must allow a driv-

ing simulator operator to reconfigure a driving simulator without in-depth knowledge of 

the system structure. The operator can create different task-specific configurations by 

changing the entire system structure, by adding or removing entire components or by 

exchanging the entire used solution elements with other ones. The reconfiguration pro-

cess should be done without the help of the developer or the manufacturer of the driving 

simulator. 

R6 – Reengineering of existing driving simulators: The design framework is mainly 

established in order to support the development of new reconfigurable driving simula-

tors. Driving simulators are typically designed and built for a special purpose in order to 

support a specific task. Each driving simulator consists of a set of software and hard-

ware solution elements which are developed over a long time and almost all of them are 

costly. Therefore, the design framework should have the ability to reengineer the exist-

ing driving simulators into reconfigurable ones. Moreover, the existing solution ele-

ments have to be used within the reengineered driving simulator.  

R7 – Supporting the development of ADAS: The ADAS development process needs 

different test environments e.g. SiL, MiL, HiL etc. Each of these test environments re-

quires different driving simulator structures and different levels of detail of the driving 

simulator components. The reconfigurable driving simulator should cover the different 

required test environments for the development of ADAS. 

2.7.3 Requirements of the configuration software tool 

In order to allow the driving simulator operator to create a driving simulator variant or 

to reconfigure an existing variant, there is a need for a software tool which has to fulfil 

the following essential functional requirements.  
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R8 – Separation of concerns: The configuration tool has to prevent the operator from 

dealing with complex procedures such as mathematical functions or algorithms. The 

user has to deal with an easy-to-use graphical user interface. The configuration software 

tool has to separate the concerns between the user interface and the internal complex 

operations. 

R9 – Modular and extendable system structure: The configuration tool must be im-

plemented in a modular way. This has a great benefit as it reduces the coupling degree 

of the entire software modules. Additionally, the configuration tool must have an ex-

tendable structure by adding new functions or algorithms in the future.  
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3 State of the Art 

There are thousands of driving simulators spread all around the globe. They are com-

plex mechatronic systems and include different technologies, which widely range from 

computer graphics to controlling a complex motion platform. The publications about 

driving simulators usually take one technology into consideration or just a partial aspect 

of developing a specific driving simulator. The state of the art in this chapter will only 

consider the publications which are related to the development methods of driving 

simulators and the previous approaches towards developing a reconfigurable driving 

simulator. 

This chapter surveys an existing driving simulator selection method and previous ap-

proaches towards developing a reconfigurable driving simulator. Section 3.1 describes 

the driving simulator selection method according to NEGELE. As mentioned previously 

in section 2.2.3, driving simulators are usually classified according to JAMSON into three 

categories: low-level, mid-level and high-level driving simulators. In sections 3.2, 3.3 

and 3.4, two driving simulators of each category will be described. Section 3.5 describes 

a previous approach of multi-level driving simulators. In section 3.6, the need for action 

is derived from the state of the art analysis. Finally, section 3.7 defines the solution ap-

proach.  

3.1 The Driving Simulators Selection Method according to NEGELE 

NEGELE developed a method called the “Application Oriented Conception of Driving 

Simulators for the Automotive Development”. He considered driving simulators as one 

of the most complex test rigs used in the automotive development. The development of 

a driving simulator requires a wide expertise in different technologies and disciplines, 

which widely range from the visualization techniques to platform motion control. This 

essential know-how is not in the core competence of the automotive manufacturer. 

Therefore, driving simulators which are used as automotive test rigs are usually devel-

oped by driving simulator suppliers. Nevertheless, it is tough for automotive engineers, 

who do not have a basic knowledge of driving simulator technologies to select and 

specify a driving simulator which fits with a specific-task [Neg07]. 

Therefore, NEGELE developed a method which allows automotive engineers to formu-

late the requirements and specifications of a driving simulator for a specific application. 

The main objective of the method is to define the relationships between the automotive 

applications and driving simulators’ specification [Neg07].  

Automotive engineers could select a driving simulator type based on two main crite-

ria: a driving task category and a driver stimulus-response mechanism, according to 

the application of the required driving simulator.  
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The driving tasks are categorized into primary tasks, secondary tasks and tertiary 

tasks. The primary tasks consist of vehicle navigation, vehicle guidance and vehicle 

stabilization. The driver stimulus-response mechanisms are categorised into the fol-

lowing: skills-based responses which are senso-motoric responses (e.g. acceleration or 

steering), rule-based responses (e.g. driving slower in a curve) and knowledge-based 

responses (e.g. route planning with the help of paper maps) [Neg07]. 

The driving simulator application should be defined by means of the following: a driv-

ing task category (Which driving tasks should be investigated?) and a driver stimulus-

response mechanism (Which driver stimulus-response mechanism is relevant?). For 

example, if the driving simulator application is the testing of vehicle dynamics, then the 

application is focussing on a primary driving task (vehicle stabilization) and investigat-

ing a skills-based response of the vehicle driver [Neg07]. 

Figure 3-1 shows the intersections matrix between the five driving tasks categories: 

(vehicle stabilization, vehicle guidance, vehicle navigation, secondary tasks and tertiary 

tasks) and the three driver stimulus-response mechanisms: (skills-based responses, rule-

based responses and knowledge-based responses). These result in 15 types of driving 

simulators which are marked from 1a to 5c [Neg07, p. 94]. 

 

Figure 3-1:  Scheme for classifying driving simulator applications [Neg07, p. 94].  
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Each driving simulator type is described by a profile table. The profile table specifies 

the entire components of the driving simulator variant. NEGELE divided the simulator 

into 26 components grouped into 6 groups. Figure 3-2 shows an example of one of the 

profile tables according to the simulator type 1a [Neg07]. 

The simulator type 1a fits with the application which focusses on the vehicle stabiliza-

tion tasks and on investigating the driver’s skills-based responses e.g. testing a new ve-

hicle dynamics component. This simulator type should have the following characteris-

tics [Neg07, p. 102]: 

Visualization system 

 The distance between the driver’s eyes and the visualization device should be 

type A1 (i.e. < 0.8 m).  

 The horizontal field of view should be type B2 (i.e. from 120 degrees to 140 

degrees). 

 It should not have a stereo visualization system or head tracking system. 

 The visualization device for the vehicle rear mirrors should be type E2 (i.e. flat 

displays instead of the original rear mirrors). 

 The visualization type in front of the windshield should be type F3 (i.e.  Edge-

Blinding visualization). 

 The visualization resolution should be type G2 (i.e.  2 to 3 arc minute/pixel). 

  The visualization frame rate should be type H1 (i.e.  ≥ 60 Hz). 

 The projector types should be type J2 (i.e.  the projector reaction time < 8 ms). 

Motion System 

 The motion platform should be type K1 (that means that a motion platform is a 

hexapod on a carriage with 1 transitional degree of freedom (DOF) with a dis-

placement of 20–50 mm) .  

 The motion platform could be type M1, M2 or M3 (M1 means 7 DOF, M1 

means 8 DOF and M3 means 9 DOF) .  

 The vehicle dynamics model should be type N3 (i.e.  the model is built based on 

multi-body simulation). 

 The tire model should be type O4 (i.e.  3D finite-element tire model). 

The simulator profile table also describes the acoustic simulation, the environment 

model, the traffic simulation and the vehicle mock-up.  
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Figure 3-2:  Driving simulator profile for skills-based responses and vehicle stabiliza-

tion tasks [Neg07, p. 102].  

Evaluation  

The method of NEGELE allows automotive engineers to formulate the requirements and 

the specifications of a task-specific driving simulator. The focus was on how to specify 

the requirements of a driving simulator to fit with a specific task. He did not consider 

the reconfigurability of driving simulators and he did not mention a driving simulator’s 

development method. 

Nevertheless, the method is useful as a preliminary work for driving simulator opera-

tors. They can use NEGELE’s method to specify the preferred driving simulator’s re-

quirements and its entire components, then they can use the design framework described 

in this work in order to create a specific driving simulator variant. 

3.2 Existing Low-Level Driving Simulators  

Low-level driving simulators have restricted fidelity, high usability and they are usually 

low-cost driving simulators. Typically, they have a single display which provides a nar-

row horizontal field of view and a gaming steering wheel as a Human-Machine-

Interface (HMI) [Jam11, p. 12-3f.].  

The following sections describe two previous approaches towards developing low-level 

reconfigurable driving simulators. 

3.2.1 A Modular Architecture based on the FDMU Approach 

FILIPPO et al. had developed “a modular architecture for a driving simulator based on 

the FDMU approach”. This approach describes a modular and easily configurable 
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simulation platform for ground vehicles based on the Functional Digital Mock-Up 

approach (FDMU). FDMU is a framework developed by the Fraunhofer Institute. The 

framework consists of a central component called “Master Simulator”, which connects 

different components through an application called “Wrapper”. Each module communi-

cates with the master simulator through its own wrapper application and a standardized 

Functional Building Block (FBB) interface. Figure 3-3 shows the basic scheme of the 

FDMU architecture [FSS+13]. 

 

Figure 3-3:  Basic scheme of FDMU architecture [FSS+13, p. 4]. 

FILIPPO et al. had developed a driving simulator based on the FMDU architecture. This 

driving simulator consists of two hardware components and two software components. 

The hardware components are a motion platform, which is an off-the-shelf Steward 

platform, and an input device, which is an off-the-shelf USB steering wheel and pedals. 

The software components are the master simulator simulation core and a simple vehicle 

model implemented with the help of Open Modelica [FSS+13]. 

Evaluation  

The developed approach: “A Modular Architecture for a driving simulator based on the 

FDMU Approach” focusses on the interfacing of the different components of the driv-

ing simulator with the help of an FMDU modular structure. The problem with this ap-

proach is that in order to add or exchange any component, a wrapper application has to 

be reprogrammed or adjusted for the new component. The approach does not describe 

how to add, remove or exchange any of the four pre-programmed components. Indeed, 

the approach is promising for simulation core components, which interface the driving 

simulator components with each other. But it could not be used in a reconfigurable driv-

ing simulator without some enhancements e.g. the master simulation has to be dynami-

cally adjustable depending on the connected modules without being pre-programmed by 

the user. 
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3.2.2 QuadDS and HexDS Driving Simulators 

QuadDS and HexDS driving simulators are commercial turnkey driving simulators de-

veloped by the Mechanical Simulation Corporation, which is a supplier of vehicle be-

haviour simulation software such as CarSim and TruckSim. The software packages of 

the Mechanical Simulation Corporation are used in over 140 driving simulators around 

the world [Car14-ol].  

The QuadDS and HexDS driving simulators are developed for engineering applications 

which require an accurate vehicle dynamics model. They could be used in different ap-

plication areas such as the design and testing of the Electronic Stability Program (ESP) 

controllers, the design and testing of ADAS, etc. [Car14-ol]. 

The QuadDS is equipped with 3 DOF and 1 vibration DOF motion platform, which is 

actuated by four linear actuators. The QuadDS visualization devices consist of three 60” 

LCD displays and a smaller LCD to visualize the instrument cluster. It is also equipped 

with a 5.1 surround audio system. The driver input controllers of the QuadDS are a 

force feedback steering wheel, pedals and an automatic shift lever. It could be config-

ured as a car or it could have a truck/bus seating configuration. The QuadDS software is 

based on the CarSim or the TruckSim software packages [Car14-ol]. Figure 3-4 shows 

the QuadDS driving simulator. 

 

Figure 3-4:  A QuadDS driving simulator running TruckSim [Car14-ol]. 

The other variant of the CarSim driving simulator is the HexDS. It is equipped with a 6 

DOF motion platform (hexapod), which is actuated by six linear actuators. The HexDS 

visualization devices consist of three 40” LCDs. The driver input controllers, the audio 

system and the software packages are identical to the QuadDS [Car14-ol]. Figure 3-5 

shows the HexDS driving simulator. 
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Figure 3-5:  A HexDS driving simulator running TruckSim [Car14-ol]. 

Evaluation 

The QuadDS and HexDS driving simulators are modular driving simulators and both 

variants are operated by using the same software packages (CarSim or TruckSim). They 

could be configured according to the customer requirements by means of the follow-

ing: two variants of motion platforms (3 DOF or 6 DOF), the vehicle model (truck 

model or passenger car model) and the visualization devices (three 40” LCD displays or 

three 60” LCD displays). The QuadDS and HexDS driving simulators are not reconfig-

urable driving simulators because as well-developed as they are, the user cannot ex-

change the entire components or add a new component to the system without the help of 

the manufacturer. 

3.3 Existing Mid-Level Driving Simulators 

Mid-level driving simulators have a greater fidelity than the low-level driving simula-

tors as well as high usability. Typically, they have multi-displays which provide a wide 

horizontal field of view, a real vehicle dashboard as an HMI, and they are sometimes 

equipped with a simple motion platform [Jam11, p. 12-4]. 

The following sections describe two previous approaches towards developing reconfig-

urable mid-level driving simulators. 
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3.3.1 The Heinz Nixdorf Institute – ATMOS Driving Simulator 

The Atlas Motion System (ATMOS) driving simulator3 of the Heinz Nixdorf Institute 

was developed by “Rheinmetall Defence Electronics GmbH”. The driving simulator 

was first developed for the German Army in 1997 with the aim of performing safety 

training for the military truck drivers. The Heinz Nixdorf Institute of the University of 

Paderborn built the ATMOS driving simulator in 2009 in cooperation with Rheinmetall 

Defence Electronics GmbH (RDE). Figure 3-6 shows the Heinz Nixdorf Institute – 

ATMOS driving simulator. 

 

Figure 3-6:  ATMOS driving simulator at the Heinz Nixdorf Institute. 

The ATMOS driving simulator is equipped with a motion platform that consists of two 

dynamical parts with 5 degrees of freedom (DOF). These two parts are independent of 

each other and the system is fully electrically actuated. The first dynamical part is the 

moving base. It has 2 DOF and is used to simulate the lateral and longitudinal accelera-

tions of the simulated vehicle. It can move in the lateral plane and at the same time, it 

has the ability to tilt around the lateral axis with a maximum angle of 13.5 degrees and 

around the longitudinal axis with a maximum angle of 10 degrees. Four linear actuators 

are used to control the movements in both directions. The second dynamical part is the 

shaker system, which has 3 DOF to simulate the roll and pitch angular movements and 

the heave translation of the simulated vehicle. The shaker is driven by a three drive 

crank mechanism and by three electrical motors. 

                                                 

3 This section describes the ATMOS driving simulator at the Heinz Nixdorf Institute in its original deliv-

ered status by its manufacturer. 
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The ATMOS driving simulator has an eight-channel cylindrical projection system 

(powered by 8 LCD-projectors) which covers a 240 degrees horizontal field of view and 

three displays in order to visualize the simulated rear mirror views.  

The motion platform is equipped with an innovative fixation system, which allows the 

usage of several driving cabins e.g. truck cabin or passenger vehicle cabin.  

The ATMOS driving simulator is operated by off-the-shelf software developed by RDE. 

The software consists of the simulation core, an operator council GUI, a training scenar-

io editing tool, visualization software, vehicle model, traffic model and audio generation 

software. 

Evaluation  

The Heinz Nixdorf Institute – ATMOS driving simulator (in its delivered status) has the 

ability to use several driving cabins. The delivered software does not allow any configu-

rability or parameterizing of the models such as the vehicle model. Therefore, during 

this work the software components have to be replaced by software components devel-

oped by the Heinz Nixdorf Institute. 

3.3.2 The University of Central Florida Driving Simulator 

The University of Central Florida (UCF) driving simulator is operated in the Centre of 

Advanced Transportation Systems Simulations (CATSS). It has evolved since the late 

1990's into a mid-level driving simulator with the aim of conducting research in trans-

portation, human factors and real-time simulation. The UCF driving simulator is 

equipped with a hexapod motion platform with 6 DOF. It has a passenger vehicle cabin 

as an input device. The vehicle cabin is mounted over the motion platform. The UCF 

has a visualization system which consists of 5 displays: one for the front view, two for 

side views and two for the left and middle rear mirrors. The simulator is also equipped 

with an audio system, force feedback steering wheel and the main operator console 

[AYR+07], [GKR03]. Figure 3-7 shows two variants of the UCF driving simulator: a 

passenger vehicle cabin and a commercial truck cabin. 

The simulator was designed with an exchangeable vehicle cabin. The user can choose 

from a commercial truck cabin and a passenger vehicle cabin according to the test re-

quirements. The vehicle model could also be changed according to the used vehicle cab-

in [GKR03]. 
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Figure 3-7:  The two variants of the UCF driving simulator: a passenger vehicle cab-

in (left) and a commercial truck cabin (right) [GKR03]. 

Evaluation  

The UCF driving simulator has exchangeable driving cabins and exchangeable vehicle 

models. It could be configured according to the customer requirements by choosing 

from the passenger car cabin with its respective vehicle model or the commercial truck 

cabin with its respective vehicle model. The UCF driving simulator is not a reconfigu-

rable driving simulator because only the driving cabin and vehicle model are ex-

changeable. Moreover, the driving simulator user cannot exchange the entire compo-

nents or add a new component to the system without the help of the manufacturer. 

3.4 Existing High-Level Driving Simulators 

High-Level driving simulators have great fidelity, high usability and they are high-cost 

driving simulators. Typically, they almost have a 360 degrees horizontal field of view 

and a complete real vehicle as an HMI, which is mounted on a high-end motion plat-

form with at least 6 degrees of freedom [Jam11, p. 12-4]. 

Toyota Research Driving Simulator (TRDS) 

The world’s largest, most advanced and most expensive driving simulator is the Toyota 

Research Driving Simulator (TRDS). It was inaugurated in 2007 and it is located at the 

Toyota Motors Technical Centre in Higashifuji, Japan. While its development costs 

have not been made public, most estimates exceed $100 million [Jam11, p. 12-2]. Fig-

ure 3-8 shows the Toyota Research Driving Simulator (TRDS). 

The TRDS has the world’s most advanced driving simulator motion platform. The mo-

tion platform is actuated by hydraulic and electrical actuators. It has a 9 DOF motion 

platform as well as additionally having 3 vibrations DOF. The TRDS dome has a di-

ameter of 7.1 m which can be moved as follows: ±17.5 m in X-direction, ±10 m in Y-

direction, and ±0.6 m in Z-direction, ±25 degrees roll-rotation, ±25 degrees pitch-

rotation and ±330 degrees yaw-rotation [GB11, p. 7-10]. 
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Figure 3-8:  Toyota Research Driving Simulator (TRDS) [TTV14-ol]. 

The TRDS will be excluded from the evaluation in this section because of the lack of 

published information about its specifications, its structure and its reconfigurability. The 

following sections describe two previous approaches towards developing high-level 

reconfigurable driving simulators. 

3.4.1 VTI Sim IV Driving Simulator 

The Swedish National Road and Transport Research Institute (VTI) inaugurated the Sim 

IV driving simulator in May 2011 at the VTI Centre in Gothenburg, Sweden. The VTI 

Sim IV is used in research projects in different application areas such as in-vehicle sys-

tem development, HiL of ADAS, road design, driver behaviour investigation, etc. The 

Sim IV driving simulator is equipped with an 8 DOF motion platform which consists of 

the two following parts: the XY-motion base which provides linear motion in X-Y di-

rections and a hexapod which provides 6 DOF. The VTI Sim IV dome can be moved as 

follows: -4 to +3 m in X-direction, ±3.1 m in Y-direction, and -2.6 to +2.4 m in Z-

direction, ±16.5 degrees roll-rotation, -15.5 degrees to +16 degrees pitch-rotation and 

±20.5 degrees yaw-rotation. The VTI Sim IV has a cylindrical visualization system 

powered by 9 projectors and gives a 190 degree horizontal field of view and three rear 

mirrors displays. It has an exchangeable driving cabin [FSA+11]. The VTI Sim IV is 

operated by VTI's simulator software which is based on Open Source and an in-house 

developed code. The software is modular and could be integrated with other external 

software components. Figure 3-9 shows the VTI Sim IV driving simulator. 
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Figure 3-9:  VTI Sim IV driving simulator [FSA+11, p. 5]. 

Evaluation  

The VTI Sim IV driving simulator has exchangeable driving cabins and a parameter-

ized vehicle model. It could be configured according to the test experiment require-

ments by choosing from different driving cabins and their respective vehicle model pa-

rameter set. The VTI Sim IV driving simulator is not a reconfigurable driving simula-

tor because only the driving cabin and vehicle model are exchangeable. The driving 

simulator user cannot exchange the entire components or add a new component to the 

system without the help of the manufacturer. 

3.4.2 Daimler Full-Scale Driving Simulator 

Daimler AG inaugurated the Daimler full-scale driving simulator in October 2010 in 

Sindelfingen, Germany. The Daimler full-scale driving simulator is used mainly in de-

veloping new ADAS and the evaluation of different vehicle dynamics concepts. It is 

equipped with a 7 DOF motion platform which consists of the following two parts: the 

lateral 12 m long rail system which provides linear motion in Y-direction and a hexapod 

which provides 6 DOF. The dome of Daimler full-scale driving simulator has a diame-

ter of 7.5 m which can be moved by a rail system for 12 m (in X or Y directions) and by 

the hexapod as follows: +1.4 to -1.3 m in X-direction, ±1.3 m in Y-direction, and ±1 m 

in Z-direction, ±20 degrees roll-rotation, -19 degrees to +24 degrees pitch-rotation and 

±38 degrees yaw-rotation. Figure 3-10 shows the Daimler full-scale driving simulator. 
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The Daimler full-scale driving simulator has a cylindrical visualization system powered 

by 8 projectors and gives 360 degrees horizontal field of view and three rear mirrors 

displays. It has several exchangeable driving cabins e.g. S-Class, A-Class, Actros-Truck 

etc. It is operated by a Daimler in-house developed software. The used software can also 

operate Daimler internal fixed-base driving simulator variants [Zee10]. 

 

Figure 3-10:  The Daimler full-scale driving simulator [TTV14-ol]. 

Evaluation  

The Daimler full-scale driving simulator has exchangeable driving cabins and a pa-

rameterized vehicle model. It could be configured according to the test experiment 

requirements by choosing from different driving cabins and their respective vehicle 

model parameter set. The Daimler full-scale driving simulator is not a reconfigurable 

driving simulator because the driving simulator components are only compatible with 

Daimler internal components. The driving simulator user cannot exchange the entire 

components or add a new component to the system without the help of the manufactur-

er. 

3.5 The National Advanced Multi-Level Driving Simulators  

The multi-level driving simulators are different variants of a driving simulator as they 

have different levels of fidelity, usability and cost. But they are developed based on the 

same structure using the same software, hardware and resources components. An exam-

ple of the multi-level driving simulator is the NADS driving simulator which is de-

scribed in this section. 
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The National Advanced Driving Simulator (NADS) is a driving simulator centre located 

at the University of Iowa. The NADS centre has three driving simulators: the high-level 

driving simulator “NADS-1”, the mid-level driving simulator “NADS-2” and the low-

level driving simulator “NADS miniSim”. The NADS driving simulators are based on 

the same system architecture, software and resources [NAD10].  

The NADS software consists of the following components [He06, p. 2f.]: 

 Real-time core: This component is the main communication mechanism between 

the different components through shared memory or TCP/IP protocol.  

 Simulation control front-end GUI: This component is the operator council GUI 

which allows the operator to select, start, stop and replay test drives. 

 Driving control feel and instrumentation: This component is responsible for 

reading the driver’s control input signals via steering wheel and pedals, and send 

them to the vehicle model. It also forwards the vehicle data such as speed and 

engine RPM to the instruments. 

 Vehicle dynamics: This component is a parameterized, physical-based passenger 

car model. 

 Scenario control: This component is responsible for the other traffic partici-

pants’ behaviour in order to simulate different traffic scenarios.  

 Visual rendering: This component is responsible for rendering the virtual scene 

to the driving simulator displays.  

 Audio engine: This component is responsible for providing audio cues of the 

virtual experiment. 

 Driving data collection and analysis: This component is responsible for collect-

ing the simulation data during simulation run-time and stores it in a file for the 

analysis. 

The NADS driving simulators vary in their motion platform, driving cabins, audio sys-

tems and visualization devices [NAD10]. The following sections describe the NADS-1 

and NADS miniSim in order to illustrate the difference between their motion platforms, 

driving cabins, audio systems and visualization devices. 

The NADS-1 

The NADS-1 driving simulator is one of the most advanced high-level driving simula-

tors in the world. It has a 13 DOF motion platform. The dome of the NADS-1 driving 

simulator has a diameter of 7.3 m which can be moved as follows: ±9.75 m in X-

direction, ±9.75 m in Y-direction, and ±0.6 m in Z-direction, ±25 degrees roll-rotation, 

±25 degrees pitch-rotation and ±330 degrees yaw-rotation [NAD10], [GB11, p. 7-10]. 
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The NADS-1 driving simulator has a cylindrical visualization system powered by 8 pro-

jectors and gives a 360 degrees horizontal field of view and three rear mirrors displays. 

It has three exchangeable driving cabins as follows: entire car, sport utility vehicle and 

truck cabin. It is operated by NADS in-house developed software. The used software 

can also operate the NADS-2 and NADS miniSim driving simulators. The NADS-1 is 

used for research and development as well as clinical and training applications, which 

need a high fidelity driving simulator [NAD10]. Figure 3-11 shows the NADS-1 driving 

simulator. 

 

Figure 3-11:  The NADS-1 driving simulator [Nad14-ol]. 

The NADS miniSim 

The NADS miniSim is a low cost PC-based portable driving simulator. The NADS min-

iSim can be customised to meet the client’s specific needs. It uses the same software 

built into the larger NADS simulators. The NADS miniSim is used for research and 

development as well as clinical and training applications, which do not need a high fi-

delity driving simulator [He06], [NAD10]. 

The NADS miniSim is built in a modular way and can be configured for a specific task 

by means of the following component varieties: 

 Display devices: These could be 1, 3, or 5 displays. 

 Input Device: This could be an off-the-shelf USB steering wheel and pedals, 

force feed-back steering wheel and pedals, quarter vehicle or part of a vehicle 

cabin. (See Figure 3-12). 

 Vehicle model: This could be a personal car model or truck model. 

 Motion System: The NADS miniSim could be equipped with a small motion 

platform that provides motion to the driver cabin. 
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Figure 3-12 shows two different variants of the NADS miniSim. The left variant is 

equipped with part of a vehicle cabin as an input/instrumentation device and the right 

one is equipped with a quarter-vehicle as an input/instrumentation device.  

 

Figure 3-12:  Two variants of NADS miniSim [NAD14-ol]. 

Evaluation  

The NADS-1 and NADS miniSim driving simulators are modular driving simulators 

which have been developed based on the same software components. They could be 

configured for different applications according to the customer specifications. The 

NADS minSim is a low-level configurable driving simulator. It is a promising ap-

proach towards developing a reconfigurable driving simulator. However, it is not a 

reconfigurable driving simulator, because as well-developed as it is, the user cannot 

exchange the entire components or add a new component to the system without the help 

of the manufacturer. 

3.6 Call for Action 

The analysis of the existing methods and approaches towards a reconfigurable driving 

simulator has shown that there is no method, approach or developed driving simulator 

to date which covers all the previously defined requirements in section 2.7. Figure 3-13 

shows the evaluation overview of the state of the art individual approach according to 

the previously defined requirements. The evaluations are briefly described as follows: 

R1 – Systematic Approach:  

So far, there has been no approach which has described a development systematics or a 

method in order to develop a reconfigurable driving simulator. Nevertheless, NEGELE’s 

method is useful as a preliminary step for the reconfiguration of a driving simulator. 

Driving simulator developers and operators can use NEGELE’s method to specify the 

task-specific variants of the driving simulator, the variants’ structure and its desired 

solution elements. Then, they can use the design framework described in this work in 

order to develop them and to create the desired variant. 
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R2 – Complexity Reduction:  

All of the previously investigated approaches have built the driving simulator in a mod-

ular way and the complexity is partially reduced from the developer's point of view. But 

they have hardly described the system's internal architecture from the operator's point of 

view. 

R3 – Domain-Spanning:  

Most of the previously investigated developed driving simulators have partially consid-

ered the different mechatronic disciplines. In particular, the Daimler and NADS driving 

simulators have considered all the mechatronic disciplines during the development. 

R4 – High Potential for Automation:  

Most of the previous approaches do not have a high potential for automation in order to 

reconfigure a driving simulator. The exchanging of the different available solution ele-

ments is done manually. However, the Daimler and NADS driving simulators partially 

have the potential to exchange the available solution elements automatically. 

R5 – Driving Simulator Reconfigurability:  

None of the investigated methods and approaches allows the driving simulator operator 

to change the entire structure by adding or removing new components. However, the 

“modular architecture for a driving simulator based on the FDMU approach” method, as 

well as the Daimler and the NADS driving simulators, have promising approaches and 

structures towards becoming reconfigurable driving simulators. 

R6 – Reengineering of Existing Driving Simulators: 

Most of the previous approaches have some exchangeable components e.g. driving cab-

in, vehicle model, motion platform, etc. However, none of them has the ability to ex-

change the entire components without adapting and integrating the new components 

manually. Only the modular architecture for a driving simulator based on the FDMU 

approach as well as the Daimler driving simulator have considered the reengineering of 

the existing driving simulator. 

R7 – Supporting the Development of ADAS:  

All of the investigated driving simulators support the development of ADAS in one or 

more phases of the development. However, the QuadDS, HexDS, Daimler and NADS 

driving simulators support the development of ADAS during the whole development 

cycle. 

R8 – Separation of Concerns:  

None of the investigated methods and approaches has a configuration tool which allows 

the user to reconfigure the driving simulator. Nevertheless, the operator council soft-
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ware of most of the existing driving simulators is based on easy-to-use graphical user 

interfaces. 

R9 – Modular and Extendable System Structure:  

None of the investigated methods and approaches has a configuration tool which allows 

the user to reconfigure the driving simulator. Nevertheless, most of the existing driving 

simulator software components are modular and extendable. 

 

Figure 3-13:  Evaluation overview of the state of the art individual approaches accord-

ing to the previously defined requirements. 
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Conclusion: 

None of the investigated methods and approaches in the state of the art meets all of the 

requirements, which have been previously defined in section 2.7. Most of the investi-

gated approaches describe a modular driving simulator or a driving simulator with few 

exchangeable solution elements. None of them describes any systematics or approaches 

for the development of a reconfigurable driving simulator and none of them allows the 

operator of the driving simulator to reconfigure the system without in-depth expertise in 

the system structure.  

3.7 The Solution Approach  

The main aim of this work is to simplify a driving simulator structure during the devel-

opment. This simple structure allows the operator to create different task-specific vari-

ants by selecting the desired solution elements of the driving simulator. 

The development of reconfigurable mechatronic systems which consist almost of stand-

ardized modular components can follow the “Building Blocks Concept”. The benefits of 

using the building blocks concept are speeding up the learning curve of the system 

structure based on the many years of experiences in the development of their entire 

components [Grä04, p. 59ff.]. Therefore, the solution approach of this work is based on 

the “Building Blocks Concept”. 

The typical virtual prototyping cycle consists of three phases: modelling, simulation and 

analysis. The modelling process is the developing of simplified formal models of the 

system under development. The system models represent the system properties. The 

simulation process represents the calculations of the system models with the help of 

numerical algorithms in order to simulate the system behaviour. The analysis process 

represents the interpretation of the simulation results that are usually done by extracting, 

preparing and visualizing the relevant information [GEK01, p. 419ff.], [Kre12, p. 19].  

In order to reconfigure a driving simulator, there is a need to add a phase between the 

modelling and simulation phases. The new phase is the configuration phase shown in 

Figure 3-14. In the configuration phase the driving simulator operator can select the 

desired solution elements to create a task-specific variant of the driving simulator. The 

models which have been developed during the modelling phase will be available for the 

selection in addition to other existing components. The operator selects a solution ele-

ment for each component. These selected solution elements, acting as building blocks, 

build together a driving simulator variant. Figure 3-14 shows a simplified example of 

the configuration process; the selected solution elements and the created variant are 

marked with a blue frame. As soon as a variant has been created, the driving simulator 

will be ready for the simulation and the analysis phases. 
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 Figure 3-14:  The solution approach of the reconfigurable driving simulator, accord-

ing to the building blocks concept. 
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4 A Design Framework for Developing a Reconfigurable Driv-

ing Simulator  

This chapter is the core of the present work. It describes A Design Framework for De-

veloping a Reconfigurable Driving Simulator. This design framework supports driving 

simulator developers and operators to develop and operate a reconfigurable driving 

simulator. The design framework has to meet the requirements, which are derived from 

the problem analysis in section 2.7, and it has to satisfy the call for the actions defined 

within the state of the art in section 3.6. As mentioned previously in section 2.2.3, driv-

ing simulators vary a lot in their structure, fidelity and area of use. Therefore, a general 

design framework for developing a reconfigurable driving simulator is needed. 

The design framework consists mainly of the procedure model and the configuration 

tool4. They are specifically described as follows: 

 The procedure model defines the required phases in a hierarchy, in order to de-

velop a reconfigurable driving simulator. Each phase contains entire tasks; these 

tasks have to be carried out in order to achieve the phase objectives. The proce-

dure model organizes the required tasks in each phase and describes which 

method or algorithm should be used to fulfil each task. The used methods and 

algorithms contain existing approaches as well as new approaches, which were 

developed during this work. Moreover, the procedure model defines the result of 

each phase. This is needed as an input for the following phases. 

 The configuration tool supports the driving simulator operators in creating a 

driving simulator variant or in reconfiguring an existing variant. The configura-

tion tool organizes the existing driving simulator software and hardware compo-

nents and their corresponding solution elements in a solution elements database. 

As soon as the solution elements database is filled, the software guides the driv-

ing simulator operator in order to create the desired driving simulator variant. 

The variant creation will be done by selecting a combination of solution ele-

ments, which are available in the database. Moreover, the configuration tool can 

deal with guidelines for testing and/or for training approaches. They can be add-

ed to the tool, and the configuration tool can check whether the created variant 

guideline conforms or not. 

Figure 4-1 demonstrates an overview of the design framework, constituent components 

as well as its correlation to the various chapters of this work. 

                                                 

4 The configuration tool is a software program, which is prototypically implemented during this work. 
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Figure 4-1:  A Design framework for developing a reconfigurable driving simulator 

structure and components. 

The following sections describe the case study and the procedure model phases. Section 

4.1 describes the case study, which is the running example during this chapter. Section 

4.2 gives a short overview of the procedure model as well as its main phases and mile-

stones. The individual tasks within each phase are then presented in sections 4.3 to 4.8; 

each of which includes a detailed description of the entire tasks, the used utilities, meth-
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ods, and/or techniques as well as the respective results. In chapter 5, the implementation 

prototype of the configuration tool is presented. 

During this chapter, the procedure model phases, the entire tasks and results of the 

phases are described methodically. In order to make the procedure model more under-

standable, the entire tasks and results of the phases will be presented with the help of a 

case study example. Furthermore, in chapter 5, the design framework will be validated 

with the help of an ADAS task-specific driving simulator.  

4.1 Case Study – HNI Existing Driving Simulators 

In order to make the procedure model understandable, there is a need to illustrate the 

described phases, the entire tasks and results with the help of a practical example. This 

work’s main objective is to build an ADAS reconfigurable driving simulator with a 

complex structure. It will have up to 27 system components and up to 67 solution ele-

ments. Therefore, two of our existing driving simulators will be used during this chapter 

as a running example instead of ADAS task-specific driving simulators.  

The case study variants have a simple structure which makes the design framework 

more understandable. Moreover, it shows that the usage of the procedure model is in-

dependent of the area of use. 

In the following section, the two case study driving simulators and the case study objec-

tives are briefly described.  

4.1.1 Case Study Variants  

The case study is presented through two existing variants: the HNI Airmotion ride driv-

ing simulator and the HNI PC-based driving simulator. Both variants were developed 

individually in our laboratory at the Heinz Nixdorf Institute with the objective of ad-

vanced levelling light system evaluation [BKG08]. Although both driving simulators 

were developed for research purposes, they will be considered in this chapter as enter-

tainment driving simulators which makes their structure simpler. Additionally, the mod-

elling and analysis tools will be neglected. This allows keeping the driving simulator 

structure as simple as possible. The following section briefly describes both variants. 

Variant 1 – The HNI Airmotion Ride Driving Simulator: This is an interactive driv-

ing simulator with a motion platform which is called Airmotion ride. The driving simu-

lator is used for the interactive driving of a virtual vehicle in a virtual environment 

without other traffic participants. Airmotion ride is a commercial motion platform pro-

duced by the company FESTO [Fes14-ol]. It was integrated5 with our in-house devel-

                                                 

5 The integration between the Airmotion ride and the VND was done by myself during my research activ-

ities. 
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oped visualization software: Virtual Night Drive “VND” [BKG08].  Figure 4-2 shows 

the HNI Airmotion ride driving simulator. 

 

Figure 4-2:  The HNI Airmotion ride driving simulator. 

The HNI Airmotion ride driving simulator consists of the following hardware compo-

nents, software components and resources: 

Table 4-1:  The HNI Airmotion ride driving simulator components 

Hardware Software Resources 

Motion Platform: 

Airmotion ride; a pneumatic 

actuated inverted hexapod 

Motion Platform controller: 

A simple motion controller 

based on virtual vehicle posi-

tion and orientation 

Simulation Computer: 

A single Windows PC with a 

commercial processor and a 

commercial graphics card 

Input Device: 

USB steering wheel and 

pedals 

Vehicle Model: 

A simple vehicle model 

based on Matlab/Simulink   

Simulation Computer Inter-

face: 

USB interface 

Visualization Device: 

75” LED monitor 

Rendering Software: 

Virtual Night Drive “VND” 

 

Acoustic Device: 

Dolby Speakers 

Acoustic Software: 

Virtual Night Drive “VND” 
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The HNI PC-based Driving Simulator (Variant 2): This variant is also an existing 

driving simulator in our laboratory. The driving simulator is used for interactive driving 

in a virtual environment without other traffic participants. It is a static driving simulator 

without motion platform and it has a Virtual Reality head-mounted display as a visuali-

zation device. Figure 4-3 shows the HNI PC-based driving simulator. 

 

Figure 4-3:  The HNI PC-based Simulator. 

The HNI PC-based driving simulator consists of the following hardware components, 

software components and resources: 

Table 4-2:  The HNI PC-based driving simulator components 

Hardware Software Resources 

Input Device: 

USB steering wheel and 

pedals  

Vehicle Model: 

A simple vehicle model 

based on game engine li-

brary 

Simulation Computer: 

A single Windows PC with a 

commercial processor and a 

commercial graphics card 

Visualization Device: 

Oculus Rift6 

Rendering Software: 

Virtual Night Drive “VND” 

Simulation Computer Inter-

face: 

USB interface 

                                                 

6 The Oculus Rift is a commercial Virtual Reality head-mounted display [Ocu14-ol]. 
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Acoustic Device: 

Dolby Speakers 

Acoustic Software: 

Virtual Night Drive 

 

4.1.2 Case Study Objectives  

Both case study variants were developed individually; each one of them has its fixed 

structure, certain software and hardware components. Furthermore, the interfaces be-

tween the different components were done manually. Applying the procedure model on 

the case study variants has two benefits. The first benefit is to make the procedure mod-

el understandable by illustrating it with the help of practical examples. The second ben-

efit is to develop both driving simulators only once; by applying the procedure model, 

this results in a reconfigurable driving simulator. Based on this reconfigurable driving 

simulator, the operator will have the ability to create both variants easily. In order to 

convert both existing driving simulators into one reconfigurable driving simulator, there 

are three objectives that have to be achieved: 

 Reengineering of two existing driving simulators: The first objective is to 

reengineer the two existing variants to have the same simulation core and to 

interface their entire components automatically.  

 Change Driving Simulator Structure: The second objective is to make the 

driving simulators reconfigurable; i.e. by adding or removing one or more of 

their entire components in a simple way without in-depth expertise in the sys-

tem and without changing the interfaces manually. The case study illustrates that 

the first variant has a motion platform, while the second variant does not have a 

motion platform. 

 Exchange Driving Simulator Component: The third objective is to make the 

driving simulators reconfigurable; in terms of exchanging one or more of the 

driving simulator solution elements in a simple way without in depth expertise 

in the system and without changing the interfaces manually. The case study il-

lustrates that the first variant has a physical vehicle model developed under 

Matlab/Simulink, while the second variant has a simple game engine-based ve-

hicle model. 

4.2 Procedure Model Overview 

The procedure model is the most essential part of the Design Framework for Develop-

ing a Reconfigurable Driving Simulator; it describes the theoretical fundamentals of the 

design framework. The procedure model supports driving simulator developers in the 

development of a reconfigurable driving simulator. The procedure model is kept general 

and could be used for different driving simulator areas of use, as well as other mecha-

tronic systems. It consists of six consequent phases divided into two stages. Figure 4-4 
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shows the procedure model in the form of a phases/milestones diagram which shows 

each phase. It also shows the tasks that have to be carried out, as well as the results from 

each phase.  

The six phases of the procedure model are generally divided into two stages: The sys-

tem development stage and the variants creation stage. Each stage consists of three 

phases. The first three development phases have to be performed once by the driving 

simulator developer. As soon as the developer finishes the development phases, the 

driving simulator operator should carry out the variant creation phases each time he/she 

creates a driving simulator variant. 

 

 

Figure 4-4:  Procedure model for developing a reconfigurable driving simulator. 
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The first phase is the driving simulator system specification; in this phase, the driving 

simulator is considered as an advanced mechatronic system. Therefore, a powerful spec-

ification technique for mechatronic systems is needed. During this phase, the specifica-

tion of the driving simulator is carried out in the form of partial models. The first phase 

results in detailed driving simulator specifications, which are the input of the second 

phase. The second phase is the main components identification; in this phase the main 

components of the driving simulator are identified and classified into software compo-

nents, hardware components, as well as resources. Furthermore, the identified compo-

nents have to be described. The second phase results in the classified driving simulator 

components and a description for each of them. The third phase is the configuration 

mechanism development; in this phase, the logical relationships between the diverse 

components have to be investigated and a configuration mechanism is developed. This 

mechanism is responsible for checking whether the combination of the selected solution 

elements is consistent and compatible or not. The third phase results in the consistency 

and compatibility check algorithms. The system development stage results in the recon-

figurable driving simulator outlines, which will be used by the driving simulator opera-

tor in the variants creation stage. 

As soon as the reconfigurable driving simulator outlines are developed, the operator can 

configure his own system with the help of the next three phases. The fourth phase is the 

solution elements deployment, in which the driving simulator operator has to register 

the existing solution elements in a solution elements database. The fourth phase results 

in the solution elements database, which contains all the solution elements organized in 

the form of morphological boxes. The fifth phase is a driving simulator variant gen-

eration that is done by selecting a combination of the available solution elements. After 

the selection process is completed, the configuration mechanism checks the constancy 

and the compatibility of the selected combination. If the selected combination is con-

sistent and its entire solution elements are compatible with each other, a variant descrip-

tion file and a physical connections plan will be generated; they are the fifth phase re-

sults. Based on the variant description file and the physical connections plan, the system 

has to be prepared for operation in the sixth phase: the system preparation for opera-

tion. The preparation for the hardware components is done by connecting the hardware 

solution elements based on the physical connections plan. However, the preparation for 

the software solution elements will be done automatically based on the generated vari-

ant description file. This is done by fetching and loading the selected software solution 

elements on the selected resources and by initializing the communication between them. 

After the completion of the sixth phase, the second stage is also completed and the re-

sult is a driving simulator variant. 

In the following sections, a detailed description of all needed tasks and operations dur-

ing each phase, as well as the results of each phase, will be presented with the help of 

the case study variants. 
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4.3 Phase 1 – Driving Simulator System Specification  

The objective of the first phase is to specify a reconfigurable driving simulator, which is 

a complex multidisciplinary mechatronics system. Therefore, there is a need to specify 

the system under a multidisciplinary development with the help of a specification tech-

nique. 

As described previously in the state of the art section 2.3.2, the CONSENS – “Concep-

tual Design Specification Technique for the Engineering of Complex Systems” will be 

used during this work. CONSENS is developed in order to specify complex mechatron-

ic systems. The specifications are multidisciplinary and they simplify the complexity of 

the developed mechatronic system by describing it using a coherent system of partial 

models. CONSENS is generally used in the conceptual design of a new product (mecha-

tronic system) in early development phases [GFD+09]. 

Driving simulators have been designed, developed and have been in use since 1934 as 

stated previously in section 2.2.1 [MV34]. This means they are not new systems but 

have been used for decades. The development and the continued enhancement of driv-

ing simulators allow building a wide expertise regarding the system, as well as its com-

ponents and its architecture. Since CONSENS is used regularly in the conceptual design 

of a new product, some enhancements are needed in order to be used for the develop-

ment of driving simulators. 

The usage of CONSENS in specifying a well-known system such as driving simulator 

has to be validated with the help of a usability study. The usability study7 is carried out 

by specifying an existing driving simulator (HNI ATMOS driving simulator, which is 

described in section 3.3.1) in a retrospective way. By using this reverse engineering 

approach in the usability study, not only is CONSENS validated for the usage in the 

development of reconfigurable driving simulators, but also the needed CONSENS en-

hancements are carried out. Additionally, the relevant partial models of CONSENS 

were selected and organized in a work flow. 

In the following section, the CONSENS work flow, especially for the specification of a 

reconfigurable driving simulator, is described. 

4.3.1 CONSENS Work Flow for a Reconfigurable Driving Simulator 

The specification technique “CONSENS” divides the principle solution specification 

into coherent partial models. The CONSENS partial models are: requirements, envi-

ronment, application scenarios, functions, active structure, shape and behaviour. Each 

partial model specifies a precise aspect of the system under development [GFD+09]. 

                                                 

7 This validation study is based on a bachelor thesis supervised by myself: "Reverse Engineering eines 

komplexen Fahrsimulationssystems mit dem Ziel der fachdisziplinübergreifenden Systemkonzeption" 

by B.Sc. Alexander Birkle. 
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The usability study showed that the partial models’ weights of importance are not equal 

within the development of reconfigurable driving simulators. During this work, the fo-

cus will be on five of seven CONSENS partial models. The relevant partial models are 

environment, application scenarios, requirements, functions and active structure. The 

shape and behaviour partial models will be neglected within the scope of this work. 

The CONSENS work flow is divided into three steps: firstly, the environment, the ap-

plication scenarios and the requirements have to be specified simultaneously. Secondly, 

based on the result of the first step, the function hierarchy has to be derived. The third 

step is to build up the active structure based on the result of the previous steps. Figure 4-

5 below shows the CONSENS work flow towards specifying a reconfigurable driving 

simulator.  

 

Figure 4-5:  CONSENS work flow for reconfigurable driving simulator according to 

Gausemeier [VG12, p. 2]. 

The specification of the system is typically carried out in the context of expert work-

shops with the help of a workshop cards set. The workshops’ participants are usually 

experts in several disciplines such as mechanical engineering, software engineering, 

control engineering and electrical engineering. The result of each partial model is pre-

sented in the next sections. 

Important evidence: During the driving simulators specification, the entire compo-

nents of the driving simulator have to be considered solution-neutral. Dealing with the 

different components from a specified solution point of view helps to develop a recon-
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figurable driving simulator. The system has to be specified as solution-neutral during 

the development stage, and then during the variant creation, a solution element has to be 

selected to fulfil each system component function. 

4.3.2 Environment  

The environment partial model defines the external influences, which affect the system 

under development. The driving simulator has to be considered as a black box which 

means that the investigation is not of the system itself, but of the relevant external influ-

ences. These external influences are environment elements or disturbance variables 

[GFD+09]. 

Environment – specification results of the case study 

The environment influences specifications of the driving simulator case study result in 

the identification of five essential environment elements as well as three disturbing in-

fluences. The five identified essential environment elements are:  

 Driver: The most essential environment element is the driver. The driver uses the 

input devices to drive a virtual vehicle in a virtual environment. The input signals 

are typically as follows: acceleration pedal position, brake pedal position, gear se-

lector position and steering wheel angle. The driver receives feedback from the 

simulator in the form of motion as well as visual and acoustic information. 

 Energy Source: To power up the system, an energy source is needed.  

 Ground: If the driving simulator is equipped with a motion platform which pro-

duces dynamic forces, then bidirectional forces interactions occur between the sys-

tem and its ground. 

 Driving simulator operator: The driving simulator operator is the person who is 

responsible for operating the driving simulator technically. 

 Environment: The environment affects the driving simulator through disturbing 

influences such as humidity, dirt, light and temperature. The system also affects the 

surrounding environment by producing heat and operational noise. For the model-

ling of influences and in particular, the influence of disturbances, catalogues such 

as [VDI4005] can be used. 

Figure 4-6 shows the system under development illustrated as a blue hexagon in the 

centre of the figure. The five environment elements illustrated as yellow hexagons, and 

all the interaction flows between the system and its environment are illustrated as ar-

rows. These interaction flows and the disturbance influence are restricted between ener-

gy, information, and material flows. 
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Figure 4-6:  Environment model of the case study’s variant 1. 

The environment’s specification result of variant 2 of the case study is illustrated in ap-

pendix, Figure A-1. The difference between the environment models for variant 1 and 

variant 2 is minimal. The difference is that the ground element and the motion energy 

flow have to be neglected for variant 2. That is because variant 2 does not have a motion 

platform. 

4.3.3 Application Scenarios 

The application scenarios partial model is an essential partial model of the system speci-

fication. In this specification step, some operational application scenarios are defined. 

Each application scenario describes the system under development in terms of way of 

use, operation modes, system manner and main components. By using CONSENS, each 

application scenario will be described in a profile page, which contains the scenario 

title, scenario numbering, the scenario description and a simple sketch [GFD+09]. 
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Application scenarios – specification results of the case study 

The specification of the case study results in the definition of two application scenarios: 

“virtual drive with a motion platform” and “virtual drive on a PC”.  

Figure 4-7 shows the first application scenario virtual drive with a motion platform re-

garding the case study’s variant 1. The application scenario is illustrated in a profile 

page8, which is adapted to the reconfigurable driving simulator approaches. It contains a 

short description of the system’s normal operation, the desired setup in the form of solu-

tion-neutral hardware and software components, as well as a simple sketch. 

 

Figure 4-7:  Application scenario example for the case study’s variant 1. 

                                                 

8 The profile page of the application scenario used during this work was enhanced and varies from the 

standard CONSENS profile page in order to fit with the reconfigurable driving simulator specification. 

Status:  

1.12.2013 

Application Scenario:                                   

Virtual Drive with Motion Platform 

A1 Page: 1 

Description: 

This is a virtual test drive in a driving simulator. The driver sits in the motion platform. The motion platform has to 

be equipped with an input device, which has a steering wheel and three pedals (acceleration, brake and clutch 

pedals). This input device allows the driver to drive and control a virtual vehicle in a virtual environment. As soon 

as the simulation starts, based on the driver inputs through the input device, the vehicle model calculates the 

vehicle movements in the virtual environment. During each sampling cycle, the vehicle model updates the 

position and orientation of the vehicle chassis and calculates the engine speed. Based on the new position and 

orientation calculated by the vehicle model, the motion platform controller calculates the new set-points for the 

motion platform. The rendering software visualizes the virtual environment based on the new vehicle position and 

orientation perspective and displays the rendered frame on a display device. The acoustic software calculates 

the engine sound based on the engine speed and generates tone by the acoustic device. 
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The application scenarios’ specification result of variant 2 of the case study is illustrated 

in Appendix, Figure A-2. 

4.3.4 Requirements 

This partial model collects and organizes the system requirements of the system under 

development which need to be covered and implemented during the development pro-

cess. The requirement list contains functional and non-functional requirements 

[GFD+09]. Additionally the organized requirements distinguish between demands and 

wishes (D/W) [PBF +07]. 

Requirements – specification results of the case study 

Figure 4-8 shows a part of the requirement list of the case study specification result. 

 

Figure 4-8:  Part of the requirements list of the case study. 

4.3.5 Functions  

The functions partial model is built based on the previous partial models: environment, 

application scenarios and requirements. It describes the system and its entire compo-

nents’ functionality in a top-down hierarchy [GFD+09]. Each block describes a sub-

function of the system. Function catalogues, according to BIRKHOFER [Bir80] or 

LANGLOTZ [Lan00], support the creation of the functional hierarchy. 

Due to the variation of the main function, structure and required components of the stat-

ed application scenarios, the functions specification also varies in its complexity and 

number of its entire sub functions. Therefore, there is a need to merge the identified 

functions of the stated application scenarios.  
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Functions – specification results of the case study 

The main function of the case study – variant 1 driving simulator is to perform a test 

drive. In order to achieve this function, the driving simulator has to simulate motion, 

visualize virtual scenes, simulate sound, simulate a virtual vehicle and drive the virtual 

vehicle through a virtual environment. Figure 4-9 shows the functions hierarchy of the 

first variant. 

 

Figure 4-9:  Functions model of the case study variant 1. 

The functions' specification result of variant 2 of the case study is illustrated in Appen-

dix, Figure A-3. The difference between the function models of variants 1 and 2 is min-

imal. The difference is that the “simulate motion” function and its sub-functions have to 

be neglected for variant 2. This is because variant 2 does not have a motion platform. 

4.3.6 Active Structure 

The active structure partial model is built based on the previous partial models results, 

specifically the functions partial model. The active structure describes the entire system 

in more details in the form of system component active principles. It describes the sys-
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tem components, their attributes, the entire interfaces and how the components interact 

with each other. Depending on the modelling level of details, each system element 

could be described abstractly as an active principle or a software pattern. Additionally, 

material, energy and information flows, as well as logical relationships, describe the 

interactions between the system elements [GFD+09]. 

Active Structure – specification results of the case study 

Figure 4-10 shows the active structure specification results for the case study variant 1. 

The active structure consists of eight system elements (components): five of them are 

software components labelled with (SW), and three hardware components labelled with 

(HW). Moreover, one of the environment elements (Driver) illustrates an example of the 

interaction between the entire components of the system and an environment element. 

Six of the eight components could be grouped into 4 groups e.g., rendering software and 

the visualization device (hardware) compose the visualization system group. 
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Figure 4-10:  Active Structure model of the case study’s variant 1. 

The active structure’s specification result of variant 2 of the case study is illustrated in 

Appendix – Figure A-4. 
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4.3.7 CONSENS Enhancement for the Design Framework 

During the validation study and the driving simulator system specification of the case 

study variants, some enhancement of the CONSENS was carried out to fit the design 

framework for reconfigurable driving simulators. The following rules and enhancements 

are suggestions which have to be considered for the specification of reconfigurable sys-

tems in general.  

 Functions decomposition principle: This enhancement refers to the CONSENS 

functions partial model. The functions partial model is carried out based on “the 

functional decomposition principle” according to SYSTEM ENGINEERING FUN-

DAMENTAL [DDS01].  

In order to simplify a complex system, it has to be decomposed into a set of sub-

systems. The common question during the system decomposition is “To which 

level should the system be decomposed concerning the reconfigurability?” The 

answer is: The system has to be decomposed as little as possible and as much as 

necessary. It is a compromise between the system structure complexity and the 

system reconfigurability. Figure 4-11 shows two examples for decomposing the 

driving simulator functions with the focus on the vehicle model.  The first case 

on the left is a one-level decomposition, which keeps the system structure and 

the interface’s topology simple, but restricts the system reconfigurability. In this 

case, only the whole vehicle model would be exchangeable and not any of its en-

tire components. The second case on the right is a two-level decomposition 

which the vehicle model could be decomposed into (engine model, drive train 

model, vehicle dynamics model, etc.). This decomposition makes the system 

structure and the interface’s topology more complex, but extends the system re-

configurability. In this case, all the entire models (engine model, drive train 

model, vehicle dynamics model, etc.) would be exchangeable. 

In fact, each driving simulator developer has to decide the level of decomposi-

tion depending on the area of use. For example, if the driving simulator is used 

for the testing of a new light assistance system, the vehicle model should not be 

decomposed as in the first case. On the other hand, if the driving simulator is 

used for testing a new vehicle dynamics system, the vehicle model has to be de-

composed as the second case. 
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Figure 4-11:  Different cases of function decomposition. 

 Intelligent Interfacing Module (IIM): This enhancement refers to the CON-

SENS active structure partial model. The main objective of this work is to de-

velop a reconfigurable driving simulator by selecting the desired structure (sys-

tem’s components) and the desired hardware and software solution elements, 

and to avoid the implementation of the system interface topology manually. 

Therefore, there is a need for an interfacing component, which is named here as 

the Intelligent Interfacing Module (IIM). This module is able to read each gener-

ated variant configuration’s description, and based on this description, it will in-

terface all the system software components together during simulation run-time. 

The IIM is the interfacing heart of the system. Therefore, it must be considered 

as one additional system component, and it must be modelled in each variant’s 

active structure. Figure 4-12 shows the active structure results for the case study 

variant 1, which was previously shown in Figure 4-10, but with the IIM as a new 

system component. The comparison between the active structure without the 
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IIM and the active structure with the IIM shows an additional advantage of using 

the IIM, which is making the system interfaces topology more understandable. 

The interface of each software component will only be with the IIM. It would be 

very helpful during the modelling of more complex driving simulators. 

 

Figure 4-12:  Active Structure model of the case study’s variant1 with using IIM. 
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 Hardware Interfacing: This enhancement refers to the CONSENS active struc-

ture partial model. Based on the IIM concept, this interfaces all software com-

ponents with each other. Hardware components could not be connected to the 

IIM directly. Therefore, each hardware component has to have its own software 

interface; a physical connection will only be available between the hardware 

component and the resource interface where its software interface component 

executes on. The information exchange between the hardware and the IIM will 

be done through this interface component. The comparison between the active 

structure without the IIM in Figure 4-10 and the active structure with the IIM in 

Figure 4-12 shows an additional software component, which is the input device 

interface. The input device interface converts the physical signals coming from 

the input device hardware to an information signal and forwards it to IIM. In this 

way, the input device hardware and IIM are connected.   

 Buses of information flows: This enhancement refers to the CONSENS active 

structure partial model. In order to detail the information flows between the di-

verse system components, signal buses will be used. The signal bus contains one 

or more signals. Each signal has the following attributes: signal name, unit and a 

description. Therefore, each bus of information signal should be described by a 

signal table. Figure 4-13 shows an example of the information signal bus table. 

 

Figure 4-13:  Example of an information signal bus table. 

The first phase results, which the driving simulator system specification describes in 

the form of five partial models, are: environment, application scenarios, requirements, 

functions and active structure. This result is the input for the second phase. 
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4.4 Phase 2 – System Components Identification 

The second phase objectives are the identification, classification and definition of the 

driving simulator components based on the results of the first phase. Towards the identi-

fication of the driving simulator system components, a distinction between optional 

components, key components and solution elements must be defined.  

Distinction between system optional components, system key components and solu-

tion elements 

Each driving simulator system consists of some entire subsystems, which are hereafter 

called an optional component in this work. It describes an entire subsystem task in a 

solution-neutral way by means of its function. The existence of some system compo-

nents is obligatory in order to build a usable driving simulator. These obligatory com-

ponents are hereafter called system key component. In order to create an applicable 

driving simulator variant, each system component has to be replaced with a preferred 

solution element, which is a specific solution that could fulfil the component function.  

The case study variants show examples of optional components, system key compo-

nents and solution elements. A system optional component is e.g. a vehicle model, 

while a solution element for this component could be a simple vehicle model or a vehi-

cle model from a certain provider. Likewise, with the classes/objects concept of object-

oriented programming, here a component corresponds to a class and a solution element 

corresponds to an object. Each component could be replaced by one solution element in 

order to fulfil its functionality. 

As the driving simulator structure could also be changed during the reconfiguration pro-

cess, the key components have to be identified. The key components are the obligatory 

system components that always have to exist in the simulator structure. For example, 

each driving simulator has to have a visualization rendering software but a motion plat-

form is an optional component and not a key component, because a driving simulator 

does not need to have a motion platform. 

4.4.1 Identification of Driving Simulator Components 

Based on the active structure partial model, the system components as well as the sys-

tem key components can be identified with the help of the following three operations: 

1. Identify all components: The reconfigurable driving simulator components are 

the union of the different variants components as follows: 

compncompcompCompSim _var_..._2var__1var__   

Equation 1: Reconfigurable driving simulator components 
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Where: 

Sim_Comp:  Reconfigurable driving simulator components 

Var_1_comp: Variant 1 components 

Var_2_comp: Variant 2 components 

n:  Number of modelled variants 

For example in the case study, if variant 1 components are {A,B,C} and variant 

2 components are {A,B,D,E}, the reconfigurable driving simulator components 

will be {A,B,C,D,E}.  

2. Identify common components: The common components of the reconfigurable 

driving simulator are defined based on the intersection between the different var-

iants components  as follows: 

compncompcompCompSim _var_..._2var__1var__   

Equation 2: Driving simulator common components 

For example in the case study, if variant 1 components are {A,B,C} and variant 

2 components are {A,B,D,E}, the common system components will be {A,B}. 

3. Identify key components: In order to identify the system’s key components, the 

selection will be done based on the common components set. Each component 

has to be investigated individually in a logical way by eliminating the compo-

nent from the set. If the driving simulator can be operated without this compo-

nent, this means that it is an optional component. But if the driving simulator 

cannot be operated, then this means that it is a key component. 

Figure 4-14 shows the identified components of the case study variants based on their 

active structure partial model.  
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Figure 4-14:  Identified optional and key components. 

4.4.2 Classification of the Identified Components 

In addition to the modelled software and hardware components, the reconfigurable driv-

ing simulator resources have to be taken into consideration. Each software or model 

needs a computing unit (e.g. a computer) to be executed on. Moreover, each hardware 

component needs a physical interface to communicate with its corresponding software 

interface.   

In order to organize the identified components easily, these have to be classified under 

the following three categories: hardware, software and resources. The software cate-

gory contains two subcategories: the applications/models and the hardware interfaces 

(previously described in section 4.3.7). The resources category contains two subcatego-

ries: the computing units and the signal processing interfaces. Figure 4-15 shows the 

classification of the identified components in the case study. 
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Figure 4-15:  Classification of the identified components. 

4.4.3 Description of the Identified Components 

In order to understand the function of each component, each component has to be de-

fined from a solution-neutral point of view. The identified components of the used case 

study variants are described as follows: 

Input Device: This is a hardware MMI (Man-Machine Interface) between the driver 

and the driving simulator. It provides driving signals, e.g. acceleration pedal position, 

brake pedal position, etc. The input device provides the driving simulator with these 

signals in energy flow form. 

Input Device Interface: This is a software component, which converts the energy 

flows (physical signals) of the input device to its computer representative information 

flows (digital signals). 

Intelligent Interfacing Module (IIM): The Intelligent Interfacing Module (IIM) is a 

software component which is able to read each generated configuration description, and 

based on this description, it interfaces all system software components during simula-

tion run-time. 
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Vehicle Model: This is a software component, which represents a vehicle and its entire 

components by sets of mathematical equations in order to simulate the vehicle driving 

behaviour. 

Rendering Software: This is a software component, which generates a computer 

graphics representation of the virtual scene. The scene is represented typically from the 

driver’s point of view.  

Visualization Device: This is a hardware device, which displays the virtual scene. 

Motion Platform: This is a hardware component based on an active mechanism which 

gives illusive haptic feelings of being in motion.  

Motion Platform Controller: This is a software component, which synthesizes a con-

troller for actuators of the motion platform. 

Acoustic Software: This is a software component, which generates a computer generat-

ed sound of the virtual scene.  

Acoustic Device: This is a hardware device, which generates the virtual simulated 

sounds. 

Simulation Computer: This is a resource component, which processes the software 

components of the system. 

Simulation Computer Interface: This is a resource component, which interfaces 

hardware components with the simulation computer by converting the energy flows 

(physical signals) to their respective information flows (digital signals). 

The second phase results in identifying and classifying the driving simulator system 

components, as well as describing each component. 

4.5 Phase 3 – Configuration Mechanism Development 

This is the third and last phase of the development stage. The objective of the third 

phase is to develop a configuration mechanism, which ensures that the selected solution 

elements could operate together. This check is done after selecting the preferred struc-

ture and the desired solution elements. The configuration mechanism has to ensure the 

consistency and the compatibility of the selected structure and its entire solution ele-

ments. After the configuration mechanism ensures the selected solution element con-

sistency and compatibility of the solution elements, it generates a configuration file. The 

configuration file contains a list of the selected solution elements, the interfaces’ topol-

ogy and the selected resources.  

The configuration mechanism checks the selected solution elements. However, the solu-

tion elements will be deployed in the next phase, but it is the preferred order of the pro-

cedure. Developing the configuration mechanism before deploying the solution ele-
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ments allows the mechanism to also deal with unknown solution elements, which can be 

added in the future. 

There are two types of relationships between the selected solution elements and each 

other. These relationships have to be checked and confirmed by the configuration 

mechanism. The first relationship is the logic consistency between the selected solution 

elements with each other. The second relationship is the compatibility between the in-

terfaces of the selected solution elements. 

4.5.1 Consistency Check Algorithm 

The consistency relationship can be determined by two levels. The first level is the logic 

dependency between components, which determines if there is a logic correlation be-

tween two components or not. The second level is the logic consistency between two 

solution elements. 

Logic dependency between two components 

It is a logic relationship between two components, which describes if they depend on 

each other logically or not. For example, the motion platform and the input device are a 

dependent pair of components. They depend on each other, i.e. an input device has to be 

mounted on a motion platform. Therefore, the motion platform dimensions and payload 

have to match with the selected input device. 

Dependency matrix 

The dependency matrix is a two-dimensional matrix which describes the logic depend-

ency between the identified components. The components are stated in both the first 

row and the first column; the matrix is mirrored along its diagonal. Therefore, only the 

lower half of the matrix has to be filled with 0 or 1 by the driving simulator developer. 

 0: means the components pair is logically independent of each other, thus the 

inherited solution elements belonging to these components will also be logically 

independent of each other. 

 1: means the components pair is logically dependent on each other, thus the in-

herited solution elements belonging to these components will also be logically 

dependent on each other. 

Table 4-3 shows the dependency matrix based on the case study’s identified compo-

nents. 
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Table 4-3:  Dependency matrix of the identified case study components. 

 

 

Logic consistency between two solution elements  

It is a logic relationship between two solution elements, which describes if they are log-

ically consistent with each other or not. The first relationship depends on whether the 

solution elements’ parent components are independent. This means that the two solution 

elements inherited the independence and there is no need to check their consistency. 
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 2: means the solution elements pair is logically consistent with each other. This 

means that they could be selected together in a driving simulator variant. 

Table 4-4 shows a part of a consistency matrix based on the result of the case study with 

the assumption that each component has two solution elements.  Dealing with the solu-

tion elements in this section will be illustrated in an abstract form e.g. the solution ele-

ments will be called (A1, A2, B1, etc.); where A and B are components and A1 is the 

first solution element for the component A, etc. The whole consistency matrix is docu-

mented in Appendix – Table A-1. 

Table 4-4:  Part of the consistency matrix – example of case study solution elements.  

 

The consistency matrix is filled out based on the dependency matrix. If a pair of com-
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Figure 4-16:  Consistency check flowchart. 

4.5.2 Compatibility Check Algorithm 

One of the main approaches to building a reconfigurable driving simulator is the ability 

of adding, removing or exchanging one or more solution elements. In order to build 

such a reconfigurable system, the applications/models interfaces have to be carried out 

automatically. Therefore, there is a need for an algorithm to check if all selected solu-

tion elements are compatible with each other or not. The compatibility here means 

whether the interfaces of the selected solution elements match together or not. Hence, 

each software component has its programming language and naming system of the input 

and output signals. Additionally, there is a need to extend the reconfigurable system 

continuously by adding new unknown solution elements. Therefore, a generic solution 

elements’ interface concept has been developed to manage and check different existing 

solution elements as well as unknown solution elements which could be added in the 

future. 

Generic solution elements’ interface concept 

In order to interface the entire solution elements, each solution element has to be con-

sidered as a black box. Mainly, only the input and output interfaces have to be consid-

ered. To keep the configuration process flexible and extendable, any solution element 

can be added as soon as its input and output interfaces are defined. The only required 



A Design Framework for Developing a Reconfigurable Driving Simulator  Page 85 

task for integrating any solution element is to map its inputs and outputs to the recon-

figurable driving simulator’s unique signal names there, this task is called signal multi-

plexing. 

Figure 4-17 shows an example of the signal multiplexing. A vehicle model has to be 

integrated as a solution element. The model will be considered as a black box, but all its 

input and output signals have to be mapped to the reconfigurable driving simulator’s 

unique signal names. The output signal called “Otutput_ID563[m/s]” is the vehicle un-

der test velocity in m/s, but this signal’s unique name and unit predefined in the recon-

figurable driving simulator has the name “Chassis_Velocity” and its unit is km/h. 

 

Figure 4-17:  Generic solution elements interface concept. 

In order to integrate this vehicle model, the user has to connect all the input and output 

signals with different names and units to the unique names and the units of the parent 

reconfigurable system. The input and output signals multiplexers should be pro-

grammed before registering the solution elements in the solution element database.  

Compatibility check algorithm 

After selecting the preferred solution elements, the compatibility check algorithm proofs 

the solution elements one by one to ensure that the input signals could be satisfied from 

the outputs from other solution elements. The compatibility check algorithm does not 

only check the signals’ name but also other signal attributes such as frequency and unit 

to ensure the compatibility. Figure 4-18 shows a flowchart of the compatibility check. 

The compatibility check algorithm checks for each signal the compatibility with the 

help of the following steps 

1. The algorithm checks each input signal of each selected solution element. 

2. Each input signal has a unique name and must be delivered as an output 

from another selected solution element output. Therefore, the algorithm 
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searches by the signal unique name in all output signals of the other selected 

solution element. 

3. If the search engine finds the input signal as an output signal of the other se-

lected solution elements that means this input signal could be satisfied. 

4. Additionally, the search algorithm can check the compatibility of the signal 

unit and frequency. The output signal must have a greater frequency than 

the input signal. 

5. Then, the algorithm confirms the compatibility of this signal or stores an er-

ror in the error log. 

These five steps have to be repeated for each input signal of each selected solution ele-

ment. 

 

Figure 4-18:  Compatibility check flowchart. 
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4.5.3 Configuration mechanism sequence 

Figure 4-19 shows the configuration mechanism flowchart. It shows that the check of 

the selected solution elements is done with the help of the previously described check 

algorithms: the consistency check algorithm (left in the flowchart) and the compatibility 

check algorithm (right in the flowchart). The consistency check algorithm checks all the 

selected solution elements in pairs. However, the compatibility check algorithm checks 

them one by one. Both algorithms loop over all selected solution elements. As soon as 

one of the checks detects an inconsistency or incompatibility, it generates an error regis-

ter. These error registers are merged at the end of the process and an error file is gener-

ated. If the selected solution elements are consistent and compatible, the configuration 

mechanism confirms this and then a configuration file is generated. The error file and 

the configuration file structure are described in phase 5. 

 

Figure 4-19:  Configurations mechanism flowchart. 
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4.6 Phase 4 – Solution Elements Deployment 

The first stage of the development procedure “System Development” was described as 

well as its entire three phases. The first stage has to be carried out only once by the driv-

ing simulator developer. The result of the first stage is a reconfigurable driving simula-

tor outline, which should be extended in the variants creation stage by the driving 

simulator operator. The first stage describes the system’s entire components from a so-

lution-neutral point of view. The second stage is the concretisation stage which deals 

with solution elements instead of the solution-neutral components. 

The second stage “variants creation” consists of three phases, starting with phase 4 “so-

lution elements deployment”. The main objective of this phase is to build a solution 

elements database, which contains the existing solution elements, their interfaces and 

attributes. This phase is an iterative process that has to be carried out each time to add or 

modify a solution element to the solution elements database.  

The solution elements deployment is carried out in two steps.  The first step is the iden-

tification and classification of the solution elements and the second step is the filling out 

of the solution elements database with the required attributes of each solution element. 

4.6.1 Identify and Classify Solution Elements 

The solution elements’ identification and classification will be carried out based on the 

results of the first and second phases. The preferred solution elements will be carried 

out based on the morphological box concept according to ZWICKY [Zwi89, p. 133f.]. 

Figure 4-20 shows the morphological box result based on the case study. The first and 

the second columns of the solution elements morphological box describe the two classi-

fication levels of the components which are the result of section 4.4.2 .The third column 

contains the component names, the fourth column is the component corresponding func-

tion which is the result of section 4.3.5 and up to the fifth column. The columns contain 

the preferred solution elements based on the specification models results: application 

scenarios, requirements and active structure. Figure 4-20 shows the identified 11 com-

ponents and their corresponding 24 solution elements. 
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Figure 4-20:  Case study solution elements in morphological box form. 

The stated solution elements in each row can fulfil the component function, and only 

one solution element can be selected from each row.  

4.6.2 Filling the Solution Elements Database 

In order to make the configuration tool deal with the component and solution elements, 

there is a need to register the identified components and solution elements in a database. 

This database stores and organizes the components and solution elements. It also has to 

be readable by the driving simulator operator and accessible by the configuration tool.  

The main database operations are based on CRDU classes [Bro13]: create, read, update 

and delete. These operations must be covered by the database. 
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1) Create: This operation could perform for both components and solution el-

ements. The database is always extendable by adding a new component or by 

adding a new solution element for an existing component. This operation 

will be described in detail in this section. 

2) Read: This operation can be executed for both components and solution el-

ements. The database internal entries are accessible for the driving simulator 

operator, as well as for any software that would be used during the configu-

ration process. All stored component and solution elements as well as their 

attributes can be accessed.  

3) Update: This operation can be executed for both components and solution 

elements. Each stored component or solution element can be changed and re-

stored.  

4) Delete: This operation can be executed for both components and solution el-

ements. Each stored component or solution element can be deleted from the 

database. 

In this section, the create operation is described in detail in order to fill the solution el-

ements database. The filling process is done in two steps: create component then create 

solution element. 

Create a component entry: In order to create a component, the following attributes 

must be registered and stored in the database: 

 Component name: This attribute is the unique name for each component, which 

describes the component function. 

 Component type: This attribute is used to define the type of the component wheth-

er it is a key component or an optional component. 

 Component classification: This attribute is used to define the type of the compo-

nent: hardware, software (applications/models or hardware interfaces) or resources 

(computing units or signal processing interfaces). 

 Component description: This attribute contains a brief description of the compo-

nent in text form. 

 Component symbol: This attribute contains a symbol (logo) associated with the 

component. 

 Component logic dependency row: This attribute is a row which contains the log-

ic dependency between the components and the previously added components as 

mentioned before in section 4.5.1. This row is part of the components dependency 

matrix shown in Table 4-3.  
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 Component guideline9 entry: The guideline entry is an optional attribute which 

defines a preferred parameter value and condition regarding the component. For ex-

ample, a guideline defines that the visualization device must have a minimum hori-

zontal viewing angle of 100 degrees. This attribute can be added to the component 

in the form of the condition greater than (>) and parameter value (100 degrees). 

Create a solution element entry: In order to create a solution element, the following 

attributes must be registered and stored in the database: 

 Solution Element Name: This attribute is the unique name for each solution ele-

ment. 

 Solution Element Path: This attribute is the storage path on the file storage sys-

tem. This is applicable only for an application/model. 

 Solution Element – Parent Component: This attribute is the name of the corre-

sponding parent components. Therefore, it represents the relationship between this 

solution element and a component. 

 Solution Element Description: This attribute is a brief description of the solution 

element. 

 Solution Element Symbol: This attribute contains a symbol (logo) associated with 

the solution element.   

 Solution Element Author: This attribute is the solution element developer name, if 

known. 

 Solution Element Company: This attribute is the solution element producer com-

pany name if known. 

 Solution Element Release Date: This attribute is the date of when the solution 

element was released. 

 Solution Element Interface: This attribute is a table containing all the input and 

output signals of the solution element. Each signal has the following attributes: 

 Signal Name: It contains the names of the input and output signals of the 

corresponding solution element. 

 Input/Output: It indicates the direction of the signal, i.e. whether it is an 

input or an output signal. 

                                                 

9 Driving simulator guidelines describe preferred specification and prerequisites of the driving simulator 

in order to fulfill its task. Typically, there are guidelines for using the driving simulators in training 

tasks as stated before in section 2.2.3. 
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 From: It contains the component name from which this signal is to be ful-

filled. This is applicable only for input signals. 

 Unit: It contains the measuring unit of the corresponding signal. 

 Frequency: It contains the sampling frequency of the corresponding sig-

nal. 

 Resolution: It contains the resolution of the corresponding signal. 

 Protocol: It contains the transmission protocol of the corresponding signal 

e.g. CAN or TCP/IP. 

 Physical Port: It contains the physical port used to transmit the corre-

sponding signal. 

 Mandatory/Optional: It indicates whether the signal is mandatory or op-

tional. 

 Description: It contains a brief description of the corresponding signal. 

 Solution Element Consistency Row: This attribute is a row which contains the 

logic consistency between the solution element and the previous added solution el-

ements as mentioned before in section 4.5.1. This row is part of the solution ele-

ments consistency matrix shown in Table 4-4. 

 Solution Element Guideline Entry: If the parent component has a guideline entry, 

the solution element inherits this entry and should define a parameter value for the 

entry to check the solution element confirmation with the guideline. 

After registering all identified components and all preferred solution elements, which 

result from the metrological box in the database, the solution elements database is filled 

and ready to be used in the variant generation phase.  

4.7 Phase 5 – Driving Simulator Variant Generation 

The main objective of this phase is to define the configuration selection sequence, as 

well as define the configuration file structure, error reports structure and the physical 

connection plan.  

4.7.1 Configuration Selection Sequence 

In order to make a reasonable selection sequence for the solution elements, the identi-

fied components and their relationships have to be investigated. The selection sequence 

can be changed based on the area of use. During this phase, an example of the used case 

study shows how it can be determined. 



A Design Framework for Developing a Reconfigurable Driving Simulator  Page 93 

The driving simulator components have been previously classified as three main clas-

ses: Hardware, software and resources. A driving simulator structure is respectively 

based on hardware components, software and finally, the used resources. 

In order to make the selection sequence reasonable, it is not sufficient to make the selec-

tion sequence based on the classification, because of the tight correlation between some 

hardware and software components. Therefore, the identified components will be divid-

ed into groups of software and/or hardware based on the groups identified during the 

active structure specification step discussed in section 4.3.6.  

As shown in Figure 4-12, the case study’s active structure has the following four logic 

groups of components: 

 Motion System Group, which contains the components: motion platform 

and motion platform controller. 

 Acoustic System Group, which contains the components: acoustic device 

and acoustic software. 

 Visualization System Group, which contains the components: visualiza-

tion device and rendering software. 

 Input Device Group, which contains the components: input device and 

input device interface. 

The result of the active structure specification defines components clustered in logical 

groups, but does not give an indication about the selection sequence within the identi-

fied groups. Therefore, a further investigation is needed to get the selection sequence of 

the identified groups. 

With the help of studying the component and its relationships based on the dependency 

matrix, it gives a suggestion about the reasonable selection sequence. Table 4-5 shows 

the dependency matrix between the components mirrored along its diagonal. In addi-

tion, two rows are added to the matrix. The first added row contains the number of rela-

tionships for each component. The number of relationships for each component is calcu-

lated by summing up its column (marked up with the small red rectangle).  

The second add row contains the number of the relationships for each group of compo-

nents. The number of relationships for each group is calculated by summing up the 

number of relationships of the entire group components (marked up with the big red 

rectangle).   
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Table 4-5:  Components and groups number of relationships based on dependency 

matrix. 

 
 

Based on the result of comparing the groups’ number of relationships, a driving simula-

tor structure is based respectively on hardware components, software and finally used 

resources. A reasonable selection sequence is shown in Figure 4-21 based on the calcu-

lated number of the relationships for each group. However, the visualization system and 

the input device group can be swapped because both have the same groups’ number of 

relationships. 

 

Figure 4-21:  Selection steps of the case study reconfigurable driving simulator. 
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4.7.2 Configuration Files and Error Reports Structure 

After the compilation of the solution elements’ selection process, the configuration 

mechanism checks the selected components in terms of consistency and compatibility.  

Based on the configuration mechanism check results, if the selected solution elements 

are consistent and compatible with each other, the configuration tool confirms that the 

selected solution elements can build a driving simulator variant and generates a configu-

ration file. However, if the configuration tool finds any inconsistency or incompatibility 

between the selected solution elements, the configuration tool generates an error report. 

In the next section, the structures of the configuration file as well as the error report will 

be described. 

Configuration File Structure 

The configuration file is considered to be the result of the configuration process. It is a 

readable text file containing all the relative data about the selected variant. It consists of 

four parts: configuration data, hardware, software and resources. The configuration data 

is the part which describes general information about the configuration itself, e.g. con-

figuration name, author, etc. The hardware part contains all selected hardware solution 

elements attributes, parent component name and detailed input/output signal descrip-

tions. The software part contains all selected software solution elements attributes, par-

ent component name and detailed input/output signal descriptions. The resources part 

contains the selected resources. 

Error Report Structure 

The error report is a readable text file containing warnings and errors which are detected 

by the configuration mechanism. It contains five parts: configuration data, hardware, 

software, resources and errors/warning. The first four parts are the same as in the con-

figuration file. The error and warning part lists all detected inconsistent solution ele-

ments as well as all incompatible signals. 

4.7.3 Physical Connections Plan 

The configuration tool generates configuration files which contain the interfaces be-

tween the selected solution elements and the software side, but the configuration file 

does not contain the physical connections between the selected hardware solution ele-

ments and the selected resources. A physical connection plan is very useful for the driv-

ing simulator operator in order to prepare the driving simulator for operation. It shows 

in a simple way how the diverse hardware solution elements should be connected with 

the resource interfaces. It could be considered as a simple wiring plan. 

Figure 4-22 shows an example of the physical connection plan regarding case study 

variant 1. The case study variant 1 consists of four hardware solution elements which 

have to be connected to the simulation computer interfaces. With the help of the infor-
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mation stored in the solution elements database, the physical plan for the components 

can be generated. In this case, there were 4 connections, each hardware solution element 

is connected through one connection. 

 

Figure 4-22:  Example of a physical connection plan. 

4.8 Phase 6 – System Preparation for Operation 

The result of the fifth phase is the configuration file and a physical connection plan. The 

configuration file contains the selected solution elements, interface topology and select-

ed resources. Additionally, the physical connection plan contains the physical interfaces 

between the selected hardware solution elements. 

There are two preparation steps required in order to build up the selected driving simu-

lator variant and to prepare it for the simulation. The first step is the preparation of the 

hardware connections and the second step is the software preparation.  

4.8.1 Hardware Setup Preparation 

Assuming that the selection process finished successfully and the configuration tool 

generated the physical connection plan, then the driving simulator operator has to plug 

the different hardware solution elements together. The physical connection plan makes 

this step easy and understandable. 

For the case study example of variant one shown in Figure 4-22, the driving simulator 

operator has to plug in 4 cables: a USB cable between the steering wheel and the simu-

lation computer, an HDMI cable between the 75” LCD monitor and the simulation 

computer, a network cable between the motion platform and the simulation computer, 

and an audio cable between the dolby speakers and the simulation computer. The exam-

ple shows that the hardware preparation step can be easily done manually.  
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4.8.2 Simulation Software Preparation 

To prepare the selected software solution elements for the operation, which is a compli-

cated process (unlike the hardware preparation step) there is a need to develop software 

to assist this step. The software is called “Assistant10”. The assistant software is respon-

sible for preparing the software solution elements for the simulation by the following 

three steps: 

1. Read the configuration file: The assistant software can load and phrase the 

configuration file. It identifies the selected applications/models and their 

different attributes. 

2. Fetch the applications/models: The assistant software retrieves the storage 

path for each application/model. It accesses the storage file system where 

the applications/models are stored. 

3. Distribute the applications/models over resources: The assistant software 

loads each application/model on its corresponding source selected during 

the selection process. 

4.8.3 Communication during the Simulation Run-time 

The Intelligent Interfacing Module (IIM) initializes the communication between the 

selected software solution elements based on the interface topology which is described 

in the configuration file. As soon as the user starts the simulation, the IIM ensures the 

communication between the simulation-related software solution elements during simu-

lation run-time. Figure 4-23 shows the IIM function in the case study variant 1. The IIM 

exchanges the required input and output from and to the simulation related software 

solution elements during run-time. Moreover, IIM can connect the software solution 

elements together although a part of them runs under hard real-time conditions and the 

other part runs under soft real-time conditions. 

                                                 

10 This software was developed during my research work in cooperation with colleagues from the De-

partment of Control Engineering and Mechatronics at the Heinz Nixdorf Institute, University of Pader-

born.   
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Figure 4-23:  IIM function during simulation run-time of the case study variant 1. 

The result of this phase is a ready-to-use driving simulator which consists of the select-

ed software and hardware solution elements, as well as the selected resources. 
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5 Implementation Prototype and Validation 

The previous chapter proposed a detailed description of the design framework proce-

dure model. The procedure model described the phases and the entire tasks in each 

phase required to develop a reconfigurable driving simulator. The proposed procedure 

model showed that there is a need for a software tool to support the development pro-

cess. This chapter introduces an implementation prototype of the configuration tool. 

Additionally, the design framework for developing a reconfigurable driving simulator is 

validated within the ADAS reconfigurable driving simulator.  

Section 5.1 presents the main functions of the configuration tool, its structure and the 

implementation prototype results11. Section 5.2 describes the design framework valida-

tion within the validation example, which is the ADAS reconfigurable driving simula-

tor. Section 5.3 shows the different generated variants based on the procedure model 

and the application of the configuration tool’s implementation prototype. Finally, sec-

tion 5.4 describes the design framework validation based on the defined requirements. 

5.1 The Configuration Tool 

The previous chapter discussed the procedure model for developing a reconfigurable 

driving simulator from a theoretical point of view. The proposed functions and algo-

rithms, which are described during the procedure model, need to be implemented in a 

software tool. This tool helps the driving simulator developers and operators during the 

development and variant creation processes. Moreover, the state of the art analysis 

shows that until now there is no such approach or software tool, which deals with a re-

configurable driving simulator based on the described procedure model and the concept 

behind it. Therefore, a concept and an implementation prototype of the required config-

uration tool are being presented in this section. The configuration tool forms the second 

essential component of the design framework. It realizes and supports the procedure 

model’s second, third, fourth and fifth phases. 

The main task of the configuration tool is to support the driving simulator developers 

and operators in developing a reconfigurable driving simulator. The configuration tool 

has to meet the functional requirements, which are defined in section 2.7. 

The concept and the main operation of the configuration tool are described in section 

5.1.1. The configuration tool’s architecture is described in section 5.1.2. Section 5.1.3 

briefly describes the implementation prototype of the configuration tool and its graph-

ical user interfaces.  

                                                 

11 The achievements in this section are carried out in cooperation with Kareem Abdelgawad during my 

supervision of his master thesis; "Conceptual Design of a Configuration Mechanism for a Reconfigura-

ble Driving Simulator" of M.Eng. Kareem Abdelgawad. 
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5.1.1 The Configuration Tool’s Main Operations 

The configuration tool concept is based on the procedure model for developing a recon-

figurable driving simulator which is described in chapter 4. It supports the driving simu-

lator developer during the system development stage by organizing the identified driv-

ing simulator components, which is the second phase result. Additionally, the configu-

ration check algorithms are embedded and implemented in the configuration tool. These 

are the third phase results. 

Furthermore, the configuration supports the driving simulator operator during the crea-

tion stage of variants by filling out the solution elements database during the fourth 

phase. In addition, it supports the variant creation process during the fifth phase. 

The configuration software has functional and non-functional requirements which have 

to be covered and implemented. In the next part, the functional and the non-functional 

requirements of the configuration tool are defined. 

Functional Requirements 

The functional requirements describe the functions and tasks which should be supported 

by the configuration tool:  

1. The configuration tool should interact with the reconfigurable driving simula-

tor database, which organizes and stores components, solution elements and 

variants’ descriptions.  

2. The configuration tool should allow the driving simulator developer to view, 

add, modify and remove one or more component. 

3. The configuration tool should allow the driving simulator operator to view, add, 

modify and remove one or more solution element. 

4. The configuration tool should allow the driving simulator operator to select a 

combination of solution elements, which are stored in the solution elements da-

tabase, in order to generate a driving simulator variant. 

5. The configuration tool should ensure that the selected combinations of solution 

elements are consistent and compatible to each other. 

6. If the selected combination is consistent and compatible, the configuration tool 

has to generate a configuration file which contains all the required information 

about the selected solution elements and the system interface topology. 

7. If the selected combination is inconsistent or incompatible, the configuration 

tool has to generate an error file which contains the inconsistent or incompati-

ble solution elements and/or signals. 
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8. The configuration tool should have the ability to load, view and modify any 

previously generated variant by parsing a previously generated configuration 

file. 

Non-Functional requirements 

The non-functional requirements describe some general requirements regarding the 

software stability and usability. The most important non-functional requirements are 

defined as follows:  

1. The configuration tool should have a self-explaining graphical user interface 

to ensure the usability of the software. 

2. The configuration tool should assist the user in each step with a help window. 

3. The configuration tool should be modular and extendable. 

4. The configuration tool should be platform-independent which means it should 

be compiled in an executable package independent of the operating system.   

5. The configuration tool should prevent the user from dealing with complex 

processes such as database operations or check algorithms. The user only has to 

deal with a graphical user interface. The configuration tool has to separate the 

concerns between the user interface, algorithms and database. 

Based on the defined tasks, the configuration tool structure will be presented in the next 

section. 

5.1.2 The Configuration Tool’s Architecture 

The configuration tool structure follows the Model-View-Controller (MVC) approach, 

which is a common design pattern for software architecture. The MVC architecture di-

vides the software into three main modules: the model, the view and the controller 

[BY09].  

Applying the MVC approach on the development of the configuration tool results in the 

following modules: 

1. The configuration tool model: This is the core of the tool, which contains all 

required functions, algorithms and the interaction with the reconfigurable driv-

ing simulator database.  

2. The configuration tool view: This is the graphical user interface of the tool 

which allows the user to execute the required operations in a simple way and 

without dealing with complex functions or algorithms. 

3. The configuration tool controller: This is the events handling module of the 

tool. It connects the view module with the model module. As soon as the user 
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takes an action by using the graphical user interface, then the controller module 

has to execute the action’s predefined operation or call a pre-programmed algo-

rithm. 

Figure 5-1 shows the different modules of the configuration tool regarding the MVC 

approach and the interaction between the different modules. 

 

Figure 5-1:  Model-View-Controller modules of the configuration tool. 

5.1.3 The Configuration Tool’s Implementation Prototype 

A prototype of the described concept has to be implemented as a part of this work. The 

implemented configuration tool consists of more than 150 embedded functions. This 

section describes the essential components of the configuration tool, the graphical user 

interface and the important tasks/functions covered by the tool. 

The software was implemented using two software tools: Microsoft Office Excel and 

Matlab. The reconfigurable driving simulator database is implemented simply in Mi-

crosoft Office Excel. Further, the functions and algorithms are implemented with the 

help of Matlab M-Functions and the graphical user interface is implemented with the 

help of Matlab-GUI utility.  

The reconfigurable driving simulator database 

The development of the reconfigurable driving simulator database was done based on 

the relational database model approach. This approach is efficient and overcomes the 

complexity of the relationships between the entire different database tables. The imple-

mented database mainly contains three types of tables: the components’ table, the solu-

tion elements’ table and the interfaces’ table. These three types of tables are connected 

together based on a relational model of the database. 
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The graphical user interface of the configuration tool 

The dealing with the developed configuration tool is carried out mainly via a graphical 

user interface. Figure 5-2 shows the start screen which contains the main operations of 

the configuration tool and their correlation to the various phases of the development 

procedure model. 

 

Figure 5-2:  The graphical user interface of the configuration tool’s implementation 

prototype – start screen. 

The start screen operations of the configuration tool are described as follows: 

 Configure New System: This operation is the essential task of the configura-

tion tool. It is responsible for creating a new driving simulator variant by select-

ing solution elements for hardware, software and resources in a predefined se-

quence; so that the user is prevented from dealing with complex algorithms 

such as consistency and compatibility check algorithms. Firstly, the consistency 

check algorithm runs in the background parallel to the selection steps. The con-

figuration tool only shows the consistent solution elements which match with 

the previously selected solution element. Secondly, after the selection steps end, 

the configuration tool executes the compatibility check algorithm to check the 

compatibility of the selected solution elements. After the compatibility check 

has finished, the configuration tool generates a configuration file if the selected 

Phase 2 – System Components Identification

Phase 4 – Solution Elements Deployment

Phase 3 – Configuration Mechanism Development and

Phase 5 – Driving Simulator Variant Generation



Page 104  Chapter 5 

solution elements are compatible with each other or it generates an error file if 

the selected solution elements are not compatible with each other.  

 Load Configuration File: This function allows the user to view and modify a 

previously generated configuration file. Moreover, it allows the operator to 

modify the previously generated configuration file by exchanging one or more 

of the previously selected solution elements. 

 View Components and Solution Elements: This function allows the user to 

deal with the stored components and the solution elements in the database. The 

user can view, modify or delete one or more component or solution element. 

 Add New Component: This function allows the user to add one new driving 

simulator component per execution. This function will guide the user through 

predefined schemes in order to register the different attributes of the new com-

ponent, which have been previously described in section 4.6.2. 

 Add New Solution Element: This function allows the user to add one new 

driving simulator solution element under a selected component per execution. 

This function will guide the user through predefined schemas in order to regis-

ter the different attributes of the new solution elements, which have been previ-

ously described in section 4.6.2. 

Behind each operation in the main screen, a set of panels/schemas exists to accompany 

the user until he accomplishes the selected function. The different panels and their func-

tions are described in Appendix A2.2. 

5.2 Design Framework Validation 

In this section the Design Framework for Developing a Reconfigurable Driving Simula-

tor is validated by means of developing task-specific driving simulators. The develop-

ment process is described based on the presented procedure model and with the help of 

the implementation prototype of the configuration tool. 

The validation example is described in section 5.1.2. After that, the development pro-

cess will be described based on the procedure model phases from section 5.2.2 to sec-

tion 5.2.7. 

5.2.1 Validation Example: ADAS Reconfigurable Driving Simulator 

The validation example used during this chapter is the development of ADAS reconfig-

urable driving simulators during the TRAFFIS project with the help of the proposed 

design framework. The ADAS reconfigurable driving simulator shows the design 

framework’s strength in the development of task-specific reconfigurable driving simula-

tors.  
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Driving simulators are typically designed and built for a special purpose in order to 

support a specific testing or training approach in a predefined structure and preferred 

entire components. Adapting such systems to support new applications is very complex, 

time consuming, and often not feasible. Thus, with the increasing role of using driving 

simulators in different approaches, there is a need for highly adaptable and reconfigura-

ble driving simulators that can be conveniently tailored to new specific test or training 

functions. Moreover, there are also different levels of detail of the simulation models, 

ranging from simple low-fidelity models to their respective complex high-end models, 

which provide a much more detailed simulation. Also, the hardware components range 

from simple to complex components, which constitute different simulator setups that 

are capable of simulating specific aspects of the ADAS under test. 

The main objective of the TRAFFIS (German acronym for Test and Training Environ-

ment for Advanced Driver Assistance Systems) project is to build a reconfigurable driv-

ing simulator, which supports different test and training approaches related to ADAS. 

Therefore, using the proposed design framework to develop a reconfigurable ADAS 

driving simulator shows the enormous benefits of this work. 

5.2.2 Phase 1 – System Specification of Driving Simulator 

In this section, the specification results are presented based on the proposed phase 1 of 

the procedure model, which is described in section 4.3. The specification results of the 

ADAS reconfigurable driving simulator were carried out during several workshops by 

the TRAFFIS project team. The results are presented as follows:  

Environment – specification results of the ADAS driving simulators 

The specification of the environment influences on the ADAS driving simulator results 

in the identification of six important environment elements as well as three disturbing 

influences. Five of the six identified environment elements are identical with the identi-

fied environment elements of the case study example (described in section 4.3.2). The 

new identified element is the test drive manager. The test drive manager is the one 

who is responsible for setting up, observing and interacting with the system during the 

test/training drive simulation run-time. The instructor also has the ability to trigger some 

pre-defined events during the runtime (e.g. trigger the event: a child running across the 

road in certain situations) in order to investigate the interaction between the ADAS, the 

driver and the simulated vehicle systems.  

Application scenarios – specification results of the ADAS driving simulators 

The TRAFFIS project has five project partners, four of which plan to use the driving 

simulator in different areas of use as follows:  

A. Heinz Nixdorf Institute (HNI): As the reconfigurable driving simulator devel-

oper, the main aim for HNI is to develop reconfigurable driving simulators to 

support small and medium-sized enterprises which work in the ADAS develop-
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ment field. HNI will support these companies by providing them with the recon-

figurable driving simulator which helps the enterprises during the ADAS devel-

opment cycle. 

B. dSPACE GmbH (dSPACE): As a worldwide development tools supplier of au-

tomotive control units, the main aim for dSPACE is to develop a closed loop test 

tool which allows their automotive customers to investigate the interaction be-

tween ADAS control units, real vehicle components and the driver in a closed 

loop virtual environment. 

C. Varroc Lighting Systems GmbH (Varroc): As a worldwide automotive com-

ponents supplier, Varroc (formerly Visteon) was the first producer worldwide to 

bring an intelligent light system e.g. AFS (Adaptive Front-lighting System) to-

gether with Ford to a series production [Sch07]. The main aim for Varroc is to 

use the driving simulator in the ADAS development cycle.  

D. Institut für Logistik und Verkehr (ILV) UG & Co. KG: As one of the most 

modern traffic safety centres in Europe, the main aim for ILV is to develop an 

ADAS training driving simulator for truck and bus drivers. 

The four partners defined some application scenarios individually. HNI defined one 

application scenario (marked with A1), dSPACE defined three application scenarios 

(B1, B2 and B3), Varroc defined two application scenarios (C1 and C2) and ILV de-

fined one application scenario (D1). The short descriptions of the defined application 

scenarios are stated in the following part: 

 A1 – Flexible ADAS Test Tool: The main objective of this application scenario 

is to build a flexible driving simulator which supports the small and medium-

sized enterprises which develop ADAS. The system has to be reconfigurable so 

that it can match different ADAS test requirements during the different devel-

opment steps. Moreover, it has to allow different test methodologies such as SiL, 

MiL or HiL. Additionally, the system has to allow the investigation of the inter-

action between driver and system. 

 B1 – HCM Man-in-the-Loop Test Tool: Headlamp Control Module “HCM” is 

a driver assistance system developed by the company Varroc (formerly Visteon) 

[Sch07]. The main function of the HCM is to control the headlamps to ensure an 

optimum road illumination by using a high beam as often as possible without 

dazzling other traffic participants. The main objective of this application scenar-

io is to build a driving simulator variant, which uses dSPACE existing tools to 

realize the test of HCM control unit in a HiL simulation environment. 

 B2 – ADAS Man-in-the-Loop Test Tool: The main objective of this applica-

tion scenario is to build a driving simulator variant, which uses dSPACE exist-

ing tools to realize the test of other ADAS control units in a HiL simulation. 

Simultaneously, the system has to support the investigation of the interaction be-

tween the ADAS control unit and driver. 

 B3 – Camera-Based ADAS Automated Test Tool: The main objective of this 

application scenario is to build a driving simulator variant, which allows the au-

tomated test of the camera-based ADAS. Therefore, a powerful and extra-
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realistic visualization system is needed. In this application scenario, there is no 

need to use a motion platform. 

 C1 – HCM Software-in-the-Loop Test Tool: The main objective of this appli-

cation scenario is to build a driving simulator variant, which allows the testing 

of the main HCM algorithms in the laboratory in a SiL simulation environment. 

The preferred setup is a PC-based simulator with a simple vehicle model and a 

visualization system.  

 C2 – HCM Hardware-in-the-Loop Test Tool: The main objective of this ap-

plication scenario is to build a driving simulator variant, which allows the testing 

of the HCM control unit prototype in a HiL simulation environment. The pre-

ferred setup is only a PC-based simulator with the needed HiL interfaces to test 

the HCM control unit in the laboratory. 

 D1 – ADAS Training in Driving Simulator: The main objective of this appli-

cation scenario is to build a driving simulator variant which allows the execution 

of different training scenarios in a virtual environment. The main focus of the 

training scenarios is to focus on ADAS usage and ADAS benefits. 

Requirements – specification results of the ADAS driving simulators 

The four project partners stated their requirements of the system. HNI defined its re-

quirements regarding the general conditions of the driving simulator e.g. ergonomic, 

security, energy sources, etc. dSPACE defined its requirements regarding the entire 

simulation models. Varroc defined its requirements regarding the HCM control unit 

testing. ILV defined its requirements regarding the ADAS training prerequisites. These 

requirements were collected and organized in a large requirement list. 

Functions – specification results of the ADAS driving simulators 

Due to the variation in the main task, the structure and the required components of the 

stated application scenario, the specification of the functions also varies in its complexi-

ty and number of its entire sub-functions. Therefore, the identified functions of the stat-

ed application scenarios have to be merged together. The application scenario B1 pro-

vides all needed functions in the other application scenarios. In other words, the other 

application scenarios are stripped-down versions of the application scenario B1. Thus, 

the function and active structure specification in this section is focussing on application 

scenario B1. During the specification of the case study, the modelling and the analysis 

process have been neglected to simplify the understanding of the procedure model. Un-

like the case study, the modelling and the analysis process will be considered during this 

validation example. Figure 5-3 shows the function hierarchy of the ADAS driving simu-

lator. 
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Figure 5-3:  Functions’ hierarchy of the application scenario B1. 
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The main function of the ADAS driving simulator is to perform a test or training virtual 

drive. This main function is divided into three main sub-functions: prepare simulation 

regarding the pre-processing preparation, execute simulation regarding the different 

needed functions during the simulation run-time and analyse the simulation results re-

garding the post-processing and the analysis of the simulation results. The functions’ 

hierarchy that was modelled for the application scenario B1 consists of 26 sub-

functions.  

Active Structure – specification results of the ADAS driving simulators 

The active structure model is built based on the function hierarchy for the scenario B1. 

Figure 5-4 shows the active structure model of the application scenario B1. The infor-

mation flow labels have been deliberately omitted in this figure to show the system el-

ements closer. The active structure needs to be printed out in a DIN-A2 page, in order to 

show all the system elements and information signals in a good readable form.  

This active structure consists of 24 system elements (components). 16 of these are soft-

ware components labelled with (SW), 6 are hardware components labelled with (HW) 

and 2 are database components labelled with (DB). 21 components can be grouped into 

9 groups. The description of each system element is stated in the identified components 

section 5.2.3 
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Figure 5-4:  Active structure model of the application scenario B1. 



Implementation Prototype and Validation  Page 111 

5.2.3 Phase 2 – Main Components Identification 

Based on the first phase results, the reconfigurable driving simulator components and 

key components have to be identified, classified and described in this phase. This phase 

follows the proposed procedure model phase 2 which is described in section 4.4. In this 

phase, 29 reconfigurable driving simulator components are identified, classified and 

described. Figure 5-5 shows the classification of the identified components. 

Twelve of the ADAS reconfigurable driving simulator identified components are identi-

cal to the previously identified components of the case study variants. The identical 

components are:  Input Device, Input Device Interface, Intelligent Interfacing Module 

(IIM), Vehicle Model, Rendering Software, Visualization Device, Motion Platform, 

Motion Platform Controller, Acoustic Software, Acoustic Device, Simulation Computer 

and Simulation Computer Interface. These components have been previously described 

in section 4.4.3. The key components are also identical to the case study key compo-

nents. The 15 identified new components are described as follows:    

ADAS Control Unit: This is the real ADAS control unit in its prototype or serial pro-

duction hardware form. With the help of HiL technology, the real control unit can be 

integrated and tested within the simulated components. 

ADAS Control Unit Interface: This is the interface between the control unit hardware, 

and the simulated virtual components. With the help of special equipment called “digital 

signal conditioning”, the physical interface of the real control unit can be integrated in 

the simulation environment. Moreover, a model is required in order to map, code and 

decode the information exchange between the real ADAS control unit and the simulated 

components.  

ADAS Camera Test-Bench: The test of camera-based ADAS typically focuses on the 

control unit function. That is done by modelling and simulating the camera and the im-

age processing algorithms. Testing by using a simulated camera does not allow the 

ADAS developer to test the image processing algorithms, and an intensive test with the 

real camera is needed in a real environment. The idea behind the camera test-bench is to 

achieve a visual interface between the camera and the simulated components. The cam-

era will be positioned in front of an LCD display, and the simulated scene according to 

the camera perspective will be continuously displayed on the LCD display. The camera 

will detect the simulated environment and the simulated object and then send the cap-

tured images to the image processing algorithms [TH13a], [TH13b]. 

ADAS Camera Test-Bench Interface: This is the interface between the visualization 

software and the ADAS camera test-bench. A special visualization program is imple-

mented in order to adapt the visualization software to fit the camera detection parame-

ters. Moreover, the image processing detection results are prepared and forwarded to the 

other simulation components [TH13a], [TH13b]. 
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Traffic Model: This software model is required for the simulation of other traffic par-

ticipants. This model allows the simulation of various traffic situations and complex 

traffic scenarios. These simulated traffic scenarios greatly support the development and 

evaluation of the ADAS under test. 

Motion Cueing Algorithm: This algorithm calculates the presentation of haptic infor-

mation (cues) with the aim of resembling real movements in the virtual environments 

[Slo08]. 

Environment Creation Tool: This is a software tool that allows the automatic genera-

tion of virtual roadways. The virtual roadways are represented with a logic model, 

which contains mathematical road descriptions and attributes for the simulation models, 

as well as the graphics model, which contains the visual representation of the environ-

ment [KGG+11a], [KGG+11b]. 

Scenario Selection Tool: This software tool allows the driving simulator operator to set 

up a specific simulation scenario by selecting a combination of a predefined vehicle 

parameters set, a pre-generated virtual environment and a predefined traffic scenario. 

Models/ software Pool: This is a file storage system or a database, which contains the 

models and software solution elements. 

Assistant Tool: This software operates in a pre-processing step, reads the configuration 

file, allocates the selected software components in the model/ software pool, then loads 

and distributes them onto the selected resources. 

Operator Tool: The operator software is a user-friendly graphical user interface which 

allows the driving simulator operator to operate the driving simulator by means of se-

lecting the simulation scenarios, starting the simulation, controlling the simulation and 

stopping the simulation session. 

Test Manager Tool: This software component allows the test manager or the driving 

instructor to observe the simulation during simulation run-time and to trigger some pre-

defined events. These events could be training-relevant events, e.g. a child running in 

front of the vehicle, or testing-related events, e.g. changing some ADAS control unit 

parameters. 

Simulation Results Database: During the simulation run-time, some selected data and 

simulation results are logged and stored in a database for analysis. These selected 

logged data is stored in a simulation results database. 

Analysis Tool: The logged simulation results are later used in the post-processing phase 

for a visual analysis of the driving session. It can be used to replay and prolong the driv-

ing session, in order to facilitate the visual analysis of the interplay between vehicle, 

ADAS and driver in a specific test situation and to track down problems or errors when 

using ADAS in such a virtual prototyping environment. 
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Figure 5-5:  The classification of the ADAS reconfigurable driving simulator compo-

nents. 
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5.2.4 Phase 3 – Configuration Mechanism Development 

The configuration mechanism which has been previously discussed in section 4.5 fits 

exactly in order to be used within the ADAS reconfigurable driving simulator. In this 

section, the logic relationships between the reconfigurable driving simulator compo-

nents are described. 

ADAS Reconfigurable Driving Simulator Dependency Matrix 

The dependency matrix describes the logic dependency between the identified compo-

nents of the ADAS reconfigurable simulator. The matrix has a size of 26x26 rows and 

columns regarding the number of the identified software and hardware components. 

With the help of the configuration software operation “Add New Component”, the de-

pendency matrix is generated, based on the components attribute “Component Logic 

Dependency row”. 

 Table 5-1:  Part of the 26x26 dependency matrix of the identified ADAS reconfigura-

ble driving simulator components. 

 

 

ADAS Reconfigurable Driving Simulator Consistency Matrix  

The Consistency Matrix describes the logic consistency between the available solution 

elements. With the help of the configuration software operation “Add New Solution 

Element”, the consistency matrix will be generated based on the solution element attrib-

ute “Solution Element Consistency row”.  
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5.2.5 Phase 4 – Solution Elements Deployment 

The main objective of the fourth phase is to identify and classify the desired solution 

elements. Moreover, the solution elements database has to be filled with the required 

attribute of each solution element and each component. The deployment of the compo-

nents and solution elements is supported by the configuration software tool.  

The identification of the solution elements results in a total number of 67 existing solu-

tion elements. These solution elements are deployed in the reconfigurable solution ele-

ments database with the help of the configuration tool. The 67 solution elements contain 

18 hardware solution elements. For example, the component input device has 5 solution 

elements: “Mercedes-Benz Actros Tuck cabin”, “Smart for Two Cabin”, “Logitech 

USB steering wheel G25”, “Logitech USB steering wheel G27” and “Keyboard and 

mouse”. The deployed solution elements also contain 31 software solution elements. 

For example, the component vehicle model has 3 solution elements: “dSPACE ASM”, 

“HNI Simple Vehicle Dynamic Model” and “Physics Engine based Vehicle Model”. 

The deployed solution elements also contain 18 resource solution elements. For exam-

ple, the component simulation computer has 3 solution elements: “Simulation Control 

PC”, “dSPACE Real-Time Processor Board” and “Stand Alone Simulation Computer”.  

5.2.6 Phase 5 – Driving Simulator Variant Generation 

The main objective of this phase is to define the configuration selection sequence, as 

well as the generation of the configuration file and the physical connection plan with the 

help of the configuration software. By applying the method for defining the configura-

tion selection sequence, which is described in section 4.7.1, this results in that the 

ADAS reconfigurable driving simulator has 12 selection steps. Figure 5-6 shows the 

identified selection steps and the number of relationships which have been calculated 

for each group. 
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Figure 5-6:  Selection steps of the ADAS reconfigurable driving simulator. 

Configuration File Structure 

In chapter 4 and the case study example, the modelling and analysis tools have been 

neglected. In this section, the modelling and analysis tools are taken into consideration. 

Therefore, the configuration file structure for the ADAS reconfigurable driving simula-

tor consists mainly of four sections. The first section contains the general information of 

the configuration, e.g. configuration name, author, etc. The second section contains in-

formation about the selected modelling tools, e.g. the environment creation tool name 

and version, models/ software pool storage path, etc. The third section contains infor-

mation about the selected hardware solution elements, software solution elements, inter-

face topology and resources. The fourth part contains information about the analysis 

tool, simulation results database and a list of the analysis related signals which have to 

be logged during simulation run-time and have to be analysed. The configuration file 

will be generated by the configuration tool in an Extensible Mark-up Language (XML) 

file. Figure 5-7 shows a screenshot of the configuration file of the application scenario 

B1.  
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Figure 5-7:  Configuration file of the application scenario B1. 

Physical connections plan 

The physical connection plan of the application scenario B1 is illustrated in Figure 5-8. 

It shows the selected hardware solution elements and the selected resources. The appli-

cation scenario B1 has 6 hardware solution elements, 7 visualization computers, a real-

time processor board and a real-time digital signal processing unit. The selected hard-

ware elements are: the ATMOS motion platform, the truck cabin as an input device, the 

Headlamp Control Module “HCM” as an ADAS control unit, the HNI camera test-

bench as an ADAS camera test-bench, dolby desktop speakers as an acoustic device, as 

well as 8 projectors and 3 flat screens as display devices. The selected resources are: a 

real-time processor board, a real-time digital signal processing unit and 7 visualization 

computers (one master and 6 slaves). Figure 5-8 shows the connection between the 

hardware and the resources.  
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 Figure 5-8:  Physical connections plan of the application scenario B1. 
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5.2.7 Phase 6 – System Preparation for Operation 

The generated configuration file from phase 5 has to be loaded to the assistant software. 

The software parses the configuration file, then fetches the selected applications/models 

components and then loads them on the selected computers. Figure 5-9 shows the 

graphical user interface of the assistant software.  

 

Figure 5-9:  Graphical user interface of the assistant software. 

Communication during the Simulation Run-time 

Intelligent Interfacing Module (IIM) initializes the communication between the selected 

solution elements based on the interface topology, which is described in the configura-

tion file. As soon as the user starts the simulation, the IIM ensures the communication 

between all system components during simulation run-time. Figure 5-10 shows the IIM 

function in the application scenario B1. The IIM exchanges the required input and out-

put from and to the simulation-related software solution elements during run-time. 

Moreover, IIM connects the software solution elements together, although a part of 

them runs under hard real-time conditions and other parts runs under soft real-time con-

ditions. 
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Figure 5-10:  Graphical user interface of the assistant software. 

5.3 The Created Variants with the Help of the Design Framework 

In order to validate the design framework, three ADAS driving simulator variants have 

been generated with the help of the described procedure model and the implementation 

prototype of the configuration tool. The three generated ADAS driving simulator vari-

ants were generated simply by selecting their desired components and their preferred 

solution elements.   
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5.3.1 Configuration 1 – TRAFFIS-Full 

The name of the first generated variant is “TRAFFIS-Full”. This variant has the most 

complex structure and it contains most of the ADAS reconfigurable driving simulator 

components. This variant is based on the application scenario B1 which is described in 

section 5.2.2. The main objective of the TRAFFIS-Full variant is testing the real head-

lamp control module “HCM” control unit in HiL environment. Additionally, the driving 

simulator motion platform and the real vehicle cabin allow the investigating of the in-

teraction between the driver and the HCM control unit in a Human-in-the-Loop envi-

ronment. Figure 5-11 shows the TRAFFIS-Full variant.  

 

Figure 5-11:  The TRAFFIS-Full variant. 

The motion platform which is used in this variant is the ATMOS motion platform. It 

consists of two dynamical parts with 5 degrees of freedom (DOF). The first dynamical 

part is the moving platform. It has 2 DOF and is used to simulate the lateral and longi-

tudinal accelerations of the vehicle. It can move in the lateral plane and at the same 

time, it has the ability to tilt around its lateral axis with a maximum angle of 13.5 de-

grees and around the longitudinal axis with a maximum angle of 10 degrees. Four linear 

actuators are used to control the movements in both directions. The second dynamical 

part is the shaker system, which has 3 DOF to simulate the roll and pitch angular veloci-

ties and the vertical acceleration of the vehicle. It is driven by a three drive crank mech-

anism (three actuators) [HBA+13]. 
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The TRAFFIS-Full driving simulator variant consists of the following simulation-

related components and solution elements: 

Table 5-2:  TRAFFIS-Full driving simulator variant components and solution ele-

ments 

Hardware Software Resources 

Motion Platform: 

ATMOS motion platform 

Motion Platform controller: 

ATMOS motion platform 

controller 

Simulation Computer: 

dSPACE Quad-Core real 

time processor board 

(ds1006) 

Motion Cueing Algorithm: 

HNI classical motion cueing 

Visualization Computers: 

7 commercial windows PCs 

Visualization Device: 

8 Projectors cover 240 de-

grees horizontal field of view 

and 3 LED displays to visual-

ize the 3 mirrors 

 Rendering Software: 

Virtual Night Drive “VND 2.0” 

visualization module 

Simulation Computer Inter-

face: 

dSPACE DSP-Board 

(ds2211) 

 

Acoustic Device: 

Dolby Desktop speakers 

Acoustic Software: 

Virtual Night Drive “VND 2.0”  

acoustic module 

 

ADAS Control Unit: 

HCM real control unit 

ADAS Control Unit Inter-

face: 

HCM interface 

 

Input Device: 

SMART-for-two real vehicle 

Input Device Interface: 

SMART-for-two interface 

 

 Vehicle Model: 

dSPACE ASM   

 

 Traffic Model: 

dSPACE ASM-Traffic   

 

 

5.3.2 Configuration 2 – TRAFFIS-Portable 

The name of the second generated variant is “TRAFFIS-Portable”. This driving simula-

tor variant is a stripped-down version of the TRAFFIS-Full variant, which is based on 

the application scenario D1 which is described in section 5.2.2. The main objectives of 

the TRAFFIS-Portable variant are traffic safety training as well as illustrating the bene-
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fits of ADAS functions. The traffic safety trainings typically take place on site at lo-

gistic agencies. Therefore, a portable driving simulator variant with a simple motion 

platform was needed. Figure 5-12 shows the TRAFFIS- Portable variant. 

 

Figure 5-12:  The TRAFFIS-Portable variant. 

The TRAFFIS-Portable driving simulator variant consists of the following simulation-

related components and solution elements: 

Table 5-3:  TRAFFIS-Portable driving simulator variant components and solution 

elements 

Hardware Software Resources 

Motion Platform: 

Airmotion ride motion plat-

form 

Motion Platform controller: 

Airmotion ride motion plat-

form controller 

Simulation Computer: 

Windows PC 

Visualization Device: 

Oculus Rift 

Rendering Software: 

Virtual Night Drive “VND 2.0” 

visualization module 

Simulation Computer Inter-

face: 

Standard USB and network 

interfaces 

Acoustic Device: 

Dolby Desktop speakers 

Acoustic Software: 

Virtual Night Drive “VND 2.0”  

acoustic module 

 

Input Device: 

Logitech USB steering wheel 

and pedals (G25) 

Input Device Interface: 

Logitech USB steering wheel 

and pedals interface 

 

 Vehicle Model: 

A simple vehicle model 

based on UNITY 3D physics 

engine   
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 Traffic Model: 

A simple traffic model based 

on UNITY 3D physics engine   

 

 

5.3.3 Configuration 3 – TRAFFIS-Light 

The name of the third generated variant is “TRAFFIS-Light”. This variant has the sim-

plest structure and contains the smallest number of ADAS reconfigurable driving simu-

lator components. This variant is based on the application scenario C1 which is de-

scribed in section 5.2.2. The main objective of the TRAFFIS-Light variant is testing the 

main HCM algorithms in the laboratory in a SiL simulation environment. The generated 

setup is a PC-based simulator with a simple vehicle model and a visualization system. 

Figure 5-13 shows the TRAFFIS-Light variant.  

 

Figure 5-13:  The TRAFFIS-Light variant. 

The TRAFFIS-Portable driving simulator variant consists of the following simulation-

related components and solution elements: 
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Table 5-4:  TRAFFIS-Light driving simulator variant components and solution ele-

ments 

Hardware Software Resources 

Visualization Device: 

23” LED screen 

Rendering Software: 

Virtual Night Drive “VND 2.0” 

visualization module inte-

grated with the main HCM 

function as a SiL 

Simulation Computer: 

Windows PC 

Acoustic Device: 

Dolby Desktop speakers 

Acoustic Software: 

Virtual Night Drive “VND 2.0”  

acoustic module 

Simulation Computer Inter-

face: 

Standard USB and network 

interfaces 

Input Device: 

Logitech USB steering wheel 

and pedals (G27) 

Input Device Interface: 

Logitech USB steering wheel 

and pedals interface 

 

 Vehicle Model: 

A simple vehicle model 

based on UNITY 3D physics 

engine   

 

 Traffic Model: 

A simple traffic model based 

on UNITY 3D physics engine   

 

 

5.4 The Design Framework Validation based on the Requirements  

The Design Framework for Developing a Reconfigurable Driving Simulator, which was 

developed during this work, has to be evaluated based on the requirements defined in 

section 2.7. The next section briefly describes the evaluation of the developed design 

framework according to each requirement. 

R1 – Systematic Procedure: The developed procedure model ensures the systematic of 

the defined development phases. It consists of two stages: the first one describes the 

development phases which should be carried out by the developer of the driving simula-

tor and the second one describes the variants’ creation phases, which should be carried 

out by the operator of the driving simulator. Each stage is divided into three phases. 

Each phase describes the individually required tasks within the phase. Moreover, it de-

scribes the used functions and algorithms and the results of each phase.  

R2 – Complexity Reduction: The developed procedure model has reduced the system 

complexity by identifying the main components of the driving simulator. Moreover, the 
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identified components have been classified in three categories: hardware components, 

software components and resources. The task-specific variant creation processes, which 

have to be carried out by the operator of the driving simulator, have been simplified by 

selecting only the desired solution elements which are like building blocks.  

R3 – Domain-Spanning: The developed procedure model has considered the different 

domains of mechatronic by using the mechatronic systems specification techniques 

“CONSENS” in order to specify the reconfigurable driving simulator. Based on the 

specification results, a reconfigurable driving simulator has been developed as a mecha-

tronic system. Additionally, the design framework has been easily used by our interdis-

ciplinary designers during several workshops. 

R4 – High Potential for Automation: The developed procedure model has been de-

veloped to allow a high potential for automation. The configuration tool’s implementa-

tion prototype shows that four of the six phases could be implemented in a computer-

aided software tool (see Figure 5-2). 

R5 – Driving Simulator Reconfigurability: The developed design framework has 

been easily used to generate task-specific driving simulator variants without in-depth 

know-how of the structure. By separating the development phases from the variant crea-

tion phases, the driving simulator operator can create task-specific driving simulator 

variants just by selecting the desired solution elements. The variant creation phases do 

not require any in-depth expertise in the system’s entire structure. Moreover, the inter-

facing between the different solution elements during the simulation run-time is auto-

matically performed based on the configuration file and with the help of the intelligent 

interface module. 

R6 – Reengineering of Existing Driving Simulators: With the help of both case study 

examples in chapter four, the developed design framework has proven the feasibility of 

the reengineering of existing driving simulators. The two existing driving simulators of 

the case study have been redeveloped and their entire solution elements had been used 

within the variant creation process of the reconfigurable driving simulator. 

R7 – Supporting the Development of ADAS: The developed design framework has 

shown that, with the help of ADAS validation examples in chapter five, the ADAS de-

velopment, testing and training are fully supported. Additionally, the three created vari-

ants of the TRAFFIS project have presented different test environments of the ADAS 

such as SiL within the TRAFFIS-Light version and HiL within the TRAFFIS-full ver-

sion.  

R8 – Separation of Concerns: The developed configuration tool is an easy-to-use tool. 

It prevents the operator from dealing with complex procedures such as consistency and 

compatibility check algorithms. Moreover, it allows the driving simulator developer to 

easily perform complex tasks (e.g. dealing with the solution elements database) through 

a graphical user interface. Additionally, it allows the driving simulator operator to per-
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form complex tasks (e.g. creating a task-specific driving simulator variant) by selecting 

the desired solution element through a graphical user interface.  

R9 – Modular and Extendable System Structure: The structure of the configuration 

tool’s implementation prototype is modular and extendable. The configuration tool was 

implemented with the help of the model-view-controller approach (see section 5.1.2). 

This made the implemented software modular, extendable and easy-to-use. 

Conclusion 

The Design Framework for Developing a Reconfigurable Driving Simulator which was 

developed during this work completely fulfils all of the defined requirements. Addition-

ally, the design framework has been successfully used to reengineer two existing fixed-

structure driving simulators into reconfigurable ones. Moreover, the design framework 

has been successfully used to develop an ADAS reconfigurable driving simulator and 

three task-specific driving simulator variants. The developed design framework repre-

sents a practicable approach for developing a new generation of driving simulators 

which have the ability to be easily reconfigured to fulfil different tasks. 
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6 Summary and Outlook 

Driving simulators have been used successfully for decades in different application 

fields. They vary in their structure, fidelity, complexity and cost from low-level driving 

simulators to high-level driving simulators. Nowadays, driving simulators are usually 

developed individually by suppliers and they are developed with a fixed structure to 

fulfil a specific task. Nevertheless, using a driving simulator in an application field, 

such as ADAS development, requires several variants of a driving simulator. These var-

iants differ in their structure, in the used solution elements and in the level of detail of 

the entire models. Therefore, there is a need to develop a reconfigurable driving simula-

tor which allows its operator to easily create different variants without in-depth exper-

tise in the system structure and without the help of the driving simulator’s manufacturer. 

Driving simulators are complex, interdisciplinary mechatronic systems. Therefore, the 

development of a reconfigurable driving simulator is a challenge. During the problem 

analysis, this challenge was analysed, the reconfigurable driving simulator term was 

defined and the essential requirements of the design framework were identified.  

The extensive analysis of the state of the art has shown an existing method for the selec-

tion of the driving simulator and previous approaches towards developing reconfigura-

ble driving simulators. The method named “Application Oriented Conception of Driv-

ing Simulators for the Automotive Development”, developed by NEGELE, allows auto-

motive engineers to formulate the requirements and specifications of a driving simulator 

for a specific application. Further to this, many driving simulators were investigated, but 

only seven of them could be identified as possible previous approaches towards devel-

oping a reconfigurable driving simulator. The seven identified driving simulators were 

classified into four categories: low-level, mid-level driving simulators, high-level and 

multi-level driving simulators. The investigation of the existing methods and driving 

simulators has shown that, there is no existing method or a developed driving simulator 

to date which covers all the design framework requirements. Therefore, a need for ac-

tion was identified. 

In order to solve the challenge of developing a reconfigurable driving simulator, A De-

sign Framework for Developing a Reconfigurable Driving Simulator was developed to 

meet the defined requirements and to fulfil the need for action. The design framework 

consists mainly of the procedure model and the configuration tool. They are briefly de-

scribed as follows: 

 The procedure model: This defines the required phases in a hierarchy, in order 

to develop a reconfigurable driving simulator. Each phase contains complete 

tasks. These tasks have to be carried out in order to achieve the phase objectives. 

The procedure model organizes the required tasks in each phase and describes 

what method or algorithm should be used to fulfil each task. The used methods 

and algorithms contain existing approaches as well as new approaches, which 
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were developed during this work. Moreover, the procedure model defines the re-

sult of each phase. This is needed as input for the following phases. 

 Configuration tool’s implementation prototype: This organizes the existing 

driving simulator software and hardware components and their corresponding 

solution elements in a solution elements database. Moreover, it supports opera-

tors of the reconfigurable driving simulator, in order to create driving simulator 

variants or to reconfigure the existing variants. 

The description of the development procedure has been illustrated with the help of two 

case study driving simulators, which have been developed with a fixed structure. During 

this work, the case study variants were reengineered and they were converted into re-

configurable driving simulators. 

The design framework has been validated with the help of a validation example. The 

validation example was the development of ADAS reconfigurable driving simulators. 

They are task-specific driving simulators which are used for the testing and training of 

ADAS. During the validation, three variants of the reconfigurable driving simulator 

were successfully developed. 

In summary, the developed Design Framework for Developing a Reconfigurable Driv-

ing Simulator is a comprehensive framework which supports the driving simulator de-

velopers in their development of reconfigurable driving simulators. Moreover, it allows 

the driving simulator operators to easily create task-specific driving simulator variants. 

Outlook 

The developed Design Framework for Developing a Reconfigurable Driving Simulator 

has considered the driving simulator as a mechatronic system. The procedure model and 

the configuration tool have been kept general, in order to be applicable for other mecha-

tronic systems. The usage of the developed design framework for other mechatronic 

systems still has to be investigated. 

Additionally, there are some enhancements that have to be carried out for the implemen-

tation prototype of the configuration tool. These enhancements are described as follows:  

 Interfacing the configuration tool with the Mechatronic Modeller: In the 

first phase of the procedure model, the reconfigurable driving simulator was 

specified with the help of CONSENS – “Conceptual Design Specification Tech-

nique for the Engineering of Complex Systems”. The driving simulator specifi-

cation phase was done without the support of the configuration tool. There is a 

software tool for the computer-aided-modelling called “Mechatronic Modeller”, 

which is programmed based on CONSENS. The Mechatronic Modeller supports 

the specification’s partial models used in this work. These partial models are en-

vironment, application scenarios, requirements, functions and active structure 

[GDN10]. Moreover, the Mechatronic Modeller generates a meta-file which 
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contains the specification results. The configuration tool should be able to load 

the generated meta-file by the Mechatronic Modeller, interpret its contents and 

load the identified driving simulator automatically in the solution elements data-

base. 

 Compatibility check for the resources: Currently, the compatibility check al-

gorithm checks input and output signals of the software solution elements if they 

are compatible with each other or not. A further enhancement is to extend the 

algorithm by checking the resources solution elements by means of the available 

physical interfaces and the available computing power against the software solu-

tion elements which have to run on the resource. 

 Solution elements database: Currently, the solution elements database is im-

plemented with the help of Microsoft Office Excel, which makes the implemen-

tation simple. However, it has some disadvantages. For example, the file size of 

the solution elements database increases rapidly and the database access time is 

long. The recommendation is to implement the solution elements database in a 

professional database tool such as SQL. 

 Selection sequence panels: Currently, the selection panels of the solution ele-

ments have to be manually implemented based on the identified selection se-

quence. The configuration tool has to calculate the selection sequence and gen-

erate their panels automatically. 
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List of Abbreviations 

3D  3-dimensional 

ACC   Adaptive Cruise Control 

ADAS  Advanced Driver Assistance System 

AFS   Adaptive Front-lighting System 

ATMOS  Atlas Motion System 

CAD    Computer Aided Design 

CAN  Controller Area Network 

Ch.  Chapter 

CONSENS  Conceptual Design Specification Technique for the Engineering of Com-

plex Systems 

CPU   Central Processing Unit  

CRDU  Create, Read, Update and Delete 

D/W   demands and wishes 

DAS   Driver Assistance System 

DB   Database 

DiL   Driver-in-the-Loop   

DOF   Degrees of Freedom 

DSRC   Dedicated Short Range Communication 

ECU    Electronic Control Unit 

e.g.  exempli gratia – for example 

ESP   Electronic Stability Program 

et al.   et alii – and others 

etc.   et cetera – etcetera 

FBB   Functional Building Block 

FDMU  Functional Digital Mock-Up 

FFAS   Fortgeschrittene Fahrerassistenzsysteme  

FMECA  Failure Models, Effects and Critically Analysis 
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FPGA   Field Programmable gate Arrays 

GPU   Graphical Processing Unit   

GUI   Graphical User Interface 

HCM   Headlamp Control Module 

HDMI  High Definition Multimedia Interface 

HiL   Hardware-in-the-Loop 

HMI   Human-Machine-Interface 

HNI   Heinz Nixdorf Institute 

HW  Hardware 

i.e.  id est – that is 

IIM   Intelligent Interfacing Module 

ILV   Institut für Logistik und Verkehr 

LCA   Lane Change Assistance 

LCD  Liquid Crystal Display 

LED  Light Emitting Diode 

LKA   Lane Keeping Assistance 

M/O   mandatory/optional 

MiL  Model-in-the-Loop 

MVC   Model-View-Controller 

MMI   Man-Machine Interface 

N/A  Not Available 

NADS  National Advanced Driving Simulator 

OBD   On-Board Diagnostics 

OSG  Open Scene Graph 

RCP   Rapid Control Prototyping 

RMS   Reconfigurable Manufacturing System 

RMT   Reconfigurable Machine Tools 

RPM   Rounds per Minute 
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SiL   Software-in-the-Loop 

SQL  Structured Query Language 

SVD  Simple Vehicle Dynamics 

SW  Software 

TCP/IP Transmission Control Protocol / Internet Protocol 

TMC   Traffic Message Channel 

TRAFFIS Test- und Trainingsumgebung für fortgeschrittene Fahrerassistenzsys-

teme - German acronym for Test and Training Environment for Ad-

vanced Driver Assistance Systems 

TRDS   Toyota Research Driving Simulator 

UDP/IP User Datagram Protocol / Internet protocol 

USB   Universal Serial Bus 

VDI  Verein Deutscher Ingenieure – Association of German Engineers 

VGA   Video Graphics Array 

VHiL   Vehicle-Hardware-in-the-Loop 

VND   Virtual Night Drive  

VTI  The Swedish National Road and Transport Research Institute 

WiFi   Wireless Fidelity 

XML   Extensible Mark-up Language 
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A1 Amendments to the Design Framework (Chapter 4) 

In this appendix some additional figures and tables are presented regarding the results of 

the procedure model’s phases which are explained in chapter four.    

A1.1 Specification Results of the Case Study – Variant 2 

In this section, the specification results (phase 1) of the case study variant 2 are present-

ed. 

A1.1.1 The Environment Model of the Variant 2 

Figure A-1 illustrates the environment model of the case study – variant 2. The system 

under development is illustrated as a blue hexagon in the centre of the figure. The four 

environment elements are illustrated as yellow hexagons, and the interaction flows be-

tween the system and its environment are illustrated as arrows.  

 

Figure A-1: Environment model of the case study – variant 2. 
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A1.1.2 The Application Scenarios of Variant 2 

Figure A-2 shows the second application scenario’s profile page “Virtual Drive on a 

PC” regarding the case study variant 2. This variant is a fixed-base driving simulator 

that means it does not have a motion platform. The application scenario is illustrated in 

a profile page which is adapted to the reconfigurable driving simulator approaches. It 

contains a short description of the system’s normal operation, as well as the desired set-

up in form of solution-neutral hardware and software components and a simple sketch. 

 

Figure A-2: Application scenario example for the case study – variant 2. 

A1.1.3 The Functions Hierarchy of Variant 2 

The main function of the case study – variant 2 is to perform a test drive. In order to 

achieve this function, the driving simulator has to visualize virtual scenes, simulate 

sound, simulate a virtual vehicle and drive the virtual vehicle through a virtual envi-

ronment. Figure A-3 shows the functions hierarchy of the first variant. 
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Figure A-3: Functions model of the case study – variant 2. 

A1.1.4 The Active Structure of Variant 2 

Figure A-4 shows the active structure specification results for the case study variant 2. 

The active structure consists of eight system elements (components): five of them are 

software components labelled with (SW), and three hardware components labelled with 

(HW). Moreover, one of the environment elements (Driver) illustrates an example of the 

interaction between the entire components of system and an environment element. Six 

of the eight components could be grouped into 4 groups e.g. the rendering software and 

the visualization device hardware compose the visualization system group. 
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Figure A-4: Active Structure model of the case study – variant 2. 
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A1.2 The Consistency Matrix of the Case Study 

Table A-1 shows the consistency matrix based on the result of the case study with the 

assumption that each component has two solution elements. This table shows the con-

figuration mechanism development (phase 3). 
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Table A-1:  The consistency matrix – example of case study solution elements.  
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A2 Amendments to the Implementation and Validation 

(Chapter 5) 

In this appendix, some additional figures are presented regarding the implementation 

prototype of the configuration tool, which is explained in chapter five.  

A2.1 Configuration Tool – Main Operations 

Figure A-5 shows the main start screen of the configuration tool’s graphical user inter-

face. 

 

Figure A-5: The graphical user interface of the configuration tool’s implementation 

prototype – start screen. 

As described in chapter 5, the main operations of the configuration tool are stated as 

follows: 

 Configure New System  

 Add New Component  

 Add New Solution Element 

 Load Configuration File 

 View Components and Solution Elements 

The configuration tool’s main operation and the graphical user interfaces of each opera-

tion are described and illustrated in the next sections.  



Page A-10  Appendix 

A2.2 Configure New System 

The main aim of the configuration tool is to create variants of the reconfigurable driving 

simulator. The variant creation is done by the operation “Configure New System”. This 

task is done during the 12 selection steps identified during phase 5. Each selection step 

has its own panel.  

Figure A-6 shows the first selection step for the “Modelling System” which contains the 

following components for selection: environment creation tool, scenario selection tool, 

models/ software tool location and assistant tool. 

 

Figure A-6: Configure new system first selection step – modelling system. 
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Figure A-7 shows the second selection step for the “Motion System” which contains the 

following components for selection: the motion platform, the motion platform controller 

and the motion cueing algorithm. 

 

Figure A-7: Configure new system second selection step – motion system. 
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Figure A-8 shows the third selection step for the “Visualization System” which contains 

the following components for selection: the visualization device, and the rendering 

software. 

 

Figure A-8: Configure new system third selection step – visualization system. 

Figure A-9 shows the fourth selection step for the “Controlling System” which contains 

the following components for selection: the operator tool, and the test manager tool. 

 

Figure A-9: Configure new system fourth selection step – controlling system. 
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Figure A-10 shows the fifth selection step for the “Input Device” which contains the 

following components for selection: the input device, and the input device interface. 

 

Figure A-10: Configure new system fifth selection step – input device. 

Figure A-11 shows the sixth selection step for the “Vehicle Model”. 

 

Figure A-11: Configure new system sixth selection step – vehicle model. 
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Figure A-12 shows the seventh selection step for the “Traffic model”. 

 

Figure A-12: Configure new system seventh selection step – traffic model. 

Figure A-13 shows the eighth selection step for the “ADAS Camera System” which 

contains the following components for selection: the camera test-bench, and the camera 

test-bench interface. 

 

Figure A-13: Configure new system eighth selection step – ADAS camera system. 
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Figure A-14 shows the ninth selection step for the “Acoustic System” which contains 

the following components for selection: the acoustic device, and the acoustic software. 

 

Figure A-14: Configure new system ninth selection step – acoustic system. 

Figure A-15 shows the tenth selection step for the “ADAS Control Unit System” which 

contains the following components for selection: the ADAS control unit and the ADAS 

control unit interface. 

 

Figure A-15: Configure new system tenth selection step – ADAS control unit system. 
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Figure A-16 shows the eleventh selection step for the “Analysis System” which con-

tains the following components for selection: the simulation results database and the 

analysis tool. 

 

Figure A-16: Configure new system eleventh selection step – analysis system. 
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Figure A-17 shows the twelfth selection step for the “Resources” which contains the 

following components for selection: the simulation computer, the visualization comput-

ers and the simulation computer interfaces. 

 

Figure A-17: Configure new system twelfth selection step – resources. 

Figure A-18 shows the “Compatibility Check” step for the interfaces of the selected 

solution elements. The configuration check could check the compatibility of the inter-

faces by means of the three following aspects: signal name, signal unit and signal fre-

quency. 
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Figure A-18: Configure new system – compatibility check step. 

Figure A-19 shows the last step to configure a driving simulator variant, which is the 

“Configuration File Generation”. In this panel, each selected solution element can be 

viewed and edited. 

 

Figure A-19: Configure new system – configuration file generation step. 
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A2.3 Add New Component 

Figure A-20 shows the “Add New Component” panel. The new component can be add-

ed by the means of its name, description, symbol, category and its desired signal inter-

face, if this exists. 

 

 

Figure A-20: Add new component panel. 
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A2.4 Add New Solution Element 

Figure A-21 shows the “Add New Solution Element” panel. The new solution element 

can be added by means of its name, description, symbol, category, detailed list of in-

puts/outputs and logical consistency with the other solution elements. 

 

Figure A-21: Add new solution element panel. 
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A2.5 Load Configuration File 

Figure A-22 shows the “Load Configuration File” panel. With the help of this panel, a 

previously generated configuration file could be loaded, edited and saved after editing. 

 

Figure A-22: Load configuration file panel. 

A2.6 View Components and Solution Elements 

Figure A-23 shows the “View Components and Solution Elements” panel. With the help 

of this panel, a previously added component or solution element could be viewed, edited 

and deleted. 

 

Figure A-23: View components and solution elements panel. 
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